Sample records for electrical signature analysis

  1. Usage monitoring of electrical devices in a smart home.

    PubMed

    Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A

    2011-01-01

    Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.

  2. In-depth analysis and characterization of a dual damascene process with respect to different CD

    NASA Astrophysics Data System (ADS)

    Krause, Gerd; Hofmann, Detlef; Habets, Boris; Buhl, Stefan; Gutsch, Manuela; Lopez-Gomez, Alberto; Kim, Wan-Soo; Thrun, Xaver

    2018-03-01

    In a 200 mm high volume environment, we studied data from a dual damascene process. Dual damascene is a combination of lithography, etch and CMP that is used to create copper lines and contacts in one single step. During these process steps, different metal CD are measured by different measurement methods. In this study, we analyze the key numbers of the different measurements after different process steps and develop simple models to predict the electrical behavior* . In addition, radial profiles have been analyzed of both inline measurement parameters and electrical parameters. A matching method was developed based on inline and electrical data. Finally, correlation analysis for radial signatures is presented that can be used to predict excursions in electrical signatures.

  3. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  4. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less

  5. Kinetic Electric Field Signatures Associated with Magnetic Turbulence and Their Impact on Space Plasma Environments

    NASA Astrophysics Data System (ADS)

    Goodrich, K. A.

    Magnetic turbulence is a universal phenomenon that occurs in space plasma physics, the small-scale processes of which is not well understood. This thesis presents on observational analysis of kinetic electric field signatures associated with magnetic turbulence, in an attempt to examine its underlying microphysics. Such kinetic signatures include small-scale magnetic holes, double layers, and phase-space holes. The first and second parts of this thesis presents observations of small-scale magnetic holes, observed depressions in total magnetic field strength with spatial widths on the order of or less than the ion Larmor radius, in the near-Earth plasmasheet. Here I demonstrate electric field signatures associated small-scale magnetic holes are consistent with the presence of electron Hall currents, currents oriented perpendicularly to the magnetic field. Further investigation of these fields indicates that the Hall electron current is primarily responsible for the depletion of | B| associated with small-scale magnetic holes. I then present evidence that suggests these currents can descend to smaller spatial scales, indicating they participate in a turbulent cascade to smaller scales, a link that has not been observable suggested until now. The last part of this thesis investigates the presence of double layers and phase-space holes in a magnetically turbulent region of the terrestrial bow shock. In this part, I present evidence that these same signatures can be generated via field-aligned currents generated by strong magnetic fluctuations. I also show that double layers and phase-space holes, embedded within localized nonlinear ion acoustic waves, correlate with localized electron heating and possible ion deceleration, indicating they play a role in turbulent dissipation of kinetic to thermal energy. This thesis clearly demonstrates that energy dissipation in turbulent plasma is closely linked to the small-scale electric field environment.

  6. Real-time detection of deoxyribonucleic acid bases via their negative differential conductance signature.

    PubMed

    Dragoman, D; Dragoman, M

    2009-08-01

    In this Brief Report, we present a method for the real-time detection of the bases of the deoxyribonucleic acid using their signatures in negative differential conductance measurements. The present methods of electronic detection of deoxyribonucleic acid bases are based on a statistical analysis because the electrical currents of the four bases are weak and do not differ significantly from one base to another. In contrast, we analyze a device that combines the accumulated knowledge in nanopore and scanning tunneling detection and which is able to provide very distinctive electronic signatures for the four bases.

  7. Evaluation, analysis, and documentation support for the 10-kw Signature Suppressed Lightweight Electric Energy Plant (SLEEP). Technical report, April 1987-March 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morsch, B.A.; Main, B.W.; Buckman, A.F.

    The US Army identified the need for a Signature Suppressed, Lightweight Electric Energy Plant (SLEEP) to improve the survivability of forward deployed units. The US Army Belvoir Research, Development and Engineering Center has the responsibility for procuring generators to meet this requirement. This study was to investigate power-generation technology and determine the most-effective technology to meet the SLEEP requirement. The Stirling was identified as the most-promising technology for SLEEP. Commercial systems and improvements to existing systems cannot meet this requirement. Procurement of SLEEP was determined to be well suited for the Army Streamlined Acquisition Program.

  8. Accurate Prediction of Motor Failures by Application of Multi CBM Tools: A Case Study

    NASA Astrophysics Data System (ADS)

    Dutta, Rana; Singh, Veerendra Pratap; Dwivedi, Jai Prakash

    2018-02-01

    Motor failures are very difficult to predict accurately with a single condition-monitoring tool as both electrical and the mechanical systems are closely related. Electrical problem, like phase unbalance, stator winding insulation failures can, at times, lead to vibration problem and at the same time mechanical failures like bearing failure, leads to rotor eccentricity. In this case study of a 550 kW blower motor it has been shown that a rotor bar crack was detected by current signature analysis and vibration monitoring confirmed the same. In later months in a similar motor vibration monitoring predicted bearing failure and current signature analysis confirmed the same. In both the cases, after dismantling the motor, the predictions were found to be accurate. In this paper we will be discussing the accurate predictions of motor failures through use of multi condition monitoring tools with two case studies.

  9. Exploring the Use of Radar for Physically-Based Nowcasting of Lightning Cessation

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA's Marshall Space Flight Center and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically-based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms driven primarily by trending in the actual total lightning flash rate, we believe that dual polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and ice-microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can propagation phase-based ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature was encompassed in the period of the polarimetric negative phase shift signature. To the extent this behavior is repeatable in other cases, even if only in a substantial fraction of those cases, the analysis suggests that differential propagation phase may prove to be a useful parameter for future lightning cessation algorithms. Indeed, a preliminary analysis of 15+ cases has shown additional indications of the weakening and disappearance of this ice alignment signature with lightning cessation. A summary of these case-study results is presented.

  10. Global lightning studies

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Wright, Pat; Christian, Hugh; Blakeslee, Richard; Buechler, Dennis; Scharfen, Greg

    1991-01-01

    The global lightning signatures were analyzed from the DMSP Optical Linescan System (OLS) imagery archived at the National Snow and Ice Data Center. Transition to analysis of the digital archive becomes available and compare annual, interannual, and seasonal variations with other global data sets. An initial survey of the quality of the existing film archive was completed and lightning signatures were digitized for the summer months of 1986 to 1987. The relationship is studied between: (1) global and regional lightning activity and rainfall, and (2) storm electrical development and environment. Remote sensing data sets obtained from field programs are used in conjunction with satellite/radar/lightning data to develop and improve precipitation estimation algorithms, and to provide a better understanding of the co-evolving electrical, microphysical, and dynamical structure of storms.

  11. Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills

    NASA Astrophysics Data System (ADS)

    Lucas, G.; Thayer, J. P.; Deierling, W.

    2016-12-01

    Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.

  12. Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays

    NASA Astrophysics Data System (ADS)

    Khosravi, Farhad; Trainor, Patrick; Rai, Shesh N.; Kloecker, Goetz; Wickstrom, Eric; Panchapakesan, Balaji

    2016-04-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in buffy coats using nanotube-antibody micro-arrays. Single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (EpCAM) antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester functionalization method. Following functionalization, plain buffy coat and MCF7 cell spiked buffy coats were adsorbed on to the nanotube device and electrical signatures were recorded for differences in interaction between samples. A statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping to classify device electrical signals that corresponded to plain (control) or spiked buffy coats (case). In training test, the device electrical signals originating from buffy versus spiked buffy samples were classified with ˜100% sensitivity, ˜91% specificity and ˜96% accuracy. In the blinded test, the signals were classified with ˜91% sensitivity, ˜82% specificity and ˜86% accuracy. A heatmap was generated to visually capture the relationship between electrical signatures and the sample condition. Confocal microscopic analysis of devices that were classified as spiked buffy coats based on their electrical signatures confirmed the presence of cancer cells, their attachment to the device and overexpression of EpCAM receptors. The cell numbers were counted to be ˜1-17 cells per 5 μl per device suggesting single cell sensitivity in spiked buffy coats that is scalable to higher volumes using the micro-arrays.

  13. Electrical Signatures of Ethanol-Liquid Mixtures: Implications for Monitoring Biofuels Migration in the Subsurface

    EPA Science Inventory

    Ethanol (EtOH), an emerging contaminant with potential direct and indirect environmental effects, poses threats to water supplies when spilled in large volumes. A series of experiments was directed at understanding the electrical geophysical signatures arising from groundwater co...

  14. Feasibility of Autonomous Monitoring of CO2 Leakage in Aquifers: Results From Controlled Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Versteeg, R.; Leger, E.; Dafflon, B.

    2016-12-01

    Geologic sequestration of CO2 is one of the primary proposed approaches for reducing total atmospheric CO2 concentrations. MVAA (Monitoring, Verification, Accounting and Assessment) of CO2 sequestration is an essential part of the geologic CO2 sequestration cycle. MVAA activities need to meet multiple operational, regulatory and environmental objectives, including ensuring the protection of underground sources of drinking water. Anticipated negative consequences of CO2 leakage into groundwater, besides possible brine contamination and release of gaseous CO2, include a significant increase of dissolved CO2 into shallow groundwater systems, which will decrease groundwater pH and can potentially mobilize naturally occurring trace metals and ions that are commonly absorbed to or contained in sediments. Autonomous electrical geophysical monitoring in aquifers has the potential of allowing for rapid and automated detection of CO2 leakage. However, while the feasibility of such monitoring has been demonstrated by a number of different field experiments, automated interpretation of complex electrical resistivity data requires the development of quantitative relationships between complex electrical resistivity signatures and dissolved CO2 in the aquifer resulting from leakage Under a DOE SBIR funded effort we performed multiple tank scale experiments in which we investigated complex electrical resistivity signatures associated with dissolved CO2 plumes in saturated sediments. We also investigated the feasibility of distinguishing CO2 leakage signatures from signatures associated with other processes such as salt water movement, temperature variations and other variations in chemical or physical conditions. In addition to these experiments we also numerically modeled the tank experiments. These experiments showed that (a) we can distinguish CO2 leakage signatures from other signatures, (b) CO2 leakage signatures have a consistent characteristic, (c) laboratory experiments are in agreement with field results, and (d) we can numerically simulate the main characteristics of CO2 leakage and associated electrical geophysical signatures.

  15. Exploring the Use of Radar for a Physically Based Lightning Cessation Nowcasting Tool

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA s Marshall Space Flight Center (MSFC) and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and hydrometeors. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far, our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature encompassed the period of the polarimetric negative phase shift signature. To the extent this behavior is repeatable in other cases, even if only in a substantial fraction of those cases, the case analyses suggests that differential propagation phase may prove to be a useful parameter for future lightning cessation algorithms. Indeed, analysis of 15+ cases has shown additional indications of the weakening and disappearance of this ice alignment signature with lightning cessation. A summary of results will be presented.

  16. NASA thunderstorm overflight program: Atmospheric electricity research. An overview report on the optical lightning detection experiment for spring and summer 1983

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.

    1984-01-01

    This report presents an overview of the NASA Thunderstorm Overflight Program (TOP)/Optical Lightning Experiment (OLDE) being conducted by the Marshall Space Flight Center and university researchers in atmospheric electricity. Discussed in this report are the various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used in 1983 to collect optical and electronic signatures from the lightning events. Samples of some of the photographic and electronic signatures are presented. Approximately 4132 electronic data samples of optical pulses were collected and are being analyzed by the NASA and university researchers. A number of research reports are being prepared for future publication. These reports will provide more detailed data analysis and results from the 1983 spring and summer program.

  17. Electric Fuel Pump Condition Monitor System Using Electricalsignature Analysis

    DOEpatents

    Haynes, Howard D [Knoxville, TN; Cox, Daryl F [Knoxville, TN; Welch, Donald E [Oak Ridge, TN

    2005-09-13

    A pump diagnostic system and method comprising current sensing probes clamped on electrical motor leads of a pump for sensing only current signals on incoming motor power, a signal processor having a means for buffering and anti-aliasing current signals into a pump motor current signal, and a computer having a means for analyzing, displaying, and reporting motor current signatures from the motor current signal to determine pump health using integrated motor and pump diagnostic parameters.

  18. KEA-71 Smart Current Signature Sensor (SCSS)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2010-01-01

    This slide presentation reviews the development and uses of the Smart Current Signature Sensor (SCSS), also known as the Valve Health Monitor (VHM) system. SCSS provides a way to not only monitor real-time the valve's operation in a non invasive manner, but also to monitor its health (Fault Detection and Isolation) and identify potential faults and/or degradation in the near future (Prediction/Prognosis). This technology approach is not only applicable for solenoid valves, and it could be extrapolated to other electrical components with repeatable electrical current signatures such as motors.

  19. Toward an automated signature recognition toolkit for mission operations

    NASA Technical Reports Server (NTRS)

    Cleghorn, T.; Laird, P; Perrine, L.; Culbert, C.; Macha, M.; Saul, R.; Hammen, D.; Moebes, T.; Shelton, R.

    1994-01-01

    Signature recognition is the problem of identifying an event or events from its time series. The generic problem has numerous applications to science and engineering. At NASA's Johnson Space Center, for example, mission control personnel, using electronic displays and strip chart recorders, monitor telemetry data from three-phase electrical buses on the Space Shuttle and maintain records of device activation and deactivation. Since few electrical devices have sensors to indicate their actual status, changes of state are inferred from characteristic current and voltage fluctuations. Controllers recognize these events both by examining the waveform signatures and by listening to audio channels between ground and crew. Recently the authors have developed a prototype system that identifies major electrical events from the telemetry and displays them on a workstation. Eventually the system will be able to identify accurately the signatures of over fifty distinct events in real time, while contending with noise, intermittent loss of signal, overlapping events, and other complications. This system is just one of many possible signature recognition applications in Mission Control. While much of the technology underlying these applications is the same, each application has unique data characteristics, and every control position has its own interface and performance requirements. There is a need, therefore, for CASE tools that can reduce the time to implement a running signature recognition application from months to weeks or days. This paper describes our work to date and our future plans.

  20. Toward an automated signature recognition toolkit for mission operations

    NASA Astrophysics Data System (ADS)

    Cleghorn, T.; Laird, P.; Perrine, L.; Culbert, C.; Macha, M.; Saul, R.; Hammen, D.; Moebes, T.; Shelton, R.

    1994-10-01

    Signature recognition is the problem of identifying an event or events from its time series. The generic problem has numerous applications to science and engineering. At NASA's Johnson Space Center, for example, mission control personnel, using electronic displays and strip chart recorders, monitor telemetry data from three-phase electrical buses on the Space Shuttle and maintain records of device activation and deactivation. Since few electrical devices have sensors to indicate their actual status, changes of state are inferred from characteristic current and voltage fluctuations. Controllers recognize these events both by examining the waveform signatures and by listening to audio channels between ground and crew. Recently the authors have developed a prototype system that identifies major electrical events from the telemetry and displays them on a workstation. Eventually the system will be able to identify accurately the signatures of over fifty distinct events in real time, while contending with noise, intermittent loss of signal, overlapping events, and other complications. This system is just one of many possible signature recognition applications in Mission Control. While much of the technology underlying these applications is the same, each application has unique data characteristics, and every control position has its own interface and performance requirements. There is a need, therefore, for CASE tools that can reduce the time to implement a running signature recognition application from months to weeks or days. This paper describes our work to date and our future plans.

  1. Electrically tunable Dicke effect in a double-ring resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetin, A. E.; Muestecaplioglu, Oe. E.; Department of Physics, Koc University, Sariyer, Istanbul 34450

    We study the finite-element method analysis of the Dicke effect using numerical simulations in an all-optical system of an optical waveguide side-coupled to two interacting ring resonators in a liquid crystal environment. The system is shown to exhibit all the signatures of the Dicke effect under active and reversible control by an applied voltage.

  2. Scientific Articles on Magnetic Materials and Applications Research from 2006 - 2014

    DTIC Science & Technology

    2015-03-01

    had coercivities less than 0.4 Oe and saturation inductions greater than 1Tesla. The electrical resistivities of the amorphous ribbons were all...S. Liu, S. Y. Chu, J. C. Horwath and R. T. Fingers, "Effects of Zr , Nb , and Cu substitutions on magnetic properties of melt-spun and hot deformed...DISTRIBUTION STATEMENT. *//Signature// //Signature// JOHN C. HORWATH THOMAS L. REITZ, Technical Advisor Electrical Engineer Mechanical

  3. Physical activity classification using time-frequency signatures of motion artifacts in multi-channel electrical impedance plethysmographs.

    PubMed

    Khan, Hassan Aqeel; Gore, Amit; Ashe, Jeff; Chakrabartty, Shantanu

    2017-07-01

    Physical activities are known to introduce motion artifacts in electrical impedance plethysmographic (EIP) sensors. Existing literature considers motion artifacts as a nuisance and generally discards the artifact containing portion of the sensor output. This paper examines the notion of exploiting motion artifacts for detecting the underlying physical activities which give rise to the artifacts in question. In particular, we investigate whether the artifact pattern associated with a physical activity is unique; and does it vary from one human-subject to another? Data was recorded from 19 adult human-subjects while conducting 5 distinct, artifact inducing, activities. A set of novel features based on the time-frequency signatures of the sensor outputs are then constructed. Our analysis demonstrates that these features enable high accuracy detection of the underlying physical activity. Using an SVM classifier we are able to differentiate between 5 distinct physical activities (coughing, reaching, walking, eating and rolling-on-bed) with an average accuracy of 85.46%. Classification is performed solely using features designed specifically to capture the time-frequency signatures of different physical activities. This enables us to measure both respiratory and motion information using only one type of sensor. This is in contrast to conventional approaches to physical activity monitoring; which rely on additional hardware such as accelerometers to capture activity information.

  4. Development of the pump protection system against cavitation on the basis of the stator current signature analysis of drive electric motor

    NASA Astrophysics Data System (ADS)

    Kipervasser, M. V.; Gerasimuk, A. V.; Simakov, V. P.

    2018-05-01

    In the present paper a new registration method of such inadmissible phenomenon as cavitation in the operating mode of centrifugal pump is offered. Influence of cavitation and extent of its development on the value of mechanical power consumed by the pump from the electric motor is studied. On the basis of design formulas the joint mathematical model of centrifugal pumping unit with the synchronous motor is created. In the model the phenomena accompanying the work of a pumping installation in the cavitation mode are considered. Mathematical modeling of the pump operation in the considered emergency operation is carried out. The chart of stator current of the electric motor, depending on the degree of cavitation development of is received. On the basis of the analysis of the obtained data the conclusion on the possibility of registration of cavitation by the current of drive electric motor is made and the functional diagram of the developed protection system is offered, its operation principle is described.

  5. The Architecture Design of Detection and Calibration System for High-voltage Electrical Equipment

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Lin, Y.; Yang, Y.; Gu, Ch; Yang, F.; Zou, L. D.

    2018-01-01

    With the construction of Material Quality Inspection Center of Shandong electric power company, Electric Power Research Institute takes on more jobs on quality analysis and laboratory calibration for high-voltage electrical equipment, and informationization construction becomes urgent. In the paper we design a consolidated system, which implements the electronic management and online automation process for material sampling, test apparatus detection and field test. In the three jobs we use QR code scanning, online Word editing and electronic signature. These techniques simplify the complex process of warehouse management and testing report transferring, and largely reduce the manual procedure. The construction of the standardized detection information platform realizes the integrated management of high-voltage electrical equipment from their networking, running to periodic detection. According to system operation evaluation, the speed of transferring report is doubled, and querying data is also easier and faster.

  6. Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals (Postprint)

    DTIC Science & Technology

    2014-10-01

    DISTRIBUTION STATEMENT. //Signature// //Signature// TIMOTHY J. WHITE CHRISTOPHER D. BREWER, Chief Photonic Materials Branch... Photonic Materials Branch Functional Materials Division Functional Materials Division //Signature// TIMOTHY J. BUNNING, Chief Functional...LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-09-D-5434-0009 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S

  7. Atmospheric electricity

    NASA Technical Reports Server (NTRS)

    1987-01-01

    In the last three years the focus was on the information contained in the lightning measurement, which is independent of other meteorological measurements that can be made from space. The characteristics of lightning activity in mesoscale convective systems were quantified. A strong relationship was found between lightning activity and surface rainfall. It is shown that lightning provides a precursor signature for wet microbursts (the strong downdrafts that produce windshears hazardous to aircraft) and that the lightning signature is a direct consequence of storm evolution. The Universities Space Research Association (USRA) collaborated with NASA scientists in the preliminary analysis and scientific justification for the design and deployment of an optical instrument which can detect lightning from geostationary orbit. Science proposals for the NASA mesoscale science program and for the Tethered Satellite System were reviewed. The weather forecasting research and unmanned space vehicles. Software was written to ingest and analyze the lightning ground strike data on the MSFC McIDAS system. The capabilities which were developed have a wide application to a number of problems associated with the operational impacts of electrical discharge within the atmosphere.

  8. Identification of vibrational signatures from short chains of interlinked molecule-nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy.

    PubMed

    Jafri, S H M; Löfås, H; Fransson, J; Blom, T; Grigoriev, A; Wallner, A; Ahuja, R; Ottosson, H; Leifer, K

    2013-06-07

    Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra.

  9. 75 FR 18201 - Wisconsin Electric Power Company; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-911-001] Wisconsin Electric Power Company; Notice of Filing April 2, 2010. Take notice that on March 26, 2010, Wisconsin Electric Power Company filed counterpart signature pages to the executed Wholesale Distribution Service...

  10. Identification of vibrational signatures from short chains of interlinked molecule-nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy

    NASA Astrophysics Data System (ADS)

    Jafri, S. H. M.; Löfås, H.; Fransson, J.; Blom, T.; Grigoriev, A.; Wallner, A.; Ahuja, R.; Ottosson, H.; Leifer, K.

    2013-05-01

    Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra.Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra. Electronic supplementary information (ESI) available: Methods and materials. Details of the ab initio calculation of molecular vibrations and inelastic spectra of ODT between two Au electrodes. A model of carrier transport through the molecular junctions. See DOI: 10.1039/c3nr00505d

  11. Electrical signature analysis to quantify human and animal performance on fitness and therapy equipment such as a treadmill

    DOEpatents

    Cox, Daryl F.; Hochanadel, Charles D.; Haynes, Howard D.

    2010-05-18

    The invention is a human and animal performance data acquisition, analysis, and diagnostic system for fitness and therapy devices having an interface box removably disposed on incoming power wiring to a fitness and therapy device, at least one current transducer removably disposed on said interface box for sensing current signals to said fitness and therapy device, and a means for analyzing, displaying, and reporting said current signals to determine human and animal performance on said device using measurable parameters.

  12. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube-CTC chip

    NASA Astrophysics Data System (ADS)

    Khosravi, Farhad; Trainor, Patrick J.; Lambert, Christopher; Kloecker, Goetz; Wickstrom, Eric; Rai, Shesh N.; Panchapakesan, Balaji

    2016-11-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in blood using nanotube-antibody micro-arrays. 76-element single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (anti-EpCAM), Anti-human epithelial growth factor receptor 2 (anti-Her2) and non-specific IgG antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester. Following device functionalization, blood spiked with SKBR3, MCF7 and MCF10A cells (100/1000 cells per 5 μl per device, 170 elements totaling 0.85 ml of whole blood) were adsorbed on to the nanotube device arrays. Electrical signatures were recorded from each device to screen the samples for differences in interaction (specific or non-specific) between samples and devices. A zone classification scheme enabled the classification of all 170 elements in a single map. A kernel-based statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping series to classify device electrical signals that corresponded to plain blood (control) or SKBR3 spiked blood (case) on anti-Her2 functionalized devices with ˜90% sensitivity, and 90% specificity in capture of 1000 SKBR3 breast cancer cells in blood using anti-Her2 functionalized devices. Screened devices that gave positive electrical signatures were confirmed using optical/confocal microscopy to hold spiked cancer cells. Confocal microscopic analysis of devices that were classified to hold spiked blood based on their electrical signatures confirmed the presence of cancer cells through staining for DAPI (nuclei), cytokeratin (cancer cells) and CD45 (hematologic cells) with single cell sensitivity. We report 55%-100% cancer cell capture yield depending on the active device area for blood adsorption with mean of 62% (˜12 500 captured off 20 000 spiked cells in 0.1 ml blood) in this first nanotube-CTC chip study.

  13. Flash propagation and inferred charge structure relative to radar-observed ice alignment signatures in a small Florida mesoscale convective system

    NASA Astrophysics Data System (ADS)

    Biggerstaff, Michael I.; Zounes, Zackery; Addison Alford, A.; Carrie, Gordon D.; Pilkey, John T.; Uman, Martin A.; Jordan, Douglas M.

    2017-08-01

    A series of vertical cross sections taken through a small mesoscale convective system observed over Florida by the dual-polarimetric SMART radar were combined with VHF radiation source locations from a lightning mapping array (LMA) to examine the lightning channel propagation paths relative to the radar-observed ice alignment signatures associated with regions of negative specific differential phase (KDP). Additionally, charge layers inferred from analysis of LMA sources were related to the ice alignment signature. It was found that intracloud flashes initiated near the upper zero-KDP boundary surrounding the negative KDP region. The zero-KDP boundary also delineated the propagation path of the lightning channel with the negative leaders following the upper boundary and positive leaders following the lower boundary. Very few LMA sources were found in the negative KDP region. We conclude that rapid dual-polarimetric radar observations can diagnose strong electric fields and may help identify surrounding regions of charge.

  14. Cosmic rays and the electric field of thunderclouds: Evidence for acceleration of particles (runaway electrons)

    NASA Astrophysics Data System (ADS)

    Khaerdinov, N. S.; Lidvansky, A. S.; Petkov, V. B.

    2005-07-01

    We present the data on correlations of the intensity of the soft component of cosmic rays with the local electric field of the near-earth atmosphere during thunderstorm periods at the Baksan Valley (North Caucasus, 1700 m a.s.l.). The large-area array for studying the extensive air showers of cosmic rays is used as a particle detector. An electric field meter of the 'electric mill' type (rain-protected) is mounted on the roof of the building in the center of this array. The data were obtained in the summer seasons of 2000-2002. We observe strong enhancements of the soft component intensity before some lightning strokes. At the same time, the analysis of the regression curve 'intensity versus field' discovers a bump at the field sign that is opposite to the field sign corresponding to acceleration of electrons. It is interpreted as a signature of runaway electrons from the region of the strong field (with opposite sign) overhead.

  15. Operation Sun Beam, Shot Small Boy. Project Officer's report - Project 6. 9. Correlation of present and previous electric-field measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reno; Fowles, H.M.

    On most previous nuclear detonations, signatures and quantitative measurements of the electric-field signals associated with the detonations was obtained at distances such that normal radiation field characteristics apply. On Small Boy, measurements were made from stations located much closer in, such as to be inside, on the boundary of and just outside the limits of the ionized sphere created by the nuclear burst. The electric-field characteristics in these regions were unknown. In the hope of providing continuity from the region of the unknown into the reasonably well-understood region of the radiation field, this project was requested to make the typicalmore » radiation-field type of measurement that had been made on previous detonations. This report covers the signature characteristics and quantitative measurements of the electric-field signal from Small Boy as seen from outside the immediate region of theoretical generating mechanism.« less

  16. On-line diagnosis of defaults on squirrel cage motors using FEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentounsi, A.; Nicolas, A.

    1998-09-01

    In industry, the predictive maintenance has become a strategic concept. Economic interest of on-line diagnosis of faults in electric machines gave rise to various researches in that field. This paper proposes a local approach to tackle the problem of breaking bars and end-rings of squirrel cage in induction machines based mainly on the signature of the local variables, such as the normal flux density. This allows a finer analysis, by use of a finite element based simulation.

  17. Evaluation, Analysis, and Documentation Support for the 10kW Signature Suppressed Lightweight Electric Energy Plant (SLEEP)

    DTIC Science & Technology

    1988-03-14

    HAEMP. This issue will be resolved during the Technical Test. (8) Will the 10kW SLEEP handle brief overload conditions? Air conditioners and other...signal units; air defense units; combat arms command, control, and commnunications units; and logistics functions in the brigade area. Priority...Skid mounting o Lifting attachments and tiedowns o Transportable by USAF C-130, C-141 and all US Army aircraft o Capability for low velocity air drop

  18. Ponderomotive effects in multiphoton pair production

    NASA Astrophysics Data System (ADS)

    Kohlfürst, Christian; Alkofer, Reinhard

    2018-02-01

    The Dirac-Heisenberg-Wigner formalism is employed to investigate electron-positron pair production in cylindrically symmetric but otherwise spatially inhomogeneous, oscillating electric fields. The oscillation frequencies are hereby tuned to obtain multiphoton pair production in the nonperturbative threshold regime. An effective mass, as well as a trajectory-based semiclassical analysis, is introduced in order to interpret the numerical results for the distribution functions as well as for the particle yields and spectra. The results, including the asymptotic particle spectra, display clear signatures of ponderomotive forces.

  19. Detection of Ionospheric Alfven Resonator Signatures in the Equatorial Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven; hide

    2012-01-01

    The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfven resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfven wave propagation, and troposphere24 ionosphere-magnetosphere coupling mechanisms.

  20. Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators - Interim Report for FY 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binh T. Pham; Nancy J. Lybeck; Vivek Agarwal

    The Light Water Reactor Sustainability program at Idaho National Laboratory is actively conducting research to develop and demonstrate online monitoring capabilities for active components in existing nuclear power plants. Idaho National Laboratory and the Electric Power Research Institute are working jointly to implement a pilot project to apply these capabilities to emergency diesel generators and generator step-up transformers. The Electric Power Research Institute Fleet-Wide Prognostic and Health Management Software Suite will be used to implement monitoring in conjunction with utility partners: Braidwood Generating Station (owned by Exelon Corporation) for emergency diesel generators, and Shearon Harris Nuclear Generating Station (owned bymore » Duke Energy Progress) for generator step-up transformers. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for emergency diesel generators. Emergency diesel generators provide backup power to the nuclear power plant, allowing operation of essential equipment such as pumps in the emergency core coolant system during catastrophic events, including loss of offsite power. Technical experts from Braidwood are assisting Idaho National Laboratory and Electric Power Research Institute in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the Fleet-Wide Prognostic and Health Management Software Suite and tested using data from Braidwood. Parallel research on generator step-up transformers was summarized in an interim report during the fourth quarter of fiscal year 2012.« less

  1. Statistical analysis of lightning electric field measured under Malaysian condition

    NASA Astrophysics Data System (ADS)

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain

    2014-02-01

    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  2. Teaching an Electrical Circuits Course Using a Virtual Lab

    ERIC Educational Resources Information Center

    Rahman, Md Zahidur

    2014-01-01

    This paper describes designing and implementing a scholarship of teaching and learning (SoTL) study in a basic electrical circuits course at LaGuardia Community College. Inspired by my understanding of Shulman's (2005) concept of "signature pedagogy" and Mazur's (2009) emphasis on student-centered approaches, and aware that our students…

  3. Seismic signature analysis for discrimination of people from animals

    NASA Astrophysics Data System (ADS)

    Damarla, Thyagaraju; Mehmood, Asif; Sabatier, James M.

    2013-05-01

    Cadence analysis has been the main focus for discriminating between the seismic signatures of people and animals. However, cadence analysis fails when multiple targets are generating the signatures. We analyze the mechanism of human walking and the signature generated by a human walker, and compare it with the signature generated by a quadruped. We develop Fourier-based analysis to differentiate the human signatures from the animal signatures. We extract a set of basis vectors to represent the human and animal signatures using non-negative matrix factorization, and use them to separate and classify both the targets. Grazing animals such as deer, cows, etc., often produce sporadic signals as they move around from patch to patch of grass and one must characterize them so as to differentiate their signatures from signatures generated by a horse steadily walking along a path. These differences in the signatures are used in developing a robust algorithm to distinguish the signatures of animals from humans. The algorithm is tested on real data collected in a remote area.

  4. Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature.

    PubMed

    Kim, Jihyun; Le, Thi-Thu-Huong; Kim, Howon

    2017-01-01

    Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM's issues and improve the performance of load identification.

  5. Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature

    PubMed Central

    Le, Thi-Thu-Huong; Kim, Howon

    2017-01-01

    Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM's issues and improve the performance of load identification. PMID:29118809

  6. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, R.H.; Chai, J.; Lang, J.H.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signalmore » and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.« less

  7. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, R.H.; Chai, J.; Lang, J.H.; Hagman, W.H.; Umans, S.D.; Saarela, O.J.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.

  8. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    DOEpatents

    Lyon, Richard H.; Chai, Jangbom; Lang, Jeffrey H.; Hagman, Wayne H.; Umans, Stephen D.; Saarela, Olli J.

    1997-01-01

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit.

  9. Automated pulse discrimination of two freely-swimming weakly electric fish and analysis of their electrical behavior during dominance contest.

    PubMed

    Guariento, Rafael T; Mosqueiro, Thiago S; Matias, Paulo; Cesarino, Vinicius B; Almeida, Lirio O B; Slaets, Jan F W; Maia, Leonardo P; Pinto, Reynaldo D

    2016-10-01

    Electric fishes modulate their electric organ discharges with a remarkable variability. Some patterns can be easily identified, such as pulse rate changes, offs and chirps, which are often associated with important behavioral contexts, including aggression, hiding and mating. However, these behaviors are only observed when at least two fish are freely interacting. Although their electrical pulses can be easily recorded by non-invasive techniques, discriminating the emitter of each pulse is challenging when physically similar fish are allowed to freely move and interact. Here we optimized a custom-made software recently designed to identify the emitter of pulses by using automated chirp detection, adaptive threshold for pulse detection and slightly changing how the recorded signals are integrated. With these optimizations, we performed a quantitative analysis of the statistical changes throughout the dominance contest with respect to Inter Pulse Intervals, Chirps and Offs dyads of freely moving Gymnotus carapo. In all dyads, chirps were signatures of subsequent submission, even when they occurred early in the contest. Although offs were observed in both dominant and submissive fish, they were substantially more frequent in submissive individuals, in agreement with the idea from previous studies that offs are electric cues of submission. In general, after the dominance is established the submissive fish significantly changes its average pulse rate, while the pulse rate of the dominant remained unchanged. Additionally, no chirps or offs were observed when two fish were manually kept in direct physical contact, suggesting that these electric behaviors are not automatic responses to physical contact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Icy Moon Absorption Signatures: Probes of Saturnian Magnetospheric Dynamics and Moon Activity

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Krupp, N.; Jones, G. H.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Motschmann, U.; Dougherty, M. K.; Lagg, A.; Woch, J.

    2006-12-01

    After the first flybys at the outer planets by the Pioneer and Voyager probes, it became evident that energetic charged particle absorption features in the radiation belts are important tracers of magnetospheric dynamical features and parameters. Absorption signatures are especially important for characterizing the Saturnian magnetosphere. Due to the spin and magnetic axes' near-alignment, losses of particles to the icy moon surfaces and rings are higher compared to the losses at other planetary magnetospheres. The refilling rate of these absorption features (termed "micorsignatures") can be associated with particle diffusion. In addition, as these microsignatures drift with the properties of the pre-depletion electrons, they provide us direct information on the drift shell structure in the radiation belts and the factors that influence their shape. The multiple icy moon L-shell crossings by the Cassini spacecraft during the first 2 years of the mission provided us with almost 100 electron absorption events by eight different moons, at various longitudinal separations from each one and at various electron energies. Their analysis seems to give a consistent picture of the electron diffusion source and puts aside a lot of inconsistencies that resulted from relevant Pioneer and Voyager studies. The presence of non-axisymmetric particle drift shells even down to the orbit of Enceladus (3.98 Rs), also revealed through this analysis, suggests either large ring current disturbances or the action of global or localized electric fields. Finally, despite these absorption signatures being observed far from the originating moons, they can give us hints on the nature of the local interaction between each moon and the magnetospheric plasma. It is, nevertheless, beyond any doubt that energetic charged particle absorption signatures are a very powerful tool that can be used to effectively probe a series of dynamical processes in the Saturnian magnetosphere.

  11. The Role of Storm Time Electrodynamics in Suppressing the Equatorial Plasma Bubble Development in the Recovery Phase of a Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Sripathi, S.; Banola, S.; Emperumal, K.; Suneel Kumar, B.; Radicella, Sandro M.

    2018-03-01

    We investigate the role of storm time electrodynamics in suppressing the equatorial plasma bubble (EPB) development using multi-instruments over India during a moderate geomagnetic storm that occurred on 2 October 2013 where Dst minimum reached -80 nT. This storm produced unique signatures in the equatorial ionosphere such that equatorial electrojet strength showed signatures of an abrupt increase of its strength to 150 nT and occurrence of episodes of counter electrojet events. During the main phase of the storm, the interplanetary magnetic field Bz is well correlated with the variations in the equatorial electrojet/counter electrojet suggesting the role of undershielding/overshielding electric fields of magnetospheric origin. Further, observations showed the presence of strong F3 layers at multiple times at multiple stations due to undershielding electric field. Interestingly, we observed simultaneous presence of F3 layers and suppression of EPBs in the dusk sector during the recovery phase. While strong EPBs were observed before and after the day of the geomagnetic storm, suppression of the EPBs on the storm day during "spread F season" is intriguing. Our further analysis using low-latitude station, Hyderabad, during the time of prereversal enhancement suggests that intense Esb layers were observed on the storm day but were absent/weak on quiet days. Based on these results, we suggest that the altitude/latitude variation of disturbance dynamo electric fields/disturbance winds may be responsible for simultaneous detection of F3 layers, occurrence of low-latitude Es layers, and suppression of EPBs during the storm day along the sunset terminator.

  12. ADAGE signature analysis: differential expression analysis with data-defined gene sets.

    PubMed

    Tan, Jie; Huyck, Matthew; Hu, Dongbo; Zelaya, René A; Hogan, Deborah A; Greene, Casey S

    2017-11-22

    Gene set enrichment analysis and overrepresentation analyses are commonly used methods to determine the biological processes affected by a differential expression experiment. This approach requires biologically relevant gene sets, which are currently curated manually, limiting their availability and accuracy in many organisms without extensively curated resources. New feature learning approaches can now be paired with existing data collections to directly extract functional gene sets from big data. Here we introduce a method to identify perturbed processes. In contrast with methods that use curated gene sets, this approach uses signatures extracted from public expression data. We first extract expression signatures from public data using ADAGE, a neural network-based feature extraction approach. We next identify signatures that are differentially active under a given treatment. Our results demonstrate that these signatures represent biological processes that are perturbed by the experiment. Because these signatures are directly learned from data without supervision, they can identify uncurated or novel biological processes. We implemented ADAGE signature analysis for the bacterial pathogen Pseudomonas aeruginosa. For the convenience of different user groups, we implemented both an R package (ADAGEpath) and a web server ( http://adage.greenelab.com ) to run these analyses. Both are open-source to allow easy expansion to other organisms or signature generation methods. We applied ADAGE signature analysis to an example dataset in which wild-type and ∆anr mutant cells were grown as biofilms on the Cystic Fibrosis genotype bronchial epithelial cells. We mapped active signatures in the dataset to KEGG pathways and compared with pathways identified using GSEA. The two approaches generally return consistent results; however, ADAGE signature analysis also identified a signature that revealed the molecularly supported link between the MexT regulon and Anr. We designed ADAGE signature analysis to perform gene set analysis using data-defined functional gene signatures. This approach addresses an important gap for biologists studying non-traditional model organisms and those without extensive curated resources available. We built both an R package and web server to provide ADAGE signature analysis to the community.

  13. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells.

    PubMed

    Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen

    2015-12-01

    The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.

  14. The NASA Thunderstorm Overflight Program (TOP): Research in atmospheric electricity from an instrumented U-2 aircraft platform

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.

    1983-01-01

    An overview of the NASA Thunderstorm Overflight Program (TOP) is presented. The various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used to collect optical and electronic signature from the lightning events, are discussed. Samples of some of the photographic and electronic signatures are presented. Approximately 6400 electronic data samples of optical pulses were collected and are being analyzed.

  15. Electric Field Sensor for Lightning Early Warning System

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.

    2017-12-01

    Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for Lightning Early Warning systems. There is a characteristic change in the atmospheric electric field before lightning during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is developed, to detect any change in the atmospheric electric field and to issue lightning early warning system. Since this is a low-cost device, this can be used for developing countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in developing countries.

  16. Absence of a long-range ordered magnetic ground state in Pr3Rh4Sn13 studied through specific heat and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Ogunbunmi, Michael O.; Ghosh, S. K.; Adroja, D. T.; Koza, M. M.; Guidi, T.; Strydom, A. M.

    2018-04-01

    Signatures of absence of a long-range ordered magnetic ground state down to 0.36 K are observed in magnetic susceptibility, specific heat, thermal/electrical transport and inelastic neutron scattering data of the quasi-skutterudite compound Pr3Rh4Sn13 which crystallizes in the Yb3Rh4Sn13-type structure with a cage-like network of Sn atoms. In this structure, Pr3+ occupies a lattice site with D 2d point symmetry having a ninefold degeneracy corresponding to J  =  4. The magnetic susceptibility of Pr3Rh4Sn13 shows only a weak temperature dependence below 10 K otherwise remaining paramagnetic-like in the range, 10 K-300 K. From the inelastic neutron scattering intensity of Pr3Rh4Sn13 recorded at different temperatures, we identify excitations at 4.5(7) K, 5.42(6) K, 10.77(5) K, 27.27(5) K, 192.28(4) K and 308.33(3) K through a careful peak analysis. However, no signatures of long-range magnetic order are observed in the neutron data down to 1.5 K, which is also confirmed by the specific heat data down to 0.36 K. A broad Schottky-like peak is recovered for the magnetic part of the specific heat, C 4f, which suggests the role of crystal electric fields of Pr3+ . A crystalline electric field model consisting of 7 levels was applied to C 4f which leads to the estimation of energy levels at 4.48(2) K, 6.94(4) K, 11.23(8) K, 27.01(5) K, 193.12(6) K and 367.30(2) K. The CEF energy levels estimated from the heat capacity analysis are in close agreement with the excitation energies seen in the neutron data. The Sommerfeld coefficient estimated from the analysis of magnetic specific heat is γ = 761(6) mJ K-2 mol-Pr which suggests the formation of heavy itinerant quasi-particles in Pr3Rh4Sn13. Combining inelastic neutron scattering results, analysis of the specific heat data down to 0.36 K, magnetic susceptibility and, electrical and thermal transport, we establish the absence of long-range ordered magnetic ground state in Pr3Rh4Sn13.

  17. Universal Majorana thermoelectric noise

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2018-04-01

    Thermoelectric phenomena resulting from an interplay between particle flows induced by electric fields and temperature inhomogeneities are extremely insightful as a tool providing substantial knowledge about the microscopic structure of a given system. By tuning, e.g., parameters of a nanoscopic system coupled via tunneling mechanisms to two contacts, one may achieve various situations where the electric current induced by an external bias voltage competes with the electric current excited by the temperature difference of the two contacts. Even more exciting physics emerges when the system's electronic degrees freedom split to form Majorana fermions which make the thermoelectric dynamics universal. Here, we propose revealing these unique universal signatures of Majorana fermions in strongly nonequilibrium quantum dots via noise of the thermoelectric transport beyond linear response. It is demonstrated that whereas mean thermoelectric quantities are only universal at large-bias voltages, the noise of the electric current excited by an external bias voltage and the temperature difference of the contacts is universal at any bias voltage. We provide truly universal, i.e., independent of the system's parameters, thermoelectric ratios between nonlinear response coefficients of the noise and mean current at large-bias voltages where experiments may easily be performed to uniquely detect these truly universal Majorana thermoelectric signatures.

  18. Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nancy J. Lybeck; Vivek Agarwal; Binh T. Pham

    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, andmore » Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013.« less

  19. In situ label-free quantification of human pluripotent stem cells with electrochemical potential.

    PubMed

    Yea, Cheol-Heon; Jeong, Ho-Chang; Moon, Sung-Hwan; Lee, Mi-Ok; Kim, Kyeong-Jun; Choi, Jeong-Woo; Cha, Hyuk-Jin

    2016-01-01

    Conventional methods for quantification of undifferentiated pluripotent stem cells such as fluorescence-activated cell sorting and real-time PCR analysis have technical limitations in terms of their sensitivity and recyclability. Herein, we designed a real-time in situ label-free monitoring system on the basis of a specific electrochemical signature of human pluripotent stem cells in vitro. The intensity of the signal of hPSCs highly corresponded to the cell number and remained consistent in a mixed population with differentiated cells. The electrical charge used for monitoring did not markedly affect the proliferation rate or molecular characteristics of differentiated human aortic smooth muscle cells. After YM155 treatment to ablate undifferentiated hPSCs, their specific signal was significantly reduced. This suggests that detection of the specific electrochemical signature of hPSCs would be a valid approach to monitor potential contamination of undifferentiated hPSCs, which can assess the risk of teratoma formation efficiently and economically. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Pre-seismic geomagnetic and ionosphere signatures related to the Mw5.7 earthquake occurred in Vrancea zone on September 24, 2016

    NASA Astrophysics Data System (ADS)

    Stanica, Dragos Armand; Stanica, Dumitru; Błęcki, Jan; Ernst, Tomasz; Jóźwiak, Waldemar; Słomiński, Jan

    2018-02-01

    To emphasize the relationship between the pre-seismic geomagnetic signals and Vrancea seismicity, in this work it is hypothesized that before an earthquake initiation, the high stress reached into seismogenic volume generates dehydration of the rocks and fracturing processes followed by release of electric charges along the faulting systems, which lead to resistivity changes. These changes were explored on September 2016 by the normalized function Bzn obtained from the geomagnetic data recorded in ULF range (0.001-0.0083 Hz). A statistical analysis was also performed to discriminate on the new Bzn* time series a pre-seismic signature related to the Mw5.7 earthquake. Significant anomalous behavior of Bzn* was identified on September 21, with 3 days prior to the onset of the seismic event. Similar information is provided by registrations of the magnetic and electron concentration variations in the ionosphere over the Vrancea zone, by Swarm satellites, 4 days and 1 day before the earthquake.

  1. Observations of field-aligned currents, waves, and electric fields at substorm onset

    NASA Technical Reports Server (NTRS)

    Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.

    1986-01-01

    Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.

  2. Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Kuznetsova, Masha; Schindler, Karl

    2005-10-01

    A numerical study of guide-field magnetic reconnection in a three-dimensional model is presented. Starting from an initial, perturbed, force-free current sheet, it is shown that reconnection develops to an almost translationally invariant state, where magnetic perturbations are aligned primarily along the main current flow direction. An analysis of guide-field and electron flow signatures indicates behavior that is very similar to earlier, albeit not three-dimensional, simulations. Furthermore, a detailed investigation of electron pressure nongyrotropies in the central diffusion region confirms the major role the associated dissipation process plays in establishing the reconnection electric field.

  3. IAR signatures in the ionosphere: Modeling and observations at the Chibis-M microsatellite

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Dudkin, D.; Fedorov, E.; Korepanov, V.; Klimov, S.

    2017-02-01

    A peculiar feature of geomagnetic variations at middle/low latitudes in the ULF band, just below the fundamental tone of the Schumann resonance, is the occurrence of a multi-band spectral resonant structure, observed by high-sensitivity induction magnetometers during nighttime. The occurrence of such spectral structure was commonly attributed to the Ionospheric Alfvén Resonator (IAR) in the upper ionosphere. Rather surprisingly, while ground observations of the IAR are ubiquitous, there are practically no reports on the IAR signatures from space missions. According to the new paradigm, the multi-band spectral structure excited by a lightning discharge is in fact produced by a regular sequence of an original pulse from a stroke and echo-pulses reflected from the IAR upper boundary. Upon the interaction of initial lightning-generated pulse with the anisotropic lower ionosphere, it partially penetrates into the ionosphere, travels up the ionosphere as an Alfvén pulse, and reflects back from the upper IAR boundary. The superposition of the initial pulse and echo-pulses produces spectra with multiple spectral peaks. Our modeling of Alfvénic pulse propagation in a system with the altitude profile of Alfven velocity modeling the realistic ionosphere has shown that IAR spectral signatures are to be evident only on the ground and above the IAR. Inside the IAR, the superposition of upward and downward propagating pulses produces a more complicated spectral pattern and the IAR spectral signatures deteriorate. We have used electric field data from the low-orbit Chibis-M microsatellite to search for IAR signatures in the ionosphere. We found evidence that the multi-band structure revealed by spectral analysis in the frequency range of interest is indeed the result of a sequence of lightning-produced pulses. According to the proposed conception it seems possible to comprehend why the IAR signatures are less evident in the ionosphere than on the ground.

  4. Neurons as sensors: individual and cascaded chemical sensing.

    PubMed

    Prasad, Shalini; Zhang, Xuan; Yang, Mo; Ozkan, Cengiz S; Ozkan, Mihrimah

    2004-07-15

    A single neuron sensor has been developed based on the interaction of gradient electric fields and the cell membrane. Single neurons are rapidly positioned over individual microelectrodes using positive dielectrophoretic traps. This enables the continuous extracellular electrophysiological measurements from individual neurons. The sensor developed using this technique provides the first experimental method for determining single cell sensitivity; the speed of response and the associated physiological changes to a broad spectrum of chemical agents. Binding of specific chemical agents to a specific combination of receptors induces changes to the extracellular membrane potential of a single neuron, which can be translated into unique "signature patterns" (SP), which function as identification tags. Signature patterns are derived using Fast Fourier Transformation (FFT) analysis and Wavelet Transformation (WT) analysis of the modified extracellular action potential. The validity and the sensitivity of the system are demonstrated for a variety of chemical agents ranging from behavior altering chemicals (ethanol), environmentally hazardous agents (hydrogen peroxide, EDTA) to physiologically harmful agents (pyrethroids) at pico- and femto-molar concentrations. The ability of a single neuron to selectively identify specific chemical agents when injected in a serial manner is demonstrated in "cascaded sensing".

  5. Response of ionospheric electric fields at mid-low latitudes during sudden commencements

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kasaba, Y.; Shinbori, A.; Nishimura, Y.; Kikuchi, T.; Ebihara, Y.; Nagatsuma, T.

    2015-06-01

    Using in situ observations from the Republic of China Satellite-1 spacecraft, we investigated the time response and local time dependence of the ionospheric electric field at mid-low latitudes associated with geomagnetic sudden commencements (SCs) that occurred from 1999 to 2004. We found that the ionospheric electric field variation associated with SCs instantaneously responds to the preliminary impulse (PI) signature on the ground regardless of spacecraft local time. Our statistical analysis also supports the global instant transmission of electric field from the polar region. In contrast, the peak time detected in the ionospheric electric field is earlier than that of the equatorial geomagnetic field (~20 s before in the PI phase). Based on the ground-ionosphere waveguide model, this time lag can be attributed to the latitudinal difference of ionospheric conductivity. However, the local time distribution of the initial excursion of ionospheric electric field shows that dusk-to-dawn ionospheric electric fields develop during the PI phase. Moreover, the westward electric field in the ionosphere, which produces the preliminary reverse impulse of the geomagnetic field on the dayside feature, appears at 18-22 h LT where the ionospheric conductivity beyond the duskside terminator (18 h LT) is lower than on the dayside. The result of a magnetohydrodynamic simulation for an ideal SC shows that the electric potential distribution is asymmetric with respect to the noon-midnight meridian. This produces the local time distribution of ionospheric electric fields similar to the observed result, which can be explained by the divergence of the Hall current under nonuniform ionospheric conductivity.

  6. The Equatorial Electrojet as seen from Satellites.

    NASA Astrophysics Data System (ADS)

    McCreadie, H.

    2002-05-01

    The equatorial electrojet is a thin electric current in the ionosphere over the dip equator around 100 to 115 km altitude normally flowing in an eastward direction. It has a distinct magnetic signature that can be clearly identified in most passes in the scalar and vector magnetic field measurements from magnetometers on board satellites. Two things will be presented; the effect filtering has on the morphology of the electrojet signature and a detailed study of longitudinal variation of the amplitude of the electrojet.

  7. Analysis of Non-contact Acousto Thermal Signature Data (Postprint)

    DTIC Science & Technology

    2016-02-01

    AFRL-RX-WP-JA-2016-0321 ANALYSIS OF NON- CONTACT ACOUSTO-THERMAL SIGNATURE DATA (POSTPRINT) Amanda K. Criner AFRL/RX...October 2014 – 16 September 2015 4. TITLE AND SUBTITLE ANALYSIS OF NON- CONTACT ACOUSTO-THERMAL SIGNATURE DATA (POSTPRINT) 5a. CONTRACT NUMBER...words) The non- contact acousto-thermal signature (NCATS) is a nondestructive evaluation technique with potential to detect fatigue in materials such as

  8. Radar Differential Phase Signatures of Ice Orientation for the Prediction of Lightning Initiation and Cessation

    NASA Technical Reports Server (NTRS)

    Carey, L.D.; Petersen, W.A.; Deierling, W.

    2009-01-01

    The majority of lightning-related casualties typically occur during thunderstorm initiation (e.g., first flash) or dissipation (e.g., last flash). The physics of electrification and lightning production during thunderstorm initiation is fairly well understood. As such, the literature includes a number of studies presenting various radar techniques (using reflectivity and, if available, other dual-polarimetric parameters) for the anticipation of initial electrification and first lightning flash. These radar techniques have shown considerable skill at forecasting first flash. On the other hand, electrical processes and lightning production during thunderstorm dissipation are not nearly as well understood and few, if any, successful techniques have been developed to anticipate the last flash and subsequent cessation of lightning. One promising approach involves the use of dual-polarimetric radar variables to infer the presence of oriented ice crystals in lightning producing storms. In the absence of strong vertical electric fields, ice crystals fall with their largest (semi-major) axis in the horizontal associated with gravitational and aerodynamic forces. In thunderstorms, strong vertical electric fields (100-200 kV m(sup -1)) have been shown to orient small (less than 2 mm) ice crystals such that their semi-major axis is vertical (or nearly vertical). After a lightning flash, the electric field is typically relaxed and prior radar research suggests that ice crystals rapidly resume their preferred horizontal orientation. In active thunderstorms, the vertical electric field quickly recovers and the ice crystals repeat this cycle of orientation for each nearby flash. This change in ice crystal orientation from primarily horizontal to vertical during the development of strong vertical electric fields prior to a lightning flash forms the physical basis for anticipating lightning initiation and, potentially, cessation. Research has shown that radar reflectivity (Z) and other co-polar back-scattering radar measurements like differential reflectivity (Z(sub dr)) typically measured by operational dual-polarimetric radars are not sensitive to these changes in ice crystal orientation. However, prior research has demonstrated that oriented ice crystals cause significant propagation effects that can be routinely measured by most dual-polarimetric radars from X-band (3 cm) to S-band (10 cm) wavelengths using the differential propagation phase shift (often just called differential phase, phi(sub dp)) or its range derivative, the specific differential phase (K(sub dp)). Advantages of the differential phase include independence from absolute or relative power calibration, attenuation, differential attenuation and relative insensitivity to ground clutter and partial beam occultation effects (as long as the signal remains above noise). In research mode, these sorts of techniques have been used to anticipate initial cloud electrification, lightning initiation, and cessation. In this study, we develop a simplified model of ice crystal size, shape, orientation, dielectric, and associated radar scattering and propagation effects in order to simulate various idealized scenarios of ice crystals responding to a hypothetical electric field and their dual-polarimetric radar signatures leading up to lightning initiation and particularly cessation. The sensitivity of the K(sub dp) ice orientation signature to various ice properties and radar wavelength will be explored. Since K(sub dp) is proportional to frequency in the Rayleigh- Gans scattering regime, the ice orientation signatures should be more obvious at higher (lower) frequencies (wavelengths). As a result, simulations at radar wavelengths from 10 cm down to 1 cm (Ka-band) will be conducted. Resonance effects will be considered using the T-matrix method. Since most K(sub dp) Vbased observations have been shown at S-band, we will present ice orientation signatures from C-band (UAH/NASA ARMOR) and X-bd (UAH MAX) dual-polarimetric radars located in Northern Alabama. Issues related to optimal radar scanning for the detection of oriented ice will be discussed. Preliminary suggestions on how these differential phase signatures of oriented ice could contribute to lightning initiation and cessation algorithms will be presented.

  9. Magnetosphere-ionosphere coupling during substorm onset

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Burke, W. J.; Erickson, G. M.; Basinka, E. M.; Yahnin, A. G.

    1996-01-01

    Through the analysis of a combination of CRRES satellite measurements and ground-based measurements, an empirical scenario was developed for the onset of substorms. The process develops from ripples at the inner edge of the plasma sheet associated with dusk to dawn excursions of the electric field, prior to the beginning of dipolarization. The importance of Poynting flux is considered. Substorms develop when significant amounts of energy flow in both directions with the second cycle stronger than the initial cycle. Pseudobreakups occur when the energy flowing in both directions is weak or out of phase. The observations indicate that the dusk to dawn excursions of the cross-tail electric field correlate with changes in currents and particle energies observed by CRRES, and with ultra low frequency wave activity observed on the ground. Magnetic signatures of field aligned current filaments, associated with the substorm current wedge were observed to be initiated by the process.

  10. Development of a piezopolymer pressure sensor for a portable fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Pretlow, R. A.; Stoughton, J. W.; Baker, D. A.

    1993-01-01

    A piezopolymer pressure sensor has been developed for service in a portable fetal heart rate monitor, which will permit an expectant mother to perform the fetal nonstress test, a standard predelivery test, in her home. Several sensors are mounted in an array on a belt worn by the mother. The sensor design conforms to the distinctive features of the fetal heart tone, namely, the acoustic signature, frequency spectrum, signal amplitude, and localization. The components of a sensor serve to fulfill five functions: signal detection, acceleration cancellation, acoustical isolation, electrical shielding, and electrical isolation of the mother. A theoretical analysis of the sensor response yields a numerical value for the sensor sensitivity, which is compared to experiment in an in vitro sensor calibration. Finally, an in vivo test on patients within the last six weeks of term reveals that nonstress test recordings from the acoustic monitor compare well with those obtained from conventional ultrasound.

  11. Signature extraction of ocean pollutants by eigenvector transformation of remote spectra

    NASA Technical Reports Server (NTRS)

    Grew, G. W.

    1978-01-01

    Spectral signatures of suspended matter in the ocean are being extracted through characteristic vector analysis of remote ocean color data collected with MOCS (Multichannel Ocean Color Sensor). Spectral signatures appear to be obtainable through analyses of 'linear' clusters that appear on scatter diagrams associated with eigenvectors. Signatures associated with acid waste, sewage sludge, oil, and algae are presented. The application of vector analysis to two acid waste dumps overflown two years apart is examined in some detail. The relationships between eigenvectors and spectral signatures for these examples are analyzed. These cases demonstrate the value of characteristic vector analysis in remotely identifying pollutants in the ocean and in determining the consistency of their spectral signatures.

  12. Fleet-Wide Prognostic and Health Management Suite: Asset Fault Signature Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek Agarwal; Nancy J. Lybeck; Randall Bickford

    Proactive online monitoring in the nuclear industry is being explored using the Electric Power Research Institute’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. The FW-PHM Suite is a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. The FW-PHM Suite has four main modules: (1) Diagnostic Advisor, (2) Asset Fault Signature (AFS) Database, (3) Remaining Useful Life Advisor, and (4) Remaining Useful Life Database. The paper focuses on the AFS Database of the FW-PHM Suite, which is used to catalog asset fault signatures. A fault signature is a structured representation ofmore » the information that an expert would use to first detect and then verify the occurrence of a specific type of fault. The fault signatures developed to assess the health status of generator step-up transformers are described in the paper. The developed fault signatures capture this knowledge and implement it in a standardized approach, thereby streamlining the diagnostic and prognostic process. This will support the automation of proactive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.« less

  13. Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling

    NASA Technical Reports Server (NTRS)

    Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.

    2011-01-01

    The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.

  14. Satellite propulsion spectral signature detection and analysis through Hall effect thruster plume and atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Wheeler, Pamela; Cobb, Richard; Hartsfield, Carl; Prince, Benjamin

    2016-09-01

    Space Situational Awareness (SSA) is of utmost importance in today's congested and contested space environment. Satellites must perform orbital corrections for station keeping, devices like high efficiency electric propulsion systems such as a Hall effect thrusters (HETs) to accomplish this are on the rise. The health of this system is extremely important to ensure the satellite can maintain proper position and perform its intended mission. Electron temperature is a commonly used diagnostic to determine the efficiency of a hall thruster. Recent papers have coordinated near infrared (NIR) spectral measurements of emission lines in xenon and krypton to electron temperature measurements. Ground based observations of these spectral lines could allow the health of the thruster to be determined while the satellite is in operation. Another issue worth considering is the availability of SSA assets for ground-based observations. The current SSA architecture is limited and task saturated. If smaller telescopes, like those at universities, could successfully detect these signatures they could augment data collection for the SSA network. To facilitate this, precise atmospheric modeling must be used to pull out the signature. Within the atmosphere, the NIR has a higher transmission ratio and typical HET propellants are approximately 3x the intensity in the NIR versus the visible spectrum making it ideal for ground based observations. The proposed research will focus on developing a model to determine xenon and krypton signatures through the atmosphere and estimate the efficacy through ground-based observations. The model will take power modes, orbit geometries, and satellite altitudes into consideration and be correlated with lab and field observations.

  15. Experimental study of ELF signatures developed by ballistic missile launch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peglow, S.G.; Rynne, T.M.

    1993-04-08

    The Lawrence Livermore National Laboratory (Livermore, CA) and SARA, Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. These tests involved the launch of Lance missiles with a subsequent direction of F-15Es into the launch area for subsequent detection and simulated destruction of redeployed missile launchers, LLNL and SARA deployed SARN`s ELF sensors and various data acquisition systems for monitoring of basic phenomena. On 25 January 1993, a single missile launch allowed initial measurements of the phenomena and an assessment of appropriate sensor sensitivity settings as well as the appropriateness of the sensor deploymentmore » sites (e.g., with respect to man-made ELF sources such as power distributions and communication lines). On 27 January 1993, a measurement of a double launch of Lance missiles was performed. This technical report covers the results of the analysis of latter measurements. An attempt was made to measure low frequency electromagnetic signatures that may be produced during a missile launch. Hypothetical signature production mechanisms include: (1) Perturbations of the earth geo-potential during the launch of the missile. This signature may arise from the interaction of the ambient electric field with the conducting body of the missile as well as the partially ionized exhaust plume. (2) Production of spatial, charge sources from triboelectric-like mechanisms. Such effects may occur during the initial interaction of the missile plume with the ground material and lead to an initial {open_quotes}spike{close_quotes} output, Additionally, there may exist charge transfer mechanisms produced during the exhausting of the burnt fuel oxidizer.« less

  16. Development of Solid-State Nanopore Technology for Life Detection

    NASA Technical Reports Server (NTRS)

    Bywaters, K. B.; Schmidt, H.; Vercoutere, W.; Deamer, D.; Hawkins, A. R.; Quinn, R. C.; Burton, A. S.; Mckay, C. P.

    2017-01-01

    Biomarkers for life on Earth are an important starting point to guide the search for life elsewhere. However, the search for life beyond Earth should incorporate technologies capable of recognizing an array of potential biomarkers beyond what we see on Earth, in order to minimize the risk of false negatives from life detection missions. With this in mind, charged linear polymers may be a universal signature for life, due to their ability to store information while also inherently reducing the tendency of complex tertiary structure formation that significantly inhibit replication. Thus, these molecules are attractive targets for biosignature detection as potential "self-sustaining chemical signatures." Examples of charged linear polymers, or polyelectrolytes, include deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) as well as synthetic polyelectrolytes that could potentially support life, including threose nucleic acid (TNA) and other xenonucleic acids (XNAs). Nanopore analysis is a novel technology that has been developed for singlemolecule sequencing with exquisite single nucleotide resolution which is also well-suited for analysis of polyelectrolyte molecules. Nanopore analysis has the ability to detect repeating sequences of electrical charges in organic linear polymers, and it is not molecule- specific (i.e. it is not restricted to only DNA or RNA). In this sense, it is a better life detection technique than approaches that are based on specific molecules, such as the polymerase chain reaction (PCR), which requires that the molecule being detected be composed of DNA.

  17. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd

    PubMed Central

    Wang, Zichen; Monteiro, Caroline D.; Jagodnik, Kathleen M.; Fernandez, Nicolas F.; Gundersen, Gregory W.; Rouillard, Andrew D.; Jenkins, Sherry L.; Feldmann, Axel S.; Hu, Kevin S.; McDermott, Michael G.; Duan, Qiaonan; Clark, Neil R.; Jones, Matthew R.; Kou, Yan; Goff, Troy; Woodland, Holly; Amaral, Fabio M R.; Szeto, Gregory L.; Fuchs, Oliver; Schüssler-Fiorenza Rose, Sophia M.; Sharma, Shvetank; Schwartz, Uwe; Bausela, Xabier Bengoetxea; Szymkiewicz, Maciej; Maroulis, Vasileios; Salykin, Anton; Barra, Carolina M.; Kruth, Candice D.; Bongio, Nicholas J.; Mathur, Vaibhav; Todoric, Radmila D; Rubin, Udi E.; Malatras, Apostolos; Fulp, Carl T.; Galindo, John A.; Motiejunaite, Ruta; Jüschke, Christoph; Dishuck, Philip C.; Lahl, Katharina; Jafari, Mohieddin; Aibar, Sara; Zaravinos, Apostolos; Steenhuizen, Linda H.; Allison, Lindsey R.; Gamallo, Pablo; de Andres Segura, Fernando; Dae Devlin, Tyler; Pérez-García, Vicente; Ma'ayan, Avi

    2016-01-01

    Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of themed collections from these studies may provide new insights, but requires further human curation. Here we report a crowdsourcing project to annotate and reanalyse a large number of gene expression profiles from Gene Expression Omnibus (GEO). Through a massive open online course on Coursera, over 70 participants from over 25 countries identify and annotate 2,460 single-gene perturbation signatures, 839 disease versus normal signatures, and 906 drug perturbation signatures. All these signatures are unique and are manually validated for quality. Global analysis of these signatures confirms known associations and identifies novel associations between genes, diseases and drugs. The manually curated signatures are used as a training set to develop classifiers for extracting similar signatures from the entire GEO repository. We develop a web portal to serve these signatures for query, download and visualization. PMID:27667448

  18. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd.

    PubMed

    Wang, Zichen; Monteiro, Caroline D; Jagodnik, Kathleen M; Fernandez, Nicolas F; Gundersen, Gregory W; Rouillard, Andrew D; Jenkins, Sherry L; Feldmann, Axel S; Hu, Kevin S; McDermott, Michael G; Duan, Qiaonan; Clark, Neil R; Jones, Matthew R; Kou, Yan; Goff, Troy; Woodland, Holly; Amaral, Fabio M R; Szeto, Gregory L; Fuchs, Oliver; Schüssler-Fiorenza Rose, Sophia M; Sharma, Shvetank; Schwartz, Uwe; Bausela, Xabier Bengoetxea; Szymkiewicz, Maciej; Maroulis, Vasileios; Salykin, Anton; Barra, Carolina M; Kruth, Candice D; Bongio, Nicholas J; Mathur, Vaibhav; Todoric, Radmila D; Rubin, Udi E; Malatras, Apostolos; Fulp, Carl T; Galindo, John A; Motiejunaite, Ruta; Jüschke, Christoph; Dishuck, Philip C; Lahl, Katharina; Jafari, Mohieddin; Aibar, Sara; Zaravinos, Apostolos; Steenhuizen, Linda H; Allison, Lindsey R; Gamallo, Pablo; de Andres Segura, Fernando; Dae Devlin, Tyler; Pérez-García, Vicente; Ma'ayan, Avi

    2016-09-26

    Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of themed collections from these studies may provide new insights, but requires further human curation. Here we report a crowdsourcing project to annotate and reanalyse a large number of gene expression profiles from Gene Expression Omnibus (GEO). Through a massive open online course on Coursera, over 70 participants from over 25 countries identify and annotate 2,460 single-gene perturbation signatures, 839 disease versus normal signatures, and 906 drug perturbation signatures. All these signatures are unique and are manually validated for quality. Global analysis of these signatures confirms known associations and identifies novel associations between genes, diseases and drugs. The manually curated signatures are used as a training set to develop classifiers for extracting similar signatures from the entire GEO repository. We develop a web portal to serve these signatures for query, download and visualization.

  19. Measurement of RF lightning emissions

    NASA Technical Reports Server (NTRS)

    Lott, G. K., Jr.; Honnell, M. A.; Shumpert, T. H.

    1981-01-01

    A lightning radio emission observation laboratory is described. The signals observed and recorded include HF, VHF and UHF radio emissions, optical signature, electric field measurements, and thunder. The objectives of the station, the equipment used, and the recording methods are discussed.

  20. Beyond the scope of Free-Wilson analysis: building interpretable QSAR models with machine learning algorithms.

    PubMed

    Chen, Hongming; Carlsson, Lars; Eriksson, Mats; Varkonyi, Peter; Norinder, Ulf; Nilsson, Ingemar

    2013-06-24

    A novel methodology was developed to build Free-Wilson like local QSAR models by combining R-group signatures and the SVM algorithm. Unlike Free-Wilson analysis this method is able to make predictions for compounds with R-groups not present in a training set. Eleven public data sets were chosen as test cases for comparing the performance of our new method with several other traditional modeling strategies, including Free-Wilson analysis. Our results show that the R-group signature SVM models achieve better prediction accuracy compared with Free-Wilson analysis in general. Moreover, the predictions of R-group signature models are also comparable to the models using ECFP6 fingerprints and signatures for the whole compound. Most importantly, R-group contributions to the SVM model can be obtained by calculating the gradient for R-group signatures. For most of the studied data sets, a significant correlation with that of a corresponding Free-Wilson analysis is shown. These results suggest that the R-group contribution can be used to interpret bioactivity data and highlight that the R-group signature based SVM modeling method is as interpretable as Free-Wilson analysis. Hence the signature SVM model can be a useful modeling tool for any drug discovery project.

  1. Detection of Rooftop Cooling Unit Faults Based on Electrical Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Peter R.; Laughman, C R.; Leeb, S B.

    Non-intrusive load monitoring (NILM) is accomplished by sampling voltage and current at high rates and reducing the resulting start transients or harmonic contents to concise ''signatures''. Changes in these signatures can be used to detect, and in many cases directly diagnose, equipment and component faults associated with roof-top cooling units. Use of the NILM for fault detection and diagnosis (FDD) is important because (1) it complements other FDD schemes that are based on thermo-fluid sensors and analyses and (2) it is minimally intrusive (one measuring point in the relatively protected confines of the control panel) and therefore inherently reliable. Thismore » paper describes changes in the power signatures of fans and compressors that were found, experimentally and theoretically, to be useful for fault detection.« less

  2. Signature of magnetoelectric coupling of xNiFe2O4 - (1-x)HoMnO3 (x = 0.1 and 0.3) multiferroic nanocomposites

    NASA Astrophysics Data System (ADS)

    Mandal, S. K.; Debnath, Rajesh; Singh, Swati; Nath, A.; Dey, P.; Nath, T. K.

    2017-12-01

    The magnetoelectric coupling of xNiFe2O4-(1-x)HoMnO3 (x = 0.1 and 0.3) multiferroics nanocomposites prepared through low temperature chemical pyrophoric reaction process has been investigated at room temperature. The signature of magnetoelectric coefficient of these nanocomposites is mainly due to the magnetostriction and magnetodielectric properties of the materials. These nanocomposites show the ferroelectric behaviour at room temperature. AC electrical properties of nanocomposites have been studied with applied magnetic fields and temperatures. Nyquist plots at different magnetic fields and temperatures have been fitted using parallel combinations of resistance-capacitor circuits. Moreover, we have estimated activation energy of those composites using Arrhenius relation, which indicates that same kinds of charge carrier are responsible for relaxation process in grain boundaries and grain of the sample. Furthermore, from the analysis of ac conductivity data as a function of frequency is attributed to the large polaronic hopping in the conduction process in the system.

  3. Diagnostic and Prognostic Models for Generator Step-Up Transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek Agarwal; Nancy J. Lybeck; Binh T. Pham

    In 2014, the online monitoring (OLM) of active components project under the Light Water Reactor Sustainability program at Idaho National Laboratory (INL) focused on diagnostic and prognostic capabilities for generator step-up transformers. INL worked with subject matter experts from the Electric Power Research Institute (EPRI) to augment and revise the GSU fault signatures previously implemented in the Electric Power Research Institute’s (EPRI’s) Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. Two prognostic models were identified and implemented for GSUs in the FW-PHM Suite software. INL and EPRI demonstrated the use of prognostic capabilities for GSUs. The complete set of faultmore » signatures developed for GSUs in the Asset Fault Signature Database of the FW-PHM Suite for GSUs is presented in this report. Two prognostic models are described for paper insulation: the Chendong model for degree of polymerization, and an IEEE model that uses a loading profile to calculates life consumption based on hot spot winding temperatures. Both models are life consumption models, which are examples of type II prognostic models. Use of the models in the FW-PHM Suite was successfully demonstrated at the 2014 August Utility Working Group Meeting, Idaho Falls, Idaho, to representatives from different utilities, EPRI, and the Halden Research Project.« less

  4. Lightning charge moment changes estimated by high speed photometric observations from ISS

    NASA Astrophysics Data System (ADS)

    Hobara, Y.; Kono, S.; Suzuki, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.; Suzuki, M.

    2017-12-01

    Optical observations by the CCD camera using the orbiting satellite is generally used to derive the spatio-temporal global distributions of the CGs and ICs. However electrical properties of the lightning such as peak current and lightning charge are difficult to obtain from the space. In particular, CGs with considerably large lightning charge moment changes (CMC) and peak currents are crucial parameters to generate red sprites and elves, respectively, and so it must be useful to obtain these parameters from space. In this paper, we obtained the lightning optical signatures by using high speed photometric observations from the International Space Station GLIMS (Global Lightning and Sprit MeasurementS JEM-EF) mission. These optical signatures were compared quantitatively with radio signatures recognized as truth values derived from ELF electromagnetic wave observations on the ground to verify the accuracy of the optically derived values. High correlation (R > 0.9) was obtained between lightning optical irradiance and current moment, and quantitative relational expression between these two parameters was derived. Rather high correlation (R > 0.7) was also obtained between the integrated irradiance and the lightning CMC. Our results indicate the possibility to derive lightning electrical properties (current moment and CMC) from optical measurement from space. Moreover, we hope that these results will also contribute to forthcoming French microsatellite mission TARANIS.

  5. Magnetic Activity Dependence of the Electric Drift Below L = 3

    NASA Astrophysics Data System (ADS)

    Lejosne, Solène; Mozer, F. S.

    2018-05-01

    More than 2 years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L = 3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the nightside. The amplitude of the slowdown is a function of L, magnetic local time, and Kp, in a pattern consistent with the storm time dynamics of the ionosphere and thermosphere. To a lesser extent, magnetic activity also alters the average radial component of the electric drift below L = 3. A global picture for the average variations of the electric drift with Kp is provided as a function of L and magnetic local time. It is the first time that the signature of the ionospheric disturbance dynamo is observed in near-equatorial electric drift measurements.

  6. Method and system employing graphical electric load categorization to identify one of a plurality of different electric load types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Du, Liang

    A system for different electric loads includes sensors structured to sense voltage and current signals for each of the different electric loads; a hierarchical load feature database having a plurality of layers, with one of the layers including a plurality of different load categories; and a processor. The processor acquires voltage and current waveforms from the sensors for a corresponding one of the different electric loads; maps a voltage-current trajectory to a grid including a plurality of cells, each of which is assigned a binary value of zero or one; extracts a plurality of different features from the mapped gridmore » of cells as a graphical signature of the corresponding one of the different electric loads; derives a category of the corresponding one of the different electric loads from the database; and identifies one of a plurality of different electric load types for the corresponding one of the different electric loads.« less

  7. E-learning platform for automated testing of electronic circuits using signature analysis method

    NASA Astrophysics Data System (ADS)

    Gherghina, Cǎtǎlina; Bacivarov, Angelica; Bacivarov, Ioan C.; Petricǎ, Gabriel

    2016-12-01

    Dependability of electronic circuits can be ensured only through testing of circuit modules. This is done by generating test vectors and their application to the circuit. Testability should be viewed as a concerted effort to ensure maximum efficiency throughout the product life cycle, from conception and design stage, through production to repairs during products operating. In this paper, is presented the platform developed by authors for training for testability in electronics, in general and in using signature analysis method, in particular. The platform allows highlighting the two approaches in the field namely analog and digital signature of circuits. As a part of this e-learning platform, it has been developed a database for signatures of different electronic components meant to put into the spotlight different techniques implying fault detection, and from this there were also self-repairing techniques of the systems with this kind of components. An approach for realizing self-testing circuits based on MATLAB environment and using signature analysis method is proposed. This paper analyses the benefits of signature analysis method and simulates signature analyzer performance based on the use of pseudo-random sequences, too.

  8. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination.

    PubMed

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as a promising tool to track microbial activity during bioremediation even though further research is still needed to completely understand the bio-geochemical processes involved and their impact on electrical signatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination

    NASA Astrophysics Data System (ADS)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as a promising tool to track microbial activity during bioremediation even though further research is still needed to completely understand the bio-geochemical processes involved and their impact on electrical signatures.

  10. NAPL detection with ground-penetrating radar (Invited)

    NASA Astrophysics Data System (ADS)

    Bradford, J. H.

    2013-12-01

    Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency dependent attenuation analysis, and 5) reflectivity inversion. Examples are taken from a variety of applications that include oil spills on the ocean, oil spills on and under sea ice, and both LNAPL and DNAPL contaminated groundwater systems. Many factors conspire to complicate field data analysis, yet careful analysis and integration of multiple techniques has proven robust. Use of these methods in practical application has been slow to take root. Nonetheless, a best practices working model integrates geophysics from the outset and mirrors the approach utilized in hydrocarbon exploration. This model ultimately minimizes site characterization and remediation costs.

  11. Temporal Geophysical Signatures Due to Contaminant Mass Remediation

    EPA Science Inventory

    Geophysical surveys acquired over a ten year period are used to document changes in bulk electrical conductivity associated with the attenuation of hydrocarbon contaminants at the former fire training facility (FT-02) Wurtsmith Air Force base (WAFB), Oscoda, MI, USA. Initial inv...

  12. Mutational Signatures in Cancer (MuSiCa): a web application to implement mutational signatures analysis in cancer samples.

    PubMed

    Díaz-Gay, Marcos; Vila-Casadesús, Maria; Franch-Expósito, Sebastià; Hernández-Illán, Eva; Lozano, Juan José; Castellví-Bel, Sergi

    2018-06-14

    Mutational signatures have been proved as a valuable pattern in somatic genomics, mainly regarding cancer, with a potential application as a biomarker in clinical practice. Up to now, several bioinformatic packages to address this topic have been developed in different languages/platforms. MutationalPatterns has arisen as the most efficient tool for the comparison with the signatures currently reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. However, the analysis of mutational signatures is nowadays restricted to a small community of bioinformatic experts. In this work we present Mutational Signatures in Cancer (MuSiCa), a new web tool based on MutationalPatterns and built using the Shiny framework in R language. By means of a simple interface suited to non-specialized researchers, it provides a comprehensive analysis of the somatic mutational status of the supplied cancer samples. It permits characterizing the profile and burden of mutations, as well as quantifying COSMIC-reported mutational signatures. It also allows classifying samples according to the above signature contributions. MuSiCa is a helpful web application to characterize mutational signatures in cancer samples. It is accessible online at http://bioinfo.ciberehd.org/GPtoCRC/en/tools.html and source code is freely available at https://github.com/marcos-diazg/musica .

  13. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, Richard F.; Casalnuovo, Stephen A.

    1993-01-01

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  14. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  15. Development of Asset Fault Signatures for Prognostic and Health Management in the Nuclear Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek Agarwal; Nancy J. Lybeck; Randall Bickford

    2014-06-01

    Proactive online monitoring in the nuclear industry is being explored using the Electric Power Research Institute’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. The FW-PHM Suite is a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. The FW-PHM Suite has four main modules: Diagnostic Advisor, Asset Fault Signature (AFS) Database, Remaining Useful Life Advisor, and Remaining Useful Life Database. This paper focuses on development of asset fault signatures to assess the health status of generator step-up generators and emergency diesel generators in nuclear power plants. Asset fault signatures describe themore » distinctive features based on technical examinations that can be used to detect a specific fault type. At the most basic level, fault signatures are comprised of an asset type, a fault type, and a set of one or more fault features (symptoms) that are indicative of the specified fault. The AFS Database is populated with asset fault signatures via a content development exercise that is based on the results of intensive technical research and on the knowledge and experience of technical experts. The developed fault signatures capture this knowledge and implement it in a standardized approach, thereby streamlining the diagnostic and prognostic process. This will support the automation of proactive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.« less

  16. The electrical resistivity signature of a fault controlling gold mineralization and the implications for Mesozoic mineralization: a case study from the Jiaojia Fault, eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Lü, Qingtian; Yan, Jiayong; Hu, Hao; Fu, GuangMing

    2017-08-01

    We use 3D audio magnetotelluric method to the south segment of Jiaojia fault belt, and obtain the 3D electrical model of this area. Regional geophysical data were combined in an analysis of strata and major structural distribution in the study area, and included the southern segment of the Jiaojia fault zone transformed into two fault assemblages. Together with the previous studies of the ore-controlling action of the Jiaojia fault belt and deposit characteristics, the two faults are considered to be favorable metallogenic provinces, because some important features coupled with them, such as the subordinate fault intersection zone and several fault assemblages in one fault zone. It was also suggested the control action of later fault with reversed downthrows to the ore distribution. These studies have enabled us to predict the presence of two likely target regions of mineralization, and are prospecting breakthrough in the southern section of Jiaojia in the Shandong Peninsula, China.

  17. Electrochemical Probing through a Redox Capacitor To Acquire Chemical Information on Biothiols

    PubMed Central

    2016-01-01

    The acquisition of chemical information is a critical need for medical diagnostics, food/environmental monitoring, and national security. Here, we report an electrochemical information processing approach that integrates (i) complex electrical inputs/outputs, (ii) mediators to transduce the electrical I/O into redox signals that can actively probe the chemical environment, and (iii) a redox capacitor that manipulates signals for information extraction. We demonstrate the capabilities of this chemical information processing strategy using biothiols because of the emerging importance of these molecules in medicine and because their distinct chemical properties allow evaluation of hypothesis-driven information probing. We show that input sequences can be tailored to probe for chemical information both qualitatively (step inputs probe for thiol-specific signatures) and quantitatively. Specifically, we observed picomolar limits of detection and linear responses to concentrations over 5 orders of magnitude (1 pM–0.1 μM). This approach allows the capabilities of signal processing to be extended for rapid, robust, and on-site analysis of chemical information. PMID:27385047

  18. Electrochemical Probing through a Redox Capacitor To Acquire Chemical Information on Biothiols.

    PubMed

    Liu, Zhengchun; Liu, Yi; Kim, Eunkyoung; Bentley, William E; Payne, Gregory F

    2016-07-19

    The acquisition of chemical information is a critical need for medical diagnostics, food/environmental monitoring, and national security. Here, we report an electrochemical information processing approach that integrates (i) complex electrical inputs/outputs, (ii) mediators to transduce the electrical I/O into redox signals that can actively probe the chemical environment, and (iii) a redox capacitor that manipulates signals for information extraction. We demonstrate the capabilities of this chemical information processing strategy using biothiols because of the emerging importance of these molecules in medicine and because their distinct chemical properties allow evaluation of hypothesis-driven information probing. We show that input sequences can be tailored to probe for chemical information both qualitatively (step inputs probe for thiol-specific signatures) and quantitatively. Specifically, we observed picomolar limits of detection and linear responses to concentrations over 5 orders of magnitude (1 pM-0.1 μM). This approach allows the capabilities of signal processing to be extended for rapid, robust, and on-site analysis of chemical information.

  19. Data and Geocomputation: Time Critical Mission Support for the 2017 Hurricane Season

    NASA Astrophysics Data System (ADS)

    Bhaduri, B. L.; Tuttle, M.; Rose, A.; Sanyal, J.; Thakur, G.; White, D.; Yang, H. H.; Laverdiere, M.; Whitehead, M.; Taylor, H.; Jacob, M.

    2017-12-01

    A strong spatial data infrastructure and geospatial analysis capabilities are nucleus to the decision-making process during emergency preparedness, response, and recovery operations. For over a decade, the U.S. Department of Energy's Oak Ridge National Laboratory has been developing critical data and analytical capabilities that provide the Federal Emergency Management Agency (FEMA) and the rest of the federal response community assess and evaluate impacts of natural hazards on population and critical infrastructures including the status of the national electricity and oil and natural gas networks. These capabilities range from identifying structures or buildings from very high-resolution satellite imagery, utilizing machine learning and high-performance computing, to daily assessment of electricity restoration highlighting changes in nighttime lights for the impacted region based on the analysis of NOAA JPSS VIIRS Day/Night Band (DNB) imagery. This presentation will highlight our time critical mission support efforts for the 2017 hurricane season that witnessed unprecedented devastation from hurricanes Harvey, Irma, and Maria. ORNL provided 90m resolution LandScan USA population distribution data for identifying vulnerable population as well as structure (buildings) data extracted from 1m imagery for damage assessment. Spatially accurate data for solid waste facilities were developed and delivered to the response community. Human activity signatures were assessed from large scale collection of open source social media data around points of interests (POI) to ascertain level of destruction. The electricity transmission system was monitored in real time from data integration from hundreds of utilities and electricity outage information were provided back to the response community via standardized web-services.

  20. Electroporation-Induced Cell Modifications Detected with THz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Romeo, Stefania; Vernier, P. Thomas; Zeni, Olga

    2018-04-01

    Electroporation (electropermeabilization) increases the electrical conductivity of biological cell membranes and lowers transport barriers for normally impermeant materials. Molecular simulations suggest that electroporation begins with the reorganization of water and lipid head group dipoles in the phospholipid bilayer interface, driven by an externally applied electric field, and the evolution of the resulting defects into water-filled, lipid pores. The interior of the electroporated membrane thus contains water, which should provide a signature for detection of the electropermeabilized state. In this feasibility study, we use THz time-domain spectroscopy, a powerful tool for investigating biomolecular systems and their interactions with water, to detect electroporation in human cells subjected to permeabilizing pulsed electric fields (PEFs). The time-domain response of electroporated human monocytes was acquired with a commercial THz, time-domain spectrometer. For each sample, frequency spectra were calculated, and the absorption coefficient and refractive index were extracted in the frequency range between 0.2 and 1.5 THz. This analysis reveals a higher absorption of THz radiation by PEF-exposed cells, with respect to sham-exposed ones, consistent with the intrusion of water into the cell through the permeabilized membrane that is presumed to be associated with electroporation.

  1. Electrical Transport Signature of the Magnetic Fluctuation-Structure Relation in α-RuCl3 Nanoflakes.

    PubMed

    Mashhadi, Soudabeh; Weber, Daniel; Schoop, Leslie M; Schulz, Armin; Lotsch, Bettina V; Burghard, Marko; Kern, Klaus

    2018-05-09

    The small gap semiconductor α-RuCl 3 has emerged as a promising candidate for quantum spin liquid materials. Thus far, Raman spectroscopy, neutron scattering, and magnetization measurements have provided valuable hints for collective spin behavior in α-RuCl 3 bulk crystals. However, the goal of implementing α-RuCl 3 into spintronic devices would strongly benefit from the possibility of electrically probing these phenomena. To address this, we first investigated nanoflakes of α-RuCl 3 by Raman spectroscopy and observed similar behavior as in the case of the bulk material, including the signatures of possible fractionalized excitations. In complementary experiments, we investigated the electrical charge transport properties of individual α-RuCl 3 nanoflakes in the temperature range between 120 and 290 K. The observed temperature-dependent electrical resistivity is consistent with variable range hopping behavior and exhibits a transition at about 180 K, close to the onset temperature observed in our Raman measurements. In conjunction with the established relation between structure and magnetism in the bulk, we interpret this transition to coincide with the emergence of fractionalized excitations due to the Kitaev interactions in the nanoflakes. Compared to the bulk samples, the transition temperature of the underlying structural change is larger in the nanoflakes. This difference is tentatively attributed to the dimensionality of the nanoflakes as well as the formation of stacking faults during mechanical exfoliation. The demonstrated devices open up novel perspectives toward manipulating the Kitaev-phase in α-RuCl 3 via electrical means.

  2. Direct geoelectrical evidence of mass transfer at the laboratory scale

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan D.; Singha, Kamini; Day-Lewis, Frederick D.; Binley, Andrew; Keating, Kristina; Haggerty, Roy

    2012-10-01

    Previous field-scale experimental data and numerical modeling suggest that the dual-domain mass transfer (DDMT) of electrolytic tracers has an observable geoelectrical signature. Here we present controlled laboratory experiments confirming the electrical signature of DDMT and demonstrate the use of time-lapse electrical measurements in conjunction with concentration measurements to estimate the parameters controlling DDMT, i.e., the mobile and immobile porosity and rate at which solute exchanges between mobile and immobile domains. We conducted column tracer tests on unconsolidated quartz sand and a material with a high secondary porosity: the zeolite clinoptilolite. During NaCl tracer tests we collected nearly colocated bulk direct-current electrical conductivity (σb) and fluid conductivity (σf) measurements. Our results for the zeolite show (1) extensive tailing and (2) a hysteretic relation between σf and σb, thus providing evidence of mass transfer not observed within the quartz sand. To identify best-fit parameters and evaluate parameter sensitivity, we performed over 2700 simulations of σf, varying the immobile and mobile domain and mass transfer rate. We emphasized the fit to late-time tailing by minimizing the Box-Cox power transformed root-mean square error between the observed and simulated σf. Low-field proton nuclear magnetic resonance (NMR) measurements provide an independent quantification of the volumes of the mobile and immobile domains. The best-fit parameters based on σf match the NMR measurements of the immobile and mobile domain porosities and provide the first direct electrical evidence for DDMT. Our results underscore the potential of using electrical measurements for DDMT parameter inference.

  3. Direct geoelectrical evidence of mass transfer at the laboratory scale

    USGS Publications Warehouse

    Swanson, Ryan D.; Singha, Kamini; Day-Lewis, Frederick D.; Binley, Andrew; Keating, Kristina; Haggerty, Roy

    2012-01-01

    Previous field-scale experimental data and numerical modeling suggest that the dual-domain mass transfer (DDMT) of electrolytic tracers has an observable geoelectrical signature. Here we present controlled laboratory experiments confirming the electrical signature of DDMT and demonstrate the use of time-lapse electrical measurements in conjunction with concentration measurements to estimate the parameters controlling DDMT, i.e., the mobile and immobile porosity and rate at which solute exchanges between mobile and immobile domains. We conducted column tracer tests on unconsolidated quartz sand and a material with a high secondary porosity: the zeolite clinoptilolite. During NaCl tracer tests we collected nearly colocated bulk direct-current electrical conductivity (σb) and fluid conductivity (σf) measurements. Our results for the zeolite show (1) extensive tailing and (2) a hysteretic relation between σf and σb, thus providing evidence of mass transfer not observed within the quartz sand. To identify best-fit parameters and evaluate parameter sensitivity, we performed over 2700 simulations of σf, varying the immobile and mobile domain and mass transfer rate. We emphasized the fit to late-time tailing by minimizing the Box-Cox power transformed root-mean square error between the observed and simulated σf. Low-field proton nuclear magnetic resonance (NMR) measurements provide an independent quantification of the volumes of the mobile and immobile domains. The best-fit parameters based on σf match the NMR measurements of the immobile and mobile domain porosities and provide the first direct electrical evidence for DDMT. Our results underscore the potential of using electrical measurements for DDMT parameter inference.

  4. Electrical transport of spin-polarized carriers in disordered ultrathin films.

    PubMed

    Hernandez, L M; Bhattacharya, A; Parendo, Kevin A; Goldman, A M

    2003-09-19

    Slow, nonexponential relaxation of electrical transport accompanied by memory effects has been induced in quench-condensed ultrathin amorphous Bi films by the application of a parallel magnetic field. This behavior, which is very similar to space-charge limited current flow, is found in extremely thin films well on the insulating side of the thickness-tuned superconductor-insulator transition. It may be the signature of a collective state that forms when the carriers are spin polarized at low temperatures and in high magnetic fields.

  5. The optical and radiation field signatures produced by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Guo, C.; Krider, E. P.

    1982-01-01

    Typical examples of the signals that are produced by first and subsequent return strokes in cloud-to-ground lightning on a microsecond time scale are presented. Statistics on the structure of the waveforms and the radiance of the channels are given. The relationship between the light signals and the associated electric field signatures is discussed. It is shown that the initial light signal from a return stroke tends to be linear for about 15 microsec and then rises more slowly to a peak that is delayed by approximately 60 microsec from the electric field peak. It is thought that the transition between the fast linear portion and the slower rise may be due to the return stroke entering the cloud base. A small percentage of the records suggest that two different branches of the same stepped leader can initiate separate return strokes. The light pulses from cloud discharges tend to be smaller and to vary more slowly than those from return strokes.

  6. Quantitative comparison of microarray experiments with published leukemia related gene expression signatures.

    PubMed

    Klein, Hans-Ulrich; Ruckert, Christian; Kohlmann, Alexander; Bullinger, Lars; Thiede, Christian; Haferlach, Torsten; Dugas, Martin

    2009-12-15

    Multiple gene expression signatures derived from microarray experiments have been published in the field of leukemia research. A comparison of these signatures with results from new experiments is useful for verification as well as for interpretation of the results obtained. Currently, the percentage of overlapping genes is frequently used to compare published gene signatures against a signature derived from a new experiment. However, it has been shown that the percentage of overlapping genes is of limited use for comparing two experiments due to the variability of gene signatures caused by different array platforms or assay-specific influencing parameters. Here, we present a robust approach for a systematic and quantitative comparison of published gene expression signatures with an exemplary query dataset. A database storing 138 leukemia-related published gene signatures was designed. Each gene signature was manually annotated with terms according to a leukemia-specific taxonomy. Two analysis steps are implemented to compare a new microarray dataset with the results from previous experiments stored and curated in the database. First, the global test method is applied to assess gene signatures and to constitute a ranking among them. In a subsequent analysis step, the focus is shifted from single gene signatures to chromosomal aberrations or molecular mutations as modeled in the taxonomy. Potentially interesting disease characteristics are detected based on the ranking of gene signatures associated with these aberrations stored in the database. Two example analyses are presented. An implementation of the approach is freely available as web-based application. The presented approach helps researchers to systematically integrate the knowledge derived from numerous microarray experiments into the analysis of a new dataset. By means of example leukemia datasets we demonstrate that this approach detects related experiments as well as related molecular mutations and may help to interpret new microarray data.

  7. On Entropy Trail

    NASA Astrophysics Data System (ADS)

    Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn

    2015-11-01

    Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.

  8. Longitudinal Analysis of Whole Blood Transcriptomes to Explore Molecular Signatures Associated With Acute Renal Allograft Rejection

    PubMed Central

    Shin, Heesun; Günther, Oliver; Hollander, Zsuzsanna; Wilson-McManus, Janet E.; Ng, Raymond T.; Balshaw, Robert; Keown, Paul A.; McMaster, Robert; McManus, Bruce M.; Isbel, Nicole M.; Knoll, Greg; Tebbutt, Scott J.

    2014-01-01

    In this study, we explored a time course of peripheral whole blood transcriptomes from kidney transplantation patients who either experienced an acute rejection episode or did not in order to better delineate the immunological and biological processes measureable in blood leukocytes that are associated with acute renal allograft rejection. Using microarrays, we generated gene expression data from 24 acute rejectors and 24 nonrejectors. We filtered the data to obtain the most unambiguous and robustly expressing probe sets and selected a subset of patients with the clearest phenotype. We then performed a data-driven exploratory analysis using data reduction and differential gene expression analysis tools in order to reveal gene expression signatures associated with acute allograft rejection. Using a template-matching algorithm, we then expanded our analysis to include time course data, identifying genes whose expression is modulated leading up to acute rejection. We have identified molecular phenotypes associated with acute renal allograft rejection, including a significantly upregulated signature of neutrophil activation and accumulation following transplant surgery that is common to both acute rejectors and nonrejectors. Our analysis shows that this expression signature appears to stabilize over time in nonrejectors but persists in patients who go on to reject the transplanted organ. In addition, we describe an expression signature characteristic of lymphocyte activity and proliferation. This lymphocyte signature is significantly downregulated in both acute rejectors and nonrejectors following surgery; however, patients who go on to reject the organ show a persistent downregulation of this signature relative to the neutrophil signature. PMID:24526836

  9. Electrical and thermal properties of Ca and Ni doped barium ferrite

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2018-05-01

    Ca and Ni doped M type Barium ferrite of the composition ((Ba0.9Ca0.1) (Fe0.8 Ni0.2)12O19) were prepared by the traditional sol gel auto combustion method using citric acid as a fuel. Microstructural analyses were carried out with the help of XRD and SEM. XRD analysis is the evidence of nanometer regime along with crystalline planes of hexagonal structure. It also confirms the hexagonal structure of barium ferrite even with the doping of Ca and Ni. SEM analysis is the signature of the spherical shape and surface morphology of agglomerated form of nano-powders of doped samples. The thermal properties of samples were carried out with the help of TGA. That shows the variation of weight loss of the prepared sample with the temperature.

  10. The effects of different representations on static structure analysis of computer malware signatures.

    PubMed

    Narayanan, Ajit; Chen, Yi; Pang, Shaoning; Tao, Ban

    2013-01-01

    The continuous growth of malware presents a problem for internet computing due to increasingly sophisticated techniques for disguising malicious code through mutation and the time required to identify signatures for use by antiviral software systems (AVS). Malware modelling has focused primarily on semantics due to the intended actions and behaviours of viral and worm code. The aim of this paper is to evaluate a static structure approach to malware modelling using the growing malware signature databases now available. We show that, if malware signatures are represented as artificial protein sequences, it is possible to apply standard sequence alignment techniques in bioinformatics to improve accuracy of distinguishing between worm and virus signatures. Moreover, aligned signature sequences can be mined through traditional data mining techniques to extract metasignatures that help to distinguish between viral and worm signatures. All bioinformatics and data mining analysis were performed on publicly available tools and Weka.

  11. The Effects of Different Representations on Static Structure Analysis of Computer Malware Signatures

    PubMed Central

    Narayanan, Ajit; Chen, Yi; Pang, Shaoning; Tao, Ban

    2013-01-01

    The continuous growth of malware presents a problem for internet computing due to increasingly sophisticated techniques for disguising malicious code through mutation and the time required to identify signatures for use by antiviral software systems (AVS). Malware modelling has focused primarily on semantics due to the intended actions and behaviours of viral and worm code. The aim of this paper is to evaluate a static structure approach to malware modelling using the growing malware signature databases now available. We show that, if malware signatures are represented as artificial protein sequences, it is possible to apply standard sequence alignment techniques in bioinformatics to improve accuracy of distinguishing between worm and virus signatures. Moreover, aligned signature sequences can be mined through traditional data mining techniques to extract metasignatures that help to distinguish between viral and worm signatures. All bioinformatics and data mining analysis were performed on publicly available tools and Weka. PMID:23983644

  12. Exploring a Physically Based Tool for Lightning Cessation: A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter a.; Carey, Lawrence D.; Deierling, Wiebke

    2010-01-01

    The University of Alabama in Huntsville (UA Huntsville) and NASA's Marshall Space Flight Center are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. The project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UA Huntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. A summary of preliminary results will be presented.

  13. Exploring a Physically Based Tool for Lightning Cessation: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Schultz, Elsie V.; Petersen, Walter A.; Carey, Lawrence D.; Buechler, Dennis E.; Gatlin, Patrick N.

    2010-01-01

    The University of Alabama in Huntsville (UAHuntsville) and NASA s Marshall Space Flight Center are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. The project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. A summary of preliminary results will be presented.

  14. Online signature recognition using principal component analysis and artificial neural network

    NASA Astrophysics Data System (ADS)

    Hwang, Seung-Jun; Park, Seung-Je; Baek, Joong-Hwan

    2016-12-01

    In this paper, we propose an algorithm for on-line signature recognition using fingertip point in the air from the depth image acquired by Kinect. We extract 10 statistical features from X, Y, Z axis, which are invariant to changes in shifting and scaling of the signature trajectories in three-dimensional space. Artificial neural network is adopted to solve the complex signature classification problem. 30 dimensional features are converted into 10 principal components using principal component analysis, which is 99.02% of total variances. We implement the proposed algorithm and test to actual on-line signatures. In experiment, we verify the proposed method is successful to classify 15 different on-line signatures. Experimental result shows 98.47% of recognition rate when using only 10 feature vectors.

  15. Metastable defect response in CZTSSe from admittance spectroscopy

    DOE PAGES

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; ...

    2017-10-02

    Admittance spectroscopy is a useful tool used to study defects in semiconductor materials. However, metastable defect responses in non-ideal semiconductors can greatly impact the measurement and therefore the interpretation of results. Here, admittance spectroscopy was performed on Cu2ZnSn(S,Se) 4 where metastable defect response is illustrated due to the trapping of injected carriers into a deep defect state. To investigate the metastable response, admittance measurements were performed under electrically and optically relaxed conditions in comparison to a device following a low level carrier-injection pretreatment. The relaxed measurement demonstrates a single capacitance signature while two capacitance signatures are observed for the devicemore » measured following carrier-injection. The deeper level signature, typically reported for kesterites, is activated by charge trapping following carrier injection. Both signatures are attributed to bulk level defects. The significant metastable response observed on kesterites due to charge trapping obscures accurate interpretation of defect levels from admittance spectroscopy and indicates that great care must be taken when performing and interpreting this measurement on non-ideal devices.« less

  16. Observability of Same-Charge Lepton Topologies in Fully Leptonic Top Quark Pair Events in CMS

    NASA Astrophysics Data System (ADS)

    Lowette, S.

    2007-02-01

    At the Large Hadron Collider dileptonic tbar t({+jets}) events can be selected with a relatively high signal-to-noise ratio and efficiency, with background events produced via Standard Model diagrams. Within the clean sample of these events, both isolated leptons have an opposite electric charge. In several models beyond the Standard Model tt/ bar t bar t(+{jets}) topologies are predicted, kinematically similar to the Standard Model tbar t({+jets}) signature, where both leptons have an equal electric charge. Such a signal of new physics can be diluted by the mis-identification of the leptons or their electric charge in Standard Model tbar t({+jets}) events. The observability of an excess of same-charge dilepton signals above the mis-reconstruction of the Standard Model background is presented, assuming the same topology. With an integrated luminosity of 30 fb-1, a same-charge dilepton signature of pp to tt/ bar t bar t events with a cross section larger than 1.2 pb is visible in the measurement of the ratio between same-charge and opposite-charge lepton pair events [J. D'Hondt, S. Lowette, G. Hammad, J. Heyninck, P. Van Mulders, ``Observability of same-charge lepton topology in dileptonic events t bar t'', CERN-CMS-NOTE-2006-065.

  17. Prioritizing Therapeutics for Lung Cancer: An Integrative Meta-analysis of Cancer Gene Signatures and Chemogenomic Data

    PubMed Central

    Fortney, Kristen; Griesman, Joshua; Kotlyar, Max; Pastrello, Chiara; Angeli, Marc; Sound-Tsao, Ming; Jurisica, Igor

    2015-01-01

    Repurposing FDA-approved drugs with the aid of gene signatures of disease can accelerate the development of new therapeutics. A major challenge to developing reliable drug predictions is heterogeneity. Different gene signatures of the same disease or drug treatment often show poor overlap across studies, as a consequence of both biological and technical variability, and this can affect the quality and reproducibility of computational drug predictions. Existing algorithms for signature-based drug repurposing use only individual signatures as input. But for many diseases, there are dozens of signatures in the public domain. Methods that exploit all available transcriptional knowledge on a disease should produce improved drug predictions. Here, we adapt an established meta-analysis framework to address the problem of drug repurposing using an ensemble of disease signatures. Our computational pipeline takes as input a collection of disease signatures, and outputs a list of drugs predicted to consistently reverse pathological gene changes. We apply our method to conduct the largest and most systematic repurposing study on lung cancer transcriptomes, using 21 signatures. We show that scaling up transcriptional knowledge significantly increases the reproducibility of top drug hits, from 44% to 78%. We extensively characterize drug hits in silico, demonstrating that they slow growth significantly in nine lung cancer cell lines from the NCI-60 collection, and identify CALM1 and PLA2G4A as promising drug targets for lung cancer. Our meta-analysis pipeline is general, and applicable to any disease context; it can be applied to improve the results of signature-based drug repurposing by leveraging the large number of disease signatures in the public domain. PMID:25786242

  18. Recharge source identification using isotope analysis and groundwater flow modeling for Puri city in India

    NASA Astrophysics Data System (ADS)

    Nayak, P. C.; Vijaya Kumar, S. V.; Rao, P. R. S.; Vijay, T.

    2017-11-01

    The holy city of Lord Jagannath is situated on the sea shore of the Bay of Bengal in Odisha state in India. Puri is a city of high religious importance and heritage value, details of the rituals, fairs, and festivals, and related aspects are covered extensively. It is found that water levels in two wells (Ganga and Yamuna) are declining and the causes are studied by undertaking modeling study of rainfall-recharge processes, surface water-groundwater interactions, and increasing demands due to urbanization at basin scale. Hydrochemical analysis of groundwater samples indicates that pH value is varying from 7 to 8.4 and electrical conductivity (EC) is found in between 238 and 2710 μmhos/cm. The EC values indicate that the shallow groundwater in Puri is not saline. Stable isotopic signatures of O-18, Deuterium indicate two different sources are active in the city area. In most of the handpumps, water recharged by the surface water sources. From the current investigation, it is evident that in a few handpumps and most of the dug-wells, isotopic signatures of water samples resembles with local precipitation. The groundwater recharge is taking place from the north-southern direction. Visual MODFLOW has been used for studying groundwater aspects and different scenarios have been developed. It is suggested to maintain water level in Samang Lake to restore depletion in groundwater level in two wells.

  19. Quantification Of Fire Signatures For Practical Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Ruff, Gary A.; Tomasek, Aaron J.

    2003-01-01

    The overall objective of this project is to measure the fire signatures of typical spacecraft materials in 1-g and determine how these signatures may be altered in a microgravity environment. During this project, we will also develop a test technique to obtain representative low-gravity signatures. The specific tasks that will be accomplished to achieve these objectives are to: (1) measure the time history of various fire signatures of typical spacecraft materials in 1-g at varying heating rates, temperatures, convective velocities, and oxygen concentrations, (2) conduct tests in the Zero-Gravity Facility at NASA John H. Glenn Research Center to investigate the manner that a microgravity environment alters the fire signature,(3) compare 0-g and 1-g time histories and determine if 0-g data exhibits the same dependence on the test parameters as experienced in 1-g (4) develop a 1-g test technique by which 0-g fire signatures can be measured. The proposed study seeks to investigate the differences in the identities and relative concentrations of the volatiles produced by pyrolyzing and/or smoldering materials between normal gravity and microgravity environments. Test materials will be representative of typical spacecraft materials and, where possible, will be tested in appropriate geometries. Wire insulation materials of Teflon, polyimide, silicone, and PVC will be evaluated using either cylindrical samples or actual wire insulation. Other materials such as polyurethane, polyimide, melamine, and silicone-based foams will be tested using cylindrical samples, in addition to fabric materials, such as Nomex. Electrical components, such as resistors, capacitors, circuit board will also be tested.

  20. Loop-Mediated Isothermal Amplification (LAMP) Signature Identification Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, C.

    2009-03-17

    This is an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.

  1. Relativistic electron dropout echoes induced by interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  2. Searches for long-lived charged particles in pp collisions at $$ \\sqrt{s} $$ =7 and 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    2013-07-01

    Results of searches for heavy stable charged particles produced in pp collisions at = 7 and 8 TeV are presented corresponding to an integrated luminosity of 5.0 fb(-1) and 18.8 fb(-1), respectively. Data collected with the CMS detector are used to study the momentum, energy deposition, and time-of-flight of signal candidates. Leptons with an electric charge between e/3 and 8e, as well as bound states that can undergo charge exchange with the detector material, are studied. Analysis results are presented for various combinations of signatures in the inner tracker only, inner tracker and muon detector, and muon detector only. Detectormore » signatures utilized are long time-of-flight to the outer muon system and anomalously high (or low) energy deposition in the inner tracker. The data are consistent with the expected background, and upper limits are set on the production cross section of long-lived gluinos, scalar top quarks, and scalar τ leptons, as well as pair produced long-lived leptons. Corresponding lower mass limits, ranging up to 1322 GeV/c (2) for gluinos, are the most stringent to date.« less

  3. Searches for long-lived charged particles in pp collisions at $$\\sqrt{s}$$ = 7 and 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    2013-07-19

    Results of searches for heavy stable charged particles produced in pp collisions atmore » $$\\sqrt{s}$$ =7 and 8 TeV are presented corresponding to an integrated luminosity of 5.0 fb -1 and 18.8 fb -1, respectively. Data collected with the CMS detector are used to study the momentum, energy deposition, and time-of-flight of signal candidates. Leptons with an electric charge between e/3 and 8e, as well as bound states that can undergo charge exchange with the detector material, are studied. Analysis results are presented for various combinations of signatures in the inner tracker only, inner tracker and muon detector, and muon detector only. Detector signatures utilized are long time-of-flight to the outer muon system and anomalously high (or low) energy deposition in the inner tracker. The data are consistent with the expected background, and upper limits are set on the production cross section of long-lived gluinos, scalar top quarks, and scalar τ leptons, as well as pair produced long-lived leptons. Corresponding lower mass limits, ranging up to 1322 GeV/c (2) for gluinos, are the most stringent to date.« less

  4. Electrical signatures of ethanol-liquid mixtures: implications for monitoring biofuels migration in the subsurface

    USGS Publications Warehouse

    Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale D.; Szabo, Zoltan

    2013-01-01

    Ethanol (EtOH), an emerging contaminant with potential direct and indirect environmental effects, poses threats to water supplies when spilled in large volumes. A series of experiments was directed at understanding the electrical geophysical signatures arising from groundwater contamination by ethanol. Conductivity measurements were performed at the laboratory scale on EtOH–water mixtures (0 to 0.97 v/v EtOH) and EtOH–salt solution mixtures (0 to 0.99 v/v EtOH) with and without a sand matrix using a conductivity probe and a four-electrode electrical measurement over the low frequency range (1–1000 Hz). A Lichtenecker–Rother (L–R) type mixing model was used to simulate electrical conductivity as a function of EtOH concentration in the mixture. For all three experimental treatments increasing EtOH concentration resulted in a decrease in measured conductivity magnitude (|σ|). The applied L–R model fitted the experimental data at concentration ≤ 0.4 v/v EtOH, presumably due to predominant and symmetric intermolecular (EtOH–water) interaction in the mixture. The deviation of the experimental |σ| data from the model prediction at higher EtOH concentrations may be associated with hydrophobic effects of EtOH–EtOH interactions in the mixture. The |σ| data presumably reflected changes in relative strength of the three types of interactions (water–water, EtOH–water, and EtOH–EtOH) occurring simultaneously in EtOH–water mixtures as the ratio of EtOH to water changed. No evidence of measurable polarization effects at the EtOH–water and EtOH–water–mineral interfaces over the investigated frequency range was found. Our results indicate the potential for using electrical measurements to characterize and monitor EtOH spills in the subsurface.

  5. Structural, optical, and electrical characteristics of graphene nanosheets synthesized from microwave-assisted exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Chamoli, Pankaj; Das, Malay K.; Kar, Kamal K.

    2017-11-01

    In the present study, low defect density graphene nanosheets (GNs) have been synthesized via chemical reduction of exfoliated graphite (EG) in the presence of a green reducing agent, oxalic acid. EG has been synthesized via chemical intercalation of natural flake graphite followed by exfoliation through microwave irradiation at 800 W for 50 s. 50 mg/mL concentration of oxalic acid helps to extract low defect density GNs from EG. As-synthesized GNs have been characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, UV-Visible spectroscopy, field emission scanning electron microscopy, and X-ray photon spectroscopy. Raman analysis confirms the removal of oxygen functional groups from EG and achieved an ID/IG ratio of ˜0.10 with low defect density (˜1.12 × 1010 cm-2). Elemental analysis supports the Raman signature of the removal of oxygen functionalities from EG, and a high C/O ratio of ˜15.97 is obtained. Further, transparent conducting films (TCFs) have been fabricated by spray coating. The optical and electrical properties of fabricated TCFs have been measured after thermal graphitization. Thermal graphitization helps to improve the optical and electrical properties of TCFs by tuning the optical bandgap in a controlled way. TCF shows best performance when the film is annealed at 900 °C for 1 h in vacuum. It shows a sheet resistance of ˜1.10 kΩ/◻ and a transmittance of ˜71.56% at 550 nm.

  6. Evidence for dust-driven, radial plasma transport in Saturn's inner radiation belts

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Krupp, N.; Kollmann, P.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Andriopoulou, M.

    2016-08-01

    A survey of Cassini MIMI/LEMMS data acquired between 2004 and 2015 has led to the identification of 13 energetic electron microsignatures that can be attributed to particle losses on one of the several faint rings of the planet. Most of the signatures were detected near L-shells that map between the orbits of Mimas and Enceladus or near the G-ring. Our analysis indicates that it is very unlikely for these signatures to have originated from absorption on Mimas, Enceladus or unidentified Moons and rings, even though most were not found exactly at the L-shells of the known rings of the saturnian system (G-ring, Methone, Anthe, Pallene). The lack of additional absorbers is apparent in the L-shell distribution of MeV ions which are very sensitive for tracing the location of weakly absorbing material permanently present in Saturn's radiation belts. This sensitivity is demonstrated by the identification, for the first time, of the proton absorption signatures from the asteroid-sized Moons Pallene, Anthe and/or their rings. For this reason, we investigate the possibility that the 13 energetic electron events formed at known saturnian rings and the resulting depletions were later displaced radially by one or more magnetospheric processes. Our calculations indicate that the displacement magnitude for several of those signatures is much larger than the one that can be attributed to radial flows imposed by the recently discovered noon-to-midnight electric field in Saturn's inner magnetosphere. This observation is consistent with a mechanism where radial plasma velocities are enhanced near dusty obstacles. Several possibilities are discussed that may explain this observation, including a dust-driven magnetospheric interchange instability, mass loading by the pick-up of nanometer charged dust grains and global magnetospheric electric fields induced by perturbed orbits of charged dust due to the act of solar radiation pressure. Indirect evidence for a global scale interaction between the magnetosphere and Saturn's faint rings that may drive such radial transport processes may also exist in previously reported measurements of plasma density by Cassini. Alternative explanations that do not involve enhanced plasma transport near the rings require the presence of a transient absorbing medium, such as E-ring clumps. Such clumps may form at the L-shell range where microsignatures have been observed due to resonances between charged dust and corotating magnetospheric structures, but remote imaging observations of the E-ring are not consistent with such a scenario.

  7. GeneSigDB: a manually curated database and resource for analysis of gene expression signatures

    PubMed Central

    Culhane, Aedín C.; Schröder, Markus S.; Sultana, Razvan; Picard, Shaita C.; Martinelli, Enzo N.; Kelly, Caroline; Haibe-Kains, Benjamin; Kapushesky, Misha; St Pierre, Anne-Alyssa; Flahive, William; Picard, Kermshlise C.; Gusenleitner, Daniel; Papenhausen, Gerald; O'Connor, Niall; Correll, Mick; Quackenbush, John

    2012-01-01

    GeneSigDB (http://www.genesigdb.org or http://compbio.dfci.harvard.edu/genesigdb/) is a database of gene signatures that have been extracted and manually curated from the published literature. It provides a standardized resource of published prognostic, diagnostic and other gene signatures of cancer and related disease to the community so they can compare the predictive power of gene signatures or use these in gene set enrichment analysis. Since GeneSigDB release 1.0, we have expanded from 575 to 3515 gene signatures, which were collected and transcribed from 1604 published articles largely focused on gene expression in cancer, stem cells, immune cells, development and lung disease. We have made substantial upgrades to the GeneSigDB website to improve accessibility and usability, including adding a tag cloud browse function, facetted navigation and a ‘basket’ feature to store genes or gene signatures of interest. Users can analyze GeneSigDB gene signatures, or upload their own gene list, to identify gene signatures with significant gene overlap and results can be viewed on a dynamic editable heatmap that can be downloaded as a publication quality image. All data in GeneSigDB can be downloaded in numerous formats including .gmt file format for gene set enrichment analysis or as a R/Bioconductor data file. GeneSigDB is available from http://www.genesigdb.org. PMID:22110038

  8. Raman Mapping for the Investigation of Nano-phased Materials

    NASA Astrophysics Data System (ADS)

    Gouadec, G.; Bellot-Gurlet, L.; Baron, D.; Colomban, Ph.

    Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to 0.5 \\upmu {text{ m}^3} and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.

  9. Phase-space analysis of the Schwinger effect in inhomogeneous electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kohlfürst, Christian

    2018-05-01

    Schwinger pair production in spatially and temporally inhomogeneous electric and magnetic fields is studied. The focus is on the particle phase-space distribution within a high-intensity few-cycle pulse. Accurate numerical solutions of a quantum kinetic theory (DHW formalism) are presented in momentum space and, with the aid of coarse-graining techniques, in a mixed spatial-momentum representation. Additionally, signatures of the carrier-envelope phase as well as spin-field interactions are discussed on the basis of a trajectory-based model taking into account instantaneous pair production and relativistic single-particle dynamics. Although our simple semi-classical single-particle model cannot describe every aspect of the particle production process (quantum interferences), essential features such as spin-field interactions are captured.

  10. Complex electrical monitoring of biopolymer and iron mineral precipitation for microbial enhanced hydrocarbon recovery

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Hubbard, C. G.; Dong, W.; Hubbard, S. S.

    2011-12-01

    Microbially enhanced hydrocarbon recovery (MEHR) mechanisms are expected to be impacted by processes and properties that occur over a wide range of scales, ranging from surface interactions and microbial metabolism at the submicron scale to changes in wettability and pore geometry at the pore scale to geological heterogeneities at the petroleum reservoir scale. To eventually ensure successful, production-scale implementation of laboratory-developed MEHR procedures under field conditions, it is necessary to develop approaches that can remotely monitor and accurately predict the complex microbially-facilitated transformations that are expected to occur during MEHR treatments in reservoirs (such as the evolution of redox profiles, oil viscosity or matrix porosity/permeability modifications). Our initial studies are focused on laboratory experiments to assess the geophysical signatures of MEHR-induced biogeochemical transformations, with an ultimate goal of using these approaches to monitor field treatments. Here, we explore the electrical signatures of two MEHR processes that are designed to produce end-products that will plug high permeability zones in reservoirs and thus enhance sweep efficiency. The MEHR experiments to induce biopolymers (in this case dextran) and iron mineral precipitates were conducted using flow-through columns. Leuconostoc mesenteroides, a facultative anaerobe, known to produce dextran from sucrose was used in the biopolymer experiments. Paused injection of sucrose, following inoculation and initial microbial attachment, was carried out on daily basis, allowing enough time for dextran production to occur based on batch experiment observations. Electrical data were collected on daily basis and fluid samples were extracted from the column for characterization. Changes in electrical signal were not observed during initial microbial inoculation. Increase of electrical resistivity and decrease of electrical phase response were observed during the experiment and is correlated with the accumulation of dextran in the column. The changes of the electrical signals are interpreted to be due to surface masking of sand grains by dextran that reduces polarizable surface area of the sand grains. A second experiment was conducted to evaluate the sensitivity of electrical geophysical methods to iron mineral precipitation as an alternative plugging mechanism. Although anaerobic iron oxidation coupled with nitrate reduction is the targeted process, aerobic experiments were first conducted as a simplified case without biologically related effects. In this experiment, iron minerals were precipitated through oxidation of ferrous iron by oxygen. Changes in geophysical signals as well as hydraulic permeability across the column were measured. Quantification of iron mineral precipitation was carried out through mass balance and the precipitate morphology and mineralogy were analyzed with optical and electron microscopy and XRD at the end of the experiments. Correlation between geophysical signature and iron mineral precipitation was established and will be used to guide the next experiment, which will focus on microbial facilitated iron oxidation coupled with nitrate reduction under anaerobic conditions.

  11. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    NASA Astrophysics Data System (ADS)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  12. Determination of Extrapolation Distance with Measured Pressure Signatures from Two Low-Boom Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Kuhn, Neil

    2004-01-01

    A study to determine a limiting distance to span ratio for the extrapolation of near-field pressure signatures is described and discussed. This study was to be done in two wind-tunnel facilities with two wind-tunnel models. At this time, only the first half had been completed, so the scope of this report is limited to the design of the models, and to an analysis of the first set of measured pressure signatures. The results from this analysis showed that the pressure signatures measured at separation distances of 2 to 5 span lengths did not show the desired low-boom shapes. However, there were indications that the pressure signature shapes were becoming 'flat-topped'. This trend toward a 'flat-top' pressure signatures shape was seen to be a gradual one at the distance ratios employed in this first series of wind-tunnel tests.

  13. Monitoring and Characterizing Crop Root Systems Using Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Kemna, A.

    2016-12-01

    A better understanding of root-soil interactions and associated processes is essential to achieve progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. Such methods are still lacking, in particular for characterizing root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which provides images of the low-frequency electrical conduction and polarization properties and thus can be used to investigate polarization processes occurring within and in the direct vicinity of roots under the influence of an external alternating electric field. This approach takes advantage of the well-known polarization properties associated with electrical double layers forming at membranes of cells and cell clusters. However, upscaling these processes to the scale of an impedance, or complex conductivity, spectrum of the whole root system is not trivial given the lack of electrical root models, the complexity of root systems, and the occurrence of additional larger-scale, ion-selective, and therefore polarizable, structures such as the Casparian strip. We here present results from several EIT laboratory studies on rhizotrons with crop root systems in aqueous solutions. Based on optimized experimental and data analysis procedures, enabling the imaging of the weak signals encountered in our studies, we found systematic spatial and temporal changes of both the magnitude and the shape of the spectral polarization signatures during nutrient deprivation and in response to the decapitation of plants. Consistent, but relatively weak, spectral impedance changes were also observed over diurnal cycles. Our results provide evidence for the capability of EIT to non-invasively image and monitor root systems at the rhizotron scale. They further suggest that EIT is a promising tool for imaging, characterizing, and monitoring crop roots at the field scale.

  14. Detect and exploit hidden structure in fatty acid signature data

    USGS Publications Warehouse

    Budge, Suzanne; Bromaghin, Jeffrey F.; Thiemann, Gregory

    2017-01-01

    Estimates of predator diet composition are essential to our understanding of their ecology. Although several methods of estimating diet are practiced, methods based on biomarkers have become increasingly common. Quantitative fatty acid signature analysis (QFASA) is a popular method that continues to be refined and extended. Quantitative fatty acid signature analysis is based on differences in the signatures of prey types, often species, which are recognized and designated by investigators. Similarly, predator signatures may be structured by known factors such as sex or age class, and the season or region of sample collection. The recognized structure in signature data inherently influences QFASA results in important and typically beneficial ways. However, predator and prey signatures may contain additional, hidden structure that investigators either choose not to incorporate into an analysis or of which they are unaware, being caused by unknown ecological mechanisms. Hidden structure also influences QFASA results, most often negatively. We developed a new method to explore signature data for hidden structure, called divisive magnetic clustering (DIMAC). Our DIMAC approach is based on the same distance measure used in diet estimation, closely linking methods of data exploration and parameter estimation, and it does not require data transformation or distributional assumptions, as do many multivariate ordination methods in common use. We investigated the potential benefits of the DIMAC method to detect and subsequently exploit hidden structure in signature data using two prey signature libraries with quite different characteristics. We found that the existence of hidden structure in prey signatures can increase the confusion between prey types and thereby reduce the accuracy and precision of QFASA diet estimates. Conversely, the detection and exploitation of hidden structure represent a potential opportunity to improve predator diet estimates and may lead to new insights into the ecology of either predator or prey. The DIMAC algorithm is implemented in the R diet estimation package qfasar.

  15. Signature Pedagogies and Legal Education in Universities: Epistemological and Pedagogical Concerns with Langdellian Case Method

    ERIC Educational Resources Information Center

    Hyland, Aine; Kilcommins, Shane

    2009-01-01

    This paper offers an analysis of Lee S. Shulman's concept of "signature pedagogies" as it relates to legal education. In law, the signature pedagogy identified by Shulman is the Langdellian case method. Though the concept of signature pedagogies provides an excellent infrastructure for the exchange of teaching ideas, Shulman has a tendency to…

  16. A static acoustic signature system for the analysis of dynamic flight information

    NASA Technical Reports Server (NTRS)

    Ramer, D. J.

    1978-01-01

    The Army family of helicopters was analyzed to measure the polar octave band acoustic signature in various modes of flight. A static array of calibrated microphones was used to simultaneously acquire the signature and differential times required to mathematically position the aircraft in space. The signature was then reconstructed, mathematically normalized to a fixed radius around the aircraft.

  17. Additional studies of forest classification accuracy as influenced by multispectral scanner spatial resolution

    NASA Technical Reports Server (NTRS)

    Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.

  18. An assessment of envelope-based demodulation in case of proximity of carrier and modulation frequencies

    NASA Astrophysics Data System (ADS)

    Shahriar, Md Rifat; Borghesani, Pietro; Randall, R. B.; Tan, Andy C. C.

    2017-11-01

    Demodulation is a necessary step in the field of diagnostics to reveal faults whose signatures appear as an amplitude and/or frequency modulation. The Hilbert transform has conventionally been used for the calculation of the analytic signal required in the demodulation process. However, the carrier and modulation frequencies must meet the conditions set by the Bedrosian identity for the Hilbert transform to be applicable for demodulation. This condition, basically requiring the carrier frequency to be sufficiently higher than the frequency of the modulation harmonics, is usually satisfied in many traditional diagnostic applications (e.g. vibration analysis of gear and bearing faults) due to the order-of-magnitude ratio between the carrier and modulation frequency. However, the diversification of the diagnostic approaches and applications shows cases (e.g. electrical signature analysis-based diagnostics) where the carrier frequency is in close proximity to the modulation frequency, thus challenging the applicability of the Bedrosian theorem. This work presents an analytic study to quantify the error introduced by the Hilbert transform-based demodulation when the Bedrosian identity is not satisfied and proposes a mitigation strategy to combat the error. An experimental study is also carried out to verify the analytical results. The outcome of the error analysis sets a confidence limit on the estimated modulation (both shape and magnitude) achieved through the Hilbert transform-based demodulation in case of violated Bedrosian theorem. However, the proposed mitigation strategy is found effective in combating the demodulation error aroused in this scenario, thus extending applicability of the Hilbert transform-based demodulation.

  19. Microbial community assembly patterns under incipient conditions in a basaltic soil system

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Stegen, J.; Alves Meira Neto, A.; Wang, Y.; Chorover, J.; Troch, P. A. A.; Maier, R. M.

    2017-12-01

    In sub-surface environments, the biotic components are critically linked to the abiotic processes. However, there is limited understanding of community establishment, functional associations, and community assembly processes of such microbes in sub-surface environments. This study presents the first analysis of microbial signatures in an incipient terrestrial basalt soil system conducted under controlled conditions. A sub-meter scale sampling of a soil mesocosm revealed the contrasting distribution patterns of simple soil parameters such as bulk density and electrical conductivity. Phylogenetic analysis of 16S rRNA gene indicated the presence of a total 40 bacterial and archaeal phyla, with high relative abundance of Actinobacteria on the surface and highest abundance of Proteobacteria throughout the system. Community diversity patterns were inferred to be dependent on depth profile and average water content in the system. Predicted functional gene analysis suggested mixotrophy lifestyles with both autotrophic and heterotrophic metabolisms, likelihood of a unique salt tolerant methanogenic pathway with links to novel Euryarchea, signatures of an incomplete nitrogen cycle, and predicted enzymes of extracellular iron (II) to iron (III) conversion followed by intracellular uptake, transport and regulation. Null modeling revealed microbial community assembly was predominantly governed by variable selection, but the influence of the variable selection did not show systematic spatial structure. The presence of significant heterogeneity in predicted functions and ecologically deterministic shifts in community composition in a homogeneous incipient basalt highlights the complexity exhibited by microorganisms even in the simplest of environmental systems. This presents an opportunity to further develop our understanding of how microbial communities establish, evolve, impact, and respond in sub-surface environments.

  20. Required Accuracy of Structural Constraints in the Inversion of Electrical Resistivity Data for Improved Water Content Estimation

    NASA Astrophysics Data System (ADS)

    Heinze, T.; Budler, J.; Weigand, M.; Kemna, A.

    2017-12-01

    Water content distribution in the ground is essential for hazard analysis during monitoring of landslide prone hills. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. While this applies in many scenarios, sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. The smoothness constraint is reduced along layer boundaries identified using seismic data. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. We find a similar behavior over a broad range of models and depths. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable, reproducible and trustworthy results. We finally apply our findings to field data, compare conventional and improved analysis results, and discuss limitations of the structurally-constrained inversion approach.

  1. Survey of pickup ion signatures in the vicinity of Titan using CAPS/IMS

    NASA Astrophysics Data System (ADS)

    Regoli, L. H.; Coates, A. J.; Thomsen, M. F.; Jones, G. H.; Roussos, E.; Waite, J. H.; Krupp, N.; Cox, G.

    2016-09-01

    Pickup ion detection at Titan is challenging because ion cyclotron waves are rarely detected in the vicinity of the moon. In this work, signatures left by freshly produced pickup heavy ions (m/q ˜ 16 to m/q ˜ 28) as detected in the plasma data by the Cassini Plasma Spectrometer/Ion Mass Spectrometer (CAPS/IMS) instrument on board Cassini are analyzed. In order to discern whether these correspond to ions of exospheric origin, one of the flybys during which the reported signatures were observed is investigated in detail. For this purpose, ion composition data from time-of-flight measurements and test particle simulations to constrain the ions' origin are used. After being validated, the detection method is applied to all the flybys for which the CAPS/IMS instrument gathered valid data, constraining the region around the moon where the signatures are observed. The results reveal an escape region located in the anti-Saturn direction as expected from the nominal corotation electric field direction. These findings provide new constraints for the area of freshly produced pickup ion escape, giving an approximate escape rate of 3.3-2+3×1023 ions· s-1.

  2. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data.

    PubMed

    Manijak, Mieszko P; Nielsen, Henrik B

    2011-06-11

    Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.

  3. Runoff generation in karst catchments: multifractal analysis

    NASA Astrophysics Data System (ADS)

    Majone, Bruno; Bellin, Alberto; Borsato, Andrea

    2004-07-01

    Time series of hydrological and geochemical signals at two karst springs, located in the Dolomiti del Brenta region, near Trento, Italy, are used to infer how karst catchments work internally to generate runoff. The data analyzed include precipitation, spring flow and electric conductivity of the spring water. All the signals show the signature of multifractality but with different intermittency and non-stationarity. In particular, precipitation and spring flow are shown to have nearly the same degree of non-stationarity and intermittency, while electric conductivity, which mimics the travel time distribution of water in the karst system, is less intermittent and smoother than both spring flow and precipitations. We found that spring flow can be obtained from precipitation through fractional convolution with a power law transfer function. An important result of our study is that the probability distribution of travel times is inconsistent with the advection dispersion equation, while it supports the anomalous transport model. This result is in line with what was observed by Painter et al. [Geophys. Res. Lett. 29 (2002) 21.1] for transport in fractured rocks.

  4. Compositional accuracy of atom probe tomography measurements in GaN: Impact of experimental parameters and multiple evaporation events.

    PubMed

    Russo, E Di; Blum, I; Houard, J; Gilbert, M; Da Costa, G; Blavette, D; Rigutti, L

    2018-04-01

    A systematic study of the biases occurring in the measurement of the composition of GaN by Atom Probe Tomography was carried out, in which the role of surface electric field and laser pulse intensity has been investigated. Our data confirm that the electric field is the main factor influencing the measured composition, which exhibits a deficiency of N at low field and a deficiency of Ga at high field. The deficiency of Ga at high field is interpreted in terms of preferential evaporation of Ga. The detailed analysis of multiple evaporation events reveals that the measured composition is not affected by pile-up phenomena occurring in detection system. The analysis of correlation histograms yields the signature of the production of neutral N 2 due to the dissociation of GaN 3 2+ ions. However, the amount of N 2 neutral molecules that can be detected cannot account for the N deficiency found at low field. Therefore, we propose that further mechanisms of neutral N evaporation could be represented by dissociation reactions such as GaN + → Ga + + N and GaN 2+ → Ga 2 + + N. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Influence of typical faults over the dynamic behavior of pantograph-catenary contact force in electric rail transport

    NASA Astrophysics Data System (ADS)

    Rusu-Anghel, S.; Ene, A.

    2017-05-01

    The quality of electric energy capture and also the equipment operational safety depend essentially of the technical state of the contact line (CL). The present method for determining the technical state of CL based on advance programming is no longer efficient, due to the faults which can occur into the not programmed areas. Therefore, they cannot be remediated. It is expected another management method for the repairing and maintenance of CL based on its real state which must be very well known. In this paper a new method for determining the faults in CL is described. It is based on the analysis of the variation of pantograph-CL contact force in dynamical regime. Using mathematical modelling and also experimental tests, it was established that each type of fault is able to generate ‘signatures’ into the contact force diagram. The identification of these signatures can be accomplished by an informatics system which will provide the fault location, its type and also in the future, the probable evolution of the CL technical state. The measuring of the contact force is realized in optical manner using a railway inspection trolley which has appropriate equipment. The analysis of the desired parameters can be accomplished in real time by a data acquisition system, based on dedicated software.

  6. Application of ultrasonic signature analysis for fatigue detection in complex structures

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1974-01-01

    Ultrasonic signature analysis shows promise of being a singularly well-suited method for detecting fatigue in structures as complex as aircraft. The method employs instrumentation centered about a Fourier analyzer system, which features analog-to-digital conversion, digital data processing, and digital display of cross-correlation functions and cross-spectra. These features are essential to the analysis of ultrasonic signatures according to the procedure described here. In order to establish the feasibility of the method, the initial experiments were confined to simple plates with simulated and fatigue-induced defects respectively. In the first test the signature proved sensitive to the size of a small hole drilled into the plate. In the second test, performed on a series of fatigue-loaded plates, the signature proved capable of indicating both the initial appearance and subsequent growth of a fatigue crack. In view of these encouraging results it is concluded that the method has reached a sufficiently advanced stage of development to warrant application to small-scale structures or even actual aircraft.

  7. A new approach for SSVEP detection using PARAFAC and canonical correlation analysis.

    PubMed

    Tello, Richard; Pouryazdian, Saeed; Ferreira, Andre; Beheshti, Soosan; Krishnan, Sridhar; Bastos, Teodiano

    2015-01-01

    This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures. SSVEPs characterized with localized spectral and spatial signatures are then detected exploiting a correlation analysis between extracted signatures of the EEG tensor and the corresponding simulated signatures of all target SSVEP signals. The SSVEP that has the highest correlation is selected as the intended target. Two flickers blinking at 8 and 13 Hz were used as visual stimuli and the detection was performed based on data packets of 1 second without overlapping. Five subjects participated in the experiments and the highest classification rate of 83.34% was achieved, leading to the Information Transfer Rate (ITR) of 21.01 bits/min.

  8. Characteristic vector analysis as a technique for signature extraction of remote ocean color data

    NASA Technical Reports Server (NTRS)

    Grew, G. W.

    1977-01-01

    Characteristic vector analysis is being used to extract spectral signatures of suspended matter in the ocean from remote ocean color data collected with MOCS (Multichannel Ocean Color Sensor), a multispectral scanner. Spectral signatures appear to be obtainable either directly from characteristic vectors or through a transformation of these eigenvectors. Quantification of the suspended matter associated with each resulting signature seems feasible using associated coefficients generated by the technique. This paper presents eigenvectors associated with algae, 'sediment', acid waste, sewage sludge, and oil. The results suggest an efficient method of transmitting from satellites multispectral data of pollution in our oceans.

  9. Electric machine differential for vehicle traction control and stability control

    NASA Astrophysics Data System (ADS)

    Kuruppu, Sandun Shivantha

    Evolving requirements in energy efficiency and tightening regulations for reliable electric drivetrains drive the advancement of the hybrid electric (HEV) and full electric vehicle (EV) technology. Different configurations of EV and HEV architectures are evaluated for their performance. The future technology is trending towards utilizing distinctive properties in electric machines to not only to improve efficiency but also to realize advanced road adhesion controls and vehicle stability controls. Electric machine differential (EMD) is such a concept under current investigation for applications in the near future. Reliability of a power train is critical. Therefore, sophisticated fault detection schemes are essential in guaranteeing reliable operation of a complex system such as an EMD. The research presented here emphasize on implementation of a 4kW electric machine differential, a novel single open phase fault diagnostic scheme, an implementation of a real time slip optimization algorithm and an electric machine differential based yaw stability improvement study. The proposed d-q current signature based SPO fault diagnostic algorithm detects the fault within one electrical cycle. The EMD based extremum seeking slip optimization algorithm reduces stopping distance by 30% compared to hydraulic braking based ABS.

  10. Electric Mars: A Large Trans-Terminator Electric Potential Drop on Closed Magnetic Field Lines Above Utopia Planitia

    NASA Technical Reports Server (NTRS)

    Collinson, Glyn; Mitchell, David; Xu, Shaosui; Glocer, Alex; Grebowsky, Joseph; Hara, Takuya; Lillis, Robert; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-Andre

    2017-01-01

    Abstract Parallel electric fields and their associated electric potential structures play a crucial role inionospheric-magnetospheric interactions at any planet. Although there is abundant evidence that parallel electric fields play key roles in Martian ionospheric outflow and auroral electron acceleration, the fields themselves are challenging to directly measure due to their relatively weak nature. Using measurements by the Solar Wind Electron Analyzer instrument aboard the NASA Mars Atmosphere and Volatile EvolutioN(MAVEN) Mars Scout, we present the discovery and measurement of a substantial (Phi) Mars 7.7 +/-0.6 V) parallel electric potential drop on closed magnetic field lines spanning the terminator from day to night above the great impact basin of Utopia Planitia, a region largely free of crustal magnetic fields. A survey of the previous 26 orbits passing over a range of longitudes revealed similar signatures on seven orbits, with a mean potential drop (Phi) Mars of 10.9 +/- 0.8 V, suggestive that although trans-terminator electric fields of comparable strength are not ubiquitous, they may be common, at least at these northerly latitudes.

  11. A Quantum Multi-proxy Blind Signature Scheme Based on Genuine Four-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Tian, Juan-Hong; Zhang, Jian-Zhong; Li, Yan-Ping

    2016-02-01

    In this paper, we propose a multi-proxy blind signature scheme based on controlled teleportation. Genuine four-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security analysis shows the scheme satisfies the security features of multi-proxy signature, unforgeability, undeniability, blindness and unconditional security.

  12. Automated defect spatial signature analysis for semiconductor manufacturing process

    DOEpatents

    Tobin, Jr., Kenneth W.; Gleason, Shaun S.; Karnowski, Thomas P.; Sari-Sarraf, Hamed

    1999-01-01

    An apparatus and method for performing automated defect spatial signature alysis on a data set representing defect coordinates and wafer processing information includes categorizing data from the data set into a plurality of high level categories, classifying the categorized data contained in each high level category into user-labeled signature events, and correlating the categorized, classified signature events to a present or incipient anomalous process condition.

  13. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal

    DOE PAGES

    Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya; ...

    2016-02-25

    Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the fieldmore » strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Finally, our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.« less

  14. Did Shakespeare write double falsehood? Identifying individuals by creating psychological signatures with text analysis.

    PubMed

    Boyd, Ryan L; Pennebaker, James W

    2015-05-01

    More than 100 years after Shakespeare's death, Lewis Theobald published Double Falsehood, a play supposedly sourced from a lost play by Shakespeare and John Fletcher. Since its release, scholars have attempted to determine its true authorship. Using new approaches to language and psychological analysis, we examined Double Falsehood and the works of Theobald, Shakespeare, and Fletcher. Specifically, we created a psychological signature from each author's language and statistically compared the features of each signature with those of Double Falsehood's signature. Multiple analytic approaches converged in suggesting that Double Falsehood's psychological style and content architecture predominantly resemble those of Shakespeare, showing some similarity with Fletcher's signature and only traces of Theobald's. Closer inspection revealed that Shakespeare's influence is most apparent early in the play, whereas Fletcher's is most apparent in later acts. Double Falsehood has a psychological signature consistent with that expected to be present in the long-lost play The History of Cardenio, cowritten by Shakespeare and Fletcher. © The Author(s) 2015.

  15. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  16. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  17. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  18. High gamma power in ECoG reflects cortical electrical stimulation effects on unit activity in layers V/VI

    NASA Astrophysics Data System (ADS)

    Yazdan-Shahmorad, Azadeh; Kipke, Daryl R.; Lehmkuhle, Mark J.

    2013-12-01

    Objective. Cortical electrical stimulation (CES) has been used extensively in experimental neuroscience to modulate neuronal or behavioral activity, which has led this technique to be considered in neurorehabilitation. Because the cortex and the surrounding anatomy have irregular geometries as well as inhomogeneous and anisotropic electrical properties, the mechanism by which CES has therapeutic effects is poorly understood. Therapeutic effects of CES can be improved by optimizing the stimulation parameters based on the effects of various stimulation parameters on target brain regions. Approach. In this study we have compared the effects of CES pulse polarity, frequency, and amplitude on unit activity recorded from rat primary motor cortex with the effects on the corresponding local field potentials (LFP), and electrocorticograms (ECoG). CES was applied at the surface of the cortex and the unit activity and LFPs were recorded using a penetrating electrode array, which was implanted below the stimulation site. ECoGs were recorded from the vicinity of the stimulation site. Main results. Time-frequency analysis of LFPs following CES showed correlation of gamma frequencies with unit activity response in all layers. More importantly, high gamma power of ECoG signals only correlated with the unit activity in lower layers (V-VI) following CES. Time-frequency correlations, which were found between LFPs, ECoGs and unit activity, were frequency- and amplitude-dependent. Significance. The signature of the neural activity observed in LFP and ECoG signals provides a better understanding of the effects of stimulation on network activity, representative of large numbers of neurons responding to stimulation. These results demonstrate that the neurorehabilitation and neuroprosthetic applications of CES targeting layered cortex can be further improved by using field potential recordings as surrogates to unit activity aimed at optimizing stimulation efficacy. Likewise, the signatures of unit activity observed as changes in high gamma power in ECoGs suggest that future cortical stimulation studies could rely on less invasive feedback schemes that incorporate surface stimulation with ECoG reporting of stimulation efficacy.

  19. Study of recreational land and open space using Skylab imagery

    NASA Technical Reports Server (NTRS)

    Sattinger, I. J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. An analysis of the statistical uniqueness of each of the signatures of the Gratiot-Saginaw State Game Area was made by computing a matrix of probabilities of misclassification for all possible signature pairs. Within each data set, the 35 signatures were then aggregated into a smaller set of composite signatures by combining groups of signatures having high probabilities of misclassification. Computer separation of forest denisty classes was poor with multispectral scanner data collected on 5 August 1973. Signatures from the scanner data were further analyzed to determine the ranking of spectral channels for computer separation of the scene classes. Probabilities of misclassification were computed for composite signatures using four separate combinations of data source and channel selection.

  20. A Quantum Multi-Proxy Weak Blind Signature Scheme Based on Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Yan, LiLi; Chang, Yan; Zhang, ShiBin; Han, GuiHua; Sheng, ZhiWei

    2017-02-01

    In this paper, we present a multi-proxy weak blind signature scheme based on quantum entanglement swapping of Bell states. In the scheme, proxy signers can finish the signature instead of original singer with his/her authority. It can be applied to the electronic voting system, electronic paying system, etc. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. It could guarantee not only the unconditionally security but also the anonymity of the message owner. The security analysis shows the scheme satisfies the security features of multi-proxy weak signature, singers cannot disavowal his/her signature while the signature cannot be forged by others, and the message owner can be traced.

  1. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  2. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    NASA Astrophysics Data System (ADS)

    Niehoff, Christoph; Stangl, Peter; Straub, David M.

    2017-04-01

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5) ≅ SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current exper-imental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, CP violation in B s mixing, and the electric dipole moment of the neutron.

  3. Theory of charge density wave depinning by electromechanical effect

    NASA Astrophysics Data System (ADS)

    Quémerais, P.

    2017-03-01

    We discuss the first theory for the depinning of low-dimensional, incommensurate, charge density waves (CDWs) in the strong electron-phonon (e-p) regime. Arguing that most real CDWs systems invariably develop a gigantic dielectric constant (GDC) at very low frequencies, we propose an electromechanical mechanism which is based on a local field effect. At zero electric field and large enough e-p coupling the structures are naturally pinned by the lattice due to its discreteness, and develop modulation functions which are characterized by discontinuities. When the electric field is turned on, we show that it exists a finite threshold value for the electric field above which the discontinuities of the modulation functions vanish due to CDW deformation. The CDW is then free to move. The signature of this pinning/depinning transition as a function of the increasing electric field can be directly observed in the phonon spectrum by using inelastic neutrons or X-rays experiments.

  4. Field-aligned particle currents near an auroral arc.

    NASA Technical Reports Server (NTRS)

    Choy, L. W.; Arnoldy, R. L.; Potter, W.; Kintner, P.; Cahill, L. J., Jr.

    1971-01-01

    A Nike-Tomahawk rocket equipped to measure electric and magnetic fields and charged particles from a few eV to several hundred keV energy was flown into an auroral band on April 11, 1970. The purpose of this flight was to obtain evidence of the low-energy electrons and protons that constitute a field-aligned sheet current, and also to obtain the magnetic signature of such a current and the electric field in and near the auroral-arc electric current system. Particular attention was given to a sudden increase in the field-aligned current associated with a prior sudden increase in the electric field and a sudden change in the magnetic field, all occurring near the edge of a visual auroral arc. Data obtained are discussed and analyzed; they present an important contribution to the problem of mapping of atmospheric auroral phenomena to the magnetospheric equatorial plane.

  5. A Coincidence Signature Library for Multicoincidence Radionuclide Analysis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Ellis, J E.; Valsan, Andrei B.

    Pacific Northwest National Laboratory (PNNL) is currently developing multicoincidence systems to perform trace radionuclide analysis at or near the sample collection point, for applications that include emergency response, nuclear forensics, and environmental monitoring. Quantifying radionuclide concentrations with these systems requires a library of accurate emission intensities for each detected signature, for all candidate radionuclides. To meet this need, a Coincidence Lookup Library (CLL) is being developed to calculate the emission intensities of coincident signatures from a user-specified radionuclide, or conversely, to determine the radionuclides that may be responsible for a specific detected coincident signature. The algorithms used to generate absolutemore » emission intensities and various query modes for our developmental CLL are described.« less

  6. Separating the influence of electric charges in magnetic force microscopy images of inhomogeneous metal samples

    NASA Astrophysics Data System (ADS)

    Arenas, Mónica P.; Lanzoni, Evandro M.; Pacheco, Clara J.; Costa, Carlos A. R.; Eckstein, Carlos B.; de Almeida, Luiz H.; Rebello, João M. A.; Deneke, Christoph F.; Pereira, Gabriela R.

    2018-01-01

    In this study, we investigate artifacts arising from electric charges present in magnetic force microscopy images. Therefore, we use two austenitic steel samples with different microstructural conditions. Furthermore, we examine the influence of the surface preparation, like etching, in magnetic force images. Using Kelvin probe force microscopy we can quantify the charges present on the surface. Our results show that electrical charges give rise to a signature in the magnetic force microscopy, which is indistinguishable from a magnetic signal. Our results on two differently aged steel samples demonstrate that the magnetic force microscopy images need to be interpreted with care and must be corrected due to the influence of electrical charges present. We discuss three approaches, how to identify these artifacts - parallel acquisition of magnetic force and electric force images on the same position, sample surface preparation to decrease the presence of charges and inversion of the magnetic polarization in two succeeding measurement.

  7. Signature Peptide-Enabled Metagenomics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    McMahon, Ben

    2018-01-11

    Ben McMahon of Los Alamos National Laboratory (LANL) presents "Signature Peptide-Enabled Metagenomics" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  8. Signature Peptide-Enabled Metagenomics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, Ben

    2012-06-01

    Ben McMahon of Los Alamos National Laboratory (LANL) presents "Signature Peptide-Enabled Metagenomics" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  9. The effect of organic contaminants on the spectral induced polarization response of porous media - mechanistic approach

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2012-12-01

    In recent years, there is a growing interest in using geophysical methods in general and spectral induced polarization (SIP) in particular as a tool to detect and monitor organic contaminants within the subsurface. The general idea of the SIP method is to inject alternating current through a soil volume and to measure the resultant potential in order to obtain the relevant soil electrical properties (e.g. complex impedance, complex conductivity/resistivity). Currently, a complete mechanistic understanding of the effect of organic contaminants on the SIP response of soil is still absent. In this work, we combine laboratory experiments with modeling to reveal the main processes affecting the SIP signature of soil contaminated with organic pollutant. In a first set of experiments, we investigate the effect of non-aqueous phase liquids (NAPL) on the complex conductivity of unsaturated porous media. Our results show that addition of NAPL to the porous media increases the real component of the soil electrical conductivity and decreases the polarization of the soil (imaginary component of the complex conductivity). Furthermore, addition of NAPL to the soil resulted in an increase of the electrical conductivity of the soil solution. Based on these results, we suggest that adsorption of NAPL to the soil surface, and exchange process between polar organic compounds in the NAPL and inorganic ions in the soil are the main processes affecting the SIP signature of the contaminated soil. To further support our hypothesis, the temporal change of the SIP signature of a soil as function of a single organic cation concentration was measured. In addition to the measurements of the soil electrical properties, we also measured the effect of the organic cation on the chemical composition of both the bulk and the surface of the soil. The results of those experiments again showed that the electrical conductivity of the soil increased with increasing contaminant concentration. In addition, direct evidence showed that the organic cation was adsorbed on the soil surface and exchanged with inorganic ions that usually exist in soil. This experiment confirmed that adsorption to the soil surface and the associated release of inorganic ions is the main mechanism affecting the complex conductivity of the contaminated porous media. Furthermore, our results show that adsorption of organic ions to the soil surface resulted in a decrease of the soil polarization. Using a chemical complexation model of the soil surface and a model for the polarization of the Stern layer, we were able to show that the decrease in the polarization of the soil can be related to the decrease in the surface site density of inorganic ions, and that the contribution of the soil-organic complexes to the polarization of the soil is negligible. We attribute this to the strong interaction between polar organic compounds and soil which results in a significant decrease in the mobility of the organic compounds in the Stern layer. The results of this work are essential to better interpret SIP signatures of soil contaminated with organic contaminants.

  10. Ring Current Dynamics in Moderate and Strong Storms: Comparative Analysis of TWINS and IMAGE/HENA Data with the Comprehensive Ring Current Model

    NASA Technical Reports Server (NTRS)

    Buzulukova, N.; Fok, M.-C.; Goldstein, J.; Valek, P.; McComas, D. J.; Brandt, P. C.

    2010-01-01

    We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.

  11. Thermal stress characterization using the electro-mechanical impedance method

    NASA Astrophysics Data System (ADS)

    Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2017-04-01

    This study examines the potential of the Electro-Mechanical Impedance (EMI) method to provide an estimation of the developed thermal stress in constrained bar-like structures. This non-invasive method features the easiness of implementation and interpretation, while it is notoriously known for being vulnerable to environmental variability. A comprehensive analytical model is proposed to relate the measured electric admittance signatures of the PZT element to temperature and uniaxial stress applied to the underlying structure. The model results compare favorably to the experimental ones, where the sensitivities of features extracted from the admittance signatures to the varying stress levels and temperatures are determined. Two temperature compensation frameworks are proposed to characterize the thermal stress states: (a) a regression model is established based on temperature-only tests, and the residuals from the thermal stress tests are then used to isolate the stress measurand; (b) the temperature-only tests are decomposed by Principle Components Analysis (PCA) and the feature vectors of the thermal stress tests are reconstructed after removal of the temperaturesensitive components. For both methods, the features were selected based on their performance in Receiver Operating Characteristic (ROC) curves. Experimental results on the Continuous Welded Rails (CWR) are shown to demonstrate the effectiveness of these temperature compensation methods.

  12. Integrative ChIP-seq/Microarray Analysis Identifies a CTNNB1 Target Signature Enriched in Intestinal Stem Cells and Colon Cancer

    PubMed Central

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L.; Roberts, Brian S.; Arthur, William T.; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Background Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. Results We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Conclusion Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells. PMID:24651522

  13. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    PubMed

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L; Roberts, Brian S; Arthur, William T; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  14. Application of Independent Component Analysis for the Data Mining of Simultaneous EEG-fMRI: Preliminary Experience on Sleep Onset

    PubMed Central

    Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A.; Park, Hyunwook; Yoo, Seung-Schik

    2010-01-01

    The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with the ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta- and alpha-rhythms that are sleep onset related EEG signatures along with the subsequent neural circuitries from a sleep deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable. PMID:19922343

  15. Application of independent component analysis for the data mining of simultaneous Eeg-fMRI: preliminary experience on sleep onset.

    PubMed

    Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A; Park, Hyunwook; Yoo, Seung-Schik

    2009-01-01

    The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta and alpha rhythms that are sleep onset-related EEG signatures along with the subsequent neural circuitries from a sleep-deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable.

  16. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: Possible roles of radiation in carcinogenesis

    PubMed Central

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-01-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers. PMID:25483826

  17. Spintronic signatures of Klein tunneling in topological insulators

    NASA Astrophysics Data System (ADS)

    Xie, Yunkun; Tan, Yaohua; Ghosh, Avik W.

    2017-11-01

    Klein tunneling, the perfect transmission of normally incident Dirac electrons across a potential barrier, has been widely studied in graphene and explored to design switches, albeit indirectly. We show an alternative way to directly measure Klein tunneling for spin-momentum locked electrons crossing a PN junction along a three-dimensional topological insulator surface. In these topological insulator PN junctions (TIPNJs), the spin texture and momentum distribution of transmitted electrons can be measured electrically using a ferromagnetic probe for varying gate voltages and angles of current injection. Based on transport models across a TIPNJ, we show that the asymmetry in the potentiometric signal between PP and PN junctions and its overall angular dependence serve as a direct signature of Klein tunneling.

  18. Is the Lorentz signature of the metric of spacetime electromagnetic in origin?

    NASA Astrophysics Data System (ADS)

    Itin, Yakov; Hehl, Friedrich W.

    2004-07-01

    We formulate a premetric version of classical electrodynamics in terms of the excitation H=( H, D) and the field strength F=( E, B). A local, linear, and symmetric spacetime relation between H and F is assumed. It yields, if electric/magnetic reciprocity is postulated, a Lorentzian metric of spacetime thereby excluding Euclidean signature (which is, nevertheless, discussed in some detail). Moreover, we determine the Dufay law (repulsion of like charges and attraction of opposite ones), the Lenz rule (the relative sign in Faraday's law), and the sign of the electromagnetic energy. In this way, we get a systematic understanding of the sign rules and the sign conventions in electrodynamics. The question in the title of the paper is answered affirmatively.

  19. Online Monitoring of Induction Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McJunkin, Timothy R.; Agarwal, Vivek; Lybeck, Nancy Jean

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through amore » limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.« less

  20. A coordinated study of a storm system over the South American continent. 1. Weather information and quasi-DC stratospheric electric field data

    NASA Astrophysics Data System (ADS)

    Pinto, O.; Pinto, I. R. C. A.; Gin, R. B. B.; Mendes, O.

    1992-11-01

    This paper reports on a coordinated campaign conducted in Brazil, December 13, 1989, to study the electrical signatures associated with a large storm system over the South American continent. Inside the storm, large convective cells developed extending up to the tropopause, as revealed from meteorological balloon soundings. Quasi-DC vertical electric field and temperature were measured by zero-pressure balloon-borne payload launched from Cachoeira Paulista, Brazil. The data were supported by radar and GOES satellite observations, as well as by a lightning position and tracking system (LPATS). The analysis of infrared imagery supports the general tendency for lightning strikes to be near to but not exactly under the coldest cloud tops. In turn, the radar maps located the strikes near to but outside of the most intense areas of precipitation (reflectivity levels above 40 dBz). The balloon altitude and stratospheric temperature show significant variations in association with the storm. The quasi-DC vertical electric field remained almost during the whole flight in a reversed direction relative to the usual fair weather downward orientation with values as large as 4 V/m. A simple calculation based on a static dipole model of electrical cloud structure gives charges of some tens of coulombs. In contrast with most electric field measurements in other regions, no indication of an intensification of the vertical field in the downward fair weather orientation was observed. This fact is in agreement with past observations in the South American region and seems to be related to a particular type of storm that would occur with more frequency in this region. If so, such a difference may have an important role in the global atmospheric electrical circuit, considering that South America is believed to give a significant current contribution to the global circuit.

  1. Systematic computation with functional gene-sets among leukemic and hematopoietic stem cells reveals a favorable prognostic signature for acute myeloid leukemia.

    PubMed

    Yang, Xinan Holly; Li, Meiyi; Wang, Bin; Zhu, Wanqi; Desgardin, Aurelie; Onel, Kenan; de Jong, Jill; Chen, Jianjun; Chen, Luonan; Cunningham, John M

    2015-03-24

    Genes that regulate stem cell function are suspected to exert adverse effects on prognosis in malignancy. However, diverse cancer stem cell signatures are difficult for physicians to interpret and apply clinically. To connect the transcriptome and stem cell biology, with potential clinical applications, we propose a novel computational "gene-to-function, snapshot-to-dynamics, and biology-to-clinic" framework to uncover core functional gene-sets signatures. This framework incorporates three function-centric gene-set analysis strategies: a meta-analysis of both microarray and RNA-seq data, novel dynamic network mechanism (DNM) identification, and a personalized prognostic indicator analysis. This work uses complex disease acute myeloid leukemia (AML) as a research platform. We introduced an adjustable "soft threshold" to a functional gene-set algorithm and found that two different analysis methods identified distinct gene-set signatures from the same samples. We identified a 30-gene cluster that characterizes leukemic stem cell (LSC)-depleted cells and a 25-gene cluster that characterizes LSC-enriched cells in parallel; both mark favorable-prognosis in AML. Genes within each signature significantly share common biological processes and/or molecular functions (empirical p = 6e-5 and 0.03 respectively). The 25-gene signature reflects the abnormal development of stem cells in AML, such as AURKA over-expression. We subsequently determined that the clinical relevance of both signatures is independent of known clinical risk classifications in 214 patients with cytogenetically normal AML. We successfully validated the prognosis of both signatures in two independent cohorts of 91 and 242 patients respectively (log-rank p < 0.0015 and 0.05; empirical p < 0.015 and 0.08). The proposed algorithms and computational framework will harness systems biology research because they efficiently translate gene-sets (rather than single genes) into biological discoveries about AML and other complex diseases.

  2. MMS Observations of Parallel Electric Fields During a Quasi-Perpendicular Bow Shock Crossing

    NASA Astrophysics Data System (ADS)

    Goodrich, K.; Schwartz, S. J.; Ergun, R.; Wilder, F. D.; Holmes, J.; Burch, J. L.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Le Contel, O.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C.; Torbert, R. B.

    2016-12-01

    Previous observations of the terrestrial bow shock have frequently shown large-amplitude fluctuations in the parallel electric field. These parallel electric fields are seen as both nonlinear solitary structures, such as double layers and electron phase-space holes, and short-wavelength waves, which can reach amplitudes greater than 100 mV/m. The Magnetospheric Multi-Scale (MMS) Mission has crossed the Earth's bow shock more than 200 times. The parallel electric field signatures observed in these crossings are seen in very discrete packets and evolve over time scales of less than a second, indicating the presence of a wealth of kinetic-scale activity. The high time resolution of the Fast Particle Instrument (FPI) available on MMS offers greater detail of the kinetic-scale physics that occur at bow shocks than ever before, allowing greater insight into the overall effect of these observed electric fields. We present a characterization of these parallel electric fields found in a single bow shock event and how it reflects the kinetic-scale activity that can occur at the terrestrial bow shock.

  3. Computational Interpretation of the Relation Between Electric Field and the Applied Current for Cathodic Protection Under Different Conductivity Environments

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sang; Ko, Sang-Jin; Lee, Sangkyu; Kim, Jung-Gu

    2018-03-01

    An interpretation of the relation between the electric field and the applied current for cathodic protection is investigated using a boundary element method simulation. Also, a conductivity-difference environment is set for the interface influence. The variation of the potential distribution is increased with the increase of the applied current and the conductivity difference due to the rejection of the current at the interface. In the case of the electric field, the tendencies of the increasing rate and the applied currents are similar, but the interface influence is different according to the directional component and field type (decrease of E z and increases of E x and E y) due to the directional difference between the electric fields. Also, the change tendencies of the electric fields versus the applied current plots are affected by the polarization curve tendency regarding the polarization type (activation and concentration polarizations in the oxygen-reduction and hydrogen-reduction reactions). This study shows that the underwater electric signature is determined by the polarization behavior of the materials.

  4. A signature inferred from Drosophila mitotic genes predicts survival of breast cancer patients.

    PubMed

    Damasco, Christian; Lembo, Antonio; Somma, Maria Patrizia; Gatti, Maurizio; Di Cunto, Ferdinando; Provero, Paolo

    2011-02-28

    The classification of breast cancer patients into risk groups provides a powerful tool for the identification of patients who will benefit from aggressive systemic therapy. The analysis of microarray data has generated several gene expression signatures that improve diagnosis and allow risk assessment. There is also evidence that cell proliferation-related genes have a high predictive power within these signatures. We thus constructed a gene expression signature (the DM signature) using the human orthologues of 108 Drosophila melanogaster genes required for either the maintenance of chromosome integrity (36 genes) or mitotic division (72 genes). The DM signature has minimal overlap with the extant signatures and is highly predictive of survival in 5 large breast cancer datasets. In addition, we show that the DM signature outperforms many widely used breast cancer signatures in predictive power, and performs comparably to other proliferation-based signatures. For most genes of the DM signature, an increased expression is negatively correlated with patient survival. The genes that provide the highest contribution to the predictive power of the DM signature are those involved in cytokinesis. This finding highlights cytokinesis as an important marker in breast cancer prognosis and as a possible target for antimitotic therapies.

  5. Magnetocardiography with sensors based on giant magnetoresistance

    NASA Astrophysics Data System (ADS)

    Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C.

    2011-04-01

    Biomagnetic signals, mostly due to the electrical activity in the body, are very weak and they can only be detected by the most sensitive magnetometers, such as Superconducting Quantum Interference Devices (SQUIDs). We report here biomagnetic recordings with hybrid sensors based on Giant MagnetoResistance (GMR). We recorded magnetic signatures of the electric activity of the human heart (magnetocardiography) in healthy volunteers. The P-wave and QRS complex, known from the corresponding electric recordings, are clearly visible in the recordings after an averaging time of about 1 min. Multiple recordings at different locations over the chest yielded a dipolar magnetic field map and allowed localizing the underlying current sources. The sensitivity of the GMR-based sensors is now approaching that of SQUIDs and paves way for spin electronics devices for functional imaging of the body.

  6. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  7. Electrodynamics of the stratosphere using 5000 m3 superpressure balloons

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.

    Recently the U. S. National Science Foundation and NASA have begun support of a long duration balloon-borne experiment to study electrical properties of the upper atmosphere. This research project titled EMA (Electrodynamics of the Middle Atmopshere) involves the design of a microprocessor controlled payload and the launch of up to eight small superpressure balloons during 1982 through early 1984. The primary payload instrument will measure the vector electric field from DC to 10 kHz and the payloads will include instruments to measure local ionization, electrical conductivity, magnetic field, pressure and temperature fluctuations and to record optical lightning. Measurement of these parameters in the stratosphere from a few balloons simultaneously for periods extending over a few solar rotations will enable us to study (1) electrical coupling between the atmosphere and magnetosphere, (2) global current systems, (3) global response to solar flares and magnetospheric storms and many other outstanding problems. In order to obtain long duration flights, it is necessary to fly in the southern hemisphere where the balloons are expected to circle the globe dozens of times in their lifetimes. Thus the balloons will be out of direct communication with any one ground station most of the time so the telemetry will be relayed via satellite. This severely limits the data rates resulting in the need for on-board data processing. This is accomplished through the use of dual microcomputers for data analysis and for telemetry formatting. This talk will concentrate on a description of our payload design as driven by the scientific requirements. Examples of the types of electric field signatures we expect to be able to distinguish will also be presented.

  8. A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition.

    PubMed

    Mak, Milena P; Tong, Pan; Diao, Lixia; Cardnell, Robert J; Gibbons, Don L; William, William N; Skoulidis, Ferdinandos; Parra, Edwin R; Rodriguez-Canales, Jaime; Wistuba, Ignacio I; Heymach, John V; Weinstein, John N; Coombes, Kevin R; Wang, Jing; Byers, Lauren Averett

    2016-02-01

    We previously demonstrated the association between epithelial-to-mesenchymal transition (EMT) and drug response in lung cancer using an EMT signature derived in cancer cell lines. Given the contribution of tumor microenvironments to EMT, we extended our investigation of EMT to patient tumors from 11 cancer types to develop a pan-cancer EMT signature. Using the pan-cancer EMT signature, we conducted an integrated, global analysis of genomic and proteomic profiles associated with EMT across 1,934 tumors including breast, lung, colon, ovarian, and bladder cancers. Differences in outcome and in vitro drug response corresponding to expression of the pan-cancer EMT signature were also investigated. Compared with the lung cancer EMT signature, the patient-derived, pan-cancer EMT signature encompasses a set of core EMT genes that correlate even more strongly with known EMT markers across diverse tumor types and identifies differences in drug sensitivity and global molecular alterations at the DNA, RNA, and protein levels. Among those changes associated with EMT, pathway analysis revealed a strong correlation between EMT and immune activation. Further supervised analysis demonstrated high expression of immune checkpoints and other druggable immune targets, such as PD1, PD-L1, CTLA4, OX40L, and PD-L2, in tumors with the most mesenchymal EMT scores. Elevated PD-L1 protein expression in mesenchymal tumors was confirmed by IHC in an independent lung cancer cohort. This new signature provides a novel, patient-based, histology-independent tool for the investigation of EMT and offers insights into potential novel therapeutic targets for mesenchymal tumors, independent of cancer type, including immune checkpoints. ©2015 American Association for Cancer Research.

  9. A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China

    NASA Astrophysics Data System (ADS)

    Pan, S.; Fu, G.; Chiang, Y. M.; Xu, Y. P.

    2016-12-01

    Owing to model complexity and large number of parameters, calibration and sensitivity analysis are difficult processes for distributed hydrological models. In this study, a two-step sensitivity analysis approach is proposed for analyzing the hydrological signatures in Jinhua River Basin, East China, using the Distributed Hydrology-Soil-Vegetation Model (DHSVM). A rough sensitivity analysis is firstly conducted to obtain preliminary influential parameters via Analysis of Variance. The number of parameters was greatly reduced from eighteen-three to sixteen. Afterwards, the sixteen parameters are further analyzed based on a variance-based global sensitivity analysis, i.e., Sobol's sensitivity analysis method, to achieve robust sensitivity rankings and parameter contributions. Parallel-Computing is applied to reduce computational burden in variance-based sensitivity analysis. The results reveal that only a few number of model parameters are significantly sensitive, including rain LAI multiplier, lateral conductivity, porosity, field capacity, wilting point of clay loam, understory monthly LAI, understory minimum resistance and root zone depths of croplands. Finally several hydrological signatures are used for investigating the performance of DHSVM. Results show that high value of efficiency criteria didn't indicate excellent performance of hydrological signatures. For most samples from Sobol's sensitivity analysis, water yield was simulated very well. However, lowest and maximum annual daily runoffs were underestimated. Most of seven-day minimum runoffs were overestimated. Nevertheless, good performances of the three signatures above still exist in a number of samples. Analysis of peak flow shows that small and medium floods are simulated perfectly while slight underestimations happen to large floods. The work in this study helps to further multi-objective calibration of DHSVM model and indicates where to improve the reliability and credibility of model simulation.

  10. Multiparty Quantum Blind Signature Scheme Based on Graph States

    NASA Astrophysics Data System (ADS)

    Jian-Wu, Liang; Xiao-Shu, Liu; Jin-Jing, Shi; Ying, Guo

    2018-05-01

    A multiparty quantum blind signature scheme is proposed based on the principle of graph state, in which the unitary operations of graph state particles can be applied to generate the quantum blind signature and achieve verification. Different from the classical blind signature based on the mathematical difficulty, the scheme could guarantee not only the anonymity but also the unconditionally security. The analysis shows that the length of the signature generated in our scheme does not become longer as the number of signers increases, and it is easy to increase or decrease the number of signers.

  11. The Mimas ghost revisited: An analysis of the electron flux and electron microsignatures observed in the vicinity of Mimas at Saturn

    NASA Technical Reports Server (NTRS)

    Chenette, D. L.; Stone, E. C.

    1983-01-01

    An analysis of the electron absorption signature observed by the Cosmic Ray System (CRS) on Voyage 2 near the orbit of Mimas is presented. We find that these observations cannot be explained as the absorption signature of Mimas. Combing Pioneer 11 and Voyager 2 measurements of the electron flux at Mimas's orbit (L=3.1), we find an electron spectrum where most of the flux above approx 100 keV is concentrated near 1 to 3 MeV. The expected Mimas absorption signature is calculated from this spectrum neglecting radial diffusion. A lower limit on the diffusion coefficient for MeV electrons is obtained. With a diffusion coefficient this large, both the Voyager 2 and the Pioneer 11 small-scale electron absorption signature observations in Mimas's orbit are enigmatic. Thus we refer to the mechanism for producing these signatures as the Mimas ghost. A cloud of material in orbit with Mimas may account for the observed electron signature if the cloud is at least 1% opaque to electrons across a region extending over a few hundred kilometers.

  12. THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: Neutrino Oscillation Induced by Chiral Phase Transition

    NASA Astrophysics Data System (ADS)

    Mu, Cheng-Fu; Sun, Gao-Feng; Zhuang, Peng-Fei

    2009-03-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars. Due to the sudden drop of the electron density at thefirst-order chiral phase transition, the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  13. Ultrasonic Methods for Human Motion Detection

    DTIC Science & Technology

    2006-10-01

    contacts. The active method utilizes continuous wave ultrasonic Doppler sonar . Human motions have unique Doppler signatures and their combination...The present article reports results of human motion investigations with help of CW ultrasonic Doppler sonar . Low-cost, low-power ultrasonic motion...have been developed for operation in air [10]. Benefits of using ultrasonic CW Doppler sonar included the low-cost, low-electric noise, small size

  14. A Quantum Proxy Blind Signature Scheme Based on Genuine Five-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Zeng, Chuan; Zhang, Jian-Zhong; Xie, Shu-Cui

    2017-06-01

    In this paper, a quantum proxy blind signature scheme based on controlled quantum teleportation is proposed. This scheme uses a genuine five-qubit entangled state as quantum channel and adopts the classical Vernam algorithm to blind message. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is valid and satisfy the properties of a proxy blind signature, such as blindness, verifiability, unforgeability, undeniability.

  15. Effects of space weather on GOCE electrostatic gravity gradiometer measurements

    NASA Astrophysics Data System (ADS)

    Ince, E. Sinem; Pagiatakis, Spiros D.

    2016-12-01

    We examine the presence of residual nongravitational signatures in gravitational gradients measured by GOCE electrostatic gravity gradiometer. These signatures are observed over the magnetic poles during geomagnetically active days and can contaminate the trace of the gravitational gradient tensor by up to three to five times the expected noise level of the instrument (˜ 11 mE). We investigate these anomalies in the gradiometer measurements along many satellite tracks and examine possible causes using external datasets, such as interplanetary electric field measurements from the ACE (advanced composition explorer) and WIND spacecraft, and Poynting vector (flux) estimated from equivalent ionospheric currents derived from spherical elementary current systems over North America and Greenland. We show that the variations in the east-west and vertical electrical currents and Poynting vector components at the satellite position are highly correlated with the disturbances observed in the gradiometer measurements. The results presented in this paper reveal that the disturbances are due to intense ionospheric current variations that are enhanced by increased solar activity that causes a very dynamic drag environment. Moreover, successful modelling and removal of a high percentage of these disturbances are possible using external geomagnetic field observations.

  16. Electromagnetic fields of a relativistic electron avalanche with special attention to the origin of lightning signatures known as narrow bipolar pulses

    NASA Astrophysics Data System (ADS)

    Cooray, Vernon; Cooray, Gerald; Marshall, Thomas; Arabshahi, Shahab; Dwyer, Joseph; Rassoul, Hamid

    2014-11-01

    In the present study, electromagnetic fields of accelerating charges were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This model of the avalanche was utilized to test the idea whether the source of the lightning signatures known as narrow bipolar pulses could be relativistic avalanches. The idea was tested by using the simultaneously measured electric fields of narrow bipolar pulses at two distances, one measured far away from the source and the other in the near vicinity. The avalanche parameters were extracted from the distant field and they are used to evaluate the close field. The results show that the source of the NBP can be modeled either as a single or a multiple burst of relativistic avalanches with speed of avalanches in the range of 2-3 × 108 m/s. The multiple avalanche model agrees better with the experimental data in that it can also generate the correct signature of the time derivatives and the HF and VHF radiation bursts of NBP.

  17. What the electrical impedance can tell about the intrinsic properties of an electrodynamic shaker

    PubMed Central

    Lütkenhöner, Bernd

    2017-01-01

    Small electrodynamic shakers are becoming increasingly popular for diagnostic investigations of the human vestibular system. More specifically, they are used as mechanical stimulators for eliciting a vestibular evoked myogenic potential (VEMP). However, it is largely unknown how shakers perform under typical measurement conditions, which considerably differ from the normal use of a shaker. Here, it is shown how the basic properties of a shaker can be determined without requiring special sensors such as accelerometers or force gauges. In essence, the mechanical parts of the shaker leave a signature in the electrical impedance, and an interpretation of this signature using a simple model allows for drawing conclusions about the properties of the shaker. The theory developed (which is quite general so that it is usable also in other contexts) is applied to experimental data obtained for the minishaker commonly used in VEMP measurements. It is shown that the experimental conditions substantially influence the properties of the shaker. Relevant factors are, in particular, the spatial orientation of the shaker (upright, horizontal or upside-down) and the static force acting on the table of the shaker (which in a real measurement corresponds to the force by which the shaker is pressed against the test person’s head). These results underline the desirability of a proper standardization of VEMP measurements. Direct measurements of displacement and acceleration prove the consistency of the conclusions derived from the electrical impedance. PMID:28328999

  18. Force fields of charged particles in micro-nanofluidic preconcentration systems

    NASA Astrophysics Data System (ADS)

    Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon

    2017-12-01

    Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.

  19. Highly sensitive molecular diagnosis of prostate cancer using surplus material washed off from biopsy needles

    PubMed Central

    Bermudo, R; Abia, D; Mozos, A; García-Cruz, E; Alcaraz, A; Ortiz, Á R; Thomson, T M; Fernández, P L

    2011-01-01

    Introduction: Currently, final diagnosis of prostate cancer (PCa) is based on histopathological analysis of needle biopsies, but this process often bears uncertainties due to small sample size, tumour focality and pathologist's subjective assessment. Methods: Prostate cancer diagnostic signatures were generated by applying linear discriminant analysis to microarray and real-time RT–PCR (qRT–PCR) data from normal and tumoural prostate tissue samples. Additionally, after removal of biopsy tissues, material washed off from transrectal biopsy needles was used for molecular profiling and discriminant analysis. Results: Linear discriminant analysis applied to microarray data for a set of 318 genes differentially expressed between non-tumoural and tumoural prostate samples produced 26 gene signatures, which classified the 84 samples used with 100% accuracy. To identify signatures potentially useful for the diagnosis of prostate biopsies, surplus material washed off from routine biopsy needles from 53 patients was used to generate qRT–PCR data for a subset of 11 genes. This analysis identified a six-gene signature that correctly assigned the biopsies as benign or tumoural in 92.6% of the cases, with 88.8% sensitivity and 96.1% specificity. Conclusion: Surplus material from prostate needle biopsies can be used for minimal-size gene signature analysis for sensitive and accurate discrimination between non-tumoural and tumoural prostates, without interference with current diagnostic procedures. This approach could be a useful adjunct to current procedures in PCa diagnosis. PMID:22009027

  20. Quantitative impact of hydrothermal alteration on electrical resistivity in geothermal systems from a joint analysis of laboratory measurements and borehole data in Krafla area, N-E Iceland

    NASA Astrophysics Data System (ADS)

    Lévy, Léa; Páll Hersir, Gylfi; Flóvenz, Ólafur; Gibert, Benoit; Pézard, Philippe; Sigmundsson, Freysteinn; Briole, Pierre

    2016-04-01

    Rock permeability and fluid temperature are the two most decisive factors for a successful geothermal drilling. While those parameters are only measured from drilling, they might be estimated on the basis of their impact on electrical resistivity that might be imaged from surface soundings, for example through TEM (Transient Electro Magnetic) down to one km depth. The electrical conductivity of reservoir rocks is the sum of a volume term depending on fluid parameters and a surface term related to rock alteration. Understanding the link between electrical resistivity and geothermal key parameters requires the knowledge of hydrothermal alteration and its petrophysical signature with the Cation Exchange Capacity (CEC). Fluid-rock interactions related to hydrothermal circulation trigger the precipitation of alteration minerals, which are both witnesses of the temperature at the time of reaction and new paths for the electrical current. Alteration minerals include zeolites, smectites, chlorites, epidotes and amphiboles among which low temperatures parageneses are often the most conductive. The CEC of these mineral phases contributes to account for surface conductivity occuring at the water-rock interface. In cooling geothermal systems, these minerals constitute in petrophysical terms and from surface electrical conduction a memory of the equilibrium phase revealed from electrical probing at all scales. The qualitative impact of alteration minerals on resistivity structure has been studied over the years in the Icelandic geothermal context. In this work, the CEC impact on pore surfaces electrical conductivity is studied quantitatively at the borehole scale, where several types of volcanic rocks are mixed together, with various degrees of alteration and porosity. Five boreholes located within a few km at the Krafla volcano, Northeast Iceland, constitute the basis for this study. The deepest and reference hole, KJ-18, provides cuttings of rock and logging data down to 2215 m depth; CEC measurements performed on cuttings show. KH-1 and KH-3 have cores and logs in the top 200 m only. Boreholes KH-5 and KH-6 sample cores with higher temperature alteration minerals down to 600 m. Together, these 4 shallow holes cover the diversity of rock types and alterations facies found in KJ-18. The petrophysical calibration obtained from cores will then be upscaled to log data analysis in KJ-18: porosity, formation factor, permeability, acoustic velocity, electrical surface conduction at different temperatures and CEC. This research is supported by the IMAGE FP7 EC project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553).

  1. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  2. Shape Analysis of Planar Multiply-Connected Objects Using Conformal Welding.

    PubMed

    Lok Ming Lui; Wei Zeng; Shing-Tung Yau; Xianfeng Gu

    2014-07-01

    Shape analysis is a central problem in the field of computer vision. In 2D shape analysis, classification and recognition of objects from their observed silhouettes are extremely crucial but difficult. It usually involves an efficient representation of 2D shape space with a metric, so that its mathematical structure can be used for further analysis. Although the study of 2D simply-connected shapes has been subject to a corpus of literatures, the analysis of multiply-connected shapes is comparatively less studied. In this work, we propose a representation for general 2D multiply-connected domains with arbitrary topologies using conformal welding. A metric can be defined on the proposed representation space, which gives a metric to measure dissimilarities between objects. The main idea is to map the exterior and interior of the domain conformally to unit disks and circle domains (unit disk with several inner disks removed), using holomorphic 1-forms. A set of diffeomorphisms of the unit circle S(1) can be obtained, which together with the conformal modules are used to define the shape signature. A shape distance between shape signatures can be defined to measure dissimilarities between shapes. We prove theoretically that the proposed shape signature uniquely determines the multiply-connected objects under suitable normalization. We also introduce a reconstruction algorithm to obtain shapes from their signatures. This completes our framework and allows us to move back and forth between shapes and signatures. With that, a morphing algorithm between shapes can be developed through the interpolation of the Beltrami coefficients associated with the signatures. Experiments have been carried out on shapes extracted from real images. Results demonstrate the efficacy of our proposed algorithm as a stable shape representation scheme.

  3. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    NASA Astrophysics Data System (ADS)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and IP surveys are performed regularly to monitor the stimulated biodegradation and progress of remediation until soil cleanup. Microbial activity is characterized by CO2 production increase and δ13C isotopic deviation, in the produced CO2 measured by infrared laser spectroscopy, and by an evolution of electrical conductivity and IP responses in correlation with microbiological and chemical analyses.

  4. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  5. Is the Alzheimer's disease cortical thickness signature a biological marker for memory?

    PubMed

    Busovaca, Edgar; Zimmerman, Molly E; Meier, Irene B; Griffith, Erica Y; Grieve, Stuart M; Korgaonkar, Mayuresh S; Williams, Leanne M; Brickman, Adam M

    2016-06-01

    Recent work suggests that analysis of the cortical thickness in key brain regions can be used to identify individuals at greatest risk for development of Alzheimer's disease (AD). It is unclear to what extent this "signature" is a biological marker of normal memory function - the primary cognitive domain affected by AD. We examined the relationship between the AD signature biomarker and memory functioning in a group of neurologically healthy young and older adults. Cortical thickness measurements and neuropsychological evaluations were obtained in 110 adults (age range 21-78, mean = 46) drawn from the Brain Resource International Database. The cohort was divided into young adult (n = 64, age 21-50) and older adult (n = 46, age 51-78) groups. Cortical thickness analysis was performed with FreeSurfer, and the average cortical thickness extracted from the eight regions that comprise the AD signature. Mean AD-signature cortical thickness was positively associated with performance on the delayed free recall trial of a list learning task and this relationship did not differ between younger and older adults. Mean AD-signature cortical thickness was not associated with performance on a test of psychomotor speed, as a control task, in either group. The results suggest that the AD signature cortical thickness is a marker for memory functioning across the adult lifespan.

  6. Improvement of a Quantum Proxy Blind Signature Scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Lei; Zhang, Jian-Zhong; Xie, Shu-Cui

    2018-02-01

    Improvement of a quantum proxy blind signature scheme is proposed in this paper. Six-qubit entangled state functions as quantum channel. In our scheme, a trust party Trent is introduced so as to avoid David's dishonest behavior. The receiver David verifies the signature with the help of Trent in our scheme. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, delegation, signature and verification. Security analysis proves that our scheme has the properties of undeniability, unforgeability, anonymity and can resist some common attacks.

  7. Improvement of a Quantum Proxy Blind Signature Scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Lei; Zhang, Jian-Zhong; Xie, Shu-Cui

    2018-06-01

    Improvement of a quantum proxy blind signature scheme is proposed in this paper. Six-qubit entangled state functions as quantum channel. In our scheme, a trust party Trent is introduced so as to avoid David's dishonest behavior. The receiver David verifies the signature with the help of Trent in our scheme. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, delegation, signature and verification. Security analysis proves that our scheme has the properties of undeniability, unforgeability, anonymity and can resist some common attacks.

  8. Fly's Eye GLM Simulator Preliminary Validation Analysis

    NASA Astrophysics Data System (ADS)

    Quick, M. G.; Christian, H. J., Jr.; Blakeslee, R. J.; Stewart, M. F.; Corredor, D.; Podgorny, S.

    2017-12-01

    As part of the validation effort for the Geostationary Lightning Mapper (GLM) an airborne radiometer array has been fabricated to observe lightning optical emission through the cloud top. The Fly's Eye GLM Simulator (FEGS) is a multi-spectral, photo-electric radiometer array with a nominal spatial resolution of 2 x 2 km and spatial footprint of 10 x 10 km at cloud top. A main 25 pixel array observes the 777.4 nm oxygen emission triplet using an optical passband filter with a 10 nm FWHM, a sampling rate of 100 kHz, and 16 bit resolution. From March to May of 2017 FEGS was flown on the NASA ER-2 high altitude aircraft during the GOES-R Validation Flight Campaign. Optical signatures of lightning were observed during a variety of thunderstorm scenarios while coincident measurements were obtained by GLM and ground based antennae networks. This presentation will describe the preliminary analysis of the FEGS dataset in the context of GLM validation.

  9. Analysis of blood-based gene expression in idiopathic Parkinson disease.

    PubMed

    Shamir, Ron; Klein, Christine; Amar, David; Vollstedt, Eva-Juliane; Bonin, Michael; Usenovic, Marija; Wong, Yvette C; Maver, Ales; Poths, Sven; Safer, Hershel; Corvol, Jean-Christophe; Lesage, Suzanne; Lavi, Ofer; Deuschl, Günther; Kuhlenbaeumer, Gregor; Pawlack, Heike; Ulitsky, Igor; Kasten, Meike; Riess, Olaf; Brice, Alexis; Peterlin, Borut; Krainc, Dimitri

    2017-10-17

    To examine whether gene expression analysis of a large-scale Parkinson disease (PD) patient cohort produces a robust blood-based PD gene signature compared to previous studies that have used relatively small cohorts (≤220 samples). Whole-blood gene expression profiles were collected from a total of 523 individuals. After preprocessing, the data contained 486 gene profiles (n = 205 PD, n = 233 controls, n = 48 other neurodegenerative diseases) that were partitioned into training, validation, and independent test cohorts to identify and validate a gene signature. Batch-effect reduction and cross-validation were performed to ensure signature reliability. Finally, functional and pathway enrichment analyses were applied to the signature to identify PD-associated gene networks. A gene signature of 100 probes that mapped to 87 genes, corresponding to 64 upregulated and 23 downregulated genes differentiating between patients with idiopathic PD and controls, was identified with the training cohort and successfully replicated in both an independent validation cohort (area under the curve [AUC] = 0.79, p = 7.13E-6) and a subsequent independent test cohort (AUC = 0.74, p = 4.2E-4). Network analysis of the signature revealed gene enrichment in pathways, including metabolism, oxidation, and ubiquitination/proteasomal activity, and misregulation of mitochondria-localized genes, including downregulation of COX4I1 , ATP5A1 , and VDAC3 . We present a large-scale study of PD gene expression profiling. This work identifies a reliable blood-based PD signature and highlights the importance of large-scale patient cohorts in developing potential PD biomarkers. © 2017 American Academy of Neurology.

  10. Fruit and Juice Epigenetic Signatures Are Associated with Independent Immunoregulatory Pathways.

    PubMed

    Nicodemus-Johnson, Jessie; Sinnott, Robert A

    2017-07-14

    Epidemiological evidence strongly suggests that fruit consumption promotes many health benefits. Despite the general consensus that fruit and juice are nutritionally similar, epidemiological results for juice consumption are conflicting. Our objective was to use DNA methylation marks to characterize fruit and juice epigenetic signatures within PBMCs and identify shared and independent signatures associated with these groups. Genome-wide DNA methylation marks (Illumina Human Methylation 450k chip) for 2,148 individuals that participated in the Framingham Offspring exam 8 were analyzed for correlations between fruit or juice consumption using standard linear regression. CpG sites with low P -values ( P < 0.01) were characterized using Gene Set Enrichment Analysis (GSEA), Ingenuity Pathway Analysis (IPA), and epigenetic Functional element Overlap analysis of the Results of Genome Wide Association Study Experiments (eFORGE). Fruit and juice-specific low P -value epigenetic signatures were largely independent. Genes near the fruit-specific epigenetic signature were enriched among pathways associated with antigen presentation and chromosome or telomere maintenance, while the juice-specific epigenetic signature was enriched for proinflammatory pathways. IPA and eFORGE analyses implicate fruit and juice-specific epigenetic signatures in the modulation of macrophage (fruit) and B or T cell (juice) activities. These data suggest a role for epigenetic regulation in fruit and juice-specific health benefits and demonstrate independent associations with distinct immune functions and cell types, suggesting that these groups may not confer the same health benefits. Identification of such differences between foods is the first step toward personalized nutrition and ultimately the improvement of human health and longevity.

  11. Fruit and Juice Epigenetic Signatures Are Associated with Independent Immunoregulatory Pathways

    PubMed Central

    Nicodemus-Johnson, Jessie; Sinnott, Robert A.

    2017-01-01

    Epidemiological evidence strongly suggests that fruit consumption promotes many health benefits. Despite the general consensus that fruit and juice are nutritionally similar, epidemiological results for juice consumption are conflicting. Our objective was to use DNA methylation marks to characterize fruit and juice epigenetic signatures within PBMCs and identify shared and independent signatures associated with these groups. Genome-wide DNA methylation marks (Illumina Human Methylation 450k chip) for 2,148 individuals that participated in the Framingham Offspring exam 8 were analyzed for correlations between fruit or juice consumption using standard linear regression. CpG sites with low P-values (P < 0.01) were characterized using Gene Set Enrichment Analysis (GSEA), Ingenuity Pathway Analysis (IPA), and epigenetic Functional element Overlap analysis of the Results of Genome Wide Association Study Experiments (eFORGE). Fruit and juice-specific low P-value epigenetic signatures were largely independent. Genes near the fruit-specific epigenetic signature were enriched among pathways associated with antigen presentation and chromosome or telomere maintenance, while the juice-specific epigenetic signature was enriched for proinflammatory pathways. IPA and eFORGE analyses implicate fruit and juice-specific epigenetic signatures in the modulation of macrophage (fruit) and B or T cell (juice) activities. These data suggest a role for epigenetic regulation in fruit and juice-specific health benefits and demonstrate independent associations with distinct immune functions and cell types, suggesting that these groups may not confer the same health benefits. Identification of such differences between foods is the first step toward personalized nutrition and ultimately the improvement of human health and longevity. PMID:28708104

  12. Direct modeling parameter signature analysis and failure mode prediction of physical systems using hybrid computer optimization

    NASA Technical Reports Server (NTRS)

    Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.

    1971-01-01

    High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.

  13. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  14. Compound-Specific Isotope Analysis of Amino Acids for Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie; Elsila, Jamie E.; Stern J. C.; Glavin, D. P.; Dworkin, J. P.

    2008-01-01

    Significant portions of the early Earth's prebiotic organic inventory , including amino acids, could have been delivered to the Earth's sur face by comets and their fragments. Analysis of comets via spectrosc opic observations has identified many organic molecules, including me thane, ethane, arnmonia, cyanic acid, formaldehyde, formamide, acetal ehyde, acetonitrile, and methanol. Reactions between these identifie d molecules could allow the formation of more complex organics such a s amino acids. Isotopic analysis could reveal whether an extraterrest rial signature is present in the Stardust-exposed amines and amino ac ids. Although bulk isotopic analysis would be dominated by the EACA contaminant's terrestrial signature, compoundspecific isotope analysi s (CSIA) could determine the signature of each of the other individua l amines. Here, we report on progress made towards CSIA of the amino acids glycine and EACA in Stardustreturned samples.

  15. Well-Known Distinctive Signatures of Quantum Phase Transition in Shape Coexistence Configuration of Nuclei

    NASA Astrophysics Data System (ADS)

    Majarshin, A. Jalili; Sabri, H.

    2018-03-01

    It is interesting that a change of nuclear shape may be described in terms of a phase transition. This paper studies the quantum phase transition of the U(5) to SO(6) in the interacting boson model (IBM) on the finite number N of bosons. This paper explores the well-known distinctive signatures of transition from spherical vibrational to γ-soft shape phase in the IBM with the variation of a control parameter. Quantum phase transitions occur as a result of properties of ground and excited states levels. We apply an affine \\widehat {SU(1,1)} approach to numerically solve non-linear Bethe Ansatz equation and point out what observables are particularly sensitive to the transition. The main aim of this work is to describe the most prominent observables of QPT by using IBM in shape coexistence configuration. We calculate energies of excited states and signatures of QPT as energy surface, energy ratio, energy differences, quadrupole electric transition rates and expectation values of boson number operators and show their behavior in QPT. These observables are calculated and examined for 98 - 102Mo isotopes.

  16. Sound waves and resonances in electron-hole plasma

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    2016-06-01

    Inspired by the recent experimental signatures of relativistic hydrodynamics in graphene, we investigate theoretically the behavior of hydrodynamic sound modes in such quasirelativistic fluids near charge neutrality, within linear response. Locally driving an electron fluid at a resonant frequency to such a sound mode can lead to large increases in the electrical response at the edges of the sample, a signature, which cannot be explained using diffusive models of transport. We discuss the robustness of this signal to various effects, including electron-acoustic phonon coupling, disorder, and long-range Coulomb interactions. These long-range interactions convert the sound mode into a collective plasmonic mode at low frequencies unless the fluid is charge neutral. At the smallest frequencies, the response in a disordered fluid is quantitatively what is predicted by a "momentum relaxation time" approximation. However, this approximation fails at higher frequencies (which can be parametrically small), where the classical localization of sound waves cannot be neglected. Experimental observation of such resonances is a clear signature of relativistic hydrodynamics, and provides an upper bound on the viscosity of the electron-hole plasma.

  17. Well-Known Distinctive Signatures of Quantum Phase Transition in Shape Coexistence Configuration of Nuclei

    NASA Astrophysics Data System (ADS)

    Majarshin, A. Jalili; Sabri, H.

    2018-06-01

    It is interesting that a change of nuclear shape may be described in terms of a phase transition. This paper studies the quantum phase transition of the U(5) to SO(6) in the interacting boson model (IBM) on the finite number N of bosons. This paper explores the well-known distinctive signatures of transition from spherical vibrational to γ-soft shape phase in the IBM with the variation of a control parameter. Quantum phase transitions occur as a result of properties of ground and excited states levels. We apply an affine \\widehat {SU(1,1)} approach to numerically solve non-linear Bethe Ansatz equation and point out what observables are particularly sensitive to the transition. The main aim of this work is to describe the most prominent observables of QPT by using IBM in shape coexistence configuration. We calculate energies of excited states and signatures of QPT as energy surface, energy ratio, energy differences, quadrupole electric transition rates and expectation values of boson number operators and show their behavior in QPT. These observables are calculated and examined for 98 - 102Mo isotopes.

  18. Using field-particle correlations to study auroral electron acceleration in the LAPD

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.; Howes, G. G.; Skiff, F.; Kletzing, C. A.; Carter, T. A.; Vincena, S.; Dorfman, S.

    2017-10-01

    Resonant nonlinear Alfvén wave-particle interactions are believed to contribute to the acceleration of auroral electrons. Experiments in the Large Plasma Device (LAPD) at UCLA have been performed with the goal of providing the first direct measurement of this nonlinear process. Recent progress includes a measurement of linear fluctuations of the electron distribution function associated with the production of inertial Alfvén waves in the LAPD. These linear measurements have been analyzed using the field-particle correlation technique to study the nonlinear transfer of energy between the Alfvén wave electric fields and the electron distribution function. Results of this analysis indicate collisions alter the resonant signature of the field-particle correlation, and implications for resonant Alfvénic electron acceleration in the LAPD are considered. This work was supported by NSF, DOE, and NASA.

  19. Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovchanskaya, Irina V.; Kozelov, Boris V.; Chernyshov, Alexander A.

    2014-08-15

    The excitation of electrostatic turbulence inside space-observed solitary structures is a central topic of this exposition. Three representative solitary structures observed in the topside auroral ionosphere as large-amplitude nonlinear signatures in the electric field and magnetic-field-aligned current on the transverse scales of ∼10{sup 2}–10{sup 3} m are evaluated by the theories of electrostatic wave generation in inhomogeneous background configurations. A quantitative analysis shows that the structures are, in general, effective in destabilizing the inhomogeneous energy-density-driven (IEDD) waves, as well as of the ion acoustic waves modified by a shear in the parallel drift of ions. It is demonstrated that the dominatingmore » branch of the electrostatic turbulence is determined by the interplay of various driving sources inside a particular solitary structure. The sources do not generally act in unison, so that their common effect may be inhibiting for excitation of electrostatic waves of a certain type. In the presence of large magnetic-field-aligned current, which is not correlated to the inhomogeneous electric field inside the structure, the ion-acoustic branch becomes dominating. In other cases, the IEDD instability is more central.« less

  20. Signatures of positive selection in East African Shorthorn Zebu: a genome-wide SNP analysis

    USDA-ARS?s Scientific Manuscript database

    The small East African Shorthorn Zebu is the main indigenous cattle across East Africa. A recent genome wide SNPs analysis has revealed their ancient stable African taurine x Asian zebu admixture. Here, we assess the presence of candidate signature of positive selection in their genome, with the aim...

  1. Pre-seismic anomalous geomagnetic signature related to M8.3 earthquake occurred in Chile on September 16-th, 2015

    NASA Astrophysics Data System (ADS)

    Armand Stanica, Dragos, ,, Dr.; Stanica, Dumitru, ,, Dr.; Vladimirescu, Nicoleta

    2016-04-01

    In this paper, we retrospectively analyzed the geomagnetic data collected, via internet (www.intermagnet.com), on the interval 01 July-30 September 2015 at the observatories Easter Island (IMP) and Pilar (PIL), placed in Chile and Argentina, respectively, to emphasize a possible relationship between the pre-seismic anomalous behavior of the normalized function Bzn and M8.3 earthquake, that occurred in Offshore Coquimbo (Chile) on September 16-th, 2015. The daily mean distributions of the normalized function Bzn=Bz/Bperp (where Bz is vertical component of the geomagnetic field; Bperp is geomagnetic component perpendicular to the geoelectrical strike) and its standard deviation (STDEV) are performed in the ULF frequency range 0.001Hz to 0.0083Hz by using the FFT band-pass filter analysis. It was demonstrated that in pre-seismic conditions the Bzn has a significant enhancement due to the crustal electrical conductivity changes, possibly associated with the earthquake-induced rupture-processes and high-pressure fluid flow through the faulting system developed inside the foci and its neighboring area. After analyzing the anomalous values of the normalized function Bzn obtained at Easter Island and Pilar observatories, the second one taken as reference, we used a statistical analysis, based on a standardized random variable equation, to identify on 1-2 September 2015 a pre-seismic signature related to the M8.3 earthquake. The lead time was 14 days before the M8.3 earthquake occurrence. The final conclusion is that the proposed geomagnetic methodology might be used to provide suitable information for the extreme earthquake hazard assessment.

  2. Detection of Chorus Elements and other Wave Signatures Using Geometric Computational Techniques in the Van Allen radiation belts

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Kletzing, C.; Howk, R.; Kurth, W. S.

    2017-12-01

    An important goal of the Van Allen Probes mission is to understand wave particle interactions that can energize relativistic electron in the Earth's Van Allen radiation belts. The EMFISIS instrumentation suite provides measurements of wave electric and magnetic fields of wave features such as chorus that participate in these interactions. Geometric signal processing discovers structural relationships, e.g. connectivity across ridge-like features in chorus elements to reveal properties such as dominant angles of the element (frequency sweep rate) and integrated power along the a given chorus element. These techniques disambiguate these wave features against background hiss-like chorus. This enables autonomous discovery of chorus elements across the large volumes of EMFISIS data. At the scale of individual or overlapping chorus elements, topological pattern recognition techniques enable interpretation of chorus microstructure by discovering connectivity and other geometric features within the wave signature of a single chorus element or between overlapping chorus elements. Thus chorus wave features can be quantified and studied at multiple scales of spectral geometry using geometric signal processing techniques. We present recently developed computational techniques that exploit spectral geometry of chorus elements and whistlers to enable large-scale automated discovery, detection and statistical analysis of these events over EMFISIS data. Specifically, we present different case studies across a diverse portfolio of chorus elements and discuss the performance of our algorithms regarding precision of detection as well as interpretation of chorus microstructure. We also provide large-scale statistical analysis on the distribution of dominant sweep rates and other properties of the detected chorus elements.

  3. Modeling the Lexical Morphology of Western Handwritten Signatures

    PubMed Central

    Diaz-Cabrera, Moises; Ferrer, Miguel A.; Morales, Aythami

    2015-01-01

    A handwritten signature is the final response to a complex cognitive and neuromuscular process which is the result of the learning process. Because of the many factors involved in signing, it is possible to study the signature from many points of view: graphologists, forensic experts, neurologists and computer vision experts have all examined them. Researchers study written signatures for psychiatric, penal, health and automatic verification purposes. As a potentially useful, multi-purpose study, this paper is focused on the lexical morphology of handwritten signatures. This we understand to mean the identification, analysis, and description of the signature structures of a given signer. In this work we analyze different public datasets involving 1533 signers from different Western geographical areas. Some relevant characteristics of signature lexical morphology have been selected, examined in terms of their probability distribution functions and modeled through a General Extreme Value distribution. This study suggests some useful models for multi-disciplinary sciences which depend on handwriting signatures. PMID:25860942

  4. Acoustic Nondestructive Evaluation of Aircraft Paneling Using Piezoelectric Sensors

    DTIC Science & Technology

    2012-12-01

    Electromagnetic Materials Team of the U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Clinical Trials Monitoring Branch, for...connected to this clip. This electrical connection ensures single-point grounding, which has been implemented to avoid electromagnetic interference...waveform of each sensor features an electromagnetic pick-up signature that is aligned with the transduced signal but phase shifted by 180. We know to

  5. Combining Low-Energy Electrical Resistance Heating with Biotic and Abiotic Reactions for Treatment of Chlorinated Solvent DNAPL Source Area

    DTIC Science & Technology

    2012-12-01

    DEPTH DRILLED INTO ROCK NIA 18. TOTAL CORE RECOVERY FOR BORING 9. TOTAL DEPTH OF HOLE 3o.o I 19. SIGNATURE OF INSPECT/’fi1’ ~V.U.. ELEVATION...EPA/540/-93/ 505 , U.S. Environmental Protection Agency Risk Reduction Engineering Laboratory, Cincinnati, OH. Farrell, J., Kason, M., Melitas, N., Li

  6. Observation of a 27-day solar signature in noctilucent cloud altitude

    NASA Astrophysics Data System (ADS)

    Köhnke, Merlin C.; von Savigny, Christian; Robert, Charles E.

    2018-05-01

    Previous studies have identified solar 27-day signatures in several parameters in the Mesosphere/Lower thermosphere region, including temperature and Noctilucent cloud (NLC) occurrence frequency. In this study we report on a solar 27-day signature in NLC altitude with peak-to-peak variations of about 400 m. We use SCIAMACHY limb-scatter observations from 2002 to 2012 to detect NLCs. The superposed epoch analysis method is applied to extract solar 27-day signatures. A 27-day signature in NLC altitude can be identified in both hemispheres in the SCIAMACHY dataset, but the signature is more pronounced in the northern hemisphere. The solar signature in NLC altitude is found to be in phase with solar activity and temperature for latitudes ≳ 70 ° N. We provide a qualitative explanation for the positive correlation between solar activity and NLC altitude based on published model simulations.

  7. Public-key quantum digital signature scheme with one-time pad private-key

    NASA Astrophysics Data System (ADS)

    Chen, Feng-Lin; Liu, Wan-Fang; Chen, Su-Gen; Wang, Zhi-Hua

    2018-01-01

    A quantum digital signature scheme is firstly proposed based on public-key quantum cryptosystem. In the scheme, the verification public-key is derived from the signer's identity information (such as e-mail) on the foundation of identity-based encryption, and the signature private-key is generated by one-time pad (OTP) protocol. The public-key and private-key pair belongs to classical bits, but the signature cipher belongs to quantum qubits. After the signer announces the public-key and generates the final quantum signature, each verifier can verify publicly whether the signature is valid or not with the public-key and quantum digital digest. Analysis results show that the proposed scheme satisfies non-repudiation and unforgeability. Information-theoretic security of the scheme is ensured by quantum indistinguishability mechanics and OTP protocol. Based on the public-key cryptosystem, the proposed scheme is easier to be realized compared with other quantum signature schemes under current technical conditions.

  8. Monitoring transport and equilibrium of heavy metals in soil using induced polarization

    NASA Astrophysics Data System (ADS)

    Shalem, T.; Huisman, J. A.; Zimmermann, E.; Furman, A.

    2017-12-01

    Soil and groundwater pollution in general, and by heavy metals in particular, is a major threat to human health, and especially in rapidly developing regions, such as China. Fast, accurate and low-cost measurement of heavy metal contamination is of high desire. Spectral induced polarization (SIP) may be an alternative to the tedious sampling techniques typically used. In the SIP method, an alternating current at a range of low frequencies is injected into the soil and the resultant potential is measured along the current's path. SIP is a promising method for monitoring heavy metals, because it is sensitive to the chemical composition of both the absorbed ions on the soil minerals and the pore fluid and to the interface between the two. The high sorption affinity of heavy metals suggests that their electrical signature may be significant, even at relatively low concentrations. The goal of this research is to examine the electrical signature of soil contaminated by heavy metals and of the pollution transport and remediation processes, in a non-tomographic fashion. Specifically, we are looking at the SIP response of various heavy metals in several settings: 1) at equilibrium state in batch experiments; 2) following the progress of a pollution front along a soil column through flow experiments and 3) monitoring the extraction of the contaminant by a chelating agent. Using the results, we develop and calibrate a multi-Cole-Cole model to separate the electrochemical and the interfacial components of the polarization. Last, we compare our results to the electrical signature of contaminated soil from southern China. Results of single metals from both batch and flow experiments display a shift of the relaxation time and a decrease in the phase response of the soil with increase of the metal concentration, suggesting strong sorption of the metals on the stern layer. Preliminary results also show evidence of electrodic polarization, assuming to be related to the formation of metal oxides in the soil. We present both raw data and fitting of the results to models, to explain the behavior of our system and the dynamics of and transport processes of the metals in the soil.

  9. Kennedy Space Center's Partnership with Graftel Incorporated

    NASA Technical Reports Server (NTRS)

    Dunn, Carol Anne

    2010-01-01

    NASA Kennedy Space Center (KSC) has recently partnered with Graftel Incorporated under an exclusive license agreement for the manufacture and sale of the Smart Current Signature Sensor. The Smart Current Signature Sensor and software were designed and developed to be utilized on any application using solenoid valves. The system monitors the electrical and mechanical health of solenoids by comparing the electrical current profile of each solenoid actuation to a typical current profile and reporting deviation from its learned behavior. The objective of this partnership with Graftel is for them to develop the technology into a hand-held testing device for their customer base in the Nuclear Power Industry. The device will be used to perform diagnostic testing on electromechanical valves used in Nuclear Power plants. Initially, Graftel plans to have working units within the first year of license in order to show customers and allow them to put purchase requests into their next year's budget. The subject technology under discussion was commercialized by the Kennedy Space Center Technology Programs and Partnerships Office, which patented the technology and licensed it to Graftel, Inc., a company providing support, instrumentation, and calibration services to the nuclear community and private sector for over 10 years. For the nuclear power industry, Graftel designs, manufacturers, and calibrates a full line of testing instrumentation. Grafters smart sensors have been in use in the United States since 1993 and have proved to decrease set-up time and test durations. The project was funded by Non-Destructive Engineering, and it is felt that this technology will have more emphasis on future vehicles. Graftel plans to market the Current Signature Sensor to the Electric Utility industry. Graftel currently supplies product and services to the Nuclear Power Industry in the United States as well as internationally. Product and services sold are used in non-destructive testing for valves, penetrations and other applications. Graftel also supplies testing services to an industrial customer base. The customer base includes 90 percent of the U.S. Nuclear plants and plants in Brazil, Europe, and Asia. Graftel works internationally with two representative groups and employees and has ten people at the principle location and a group of contract engineers around the country.

  10. The temperature signature of an IMF-driven change to the global atmospheric electric circuit (GEC) in the Antarctic troposphere

    NASA Astrophysics Data System (ADS)

    Freeman, Mervyn; Lam, Mai Mai; Chisham, Gareth

    2017-04-01

    We use National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data to show that Antarctic surface air temperature anomalies result from differences in the daily-mean duskward component,By, of the interplanetary magnetic field (IMF). We find the anomalies have strong geographical and seasonal variations. Regional anomalies are evident poleward of 60˚ S and are of diminishing representative peak amplitude from autumn (3.2˚ C) to winter (2.4˚ C) to spring (1.6˚ C) to summer (0.9˚ C). We demonstrate that anomalies of statistically-significant amplitude are due to geostrophic wind anomalies, resulting from the same By changes, moving air across large meridional gradients in zonal mean air temperature between 60 and 80˚ S. Additionally, we find that the mean tropospheric temperature anomaly for geographical latitudes ≤ -70˚ peaks at about 0.7 K and is statistically significant at the 1 - 5% level between air pressures of 1000 and 500 hPa (i.e., ˜0.1 to 5.6 km altitude above sea level) and for time lags with respect to the IMF of up to 7 days. The signature propagates vertically between air pressure p ≥ 850 hPa (≤ 1.5 km) and p = 500 hPa (˜5.6 km). The characteristics of prompt response and vertical propagation within the troposphere have previously been seen in the correlation between the IMF and high-latitude air pressure anomalies, known as the Mansurov effect, at higher statistical significances (1%). We conclude that we have identified the temperature signature of the Mansurov effect in the Antarctic troposphere. Since these tropospheric anomalies have been associated with By-driven anomalies in the electric potential of the ionosphere, we further conclude that they are caused by IMF-induced changes to the global atmospheric electric circuit (GEC). Our results support the view that variations in the ionospheric potential act on the troposphere via the action of resulting variations in the downwards current of the GEC on tropospheric clouds.

  11. Particle-in-cell simulations of asymmetric guide-field reconnection: quadrupolar structure of Hall magnetic field

    NASA Astrophysics Data System (ADS)

    Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.

    2017-12-01

    One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our knowledge, this is the first time PIC simulations show this kind of results, since previous simulations have predicted bipolar pattern in the asymmetric guide-field reconnection.

  12. Characterization of electrical discharges on Teflon dielectrics used as spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Yadlowsky, E. J.; Hazelton, R. C.; Churchill, R. J.

    1979-01-01

    The dual effects of system degradation and reduced life of synchronous-orbit satellites as a result of differential spacecraft charging underscore the need for a clearer understanding of the prevailing electrical discharge phenomena. In a laboratory simulation, the electrical discharge current, surface voltage, emitted particle fluxes, and photo-emission associated with discharge events on electron beam irradiated silver-backed Teflon samples were measured. Sample surface damage was examined with optical and electron beam microscopes. The results are suggestive of a model in which the entire sample surface is discharged by lateral sub-surface currents flowing from a charge deposition layer through a localized discharge channel to the back surface of the sample. The associated return current pulse appears to have a duration which may be a signature by which different discharge processes may be characterized.

  13. Electric Conductivity of Hot and Dense Quark Matter in a Magnetic Field with Landau Level Resummation via Kinetic Equations

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji; Hidaka, Yoshimasa

    2018-04-01

    We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σH. For the longitudinal conductivity σ∥, we need to solve kinetic equations. Then, we numerically find that σ∥ has only a mild dependence on μ and the quark mass mq. Moreover, σ∥ first decreases and then linearly increases as a function of B , leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ∥ at a nonzero B remains within the range of the lattice-QCD estimate at B =0 .

  14. Electric Conductivity of Hot and Dense Quark Matter in a Magnetic Field with Landau Level Resummation via Kinetic Equations.

    PubMed

    Fukushima, Kenji; Hidaka, Yoshimasa

    2018-04-20

    We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σ_{H}. For the longitudinal conductivity σ_{∥}, we need to solve kinetic equations. Then, we numerically find that σ_{∥} has only a mild dependence on μ and the quark mass m_{q}. Moreover, σ_{∥} first decreases and then linearly increases as a function of B, leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ_{∥} at a nonzero B remains within the range of the lattice-QCD estimate at B=0.

  15. Assessing field-scale biogeophysical signatures of bioremediation over a mature crude oil spill

    USGS Publications Warehouse

    Slater, Lee; Ntarlagiannis, Dimitrios; Atekwana, Estella; Mewafy, Farag; Revil, Andre; Skold, Magnus; Gorby, Yuri; Day-Lewis, Frederick D.; Lane, John W.; Trost, Jared J.; Werkema, Dale D.; Delin, Geoffrey N.; Herkelrath, William N.; Rectanus, H.V.; Sirabian, R.

    2011-01-01

    We conducted electrical geophysical measurements at the National Crude Oil Spill Fate and Natural Attenuation Research Site (Bemidji, MN). Borehole and surface self-potential measurements do not show evidence for the existence of a biogeobattery mechanism in response to the redox gradient resulting from biodegradation of oil. The relatively small self potentials recorded are instead consistent with an electrodiffusion mechanism driven by differences in the mobility of charge carriers associated with biodegradation byproducts. Complex resistivity measurements reveal elevated electrical conductivity and interfacial polarization at the water table where oil contamination is present, extending into the unsaturated zone. This finding implies that the effect of microbial cell growth/attachment, biofilm formation, and mineral weathering accompanying hydrocarbon biodegradation on complex interfacial conductivity imparts a sufficiently large electrical signal to be measured using field-scale geophysical techniques.

  16. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  17. ARMOR Dual-Polarimetric Radar Observations of Tornadic Debris Signatures

    NASA Technical Reports Server (NTRS)

    Petersen, W. A,; Carey, L. D.; Knupp, K. R.; Schultz, C.; Johnson, E.

    2008-01-01

    During the Super-Tuesday tornado outbreak of 5-6 February 2008, two EF-4 tornadoes occurred in Northern Alabama within 75 km range of the University of Alabama in Huntsville (UAH) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). This study will present an analysis of ARMOR radar-indicated dual-polarimetric tornadic debris signatures. The debris signatures were associated with spatially-confined large decreases in the copolar correlation coefficient (rho(hv)hv) that were embedded within broader mesocyclone "hook" signatures. These debris signatures were most obviously manifest during the F-3 to F-4 intensity stages of the tornado(s) and extended to altitudes of approximately 3 km. The rho(hv) signatures of the tornadic debris were the most easily distinguished relative to other polarimetric and radial velocity parameters (e.g., associated with large hail and/or the incipient mesocyclone). Based on our analysis, and consistent with the small number of studies found in the literature, we conclude that dual-polarimetric radar data offer at least the possibility for enhancing specificity and confidence in the process of issuing tornado warnings based only on radar detection of threatening circulation features.

  18. Measuring the permittivity of the surface of the Churyumov-Gerasimenko nucleus: the PP-SESAME experiment on board the Philae/ROSETTA lander

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.

    2014-12-01

    Within Philae, the lander of the Rosetta spacecraft, the Permittivity Probe (PP) experiment as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) package was designed to measure the low frequency (Hz-kHz) electrical properties of the close subsurface of the nucleus.At frequencies below 10 kHz, the electrical signature of the matter is especially sensitive to the presence of water ice and its temperature. PP-SESAME will thus allow to determine the water ice content in the near-surface and to monitor its diurnal and orbital variations thus providing essential insight on the activity and evolution of the cometary nucleus.The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a first dipole, and the induced electrical voltage is measured with a second dipole. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate the dielectric constant and electric conductivity of the ground. To do this we have developed a method called the "capacity-influence matrix method".A replica of the instrument was recently built in LATMOS (France) and was tested in the frame of a field campaign in the giant ice cave system of Dachstein, Austria. In the caves, the ground is covered with a thick layer of ice, which temperature is rather constant throughout the year. This measurement campaign allowed us to test the "capacity influence matrix method" in a natural icy environment.The first measurements of the PP-SESAME/Philae experiment should be available in mid-November. In this paper we will present the "capacity-influence matrix method", the measurements and results from the Austrian field campaign and the preliminary analysis of the PP-SESAME/Philae data.

  19. 36 CFR 218.8 - Filing an objection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Signature or other verification of authorship upon request (a scanned signature for electronic mail may be... related to the proposed project; if applicable, how the objector believes the environmental analysis or...

  20. 36 CFR 218.8 - Filing an objection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Signature or other verification of authorship upon request (a scanned signature for electronic mail may be... related to the proposed project; if applicable, how the objector believes the environmental analysis or...

  1. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures

    PubMed Central

    Pride, David T; Schoenfeld, Thomas

    2008-01-01

    Background Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC), where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. Results From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of the Octopus and Bear Paw metagenomic contigs are predicted to belong to viruses rather than to any Bacteria or Archaea, consistent with the apparent viral origin of both metagenomes. Conclusion That BLAST searches identify no significant homologs for most metagenome contigs, while GSPC suggests their origin as archaeal viruses or bacteriophages, indicates GSPC provides a complementary approach in viral metagenomic analysis. PMID:18798991

  2. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures.

    PubMed

    Pride, David T; Schoenfeld, Thomas

    2008-09-17

    Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC), where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of the Octopus and Bear Paw metagenomic contigs are predicted to belong to viruses rather than to any Bacteria or Archaea, consistent with the apparent viral origin of both metagenomes. That BLAST searches identify no significant homologs for most metagenome contigs, while GSPC suggests their origin as archaeal viruses or bacteriophages, indicates GSPC provides a complementary approach in viral metagenomic analysis.

  3. Development of a computer technique for the prediction of transport aircraft flight profile sonic boom signatures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Coen, Peter G.

    1991-01-01

    A new computer technique for the analysis of transport aircraft sonic boom signature characteristics was developed. This new technique, based on linear theory methods, combines the previously separate equivalent area and F function development with a signature propagation method using a single geometry description. The new technique was implemented in a stand-alone computer program and was incorporated into an aircraft performance analysis program. Through these implementations, both configuration designers and performance analysts are given new capabilities to rapidly analyze an aircraft's sonic boom characteristics throughout the flight envelope.

  4. Propagation of Dipolarization Signatures Observed by the Van Allen Probes in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Kletzing, C.

    2017-12-01

    Dipolarization, the change of the local magnetic field from a stretched to a more dipolar configuration, is one of the most fundamental processes of magnetospheric physics. It is especially critical for the dynamics of the inner magnetosphere. The associated electric field accelerates ions and electrons and transports them closer to Earth. Such injected ions intensify the ring current, and electrons constitute the seed population of the radiation belt. Those ions and electrons may also excite various waves that play important roles in the enhancement and loss of the radiation belt electrons. Despite such critical consequences, the general characteristics of dipolarization in the inner magnetosphere still remain to be understood. The Van Allen Probes mission, which consists of two probes that orbit through the equatorial region of the inner magnetosphere, provides an ideal opportunity to examine dipolarization signatures in the core of the ring current. In the present study we investigate the spatial expansion of the dipolarization region by examining the correlation and time delay of dipolarization signatures observed by the two probes. Whereas in general it requires three-point measurements to deduce the propagation of a signal on a certain plane, we statically examined the observed time delays and found that dipolarization signatures tend to propagate radially inward as well as away from midnight. In this paper we address the propagation of dipolarization signatures quantitatively and compare with the propagation velocities reported previously based on observations made farther away from Earth. We also discuss how often and under what conditions the dipolarization region expands.

  5. Improving water content estimation on landslide-prone hillslopes using structurally-constrained inversion of electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Möhring, Simon; Budler, Jasmin; Weigand, Maximilian; Kemna, Andreas

    2017-04-01

    Rainfall-triggered landslides are a latent danger in almost any place of the world. Due to climate change heavy rainfalls might occur more often, increasing the risk of landslides. With pore pressure as mechanical trigger, knowledge of water content distribution in the ground is essential for hazard analysis during monitoring of potentially dangerous rainfall events. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. This applies in many scenarios, as for example during infiltration of water without a clear saturation front. Sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, on the other hand, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. Here the standard smoothness constraint is reduced along layer boundaries identified using seismic data or other additional sources. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable, reproducible and trustworthy results. We finally apply our findings to field data, compare conventional and improved analysis results, and discuss limitations of the structurally-constrained inversion approach.

  6. SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis.

    PubMed

    Aguirre-Gamboa, Raul; Trevino, Victor

    2014-06-01

    MicroRNAs (miRNAs) play a key role in post-transcriptional regulation of mRNA levels. Their function in cancer has been studied by high-throughput methods generating valuable sources of public information. Thus, miRNA signatures predicting cancer clinical outcomes are emerging. An important step to propose miRNA-based biomarkers before clinical validation is their evaluation in independent cohorts. Although it can be carried out using public data, such task is time-consuming and requires a specialized analysis. Therefore, to aid and simplify the evaluation of prognostic miRNA signatures in cancer, we developed SurvMicro, a free and easy-to-use web tool that assesses miRNA signatures from publicly available miRNA profiles using multivariate survival analysis. SurvMicro is composed of a wide and updated database of >40 cohorts in different tissues and a web tool where survival analysis can be done in minutes. We presented evaluations to portray the straightforward functionality of SurvMicro in liver and lung cancer. To our knowledge, SurvMicro is the only bioinformatic tool that aids the evaluation of multivariate prognostic miRNA signatures in cancer. SurvMicro and its tutorial are freely available at http://bioinformatica.mty.itesm.mx/SurvMicro. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. A passive optical fibre hydrophone array utilising fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.

    2018-02-01

    Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.

  8. Electrical Characteristics of Simulated Tornadoes and Dust Devils

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Farrell, William M.; Barth, E. L.; Lewellen, W. S.; Perlongo, N. J.; Jackson, T. L.

    2012-01-01

    It is well known that tornadoes and dust devils have the ability to accumulate significant, visible clouds of debris. Collisions between sand-like debris species produce different electric charges on different types of grains, which convect along different trajectories around the vortex. Thus, significant charge separations and electric currents are possible, which as the vortex fluctuates over time are thought to produce ULF radiation signatures that have been measured in the field. These electric and magnetic fields may contain valuable information about tornado structure and genesis, and may be critical in driving electrochemical processes within dust devils on Mars. In the present work, existing large eddy simulations of debris-laden tornadoes performed at West Virginia University are coupled with a new debris-charging and advection code developed at Goddard Space Flight Center to investigate the detailed (meter-resolution) fluid-dynamic origins of electromagnetic fields within terrestrial vortices. First results are presented, including simulations of the electric and magnetic fields that would be observed by a near-surface, instrument-laden probe during a direct encounter with a tornado.

  9. Remote sensing based on hyperspectral data analysis

    NASA Astrophysics Data System (ADS)

    Sharifahmadian, Ershad

    In remote sensing, accurate identification of far objects, especially concealed objects is difficult. In this study, to improve object detection from a distance, the hyperspecral imaging and wideband technology are employed with the emphasis on wideband radar. As the wideband data includes a broad range of frequencies, it can reveal information about both the surface of the object and its content. Two main contributions are made in this study: 1) Developing concept of return loss for target detection: Unlike typical radar detection methods which uses radar cross section to detect an object, it is possible to enhance the process of detection and identification of concealed targets using the wideband radar based on the electromagnetic characteristics --conductivity, permeability, permittivity, and return loss-- of materials. During the identification process, collected wideband data is evaluated with information from wideband signature library which has already been built. In fact, several classes (e.g. metal, wood, etc.) and subclasses (ex. metals with high conductivity) have been defined based on their electromagnetic characteristics. Materials in a scene are then classified based on these classes. As an example, materials with high electrical conductivity can be conveniently detected. In fact, increasing relative conductivity leads to a reduction in the return loss. Therefore, metals with high conductivity (ex. copper) shows stronger radar reflections compared with metals with low conductivity (ex. stainless steel). Thus, it is possible to appropriately discriminate copper from stainless steel. 2) Target recognition techniques: To detect and identify targets, several techniques have been proposed, in particular the Multi-Spectral Wideband Radar Image (MSWRI) which is able to localize and identify concealed targets. The MSWRI is based on the theory of robust capon beamformer. During identification process, information from wideband signature library is utilized. The WB signature library includes such parameters as conductivity, permeability, permittivity, and return loss at different frequencies for possible materials related to a target. In the MSWRI approach, identification procedure is performed by calculating the RLs at different selected frequencies. Based on similarity of the calculated RLs and RL from WB signature library, targets are detected and identified. Based on the simulation and experimental results, it is concluded that the MSWRI technique is a promising approach for standoff target detection.

  10. Thunderstorm Hypothesis Reasoner

    NASA Technical Reports Server (NTRS)

    Mulvehill, Alice M.

    1994-01-01

    THOR is a knowledge-based system which incorporates techniques from signal processing, pattern recognition, and artificial intelligence (AI) in order to determine the boundary of small thunderstorms which develop and dissipate over the area encompassed by KSC and the Cape Canaveral Air Force Station. THOR interprets electric field mill data (derived from a network of electric field mills) by using heuristics and algorithms about thunderstorms that have been obtained from several domain specialists. THOR generates two forms of output: contour plots which visually describe the electric field activity over the network and a verbal interpretation of the activity. THOR uses signal processing and pattern recognition to detect signatures associated with noise or thunderstorm behavior in a near real time fashion from over 31 electrical field mills. THOR's AI component generates hypotheses identifying areas which are under a threat from storm activity, such as lightning. THOR runs on a VAX/VMS at the Kennedy Space Center. Its software is a coupling of C and FORTRAN programs, several signal processing packages, and an expert system development shell.

  11. A 16-Gene Signature Distinguishes Anaplastic Astrocytoma from Glioblastoma

    PubMed Central

    Rao, Soumya Alige Mahabala; Srinivasan, Sujaya; Patric, Irene Rosita Pia; Hegde, Alangar Sathyaranjandas; Chandramouli, Bangalore Ashwathnarayanara; Arimappamagan, Arivazhagan; Santosh, Vani; Kondaiah, Paturu; Rao, Manchanahalli R. Sathyanarayana; Somasundaram, Kumaravel

    2014-01-01

    Anaplastic astrocytoma (AA; Grade III) and glioblastoma (GBM; Grade IV) are diffusely infiltrating tumors and are called malignant astrocytomas. The treatment regimen and prognosis are distinctly different between anaplastic astrocytoma and glioblastoma patients. Although histopathology based current grading system is well accepted and largely reproducible, intratumoral histologic variations often lead to difficulties in classification of malignant astrocytoma samples. In order to obtain a more robust molecular classifier, we analysed RT-qPCR expression data of 175 differentially regulated genes across astrocytoma using Prediction Analysis of Microarrays (PAM) and found the most discriminatory 16-gene expression signature for the classification of anaplastic astrocytoma and glioblastoma. The 16-gene signature obtained in the training set was validated in the test set with diagnostic accuracy of 89%. Additionally, validation of the 16-gene signature in multiple independent cohorts revealed that the signature predicted anaplastic astrocytoma and glioblastoma samples with accuracy rates of 99%, 88%, and 92% in TCGA, GSE1993 and GSE4422 datasets, respectively. The protein-protein interaction network and pathway analysis suggested that the 16-genes of the signature identified epithelial-mesenchymal transition (EMT) pathway as the most differentially regulated pathway in glioblastoma compared to anaplastic astrocytoma. In addition to identifying 16 gene classification signature, we also demonstrated that genes involved in epithelial-mesenchymal transition may play an important role in distinguishing glioblastoma from anaplastic astrocytoma. PMID:24475040

  12. Twenty-four signature genes predict the prognosis of oral squamous cell carcinoma with high accuracy and repeatability

    PubMed Central

    Gao, Jianyong; Tian, Gang; Han, Xu; Zhu, Qiang

    2018-01-01

    Oral squamous cell carcinoma (OSCC) is the sixth most common type cancer worldwide, with poor prognosis. The present study aimed to identify gene signatures that could classify OSCC and predict prognosis in different stages. A training data set (GSE41613) and two validation data sets (GSE42743 and GSE26549) were acquired from the online Gene Expression Omnibus database. In the training data set, patients were classified based on the tumor-node-metastasis staging system, and subsequently grouped into low stage (L) or high stage (H). Signature genes between L and H stages were selected by disparity index analysis, and classification was performed by the expression of these signature genes. The established classification was compared with the L and H classification, and fivefold cross validation was used to evaluate the stability. Enrichment analysis for the signature genes was implemented by the Database for Annotation, Visualization and Integration Discovery. Two validation data sets were used to determine the precise of classification. Survival analysis was conducted followed each classification using the package ‘survival’ in R software. A set of 24 signature genes was identified based on the classification model with the Fi value of 0.47, which was used to distinguish OSCC samples in two different stages. Overall survival of patients in the H stage was higher than those in the L stage. Signature genes were primarily enriched in ‘ether lipid metabolism’ pathway and biological processes such as ‘positive regulation of adaptive immune response’ and ‘apoptotic cell clearance’. The results provided a novel 24-gene set that may be used as biomarkers to predict OSCC prognosis with high accuracy, which may be used to determine an appropriate treatment program for patients with OSCC in addition to the traditional evaluation index. PMID:29257303

  13. Monitoring sepsis using electrical cell profiling.

    PubMed

    Prieto, Javier L; Su, Hao-Wei; Hou, Han Wei; Vera, Miguel Pinilla; Levy, Bruce D; Baron, Rebecca M; Han, Jongyoon; Voldman, Joel

    2016-11-01

    Sepsis is a potentially lethal condition that may be ameliorated through early monitoring of circulating activated leukocytes for faster stratification of severity of illness and improved administration of targeted treatment. Characterization of the intrinsic electrical properties of leukocytes is label-free and can provide a quick way to quantify the number of activated cells as sepsis progresses. Iso-dielectric separation (IDS) uses dielectrophoresis (DEP) to characterize the electrical signatures of cells. Here, we use IDS to show that activated and non-activated leukocytes have different electrical properties. We then present a double-sided version of the IDS platform to increase throughput to characterize thousands of cells. This new platform is less prone to cell fouling and allows faster characterization. Using peripheral blood samples from a cecal ligation and puncture (CLP) model of polymicrobial sepsis in mice, we estimate the number of activated leukocytes by looking into differences in the electrical properties of cells. We show for the first time using animal models that electrical cell profiling correlates with flow cytometry (FC) results and that IDS is therefore a good candidate for providing rapid monitoring of sepsis by quantifying the number of circulating activated leukocytes.

  14. Quantum blind dual-signature scheme without arbitrator

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Huang, Dazu; Shi, Jinjing; Guo, Ying

    2016-03-01

    Motivated by the elegant features of a bind signature, we suggest the design of a quantum blind dual-signature scheme with three phases, i.e., initial phase, signing phase and verification phase. Different from conventional schemes, legal messages are signed not only by the blind signatory but also by the sender in the signing phase. It does not rely much on an arbitrator in the verification phase as the previous quantum signature schemes usually do. The security is guaranteed by entanglement in quantum information processing. Security analysis demonstrates that the signature can be neither forged nor disavowed by illegal participants or attacker. It provides a potential application for e-commerce or e-payment systems with the current technology.

  15. Water quality parameter measurement using spectral signatures

    NASA Technical Reports Server (NTRS)

    White, P. E.

    1973-01-01

    Regression analysis is applied to the problem of measuring water quality parameters from remote sensing spectral signature data. The equations necessary to perform regression analysis are presented and methods of testing the strength and reliability of a regression are described. An efficient algorithm for selecting an optimal subset of the independent variables available for a regression is also presented.

  16. QFASAR: Quantitative fatty acid signature analysis with R

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2017-01-01

    Knowledge of predator diets provides essential insights into their ecology, yet diet estimation is challenging and remains an active area of research.Quantitative fatty acid signature analysis (QFASA) is a popular method of estimating diet composition that continues to be investigated and extended. However, software to implement QFASA has only recently become publicly available.I summarize a new R package, qfasar, for diet estimation using QFASA methods. The package also provides functionality to evaluate and potentially improve the performance of a library of prey signature data, compute goodness-of-fit diagnostics, and support simulation-based research. Several procedures in the package have not previously been published.qfasar makes traditional and recently published QFASA diet estimation methods accessible to ecologists for the first time. Use of the package is illustrated with signature data from Chukchi Sea polar bears and potential prey species.

  17. A novel RNA-sequencing-based miRNA signature predicts with recurrence and outcome of hepatocellular carcinoma.

    PubMed

    Fumao, Bai; Zhou, Huaibin; Ma, Mengni; Guan, Chen; Lyu, Jianxin; Meng, Qing H

    2018-05-02

    Hepatocellular carcinoma (HCC) is the fifth most common type of cancer and the second leading cause of cancer-related deaths worldwide. Given that the rate of HCC recurrence 5 years after liver resection is as high as 70%, patient with HCC typically have a poor outcome. A biomarker or set of biomarkers that could predict disease recurrence would have a substantial clinical impact, allowing earlier detection of recurrence and more effective treatment. With the aim of identifying a new microRNA (miRNA) signature associated with HCC recurrence, we analyzed data on 306 HCC patients for whom both miRNA expression profiles and complete clinical information were available from The Cancer Genome Atlas (TCGA) database. Through this analysis, we identified a six-miRNA signature that could effectively predict patients' recurrence risk; the high-risk and low-risk groups had significantly different recurrence-free survival rates. Time-dependent receiver operating characteristic analysis indicated that this signature had a good predictive performance. Multivariable Cox regression and stratified analyses demonstrated that the six-miRNA signature was independent of other clinical features. Functional enrichment analysis of the gene targets of the six prognostic miRNAs indicated enrichment mainly in cancer-related pathways and important cell biological processes. Our results support use of this six-miRNA signature as an independent factor for predicting recurrence and outcome of patients with HCC. Molecular Oncology (2018) © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  18. Unmixing the Materials and Mechanics Contributions in Non-resolved Object Signatures

    DTIC Science & Technology

    2008-09-01

    abundances from hyperspectral or multi-spectral time - resolved signatures. A Fourier analysis of temporal variation of material abundance provides...factorization technique to extract the temporal variation of material abundances from hyperspectral or multi-spectral time - resolved signatures. A Fourier...approximately one hundred wavelengths in the visible spectrum. The frame rate for the instrument was not large enough to collect time resolved data. However

  19. Design of Experiments for Both Experimental and Analytical Study of Exhaust Plume Effects on Sonic Boom

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2009-01-01

    Computational fluid dynamics (CFD) analysis has been performed to study the plume effects on sonic boom signature for isolated nozzle configurations. The objectives of these analyses were to provide comparison to past work using modern CFD analysis tools, to investigate the differences of high aspect ratio nozzles to circular (axisymmetric) nozzles, and to report the effects of under expanded nozzle operation on boom signature. CFD analysis was used to address the plume effects on sonic boom signature from a baseline exhaust nozzle. Nearfield pressure signatures were collected for nozzle pressure ratios (NPRs) between 6 and 10. A computer code was used to extrapolate these signatures to a ground-observed sonic boom N-wave. Trends show that there is a reduction in sonic boom N-wave signature as NPR is increased from 6 to 10. As low boom designs are developed and improved, there will be a need for understanding the interaction between the aircraft boat tail shocks and the exhaust nozzle plume. These CFD analyses will provide a baseline study for future analysis efforts. For further study, a design of experiments has been conducted to develop a hybrid method where both CFD and small scale wind tunnel testing will validate the observed trends. The CFD and testing will be used to screen a number of factors which are important to low boom propulsion integration, including boat tail angle, nozzle geometry, and the effect of spacing and stagger on nozzle pairs. To design the wind tunnel experiment, CFD was instrumental in developing a model which would provide adequate space to observe the nozzle and boat tail shock structure without interference from the wind tunnel walls.

  20. A reduction in ag/residential signature conflict using principal components analysis of LANDSAT temporal data

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Borden, F. Y.

    1977-01-01

    Methods to accurately delineate the types of land cover in the urban-rural transition zone of metropolitan areas were considered. The application of principal components analysis to multidate LANDSAT imagery was investigated as a means of reducing the overlap between residential and agricultural spectral signatures. The statistical concepts of principal components analysis were discussed, as well as the results of this analysis when applied to multidate LANDSAT imagery of the Washington, D.C. metropolitan area.

  1. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile δ13CH4 analysis

    NASA Astrophysics Data System (ADS)

    Rella, C.; Crosson, E.; Petron, G.; Sweeney, C.; Karion, A.

    2013-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the δ13CH4 signature to distinguish between natural gas and landfills or ruminants. We present measurements of mobile field δ13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region. (left panel) Distribution of oil and gas well pads (yellow) and landfills (blue) in the Dallas / Ft. Worth area. Mobile nocturnal measurements of methane are shown in red, indicating a strong degree of source heterogeneity. (right panel) Histogram of individual isotopic source signatures, showing distinct signatures for landfills (red) and oil and gas sources (green).

  2. System for detecting special nuclear materials

    DOEpatents

    Jandel, Marian; Rusev, Gencho Yordanov; Taddeucci, Terry Nicholas

    2015-07-14

    The present disclosure includes a radiological material detector having a convertor material that emits one or more photons in response to a capture of a neutron emitted by a radiological material; a photon detector arranged around the convertor material and that produces an electrical signal in response to a receipt of a photon; and a processor connected to the photon detector, the processor configured to determine the presence of a radiological material in response to a predetermined signature of the electrical signal produced at the photon detector. One or more detectors described herein can be integrated into a detection system that is suited for use in port monitoring, treaty compliance, and radiological material management activities.

  3. Study of electrical transport properties of (U 1- xY x)RuP 2Si 2

    NASA Astrophysics Data System (ADS)

    Radha, S.; Park, J.-G.; Roy, S. B.; Coles, B. R.; Nigam, A. K.; McEwen, K. A.

    1996-02-01

    Electrical resistivity and magnetoresistance ( {δϱ}/{ϱ}) measurements on a series of (U 1- xY x)Ru 2Si 2 (0 ⩽ x ⩽ 0.9) compounds in the temperature range 4.2-300 K and in magnetic fields up to 45 kOe are reported. The resistivity measurements do not show any signature of antiferromagnetism for x > 0.5. The compound URu 2Si 2 exhibits a large, positive ( {δϱ}/{ϱ}) presumably due to destruction of Kondo coherence as well as due to antiferromagnetism. The presence of even 5% Y at U-site weakens the Kondo coherence and reduces the magnetoresistance considerably.

  4. Micro-Doppler analysis of multiple frequency continuous wave radar signatures

    NASA Astrophysics Data System (ADS)

    Anderson, Michael G.; Rogers, Robert L.

    2007-04-01

    Micro-Doppler refers to Doppler scattering returns produced by non rigid-body motion. Micro-Doppler gives rise to many detailed radar image features in addition to those associated with bulk target motion. Targets of different classes (for example, humans, animals, and vehicles) produce micro-Doppler images that are often distinguishable even by nonexpert observers. Micro-Doppler features have great potential for use in automatic target classification algorithms. Although the potential benefit of using micro-Doppler in classification algorithms is high, relatively little experimental (non-synthetic) micro-Doppler data exists. Much of the existing experimental data comes from highly cooperative targets (human or vehicle targets directly approaching the radar). This research involved field data collection and analysis of micro-Doppler radar signatures from non-cooperative targets. The data was collected using a low cost Xband multiple frequency continuous wave (MFCW) radar with three transmit frequencies. The collected MFCW radar signatures contain data from humans, vehicles, and animals. The presented data includes micro-Doppler signatures previously unavailable in the literature such as crawling humans and various animal species. The animal micro-Doppler signatures include deer, dog, and goat datasets. This research focuses on the analysis of micro-Doppler from noncooperative targets approaching the radar at various angles, maneuvers, and postures.

  5. Characterization of Relatively Large Track Geometry Variations

    DOT National Transportation Integrated Search

    1982-03-01

    An analysis of existing track geometry data is described from which the signatures of key track geometry variations related to severe track-train dynamic interaction are identified and quantified. Mathematical representations of these signatures are ...

  6. CAD/CAM Preparation Design Effects on Endodontically Treated and Restored Molars

    DTIC Science & Technology

    2016-05-24

    ii APPROVED: Col Drew W . Fallis Dean, Air Force Postgraduate Dental School iii Acknowledgements Special thanks to Col Howard Roberts, Maj...excerpts, is with the permission of the copyright owner. Signature AARON T. DANCB. MAJ. USAF, DC v Printed Name USAF Postgraduate Dental School Keesler...internal amalgam-dentin 3 interface. Preparations were accomplished by one operator using a high speed electric dental hand piece (EA-SlLT, Adee

  7. Bearing defect signature analysis using advanced nonlinear signal analysis in a controlled environment

    NASA Technical Reports Server (NTRS)

    Zoladz, T.; Earhart, E.; Fiorucci, T.

    1995-01-01

    Utilizing high-frequency data from a highly instrumented rotor assembly, seeded bearing defect signatures are characterized using both conventional linear approaches, such as power spectral density analysis, and recently developed nonlinear techniques such as bicoherence analysis. Traditional low-frequency (less than 20 kHz) analysis and high-frequency envelope analysis of both accelerometer and acoustic emission data are used to recover characteristic bearing distress information buried deeply in acquired data. The successful coupling of newly developed nonlinear signal analysis with recovered wideband envelope data from accelerometers and acoustic emission sensors is the innovative focus of this research.

  8. Bloch oscillations in organic and inorganic polymers

    NASA Astrophysics Data System (ADS)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; de Almeida Fonseca, Antonio Luciano; e Silva, Geraldo Magela

    2017-04-01

    The transport of polarons above the mobility threshold in organic and inorganic polymers is theoretically investigated in the framework of a one-dimensional tight-binding model that includes lattice relaxation. The computational approach is based on parameters for which the model Hamiltonian suitably describes different polymer lattices in the presence of external electric fields. Our findings show that, above critical field strengths, a dissociated polaron moves through the polymer lattice as a free electron performing Bloch oscillations. These critical electric fields are considerably smaller for inorganic lattices in comparison to organic polymers. Interestingly, for inorganic lattices, the free electron propagates preserving charge and spin densities' localization which is a characteristic of a static polaron. Moreover, in the turning points of the spatial Bloch oscillations, transient polaron levels are formed inside the band gap, thus generating a fully characterized polaron structure. For the organic case, on the other hand, no polaron signature is observed: neither in the shape of the distortion—those polaron profile signatures are absent—nor in the energy levels—as no such polaron levels are formed during the simulation. These results solve controversial aspects concerning Bloch oscillations recently reported in the literature and may enlighten the understanding about the charge transport mechanism in polymers above their mobility edge.

  9. Automatic removal of cosmic ray signatures in Deep Impact images

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; A'Hearn, M. F.; Klaasen, K. P.

    The results of recognition of cosmic ray (CR) signatures on single images made during the Deep Impact mission were analyzed for several codes written by several authors. For automatic removal of CR signatures on many images, we suggest using the code imgclean ( http://pdssbn.astro.umd.edu/volume/didoc_0001/document/calibration_software/dical_v5/) written by E. Deutsch as other codes considered do not work properly automatically with a large number of images and do not run to completion for some images; however, other codes can be better for analysis of certain specific images. Sometimes imgclean detects false CR signatures near the edge of a comet nucleus, and it often does not recognize all pixels of long CR signatures. Our code rmcr is the only code among those considered that allows one to work with raw images. For most visual images made during low solar activity at exposure time t > 4 s, the number of clusters of bright pixels on an image per second per sq. cm of CCD was about 2-4, both for dark and normal sky images. At high solar activity, it sometimes exceeded 10. The ratio of the number of CR signatures consisting of n pixels obtained at high solar activity to that at low solar activity was greater for greater n. The number of clusters detected as CR signatures on a single infrared image is by at least a factor of several greater than the actual number of CR signatures; the number of clusters based on analysis of two successive dark infrared frames is in agreement with an expected number of CR signatures. Some glitches of false CR signatures include bright pixels repeatedly present on different infrared images. Our interactive code imr allows a user to choose the regions on a considered image where glitches detected by imgclean as CR signatures are ignored. In other regions chosen by the user, the brightness of some pixels is replaced by the local median brightness if the brightness of these pixels is greater by some factor than the median brightness. The interactive code allows one to delete long CR signatures and prevents removal of false CR signatures near the edge of the nucleus of the comet. The interactive code can be applied to editing any digital images. Results obtained can be used for other missions to comets.

  10. U.S. Army Research Laboratory (ARL) multimodal signatures database

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly

    2008-04-01

    The U.S. Army Research Laboratory (ARL) Multimodal Signatures Database (MMSDB) is a centralized collection of sensor data of various modalities that are co-located and co-registered. The signatures include ground and air vehicles, personnel, mortar, artillery, small arms gunfire from potential sniper weapons, explosives, and many other high value targets. This data is made available to Department of Defense (DoD) and DoD contractors, Intel agencies, other government agencies (OGA), and academia for use in developing target detection, tracking, and classification algorithms and systems to protect our Soldiers. A platform independent Web interface disseminates the signatures to researchers and engineers within the scientific community. Hierarchical Data Format 5 (HDF5) signature models provide an excellent solution for the sharing of complex multimodal signature data for algorithmic development and database requirements. Many open source tools for viewing and plotting HDF5 signatures are available over the Web. Seamless integration of HDF5 signatures is possible in both proprietary computational environments, such as MATLAB, and Free and Open Source Software (FOSS) computational environments, such as Octave and Python, for performing signal processing, analysis, and algorithm development. Future developments include extending the Web interface into a portal system for accessing ARL algorithms and signatures, High Performance Computing (HPC) resources, and integrating existing database and signature architectures into sensor networking environments.

  11. High order statistical signatures from source-driven measurements of subcritical fissile systems

    NASA Astrophysics Data System (ADS)

    Mattingly, John Kelly

    1998-11-01

    This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements.

  12. S100A9 and EGFR gene signatures predict disease progression in muscle invasive bladder cancer patients after chemotherapy.

    PubMed

    Kim, W T; Kim, J; Yan, C; Jeong, P; Choi, S Y; Lee, O J; Chae, Y B; Yun, S J; Lee, S C; Kim, W J

    2014-05-01

    In our previous gene expression profile analysis, IL1B, S100A8, S100A9, and EGFR were shown to be important mediators of muscle invasive bladder cancer (MIBC) progression. The aim of the present study was to investigate the ability of these gene signatures to predict disease progression after chemotherapy in patients with locally recurrent or metastatic MIBC. Patients with locally advanced MIBC who received chemotherapy were enrolled. The expression signatures of four genes were measured and carried out further functional analysis to confirm our findings. Two of the four genes, S100A9 and EGFR, were determined to significantly influence disease progression (P = 0.023, 0.045, respectively). Based on a receiver operating characteristic curve, a cut-off value for disease progression was determined. Patients with the good-prognostic signature group had a significantly longer time to progression and cancer-specific survival time than those with the poor-prognostic signature group (P < 0.001, 0.042, respectively). In the multivariate Cox regression analysis, gene signature was the only factor that significantly influenced disease progression [hazard ratio: 4.726, confidence interval: 1.623-13.763, P = 0.004]. In immunohistochemical analysis, S100A9 and EGFR positivity were associated with disease progression after chemotherapy. Protein expression of S100A9/EGFR showed modest correlation with gene expression of S100A9/EGFR (r = 0.395, P = 0.014 and r = 0.453, P = 0.004). Our functional analysis provided the evidence demonstrating that expression of S100A9 and EGFR closely associated chemoresistance, and that inhibition of S100A9 and EGFR may sensitize bladder tumor cells to the cisplatin-based chemotherapy. The S100A9/EGFR level is a novel prognostic marker to predict the chemoresponsiveness of patients with locally recurrent or metastatic MIBC.

  13. Surface Plasmon Enhanced Sensitive Detection for Possible Signature of Majorana Fermions via a Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    PubMed Central

    Chen, Hua-Jun; Zhu, Ka-Di

    2015-01-01

    In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929

  14. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis.

    PubMed

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-02-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  15. Quantum spin liquids and the metal-insulator transition in doped semiconductors.

    PubMed

    Potter, Andrew C; Barkeshli, Maissam; McGreevy, John; Senthil, T

    2012-08-17

    We describe a new possible route to the metal-insulator transition in doped semiconductors such as Si:P or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott localization of electrons into a quantum spin liquid state with diffusive charge neutral "spinon" excitations. Such a quantum spin liquid state can appear as an intermediate phase between the metal and the Anderson-Mott insulator. An immediate testable consequence is the presence of metallic thermal conductivity at low temperature in the electrical insulator near the metal-insulator transition. Further, we show that though the transition is second order, the zero temperature residual electrical conductivity will jump as the transition is approached from the metallic side. However, the electrical conductivity will have a nonmonotonic temperature dependence that may complicate the extrapolation to zero temperature. Signatures in other experiments and some comparisons with existing data are made.

  16. Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination.

    PubMed

    Thakar, Juilee; Mohanty, Subhasis; West, A Phillip; Joshi, Samit R; Ueda, Ikuyo; Wilson, Jean; Meng, Hailong; Blevins, Tamara P; Tsang, Sui; Trentalange, Mark; Siconolfi, Barbara; Park, Koonam; Gill, Thomas M; Belshe, Robert B; Kaech, Susan M; Shadel, Gerald S; Kleinstein, Steven H; Shaw, Albert C

    2015-01-01

    To elucidate gene expression pathways underlying age-associated impairment in influenza vaccine response, we screened young (age 21-30) and older (age≥65) adults receiving influenza vaccine in two consecutive seasons and identified those with strong or absent response to vaccine, including a subset of older adults meeting criteria for frailty. PBMCs obtained prior to vaccination (Day 0) and at day 2 or 4, day 7 and day 28 post-vaccine were subjected to gene expression microarray analysis. We defined a response signature and also detected induction of a type I interferon response at day 2 and a plasma cell signature at day 7 post-vaccine in young responders. The response signature was dysregulated in older adults, with the plasma cell signature induced at day 2, and was never induced in frail subjects (who were all non-responders). We also identified a mitochondrial signature in young vaccine responders containing genes mediating mitochondrial biogenesis and oxidative phosphorylation that was consistent in two different vaccine seasons and verified by analyses of mitochondrial content and protein expression. These results represent the first genome-wide transcriptional profiling analysis of age-associated dynamics following influenza vaccination, and implicate changes in mitochondrial biogenesis and function as a critical factor in human vaccine responsiveness.

  17. On the security of a novel probabilistic signature based on bilinear square Diffie-Hellman problem and its extension.

    PubMed

    Zhao, Zhenguo; Shi, Wenbo

    2014-01-01

    Probabilistic signature scheme has been widely used in modern electronic commerce since it could provide integrity, authenticity, and nonrepudiation. Recently, Wu and Lin proposed a novel probabilistic signature (PS) scheme using the bilinear square Diffie-Hellman (BSDH) problem. They also extended it to a universal designated verifier signature (UDVS) scheme. In this paper, we analyze the security of Wu et al.'s PS scheme and UDVS scheme. Through concrete attacks, we demonstrate both of their schemes are not unforgeable. The security analysis shows that their schemes are not suitable for practical applications.

  18. Determination of spectral signatures of substances in natural waters

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Philpot, W. D.; Davis, G.

    1978-01-01

    Optical remote sensing of water pollution offers the possibility of fast, large scale coverage at a relatively low cost. The possibility of using the spectral characteristics of the upwelling light from water for the purpose of ocean water quality monitoring was explained. The work was broken into several broad tasks as follows: (1) definition of a remotely measured spectral signature of water, (2) collection of field data and testing of the signature analysis, and (3) the possibility of using LANDSAT data for the identification of substances in water. An attempt to extract spectral signatures of acid waste and sediment was successful.

  19. Methods for threshold determination in multiplexed assays

    DOEpatents

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2014-06-24

    Methods for determination of threshold values of signatures comprised in an assay are described. Each signature enables detection of a target. The methods determine a probability density function of negative samples and a corresponding false positive rate curve. A false positive criterion is established and a threshold for that signature is determined as a point at which the false positive rate curve intersects the false positive criterion. A method for quantitative analysis and interpretation of assay results together with a method for determination of a desired limit of detection of a signature in an assay are also described.

  20. Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2004-01-01

    An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.

  1. Optical properties of an elliptic quantum ring: Eccentricity and electric field effects

    NASA Astrophysics Data System (ADS)

    Bejan, Doina; Stan, Cristina; Niculescu, Ecaterina C.

    2018-04-01

    We have theoretically studied the electronic and optical properties of a GaAs/AlGaAs elliptic quantum ring under in-plane electric field. The effects of an eccentric internal barrier -placed along the electric field direction, chosen as x-axis- and incident light polarization are particularly taken into account. The one-electron energy spectrum and wave functions are found using the adiabatic approximation and the finite element method within the effective-mass model. We show that it is possible to repair the structural distortion by applying an appropriate in-plane electric field, and the compensation is almost complete for all electronic states under study. For both concentric and eccentric quantum ring the intraband optical properties are very sensitive to the electric field and probe laser polarization. As expected, in the systems with eccentricity distortions the energy spectrum, as well as the optical response, strongly depends on the direction of the externally applied electric field, an effect that can be used as a signature of ring eccentricity. We demonstrated the possibility of generating second harmonic response at double resonance condition for incident light polarized along the x-axis if the electric field or/and eccentric barrier break the inversion symmetry. Also, strong third harmonic signal can be generated at triple resonance condition for a specific interval of electric field values when using y-polarized light.

  2. HTSFinder: Powerful Pipeline of DNA Signature Discovery by Parallel and Distributed Computing

    PubMed Central

    Karimi, Ramin; Hajdu, Andras

    2016-01-01

    Comprehensive effort for low-cost sequencing in the past few years has led to the growth of complete genome databases. In parallel with this effort, a strong need, fast and cost-effective methods and applications have been developed to accelerate sequence analysis. Identification is the very first step of this task. Due to the difficulties, high costs, and computational challenges of alignment-based approaches, an alternative universal identification method is highly required. Like an alignment-free approach, DNA signatures have provided new opportunities for the rapid identification of species. In this paper, we present an effective pipeline HTSFinder (high-throughput signature finder) with a corresponding k-mer generator GkmerG (genome k-mers generator). Using this pipeline, we determine the frequency of k-mers from the available complete genome databases for the detection of extensive DNA signatures in a reasonably short time. Our application can detect both unique and common signatures in the arbitrarily selected target and nontarget databases. Hadoop and MapReduce as parallel and distributed computing tools with commodity hardware are used in this pipeline. This approach brings the power of high-performance computing into the ordinary desktop personal computers for discovering DNA signatures in large databases such as bacterial genome. A considerable number of detected unique and common DNA signatures of the target database bring the opportunities to improve the identification process not only for polymerase chain reaction and microarray assays but also for more complex scenarios such as metagenomics and next-generation sequencing analysis. PMID:26884678

  3. HTSFinder: Powerful Pipeline of DNA Signature Discovery by Parallel and Distributed Computing.

    PubMed

    Karimi, Ramin; Hajdu, Andras

    2016-01-01

    Comprehensive effort for low-cost sequencing in the past few years has led to the growth of complete genome databases. In parallel with this effort, a strong need, fast and cost-effective methods and applications have been developed to accelerate sequence analysis. Identification is the very first step of this task. Due to the difficulties, high costs, and computational challenges of alignment-based approaches, an alternative universal identification method is highly required. Like an alignment-free approach, DNA signatures have provided new opportunities for the rapid identification of species. In this paper, we present an effective pipeline HTSFinder (high-throughput signature finder) with a corresponding k-mer generator GkmerG (genome k-mers generator). Using this pipeline, we determine the frequency of k-mers from the available complete genome databases for the detection of extensive DNA signatures in a reasonably short time. Our application can detect both unique and common signatures in the arbitrarily selected target and nontarget databases. Hadoop and MapReduce as parallel and distributed computing tools with commodity hardware are used in this pipeline. This approach brings the power of high-performance computing into the ordinary desktop personal computers for discovering DNA signatures in large databases such as bacterial genome. A considerable number of detected unique and common DNA signatures of the target database bring the opportunities to improve the identification process not only for polymerase chain reaction and microarray assays but also for more complex scenarios such as metagenomics and next-generation sequencing analysis.

  4. The Mimas ghost revisited - An analysis of the electron flux and electron microsignatures observed in the vicinity of Mimas at Saturn

    NASA Technical Reports Server (NTRS)

    Chenette, D. L.; Stone, E. C.

    1983-01-01

    An analysis of the electron-absorption signature observed by the cosmic-ray system on Voyager 2 near the orbit of Mimas is presented. It is found that these observations cannot be explained as the absorption signature of Mimas. By combining Pioneer 11 and Voyager 2 measurements of the electron flux at Mimas's orbit (L = 3.1), an electron spectrum is found in which most of the flux above about 100 keV is concentrated near 1 to 3 MeV. This spectral form is qualitatively consistent with the bandpass filter model of Van Allen et al. (1980). The expected Mimas absorption signature is calculated from this spectrum neglecting radial diffusion. Since no Mimas absorption signature was observed in the inbound Voyager 2 data, a lower limit on the diffusion coefficient for MeV electrons at L = 3.1 of D greater than 10 to the -8th sq Saturn radii/sec is obtained. With a diffusion coefficient this large, both the Voyager 2 and the Pioneer 11 small-scale electron-absorption-signature observations in Mimas's orbit are enigmatic. Thus the mechanism for producing these signatures is referred to as the Mimas ghost. A cloud of material in orbit with Mimas may account for the observed electron signature if the cloud is at least 1-percent opaque to electrons across a region extending over a few hundred kilometers.

  5. Identifying prognostic signature in ovarian cancer using DirGenerank

    PubMed Central

    Wang, Jian-Yong; Chen, Ling-Ling; Zhou, Xiong-Hui

    2017-01-01

    Identifying the prognostic genes in cancer is essential not only for the treatment of cancer patients, but also for drug discovery. However, it's still a big challenge to select the prognostic genes that can distinguish the risk of cancer patients across various data sets because of tumor heterogeneity. In this situation, the selected genes whose expression levels are statistically related to prognostic risks may be passengers. In this paper, based on gene expression data and prognostic data of ovarian cancer patients, we used conditional mutual information to construct gene dependency network in which the nodes (genes) with more out-degrees have more chances to be the modulators of cancer prognosis. After that, we proposed DirGenerank (Generank in direct netowrk) algorithm, which concerns both the gene dependency network and genes’ correlations to prognostic risks, to identify the gene signature that can predict the prognostic risks of ovarian cancer patients. Using ovarian cancer data set from TCGA (The Cancer Genome Atlas) as training data set, 40 genes with the highest importance were selected as prognostic signature. Survival analysis of these patients divided by the prognostic signature in testing data set and four independent data sets showed the signature can distinguish the prognostic risks of cancer patients significantly. Enrichment analysis of the signature with curated cancer genes and the drugs selected by CMAP showed the genes in the signature may be drug targets for therapy. In summary, we have proposed a useful pipeline to identify prognostic genes of cancer patients. PMID:28615526

  6. Search for supersymmetry at = 8 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Mayes, J. Backus; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Urbán, S. Cabrera; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Camarda, S.; Cameron, D.; Caminada, L. M.; Armadans, R. Caminal; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Barajas, C. A. Chavez; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Almenar, C. Cuenca; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Wemans, A. Do Valle; Doan, T. K. O.; Dobos, D.; Dobson, E.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Anjos, A. Dos; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Perez, S. Fernandez; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Bustos, A. C. Florez; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.; Gao, Y. S.; Walls, F. M. Garay; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Da Costa, J. Goncalves Pinto Firmino; Gonella, L.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Grybel, K.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Hengler, C.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Jiménez, Y. Hernández; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; van Huysduynen, L. Hooft; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Ivarsson, J.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Belenguer, M. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Rozas, A. Juste; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Miotto, G. Lehmann; Lei, X.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Miguens, J. Machado; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; de Andrade Filho, L. Manhaes; Ramos, J. A. Manjarres; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Moya, M. Miñano; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Moeller, V.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Hanninger, G. Nunes; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Pino, S. A. Olivares; Damazio, D. Oliveira; Garcia, E. Oliver; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Barrera, C. Oropeza; Orr, R. S.; Osculati, B.; Ospanov, R.; y Garzon, G. Otero; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Vazquez, J. G. Panduro; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Codina, E. Perez; García-Estañ, M. T. Pérez; Reale, V. Perez; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petteni, M.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Bueso, X. Portell; Pospelov, G. E.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reinsch, A.; Reisin, H.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Adam, E. Romero; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Ferrando, B. M. Salvachua; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Socher, F.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Camillocci, E. Solfaroli; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, V.; Sopko, B.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Staerz, S.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steele, G.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Castanheira, M. Teixeira Dias; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Cakir, I. Turk; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Gallego, E. Valladolid; Vallecorsa, S.; Ferrer, J. A. Valls; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vaque, F. Vives; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; della Porta, G. Zevi; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.

    2014-06-01

    A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ( e or μ) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb-1 of = 8 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated. [Figure not available: see fulltext.

  7. Analysis of thematic mapper simulator data collected over eastern North Dakota

    NASA Technical Reports Server (NTRS)

    Anderson, J. E. (Principal Investigator)

    1982-01-01

    The results of the analysis of aircraft-acquired thematic mapper simulator (TMS) data, collected to investigate the utility of thematic mapper data in crop area and land cover estimates, are discussed. Results of the analysis indicate that the seven-channel TMS data are capable of delineating the 13 crop types included in the study to an overall pixel classification accuracy of 80.97% correct, with relative efficiencies for four crop types examined between 1.62 and 26.61. Both supervised and unsupervised spectral signature development techniques were evaluated. The unsupervised methods proved to be inferior (based on analysis of variance) for the majority of crop types considered. Given the ground truth data set used for spectral signature development as well as evaluation of performance, it is possible to demonstrate which signature development technique would produce the highest percent correct classification for each crop type.

  8. Current status of the real-time processing of complex radar signatures

    NASA Astrophysics Data System (ADS)

    Clay, E.

    The real-time processing technique developed by ONERA to characterize radar signatures at the Brahms station is described. This technique is used for the real-time analysis of the RCS of airframes and rotating parts, the one-dimensional tomography of aircraft, and the RCS of electromagnetic decoys. Using this technique, it is also possible to optimize the experimental parameters, i.e., the analysis band, the microwave-network gain, and the electromagnetic window of the analysis.

  9. Analysis of Forgery Attack on One-Time Proxy Signature and the Improvement

    NASA Astrophysics Data System (ADS)

    Wang, Tian-Yin; Wei, Zong-Li

    2016-02-01

    In a recent paper, Yang et al. (Quant. Inf. Process. 13(9), 2007-2016, 2014) analyzed the security of one-time proxy signature scheme Wang and Wei (Quant. Inf. Process. 11(2), 455-463, 2012) and pointed out that it cannot satisfy the security requirements of unforgeability and undeniability because an eavesdropper Eve can forge a valid proxy signature on a message chosen by herself. However, we find that the so-called proxy message-signature pair forged by Eve is issued by the proxy signer in fact, and anybody can obtain it as a requester, which means that the forgery attack is not considered as a successful attack. Therefore, the conclusion that this scheme cannot satisfy the security requirements of proxy signature against forging and denying is not appropriate in this sense. Finally, we study the reason for the misunderstanding and clarify the security requirements for proxy signatures.

  10. Mixed-Fidelity Approach for Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Geiselhart, Karl

    2011-01-01

    This paper documents a mixed-fidelity approach for the design of low-boom supersonic aircraft with a focus on fuselage shaping.A low-boom configuration that is based on low-fidelity analysis is used as the baseline. The fuselage shape is modified iteratively to obtain a configuration with an equivalent-area distribution derived from computational fluid dynamics analysis that attempts to match a predetermined low-boom target area distribution and also yields a low-boom ground signature. The ground signature of the final configuration is calculated by using a state-of-the-art computational-fluid-dynamics-based boom analysis method that generates accurate midfield pressure distributions for propagation to the ground with ray tracing. The ground signature that is propagated from a midfield pressure distribution has a shaped ramp front, which is similar to the ground signature that is propagated from the computational fluid dynamics equivalent-area distribution. This result supports the validity of low-boom supersonic configuration design by matching a low-boom equivalent-area target, which is easier to accomplish than matching a low-boom midfield pressure target.

  11. Assessment of Gamma-Ray Spectra Analysis Method Utilizing the Fireworks Algorithm for various Error Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2018-01-01

    Significant role in enhancing nuclear nonproliferation plays the analysis of obtained data and the inference of the presence or not of special nuclear materials in them. Among various types of measurements, gamma-ray spectra is the widest used type of data utilized for analysis in nonproliferation. In this chapter, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, with non-zero coefficients expressing the detected signatures. FWA is tested on amore » set of experimentally obtained measurements and various objective functions -MSE, RMSE, Theil-2, MAE, MAPE, MAP- with results exhibiting its potential in providing high accuracy and high precision of detected signatures. Furthermore, FWA is benchmarked against genetic algorithms, and multiple linear regression with results exhibiting its superiority over the rest tested algorithms with respect to precision for MAE, MAPE and MAP measures.« less

  12. Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption.

    PubMed

    Kennedy, Stephen M; Aiken, Erik J; Beres, Kaytlyn A; Hahn, Adam R; Kamin, Samantha J; Hagness, Susan C; Booske, John H; Murphy, William L

    2014-01-01

    The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF's ability to disrupt plasma membranes. We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell's PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1-2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in applications where targeted destruction of unwanted cell populations is desired.

  13. Cationic Peptide Exposure Enhances Pulsed-Electric-Field-Mediated Membrane Disruption

    PubMed Central

    Kennedy, Stephen M.; Aiken, Erik J.; Beres, Kaytlyn A.; Hahn, Adam R.; Kamin, Samantha J.; Hagness, Susan C.; Booske, John H.; Murphy, William L.

    2014-01-01

    Background The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF’s ability to disrupt plasma membranes. Methodology/Principal Findings We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell’s PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1–2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Conclusions/Significance Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in applications where targeted destruction of unwanted cell populations is desired. PMID:24671150

  14. Sedimentary and geochemical signature of the 2016 Kaikōura Tsunami at Little Pigeon Bay: A depositional benchmark for the Banks Peninsula region, New Zealand

    NASA Astrophysics Data System (ADS)

    Williams, Shaun; Zhang, Tianran; Chagué, Catherine; Williams, James; Goff, James; Lane, Emily M.; Bind, Jochen; Qasim, Ilyas; Thomas, Kristie-Lee; Mueller, Christof; Hampton, Sam; Borella, Josh

    2018-07-01

    The 14 November 2016 Kaikōura Tsunami inundated Little Pigeon Bay in Banks Peninsula, New Zealand, and left a distinct sedimentary deposit, on the ground and within the cottage near the shore. Sedimentary (grain size) and geochemical (electrical conductivity and X-Ray Fluorescence) analyses on samples collected over successive field campaigns are used to characterize the deposits. Sediment distribution observed in the cottage in combination with flow direction indicators suggests that sediment and debris laid down within the building were predominantly the result of a single wave that had been channeled up the stream bed rather than from offshore. Salinity data indicated that the maximum tsunami-wetted and/or seawater-sprayed area extended 12.5 m farther inland than the maximum inundation distance inferred from the debris line observed a few days after the event. In addition, the salinity signature was short-lived. An overall inland waning of tsunami energy was indicated by the mean grain size and portable X-Ray Fluorescence elemental results. ITRAX data collected from three cores along an inland transect indicated a distinct elevated elemental signature at the surfaces of the cores, with an associated increase in magnetic susceptibility. Comparable signatures were also identified within subsurface stratigraphic sequences, and likely represent older tsunamis known to have inundated this bay as well as adjacent bays in Banks Peninsula. The sedimentary and geochemical signatures of the 2016 Kaikōura Tsunami at Little Pigeon Bay provide a modern benchmark that can be used to identify older tsunami deposits in the Banks Peninsula region.

  15. An Improved Quantum Proxy Blind Signature Scheme Based on Genuine Seven-Qubit Entangled State

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Yuan; Xie, Shu-Cui; Zhang, Jian-Zhong

    2017-07-01

    An improved quantum proxy blind signature scheme based on controlled teleportation is proposed in this paper. Genuine seven-qubit entangled state functions as quantum channel. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is unforgeability, undeniability, blind and unconditionally secure. Meanwhile, we propose a trust party to provide higher security, the trust party is costless.

  16. VIPER: Chronic Pain after Amputation: Inflammatory Mechanisms, Novel Analgesic Pathways, and Improved Patient Safety

    DTIC Science & Technology

    2017-10-01

    Through analysis of data obtained in the Molecular Signatures of Chronic Pain Subtypes study termed Veterans Integrated Pain Evaluation Research...immune cells (macrophages) to chronic pain while also evaluating novel analgesics in relevant animal models. The current proposal also attempts to...analysis of data obtained in the Molecular Signatures of Chronic Pain Subtypes study termed Veterans Integrated Pain Evaluation Research (VIPER

  17. Quantum dual signature scheme based on coherent states with entanglement swapping

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying

    2016-08-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).

  18. Interactome-transcriptome analysis discovers signatures complementary to GWAS Loci of Type 2 Diabetes

    PubMed Central

    Li, Jing-Woei; Lee, Heung-Man; Wang, Ying; Tong, Amy Hin-Yan; Yip, Kevin Y.; Tsui, Stephen Kwok-Wing; Lok, Si; Ozaki, Risa; Luk, Andrea O; Kong, Alice P. S.; So, Wing-Yee; Ma, Ronald C. W.; Chan, Juliana C. N.; Chan, Ting-Fung

    2016-01-01

    Protein interactions play significant roles in complex diseases. We analyzed peripheral blood mononuclear cells (PBMC) transcriptome using a multi-method strategy. We constructed a tissue-specific interactome (T2Di) and identified 420 molecular signatures associated with T2D-related comorbidity and symptoms, mainly implicated in inflammation, adipogenesis, protein phosphorylation and hormonal secretion. Apart from explaining the residual associations within the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study, the T2Di signatures were enriched in pathogenic cell type-specific regulatory elements related to fetal development, immunity and expression quantitative trait loci (eQTL). The T2Di revealed a novel locus near a well-established GWAS loci AChE, in which SRRT interacts with JAZF1, a T2D-GWAS gene implicated in pancreatic function. The T2Di also included known anti-diabetic drug targets (e.g. PPARD, MAOB) and identified possible druggable targets (e.g. NCOR2, PDGFR). These T2Di signatures were validated by an independent computational method, and by expression data of pancreatic islet, muscle and liver with some of the signatures (CEBPB, SREBF1, MLST8, SRF, SRRT and SLC12A9) confirmed in PBMC from an independent cohort of 66 T2D and 66 control subjects. By combining prior knowledge and transcriptome analysis, we have constructed an interactome to explain the multi-layered regulatory pathways in T2D. PMID:27752041

  19. RNA-Seq-based toxicogenomic assessment of fresh frozen and formalin-fixed tissues yields similar mechanistic insights.

    PubMed

    Auerbach, Scott S; Phadke, Dhiral P; Mav, Deepak; Holmgren, Stephanie; Gao, Yuan; Xie, Bin; Shin, Joo Heon; Shah, Ruchir R; Merrick, B Alex; Tice, Raymond R

    2015-07-01

    Formalin-fixed, paraffin-embedded (FFPE) pathology specimens represent a potentially vast resource for transcriptomic-based biomarker discovery. We present here a comparison of results from a whole transcriptome RNA-Seq analysis of RNA extracted from fresh frozen and FFPE livers. The samples were derived from rats exposed to aflatoxin B1 (AFB1 ) and a corresponding set of control animals. Principal components analysis indicated that samples were separated in the two groups representing presence or absence of chemical exposure, both in fresh frozen and FFPE sample types. Sixty-five percent of the differentially expressed transcripts (AFB1 vs. controls) in fresh frozen samples were also differentially expressed in FFPE samples (overlap significance: P < 0.0001). Genomic signature and gene set analysis of AFB1 differentially expressed transcript lists indicated highly similar results between fresh frozen and FFPE at the level of chemogenomic signatures (i.e., single chemical/dose/duration elicited transcriptomic signatures), mechanistic and pathology signatures, biological processes, canonical pathways and transcription factor networks. Overall, our results suggest that similar hypotheses about the biological mechanism of toxicity would be formulated from fresh frozen and FFPE samples. These results indicate that phenotypically anchored archival specimens represent a potentially informative resource for signature-based biomarker discovery and mechanistic characterization of toxicity. Copyright © 2014 John Wiley & Sons, Ltd.

  20. On the Statistical Analysis of the Radar Signature of the MQM-34D

    DTIC Science & Technology

    1975-01-31

    target drone for aspect angles near normal to the roll axis for a vertically polarized measurements system. The radar cross section and glint are... drone . The raw data from RATSCAT are reported in graphical form in an AFSWC three-volume report.. The results reported here are a statistical analysis of...Ta1get Drones , AFSWC-rR.74-0l, January 1974. 2James W. Wright, On the Statistical Analysis of the Radar Signature of the MQM-34D, Interim Report

  1. Security analysis of boolean algebra based on Zhang-Wang digital signature scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jinbin, E-mail: jbzheng518@163.com

    2014-10-06

    In 2005, Zhang and Wang proposed an improvement signature scheme without using one-way hash function and message redundancy. In this paper, we show that this scheme exits potential safety concerns through the analysis of boolean algebra, such as bitwise exclusive-or, and point out that mapping is not one to one between assembly instructions and machine code actually by means of the analysis of the result of the assembly program segment, and which possibly causes safety problems unknown to the software.

  2. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  3. On the Security of a Novel Probabilistic Signature Based on Bilinear Square Diffie-Hellman Problem and Its Extension

    PubMed Central

    Zhao, Zhenguo; Shi, Wenbo

    2014-01-01

    Probabilistic signature scheme has been widely used in modern electronic commerce since it could provide integrity, authenticity, and nonrepudiation. Recently, Wu and Lin proposed a novel probabilistic signature (PS) scheme using the bilinear square Diffie-Hellman (BSDH) problem. They also extended it to a universal designated verifier signature (UDVS) scheme. In this paper, we analyze the security of Wu et al.'s PS scheme and UDVS scheme. Through concrete attacks, we demonstrate both of their schemes are not unforgeable. The security analysis shows that their schemes are not suitable for practical applications. PMID:25025083

  4. Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures

    NASA Technical Reports Server (NTRS)

    Chang, C. S.

    1975-01-01

    The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.

  5. A method for detecting structural deterioration in bridges

    NASA Technical Reports Server (NTRS)

    Cole, H. A., Jr.; Reed, R. E., Jr.

    1974-01-01

    The problem of detecting deterioration in bridge structures is studied with the use of Randomdec analysis. Randomdec signatures, derived from the ambient bridge vibrations in the acoustic range, were obtained for a girder bridge over a period of a year to show the insensitivity of the signatures to environmental changes. A laboratory study was also conducted to show the sensitivity of signatures to fatigue cracks on the order of a centimeter in length in steel beams.

  6. Radiogenomics analysis identifies correlations of digital mammography with clinical molecular signatures in breast cancer.

    PubMed

    Tamez-Peña, Jose-Gerardo; Rodriguez-Rojas, Juan-Andrés; Gomez-Rueda, Hugo; Celaya-Padilla, Jose-Maria; Rivera-Prieto, Roxana-Alicia; Palacios-Corona, Rebeca; Garza-Montemayor, Margarita; Cardona-Huerta, Servando; Treviño, Victor

    2018-01-01

    In breast cancer, well-known gene expression subtypes have been related to a specific clinical outcome. However, their impact on the breast tissue phenotype has been poorly studied. Here, we investigate the association of imaging data of tumors to gene expression signatures from 71 patients with breast cancer that underwent pre-treatment digital mammograms and tumor biopsies. From digital mammograms, a semi-automated radiogenomics analysis generated 1,078 features describing the shape, signal distribution, and texture of tumors along their contralateral image used as control. From tumor biopsy, we estimated the OncotypeDX and PAM50 recurrence scores using gene expression microarrays. Then, we used multivariate analysis under stringent cross-validation to train models predicting recurrence scores. Few univariate features reached Spearman correlation coefficients above 0.4. Nevertheless, multivariate analysis yielded significantly correlated models for both signatures (correlation of OncotypeDX = 0.49 ± 0.07 and PAM50 = 0.32 ± 0.10 in stringent cross-validation and OncotypeDX = 0.83 and PAM50 = 0.78 for a unique model). Equivalent models trained from the unaffected contralateral breast were not correlated suggesting that the image signatures were tumor-specific and that overfitting was not a considerable issue. We also noted that models were improved by combining clinical information (triple negative status and progesterone receptor). The models used mostly wavelets and fractal features suggesting their importance to capture tumor information. Our results suggest that molecular-based recurrence risk and breast cancer subtypes have observable radiographic phenotypes. To our knowledge, this is the first study associating mammographic information to gene expression recurrence signatures.

  7. Radiogenomics analysis identifies correlations of digital mammography with clinical molecular signatures in breast cancer

    PubMed Central

    Tamez-Peña, Jose-Gerardo; Rodriguez-Rojas, Juan-Andrés; Gomez-Rueda, Hugo; Celaya-Padilla, Jose-Maria; Rivera-Prieto, Roxana-Alicia; Palacios-Corona, Rebeca; Garza-Montemayor, Margarita; Cardona-Huerta, Servando

    2018-01-01

    In breast cancer, well-known gene expression subtypes have been related to a specific clinical outcome. However, their impact on the breast tissue phenotype has been poorly studied. Here, we investigate the association of imaging data of tumors to gene expression signatures from 71 patients with breast cancer that underwent pre-treatment digital mammograms and tumor biopsies. From digital mammograms, a semi-automated radiogenomics analysis generated 1,078 features describing the shape, signal distribution, and texture of tumors along their contralateral image used as control. From tumor biopsy, we estimated the OncotypeDX and PAM50 recurrence scores using gene expression microarrays. Then, we used multivariate analysis under stringent cross-validation to train models predicting recurrence scores. Few univariate features reached Spearman correlation coefficients above 0.4. Nevertheless, multivariate analysis yielded significantly correlated models for both signatures (correlation of OncotypeDX = 0.49 ± 0.07 and PAM50 = 0.32 ± 0.10 in stringent cross-validation and OncotypeDX = 0.83 and PAM50 = 0.78 for a unique model). Equivalent models trained from the unaffected contralateral breast were not correlated suggesting that the image signatures were tumor-specific and that overfitting was not a considerable issue. We also noted that models were improved by combining clinical information (triple negative status and progesterone receptor). The models used mostly wavelets and fractal features suggesting their importance to capture tumor information. Our results suggest that molecular-based recurrence risk and breast cancer subtypes have observable radiographic phenotypes. To our knowledge, this is the first study associating mammographic information to gene expression recurrence signatures. PMID:29596496

  8. Field-aligned currents in the undisturbed polar ionosphere

    NASA Astrophysics Data System (ADS)

    Kroehl, H. W.

    1989-09-01

    Field-aligned currents, FAC's, which couple ionospheric currents at high latitudes with magnetospheric currents have become an essential cornerstone to our understanding of plasma dynamics in the polar region and in the earth's magnetosphere. Initial investigators of polar electrodynamics including the aurora were unable to distinguish between the ground magnetic signatures of a purely two-dimensional current and those from a three-dimensional current system, ergo many scientists ignored the possible existence of these vertical currents. However, data from magnetometers and electrostatic analyzers flown on low-altitude, polar-orbiting satellites proved beyond any reasonable doubt that field-aligned currents existed, and that different ionospheric regions were coupled to different magnetospheric regions which were dominated by different electrodynamic processes, e.g., magnetospheric convection electric fields, magnetospheric substorms and parallel electric fields. Therefore, to define the “undisturbed” polar ionosphere and its structure and dynamics, one needs to consider these electrodynamic processes, to select times for analysis when they are not strongly active and to remember that the polar ionosphere may be disturbed when the equatorial, mid-latitude and sub-auroral ionospheres are not. In this paper we will define the principle high-latitude current systems, describe the effects of FAC's associated with these systems, review techniques which would minimize these effects and present our description of the “undisturbed” polar ionosphere.

  9. CRC-113 gene expression signature for predicting prognosis in patients with colorectal cancer

    PubMed Central

    Nguyen, Dinh Truong; Kim, Jin-Hwan; Jo, Yong Hwa; Shahid, Muhammad; Akter, Salima; Aryal, Saurav Nath; Yoo, Ji Youn; Ahn, Yong-Joo; Cho, Kyoung Min; Lee, Ju-Seog; Choe, Wonchae; Kang, Insug; Ha, Joohun; Kim, Sung Soo

    2015-01-01

    Colorectal cancer (CRC) is the third leading cause of global cancer mortality. Recent studies have proposed several gene signatures to predict CRC prognosis, but none of those have proven reliable for predicting prognosis in clinical practice yet due to poor reproducibility and molecular heterogeneity. Here, we have established a prognostic signature of 113 probe sets (CRC-113) that include potential biomarkers and reflect the biological and clinical characteristics. Robustness and accuracy were significantly validated in external data sets from 19 centers in five countries. In multivariate analysis, CRC-113 gene signature showed a stronger prognostic value for survival and disease recurrence in CRC patients than current clinicopathological risk factors and molecular alterations. We also demonstrated that the CRC-113 gene signature reflected both genetic and epigenetic molecular heterogeneity in CRC patients. Furthermore, incorporation of the CRC-113 gene signature into a clinical context and molecular markers further refined the selection of the CRC patients who might benefit from postoperative chemotherapy. Conclusively, CRC-113 gene signature provides new possibilities for improving prognostic models and personalized therapeutic strategies. PMID:26397224

  10. CRC-113 gene expression signature for predicting prognosis in patients with colorectal cancer.

    PubMed

    Nguyen, Minh Nam; Choi, Tae Gyu; Nguyen, Dinh Truong; Kim, Jin-Hwan; Jo, Yong Hwa; Shahid, Muhammad; Akter, Salima; Aryal, Saurav Nath; Yoo, Ji Youn; Ahn, Yong-Joo; Cho, Kyoung Min; Lee, Ju-Seog; Choe, Wonchae; Kang, Insug; Ha, Joohun; Kim, Sung Soo

    2015-10-13

    Colorectal cancer (CRC) is the third leading cause of global cancer mortality. Recent studies have proposed several gene signatures to predict CRC prognosis, but none of those have proven reliable for predicting prognosis in clinical practice yet due to poor reproducibility and molecular heterogeneity. Here, we have established a prognostic signature of 113 probe sets (CRC-113) that include potential biomarkers and reflect the biological and clinical characteristics. Robustness and accuracy were significantly validated in external data sets from 19 centers in five countries. In multivariate analysis, CRC-113 gene signature showed a stronger prognostic value for survival and disease recurrence in CRC patients than current clinicopathological risk factors and molecular alterations. We also demonstrated that the CRC-113 gene signature reflected both genetic and epigenetic molecular heterogeneity in CRC patients. Furthermore, incorporation of the CRC-113 gene signature into a clinical context and molecular markers further refined the selection of the CRC patients who might benefit from postoperative chemotherapy. Conclusively, CRC-113 gene signature provides new possibilities for improving prognostic models and personalized therapeutic strategies.

  11. Feasibility study of short-term earthquake prediction using ionospheric anomalies immediately before large earthquakes

    NASA Astrophysics Data System (ADS)

    Heki, K.; He, L.

    2017-12-01

    We showed that positive and negative electron density anomalies emerge above the fault immediately before they rupture, 40/20/10 minutes before Mw9/8/7 earthquakes (Heki, 2011 GRL; Heki and Enomoto, 2013 JGR; He and Heki 2017 JGR). These signals are stronger for earthquake with larger Mw and under higher background vertical TEC (total electron conetent) (Heki and Enomoto, 2015 JGR). The epicenter, the positive and the negative anomalies align along the local geomagnetic field (He and Heki, 2016 GRL), suggesting electric fields within ionosphere are responsible for making the anomalies (Kuo et al., 2014 JGR; Kelley et al., 2017 JGR). Here we suppose the next Nankai Trough earthquake that may occur within a few tens of years in Southwest Japan, and will discuss if we can recognize its preseismic signatures in TEC by real-time observations with GNSS.During high geomagnetic activities, large-scale traveling ionospheric disturbances (LSTID) often propagate from auroral ovals toward mid-latitude regions, and leave similar signatures to preseismic anomalies. This is a main obstacle to use preseismic TEC changes for practical short-term earthquake prediction. In this presentation, we show that the same anomalies appeared 40 minutes before the mainshock above northern Australia, the geomagnetically conjugate point of the 2011 Tohoku-oki earthquake epicenter. This not only demonstrates that electric fields play a role in making the preseismic TEC anomalies, but also offers a possibility to discriminate preseismic anomalies from those caused by LSTID. By monitoring TEC in the conjugate areas in the two hemisphere, we can recognize anomalies with simultaneous onset as those caused by within-ionosphere electric fields (e.g. preseismic anomalies, night-time MSTID) and anomalies without simultaneous onset as gravity-wave origin disturbances (e.g. LSTID, daytime MSTID).

  12. A Mixed-Fidelity Approach for Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Geiselhart, Karl A.

    2010-01-01

    This paper documents a mixed-fidelity approach for the design of low-boom supersonic aircraft as a viable approach for designing a practical low-boom supersonic configuration. A low-boom configuration that is based on low-fidelity analysis is used as the baseline. Tail lift is included to help tailor the aft portion of the ground signature. A comparison of low- and high-fidelity analysis results demonstrates the necessity of using computational fluid dynamics (CFD) analysis in a low-boom supersonic configuration design process. The fuselage shape is modified iteratively to obtain a configuration with a CFD equivalent-area distribution that matches a predetermined low-boom target distribution. The mixed-fidelity approach can easily refine the low-fidelity low-boom baseline into a low-boom configuration with the use of CFD equivalent-area analysis. The ground signature of the final configuration is calculated by using a state-of-the-art CFD-based boom analysis method that generates accurate midfield pressure distributions for propagation to the ground with ray tracing. The ground signature that is propagated from a midfield pressure distribution has a shaped ramp front, which is similar to the ground signature that is propagated from the CFD equivalent-area distribution. This result confirms the validity of the low-boom supersonic configuration design by matching a low-boom equivalent-area target, which is easier to accomplish than matching a low-boom midfield pressure target.

  13. Statistical analysis of the magnetization signatures of impact basins

    NASA Astrophysics Data System (ADS)

    Gabasova, L. R.; Wieczorek, M. A.

    2017-09-01

    We quantify the magnetic signatures of the largest lunar impact basins using recent mission data and robust statistical bounds, and obtain an early activity timeline for the lunar core dynamo which appears to peak earlier than indicated by Apollo paleointensity measurements.

  14. Remote detection of rotating machinery with a portable atomic magnetometer.

    PubMed

    Marmugi, Luca; Gori, Lorenzo; Hussain, Sarah; Deans, Cameron; Renzoni, Ferruccio

    2017-01-20

    We demonstrate remote detection of rotating machinery, using an atomic magnetometer at room temperature and in an unshielded environment. The system relies on the coupling of the AC magnetic signature of the target with the spin-polarized, precessing atomic vapor of a radio-frequency optical atomic magnetometer. The AC magnetic signatures of rotating equipment or electric motors appear as sidebands in the power spectrum of the atomic sensor, which can be tuned to avoid noisy bands that would otherwise hamper detection. A portable apparatus is implemented and experimentally tested. Proof-of-concept investigations are performed with test targets mimicking possible applications, and the operational conditions for optimum detection are determined. Our instrument provides comparable or better performance than a commercial fluxgate and allows detection of rotating machinery behind a wall. These results demonstrate the potential for ultrasensitive devices for remote industrial and usage monitoring, security, and surveillance.

  15. The auroral current circuit and field-aligned currents observed by FAST

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Bonnell, J. W.; Strangeway, R. J.; Kepko, L.; Ergun, R. E.; McFadden, J. P.; Carlson, C. W.; Peria, W.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L.; Pfaff, R.

    FAST observes signatures of small-scale downward-going current at the edges of the inverted-V regions where the primary (auroral) electrons are found. In the winter pre-midnight auroral zone these downward currents are carried by upward flowing low- and medium-energy (up to several keV) electron beams. FAST instrumentation shows agreement between the current densities inferred from both the electron distributions and gradients in the magnetic field. FAST data taken near apogee (˜4000-km altitude) commonly show downward current magnetic field deflections consistent with the observed upward flux of ˜109 electrons cm-2 s-1, or current densities of several µA m-2. The electron, field-aligned current and electric field signatures indicate the downward currents may be associated with “black aurora” and auroral ionospheric cavities. The field-aligned voltage-current relationship in the downward current region is nonlinear.

  16. Electron Energization and Mixing Observed by MMS in the Vicinity of an Electron Diffusion Region During Magnetopause Reconnection

    NASA Technical Reports Server (NTRS)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John; hide

    2016-01-01

    Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.

  17. Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection

    NASA Astrophysics Data System (ADS)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John; Giles, Barbara; Strangeway, Robert; Russell, Christopher; Khotyaintsev, Yuri; Burch, Jim; Moore, Thomas; Lavraud, Benoit; Phan, Tai; Avanov, Levon

    2016-06-01

    Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya

    Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the fieldmore » strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Finally, our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.« less

  19. Searching for topological defect dark matter via nongravitational signatures.

    PubMed

    Stadnik, Y V; Flambaum, V V

    2014-10-10

    We propose schemes for the detection of topological defect dark matter using pulsars and other luminous extraterrestrial systems via nongravitational signatures. The dark matter field, which makes up a defect, may interact with standard model particles, including quarks and the photon, resulting in the alteration of their masses. When a topological defect passes through a pulsar, its mass, radius, and internal structure may be altered, resulting in a pulsar "quake." A topological defect may also function as a cosmic dielectric material with a distinctive frequency-dependent index of refraction, which would give rise to the time delay of a periodic extraterrestrial light or radio signal, and the dispersion of a light or radio source in a manner distinct to a gravitational lens. A topological defect passing through Earth may alter Earth's period of rotation and give rise to temporary nonzero electric dipole moments for an electron, proton, neutron, nuclei and atoms.

  20. Automated real-time structure health monitoring via signature pattern recognition

    NASA Astrophysics Data System (ADS)

    Sun, Fanping P.; Chaudhry, Zaffir A.; Rogers, Craig A.; Majmundar, M.; Liang, Chen

    1995-05-01

    Described in this paper are the details of an automated real-time structure health monitoring system. The system is based on structural signature pattern recognition. It uses an array of piezoceramic patches bonded to the structure as integrated sensor-actuators, an electric impedance analyzer for structural frequency response function acquisition and a PC for control and graphic display. An assembled 3-bay truss structure is employed as a test bed. Two issues, the localization of sensing area and the sensor temperature drift, which are critical for the success of this technique are addressed and a novel approach of providing temperature compensation using probability correlation function is presented. Due to the negligible weight and size of the solid-state sensor array and its ability to sense incipient-type damage, the system can eventually be implemented on many types of structures such as aircraft, spacecraft, large-span dome roof and steel bridges requiring multilocation and real-time health monitoring.

  1. Behavioral Stochastic Resonance

    NASA Astrophysics Data System (ADS)

    Freund, Jan A.; Schimansky-Geier, Lutz; Beisner, Beatrix; Neiman, Alexander; Russell, David F.; Yakusheva, Tatyana; Moss, Frank

    2001-03-01

    Zooplankton emit weak electric fields into the surrounding water that originate from their own muscular activities associated with swimming and feeding. Juvenile paddlefish prey upon single zooplankton by detecting and tracking these weak electric signatures. The passive electric sense in the fish is provided by an elaborate array of electroreceptors, Ampullae Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the fish use stochastic resonance to enhance prey capture near the detection threshold of their sensory system. But stochastic resonance requires an external source of electrical noise in order to function. The required noise can be provided by a swarm of plankton, for example Daphnia. Thus juvenile paddlefish can detect and attack single Daphnia as outliers in the vicinity of the swarm by making use of noise from the swarm itself. From the power spectral density of the noise plus the weak signal from a single Daphnia we calculate the signal-to-noise ratio and the Fisher information at the surface of the paddlefish's rostrum. The results predict a specific attack pattern for the paddlefish that appears to be experimentally testable.

  2. Selection Signature Analysis Implicates the PC1/PCSK1 Region for Chicken Abdominal Fat Content

    PubMed Central

    Wang, Zhipeng; Zhang, Yuandan; Wang, Shouzhi; Wang, Ning; Ma, Li; Leng, Li; Wang, Shengwen; Wang, Qigui; Wang, Yuxiang; Tang, Zhiquan; Li, Ning; Da, Yang; Li, Hui

    2012-01-01

    We conducted a selection signature analysis using the chicken 60k SNP chip in two chicken lines that had been divergently selected for abdominal fat content (AFC) for 11 generations. The selection signature analysis used multiple signals of selection, including long-range allele frequency differences between the lean and fat lines, long-range heterozygosity changes, linkage disequilibrium, haplotype frequencies, and extended haplotype homozygosity. Multiple signals of selection identified ten signatures on chromosomes 1, 2, 4, 5, 11, 15, 20, 26 and Z. The 0.73 Mb PC1/PCSK1 region of the Z chromosome at 55.43-56.16 Mb was the most heavily selected region. This region had 26 SNP markers and seven genes, Mar-03, SLC12A2, FBN2, ERAP1, CAST, PC1/PCSK1 and ELL2, where PC1/PCSK1 are the chicken/human names for the same gene. The lean and fat lines had two main haplotypes with completely opposite SNP alleles for the 26 SNP markers and were virtually line-specific, and had a recombinant haplotype with nearly equal frequency (0.193 and 0.196) in both lines. Other haplotypes in this region had negligible frequencies. Nine other regions with selection signatures were PAH-IGF1, TRPC4, GJD4-CCNY, NDST4, NOVA1, GALNT9, the ESRP2-GALR1 region with five genes, the SYCP2-CADH4 with six genes, and the TULP1-KIF21B with 14 genes. Genome-wide association analysis showed that nearly all regions with evidence of selection signature had SNP effects with genome-wide significance (P<10–6) on abdominal fat weight and percentage. The results of this study provide specific gene targets for the control of chicken AFC and a potential model of AFC in human obesity. PMID:22792402

  3. Selection signature analysis implicates the PC1/PCSK1 region for chicken abdominal fat content.

    PubMed

    Zhang, Hui; Hu, Xiaoxiang; Wang, Zhipeng; Zhang, Yuandan; Wang, Shouzhi; Wang, Ning; Ma, Li; Leng, Li; Wang, Shengwen; Wang, Qigui; Wang, Yuxiang; Tang, Zhiquan; Li, Ning; Da, Yang; Li, Hui

    2012-01-01

    We conducted a selection signature analysis using the chicken 60k SNP chip in two chicken lines that had been divergently selected for abdominal fat content (AFC) for 11 generations. The selection signature analysis used multiple signals of selection, including long-range allele frequency differences between the lean and fat lines, long-range heterozygosity changes, linkage disequilibrium, haplotype frequencies, and extended haplotype homozygosity. Multiple signals of selection identified ten signatures on chromosomes 1, 2, 4, 5, 11, 15, 20, 26 and Z. The 0.73 Mb PC1/PCSK1 region of the Z chromosome at 55.43-56.16 Mb was the most heavily selected region. This region had 26 SNP markers and seven genes, Mar-03, SLC12A2, FBN2, ERAP1, CAST, PC1/PCSK1 and ELL2, where PC1/PCSK1 are the chicken/human names for the same gene. The lean and fat lines had two main haplotypes with completely opposite SNP alleles for the 26 SNP markers and were virtually line-specific, and had a recombinant haplotype with nearly equal frequency (0.193 and 0.196) in both lines. Other haplotypes in this region had negligible frequencies. Nine other regions with selection signatures were PAH-IGF1, TRPC4, GJD4-CCNY, NDST4, NOVA1, GALNT9, the ESRP2-GALR1 region with five genes, the SYCP2-CADH4 with six genes, and the TULP1-KIF21B with 14 genes. Genome-wide association analysis showed that nearly all regions with evidence of selection signature had SNP effects with genome-wide significance (P<10(-6)) on abdominal fat weight and percentage. The results of this study provide specific gene targets for the control of chicken AFC and a potential model of AFC in human obesity.

  4. Plume mapping and isotopic characterisation of anthropogenic methane sources

    NASA Astrophysics Data System (ADS)

    Zazzeri, G.; Lowry, D.; Fisher, R. E.; France, J. L.; Lanoisellé, M.; Nisbet, E. G.

    2015-06-01

    Methane stable isotope analysis, coupled with mole fraction measurement, has been used to link isotopic signature to methane emissions from landfill sites, coal mines and gas leaks in the United Kingdom. A mobile Picarro G2301 CRDS (Cavity Ring-Down Spectroscopy) analyser was installed on a vehicle, together with an anemometer and GPS receiver, to measure atmospheric methane mole fractions and their relative location while driving at speeds up to 80 kph. In targeted areas, when the methane plume was intercepted, air samples were collected in Tedlar bags, for δ13C-CH4 isotopic analysis by CF-GC-IRMS (Continuous Flow Gas Chromatography-Isotope Ratio Mass Spectrometry). This method provides high precision isotopic values, determining δ13C-CH4 to ±0.05 per mil. The bulk signature of the methane plume into the atmosphere from the whole source area was obtained by Keeling plot analysis, and a δ13C-CH4 signature, with the relative uncertainty, allocated to each methane source investigated. Both landfill and natural gas emissions in SE England have tightly constrained isotopic signatures. The averaged δ13C-CH4 for landfill sites is -58 ± 3‰. The δ13C-CH4 signature for gas leaks is also fairly constant around -36 ± 2‰, a value characteristic of homogenised North Sea supply. In contrast, signatures for coal mines in N. England and Wales fall in a range of -51.2 ± 0.3‰ to -30.9 ± 1.4‰, but can be tightly constrained by region. The study demonstrates that CRDS-based mobile methane measurement coupled with off-line high precision isotopic analysis of plume samples is an efficient way of characterising methane sources. It shows that isotopic measurements allow type identification, and possible location of previously unknown methane sources. In modelling studies this measurement provides an independent constraint to determine the contributions of different sources to the regional methane budget and in the verification of inventory source distribution.

  5. Meta-Analysis of Transcriptome Data Related to Hippocampus Biopsies and iPSC-Derived Neuronal Cells from Alzheimer's Disease Patients Reveals an Association with FOXA1 and FOXA2 Gene Regulatory Networks.

    PubMed

    Wruck, Wasco; Schröter, Friederike; Adjaye, James

    2016-01-01

    Although the incidence of Alzheimer's disease (AD) is continuously increasing in the aging population worldwide, effective therapies are not available. The interplay between causative genetic and environmental factors is partially understood. Meta-analyses have been performed on aspects such as polymorphisms, cytokines, and cognitive training. Here, we propose a meta-analysis approach based on hierarchical clustering analysis of a reliable training set of hippocampus biopsies, which is condensed to a gene expression signature. This gene expression signature was applied to various test sets of brain biopsies and iPSC-derived neuronal cell models to demonstrate its ability to distinguish AD samples from control. Thus, our identified AD-gene signature may form the basis for determination of biomarkers that are urgently needed to overcome current diagnostic shortfalls. Intriguingly, the well-described AD-related genes APP and APOE are not within the signature because their gene expression profiles show a lower correlation to the disease phenotype than genes from the signature. This is in line with the differing characteristics of the disease as early-/late-onset or with/without genetic predisposition. To investigate the gene signature's systemic role(s), signaling pathways, gene ontologies, and transcription factors were analyzed which revealed over-representation of response to stress, regulation of cellular metabolic processes, and reactive oxygen species. Additionally, our results clearly point to an important role of FOXA1 and FOXA2 gene regulatory networks in the etiology of AD. This finding is in corroboration with the recently reported major role of the dopaminergic system in the development of AD and its regulation by FOXA1 and FOXA2.

  6. Modeling climate change impact in hospitality sector, using building resources consumption signature

    NASA Astrophysics Data System (ADS)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in cooling) and a decrease in gas consumption (for heating). The hotels in Algarve are more vulnerable than Lisbon hotels.

  7. A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity.

    PubMed

    McMullin, Ryan P; Wittner, Ben S; Yang, Chuanwei; Denton-Schneider, Benjamin R; Hicks, Daniel; Singavarapu, Raj; Moulis, Sharon; Lee, Jeongeun; Akbari, Mohammad R; Narod, Steven A; Aldape, Kenneth D; Steeg, Patricia S; Ramaswamy, Sridhar; Sgroi, Dennis C

    2014-03-14

    There is an unmet clinical need for biomarkers to identify breast cancer patients at an increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with human epidermal growth factor receptor 2-positive (HER2+) brain metastasis. We combined laser capture microdissection and gene expression microarrays to analyze malignant epithelium from HER2+ breast cancer brain metastases with that from HER2+ nonmetastatic primary tumors. Differential gene expression was performed including gene set enrichment analysis (GSEA) using publicly available breast cancer gene expression data sets. In a cohort of HER2+ breast cancer brain metastases, we identified a gene expression signature that anti-correlates with overexpression of BRCA1. Sequence analysis of the HER2+ brain metastases revealed no pathogenic mutations of BRCA1, and therefore the aforementioned signature was designated BRCA1 Deficient-Like (BD-L). Evaluation of an independent cohort of breast cancer metastases demonstrated that BD-L values are significantly higher in brain metastases as compared to other metastatic sites. Although the BD-L signature is present in all subtypes of breast cancer, it is significantly higher in BRCA1 mutant primary tumors as compared with sporadic breast tumors. Additionally, BD-L signature values are significantly higher in HER2-/ER- primary tumors as compared with HER2+/ER + and HER2-/ER + tumors. The BD-L signature correlates with breast cancer cell line pharmacologic response to a combination of poly (ADP-ribose) polymerase (PARP) inhibitor and temozolomide, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. A BD-L signature is enriched in HER2+ breast cancer brain metastases without pathogenic BRCA1 mutations. Unexpectedly, elevated BD-L values are found in a subset of primary tumors across all breast cancer subtypes. Evaluation of pharmacological sensitivity in breast cancer cell lines representing all breast cancer subtypes suggests the BD-L signature may serve as a biomarker to identify sporadic breast cancer patients who might benefit from a therapeutic combination of PARP inhibitor and temozolomide and may be indicative of a dysfunctional BRCA1-associated pathway.

  8. A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity

    PubMed Central

    2014-01-01

    Introduction There is an unmet clinical need for biomarkers to identify breast cancer patients at an increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with human epidermal growth factor receptor 2-positive (HER2+) brain metastasis. Methods We combined laser capture microdissection and gene expression microarrays to analyze malignant epithelium from HER2+ breast cancer brain metastases with that from HER2+ nonmetastatic primary tumors. Differential gene expression was performed including gene set enrichment analysis (GSEA) using publicly available breast cancer gene expression data sets. Results In a cohort of HER2+ breast cancer brain metastases, we identified a gene expression signature that anti-correlates with overexpression of BRCA1. Sequence analysis of the HER2+ brain metastases revealed no pathogenic mutations of BRCA1, and therefore the aforementioned signature was designated BRCA1 Deficient-Like (BD-L). Evaluation of an independent cohort of breast cancer metastases demonstrated that BD-L values are significantly higher in brain metastases as compared to other metastatic sites. Although the BD-L signature is present in all subtypes of breast cancer, it is significantly higher in BRCA1 mutant primary tumors as compared with sporadic breast tumors. Additionally, BD-L signature values are significantly higher in HER2-/ER- primary tumors as compared with HER2+/ER + and HER2-/ER + tumors. The BD-L signature correlates with breast cancer cell line pharmacologic response to a combination of poly (ADP-ribose) polymerase (PARP) inhibitor and temozolomide, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. Conclusions A BD-L signature is enriched in HER2+ breast cancer brain metastases without pathogenic BRCA1 mutations. Unexpectedly, elevated BD-L values are found in a subset of primary tumors across all breast cancer subtypes. Evaluation of pharmacological sensitivity in breast cancer cell lines representing all breast cancer subtypes suggests the BD-L signature may serve as a biomarker to identify sporadic breast cancer patients who might benefit from a therapeutic combination of PARP inhibitor and temozolomide and may be indicative of a dysfunctional BRCA1-associated pathway. PMID:24625110

  9. Assessment of Gamma-Ray-Spectra Analysis Method Utilizing the Fireworks Algorithm for Various Error Measures

    DOE PAGES

    Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2018-01-01

    The analysis of measured data plays a significant role in enhancing nuclear nonproliferation mainly by inferring the presence of patterns associated with special nuclear materials. Among various types of measurements, gamma-ray spectra is the widest utilized type of data in nonproliferation applications. In this paper, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular, FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, where non-zero coefficients express the detected signatures. FWA is tested on a set of experimentallymore » obtained measurements optimizing various objective functions—MSE, RMSE, Theil-2, MAE, MAPE, MAP—with results exhibiting its potential in providing highly accurate and precise signature detection. Finally and furthermore, FWA is benchmarked against genetic algorithms and multiple linear regression, showing its superiority over those algorithms regarding precision with respect to MAE, MAPE, and MAP measures.« less

  10. Wheat signature modeling and analysis for improved training statistics

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Cicone, R. C.; Gleason, J. M.

    1976-01-01

    The author has identified the following significant results. The spectral, spatial, and temporal characteristics of wheat and other signatures in LANDSAT multispectral scanner data were examined through empirical analysis and simulation. Irrigation patterns varied widely within Kansas; 88 percent of wheat acreage in Finney was irrigated and 24 percent in Morton, as opposed to less than 3 percent for western 2/3's of the State. The irrigation practice was definitely correlated with the observed spectral response; wheat variety differences produced observable spectral differences due to leaf coloration and different dates of maturation. Between-field differences were generally greater than within-field differences, and boundary pixels produced spectral features distinct from those within field centers. Multiclass boundary pixels contributed much of the observed bias in proportion estimates. The variability between signatures obtained by different draws of training data decreased as the sample size became larger; also, the resulting signatures became more robust and the particular decision threshold value became less important.

  11. Correlation of 16S Ribosomal DNA Signature Sequences with Temperature-Dependent Growth Rates of Mesophilic and Psychrotolerant Strains of the Bacillus cereus Group

    PubMed Central

    Prüß, Birgit M.; Francis, Kevin P.; von Stetten, Felix; Scherer, Siegfried

    1999-01-01

    Sequences of the 16S ribosomal DNA (rDNA) from psychrotolerant and mesophilic strains of the Bacillus cereus group revealed signatures which were specific for these two thermal groups of bacteria. Further analysis of the genomic DNA from a wide range of food and soil isolates showed that B. cereus group strains have between 6 and 10 copies of 16S rDNA. Moreover, a number of these environmental strains have both rDNA operons with psychrotolerant signatures and rDNA operons with mesophilic signatures. The ability of these isolates to grow at low temperatures correlates with the prevalence of rDNA operons with psychrotolerant signatures, indicating specific nucleotides within the 16S rRNA to play a role in psychrotolerance. PMID:10198030

  12. Pediatric Sepsis Endotypes Among Adults With Sepsis.

    PubMed

    Wong, Hector R; Sweeney, Timothy E; Hart, Kimberly W; Khatri, Purvesh; Lindsell, Christopher J

    2017-12-01

    Recent transcriptomic studies describe two subgroups of adults with sepsis differentiated by a sepsis response signature. The implied biology and related clinical associations are comparable with recently reported pediatric sepsis endotypes, labeled "A" and "B." We classified adults with sepsis using the pediatric endotyping strategy and the sepsis response signature and determined how endotype assignment, sepsis response signature membership, and age interact with respect to mortality. Retrospective analysis of publically available transcriptomic data representing critically ill adults with sepsis from which the sepsis response signature groups were derived and validated. Multiple ICUs. Adults with sepsis. None. Transcriptomic data were conormalized into a single dataset yielding 549 unique cases with sepsis response signature assignments. Each subject was assigned to endotype A or B using the expression data for the 100 endotyping genes. There were 163 subjects (30%) assigned to endotype A and 386 to endotype B. There was a weak, positive correlation between endotype assignment and sepsis response signature membership. Mortality rates were similar between patients assigned endotype A and those assigned endotype B. A multivariable logistic regression model fit to endotype assignment, sepsis response signature membership, age, and the respective two-way interactions revealed that endotype A, sepsis response signature 1 membership, older age, and the interactions between them were associated with mortality. Subjects coassigned to endotype A, and sepsis response signature 1 had the highest mortality. Combining the pediatric endotyping strategy with sepsis response signature membership might provide complementary, age-dependent, biological, and prognostic information.

  13. Quantitative Analysis of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo; Song, Jie

    Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT {sup 18}F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162more » robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6). Conclusion: Quantitative analysis identified novel {sup 18}F-fluorodeoxyglucose positron emission tomography image features that showed improved prognostic value over conventional imaging metrics. If validated in large, prospective cohorts, the new prognostic signature might be used to identify patients for individualized risk-adaptive therapy.« less

  14. Comprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial.

    PubMed

    Edlefsen, Paul T; Rolland, Morgane; Hertz, Tomer; Tovanabutra, Sodsai; Gartland, Andrew J; deCamp, Allan C; Magaret, Craig A; Ahmed, Hasan; Gottardo, Raphael; Juraska, Michal; McCoy, Connor; Larsen, Brendan B; Sanders-Buell, Eric; Carrico, Chris; Menis, Sergey; Kijak, Gustavo H; Bose, Meera; Arroyo, Miguel A; O'Connell, Robert J; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Rerks-Ngarm, Supachai; Robb, Merlin L; Kirys, Tatsiana; Georgiev, Ivelin S; Kwong, Peter D; Scheffler, Konrad; Pond, Sergei L Kosakovsky; Carlson, Jonathan M; Michael, Nelson L; Schief, William R; Mullins, James I; Kim, Jerome H; Gilbert, Peter B

    2015-02-01

    The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients). A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro). The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3) overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9) (p < 0.0001), suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine efficacy trials for diverse pathogens.

  15. Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging

    NASA Astrophysics Data System (ADS)

    Bravo-Imaz, Inaki; Davari Ardakani, Hossein; Liu, Zongchang; García-Arribas, Alfredo; Arnaiz, Aitor; Lee, Jay

    2017-09-01

    This paper focuses on analyzing motor current signature for fault diagnosis of gearboxes operating under transient speed regimes. Two different strategies are evaluated, extensively tested and compared to analyze the motor current signature in order to implement a condition monitoring system for gearboxes in industrial machinery. A specially designed test bench is used, thoroughly monitored to fully characterize the experiments, in which gears in different health status are tested. The measured signals are analyzed using discrete wavelet decomposition, in different decomposition levels using a range of mother wavelets. Moreover, a dual-level time synchronous averaging analysis is performed on the same signal to compare the performance of the two methods. From both analyses, the relevant features of the signals are extracted and cataloged using a self-organizing map, which allows for an easy detection and classification of the diverse health states of the gears. The results demonstrate the effectiveness of both methods for diagnosing gearbox faults. A slightly better performance was observed for dual-level time synchronous averaging method. Based on the obtained results, the proposed methods can used as effective and reliable condition monitoring procedures for gearbox condition monitoring using only motor current signature.

  16. Damage sensitivity investigations of EMI technique on different materials through coupled field analysis

    NASA Astrophysics Data System (ADS)

    Joshi, Bhrigu; Adhikari, Sailesh; Bhalla, Suresh

    2016-04-01

    This paper presents a comparative study through the piezoelectric coupled field analysis mode of finite element method (FEM) on detection of damages of varying magnitude, encompassing three different types of structural materials, using piezo impedance transducers. An aluminum block, a concrete block and a steel block of dimensions 48×48×10 mm were modelled in finite element software ANSYS. A PZT patch of 10×10×0.3 mm was also included in the model as surface bonded on the block. Coupled field analysis (CFA) was performed to obtain the admittance signatures of the piezo sensor in the frequency range of 0-250 kHz. The root mean square deviation (RMSD) index was employed to quantify the degree of variation of the signatures. It was found that concrete exhibited deviation in the signatures only with the change of damping values. However, the other two materials showed variation in the signatures even with changes in density and elasticity values in a small portion of the specimen. The comparative study shows that the PZT patches are more sensitive to damage detection in materials with low damping and the sensitivity typically decreases with increase in the damping.

  17. Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Morgenstern, John M.

    2014-01-01

    A summary is provided for the First AIAA Sonic Boom Workshop held 11 January 2014 in conjunction with AIAA SciTech 2014. Near-field pressure signatures extracted from computational fluid dynamics solutions are gathered from nineteen participants representing three countries for the two required cases, an axisymmetric body and simple delta wing body. Structured multiblock, unstructured mixed-element, unstructured tetrahedral, overset, and Cartesian cut-cell methods are used by the participants. Participants provided signatures computed on participant generated and solution adapted grids. Signatures are also provided for a series of uniformly refined workshop provided grids. These submissions are propagated to the ground and loudness measures are computed. This allows the grid convergence of a loudness measure and a validation metric (dfference norm between computed and wind tunnel measured near-field signatures) to be studied for the first time. Statistical analysis is also presented for these measures. An optional configuration includes fuselage, wing, tail, flow-through nacelles, and blade sting. This full configuration exhibits more variation in eleven submissions than the sixty submissions provided for each required case. Recommendations are provided for potential improvements to the analysis methods and a possible subsequent workshop.

  18. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  19. Ballistic Signature Identification System Study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The first phase of a research project directed toward development of a high speed automatic process to be used to match gun barrel signatures imparted to fired bullets was documented. An optical projection technique has been devised to produce and photograph a planar image of the entire signature, and the phototransparency produced is subjected to analysis using digital Fourier transform techniques. The success of this approach appears to be limited primarily by the accuracy of the photographic step since no significant processing limitations have been encountered.

  20. Robot Wars: Legal and Ethical Dilemmas of Using Unmanned Robotics Systems in 21st Century Warfare and Beyond

    DTIC Science & Technology

    2008-06-12

    becoming a reality (Edwards 2005, 30). In theory , the new sensory systems would acquire electrical signatures emitting from distant communication...rationalization regarding the increased use of technology that may be employed during war. According to Hinman, The Ethics of Duty Theory and The...Utilitarianism Theory provide the theoretical framework that best describes how the current Law of War and philosophy of ethics define the virtue of

  1. On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvin-Helmholtz Waves

    NASA Astrophysics Data System (ADS)

    Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.

    2018-02-01

    Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.

  2. The spectrum of genomic signatures: from dinucleotides to chaos game representation.

    PubMed

    Wang, Yingwei; Hill, Kathleen; Singh, Shiva; Kari, Lila

    2005-02-14

    In the post genomic era, access to complete genome sequence data for numerous diverse species has opened multiple avenues for examining and comparing primary DNA sequence organization of entire genomes. Previously, the concept of a genomic signature was introduced with the observation of species-type specific Dinucleotide Relative Abundance Profiles (DRAPs); dinucleotides were identified as the subsequences with the greatest bias in representation in a majority of genomes. Herein, we demonstrate that DRAP is one particular genomic signature contained within a broader spectrum of signatures. Within this spectrum, an alternative genomic signature, Chaos Game Representation (CGR), provides a unique visualization of patterns in sequence organization. A genomic signature is associated with a particular integer order or subsequence length that represents a measure of the resolution or granularity in the analysis of primary DNA sequence organization. We quantitatively explore the organizational information provided by genomic signatures of different orders through different distance measures, including a novel Image Distance. The Image Distance and other existing distance measures are evaluated by comparing the phylogenetic trees they generate for 26 complete mitochondrial genomes from a diversity of species. The phylogenetic tree generated by the Image Distance is compatible with the known relatedness of species. Quantitative evaluation of the spectrum of genomic signatures may be used to ultimately gain insight into the determinants and biological relevance of the genome signatures.

  3. Generation of signature databases with fast codes

    NASA Astrophysics Data System (ADS)

    Bradford, Robert A.; Woodling, Arthur E.; Brazzell, James S.

    1990-09-01

    Using the FASTSIG signature code to generate optical signature databases for the Ground-based Surveillance and Traking System (GSTS) Program has improved the efficiency of the database generation process. The goal of the current GSTS database is to provide standardized, threat representative target signatures that can easily be used for acquisition and trk studies, discrimination algorithm development, and system simulations. Large databases, with as many as eight interpolalion parameters, are required to maintain the fidelity demands of discrimination and to generalize their application to other strateg systems. As the need increases for quick availability of long wave infrared (LWIR) target signatures for an evolving design4o-threat, FASTSIG has become a database generation alternative to using the industry standard OptiCal Signatures Code (OSC). FASTSIG, developed in 1985 to meet the unique strategic systems demands imposed by the discrimination function, has the significant advantage of being a faster running signature code than the OSC, typically requiring two percent of the cpu time. It uses analytical approximations to model axisymmetric targets, with the fidelity required for discrimination analysis. Access of the signature database is accomplished through use of the waveband integration and interpolation software, INTEG and SIGNAT. This paper gives details of this procedure as well as sample interpolated signatures and also covers sample verification by comparison to the OSC, in order to establish the fidelity of the FASTSIG generated database.

  4. Identification of atypical flight patterns

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris (Inventor)

    2005-01-01

    Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous-valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding atypicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis.

  5. Radar cross section fundamentals for the aircraft designer

    NASA Technical Reports Server (NTRS)

    Stadmore, H. A.

    1979-01-01

    Various aspects of radar cross-section (RCS) techniques are summarized, with emphasis placed on fundamental electromagnetic phenomena, such as plane and spherical wave formulations, and the definition of RCS is given in the far-field sense. The basic relationship between electronic countermeasures and a signature level is discussed in terms of the detectability range of a target vehicle. Fundamental radar-signature analysis techniques, such as the physical-optics and geometrical-optics approximations, are presented along with examples in terms of aircraft components. Methods of analysis based on the geometrical theory of diffraction are considered and various wave-propagation phenomena are related to local vehicle geometry. Typical vehicle components are also discussed, together with their contribution to total vehicle RCS and their individual signature sensitivities.

  6. Current techniques for the real-time processing of complex radar signatures

    NASA Astrophysics Data System (ADS)

    Clay, E.

    A real-time processing technique has been developed for the microwave receiver of the Brahms radar station. The method allows such target signatures as the radar cross section (RCS) of the airframes and rotating parts, the one-dimensional tomography of aircraft, and the RCS of electromagnetic decoys to be characterized. The method allows optimization of experimental parameters including the analysis frequency band, the receiver gain, and the wavelength range of EM analysis.

  7. Quantum random oracle model for quantum digital signature

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Lei, Qi; Liu, Jianwei

    2016-10-01

    The goal of this work is to provide a general security analysis tool, namely, the quantum random oracle (QRO), for facilitating the security analysis of quantum cryptographic protocols, especially protocols based on quantum one-way function. QRO is used to model quantum one-way function and different queries to QRO are used to model quantum attacks. A typical application of quantum one-way function is the quantum digital signature, whose progress has been hampered by the slow pace of the experimental realization. Alternatively, we use the QRO model to analyze the provable security of a quantum digital signature scheme and elaborate the analysis procedure. The QRO model differs from the prior quantum-accessible random oracle in that it can output quantum states as public keys and give responses to different queries. This tool can be a test bed for the cryptanalysis of more quantum cryptographic protocols based on the quantum one-way function.

  8. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis

    NASA Astrophysics Data System (ADS)

    Afzal, Peyman; Mirzaei, Misagh; Yousefi, Mahyar; Adib, Ahmad; Khalajmasoumi, Masoumeh; Zarifi, Afshar Zia; Foster, Patrick; Yasrebi, Amir Bijan

    2016-07-01

    Recognition of significant geochemical signatures and separation of geochemical anomalies from background are critical issues in interpretation of stream sediment data to define exploration targets. In this paper, we used staged factor analysis in conjunction with the concentration-number (C-N) fractal model to generate exploration targets for prospecting Cr and Fe mineralization in Balvard area, SE Iran. The results show coexistence of derived multi-element geochemical signatures of the deposit-type sought and ultramafic-mafic rocks in the NE and northern parts of the study area indicating significant chromite and iron ore prospects. In this regard, application of staged factor analysis and fractal modeling resulted in recognition of significant multi-element signatures that have a high spatial association with host lithological units of the deposit-type sought, and therefore, the generated targets are reliable for further prospecting of the deposit in the study area.

  9. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures. © 2011 Acoustical Society of America

  10. Security of the arbitrated quantum signature protocols revisited

    NASA Astrophysics Data System (ADS)

    Kejia, Zhang; Dan, Li; Qi, Su

    2014-01-01

    Recently, much attention has been paid to the study of arbitrated quantum signature (AQS). Among these studies, the cryptanalysis of some AQS protocols and a series of improved ideas have been proposed. Compared with the previous analysis, we present a security criterion, which can judge whether an AQS protocol is able to prevent the receiver (i.e. one participant in the signature protocol) from forging a legal signature. According to our results, it can be seen that most AQS protocols which are based on the Zeng and Keitel (ZK) model are susceptible to a forgery attack. Furthermore, we present an improved idea of the ZK protocol. Finally, some supplement discussions and several interesting topics are provided.

  11. IRLooK: an advanced mobile infrared signature measurement, data reduction, and analysis system

    NASA Astrophysics Data System (ADS)

    Cukur, Tamer; Altug, Yelda; Uzunoglu, Cihan; Kilic, Kayhan; Emir, Erdem

    2007-04-01

    Infrared signature measurement capability has a key role in the electronic warfare (EW) self protection systems' development activities. In this article, the IRLooK System and its capabilities will be introduced. IRLooK is a truly innovative mobile infrared signature measurement system with all its design, manufacturing and integration accomplished by an engineering philosophy peculiar to ASELSAN. IRLooK measures the infrared signatures of military and civil platforms such as fixed/rotary wing aircrafts, tracked/wheeled vehicles and navy vessels. IRLooK has the capabilities of data acquisition, pre-processing, post-processing, analysis, storing and archiving over shortwave, mid-wave and long wave infrared spectrum by means of its high resolution radiometric sensors and highly sophisticated software analysis tools. The sensor suite of IRLooK System includes imaging and non-imaging radiometers and a spectroradiometer. Single or simultaneous multiple in-band measurements as well as high radiant intensity measurements can be performed. The system provides detailed information on the spectral, spatial and temporal infrared signature characteristics of the targets. It also determines IR Decoy characteristics. The system is equipped with a high quality field proven two-axes tracking mount to facilitate target tracking. Manual or automatic tracking is achieved by using a passive imaging tracker. The system also includes a high quality weather station and field-calibration equipment including cavity and extended area blackbodies. The units composing the system are mounted on flat-bed trailers and the complete system is designed to be transportable by large body aircraft.

  12. A correlational study between signature, writing abilities and decision-making capacity among people with initial cognitive impairment.

    PubMed

    Renier, M; Gnoato, F; Tessari, A; Formilan, M; Busonera, F; Albanese, P; Sartori, G; Cester, A

    2016-06-01

    Some clinical conditions, including dementia, compromise cognitive functions involved in decision-making processes, with repercussions on the ability to subscribe a will. Because of the increasing number of aged people with cognitive impairment there is an acute and growing need for decision-making capacity evidence-based assessment. Our study investigates the relationship between writing abilities and cognitive integrity to see if it is possible to make inferences on decision-making capacity through handwriting analysis. We also investigated the relationship between signature ability and cognitive integrity. Thirty-six participants with diagnosis of MCI and 38 participants with diagnosis of initial dementia were recruited. For each subject we collected two samples of signature-an actual and a previous one-and an extract of spontaneous writing. Furthermore, we administered a neuropsychological battery to investigate cognitive functions involved in decision-making. We found significant correlations between spontaneous writing indexes and neuropsychological test results. Nonetheless, the index of signature deterioration does not correlate with the level of cognitive decline. Our results suggest that a careful analysis of spontaneous writing can be useful to make inferences on decision-making capacity, whereas great caution should be taken in attributing validity to handwritten signature of subjects with MCI or dementia. The analysis of spontaneous writing can be a reliable aid in cases of retrospective evaluation of cognitive integrity. On the other side, the ability to sign is not an index of cognitive integrity.

  13. Robust MOE Detector for DS-CDMA Systems with Signature Waveform Mismatch

    NASA Astrophysics Data System (ADS)

    Lin, Tsui-Tsai

    In this letter, a decision-directed MOE detector with excellent robustness against signature waveform mismatch is proposed for DS-CDMA systems. Both the theoretic analysis and computer simulation results demonstrate that the proposed detector can provide better SINR performance than that of conventional detectors.

  14. Structural health monitoring of compression connectors for overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wang, Jy-An John; Swindeman, Joseph P.; Ren, Fei; Chan, John

    2017-04-01

    Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over electrical conducting aluminum strands. The connectors are designed to operate at temperatures up to 125°C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements, but these methods do not provide information about the structural integrity of connectors. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Lead zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to induce structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.

  15. Four-miRNA signature as a prognostic tool for lung adenocarcinoma.

    PubMed

    Lin, Yan; Lv, Yufeng; Liang, Rong; Yuan, Chunling; Zhang, Jinyan; He, Dan; Zheng, Xiaowen; Zhang, Jianfeng

    2018-01-01

    The aim of this study was to generate a novel miRNA expression signature to accurately predict prognosis for patients with lung adenocarcinoma (LUAD). Using expression profiles downloaded from The Cancer Genome Atlas database, we identified multiple miRNAs with differential expression between LUAD and paired healthy tissues. We then evaluated the prognostic values of the differentially expressed miRNAs using univariate/multivariate Cox regression analysis. This analysis was ultimately used to construct a four-miRNA signature that effectively predicted patient survival. Finally, we analyzed potential functional roles of the target genes for these four miRNAs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Based on our cutoff criteria ( P <0.05 and |log2FC| >1.0), we identified a total of 187 differentially expressed miRNAs, including 148 that were upregulated in LUAD tissues and 39 that were downregulated. Four miRNAs (miR-148a-5p, miR-31-5p, miR-548v, and miR-550a-5p) were independently associated with survival based on Kaplan-Meier analysis. We generated a signature index based on the expression of these four miRNAs and stratified patients into low- and high-risk groups. Patients in the high-risk group had significantly shorter survival times than those in the low-risk group ( P =0.002). A functional enrichment analysis suggested that the target genes of these four miRNAs were involved in protein phosphorylation and the Hippo and sphingolipid signaling pathways. Taken together, our results suggest that our four-miRNA signature can be used as a prognostic tool for patients with LUAD.

  16. Amyloid causes intermittent network disruptions in cognitively intact older subjects.

    PubMed

    Mueller, Susanne G

    2018-05-16

    Recent findings in AD models but also human patients suggest that amyloid can cause intermittent neuronal hyperactivity. The overall goal of this study was to use dynamic fMRI analysis combined with graph analysis to a) characterize the graph analytical signature of two types of intermittent hyperactivity (spike-like (spike) and hypersynchronus-like (synchron)) in simulated data and b) to attempt to identify one of these signatures in task-free fMRIs of cognitively intact subjects (CN) with or without increased brain amyloid. The toolbox simtb was used to generate 33 data sets with 2 short spike events, 33 with 2 synchron and 33 baseline data sets. A combination of sliding windows, hierarchical cluster analysis and graph analysis was used to characterize the spike and the synchron signature. Florbetapir-F18 PET and task-free 3 T fMRI was acquired in 49 CN (age = 70.7 ± 6.4). Processing the real data with the same approach as the simulated data identified phases whose graph analytical signature resembled that of the synchron signature in the simulated data. The duration of these phases was positively correlated with amyloid load (r = 0.42, p < 0.05) and negatively with memory performance (r = -0.43, p < 0.05). In conclusion, amyloid positivity is associated with intermittent hyperactivity that is caused by short phases of hypersynchronous activity. The negative association with memory performance suggests that these disturbances have the potential to interfere with cognitive processes and could lead to cognitive impairment if they become more frequent or more severe with increasing amyloid deposition.

  17. Signaling protein signature predicts clinical outcome of non-small-cell lung cancer.

    PubMed

    Jin, Bao-Feng; Yang, Fan; Ying, Xiao-Min; Gong, Lin; Hu, Shuo-Feng; Zhao, Qing; Liao, Yi-Da; Chen, Ke-Zhong; Li, Teng; Tai, Yan-Hong; Cao, Yuan; Li, Xiao; Huang, Yan; Zhan, Xiao-Yan; Qin, Xuan-He; Wu, Jin; Chen, Shuai; Guo, Sai-Sai; Zhang, Yu-Cheng; Chen, Jing; Shen, Dan-Hua; Sun, Kun-Kun; Chen, Lu; Li, Wei-Hua; Li, Ai-Ling; Wang, Na; Xia, Qing; Wang, Jun; Zhou, Tao

    2018-03-06

    Non-small-cell lung cancer (NSCLC) is characterized by abnormalities of numerous signaling proteins that play pivotal roles in cancer development and progression. Many of these proteins have been reported to be correlated with clinical outcomes of NSCLC. However, none of them could provide adequate accuracy of prognosis prediction in clinical application. A total of 384 resected NSCLC specimens from two hospitals in Beijing (BJ) and Chongqing (CQ) were collected. Using immunohistochemistry (IHC) staining on stored formalin-fixed paraffin-embedded (FFPE) surgical samples, we examined the expression levels of 75 critical proteins on BJ samples. Random forest algorithm (RFA) and support vector machines (SVM) computation were applied to identify protein signatures on 2/3 randomly assigned BJ samples. The identified signatures were tested on the remaining BJ samples, and were further validated with CQ independent cohort. A 6-protein signature for adenocarcinoma (ADC) and a 5-protein signature for squamous cell carcinoma (SCC) were identified from training sets and tested in testing sets. In independent validation with CQ cohort, patients can also be divided into high- and low-risk groups with significantly different median overall survivals by Kaplan-Meier analysis, both in ADC (31 months vs. 87 months, HR 2.81; P <  0.001) and SCC patients (27 months vs. not reached, HR 9.97; P <  0.001). Cox regression analysis showed that both signatures are independent prognostic indicators and outperformed TNM staging (ADC: adjusted HR 3.07 vs. 2.43, SCC: adjusted HR 7.84 vs. 2.24). Particularly, we found that only the ADC patients in high-risk group significantly benefited from adjuvant chemotherapy (P = 0.018). Both ADC and SCC protein signatures could effectively stratify the prognosis of NSCLC patients, and may support patient selection for adjuvant chemotherapy.

  18. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  19. A New Electric Field in Asymmetric Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Malakit, K.; Shay, M. A.; Cassak, P.; Ruffolo, D. J.

    2013-12-01

    Magnetic reconnection is an important plasma process that drives the dynamics of the plasma in the magnetosphere and plays a crucial role in the interaction between magnetospheric and magnetosheath plasma. It has been shown that when a reconnection occurs in a collisionless plasma, it exhibits the Hall electric field, an in-plane electric field structure pointing toward the X-line. In this work, we show that when the reconnection has asymmetric inflow conditions such as the reconnection at the day-side magnetopause, a new in-plane electric field structure can exist. This electric field points away from the X-line and is distinct from the known Hall electric field. We argue that the origin of the electric field is associated with the physics of finite Larmor radius. A theory and predictions of the electric field properties are presented and backed up by results from fully kinetic particle-in-cell simulations of asymmetric reconnection with various inflow conditions. Under normal day-side reconnection inflow conditions, the electric field is expected to occur on the magnetospheric side of the X-line pointing Earthward. Hence, it has a potential to be used as a signature for satellites, such as the upcoming Magnetospheric Multi-Scale (MMS) mission, to locate the reconnection sites at the day-side magnetopause. This research was supported by the postdoctoral research sponsorship of Mahidol University (KM), NSF grants ATM-0645271 - Career Award (MAS) and AGS-0953463 (PAC), NASA grants NNX08A083G - MMS IDS, NNX11AD69G, and NNX13AD72G (MAS) and NNX10AN08A (PAC), and the Thailand Research Fund (DR).

  20. A putative biomarker signature for clinically effective AKT inhibition: correlation of in vitro, in vivo and clinical data identifies the importance of modulation of the mTORC1 pathway.

    PubMed

    Cheraghchi-Bashi, Azadeh; Parker, Christine A; Curry, Ed; Salazar, Jean-Frederic; Gungor, Hatice; Saleem, Azeem; Cunnea, Paula; Rama, Nona; Salinas, Cristian; Mills, Gordon B; Morris, Shannon R; Kumar, Rakesh; Gabra, Hani; Stronach, Euan A

    2015-12-08

    Our identification of dysregulation of the AKT pathway in ovarian cancer as a platinum resistance specific event led to a comprehensive analysis of in vitro, in vivo and clinical behaviour of the AKT inhibitor GSK2141795. Proteomic biomarker signatures correlating with effects of GSK2141795 were developed using in vitro and in vivo models, well characterised for related molecular, phenotypic and imaging endpoints. Signatures were validated in temporally paired biopsies from patients treated with GSK2141795 in a clinical study. GSK2141795 caused growth-arrest as single agent in vitro, enhanced cisplatin-induced apoptosis in vitro and reduced tumour volume in combination with platinum in vivo. GSK2141795 treatment in vitro and in vivo resulted in ~50-90% decrease in phospho-PRAS40 and 20-80% decrease in fluoro-deoxyglucose (FDG) uptake. Proteomic analysis of GSK2141795 in vitro and in vivo identified a signature of pathway inhibition including changes in AKT and p38 phosphorylation and total Bim, IGF1R, AR and YB1 levels. In patient biopsies, prior to treatment with GSK2141795 in a phase 1 clinical trial, this signature was predictive of post-treatment changes in the response marker CA125. Development of this signature represents an opportunity to demonstrate the clinical importance of AKT inhibition for re-sensitisation of platinum resistant ovarian cancer to platinum.

  1. Circulating neutrophil transcriptome may reveal intracranial aneurysm signature

    PubMed Central

    Tutino, Vincent M.; Poppenberg, Kerry E.; Jiang, Kaiyu; Jarvis, James N.; Sun, Yijun; Sonig, Ashish; Siddiqui, Adnan H.; Snyder, Kenneth V.; Levy, Elad I.; Kolega, John

    2018-01-01

    Background Unruptured intracranial aneurysms (IAs) are typically asymptomatic and undetected except for incidental discovery on imaging. Blood-based diagnostic biomarkers could lead to improvements in IA management. This exploratory study examined circulating neutrophils to determine whether they carry RNA expression signatures of IAs. Methods Blood samples were collected from patients receiving cerebral angiography. Eleven samples were collected from patients with IAs and 11 from patients without IAs as controls. Samples from the two groups were paired based on demographics and comorbidities. RNA was extracted from isolated neutrophils and subjected to next-generation RNA sequencing to obtain differential expressions for identification of an IA-associated signature. Bioinformatics analyses, including gene set enrichment analysis and Ingenuity Pathway Analysis, were used to investigate the biological function of all differentially expressed transcripts. Results Transcriptome profiling identified 258 differentially expressed transcripts in patients with and without IAs. Expression differences were consistent with peripheral neutrophil activation. An IA-associated RNA expression signature was identified in 82 transcripts (p<0.05, fold-change ≥2). This signature was able to separate patients with and without IAs on hierarchical clustering. Furthermore, in an independent, unpaired, replication cohort of patients with IAs (n = 5) and controls (n = 5), the 82 transcripts separated 9 of 10 patients into their respective groups. Conclusion Preliminary findings show that RNA expression from circulating neutrophils carries an IA-associated signature. These findings highlight a potential to use predictive biomarkers from peripheral blood samples to identify patients with IAs. PMID:29342213

  2. Selection signature analysis in Holstein cattle identified genes known to affect reproduction

    USDA-ARS?s Scientific Manuscript database

    Using direct comparison of 45,878 SNPs between a group of Holstein cattle unselected since 1964 and contemporary Holsteins that on average take 30 days longer for successful conception than the 1964 Holsteins, we conducted selection signature analyses to identify genomic regions associated with dair...

  3. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas: Mutational signature associated with MUTYH deficiency in cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilati, Camilla; Shinde, Jayendra; Alexandrov, Ludmil B.

    Germline alterations in DNA repair genes are implicated in cancer predisposition and can result in characteristic mutational signatures. However, specific mutational signatures associated with base excision repair (BER) defects remain to be characterized. Here, by analysing a series of colorectal cancers (CRCs) using exome sequencing, we identified a particular spectrum of somatic mutations characterized by an enrichment of C > A transversions in NpCpA or NpCpT contexts in three tumours from a MUTYH-associated polyposis (MAP) patient and in two cases harbouring pathogenic germline MUTYH mutations. In two series of adrenocortical carcinomas (ACCs), we identified four tumours with a similar signaturemore » also presenting germline MUTYH mutations. Altogether, these findings demonstrate that MUTYH inactivation results in a particular mutational signature, which may serve as a useful marker of BER-related genomic instability in new cancer types.« less

  4. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas: Mutational signature associated with MUTYH deficiency in cancers

    DOE PAGES

    Pilati, Camilla; Shinde, Jayendra; Alexandrov, Ludmil B.; ...

    2017-03-29

    Germline alterations in DNA repair genes are implicated in cancer predisposition and can result in characteristic mutational signatures. However, specific mutational signatures associated with base excision repair (BER) defects remain to be characterized. Here, by analysing a series of colorectal cancers (CRCs) using exome sequencing, we identified a particular spectrum of somatic mutations characterized by an enrichment of C > A transversions in NpCpA or NpCpT contexts in three tumours from a MUTYH-associated polyposis (MAP) patient and in two cases harbouring pathogenic germline MUTYH mutations. In two series of adrenocortical carcinomas (ACCs), we identified four tumours with a similar signaturemore » also presenting germline MUTYH mutations. Altogether, these findings demonstrate that MUTYH inactivation results in a particular mutational signature, which may serve as a useful marker of BER-related genomic instability in new cancer types.« less

  5. Distinct microbiological signatures associated with triple negative breast cancer.

    PubMed

    Banerjee, Sagarika; Wei, Zhi; Tan, Fei; Peck, Kristen N; Shih, Natalie; Feldman, Michael; Rebbeck, Timothy R; Alwine, James C; Robertson, Erle S

    2015-10-15

    Infectious agents are the third highest human cancer risk factor and may have a greater role in the origin and/or progression of cancers, and related pathogenesis. Thus, knowing the specific viruses and microbial agents associated with a cancer type may provide insights into cause, diagnosis and treatment. We utilized a pan-pathogen array technology to identify the microbial signatures associated with triple negative breast cancer (TNBC). This technology detects low copy number and fragmented genomes extracted from formalin-fixed paraffin embedded archival tissues. The results, validated by PCR and sequencing, define a microbial signature present in TNBC tissue which was underrepresented in normal tissue. Hierarchical clustering analysis displayed two broad microbial signatures, one prevalent in bacteria and parasites and one prevalent in viruses. These signatures demonstrate a new paradigm in our understanding of the link between microorganisms and cancer, as causative or commensal in the tumor microenvironment and provide new diagnostic potential.

  6. Genomic signatures predict migration and spawning failure in wild Canadian salmon.

    PubMed

    Miller, Kristina M; Li, Shaorong; Kaukinen, Karia H; Ginther, Norma; Hammill, Edd; Curtis, Janelle M R; Patterson, David A; Sierocinski, Thomas; Donnison, Louise; Pavlidis, Paul; Hinch, Scott G; Hruska, Kimberly A; Cooke, Steven J; English, Karl K; Farrell, Anthony P

    2011-01-14

    Long-term population viability of Fraser River sockeye salmon (Oncorhynchus nerka) is threatened by unusually high levels of mortality as they swim to their spawning areas before they spawn. Functional genomic studies on biopsied gill tissue from tagged wild adults that were tracked through ocean and river environments revealed physiological profiles predictive of successful migration and spawning. We identified a common genomic profile that was correlated with survival in each study. In ocean-tagged fish, a mortality-related genomic signature was associated with a 13.5-fold greater chance of dying en route. In river-tagged fish, the same genomic signature was associated with a 50% increase in mortality before reaching the spawning grounds in one of three stocks tested. At the spawning grounds, the same signature was associated with 3.7-fold greater odds of dying without spawning. Functional analysis raises the possibility that the mortality-related signature reflects a viral infection.

  7. Momentum signatures of the Anderson transition

    NASA Astrophysics Data System (ADS)

    Sanjib, Ghosh

    This thesis explores for possible signatures of Anderson localization and the Anderson metal-insulator transition (MIT) in momentum space. We find that an initial plane-wave propagating in a disordered medium exhibits a diffusive background and two interference peaks, the coherent backscattering (CBS) and the coherent forward scattering (CFS) peaks in the momentum distribution. We show, the signatures of Anderson localization and the Anderson transition are encoded in the dynamical properties of the two interference peaks, CBS and CFS. We develop finite-time scaling theory for the angular width of the CBS peak and in the height of the CFS peak. We demonstrate how to extract properties like critical exponent, the mobility edge and signatures of multifractality from this finite-time analysis. These momentum space signatures of the Anderson transition are novel and they promise to be experimental observables for wide range of systems, from cold atoms to classical waves or any wave systems where the momentum distribution is accessible.

  8. Source Correlated Prompt Neutron Activation Analysis for Material Identification and Localization

    NASA Astrophysics Data System (ADS)

    Canion, Bonnie; McConchie, Seth; Landsberger, Sheldon

    2017-07-01

    This paper investigates the energy spectrum of photon signatures from an associated particle imaging deuterium tritium (API-DT) neutron generator interrogating shielded uranium. The goal is to investigate if signatures within the energy spectrum could be used to indirectly characterize shielded uranium when the neutron signature is attenuated. By utilizing the correlated neutron cone associated with each pixel of the API-DT neutron generator, certain materials can be identified and located via source correlated spectrometry of prompt neutron activation gamma rays. An investigation is done to determine if fission neutrons induce a significant enough signature within the prompt neutron-induced gamma-ray energy spectrum in shielding material to be useful for indirect nuclear material characterization. The signature deriving from the induced fission neutrons interacting with the shielding material was slightly elevated in polyethylene-shielding depleted uranium (DU), but was more evident in some characteristic peaks from the aluminum shielding surrounding DU.

  9. Methyl-CpG island-associated genome signature tags

    DOEpatents

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Kuldeep; Lund, Mikkel N.; Aguirre, Víctor Silva

    Acoustic glitches are regions inside a star where the sound speed or its derivatives change abruptly. These leave a small characteristic oscillatory signature in the stellar oscillation frequencies. With the precision achieved by Kepler seismic data, it is now possible to extract these small amplitude oscillatory signatures, and infer the locations of the glitches. We perform glitch analysis for all the 66 stars in the Kepler seismic LEGACY sample to derive the locations of the base of the envelope convection zone (CZ) and the helium ionization zone. The signature from helium ionization zone is found to be robust for allmore » stars in the sample, whereas the CZ signature is found to be weak and problematic, particularly for relatively massive stars with large errorbars on the oscillation frequencies. We demonstrate that the helium glitch signature can be used to constrain the properties of the helium ionization layers and the helium abundance.« less

  11. OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karoff, C.; Campante, T. L.; Ballot, J.

    2013-04-10

    Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars-while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-modemore » oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures-comparable to what is seen in the Sun.« less

  12. Magnetic resonance imaging-based cerebral tissue classification reveals distinct spatiotemporal patterns of changes after stroke in non-human primates.

    PubMed

    Bouts, Mark J R J; Westmoreland, Susan V; de Crespigny, Alex J; Liu, Yutong; Vangel, Mark; Dijkhuizen, Rick M; Wu, Ona; D'Arceuil, Helen E

    2015-12-15

    Spatial and temporal changes in brain tissue after acute ischemic stroke are still poorly understood. Aims of this study were three-fold: (1) to determine unique temporal magnetic resonance imaging (MRI) patterns at the acute, subacute and chronic stages after stroke in macaques by combining quantitative T2 and diffusion MRI indices into MRI 'tissue signatures', (2) to evaluate temporal differences in these signatures between transient (n = 2) and permanent (n = 2) middle cerebral artery occlusion, and (3) to correlate histopathology findings in the chronic stroke period to the acute and subacute MRI derived tissue signatures. An improved iterative self-organizing data analysis algorithm was used to combine T2, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) maps across seven successive timepoints (1, 2, 3, 24, 72, 144, 240 h) which revealed five temporal MRI signatures, that were different from the normal tissue pattern (P < 0.001). The distribution of signatures between brains with permanent and transient occlusions varied significantly between groups (P < 0.001). Qualitative comparisons with histopathology revealed that these signatures represented regions with different histopathology. Two signatures identified areas of progressive injury marked by severe necrosis and the presence of gitter cells. Another signature identified less severe but pronounced neuronal and axonal degeneration, while the other signatures depicted tissue remodeling with vascular proliferation and astrogliosis. These exploratory results demonstrate the potential of temporally and spatially combined voxel-based methods to generate tissue signatures that may correlate with distinct histopathological features. The identification of distinct ischemic MRI signatures associated with specific tissue fates may further aid in assessing and monitoring the efficacy of novel pharmaceutical treatments for stroke in a pre-clinical and clinical setting.

  13. Observation of Schumann Resonances in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Freudenreich, Henry

    2011-01-01

    The surface of the Earth and the lower edge of the ionosphere define a cavity in which electromagnetic waves propagate. When the cavity is excited by broadband electromagnetic sources, e.g., lightning, a resonant state can develop provided the average equatorial circumference is approximately equal to an integral number of wavelengths of the electromagnetic waves. This phenomenon, known as Schumann resonance, corresponds to electromagnetic oscillations of the surface-ionosphere cavity, and has been used extensively to investigate atmospheric electricity. Using measurements from the Communications/Navigation Outage Forecasting System (C/NOFS) satellite, we report, for the first time, Schumann resonance signatures detected well beyond the upper boundary of the cavity. These results offer new means for investigating atmospheric electricity, tropospheric-ionospheric coupling mechanisms related to lightning activity, and wave propagation in the ionosphere. The detection of Schumann resonances in the ionosphere calls for revisions to the existing models of extremely low frequency wave propagation in the surface-ionosphere cavity. Additionally, these measurements suggest new remote sensing capabilities for investigating atmospheric electricity at other planets.

  14. Common disease signatures from gene expression analysis in Huntington's disease human blood and brain.

    PubMed

    Mina, Eleni; van Roon-Mom, Willeke; Hettne, Kristina; van Zwet, Erik; Goeman, Jelle; Neri, Christian; A C 't Hoen, Peter; Mons, Barend; Roos, Marco

    2016-08-01

    Huntington's disease (HD) is a devastating brain disorder with no effective treatment or cure available. The scarcity of brain tissue makes it hard to study changes in the brain and impossible to perform longitudinal studies. However, peripheral pathology in HD suggests that it is possible to study the disease using peripheral tissue as a monitoring tool for disease progression and/or efficacy of novel therapies. In this study, we investigated if blood can be used to monitor disease severity and progression in brain. Since previous attempts using only gene expression proved unsuccessful, we compared blood and brain Huntington's disease signatures in a functional context. Microarray HD gene expression profiles from three brain regions were compared to the transcriptome of HD blood generated by next generation sequencing. The comparison was performed with a combination of weighted gene co-expression network analysis and literature based functional analysis (Concept Profile Analysis). Uniquely, our comparison of blood and brain datasets was not based on (the very limited) gene overlap but on the similarity between the gene annotations in four different semantic categories: "biological process", "cellular component", "molecular function" and "disease or syndrome". We identified signatures in HD blood reflecting a broad pathophysiological spectrum, including alterations in the immune response, sphingolipid biosynthetic processes, lipid transport, cell signaling, protein modification, spliceosome, RNA splicing, vesicle transport, cell signaling and synaptic transmission. Part of this spectrum was reminiscent of the brain pathology. The HD signatures in caudate nucleus and BA4 exhibited the highest similarity with blood, irrespective of the category of semantic annotations used. BA9 exhibited an intermediate similarity, while cerebellum had the least similarity. We present two signatures that were shared between blood and brain: immune response and spinocerebellar ataxias. Our results demonstrate that HD blood exhibits dysregulation that is similar to brain at a functional level, but not necessarily at the level of individual genes. We report two common signatures that can be used to monitor the pathology in brain of HD patients in a non-invasive manner. Our results are an exemplar of how signals in blood data can be used to represent brain disorders. Our methodology can be used to study disease specific signatures in diseases where heterogeneous tissues are involved in the pathology.

  15. The Search for Hydrologic Signatures: The Effect of Data Transformations on Bayesian Model Calibration

    NASA Astrophysics Data System (ADS)

    Sadegh, M.; Vrugt, J. A.

    2011-12-01

    In the past few years, several contributions have begun to appear in the hydrologic literature that introduced and analyzed the benefits of using a signature based approach to watershed analysis. This signature-based approach abandons the standard single criteria model-data fitting paradigm in favor of a diagnostic approach that better extracts the available information from the available data. Despite the prospects of this new viewpoint, rather ad-hoc criteria have hitherto been proposed to improve watershed modeling. Here, we aim to provide a proper mathematical foundation to signature based analysis. We analyze the information content of different data transformation by analyzing their convergence speed with Markov Chain Monte Carlo (MCMC) simulation using the Generalized Likelihood function of Schousp and Vrugt (2010). We compare the information content of the original discharge data against a simple square root and Box-Cox transformation of the streamflow data. We benchmark these results against wavelet and flow duration curve transformations that temporally disaggregate the discharge data. Our results conclusive demonstrate that wavelet transformations and flow duration curves significantly reduce the information content of the streamflow data and consequently unnecessarily increase the uncertainty of the HYMOD model parameters. Hydrologic signatures thus need to be found in the original data, without temporal disaggregation.

  16. FAST satellite observations of large-amplitude solitary structures

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Carlson, C. W.; McFadden, J. P.; Mozer, F. S.; Delory, G. T.; Peria, W.; Chaston, C. C.; Temerin, M.; Roth, I.; Muschietti, L.; Elphic, R.; Strangeway, R.; Pfaff, R.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L.

    We report observations of “fast solitary waves” that are ubiquitous in downward current regions of the mid-altitude auroral zone. The single-period structures have large amplitudes (up to 2.5 V/m), travel much faster than the ion acoustic speed, carry substantial potentials (up to ∼100 Volts), and are associated with strong modulations of energetic electron fluxes. The amplitude and speed of the structures distinguishes them from ion-acoustic solitary waves or weak double layers. The electromagnetic signature appears to be that of an positive charge (electron hole) traveling anti-earthward. We present evidence that the structures are in or near regions of magnetic-field-aligned electric fields and propose that these nonlinear structures play a key role in supporting parallel electric fields in the downward current region of the auroral zone.

  17. Mechanical Signature of Heat Generated in a Current-Driven Ferromagnetic Resonance System

    NASA Astrophysics Data System (ADS)

    Cho, Sung Un; Jo, Myunglae; Park, Seondo; Lee, Jae-Hyun; Yang, Chanuk; Kang, Seokwon; Park, Yun Daniel

    2017-07-01

    In a current-driven ferromagnetic resonance (FMR) system, heat generated by time-dependent magnetoresistance effects, caused by magnetization precession, cannot be overlooked. Here, we describe the generated heat by magnetization motion under electric current in a freestanding nanoelectromechanical resonator fashioned from a permalloy (Py )/Pt bilayer. By piezoresistive transduction of Pt, the mechanical mode is electrically detected at room temperature and the internal heat in Py excluding thermoelectric effects is quantified as a shift of the mechanical resonance. We find that the measured spectral shifts correspond to the FMR, which is further verified from the spin-torque FMR measurement. Furthermore, the angular dependence of the mechanical reaction on an applied magnetic field reveals that the full accounting of FMR heat dissipation requires the time-dependent magnetoresistance effect.

  18. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado and Utah using mobile stable isotope (13CH4) analysis

    NASA Astrophysics Data System (ADS)

    Rella, Chris; Jacobson, Gloria; Crosson, Eric; Karion, Anna; Petron, Gabrielle; Sweeney, Colm

    2013-04-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation. However, given that the global warming potential of methane is many times greater than that of carbon dioxide (Solomon et al. 2007), the importance of quantifying the fugitive emissions of methane throughout the natural gas production and distribution process becomes clear (Howarth et al. 2011). A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis. In particular, the 13CH4 signature of natural gas (-35 to -40 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-45 to -70 permil). In this paper we present measurements of mobile field 13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in two intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, and the Uintah basin in Utah. Mobile isotope measurements in the nocturnal boundary layer have been made, over a total path of 100s of km throughout the regions, allowing spatially resolved measurements of the regional isotope signature. Secondly, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in these regions, by making measurements of the isotope ratio directly in the downwind plume from each source. These data are combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities in the regions. The fraction of total methane emissions in the Denver-Julesburg basin that can be attributed to natural gas fugitive emissions has been determined to be 71 +/- 9%. References: 1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.). IPCC, 2007: Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2. R.W. Howarth, R. Santoro, and A. Ingraffea. "Methane and the greenhouse-gas footprint of natural gas from shale formations." Climate Change, 106, 679 (2011).

  19. Dione flybys in the view of energetic particles

    NASA Astrophysics Data System (ADS)

    Krupp, Norbert; Roussos, Elias; Kriegel, Henrik; Kollmann, Peter; Kivelson, Margaret G.; Kotova, Anna; Regoli, Leonardo; Paranicas, Christopher P.; Mitchell, Don; Krimigis, Stamatios M.; Khurana, Krishan

    2016-10-01

    We report on the results of energetic electron measurements above 15 keV from the Low Energy Magnetospheric Measurement System LEMMS, part of the Magnetospheric Imaging Instrument MIMI onboard Cassini during the five close Dione flybys combined with measurements of the magnetometer instrument MAG - an update of the paper by Krupp et al. 2013. We found particles in the vicinity of Dione bouncing and drifting in Saturn's magnetosphere and eventually are lost onto the surface of the moon. The location and depth of the absorption signature depends on species, their energy and on the geometry of the flyby. For the upstream encounter D1 energy-dependent ion absorption signatures were measured with the evidence that protons present in the upstream region can explain the observed dropout features. The flybys D2 and D3 went through the moon's geometrical wake and we observed energy dependent asymmetric absorption signatures in the fluxes of electrons between the planetward and anti-planetward sectors of the moon's wake at energies above about 100 keV. The most recent flybys D4 and D5 went directly over the north pole of the moon and showed absorption signatures when connected with the moon's flux tube. Trajectory tracings in a simulated environment of Dione's magnetospheric interaction using the Adaptive hybrid model for space plasma simulations (A.I.K.E.F.) indicate that the magnetic and electric field perturbations in Dione's interaction region, as well as magnetospheric diffusion need to be taken into account in order to explain the features in the data.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abanin, D. A.; Department of Physics, Princeton University, Princeton, New Jersey 08544; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

    Quantum Hall states that result from interaction induced lifting of the eightfold degeneracy of the zeroth Landau level in bilayer graphene are considered. We show that at even filling factors electric charge is injected into the system in the form of charge 2e Skyrmions. This is a rare example of binding of charges in a system with purely repulsive interactions. We calculate the Skyrmion energy and size as a function of the effective Zeeman interaction and discuss the signatures of the charge 2e Skyrmions in the scanning probe experiments.

  1. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasetsmore » having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic value for both ER-positive and ER-negative breast cancer. The signature was selected using a novel biological approach and hence holds promise to represent the key biological processes of breast cancer.« less

  2. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer

    PubMed Central

    2010-01-01

    Introduction Various multigene predictors of breast cancer clinical outcome have been commercialized, but proved to be prognostic only for hormone receptor (HR) subsets overexpressing estrogen or progesterone receptors. Hormone receptor negative (HRneg) breast cancers, particularly those lacking HER2/ErbB2 overexpression and known as triple-negative (Tneg) cases, are heterogeneous and generally aggressive breast cancer subsets in need of prognostic subclassification, since most early stage HRneg and Tneg breast cancer patients are cured with conservative treatment yet invariably receive aggressive adjuvant chemotherapy. Methods An unbiased search for genes predictive of distant metastatic relapse was undertaken using a training cohort of 199 node-negative, adjuvant treatment naïve HRneg (including 154 Tneg) breast cancer cases curated from three public microarray datasets. Prognostic gene candidates were subsequently validated using a different cohort of 75 node-negative, adjuvant naïve HRneg cases curated from three additional datasets. The HRneg/Tneg gene signature was prognostically compared with eight other previously reported gene signatures, and evaluated for cancer network associations by two commercial pathway analysis programs. Results A novel set of 14 prognostic gene candidates was identified as outcome predictors: CXCL13, CLIC5, RGS4, RPS28, RFX7, EXOC7, HAPLN1, ZNF3, SSX3, HRBL, PRRG3, ABO, PRTN3, MATN1. A composite HRneg/Tneg gene signature index proved more accurate than any individual candidate gene or other reported multigene predictors in identifying cases likely to remain free of metastatic relapse. Significant positive correlations between the HRneg/Tneg index and three independent immune-related signatures (STAT1, IFN, and IR) were observed, as were consistent negative associations between the three immune-related signatures and five other proliferation module-containing signatures (MS-14, ONCO-RS, GGI, CSR/wound and NKI-70). Network analysis identified 8 genes within the HRneg/Tneg signature as being functionally linked to immune/inflammatory chemokine regulation. Conclusions A multigene HRneg/Tneg signature linked to immune/inflammatory cytokine regulation was identified from pooled expression microarray data and shown to be superior to other reported gene signatures in predicting the metastatic outcome of early stage and conservatively managed HRneg and Tneg breast cancer. Further validation of this prognostic signature may lead to new therapeutic insights and spare many newly diagnosed breast cancer patients the need for aggressive adjuvant chemotherapy. PMID:20946665

  3. Using multi-scale entropy and principal component analysis to monitor gears degradation via the motor current signature analysis

    NASA Astrophysics Data System (ADS)

    Aouabdi, Salim; Taibi, Mahmoud; Bouras, Slimane; Boutasseta, Nadir

    2017-06-01

    This paper describes an approach for identifying localized gear tooth defects, such as pitting, using phase currents measured from an induction machine driving the gearbox. A new tool of anomaly detection based on multi-scale entropy (MSE) algorithm SampEn which allows correlations in signals to be identified over multiple time scales. The motor current signature analysis (MCSA) in conjunction with principal component analysis (PCA) and the comparison of observed values with those predicted from a model built using nominally healthy data. The Simulation results show that the proposed method is able to detect gear tooth pitting in current signals.

  4. Characterizing hyporheic exchange processes using high-frequency electrical conductivity-discharge relationships on subhourly to interannual timescales

    NASA Astrophysics Data System (ADS)

    Singley, Joel G.; Wlostowski, Adam N.; Bergstrom, Anna J.; Sokol, Eric R.; Torrens, Christa L.; Jaros, Chris; Wilson, Colleen E.; Hendrickson, Patrick J.; Gooseff, Michael N.

    2017-05-01

    Concentration-discharge (C-Q) relationships are often used to quantify source water contributions and biogeochemical processes occurring within catchments, especially during discrete hydrological events. Yet, the interpretation of C-Q hysteresis is often confounded by complexity of the critical zone, such as numerous source waters and hydrochemical nonstationarity. Consequently, researchers must often ignore important runoff pathways and geochemical sources/sinks, especially the hyporheic zone because it lacks a distinct hydrochemical signature. Such simplifications limit efforts to identify processes responsible for the transience of C-Q hysteresis over time. To address these limitations, we leverage the hydrologic simplicity and long-term, high-frequency Q and electrical conductivity (EC) data from streams in the McMurdo Dry Valleys, Antarctica. In this two end-member system, EC can serve as a proxy for the concentration of solutes derived from the hyporheic zone. We utilize a novel approach to decompose loops into subhysteretic EC-Q dynamics to identify individual mechanisms governing hysteresis across a wide range of timescales. We find that hydrologic and hydraulic processes govern EC response to diel and seasonal Q variability and that the effects of hyporheic mixing processes on C-Q transience differ in short and long streams. We also observe that variable hyporheic turnover rates govern EC-Q patterns at daily to interannual timescales. Last, subhysteretic analysis reveals a period of interannual freshening of glacial meltwater streams related to the effects of unsteady flow on hyporheic exchange. The subhysteretic analysis framework we introduce may be applied more broadly to constrain the processes controlling C-Q transience and advance understanding of catchment evolution.

  5. Aging in Biometrics: An Experimental Analysis on On-Line Signature

    PubMed Central

    Galbally, Javier; Martinez-Diaz, Marcos; Fierrez, Julian

    2013-01-01

    The first consistent and reproducible evaluation of the effect of aging on dynamic signature is reported. Experiments are carried out on a database generated from two previous datasets which were acquired, under very similar conditions, in 6 sessions distributed in a 15-month time span. Three different systems, representing the current most popular approaches in signature recognition, are used in the experiments, proving the degradation suffered by this trait with the passing of time. Several template update strategies are also studied as possible measures to reduce the impact of aging on the system’s performance. Different results regarding the way in which signatures tend to change with time, and their most and least stable features, are also given. PMID:23894557

  6. Blind Quantum Signature with Controlled Four-Particle Cluster States

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Jinjing; Shi, Ronghua; Guo, Ying

    2017-08-01

    A novel blind quantum signature scheme based on cluster states is introduced. Cluster states are a type of multi-qubit entangled states and it is more immune to decoherence than other entangled states. The controlled four-particle cluster states are created by acting controlled-Z gate on particles of four-particle cluster states. The presented scheme utilizes the above entangled states and simplifies the measurement basis to generate and verify the signature. Security analysis demonstrates that the scheme is unconditional secure. It can be employed to E-commerce systems in quantum scenario.

  7. New topics in coherent anti-stokes raman scattering gas-phase diagnostics : femtosecond rotational CARS and electric-field measurements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lempert, Walter R.; Barnat, Edward V.; Kearney, Sean Patrick

    2010-07-01

    We discuss two recent diagnostic-development efforts in our laboratory: femtosecond pure-rotational Coherent anti-Stokes Raman scattering (CARS) for thermometry and species detection in nitrogen and air, and nanosecond vibrational CARS measurements of electric fields in air. Transient pure-rotational fs-CARS data show the evolution of the rotational Raman polarization in nitrogen and air over the first 20 ps after impulsive pump/Stokes excitation. The Raman-resonant signal strength at long time delays is large, and we additionally observe large time separation between the fs-CARS signatures of nitrogen and oxygen, so that the pure-rotational approach to fs-CARS has promise for simultaneous species and temperature measurementsmore » with suppressed nonresonant background. Nanosecond vibrational CARS of nitrogen for electric-field measurements is also demonstrated. In the presence of an electric field, a dipole is induced in the otherwise nonpolar nitrogen molecule, which can be probed with the introduction of strong collinear pump and Stokes fields, resulting in CARS signal radiation in the infrared. The electric-field diagnostic is demonstrated in air, where the strength of the coherent infrared emission and sensitivity our field measurements is quantified, and the scaling of the infrared signal with field strength is verified.« less

  8. Electrical characteristics of simulated tornadoes

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.; Farrell, W. M.; Barth, E. L.; Lewellen, D. C.; Lewellen, W. S.; Perlongo, N. J.; Jackson, T.

    2012-12-01

    It is well known that tornadoes and dust devils have the ability to accumulate significant, visible clouds of debris. Collisions between sand-like debris species produce different electric charges on different types of grains, which convect along different trajectories around the vortex. Thus, significant charge separations and electric currents are possible, which as the vortex fluctuates over time are thought to produce ULF radiation signatures that have been measured in the field. These electric and magnetic fields may contain valuable information about tornado structure and genesis, and may be critical in driving electrochemical processes within dust devils on Mars. In the present work, existing large eddy simulations of debris-laden tornadoes performed at West Virginia University are coupled with a new debris-charging and advection code developed at Goddard Space Flight Center to investigate the detailed (meter-resolution) fluid-dynamic origins of electromagnetic fields within terrestrial vortices. First results are presented, including simulations of the electric and magnetic fields that would be observed by a near-surface, instrument-laden probe during a direct encounter with a tornado. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The generous allocation of computing resources by Dr. Timothy J. Stubbs is gratefully acknowledged.

  9. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    PubMed

    van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B

    2015-01-01

    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  10. Numerical prediction of meteoric infrasound signatures

    NASA Astrophysics Data System (ADS)

    Nemec, Marian; Aftosmis, Michael J.; Brown, Peter G.

    2017-06-01

    We present a thorough validation of a computational approach to predict infrasonic signatures of centimeter-sized meteoroids. This is the first direct comparison of computational results with well-calibrated observations that include trajectories, optical masses and ground pressure signatures. We assume that the energy deposition along the meteor trail is dominated by atmospheric drag and simulate a steady, inviscid flow of air in thermochemical equilibrium to compute a near-body pressure signature of the meteoroid. This signature is then propagated through a stratified and windy atmosphere to the ground using a methodology from aircraft sonic-boom analysis. The results show that when the source of the signature is the cylindrical Mach-cone, the simulations closely match the observations. The prediction of the shock rise-time, the zero-peak amplitude of the waveform and the duration of the positive pressure phase are consistently within 10% of the measurements. Uncertainty in primarily the shape of the meteoroid results in a poorer prediction of the trailing part of the waveform. Overall, our results independently verify energy deposition estimates deduced from optical observations.

  11. Fatty acid signatures of stomach oil and adipose tissue of northern fulmars (Fulmarus glacialis) in Alaska: Implications for diet analysis of Procellariiform birds

    USGS Publications Warehouse

    Wang, S.W.; Iverson, S.J.; Springer, A.M.; Hatch, Shyla A.

    2007-01-01

    Procellariiforms are unique among seabirds in storing dietary lipids in both adipose tissue and stomach oil. Thus, both lipid sources are potentially useful for trophic studies using fatty acid (FA) signatures. However, little is known about the relationship between FA signatures in stomach oil and adipose tissue of individuals or whether these signatures provide similar information about diet and physiology. We compared the FA composition of stomach oil and adipose tissue biopsies of individual northern fulmars (N = 101) breeding at three major colonies in Alaska. Fatty acid signatures differed significantly between the two lipid sources, reflecting differences in dietary time scales, metabolic processing, or both. However, these signatures exhibited a relatively consistent relationship between individuals, such that the two lipid sources provided a similar ability to distinguish foraging differences among individuals and colonies. Our results, including the exclusive presence of dietary wax esters in stomach oil but not adipose tissue, are consistent with the notion that stomach oil FA signatures represent lipids retained from prey consumed during recent foraging and reflect little metabolic processing, whereas adipose tissue FA signatures represent a longer-term integration of dietary intake. Our study illustrates the potential for elucidating short- versus longer-term diet information in Procellariiform birds using different lipid sources. ?? 2007 Springer-Verlag.

  12. Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare

    NASA Astrophysics Data System (ADS)

    Janvier, M.; Savcheva, A.; Pariat, E.; Tassev, S.; Millholland, S.; Bommier, V.; McCauley, P.; McKillop, S.; Dougan, F.

    2016-07-01

    Context. The standard model for eruptive flares has been extended to three dimensions (3D) in the past few years. This model predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the quasi-separatrix layers (QSLs). Such a morphology is also found for flare ribbons observed in the extreme ultraviolet (EUV) band, and in nonlinear force-free field (NLFFF) magnetic field extrapolations and models. Aims: We study the evolution of the photospheric traces of the current density and flare ribbons, both obtained with the Solar Dynamics Observatory instruments. We aim to compare their morphology and their time evolution, before and during the flare, with the topological features found in a NLFFF model. Methods: We investigated the photospheric current evolution during the 06 September 2011 X-class flare (SOL2011-09-06T22:20) occurring in NOAA AR 11283 from observational data of the magnetic field obtained with the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory. We compared this evolution with that of the flare ribbons observed in the EUV filters of the Atmospheric Imager Assembly. We also compared the observed electric current density and the flare ribbon morphology with that of the QSLs computed from the flux rope insertion method-NLFFF model. Results: The NLFFF model shows the presence of a fan-spine configuration of overlying field lines, due to the presence of a parasitic polarity, embedding an elongated flux rope that appears in the observations as two parts of a filament. The QSL signatures of the fan configuration appear as a circular flare ribbon that encircles the J-shaped ribbons related to the filament ejection. The QSLs, evolved via a magnetofrictional method, also show similar morphology and evolution as both the current ribbons and the EUV flare ribbons obtained several times during the flare. Conclusions: For the first time, we propose a combined analysis of the photospheric traces of an eruptive flare, in a complex topology, with direct measurements of electric currents and QSLs from observational data and a magnetic field model. The results, obtained by two different and independent approaches 1) confirm previous results of current increase during the impulsive phase of the flare and 2) show how NLFFF models can capture the essential physical signatures of flares even in a complex magnetic field topology. A movie associated to Fig. 1 is available in electronic form at http://www.aanda.org

  13. Foraging ecology of an endemic shorebird, the African Black Oystercatcher ( Haematopus moquini) on the south-east coast of South Africa

    NASA Astrophysics Data System (ADS)

    Kohler, Sophie; Bonnevie, Bo; McQuaid, Christopher; Jaquemet, Sébastien

    2009-09-01

    We investigated small-medium (1-300 km) scale variation in the foraging ecology of the African Black Oystercatcher during its breeding season, using traditional diet analysis coupled with carbon and nitrogen stable isotope analysis. Fieldwork was conducted between January and March 2006 and 2007, on rocky shores on the south-east coast of South Africa at East London, Kenton and Port Elizabeth. Middens of shelled prey left by adults feeding their chicks were collected from five territories and the abundances of the collected prey on the foraging areas were estimated using quadrats. Blood samples from 45 birds (16 females, 10 males and 19 chicks) and tissues from the predominant prey species on the territory of each breeding pair were collected for isotope analysis. The Manly-Chesson selectivity index revealed that adults feed their chicks preferentially with the limpet Scutellastra cochlear and the Mediterranean mussel Mytilus galloprovincialis, if available. A slight enrichment in the 15N stable-carbon isotope signature was observed towards the west in both prey and oystercatchers. Differences in isotope signatures between males and females from the same breeding pair indicate sex-related differences in the diet. Both had signatures indicating a mixed diet, but with males exhibiting a signature closer to that of limpets and females closer to that of mussels. In the single case where mussels were rare on the feeding territory, the two members of a pair showed carbon signatures which were identical and very similar to that of limpets. These results indicate dietary partitioning between genders in breeding pairs.

  14. Simultaneous Observations of Atmospheric Tides from Combined in Situ and Remote Observations at Mars from the MAVEN Spacecraft

    NASA Technical Reports Server (NTRS)

    England, Scott L.; Liu, Guiping; Withers, Paul; Yigit, Erdal; Lo, Daniel; Jain, Sonal; Schneider, Nicholas M. (Inventor); Deighan, Justin; McClintock, William E.; Mahaffy, Paul R.; hide

    2016-01-01

    We report the observations of longitudinal variations in the Martian thermosphere associated with nonmigrating tides. Using the Neutral Gas Ion Mass Spectrometer (NGIMS) and the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft, this study presents the first combined analysis of in situ and remote observations of atmospheric tides at Mars for overlapping volumes, local times, and overlapping date ranges. From the IUVS observations, we determine the altitude and latitudinal variation of the amplitude of the nonmigrating tidal signatures, which is combined with the NGIMS, providing information on the compositional impact of these waves. Both the observations of airglow from IUVS and the CO2 density observations from NGIMS reveal a strong wave number 2 signature in a fixed local time frame. The IUVS observations reveal a strong latitudinal dependence in the amplitude of the wave number 2 signature. Combining this with the accurate CO2 density observations from NGIMS, this would suggest that the CO2 density variation is as high as 27% at 0-10 deg latitude. The IUVS observations reveal little altitudinal dependence in the amplitude of the wave number 2 signature, varying by only 20% from 160 to 200 km. Observations of five different species with NGIMS show that the amplitude of the wave number 2 signature varies in proportion to the inverse of the species scale height, giving rise to variation in composition as a function of longitude. The analysis and discussion here provide a roadmap for further analysis as additional coincident data from these two instruments become available.

  15. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. | Office of Cancer Genomics

    Cancer.gov

    We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival.

  16. Instrumentation for motor-current signature analysis using synchronous sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castleberry, K.N.

    1996-07-01

    Personnel in the Instrumentation and Controls Division at Oak Ridge National Laboratory, in association with the United States Enrichment Corporation, the U.S. Navy, and various Department of Energy sponsors, have been involved in the development and application of motor-current signature analysis for several years. In that time, innovation in the field has resulted in major improvements in signal processing, analysis, and system performance and capabilities. Recent work has concentrated on industrial implementation of one of the most promising new techniques. This report describes the developed method and the instrumentation package that is being used to investigate and develop potential applications.

  17. PCDD/F-isomers signature - Effect of metal chlorides and oxides.

    PubMed

    Zhang, Mengmei; Buekens, Alfons; Olie, Kees; Li, Xiaodong

    2017-10-01

    A recent paper presented the results from de novo tests, involving 11 distinct catalytic systems (oxides and chlorides of Cd, Cr, Cu, Ni, and Zn, as well as a blank sample). Their PCDD and PCDF formation activity was shown. This paper further assesses their isomer signature, with special emphasis on those congeners associated with chlorophenol precursor routes, and on 2,3,7,8- and 1,9-substituted congeners. Each metal catalyst generates a significantly different signature, also affected by the presence or absence of oxygen in the reaction atmosphere. Oxide and chloride catalysts supply distinctive signatures, suggesting singly weighted pathways. Quite a large number of data was handled, so that throughout this analysis special attention was given to testing and developing an appropriate methodology, allowing appropriate correlation analysis and statistical data treatment. The large tables resulting relate to the 11 catalytic systems, studied at 3 levels of oxygen concentration, with 94 PCDD/F-congeners considered individually. They constitute an extensive reference data bank for confronting novel experimental data with this vast data set. Copyright © 2017. Published by Elsevier Ltd.

  18. [Chiparray-based identification of gene expression in HUVECs treated with low frequency electric fields].

    PubMed

    Ulrich, D; Ulrich, F; Silny, J; Unglaub, F; Pallua, N

    2006-06-01

    After high-voltage electric injury, patients often show progressive tissue necrosis and thrombosis of blood vessels even remote from the entry and exit sites of electrical current. Recently, we were able to demonstrate IN VIVO and VITRO the release of several prothrombotic factors. In this study, we report on IN VITRO studies performed to characterize gene expression profiles using a DNA-microarray in HUVECs (human umbilical vein endothelial cells) exposed to low frequency electrical current. HUVECs were plated and grown to confluence in a culture chamber. They were exposed to 25 periods of 50 Hz sinusoidal waves. The periods had field strength of 60 V/cm and duration of 100 ms. Periods were interrupted by 10-second intervals to prevent significant joule heating. Control HUVECs were treated identically except that no electric field was applied. Samples from control and treated cells were taken after six and 24 hours. A PIQOR Immunology Array (Milteny Biotech) containing 1076 cDNAs was used for gene expression analysis. Hybridization of Cy3- and Cy5-labelled samples, image capture, and signal quantification of hybridized arrays were performed. Local background was subtracted from the signal to obtain the net signal intensity and the ratio of Cy5/Cy3. The ratios were normalized to the median of all ratios and the mean of the ratios of four corresponding spots was computed. More than two-fold increases or decreases of the gene expression were regarded as relevant. A total of 413 genes (1s + s) respectively 345 genes (2s + s) could be detected. The results obtained display a distinct expression pattern of up-regulated genes known to be important for hemostasis (e.g. UPA, UPAR, ECE1, PAFAH1B1, PGT, INOS, ENOS, TPA, ICAM1, VCAM1, PAI1, PAI2, VWF, PTGDR, F3, THBD), which was most evident after 24 hours. This expression profile might lead to a hypercoagulated state. Furthermore, the expression of genes involved in angiogenesis was reduced whereas the expression of those involved in platelet formation was increased. Our results indicate that low frequency electrical fields induce a distinct signature of differential gene expression in exposed HUVECs. This might explain the clinical observation of thrombosis and progressive tissue necrosis after electrical injury.

  19. The FIELDS experiment for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Bale, S.; Spp/Fields Team

    2010-12-01

    Many of our basic ideas on the plasma physics of acceleration, energy flow, and dissipation, and structure of the solar wind have never been rigorously confronted by direct experimental measurements in the region where these processes are actually occurring. Although Alfven waves, shocks, and magnetic reconnection are often invoked as heating mechanisms, there have never been any direct measurements of Alfvenic waves nor the associated Poynting flux nor any measurements of ion or electron kinetic energy flux in the region from 10 R_s to 30 R_s where the final stages of wind acceleration are believed to occur. The radial profiles of both slow and fast solar wind acceleration are based on remote-sensing measurements and have been obtained for only a few selected events. Thus, the spatial radial and perpendicular scales of the acceleration process have been averaged by line-of-sight effects and the possibility of intense localized acceleration cannot be ruled out. The Solar Probe Plus (SPP) mission calls for the high quality fields and particles measurements required to solve the coronal heating and wind acceleration problem. The SPP 'FIELDS' experiment measures the electric and magnetic fields fundamental to the plasma physics of the structured and turbulent solar wind, flux ropes, collisionless shocks, and magnetic reconnection. FIELDS will make the first-ever measurements of the DC/Low-Frequency electric field inside of 1 AU allowing for in situ, high cadence measurements of the Poynting vector, the Elsasser variables, and E/B diagnostics of the wave spectrum to fce in the solar wind. SPP/FIELDS measures the radio wave (type III and II) signatures of microflares, energized electrons, and CME propagation. SPP/ FIELDS measures the plasma electron density to ~2% accuracy and the core electron temperature to ~5-10% accuracy more than 90% of the time at perihelion. FIELDS will also measure the in situ density fluctuation spectrum and structures at a very high cadence (≤ 10 kHz) and provide definitive signatures of the turbulent nature and heating of the solar wind plasma. Furthermore, SPP/FIELDS measures the impact rate and sig- natures of dust from micron- to nano-scales, by measuring the voltage signature of dust impacts on the spacecraft. FIELDS will also measure the floating potential of the SPP spacecraft, which is essential for correcting in situ electron data. The SPP/FIELDS experiment combines four (4) deployable electric antennas, fluxgate and search coil magnetometers and the associated signal processing electronics into a scientifically and technically integrated package. SPP/FIELDS makes very high cadence measurements of fields and density and employs an internal burst memory for intelligent data selection. FIELDS is required to measure very large plasma potentials and electric fields (~10V) and uses floating ground (+/- 100V) power preamplifiers. The SPP/FIELDS team has performed 3D plasma simulations of the SPP spacecraft plasma environ- ment, which reveal enormous voltage fluctuation levels in the plasma wake behind the spacecraft. This voltage noise dominates the true signal by orders of magnitude in the critical DC/LF frequency range. Therefore, we are proposing a design which places the four (4) electric antennas in front of the spacecraft ahead of the heat shield.

  20. Spectral signature verification using statistical analysis and text mining

    NASA Astrophysics Data System (ADS)

    DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.

    2016-05-01

    In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is present for comparison. The spectral validation method proposed is described from a practical application and analytical perspective.

  1. Can polychlorinated biphenyl (PCB) signatures and enantiomer fractions be used for source identification and to age date occupational exposure?

    PubMed

    Megson, David; Focant, Jean-Françios; Patterson, Donald G; Robson, Matthew; Lohan, Maeve C; Worsfold, Paul J; Comber, Sean; Kalin, Robert; Reiner, Eric; O'Sullivan, Gwen

    2015-08-01

    Detailed polychlorinated biphenyl (PCB) signatures and chiral Enantiomer Fractions (EFs) of CB-95, CB-136 and CB-149 were measured for 30 workers at a transformer dismantling plant. This was undertaken to identify sources of exposure and investigate changes to the PCB signature and EFs over different exposure periods. Approximately 1.5 g of serum was extracted and PCB signatures were created through analysis by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) and EFs calculated following analysis by gas chromatography with high resolution mass spectrometry (GC-HRMS). A total of 84 PCBs were identified in the serum samples with concentrations of the 7 indicator PCBs ranging from 11-350 ng g(-1) of serum (1.2-39 μg g(-1) lipid). The PCB signatures were interpreted using principal component analysis (PCA) which was able to distinguish workers with background or recent minimal exposure from those with prolonged occupational exposure. Occupationally exposed individuals had a similar PCB profile to Aroclor A1260. However, individuals with prolonged exposure had depleted proportions of several PCB congeners that are susceptible to metabolism (CB-95, CB-101 and CB-151) and elevated proportions of PCBs that are resistant to metabolism (CB-74, CB-153, CB-138 and CB-180). The results also identified a third group of workers with elevated proportions of CB-28, CB-60, CB-66, CB-74, CB-105 and CB-118 who appeared to have been exposed to an additional source of PCBs. The results show near complete removal of the CB-95 E2 enantiomer in some samples, indicating that bioselective metabolism or preferential excretion of one enantiomer occurs in humans. By considering PCB concentrations along with detailed congener specific signatures it was possible to identify different exposure sources, and gain an insight into both the magnitude and duration of exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Contextualising the topographic signature of historic mining, a scaling analysis

    NASA Astrophysics Data System (ADS)

    Reinhardt, Liam

    2017-04-01

    Mining is globally one of the most significant means by which humans alter landscapes; we do so through erosion (mining), transport, and deposition of extracted sediments (waste). The iconic Dartmoor mountain landscape of SW England ( 700km2) has experienced over 1000 years of shallow (Cu & Sn) mining that has left a pervasive imprint on the landscape. The availability of high resolution digital elevation models (<=1m) and aerial photographs @12.5 cm resolution) combined with historic records of mining activity and output make this an ideal location to investigate the topographic signature of mining. Conceptually I ask the question: how much (digital elevation model) smoothing is required to remove the human imprint from this landscape ? While we may have entered the Anthropocene other gravity driven process have imparted distinct scale-dependant signatures. How might the human signature differ from these processes and how pervasive is it at the landscape scale? Spatial scaling analysis (curvature & semi-variance) was used to quantify the topographic signature of historic mining and to determine how it differs to a) natural landforms such as bedrock tors; and b) the morphology of biological activity (e.g. peat formation). Other forms of historic activity such as peat cutting and quarrying were also investigated. The existence of 400 years of mine activity archives also makes it possible to distinguish between the imprint of differing forms of mine technology and their spatio-temporal signature. Interestingly the higher technology 19th C mines have left a much smaller topographic legacy than Medieval miners; though the former had a much greater impact in terms of heavy metal contamination.

  3. Necessary storage as a signature of discharge variability: towards global maps

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kuniyoshi; Masood, Muhammad

    2017-09-01

    This paper proposes the use of necessary storage to smooth out discharge variability to meet a discharge target as a signature of discharge variability in time. Such a signature has a distinct advantage over other statistical indicators such as standard deviation (SD) or coefficient of variation (CV) as it expresses hydrological variability in human terms, which directly indicates the difficulty and ease of managing discharge variation for water resource management. The signature is presented in the form of geographical distribution, in terms of both necessary storage (km3) and normalized necessary storage (months), and is related to the basin characteristics of hydrological heterogeneity. The signature is analyzed in different basins considering the Hurst equation of range as a reference. The slope of such a relation and the scatter of departures from the average relation are analyzed in terms of their relationship with basin characteristics. As a method of calculating necessary storage, the flood duration curve (FDC) and drought duration curve (DDC) methods are employed in view of their relative advantage over other methods to repeat the analysis over many grid points. The Ganges-Brahmaputra-Meghna (GBM) basin is selected as the case study and the BTOPMC hydrological model with Water and Global Change (WATCH) Forcing Data (WFD) is used for estimating FDC and DDC. It is concluded that the necessary storage serves as a useful signature of discharge variability, and its analysis could be extended to the entire globe and in this way seek new insights into hydrological variability in the storage domain at a larger range of scales.

  4. Gene-Expression Signature Predicts Postoperative Recurrence in Stage I Non-Small Cell Lung Cancer Patients

    PubMed Central

    Lu, Yan; Wang, Liang; Liu, Pengyuan; Yang, Ping; You, Ming

    2012-01-01

    About 30% stage I non-small cell lung cancer (NSCLC) patients undergoing resection will recur. Robust prognostic markers are required to better manage therapy options. The purpose of this study is to develop and validate a novel gene-expression signature that can predict tumor recurrence of stage I NSCLC patients. Cox proportional hazards regression analysis was performed to identify recurrence-related genes and a partial Cox regression model was used to generate a gene signature of recurrence in the training dataset −142 stage I lung adenocarcinomas without adjunctive therapy from the Director's Challenge Consortium. Four independent validation datasets, including GSE5843, GSE8894, and two other datasets provided by Mayo Clinic and Washington University, were used to assess the prediction accuracy by calculating the correlation between risk score estimated from gene expression and real recurrence-free survival time and AUC of time-dependent ROC analysis. Pathway-based survival analyses were also performed. 104 probesets correlated with recurrence in the training dataset. They are enriched in cell adhesion, apoptosis and regulation of cell proliferation. A 51-gene expression signature was identified to distinguish patients likely to develop tumor recurrence (Dxy = −0.83, P<1e-16) and this signature was validated in four independent datasets with AUC >85%. Multiple pathways including leukocyte transendothelial migration and cell adhesion were highly correlated with recurrence-free survival. The gene signature is highly predictive of recurrence in stage I NSCLC patients, which has important prognostic and therapeutic implications for the future management of these patients. PMID:22292069

  5. Classifying lower grade glioma cases according to whole genome gene expression.

    PubMed

    Chen, Baoshi; Liang, Tingyu; Yang, Pei; Wang, Haoyuan; Liu, Yanwei; Yang, Fan; You, Gan

    2016-11-08

    To identify a gene-based signature as a novel prognostic model in lower grade gliomas. A gene signature developed from HOXA7, SLC2A4RG and MN1 could segregate patients into low and high risk score groups with different overall survival (OS), and was validated in TCGA RNA-seq and GSE16011 mRNA array datasets. Receiver operating characteristic (ROC) was performed to show that the three-gene signature was more sensitive and specific than histology, grade, age, IDH1 mutation and 1p/19q co-deletion. Gene Set Enrichment Analysis (GSEA) and GO analysis showed high-risk samples were associated with tumor associated macrophages (TAMs) and highly invasive phenotypes. Moreover, HOXA7-siRNA inhibited migration and invasion in vitro, and downregulated MMP9 at the protein level in U251 glioma cells. A cohort of 164 glioma specimens from the Chinese Glioma Genome Atlas (CGGA) array database were assessed as the training group. TCGA RNA-seq and GSE16011 mRNA array datasets were used for validation. Regression analyses and linear risk score assessment were performed for the identification of the three-gene signature comprising HOXA7, SLC2A4RG and MN1. We established a three-gene signature for lower grade gliomas, which could independently predict overall survival (OS) of lower grade glioma patients with higher sensitivity and specificity compared with other clinical characteristics. These findings indicate that the three-gene signature is a new prognostic model that could provide improved OS prediction and accurate therapies for lower grade glioma patients.

  6. Hydrodynamic electron flow in a Weyl semimetal slab: Role of Chern-Simons terms

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2018-05-01

    The hydrodynamic flow of the chiral electron fluid in a Weyl semimetal slab of finite thickness is studied by using the consistent hydrodynamic theory. The latter includes viscous, anomalous, and vortical effects, as well as accounts for dynamical electromagnetism. The energy and momentum separations between the Weyl nodes are taken into account via the topological Chern-Simons contributions in the electric current and charge densities in Maxwell's equations. When an external electric field is applied parallel to the slab, it is found that the electron fluid velocity has a nonuniform profile determined by the viscosity and the no-slip boundary conditions. Most remarkably, the fluid velocity field develops a nonzero component across the slab that gradually dissipates when approaching the surfaces. This abnormal component of the flow arises due to the anomalous Hall voltage induced by the topological Chern-Simons current. Another signature feature of the hydrodynamics in Weyl semimetals is a strong modification of the anomalous Hall current along the slab in the direction perpendicular to the applied electric field. Additionally, it is found that the topological current induces an electric potential difference between the surfaces of the slab that is strongly affected by the hydrodynamic flow.

  7. Near-infrared signals associated with electrical stimulation of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  8. Streamer development in barrier discharge in air: spectral signatures and electric field

    NASA Astrophysics Data System (ADS)

    Hoder, Tomas; Simek, Milan; Bonaventura, Zdenek; Prukner, Vaclav

    2015-09-01

    Electrical breakdown in the upper atmosphere takes form of so called Transient Luminous Events (TLE). Down to the certain pressure limit, the first phases of the TLE-phenomena are controlled by the streamer mechanism. In order to understand the development of these events, streamers in 10 torr air were generated in volume barrier discharge. Stability and reproducibility of generated streamers were secured by proper electrode geometry and specific applied voltage waveform. In this work, spectrally resolved measurements of the streamer head emission with high spatial and temporal resolution are presented. Precise recordings of the emission of the second positive and first negative systems of molecular nitrogen allowed the determination of the spatio-temporal development of the reduced electric field in the streamer head. This unique experimental result reveals in more details the early stages of the streamer development and gives, besides values for streamer velocity and its diameter, quantitative information on the magnitude of the electric field. T.H. was financed through the ESF Programme TEA-IS (Grant No. 4219), M.S. and V.P. by the AVCR under collaborative project M100431201 and Z.B. acknowledges the support of grant of Czech Science Foundation GA15-04023S.

  9. Variation in the mobilization of mercury into Black-winged Stilt Himantopus himantopus chicks in coastal saltpans, as revealed by stable isotopes

    NASA Astrophysics Data System (ADS)

    Tavares, P. C.; Kelly, A.; Maia, R.; Lopes, R. J.; Serrão Santos, R.; Pereira, M. E.; Duarte, A. C.; Furness, R. W.

    2008-03-01

    Causes of variation in mobilization of mercury into Black-winged Stilt Himantopus himantopus chicks were studied through analysis of stable isotope ratios of carbon and nitrogen. Blood and breast feathers were collected from chicks in coastal saltpans during successive breeding seasons. Detritus samples and potential prey (macroinvertebrates) were also collected. Total mercury concentrations and stable isotope signatures were measured using atomic absorption spectroscopy and isotope ratio mass spectrometry respectively. Mercury levels in Chironomidae, Corixidae and Hydrophilidae correlated with mercury levels in chick feathers. Differences of δ 15N signatures between macroinvertebrate groups indicated that they belong to different trophic levels. δ 15N signatures of invertebrates correlated with mercury levels in invertebrates and chicks, but not with δ 15N signatures in chicks. Between-group and between-site differences of δ 15N signatures and mercury levels in invertebrates suggested that they contribute differently to mercury mobilization into chicks, and their relative contribution depends on prey availability in each site. Inter-site differences in the biomagnification factor reinforced that idea. δ 13C signatures in invertebrates marked a larger range of carbon sources than just detritus. Variation of water inflow regime and prey availability may cause between-group and between-site differences of δ 13C signatures in prey. Discrepancies between feather and blood for δ 13C signatures in Praias-Sado and Vaia suggested that temporal variation of prey availability may be the main factor affecting mercury mobilization into chicks in both those cases, since their water inflow regimes are the same. The lowest levels of δ 13C signatures in Vau suggested that water inflow regime may be the main factor in this case, since no discrepancy existed in δ 13C signatures between blood and feather.

  10. Gene-expression signatures can distinguish gastric cancer grades and stages.

    PubMed

    Cui, Juan; Li, Fan; Wang, Guoqing; Fang, Xuedong; Puett, J David; Xu, Ying

    2011-03-18

    Microarray gene-expression data of 54 paired gastric cancer and adjacent noncancerous gastric tissues were analyzed, with the aim to establish gene signatures for cancer grades (well-, moderately-, poorly- or un-differentiated) and stages (I, II, III and IV), which have been determined by pathologists. Our statistical analysis led to the identification of a number of gene combinations whose expression patterns serve well as signatures of different grades and different stages of gastric cancer. A 19-gene signature was found to have discerning power between high- and low-grade gastric cancers in general, with overall classification accuracy at 79.6%. An expanded 198-gene panel allows the stratification of cancers into four grades and control, giving rise to an overall classification agreement of 74.2% between each grade designated by the pathologists and our prediction. Two signatures for cancer staging, consisting of 10 genes and 9 genes, respectively, provide high classification accuracies at 90.0% and 84.0%, among early-, advanced-stage cancer and control. Functional and pathway analyses on these signature genes reveal the significant relevance of the derived signatures to cancer grades and progression. To the best of our knowledge, this represents the first study on identification of genes whose expression patterns can serve as markers for cancer grades and stages.

  11. Draft versus finished sequence data for DNA and protein diagnostic signature development

    PubMed Central

    Gardner, Shea N.; Lam, Marisa W.; Smith, Jason R.; Torres, Clinton L.; Slezak, Tom R.

    2005-01-01

    Sequencing pathogen genomes is costly, demanding careful allocation of limited sequencing resources. We built a computational Sequencing Analysis Pipeline (SAP) to guide decisions regarding the amount of genomic sequencing necessary to develop high-quality diagnostic DNA and protein signatures. SAP uses simulations to estimate the number of target genomes and close phylogenetic relatives (near neighbors or NNs) to sequence. We use SAP to assess whether draft data are sufficient or finished sequencing is required using Marburg and variola virus sequences. Simulations indicate that intermediate to high-quality draft with error rates of 10−3–10−5 (∼8× coverage) of target organisms is suitable for DNA signature prediction. Low-quality draft with error rates of ∼1% (3× to 6× coverage) of target isolates is inadequate for DNA signature prediction, although low-quality draft of NNs is sufficient, as long as the target genomes are of high quality. For protein signature prediction, sequencing errors in target genomes substantially reduce the detection of amino acid sequence conservation, even if the draft is of high quality. In summary, high-quality draft of target and low-quality draft of NNs appears to be a cost-effective investment for DNA signature prediction, but may lead to underestimation of predicted protein signatures. PMID:16243783

  12. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation.

    PubMed

    Godec, Jernej; Tan, Yan; Liberzon, Arthur; Tamayo, Pablo; Bhattacharya, Sanchita; Butte, Atul J; Mesirov, Jill P; Haining, W Nicholas

    2016-01-19

    Gene-expression profiling has become a mainstay in immunology, but subtle changes in gene networks related to biological processes are hard to discern when comparing various datasets. For instance, conservation of the transcriptional response to sepsis in mouse models and human disease remains controversial. To improve transcriptional analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of ∼5,000 gene-sets from diverse cell states, experimental manipulations, and genetic perturbations in immunology. Analysis using ImmuneSigDB identified signatures induced in activated myeloid cells and differentiating lymphocytes that were highly conserved between humans and mice. Sepsis triggered conserved patterns of gene expression in humans and mouse models. However, we also identified species-specific biological processes in the sepsis transcriptional response: although both species upregulated phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB enables granular analysis of transcriptomic data to improve biological understanding of immune processes of the human and mouse immune systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Pathway-GPS and SIGORA: identifying relevant pathways based on the over-representation of their gene-pair signatures

    PubMed Central

    Foroushani, Amir B.K.; Brinkman, Fiona S.L.

    2013-01-01

    Motivation. Predominant pathway analysis approaches treat pathways as collections of individual genes and consider all pathway members as equally informative. As a result, at times spurious and misleading pathways are inappropriately identified as statistically significant, solely due to components that they share with the more relevant pathways. Results. We introduce the concept of Pathway Gene-Pair Signatures (Pathway-GPS) as pairs of genes that, as a combination, are specific to a single pathway. We devised and implemented a novel approach to pathway analysis, Signature Over-representation Analysis (SIGORA), which focuses on the statistically significant enrichment of Pathway-GPS in a user-specified gene list of interest. In a comparative evaluation of several published datasets, SIGORA outperformed traditional methods by delivering biologically more plausible and relevant results. Availability. An efficient implementation of SIGORA, as an R package with precompiled GPS data for several human and mouse pathway repositories is available for download from http://sigora.googlecode.com/svn/. PMID:24432194

  14. Comparative Systems Analyses Reveal Molecular Signatures of Clinically tested Vaccine Adjuvants

    NASA Astrophysics Data System (ADS)

    Olafsdottir, Thorunn A.; Lindqvist, Madelene; Nookaew, Intawat; Andersen, Peter; Maertzdorf, Jeroen; Persson, Josefine; Christensen, Dennis; Zhang, Yuan; Anderson, Jenna; Khoomrung, Sakda; Sen, Partho; Agger, Else Marie; Coler, Rhea; Carter, Darrick; Meinke, Andreas; Rappuoli, Rino; Kaufmann, Stefan H. E.; Reed, Steven G.; Harandi, Ali M.

    2016-12-01

    A better understanding of the mechanisms of action of human adjuvants could inform a rational development of next generation vaccines for human use. Here, we exploited a genome wide transcriptomics analysis combined with a systems biology approach to determine the molecular signatures induced by four clinically tested vaccine adjuvants, namely CAF01, IC31, GLA-SE and Alum in mice. We report signature molecules, pathways, gene modules and networks, which are shared by or otherwise exclusive to these clinical-grade adjuvants in whole blood and draining lymph nodes of mice. Intriguingly, co-expression analysis revealed blood gene modules highly enriched for molecules with documented roles in T follicular helper (TFH) and germinal center (GC) responses. We could show that all adjuvants enhanced, although with different magnitude and kinetics, TFH and GC B cell responses in draining lymph nodes. These results represent, to our knowledge, the first comparative systems analysis of clinically tested vaccine adjuvants that may provide new insights into the mechanisms of action of human adjuvants.

  15. Using fractal analysis of thermal signatures for thyroid disease evaluation

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Gheorghe; Sofron, Emil; Gavriloaia, Mariuca-Roxana; Ghemigean, Adina-Mariana

    2010-11-01

    The skin is the largest organ of the body and it protects against heat, light, injury and infection. Skin temperature is an important parameter for diagnosing diseases. Thermal analysis is non-invasive, painless, and relatively inexpensive, showing a great potential research. Since the thyroid regulates metabolic rate it is intimately connected to body temperature, more than, any modification of its function generates a specific thermal image on the neck skin. The shapes of thermal signatures are often irregular in size and shape. Euclidean geometry is not able to evaluate their shape for different thyroid diseases, and fractal geometry is used in this paper. Different thyroid diseases generate different shapes, and their complexity are evaluated by specific mathematical approaches, fractal analysis, in order to the evaluate selfsimilarity and lacunarity. Two kinds of thyroid diseases, hyperthyroidism and papillary cancer are analyzed in this paper. The results are encouraging and show the ability to continue research for thermal signature to be used in early diagnosis of thyroid diseases.

  16. Interim Report on SNP analysis and forensic microarray probe design for South American hemorrhagic fever viruses, tick-borne encephalitis virus, henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever viruses, Rift Valley fever

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C; Gardner, S

    The goal of this project is to develop forensic genotyping assays for select agent viruses, enhancing the current capabilities for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the whole genomemore » wide SNP analysis and microarray probe design for forensics characterization of South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.« less

  17. Complex magnetic properties of TbMn{sub 1-x}Fe{sub x}O{sub 3} (x = 0.1 and 0.2) nanoparticles prepared by the sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, A.; Chatterjee, S.; Das, D., E-mail: ddas@alpha.iuc.res.in

    2016-05-23

    TbMn{sub 1-x}Fe{sub x}O{sub 3} nanoparticles (NPs) with x = 0, 0.1 and 0.2 have been prepared by adopting the chemical sol-gel method. Phase identification and particle size estimation are done by XRD analysis. M-H measurements at 5 K indicate a complete ferromagnetic behaviour in the Fe-doped samples with large coercivity whereas the pristine sample shows presence of both ferromagnetic and antiferromagnetic orders. ZFC and FC magnetization curves of all samples show signature of antiferromagnetic ordering of both terbium and manganese magnetic moments along with a systematic shift of ordering temperatures with Fe substitution. {sup 57}Fe Mössbauer spectroscopic measurements of the Fe-dopedmore » samples at room temperature confirm the paramagnetic behaviour and reduction of electric field gradient around Fe probe atoms with increase of Fe concentration.« less

  18. Development of a tagged source of Pb-206 nuclei

    NASA Astrophysics Data System (ADS)

    Cutter, J.; Godfrey, B.; Hillbrand, S.; Irving, M.; Manalaysay, A.; Minaker, Z.; Morad, J.; Tripathi, M.

    2018-02-01

    There is a particular class of unavoidable backgrounds that plague low-background experiments and rare event searches, particularly those searching for nuclear recoil event signatures: decaying daughters of the 238U nuclear decay chain, which result from radon plate-out on detector materials. One such daughter isotope, 210Po, undergoes α-decay and produces a recoiling 103 keV 206Pb nucleus. To characterize this important background in the context of noble element detectors, we have implemented a triggered source for these 206Pb recoils in a dual-phase xenon time projection chamber (Xe TPC) within the Davis Xenon R&D testbed system (DAX). By adhering 210Po to the surface of a PIN diode and electrically floating the diode on the cathode of the TPC, we tag the α signals produced in the PIN diode and trigger on the correlated nuclear recoils in the liquid xenon (LXe). We discuss our methods for 210Po deposition, electronic readout of the PIN diode signals at high voltage, and analysis methods for event selection.

  19. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    PubMed

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  20. Optical nonclassicality test based on third-order intensity correlations

    NASA Astrophysics Data System (ADS)

    Rigovacca, L.; Kolthammer, W. S.; Di Franco, C.; Kim, M. S.

    2018-03-01

    We develop a nonclassicality criterion for the interference of three delayed, but otherwise identical, light fields in a three-mode Bell interferometer. We do so by comparing the prediction of quantum mechanics with those of a classical framework in which independent sources emit electric fields with random phases. In particular, we evaluate third-order correlations among output intensities as a function of the delays, and show how the presence of a correlation revival for small delays cannot be explained by the classical model of light. The observation of a revival is thus a nonclassicality signature, which can be achieved only by sources with a photon-number statistics that is highly sub-Poissonian. Our analysis provides strong evidence for the nonclassicality of the experiment discussed by Menssen et al. [Phys. Rev. Lett. 118, 153603 (2017), 10.1103/PhysRevLett.118.153603], and shows how a collective "triad" phase affects the interference of any three or more light fields, irrespective of their quantum or classical character.

  1. Ice/frost detection using millimeter wave radiometry. [space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Newton, J. M.; Davis, A. R.; Foster, M. L.

    1981-01-01

    A series of ice detection tests was performed on the shuttle external tank (ET) and on ET target samples using a 35/95 GHz instrumentation radiometer. Ice was formed using liquid nitrogen and water spray inside a test enclosure containing ET spray on foam insulation samples. During cryogenic fueling operations prior to the shuttle orbiter engine firing tests, ice was formed with freon and water over a one meter square section of the ET LOX tank. Data analysis was performed on the ice signatures, collected by the radiometer, using Georgia Tech computing facilities. Data analysis technique developed include: ice signature images of scanned ET target; pixel temperature contour plots; time correlation of target data with ice present versus no ice formation; and ice signature radiometric temperature statistical data, i.e., mean, variance, and standard deviation.

  2. Evaluating options for balancing the water-electricity nexus in California: Part 2--greenhouse gas and renewable energy utilization impacts.

    PubMed

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott

    2014-11-01

    A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Structural Integrity of Proteins under Applied Bias during Solid-State Nanopore Translocation

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad R.; Khanzada, Raja Raheel; Mahmood, Mohammed A. I.; Ashfaq, Adnan; Iqbal, Samir M.

    2015-03-01

    The translocation behavior of proteins through solid-state nanopores can be used as a new way to detect and identify proteins. The ionic current through a nanopore that flows under applied bias gets perturbed when a biomolecule traverses the Nanopore. It is important for a protein detection scheme to know of any changes in the three-dimensional structure of the molecule during the process. Here we report the data on structural integrity of protein during translocation through nanopore under different applied biases. Nanoscale Molecular Dynamic was used to establish a framework to study the changes in protein structures as these travelled across the nanopore. The analysis revealed the contributions of structural changes of protein to its ionic current signature. As a model, thrombin protein crystalline structure was imported and positioned inside a 6 nm diameter pore in a 6 nm thick silicon nitride membrane. The protein was solvated in 1 M KCl at 295 K and the system was equilibrated for 20 ns to attain its minimum energy state. The simulation was performed at different electric fields from 0 to 1 kCal/(mol.Å.e). RMSD, radial distribution function, movement of the center of mass and velocity of the protein were calculated. The results showed linear increments in the velocity and perturbations in ionic current profile with increasing electric potential. Support Acknowledged from NSF through ECCS-1201878.

  4. Investigating the Link between Molecular Subtypes of Glioblastoma, Epithelial-Mesenchymal Transition, and CD133 Cell Surface Protein

    PubMed Central

    Zarkoob, Hadi; Taube, Joseph H.; Singh, Sheila K.; Mani, Sendurai A.; Kohandel, Mohammad

    2013-01-01

    In this manuscript, we use genetic data to provide a three-faceted analysis on the links between molecular subclasses of glioblastoma, epithelial-to-mesenchymal transition (EMT) and CD133 cell surface protein. The contribution of this paper is three-fold: First, we use a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrate that genes in this signature have significant overlap with genes differentially expressed in all known GBM subtypes. However, the overlap between genes up regulated in the mesenchymal subtype of GBM and in the EMT signature was more significant than other GBM subtypes. Second, we provide evidence that there is a negative correlation between the genetic signature of EMT and that of CD133 cell surface protein, a putative marker for neural stem cells. Third, we study the correlation between GBM molecular subtypes and the genetic signature of CD133 cell surface protein. We demonstrate that the mesenchymal and neural subtypes of GBM have the strongest correlations with the CD133 genetic signature. While the mesenchymal subtype of GBM displays similarity with the signatures of both EMT and CD133, it also exhibits some differences with each of these signatures that are partly due to the fact that the signatures of EMT and CD133 are inversely related to each other. Taken together these data shed light on the role of the mesenchymal transition and neural stem cells, and their mutual interaction, in molecular subtypes of glioblastoma multiforme. PMID:23734191

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S; Jaing, C

    The goal of this project is to develop forensic genotyping assays for select agent viruses, addressing a significant capability gap for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the Taqmanmore » signature development for South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.« less

  6. Comparison of transcriptomic signature of post-Chernobyl and postradiotherapy thyroid tumors.

    PubMed

    Ory, Catherine; Ugolin, Nicolas; Hofman, Paul; Schlumberger, Martin; Likhtarev, Illya A; Chevillard, Sylvie

    2013-11-01

    We previously identified two highly discriminating and predictive radiation-induced transcriptomic signatures by comparing series of sporadic and postradiotherapy thyroid tumors (322-gene signature), and by reanalyzing a previously published data set of sporadic and post-Chernobyl thyroid tumors (106-gene signature). The aim of the present work was (i) to compare the two signatures in terms of gene expression deregulations and molecular features/pathways, and (ii) to test the capacity of the postradiotherapy signature in classifying the post-Chernobyl series of tumors and reciprocally of the post-Chernobyl signature in classifying the postradiotherapy-induced tumors. We now explored if postradiotherapy and post-Chernobyl papillary thyroid carcinomas (PTC) display common molecular features by comparing molecular pathways deregulated in the two tumor series, and tested the potential of gene subsets of the postradiotherapy signature to classify the post-Chernobyl series (14 sporadic and 12 post-Chernobyl PTC), and reciprocally of gene subsets of the post-Chernobyl signature to classify the postradiotherapy series (15 sporadic and 12 postradiotherapy PTC), by using conventional principal component analysis. We found that the five genes common to the two signatures classified the learning/training tumors (used to search these signatures) of both the postradiotherapy (seven PTC) and the post-Chernobyl (six PTC) thyroid tumor series as compared with the sporadic tumors (seven sporadic PTC in each series). Importantly, these five genes were also effective for classifying independent series of postradiotherapy (five PTC) and post-Chernobyl (six PTC) tumors compared to independent series of sporadic tumors (eight PTC and six PTC respectively; testing tumors). Moreover, part of each postradiotherapy (32 genes) and post-Chernobyl signature (16 genes) cross-classified the respective series of thyroid tumors. Finally, several molecular pathways deregulated in post-Chernobyl tumors matched those found to be deregulated in postradiotherapy tumors. Overall, our data suggest that thyroid tumors that developed following either external exposure or internal (131)I contamination shared common molecular features, related to DNA repair, oxidative and endoplasmic reticulum stresses, allowing their classification as radiation-induced tumors in comparison with sporadic counterparts, independently of doses and dose rates, which suggests there may be a "general" radiation-induced signature of thyroid tumors.

  7. Integrated analysis of DNA methylation, immunohistochemistry and mRNA expression, data identifies a Methylation Expression Index (MEI) robustly associated with survival of ER-positive breast cancer patients

    PubMed Central

    Garcia-Closas, Montserrat; Davis, Sean; Meltzer, Paul; Lissowska, Jolanta; Horne, Hisani N.; Sherman, Mark E.; Lee, Maxwell

    2015-01-01

    Identification of prognostic gene expression signatures may enable improved decisions about management of breast cancer. To identify a prognostic signature for breast cancer, we performed DNA methylation profiling and identified methylation markers that were associated with expression of ER, PR, HER2, CK5/6 and EGFR proteins. Methylation markers that were correlated with corresponding mRNA expression levels were identified using 208 invasive tumors from a population-based case-control study conducted in Poland. Using this approach, we defined the Methylation Expression Index (MEI) signature that was based on a weighted sum of mRNA levels of 57 genes. Classification of cases as low or high MEI scores were related to survival using Cox regression models. In the Polish study, women with ER-positive low MEI cancers had reduced survival at a median of 5.20 years of follow-up, HR=2.85 95%CI=1.25-6.47. Low MEI was also related to decreased survival in four independent datasets totaling over 2500 ER-positive breast cancers. These results suggest that integrated analysis of tumor expression markers, DNA methylation, and mRNA data can be an important approach for identifying breast cancer prognostic signatures. Prospective assessment of MEI along with other prognostic signatures should be evaluated in future studies. PMID:25773928

  8. Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures

    PubMed Central

    Natsoulis, Georges; El Ghaoui, Laurent; Lanckriet, Gert R.G.; Tolley, Alexander M.; Leroy, Fabrice; Dunlea, Shane; Eynon, Barrett P.; Pearson, Cecelia I.; Tugendreich, Stuart; Jarnagin, Kurt

    2005-01-01

    A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as “rewards” for the class-of-interest) while others have a negative contribution (act as “penalties”) to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class. PMID:15867433

  9. Large Scale Assessment of Radio Frequency Interference Signatures in L-band SAR Data

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Nicoll, J.

    2011-12-01

    Imagery of L-band Synthetic Aperture Radar (SAR) systems such as the PALSAR sensor on board the Advanced Land Observing Satellite (ALOS) has proven to be a valuable tool for observing environmental changes around the globe. Besides offering 24/7 operability, the L-band frequency provides improved interferometric coherence, and L-band polarimetric data has shown great potential for vegetation monitoring, sea ice classification, and the observation of glaciers and ice sheets. To maximize the benefit of missions such as ALOS PALSAR for environmental monitoring, data consistency and calibration are vital. Unfortunately, radio frequency interference (RFI) signatures from ground-based radar systems regularly impair L-band SAR data quality and consistency. With this study we present a large-scale analysis of typical RFI signatures that are regularly observed in L-band SAR data over the Americas. Through a study of the vast archive of L-band SAR data in the US Government Research Consortium (USGRC) data pool at the Alaska Satellite Facility (ASF) we were able to address the following research goals: 1. Assessment of RFI Signatures in L-band SAR data and their Effects on SAR Data Quality: An analysis of time-frequency properties of RFI signatures in L-band SAR data of the USGRC data pool is presented. It is shown that RFI-filtering algorithms implemented in the operational ALOS PALSAR processor are not sufficient to remove all RFI-related artifacts. In examples, the deleterious effects of RFI on SAR image quality, polarimetric signature, SAR phase, and interferometric coherence are presented. 2. Large-Scale Assessment of Severity, Spatial Distribution, and Temporal Variation of RFI Signatures in L-band SAR data: L-band SAR data in the USGRC data pool were screened for RFI using a custom algorithm. Per SAR frame, the algorithm creates geocoded frame bounding boxes that are color-coded according to RFI intensity and converted to KML files for analysis in Google Earth. From the screening results, parameters such as RFI severity and spatial distribution of RFI were derived. Through a comparison of RFI signatures in older SAR data from JAXA's Japanese Earth Resources Satellite (JERS-1) and recent ALOS PALSAR data, changes in RFI signatures in the Americas were derived, indicating a strong increase of L-band signal contamination over time. 3. An Optimized RFI Filter and its Performance in Data Restoration: An optimized RFI filter has been developed and tested at ASF. The algorithm has proven to be effective in detecting and removing RFI signatures in L-band SAR data and restoring the advertised quality of SAR imagery, polarization, and interferometric phase. The properties of the RFI filter will be described and its performance will be demonstrated in examples. The presented work is a prime example of large-scale research that is made possible by the availability of SAR data through the extensive data archive of the USGRC data pool at ASF.

  10. A magnetospheric signature of some F layer positive storms

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Mayr, H. G.; Grebowsky, J. M.; Harris, I.; Tulunay, Y. K.

    1981-01-01

    Calculations of electron density distributions in the global thermosphere-ionosphere system perturbed by high-latitude thermospheric heating are presented which indicate a link between the heating and magnetospheric plasma disturbances near the equator. The calculations were made using a self-consistent model of the global sunlit thermosphere-ionosphere system describing the evolution of equatorial plasma disturbances. The heat input is found to cause electron density enhancements that propagate along magnetic field lines from the F2 maximum over mid-latitudes to the equator in the magnetosphere and which correspond to the positive phase of an F layer storm. The positive phase is shown to be generated by the induction of equatorward winds that raise the mid-latitude F layer through momentum transfer from neutral atoms to ionospheric ions, which ions pull electrons with them. Model results are used to identify plasma signatures of equatorward winds and an intensified magnetospheric electric field in Explorer 45 and Arial 4 measurements taken during the positive phase of an F layer storm.

  11. Relationship between Effective Application of Machine Learning and Malware Detection: A Quantitative Study

    ERIC Educational Resources Information Center

    Enfinger, Kerry Wayne

    2016-01-01

    The number of malicious files present in the public domain continues to rise at a substantial rate. Current anti-malware software utilizes a signature-based method to detect the presence of malicious software. Generating these pattern signatures is time consuming due to malicious code complexity and the need for expert analysis, however, by making…

  12. Electric-field sensors for bullet detection systems

    NASA Astrophysics Data System (ADS)

    Vinci, Stephen; Hull, David; Ghionea, Simon; Ludwig, William; Deligeorges, Socrates; Gudmundsson, Thorkell; Noras, Maciej

    2014-06-01

    Research and experimental trials have shown that electric-field (E-field) sensors are effective at detecting charged projectiles. E-field sensors can likely complement traditional acoustic sensors, and help provide a more robust and effective solution for bullet detection and tracking. By far, the acoustic sensor is the most prevalent technology in use today for hostile fire defeat systems due to compact size and low cost, yet they come with a number of challenges that include multipath, reverberant environments, false positives and low signal-to-noise. Studies have shown that these systems can benefit from additional sensor modalities such as E-field sensors. However, E-field sensors are a newer technology that is relatively untested beyond basic experimental trials; this technology has not been deployed in any fielded systems. The U.S. Army Research Laboratory (ARL) has conducted live-fire experiments at Aberdeen Proving Grounds (APG) to collect data from E-field sensors. Three types of E-field sensors were included in these experiments: (a) an electric potential gradiometer manufactured by Quasar Federal Systems (QFS), (b) electric charge induction, or "D-dot" sensors designed and built by the Army Research Lab (ARL), and (c) a varactor based E-field sensor prototype designed by University of North Carolina-Charlotte (UNCC). Sensors were placed in strategic locations near the bullet trajectories, and their data were recorded. We analyzed the performance of each E-field sensor type in regard to small-arms bullet detection capability. The most recent experiment in October 2013 allowed demonstration of improved versions of the varactor and D-dot sensor types. Results of new real-time analysis hardware employing detection algorithms were also tested. The algorithms were used to process the raw data streams to determine when bullet detections occurred. Performance among the sensor types and algorithm effectiveness were compared to estimates from acoustics signatures and known ground truth. Results, techniques and configurations that might work best for a given sensor platform are discussed.

  13. Newborn Urinary Metabolic Signatures of Prematurity and Other Disorders: A Case Control Study.

    PubMed

    Diaz, Sílvia O; Pinto, Joana; Barros, António S; Morais, Elisabete; Duarte, Daniela; Negrão, Fátima; Pita, Cristina; Almeida, Maria do Céu; Carreira, Isabel M; Spraul, Manfred; Gil, Ana M

    2016-01-04

    This work assesses the urinary metabolite signature of prematurity in newborns by nuclear magnetic resonance (NMR) spectroscopy, while establishing the role of possible confounders and signature specificity, through comparison to other disorders. Gender and delivery mode are shown to impact importantly on newborn urine composition, their analysis pointing out at specific metabolite variations requiring consideration in unmatched subject groups. Premature newborns are, however, characterized by a stronger signature of varying metabolites, suggestive of disturbances in nucleotide metabolism, lung surfactants biosynthesis and renal function, along with enhancement of tricarboxylic acid (TCA) cycle activity, fatty acids oxidation, and oxidative stress. Comparison with other abnormal conditions (respiratory depression episode, large for gestational age, malformations, jaundice and premature rupture of membranes) reveals that such signature seems to be largely specific of preterm newborns, showing that NMR metabolomics can retrieve particular disorder effects, as well as general stress effects. These results provide valuable novel information on the metabolic impact of prematurity, contributing to the better understanding of its effects on the newborn's state of health.

  14. Computational Modeling of Meteor-Generated Ground Pressure Signatures

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Brown, Peter G.

    2017-01-01

    We present a thorough validation of a computational approach to predict infrasonic signatures of centimeter-sized meteoroids. We assume that the energy deposition along the meteor trail is dominated by atmospheric drag and simulate the steady, inviscid flow of air in thermochemical equilibrium to compute the meteoroid's near-body pressure signature. This signature is then propagated through a stratified and windy atmosphere to the ground using a methodology adapted from aircraft sonic-boom analysis. An assessment of the numerical accuracy of the near field and the far field solver is presented. The results show that when the source of the signature is the cylindrical Mach-cone, the simulations closely match the observations. The prediction of the shock rise-time, the zero-peak amplitude of the waveform, and the duration of the positive pressure phase are consistently within 10% of the measurements. Uncertainty in the shape of the meteoroid results in a poorer prediction of the trailing part of the waveform. Overall, our results independently verify energy deposition estimates deduced from optical observations.

  15. Seismic Measurement of the Locations of the Base of Convection Zone and Helium Ionization Zone for Stars in the Kepler Seismic LEGACY Sample

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep; Raodeo, Keyuri; Antia, H. M.; Mazumdar, Anwesh; Basu, Sarbani; Lund, Mikkel N.; Silva Aguirre, Víctor

    2017-03-01

    Acoustic glitches are regions inside a star where the sound speed or its derivatives change abruptly. These leave a small characteristic oscillatory signature in the stellar oscillation frequencies. With the precision achieved by Kepler seismic data, it is now possible to extract these small amplitude oscillatory signatures, and infer the locations of the glitches. We perform glitch analysis for all the 66 stars in the Kepler seismic LEGACY sample to derive the locations of the base of the envelope convection zone (CZ) and the helium ionization zone. The signature from helium ionization zone is found to be robust for all stars in the sample, whereas the CZ signature is found to be weak and problematic, particularly for relatively massive stars with large errorbars on the oscillation frequencies. We demonstrate that the helium glitch signature can be used to constrain the properties of the helium ionization layers and the helium abundance.

  16. Non-contact multi-radar smart probing of body orientation based on micro-Doppler signatures.

    PubMed

    Li, Yiran; Pal, Ranadip; Li, Changzhi

    2014-01-01

    Micro-Doppler signatures carry useful information about body movements and have been widely applied to different applications such as human activity recognition and gait analysis. In this paper, micro-Doppler signatures are used to identify body orientation. Four AC-coupled continuous-wave (CW) smart radar sensors were used to form a multiple-radar network to carry out the experiments in this paper. 162 tests were performed in total. The experiment results showed a 100% accuracy in recognizing eight body orientations, i.e., facing north, northeast, east, southeast, south, southwest, west, and northwest.

  17. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  18. The Electric Field of a Weakly Electric Fish

    NASA Astrophysics Data System (ADS)

    Rasnow, Brian K.

    Freshwater fish of the genus Apteronotus (family Gymnotidae) generate a weak, high frequency electric field (<100 mV/cm, 0.5-10 kHz) which permeates their local environment. These nocturnal fish are acutely sensitive to perturbations in their electric field caused by other electric fish, and nearby objects whose impedance is different from the surrounding water. This thesis presents high temporal and spatial resolution maps of the electric potential and field on and near Apteronotus. The fish's electric field is a complicated and highly stable function of space and time. Its characteristics, such as spectral composition, timing, and rate of attenuation, are examined in terms of physical constraints, and their possible functional roles in electroreception. Temporal jitter of the periodic field is less than 1 musec. However, electrocyte activity is not globally synchronous along the fish's electric organ. The propagation of electrocyte activation down the fish's body produces a rotation of the electric field vector in the caudal part of the fish. This may assist the fish in identifying nonsymmetrical objects, and could also confuse electrosensory predators that try to locate Apteronotus by following its fieldlines. The propagation also results in a complex spatiotemporal pattern of the EOD potential near the fish. Visualizing the potential on the same and different fish over timescales of several months suggests that it is stable and could serve as a unique signature for individual fish. Measurements of the electric field were used to calculate the effects of simple objects on the fish's electric field. The shape of the perturbation or "electric image" on the fish's skin is relatively independent of a simple object's size, conductivity, and rostrocaudal location, and therefore could unambiguously determine object distance. The range of electrolocation may depend on both the size of objects and their rostrocaudal location. Only objects with very large dielectric constants cause appreciable phase shifts, and these are strongly dependent on the water conductivity.

  19. Signature detection and matching for document image retrieval.

    PubMed

    Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan

    2009-11-01

    As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches.

  20. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer.

    PubMed

    Namani, Akhileshwar; Matiur Rahaman, Md; Chen, Ming; Tang, Xiuwen

    2018-01-06

    NRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3 (cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC). The main goal of this study was to identify specific genes regulated by the KEAP1-NRF2-CUL3 axis in HNSCC patients, to assess the prognostic value of this gene signature in different cohorts, and to reveal potential biomarkers. RNA-Seq V2 level 3 data from 279 tumor samples along with 37 adjacent normal samples from patients enrolled in the The Cancer Genome Atlas (TCGA)-HNSCC study were used to identify upregulated genes using two methods (altered KEAP1-NRF2-CUL3 versus normal, and altered KEAP1-NRF2-CUL3 versus wild-type). We then used a new approach to identify the combined gene signature by integrating both datasets and subsequently tested this signature in 4 independent HNSCC datasets to assess its prognostic value. In addition, functional annotation using the DAVID v6.8 database and protein-protein interaction (PPI) analysis using the STRING v10 database were performed on the signature. A signature composed of a subset of 17 genes regulated by the KEAP1-NRF2-CUL3 axis was identified by overlapping both the upregulated genes of altered versus normal (251 genes) and altered versus wild-type (25 genes) datasets. We showed that increased expression was significantly associated with poor survival in 4 independent HNSCC datasets, including the TCGA-HNSCC dataset. Furthermore, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and PPI analysis revealed that most of the genes in this signature are associated with drug metabolism and glutathione metabolic pathways. Altogether, our study emphasizes the discovery of a gene signature regulated by the KEAP1-NRF2-CUL3 axis which is strongly associated with tumorigenesis and drug resistance in HNSCC. This 17-gene signature provides potential biomarkers and therapeutic targets for HNSCC cases in which the NRF2 pathway is activated.

  1. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  2. Electromagnetic Measurements in an Active Oilfield Environment

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Aldridge, D. F.; Bartel, L. C.; Knox, H. A.; Weiss, C. J.

    2015-12-01

    An important issue in oilfield development pertains to mapping and monitoring of the fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring and analysis have been used for this purpose for several decades, there remain several ambiguities and uncertainties with this approach. We are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a petroleum reservoir by injecting an electrically conductive contrast agent into an open fracture. The fracture is subsequently illuminated by a strong EM field radiated by a large engineered antenna. Specifically, a grounded electric current source is applied directly to the steel casing of the borehole, either at/near the wellhead or at a deep downhole point. Transient multicomponent EM signals (both electric and magnetic) scattered by the conductivity contrast are then recorded by a surface receiver array. We are presently utilizing advanced 3D numerical modeling algorithms to accurately simulate fracture responses, both before and after insertion of the conductive contrast agent. Model results compare favorably with EM field data recently acquired in a Permian Basin oilfield. However, extraction of the very-low-amplitude fracture signatures from noisy data requires effective noise suppression strategies such as long stacking times, rejection of outliers, and careful treatment of natural magnetotelluric fields. Dealing with the ever-present "episodic EM noise" typical in an active oilfield environment (associated with drilling, pumping, machinery, traffic, etc.) constitutes an ongoing problem. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. EG-05COMBINATION OF GENE COPY GAIN AND EPIGENETIC DEREGULATION ARE ASSOCIATED WITH THE ABERRANT EXPRESSION OF A STEM CELL RELATED HOX-SIGNATURE IN GLIOBLASTOMA

    PubMed Central

    Kurscheid, Sebastian; Bady, Pierre; Sciuscio, Davide; Samarzija, Ivana; Shay, Tal; Vassallo, Irene; Van Criekinge, Wim; Domany, Eytan; Stupp, Roger; Delorenzi, Mauro; Hegi, Monika

    2014-01-01

    We previously reported a stem cell related HOX gene signature associated with resistance to chemo-radiotherapy (TMZ/RT- > TMZ) in glioblastoma. However, underlying mechanisms triggering overexpression remain mostly elusive. Interestingly, HOX genes are neither involved in the developing brain, nor expressed in normal brain, suggestive of an acquired gene expression signature during gliomagenesis. HOXA genes are located on CHR 7 that displays trisomy in most glioblastoma which strongly impacts gene expression on this chromosome, modulated by local regulatory elements. Furthermore we observed more pronounced DNA methylation across the HOXA locus as compared to non-tumoral brain (Human methylation 450K BeadChip Illumina; 59 glioblastoma, 5 non-tumoral brain sampes). CpG probes annotated for HOX-signature genes, contributing most to the variability, served as input into the analysis of DNA methylation and expression to identify key regulatory regions. The structural similarity of the observed correlation matrices between DNA methylation and gene expression in our cohort and an independent data-set from TCGA (106 glioblastoma) was remarkable (RV-coefficient, 0.84; p-value < 0.0001). We identified a CpG located in the promoter region of the HOXA10 locus exerting the strongest mean negative correlation between methylation and expression of the whole HOX-signature. Applying this analysis the same CpG emerged in the external set. We then determined the contribution of both, gene copy aberration (CNA) and methylation at the selected probe to explain expression of the HOX-signature using a linear model. Statistically significant results suggested an additive effect between gene dosage and methylation at the key CpG identified. Similarly, such an additive effect was also observed in the external data-set. Taken together, we hypothesize that overexpression of the stem-cell related HOX signature is triggered by gain of trisomy 7 and escape from compensatory DNA methylation at positions controlling the effect of enhanced gene dose on expression.

  4. Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression.

    PubMed

    Kraus, Virginia Byers; Feng, Sheng; Wang, ShengChu; White, Scott; Ainslie, Maureen; Brett, Alan; Holmes, Anthony; Charles, H Cecil

    2009-12-01

    To evaluate the effectiveness of using subchondral bone texture observed on a radiograph taken at baseline to predict progression of knee osteoarthritis (OA) over a 3-year period. A total of 138 participants in the Prediction of Osteoarthritis Progression study were evaluated at baseline and after 3 years. Fractal signature analysis (FSA) of the medial subchondral tibial plateau was performed on fixed flexion radiographs of 248 nonreplaced knees, using a commercially available software tool. OA progression was defined as a change in joint space narrowing (JSN) or osteophyte formation of 1 grade according to a standardized knee atlas. Statistical analysis of fractal signatures was performed using a new model based on correlating the overall shape of a fractal dimension curve with radius. Fractal signature of the medial tibial plateau at baseline was predictive of medial knee JSN progression (area under the curve [AUC] 0.75, of a receiver operating characteristic curve) but was not predictive of osteophyte formation or progression of JSN in the lateral compartment. Traditional covariates (age, sex, body mass index, knee pain), general bone mineral content, and joint space width at baseline were no more effective than random variables for predicting OA progression (AUC 0.52-0.58). The predictive model with maximum effectiveness combined fractal signature at baseline, knee alignment, traditional covariates, and bone mineral content (AUC 0.79). We identified a prognostic marker of OA that is readily extracted from a plain radiograph using FSA. Although the method needs to be validated in a second cohort, our results indicate that the global shape approach to analyzing these data is a potentially efficient means of identifying individuals at risk of knee OA progression.

  5. Focused and Steady-State Characteristics of Shaped Sonic Boom Signatures: Prediction and Analysis

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Bobbitt, Percy J.; Massey, Steven J.; Plotkin, Kenneth J.; Kandil, Osama A.; Zheng, Xudong

    2011-01-01

    The objective of this study is to examine the effect of flight, at off-design conditions, on the propagated sonic boom pressure signatures of a small "low-boom" supersonic aircraft. The amplification, or focusing, of the low magnitude "shaped" signatures produced by maneuvers such as the accelerations from transonic to supersonic speeds, climbs, turns, pull-up and pushovers is the concern. To analyze these effects, new and/or improved theoretical tools have been developed, in addition to the use of existing methodology. Several shaped signatures are considered in the application of these tools to the study of selected maneuvers and off-design conditions. The results of these applications are reported in this paper as well as the details of the new analytical tools. Finally, the magnitude of the focused boom problem for "low boom" supersonic aircraft designs has been more accurately quantified and potential "mitigations" suggested. In general, "shaped boom" signatures, designed for cruise flight, such as asymmetric and symmetric flat-top and initial-shock ramp waveforms retain their basic shape during transition flight. Complex and asymmetric and symmetric initial shock ramp waveforms provide lower magnitude focus boom levels than N-waves or asymmetric and symmetric flat-top signatures.

  6. Impedance-Based Structural Health Monitoring for Composite Laminates at Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Tseng, Kevin

    2003-01-01

    One of the important ways of increasing the payload in a reusable launch vehicle (RLV) is to replace heavy metallic materials by lightweight composite laminates. Among various parts and systems of the RLV, this project focuses on tanks containing cryogenic fuel. Historically, aluminum alloys have been used as the materials to construct fuel tanks for launch vehicles. To replace aluminum alloys with composite laminates or honeycomb materials, engineers have to make sure that the composites are free of defects before, during, and after launch. In addition to robust design and manufacturing procedures, the performance of the composite structures needs to be monitored constantly.In recent years, the impedance-based health monitoring technique has shown its promise in many applications. This technique makes use of the special properties of smart piezoelectric materials to identify the change of material properties due to the nucleation and progression of damage. The piezoceramic patch serves as a sensor and an actuator simultaneously. The piezoelectric patch is bonded onto an existing structure or embedded into a new structure and electrically excited at high frequencies. The signature (impedance or admittance) is extracted as a function of the exciting frequency and is compared with the baseline signature of the healthy state. The damage is quantified using root mean square deviation (RMSD) in the impedance signatures with respect to the baseline signature. A major advantage of this technique is that the procedure is nondestructive in nature and does not perturb the properties and performance of the materials and structures. This project aims at applying the impedance-based nondestructive testing technique to the damage identification of composite laminates at cryogenic temperature.

  7. Methane Emissions in the London Region: Deciphering Regional Sources with Mobile Measurements

    NASA Astrophysics Data System (ADS)

    Zazzeri, G.; Lowry, D.; Fisher, R. E.; France, J. L.; Lanoisellé, M.; Bjorkegren, A.; Nisbet, E. G.

    2014-12-01

    Methane stable isotope analysis, coupled with mole fraction measurement, has been used to link isotopic signature to methane emissions from the leading methane sources in the London region, such as landfills and gas leaks. A mobile Picarro G2301 CRDS analyser was installed in a vehicle, together with an anemometer and a Hemisphere GPS receiver, to measure atmospheric methane mole fractions and their relative location. When methane plumes were located and intercepted, air samples were collected in Tedlar bags, for δ13C-CH4 isotopic analysis by CF-GC-IRMS (Continous Flow-Gas Chromatography-Isotopic Ratio Mass Spectroscopy). This method provides high precision isotopic values, determining δ13C-CH4 to ±0.05 per mil. The bulk signature of the methane plume into the atmosphere from the whole source area was obtained by Keeling plot analysis, and a δ13C-CH4 signature, with the relative uncertainty, allocated to each methane source investigated. The averaged δ13C-CH4 signature for landfill sites around the London region is - 58 ± 3 ‰, whereas the δ13C-CH4 signature for gas leaks is fairly constant at -36 ± 2 ‰, a value characteristic of North Sea supply. The Picarro G2301 analyser was installed also on the roof of King's College London, located in the centre of the city, and connected to an air inlet located 7 meters above roof height. An auto-sampler was connected to the same air inlet and launched remotely when a high nocturnal build up was expected, allowing up to twenty air bags to be collected for methane isotopic analysis over a 24 hour period. The main source contributing to overnight methane build up in central London is fugitive gas, in agreement with inventories. From the isotopic characterisation of urban methane sources and the source mix in London, the contribution to the urban methane budget and the local distribution of the methane sources given in inventories can be validated.

  8. A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology.

    PubMed

    Padberg, Inken; Peter, Erik; González-Maldonado, Sandra; Witt, Henning; Mueller, Matthias; Weis, Tanja; Bethan, Bianca; Liebenberg, Volker; Wiemer, Jan; Katus, Hugo A; Rein, Dietrich; Schatz, Philipp

    2014-01-01

    The objective of the current study was to find a metabolic signature associated with the early manifestations of type-2 diabetes mellitus. Modern metabolic profiling technology (MxP™ Broad Profiling) was applied to find early alterations in the plasma metabolome of type-2 diabetic patients. The results were validated in an independent study. Eicosanoid and single inon monitoring analysis (MxP™ Eicosanoid and MxP™ SIM analysis) were performed in subsets of samples. A metabolic signature including significantly increased levels of glyoxylate as a potential novel marker for early detection of type-2 diabetes mellitus was identified in an initial study (Study1). The signature was significantly altered in fasted diabetic and pre-diabetic subjects and in non-fasted subjects up to three years prior to the diagnosis of type-2 diabetes; most alterations were also consistently found in an independent patient group (Study 2). In Study 2 diabetic and most control subjects suffered from heart failure. In Study 1 a subgroup of diabetic subjects, with a history of use of anti-hypertensive medication further showed a more pronounced increase of glyoxylate levels, compared to a non-diabetic control group when tested in a hyperglycemic state. In the context of a prior history of anti-hypertensive medication, alterations in hexosamine and eicosanoid levels were also found. A metabolic signature including glyoxylate was associated with type-2 diabetes mellitus, independent of the fasting status and of occurrence of another major disease. The same signature was also found to be associated with pre-diabetic subjects. Glyoxylate levels further showed a specifically strong increase in a subgroup of diabetic subjects. It could represent a new marker for the detection of medical subgroups of diabetic subjects.

  9. A New Metabolomic Signature in Type-2 Diabetes Mellitus and Its Pathophysiology

    PubMed Central

    Padberg, Inken; Peter, Erik; González-Maldonado, Sandra; Witt, Henning; Mueller, Matthias; Weis, Tanja; Bethan, Bianca; Liebenberg, Volker; Wiemer, Jan; Katus, Hugo A.; Rein, Dietrich; Schatz, Philipp

    2014-01-01

    Objective The objective of the current study was to find a metabolic signature associated with the early manifestations of type-2 diabetes mellitus. Research Design and Method Modern metabolic profiling technology (MxP™ Broad Profiling) was applied to find early alterations in the plasma metabolome of type-2 diabetic patients. The results were validated in an independent study. Eicosanoid and single inon monitoring analysis (MxP™ Eicosanoid and MxP™ SIM analysis) were performed in subsets of samples. Results A metabolic signature including significantly increased levels of glyoxylate as a potential novel marker for early detection of type-2 diabetes mellitus was identified in an initial study (Study1). The signature was significantly altered in fasted diabetic and pre-diabetic subjects and in non-fasted subjects up to three years prior to the diagnosis of type-2 diabetes; most alterations were also consistently found in an independent patient group (Study 2). In Study 2 diabetic and most control subjects suffered from heart failure. In Study 1 a subgroup of diabetic subjects, with a history of use of anti-hypertensive medication further showed a more pronounced increase of glyoxylate levels, compared to a non-diabetic control group when tested in a hyperglycemic state. In the context of a prior history of anti-hypertensive medication, alterations in hexosamine and eicosanoid levels were also found. Conclusion A metabolic signature including glyoxylate was associated with type-2 diabetes mellitus, independent of the fasting status and of occurrence of another major disease. The same signature was also found to be associated with pre-diabetic subjects. Glyoxylate levels further showed a specifically strong increase in a subgroup of diabetic subjects. It could represent a new marker for the detection of medical subgroups of diabetic subjects. PMID:24465478

  10. Hyperspectral target detection analysis of a cluttered scene from a virtual airborne sensor platform using MuSES

    NASA Astrophysics Data System (ADS)

    Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.

    2017-10-01

    The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been extensively validated and provides a flexible process for signature evaluation and algorithm development.

  11. KRAS driven expression signature has prognostic power superior to mutation status in non-small cell lung cancer.

    PubMed

    Nagy, Ádám; Pongor, Lőrinc Sándor; Szabó, András; Santarpia, Mariacarmela; Győrffy, Balázs

    2017-02-15

    KRAS is the most frequently mutated oncogene in non-small cell lung cancer (NSCLC). However, the prognostic role of KRAS mutation status in NSCLC still remains controversial. We hypothesize that the expression changes of genes affected by KRAS mutation status will have the most prominent effect and could be used as a prognostic signature in lung cancer. We divided NSCLC patients with mutation and RNA-seq data into KRAS mutated and wild type groups. Mann-Whitney test was used to identify genes showing altered expression between these cohorts. Mean expression of the top five genes was designated as a "transcriptomic fingerprint" of the mutation. We evaluated the effect of this signature on clinical outcome in 2,437 NSCLC patients using univariate and multivariate Cox regression analysis. Mutation of KRAS was most common in adenocarcinoma. Mutation status and KRAS expression were not correlated to prognosis. The transcriptomic fingerprint of KRAS include FOXRED2, KRAS, TOP1, PEX3 and ABL2. The KRAS signature had a high prognostic power. Similar results were achieved when using the second and third set of strongest genes. Moreover, all cutoff values delivered significant prognostic power (p < 0.01). The KRAS signature also remained significant (p < 0.01) in a multivariate analysis including age, gender, smoking history and tumor stage. We generated a "surrogate signature" of KRAS mutation status in NSCLC patients by computationally linking genotype and gene expression. We show that secondary effects of a mutation can have a higher prognostic relevance than the primary genetic alteration itself. © 2016 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  12. NASA Puffin Electric Tailsitter VTOL Concept

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.

    2010-01-01

    Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.

  13. Crystal growth and annealing study of fragile, non-bulk superconductivity in YFe 2Ge 2

    DOE PAGES

    Kim, H.; Ran, S.; Mun, E. D.; ...

    2015-02-05

    In this study, we investigated the occurrence and nature of superconductivity in single crystals of YFe 2Ge 2 grown out of Sn flux by employing X-ray diffraction, electrical resistivity and specific heat measurements. We found that the residual resistivity ratio (RRR) of single crystals can be greatly improved, reaching as high as ~60, by decanting the crystals from the molten Sn at ~350°C and/or by annealing at temperatures between 550°C and 600°C. We found that the samples with RRR ≳ 34 showed resistive signatures of superconductivity with the onset of the superconducting transition T c ≈ 1.4K. RRR values varymore » between 35 and 65 with, on average, no systematic change in value T c, indicating that the systematic changes in RRR do not lead to comparable changes in T c. Specific heat measurements on samples that showed the clear resistive signatures of a superconducting transition did not show any signature of a superconducting phase transition, which suggests that the superconductivity observed in this compound is either some sort of filamentary, strain-stabilized superconductivity associated with small amounts of stressed YFe 2Ge 2 (perhaps at twin boundaries or dislocations) or is a second crystallographic phase that is present at level below detection capability of conventional powder X-ray techniques.« less

  14. Preliminary sonic boom correlation of predicted and measured levels for STS-1 entry

    NASA Technical Reports Server (NTRS)

    Garcia, F., Jr.; Morrison, K. M.; Jones, J. H.; Henderson, H. R.

    1982-01-01

    A preliminary analysis correlating peaks from sonic boom pressure signatures recorded during the descent trajectory of the Orbiter Columbia, which landed in the dry lake bed at Edwards Air Force Base (EAFB), California, with measured wind tunnel signatures extrapolated from flight altitudes to the ground has been made for Mach numbers ranging from 1.3 to 6. The flight pressure signatures were recorded by microphones positioned at ground level near the groundtrack, whereas the wind tunnel signatures were measured during a test of a 0.0041-scale model Orbiter. The agreement between overpressure estimates based on wind tunnel data using preliminary flight trajectory data and oscillograph traces from ground measurements appears reasonable at this time for the range of Mach numbers considered. More detailed studies using final flight trajectory data and digitized ground measured data will be performed.

  15. The terrain signatures of administrative units: a tool for environmental assessment.

    PubMed

    Miliaresis, George Ch

    2009-03-01

    The quantification of knowledge related to the terrain and the landuse/landcover of administrative units in Southern Greece (Peloponnesus) is performed from the CGIAR-CSI SRTM digital elevation model and the CORINE landuse/landcover database. Each administrative unit is parametrically represented by a set of attributes related to its relief. Administrative units are classified on the basis of K-means cluster analysis in an attempt to see how they are organized into groups and cluster derived geometric signatures are defined. Finally each cluster is parametrically represented on the basis of the occurrence of the Corine landuse/landcover classes included and thus, landcover signatures are derived. The geometric and the landuse/landcover signatures revealed a terrain dependent landuse/landcover organization that was used in the assessment of the forest fires impact at moderate resolution scale.

  16. Understanding the Signature Pedagogy of the Design Studio and the Opportunities for Its Technological Enhancement

    ERIC Educational Resources Information Center

    Crowther, Phillip

    2013-01-01

    This paper presents an analysis of the studio as the signature pedagogy of design education. A number of theoretical models of learning, pedagogy, and education are used to interrogate the studio for its advantages and shortcomings, and to identify opportunities for the integration of new technologies and to explore the affordances that they…

  17. Revocable identity-based proxy re-signature against signing key exposure.

    PubMed

    Yang, Xiaodong; Chen, Chunlin; Ma, Tingchun; Wang, Jinli; Wang, Caifen

    2018-01-01

    Identity-based proxy re-signature (IDPRS) is a novel cryptographic primitive that allows a semi-trusted proxy to convert a signature under one identity into another signature under another identity on the same message by using a re-signature key. Due to this transformation function, IDPRS is very useful in constructing privacy-preserving schemes for various information systems. Key revocation functionality is important in practical IDPRS for managing users dynamically; however, the existing IDPRS schemes do not provide revocation mechanisms that allow the removal of misbehaving or compromised users from the system. In this paper, we first introduce a notion called revocable identity-based proxy re-signature (RIDPRS) to achieve the revocation functionality. We provide a formal definition of RIDPRS as well as its security model. Then, we present a concrete RIDPRS scheme that can resist signing key exposure and prove that the proposed scheme is existentially unforgeable against adaptive chosen identity and message attacks in the standard model. To further improve the performance of signature verification in RIDPRS, we introduce a notion called server-aided revocable identity-based proxy re-signature (SA-RIDPRS). Moreover, we extend the proposed RIDPRS scheme to the SA-RIDPRS scheme and prove that this extended scheme is secure against adaptive chosen message and collusion attacks. The analysis results show that our two schemes remain efficient in terms of computational complexity when implementing user revocation procedures. In particular, in the SA-RIDPRS scheme, the verifier needs to perform only a bilinear pairing and four exponentiation operations to verify the validity of the signature. Compared with other IDPRS schemes in the standard model, our SA-RIDPRS scheme greatly reduces the computation overhead of verification.

  18. Interferon Gamma Messenger RNA Signature in Tumor Biopsies Predicts Outcomes in Patients with Non-Small-Cell Lung Carcinoma or Urothelial Cancer Treated with Durvalumab.

    PubMed

    Higgs, Brandon W; Morehouse, Christopher; Streicher, Katie L; Brohawn, Philip; Pilataxi, Fernanda; Gupta, Ashok; Ranade, Koustubh

    2018-05-01

    To identify a predictive biomarker for durvalumab, an anti-programmed death ligand 1 (PD-L1) monoclonal antibody. RNA sequencing of 97 advanced-stage non-small-cell lung carcinoma (NSCLC) biopsies from a nonrandomized phase 1b/2 clinical trial (1108/NCT01693562) were profiled to identify a predictive signature; 62 locally advanced or metastatic urothelial cancer (UC) tumors from the same study were profiled to confirm predictive utility of the signature. Thirty NSCLC patients provided pre- and posttreatment tumors for messenger RNA (mRNA) analysis. NSCLC with ≥25% tumor cells and UC with ≥25% tumor or immune cells stained for PD-L1 at any intensity were scored PD-L1 positive (PD-L1+). Kaplan-Meier and Cox proportional hazards analyses were used to adjust for gender, age, prior therapies, histology, ECOG, liver metastasis, and smoking. Tumor mutation burden (TMB) was calculated using data from The Cancer Genome Atlas (TCGA).  In the NSCLC discovery set, a four-gene interferon gamma (IFNγ)-positive (IFNγ+) signature comprising IFNγ, CD274, LAG3, and CXCL9 was associated with higher overall response rates, longer median progression-free survival, and overall survival compared with signature-low patients. IFNγ+-signature NSCLC patients had improved survival regardless of immunohistochemistry (IHC) PD-L1 status. These associations were replicated in a UC cohort. The IFNγ+ signature was induced twofold (P = 0.003) by durvalumab after 8 weeks of therapy in NSCLC patients, and baseline signature was associated with TMB but not survival in TCGA data.  The IFNγ+ mRNA signature may assist in identifying patients with improved outcomes to durvalumab, independent of PD-L1 assessed by IHC. Copyright ©2018, American Association for Cancer Research.

  19. Benchmarking desktop and mobile handwriting across COTS devices: The e-BioSign biometric database

    PubMed Central

    Tolosana, Ruben; Vera-Rodriguez, Ruben; Fierrez, Julian; Morales, Aythami; Ortega-Garcia, Javier

    2017-01-01

    This paper describes the design, acquisition process and baseline evaluation of the new e-BioSign database, which includes dynamic signature and handwriting information. Data is acquired from 5 different COTS devices: three Wacom devices (STU-500, STU-530 and DTU-1031) specifically designed to capture dynamic signatures and handwriting, and two general purpose tablets (Samsung Galaxy Note 10.1 and Samsung ATIV 7). For the two Samsung tablets, data is collected using both pen stylus and also the finger in order to study the performance of signature verification in a mobile scenario. Data was collected in two sessions for 65 subjects, and includes dynamic information of the signature, the full name and alpha numeric sequences. Skilled forgeries were also performed for signatures and full names. We also report a benchmark evaluation based on e-BioSign for person verification under three different real scenarios: 1) intra-device, 2) inter-device, and 3) mixed writing-tool. We have experimented the proposed benchmark using the main existing approaches for signature verification: feature- and time functions-based. As a result, new insights into the problem of signature biometrics in sensor-interoperable scenarios have been obtained, namely: the importance of specific methods for dealing with device interoperability, and the necessity of a deeper analysis on signatures acquired using the finger as the writing tool. This e-BioSign public database allows the research community to: 1) further analyse and develop signature verification systems in realistic scenarios, and 2) investigate towards a better understanding of the nature of the human handwriting when captured using electronic COTS devices in realistic conditions. PMID:28475590

  20. Benchmarking desktop and mobile handwriting across COTS devices: The e-BioSign biometric database.

    PubMed

    Tolosana, Ruben; Vera-Rodriguez, Ruben; Fierrez, Julian; Morales, Aythami; Ortega-Garcia, Javier

    2017-01-01

    This paper describes the design, acquisition process and baseline evaluation of the new e-BioSign database, which includes dynamic signature and handwriting information. Data is acquired from 5 different COTS devices: three Wacom devices (STU-500, STU-530 and DTU-1031) specifically designed to capture dynamic signatures and handwriting, and two general purpose tablets (Samsung Galaxy Note 10.1 and Samsung ATIV 7). For the two Samsung tablets, data is collected using both pen stylus and also the finger in order to study the performance of signature verification in a mobile scenario. Data was collected in two sessions for 65 subjects, and includes dynamic information of the signature, the full name and alpha numeric sequences. Skilled forgeries were also performed for signatures and full names. We also report a benchmark evaluation based on e-BioSign for person verification under three different real scenarios: 1) intra-device, 2) inter-device, and 3) mixed writing-tool. We have experimented the proposed benchmark using the main existing approaches for signature verification: feature- and time functions-based. As a result, new insights into the problem of signature biometrics in sensor-interoperable scenarios have been obtained, namely: the importance of specific methods for dealing with device interoperability, and the necessity of a deeper analysis on signatures acquired using the finger as the writing tool. This e-BioSign public database allows the research community to: 1) further analyse and develop signature verification systems in realistic scenarios, and 2) investigate towards a better understanding of the nature of the human handwriting when captured using electronic COTS devices in realistic conditions.

  1. Revocable identity-based proxy re-signature against signing key exposure

    PubMed Central

    Ma, Tingchun; Wang, Jinli; Wang, Caifen

    2018-01-01

    Identity-based proxy re-signature (IDPRS) is a novel cryptographic primitive that allows a semi-trusted proxy to convert a signature under one identity into another signature under another identity on the same message by using a re-signature key. Due to this transformation function, IDPRS is very useful in constructing privacy-preserving schemes for various information systems. Key revocation functionality is important in practical IDPRS for managing users dynamically; however, the existing IDPRS schemes do not provide revocation mechanisms that allow the removal of misbehaving or compromised users from the system. In this paper, we first introduce a notion called revocable identity-based proxy re-signature (RIDPRS) to achieve the revocation functionality. We provide a formal definition of RIDPRS as well as its security model. Then, we present a concrete RIDPRS scheme that can resist signing key exposure and prove that the proposed scheme is existentially unforgeable against adaptive chosen identity and message attacks in the standard model. To further improve the performance of signature verification in RIDPRS, we introduce a notion called server-aided revocable identity-based proxy re-signature (SA-RIDPRS). Moreover, we extend the proposed RIDPRS scheme to the SA-RIDPRS scheme and prove that this extended scheme is secure against adaptive chosen message and collusion attacks. The analysis results show that our two schemes remain efficient in terms of computational complexity when implementing user revocation procedures. In particular, in the SA-RIDPRS scheme, the verifier needs to perform only a bilinear pairing and four exponentiation operations to verify the validity of the signature. Compared with other IDPRS schemes in the standard model, our SA-RIDPRS scheme greatly reduces the computation overhead of verification. PMID:29579125

  2. A VEGF-dependent gene signature enriched in mesenchymal ovarian cancer predicts patient prognosis.

    PubMed

    Yin, Xia; Wang, Xiaojie; Shen, Boqiang; Jing, Ying; Li, Qing; Cai, Mei-Chun; Gu, Zhuowei; Yang, Qi; Zhang, Zhenfeng; Liu, Jin; Li, Hongxia; Di, Wen; Zhuang, Guanglei

    2016-08-08

    We have previously reported surrogate biomarkers of VEGF pathway activities with the potential to provide predictive information for anti-VEGF therapies. The aim of this study was to systematically evaluate a new VEGF-dependent gene signature (VDGs) in relation to molecular subtypes of ovarian cancer and patient prognosis. Using microarray profiling and cross-species analysis, we identified 140-gene mouse VDGs and corresponding 139-gene human VDGs, which displayed enrichment of vasculature and basement membrane genes. In patients who received bevacizumab therapy and showed partial response, the expressions of VDGs (summarized to yield VDGs scores) were markedly decreased in post-treatment biopsies compared with pre-treatment baselines. In contrast, VDGs scores were not significantly altered following bevacizumab treatment in patients with stable or progressive disease. Analysis of VDGs in ovarian cancer showed that VDGs as a prognostic signature was able to predict patient outcome. Correlation estimation of VDGs scores and molecular features revealed that VDGs was overrepresented in mesenchymal subtype and BRCA mutation carriers. These findings highlighted the prognostic role of VEGF-mediated angiogenesis in ovarian cancer, and proposed a VEGF-dependent gene signature as a molecular basis for developing novel diagnostic strategies to aid patient selection for VEGF-targeted agents.

  3. Nonlinear analysis of dynamic signature

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Fallah, A.; Towhidkhah, F.

    2013-12-01

    Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.

  4. Spatial and temporal diet segregation in northern fulmars Fulmarus glacialis breeding in Alaska: Insights from fatty acid signatures

    USGS Publications Warehouse

    Wang, S.W.; Iverson, S.J.; Springer, A.M.; Hatch, Shyla A.

    2009-01-01

    Northern fulmars Fulmarus glacialis in the North Pacific Ocean are opportunistic, generalist predators, yet their diets are poorly described; thus, relationships of fulmars to supporting food webs, their utility as indicators of variability in forage fish abundances, and their sensitivity to ecosystem change are not known. We employed fatty acid (FA) signature analysis of adipose tissue from adults (n = 235) and chicks (n = 33) to compare spatial, temporal, and age-related variation in diets of fulmars breeding at 3 colonies in Alaska. FA signatures of adult fulmars differed between colonies within years, and between seasons at individual colonies. Seasonal and spatial differences in signatures were greater than interannual differences at all colonies. Differences in FA signatures reflect differences in diets, probably because the breeding colonies are located in distinct ecoregions which create unique habitats for prey assemblages, and because interannual variation in the physical environment affects the availability of forage species. Differences between FA signatures of adults and chicks in 2003 and 2004 suggest that adults fed chicks different prey than they consumed themselves. Alternatively, if adults relied on the same prey as those fed to chicks, the differences in signatures could have resulted from partial digestion of prey items by adults before chicks were fed, or direct metabolism of FAs by chicks for tissue synthesis before FAs could be deposited into adipose tissue. ?? Inter-Research 2009.

  5. Should fatty acid signature proportions sum to 1 for diet estimation?

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; Budge, Suzanne M.; Thiemann, Gregory W.

    2016-01-01

    Knowledge of predator diets, including how diets might change through time or differ among predators, provides essential insights into their ecology. Diet estimation therefore remains an active area of research within quantitative ecology. Quantitative fatty acid signature analysis (QFASA) is an increasingly common method of diet estimation. QFASA is based on a data library of prey signatures, which are vectors of proportions summarizing the fatty acid composition of lipids, and diet is estimated as the mixture of prey signatures that most closely approximates a predator’s signature. Diets are typically estimated using proportions from a subset of all fatty acids that are known to be solely or largely influenced by diet. Given the subset of fatty acids selected, the current practice is to scale their proportions to sum to 1.0. However, scaling signature proportions has the potential to distort the structural relationships within a prey library and between predators and prey. To investigate that possibility, we compared the practice of scaling proportions with two alternatives and found that the traditional scaling can meaningfully bias diet estimators under some conditions. Two aspects of the prey types that contributed to a predator’s diet influenced the magnitude of the bias: the degree to which the sums of unscaled proportions differed among prey types and the identifiability of prey types within the prey library. We caution investigators against the routine scaling of signature proportions in QFASA.

  6. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  7. Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2017-02-20

    Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.

  8. Horizontal Two Phase Flow Regime Identification: Comparison of Pressure Signature, Electrical Capacitance Tomography (ECT) and High Speed Visualization (Postprint)

    DTIC Science & Technology

    2012-11-01

    W., and Mudawar , I., "Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks," International Journal of Heat and...Mass Transfer, Vol. 47, No. 10-11, 2004, pp. 2045-2059. 3 Zhang, H., Mudawar , I., and Hasan, M. M., "Photographic Study of High-Flux Subcooled Flow...component Fow in Pipes," Chemical Engineering Progress, Vol. 45, 1949, pp. 39-48. 34 Qu, W., and Mudawar , I., "Measurement and Prediction of Pressure

  9. Microprocessor implementation of an FFT for ionospheric VLF observations

    NASA Technical Reports Server (NTRS)

    Elvidge, J.; Kintner, P.; Holzworth, R.

    1984-01-01

    A fast Fourier transform algorithm is implemented on a CMOS microprocessor for application to very low-frequency electric fields (less than 10 kHz) sensed on high-altitude scientific balloons. Two FFT's are calculated simultaneously by associating them with conjugate symmetric and conjugate antisymmetric results. One goal of the system was to detect spectral signatures associated with fast time variations present in natural signals such as whistlers and chorus. Although a full evaluation of the system was not possible for operational reasons, a measure of the system's success has been defined and evaluated.

  10. STM/STS on proximity-coupled superconducting graphene

    NASA Astrophysics Data System (ADS)

    Ovadia, Maoz; Ji, Yu; Lee, Gil-Ho; Fang, Wenjing; Hoffman, Jennifer; Jarillo-Herrero, Pablo; Kong, Jing; Kim, Philip

    Graphene in good electrical contact with a superconductor has been observed to have an enhanced proximity effect. Application of a magnetic field is expected to generate an Abrikosov lattice of superconducting vortices, each containing Andreev bound states in its core. With our versatile, homebuilt, low temperature scanning tunneling force microscope (STM/SFM), we investigate the electronic properties of graphene on superconducting NbSe2 in a magnetic field and search for signatures of these vortex core states. This work was supported by the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319.

  11. STM/STS on proximity-coupled superconducting graphene

    NASA Astrophysics Data System (ADS)

    Ovadia, Maoz; Ji, Yu; Hoffman, Jennifer; Wang, Joel I.-Jan; Jarillo-Herrero, Pablo

    2015-03-01

    Graphene in good electrical contact with a superconductor has been observed to have an enhanced proximity effect. Application of a magnetic field is expected to generate an Abrikosov lattice of superconducting vortices, each containing Andreev bound states in its core. With our versatile, homebuilt, low temperature scanning tunneling force microscope (STM/SFM), we investigate the electronic properties of graphene on superconducting NbSe2 in a magnetic field and search for signatures of these vortex core states. This work was supported by the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319.

  12. The Long Noncoding RNA Landscape of the Mouse Eye.

    PubMed

    Chen, Weiwei; Yang, Shuai; Zhou, Zhonglou; Zhao, Xiaoting; Zhong, Jiayun; Reinach, Peter S; Yan, Dongsheng

    2017-12-01

    Long noncoding RNAs (lncRNAs) are important regulators of diverse biological functions. However, an extensive in-depth analysis of their expression profile and function in mammalian eyes is still lacking. Here we describe comprehensive landscapes of stage-dependent and tissue-specific lncRNA expression in the mouse eye. Affymetrix transcriptome array profiled lncRNA signatures from six different ocular tissue subsets (i.e., cornea, lens, retina, RPE, choroid, and sclera) in newborn and 8-week-old mice. Quantitative RT-PCR analysis validated array findings. Cis analyses and Gene Ontology (GO) annotation of protein-coding genes adjacent to signature lncRNA loci clarified potential lncRNA roles in maintaining tissue identity and regulating eye maturation during the aforementioned phase. In newborn and 8-week-old mice, we identified 47,332 protein-coding and noncoding gene transcripts. LncRNAs comprise 19,313 of these transcripts annotated in public data banks. During this maturation phase of these six different tissue subsets, more than 1000 lncRNAs expression levels underwent ≥2-fold changes. qRT-PCR analysis confirmed part of the gene microarray analysis results. K-means clustering identified 910 lncRNAs in the P0 groups and 686 lncRNAs in the postnatal 8-week-old groups, suggesting distinct tissue-specific lncRNA clusters. GO analysis of protein-coding genes proximal to lncRNA signatures resolved close correlations with their tissue-specific functional maturation between P0 and 8 weeks of age in the 6 tissue subsets. Characterizating maturational changes in lncRNA expression patterns as well as tissue-specific lncRNA signatures in six ocular tissues suggest important contributions made by lncRNA to the control of developmental processes in the mouse eye.

  13. Understanding the adhesion and optical properties of eutectic metal alloys for solution-processed electronics

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Aggarwal, Shantanu; Narayana, Chandrabhas; Narayan, K. S.

    2018-02-01

    The role of indium in controlling the adhesion and the optical properties of fusible, low- melting alloys is highlighted in this work. The optical activity of indium-alloy/polymer interface is probed using surface-enhanced Raman spectroscopy, which shows a large increase in polymer Raman modes intensity. Signatures of plasmon and chemically enhanced Raman are visible for more than one polymer. Improvement in adhesion is also reflected in their ability to coat conformally onto the polymer surface resulting in a suitable interface for electrical transport. The electrical characteristics of alloy electrodes, which are printed in ambient conditions, are superior when compared to the thermally evaporated aluminum cathodes. Raman and responsivity measurements indicate that indium (In) forms metal/organic hybrid charge-transfer states at the alloy/polymer interface and assumes a decisive role in controlling the mechanical, optical, and electrical properties of these electrodes. Our studies suggest that the indium present in small quantities (˜5 wt. %) can significantly improve the overall performance of the low-temperature printable eutectic alloy electrodes.

  14. Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial

    PubMed Central

    Edlefsen, Paul T.; Rolland, Morgane; Hertz, Tomer; Tovanabutra, Sodsai; Gartland, Andrew J.; deCamp, Allan C.; Magaret, Craig A.; Ahmed, Hasan; Gottardo, Raphael; Juraska, Michal; McCoy, Connor; Larsen, Brendan B.; Sanders-Buell, Eric; Carrico, Chris; Menis, Sergey; Bose, Meera; Arroyo, Miguel A.; O’Connell, Robert J.; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Rerks-Ngarm, Supachai; Robb, Merlin L.; Kirys, Tatsiana; Georgiev, Ivelin S.; Kwong, Peter D.; Scheffler, Konrad; Pond, Sergei L. Kosakovsky; Carlson, Jonathan M.; Michael, Nelson L.; Schief, William R.; Mullins, James I.; Kim, Jerome H.; Gilbert, Peter B.

    2015-01-01

    The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients). A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or “signatures” and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro). The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3) overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9) (p < 0.0001), suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine efficacy trials for diverse pathogens. PMID:25646817

  15. Snapshots of Proton Accommodation at a Microscopic Water Surface: Understanding the Vibrational Spectral Signatures of the Charge Defect in Cryogenically Cooled H+(H2O)n=2 – 28 Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Mark A.

    In this Article, we review the role of gas-phase, size-selected protonated water clusters, H+(H2O)n, in the analysis of the microscopic mechanics responsible for the behavior of the excess proton in bulk water. We extend upon previous studies of the smaller, two-dimensional sheet-like structures to larger (n≥10) assemblies with three-dimensional cage morphologies which better mimic the bulk environment. Indeed, clusters in which a complete second solvation shell forms around a surface-embedded hydronium ion yield vibrational spectra where the signatures of the proton defect display strikingly similar positions and breadth to those observed in dilute acids. We investigate effects of the localmore » structure and intermolecular interactions on the large red shifts observed in the proton vibrational signature upon cluster growth using various theoretical methods. We show that, in addition to sizeable anharmonic couplings, the position of the excess proton vibration can be traced to large increases in the electric field exerted on the embedded hydronium ion upon formation of the first and second solvation shells. MAJ acknowledges support from the U.S. Department of Energy under Grant No. DE-FG02- 06ER15800 as well as the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center, and by the National Science Foundation under Grant No. CNS 08-21132 that partially funded acquisition of the facilities. SMK and SSX acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.« less

  16. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals

    PubMed Central

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610

  17. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.

    PubMed

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.

  18. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis.

    PubMed

    Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre

    2011-01-01

    The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.

  19. Hyperspectral signature analysis of skin parameters

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Garza, Luis; Kang, Sewon; Burlina, Philippe

    2013-02-01

    The temporal analysis of changes in biological skin parameters, including melanosome concentration, collagen concentration and blood oxygenation, may serve as a valuable tool in diagnosing the progression of malignant skin cancers and in understanding the pathophysiology of cancerous tumors. Quantitative knowledge of these parameters can also be useful in applications such as wound assessment, and point-of-care diagnostics, amongst others. We propose an approach to estimate in vivo skin parameters using a forward computational model based on Kubelka-Munk theory and the Fresnel Equations. We use this model to map the skin parameters to their corresponding hyperspectral signature. We then use machine learning based regression to develop an inverse map from hyperspectral signatures to skin parameters. In particular, we employ support vector machine based regression to estimate the in vivo skin parameters given their corresponding hyperspectral signature. We build on our work from SPIE 2012, and validate our methodology on an in vivo dataset. This dataset consists of 241 signatures collected from in vivo hyperspectral imaging of patients of both genders and Caucasian, Asian and African American ethnicities. In addition, we also extend our methodology past the visible region and through the short-wave infrared region of the electromagnetic spectrum. We find promising results when comparing the estimated skin parameters to the ground truth, demonstrating good agreement with well-established physiological precepts. This methodology can have potential use in non-invasive skin anomaly detection and for developing minimally invasive pre-screening tools.

  20. CT-based radiomics signature for differentiating Borrmann type IV gastric cancer from primary gastric lymphoma.

    PubMed

    Ma, Zelan; Fang, Mengjie; Huang, Yanqi; He, Lan; Chen, Xin; Liang, Cuishan; Huang, Xiaomei; Cheng, Zixuan; Dong, Di; Liang, Changhong; Xie, Jiajun; Tian, Jie; Liu, Zaiyi

    2017-06-01

    To evaluate the value of CT-based radiomics signature for differentiating Borrmann type IV gastric cancer (GC) from primary gastric lymphoma (PGL). 40 patients with Borrmann type IV GC and 30 patients with PGL were retrospectively recruited. 485 radiomics features were extracted and selected from the portal venous CT images to build a radiomics signature. Subjective CT findings, including gastric wall peristalsis, perigastric fat infiltration, lymphadenopathy below the renal hila and enhancement pattern, were assessed to construct a subjective findings model. The radiomics signature, subjective CT findings, age and gender were integrated into a combined model by multivariate analysis. The diagnostic performance of these three models was assessed with receiver operating characteristics curves (ROC) and were compared using DeLong test. The subjective findings model, the radiomics signature and the combined model showed a diagnostic accuracy of 81.43% (AUC [area under the curve], 0.806; 95% CI [confidence interval]: 0.696-0.917; sensitivity, 63.33%; specificity, 95.00%), 84.29% (AUC, 0.886 [95% CI: 0.809-0.963]; sensitivity, 86.67%; specificity, 82.50%), 87.14% (AUC, 0.903 [95%CI: 0.831-0.975]; sensitivity, 70.00%; specificity, 100%), respectively. There were no significant differences in AUC among these three models (P=0.051-0.422). Radiomics analysis has the potential to accurately differentiate Borrmann type IV GC from PGL. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determination of community structure through deconvolution of PLFA-FAME signature of mixed population.

    PubMed

    Dey, Dipesh K; Guha, Saumyen

    2007-02-15

    Phospholipid fatty acids (PLFAs) as biomarkers are well established in the literature. A general method based on least square approximation (LSA) was developed for the estimation of community structure from the PLFA signature of a mixed population where biomarker PLFA signatures of the component species were known. Fatty acid methyl ester (FAME) standards were used as species analogs and mixture of the standards as representative of the mixed population. The PLFA/FAME signatures were analyzed by gas chromatographic separation, followed by detection in flame ionization detector (GC-FID). The PLFAs in the signature were quantified as relative weight percent of the total PLFA. The PLFA signatures were analyzed by the models to predict community structure of the mixture. The LSA model results were compared with the existing "functional group" approach. Both successfully predicted community structure of mixed population containing completely unrelated species with uncommon PLFAs. For slightest intersection in PLFA signatures of component species, the LSA model produced better results. This was mainly due to inability of the "functional group" approach to distinguish the relative amounts of the common PLFA coming from more than one species. The performance of the LSA model was influenced by errors in the chromatographic analyses. Suppression (or enhancement) of a component's PLFA signature in chromatographic analysis of the mixture, led to underestimation (or overestimation) of the component's proportion in the mixture by the model. In mixtures of closely related species with common PLFAs, the errors in the common components were adjusted across the species by the model.

  2. Detectable Changes in The Blood Transcriptome Are Present after Two Weeks of Antituberculosis Therapy

    PubMed Central

    Bloom, Chloe I.; Graham, Christine M.; Berry, Matthew P. R.; Wilkinson, Katalin A.; Oni, Tolu; Rozakeas, Fotini; Xu, Zhaohui; Rossello-Urgell, Jose; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Lipman, Marc; Wilkinson, Robert J.; O’Garra, Anne

    2012-01-01

    Rationale Globally there are approximately 9 million new active tuberculosis cases and 1.4 million deaths annually. Effective antituberculosis treatment monitoring is difficult as there are no existing biomarkers of poor adherence or inadequate treatment earlier than 2 months after treatment initiation. Inadequate treatment leads to worsening disease, disease transmission and drug resistance. Objectives To determine if blood transcriptional signatures change in response to antituberculosis treatment and could act as early biomarkers of a successful response. Methods Blood transcriptional profiles of untreated active tuberculosis patients in South Africa were analysed before, during (2 weeks and 2 months), at the end of (6 months) and after (12 months) antituberculosis treatment, and compared to individuals with latent tuberculosis. An active-tuberculosis transcriptional signature and a specific treatment-response transcriptional signature were derived. The specific treatment response transcriptional signature was tested in two independent cohorts. Two quantitative scoring algorithms were applied to measure the changes in the transcriptional response. The most significantly represented pathways were determined using Ingenuity Pathway Analysis. Results An active tuberculosis 664-transcript signature and a treatment specific 320-transcript signature significantly diminished after 2 weeks of treatment in all cohorts, and continued to diminish until 6 months. The transcriptional response to treatment could be individually measured in each patient. Conclusions Significant changes in the transcriptional signatures measured by blood tests were readily detectable just 2 weeks after treatment initiation. These findings suggest that blood transcriptional signatures could be used as early surrogate biomarkers of successful treatment response. PMID:23056259

  3. Properties of different selection signature statistics and a new strategy for combining them.

    PubMed

    Ma, Y; Ding, X; Qanbari, S; Weigend, S; Zhang, Q; Simianer, H

    2015-11-01

    Identifying signatures of recent or ongoing selection is of high relevance in livestock population genomics. From a statistical perspective, determining a proper testing procedure and combining various test statistics is challenging. On the basis of extensive simulations in this study, we discuss the statistical properties of eight different established selection signature statistics. In the considered scenario, we show that a reasonable power to detect selection signatures is achieved with high marker density (>1 SNP/kb) as obtained from sequencing, while rather small sample sizes (~15 diploid individuals) appear to be sufficient. Most selection signature statistics such as composite likelihood ratio and cross population extended haplotype homozogysity have the highest power when fixation of the selected allele is reached, while integrated haplotype score has the highest power when selection is ongoing. We suggest a novel strategy, called de-correlated composite of multiple signals (DCMS) to combine different statistics for detecting selection signatures while accounting for the correlation between the different selection signature statistics. When examined with simulated data, DCMS consistently has a higher power than most of the single statistics and shows a reliable positional resolution. We illustrate the new statistic to the established selective sweep around the lactase gene in human HapMap data providing further evidence of the reliability of this new statistic. Then, we apply it to scan selection signatures in two chicken samples with diverse skin color. Our analysis suggests that a set of well-known genes such as BCO2, MC1R, ASIP and TYR were involved in the divergent selection for this trait.

  4. Convection and electrodynamic signatures in the vicinity of a Sun-aligned arc: Results from the Polar Acceleration Regions and Convection Study (Polar ARCS)

    NASA Technical Reports Server (NTRS)

    Weiss, L. A.; Weber, E. J.; Reiff, P. H.; Sharber, J. R.; Winningham, J. D.; Primdahl, F.; Mikkelsen, I. S.; Seifring, C.; Wescott, Eugene M.

    1994-01-01

    An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field-aligned currents are associated with velocity shears (higher and lower speed streams) embedded in the region of antisunward flow.

  5. New Radiation Zones on Jupiter

    NASA Image and Video Library

    2017-12-11

    This graphic shows a new radiation zone surrounding Jupiter, located just above the atmosphere near the equator, that has been discovered by NASA's Juno mission. The new radiation zone is depicted here as a glowing blue area around the planet's middle. This radiation zone includes energetic hydrogen, oxygen and sulfur ions moving at close to the speed of light (referred to as "relativistic" speeds). It resides inside Jupiter's previously known radiation belts. The zone was identified by the mission's Jupiter Energetic Particle Detector Instrument (JEDI), enabled by Juno's unique close approach to the planet during the spacecraft's science flybys (2,100 miles or 3,400 kilometers from the cloud tops). Juno scientists believe the particles creating this region of intense radiation are derived from energetic neutral atoms -- that is, fast-moving atoms without an electric charge -- coming from the tenuous gas around Jupiter's moons Io and Europa. The neutral atoms then become ions -- atoms with an electric charge -- as their electrons are stripped away by interaction with the planet's upper atmosphere. (This discovery is discussed further in an issue of the journal Geophysical Research Letters [Kollmann et al. (2017), Geophys. Res. Lett., 44, 5259-5268].) Juno also has detected signatures of a population of high-energy, heavy ions in the inner edges of Jupiter's relativistic electron radiation belt. This radiation belt was previously understood to contain mostly electrons moving at near light speed. The signatures of the heavy ions are observed at high latitude locations within the electron belt -- a region not previously explored by spacecraft. The origin and exact species of these heavy ions is not yet understood. Juno's Stellar Reference Unit (SRU-1) star camera detects the signatures of this population as extremely high noise in images collected as part of the mission's radiation monitoring investigation. The locations where the heavy ions were detected are indicated on the graphic by two bright, glowing spots along Juno's flight path past the planet, which is shown as a white line. The invisible lines of Jupiter's magnetic field are also portrayed here for context as faint, bluish lines. https://photojournal.jpl.nasa.gov/catalog/PIA22179

  6. Feature-space-based FMRI analysis using the optimal linear transformation.

    PubMed

    Sun, Fengrong; Morris, Drew; Lee, Wayne; Taylor, Margot J; Mills, Travis; Babyn, Paul S

    2010-09-01

    The optimal linear transformation (OLT), an image analysis technique of feature space, was first presented in the field of MRI. This paper proposes a method of extending OLT from MRI to functional MRI (fMRI) to improve the activation-detection performance over conventional approaches of fMRI analysis. In this method, first, ideal hemodynamic response time series for different stimuli were generated by convolving the theoretical hemodynamic response model with the stimulus timing. Second, constructing hypothetical signature vectors for different activity patterns of interest by virtue of the ideal hemodynamic responses, OLT was used to extract features of fMRI data. The resultant feature space had particular geometric clustering properties. It was then classified into different groups, each pertaining to an activity pattern of interest; the applied signature vector for each group was obtained by averaging. Third, using the applied signature vectors, OLT was applied again to generate fMRI composite images with high SNRs for the desired activity patterns. Simulations and a blocked fMRI experiment were employed for the method to be verified and compared with the general linear model (GLM)-based analysis. The simulation studies and the experimental results indicated the superiority of the proposed method over the GLM-based analysis in detecting brain activities.

  7. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without coupling to a sonic boom propagation analysis code, from the stagnation chamber of the nozzle to the far field external flow, taking into account all nonisentropic effects in the shocks, boundary layers, and free shear layers, and their interactions at distances up to 30 times the nozzle exit diameter from the jet centerline. A CFD solution is shown in Figure 2. The flow field is very complicated and multi-dimensional, with shock-shock and shockplume interactions. At the time of this reporting, a full three-dimensional CFD study was being conducted to evaluate the effects of nozzle vectoring on the aircraft tail shock strength.

  8. Post-analysis report on Chesapeake Bay data processing. [spectral analysis and recognition computer signature extension

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The additional processing performed on data collected over the Rhode River Test Site and Forestry Site in November 1970 is reported. The techniques and procedures used to obtain the processed results are described. Thermal data collected over three approximately parallel lines of the site were contoured, and the results color coded, for the purpose of delineating important scene constituents and to identify trees attacked by pine bark beetles. Contouring work and histogram preparation are reviewed and the important conclusions from the spectral analysis and recognition computer (SPARC) signature extension work are summarized. The SPARC setup and processing records are presented and recommendations are made for future data collection over the site.

  9. Distinct Microbial Signatures Associated With Different Breast Cancer Types

    PubMed Central

    Banerjee, Sagarika; Tian, Tian; Wei, Zhi; Shih, Natalie; Feldman, Michael D.; Peck, Kristen N.; DeMichele, Angela M.; Alwine, James C.; Robertson, Erle S.

    2018-01-01

    A dysbiotic microbiome can potentially contribute to the pathogenesis of many different diseases including cancer. Breast cancer is the second leading cause of cancer death in women. Thus, we investigated the diversity of the microbiome in the four major types of breast cancer: endocrine receptor (ER) positive, triple positive, Her2 positive and triple negative breast cancers. Using a whole genome and transcriptome amplification and a pan-pathogen microarray (PathoChip) strategy, we detected unique and common viral, bacterial, fungal and parasitic signatures for each of the breast cancer types. These were validated by PCR and Sanger sequencing. Hierarchical cluster analysis of the breast cancer samples, based on their detected microbial signatures, showed distinct patterns for the triple negative and triple positive samples, while the ER positive and Her2 positive samples shared similar microbial signatures. These signatures, unique or common to the different breast cancer types, provide a new line of investigation to gain further insights into prognosis, treatment strategies and clinical outcome, as well as better understanding of the role of the micro-organisms in the development and progression of breast cancer. PMID:29867857

  10. Experiment research on infrared targets signature in mid and long IR spectral bands

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Hong, Pu; Lei, Bo; Yue, Song; Zhang, Zhijie; Ren, Tingting

    2013-09-01

    Since the infrared imaging system has played a significant role in the military self-defense system and fire control system, the radiation signature of IR target becomes an important topic in IR imaging application technology. IR target signature can be applied in target identification, especially for small and dim targets, as well as the target IR thermal design. To research and analyze the targets IR signature systematically, a practical and experimental project is processed under different backgrounds and conditions. An infrared radiation acquisition system based on a MWIR cooled thermal imager and a LWIR cooled thermal imager is developed to capture the digital infrared images. Furthermore, some instruments are introduced to provide other parameters. According to the original image data and the related parameters in a certain scene, the IR signature of interested target scene can be calculated. Different background and targets are measured with this approach, and a comparison experiment analysis shall be presented in this paper as an example. This practical experiment has proved the validation of this research work, and it is useful in detection performance evaluation and further target identification research.

  11. Detrending the realized volatility in the global FX market

    NASA Astrophysics Data System (ADS)

    Schmidt, Anatoly B.

    2009-05-01

    There has been growing interest in realized volatility (RV) of financial assets that is calculated using intra-day returns. The choice of optimal time grid for these calculations is not trivial and generally requires analysis of RV dependence on the grid spacing (so-called RV signature). Typical RV signatures have a maximum at the finest time grid spacing available, which is attributed to the microstructure effects. This maximum decays into a plateau at lower frequencies, which implies (almost) stationary return variance. We found that the RV signatures in the modern global FX market may have no plateau or even have a maximum at lower frequencies. Simple averaging methods used to address the microstructure effects in equities have no practical effect on the FX RV signatures. We show that local detrending of the high-frequency FX rate samples yields RV signatures with a pronounced plateau. This implies that FX rates can be described with a Brownian motion having non-stationary trend and stationary variance. We point at a role of algorithmic trading as a possible cause of micro-trends in FX rates.

  12. An Optimal Deconvolution Method for Reconstructing Pneumatically Distorted Near-Field Sonic Boom Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Haering, Edward A., Jr.; Ehernberger, L. J.

    1996-01-01

    In-flight measurements of the SR-71 near-field sonic boom were obtained by an F-16XL airplane at flightpath separation distances from 40 to 740 ft. Twenty-two signatures were obtained from Mach 1.60 to Mach 1.84 and altitudes from 47,600 to 49,150 ft. The shock wave signatures were measured by the total and static sensors on the F-16XL noseboo. These near-field signature measurements were distorted by pneumatic attenuation in the pitot-static sensors and accounting for their effects using optimal deconvolution. Measurement system magnitude and phase characteristics were determined from ground-based step-response tests and extrapolated to flight conditions using analytical models. Deconvolution was implemented using Fourier transform methods. Comparisons of the shock wave signatures reconstructed from the total and static pressure data are presented. The good agreement achieved gives confidence of the quality of the reconstruction analysis. although originally developed to reconstruct the sonic boom signatures from SR-71 sonic boom flight tests, the methods presented here generally apply to other types of highly attenuated or distorted pneumatic measurements.

  13. Observations of double layer-like and soliton-like structures in the ionosphere

    NASA Technical Reports Server (NTRS)

    Boehm, M. H.; Carlson, C. W.; Mcfadden, J.; Mozer, F. S.

    1984-01-01

    Two types of large electric field signatures, individual pulses and pulse trains, were observed on a sounding rocket launched into the afternoon auroral zone on January 21, 1982. The typical electric fields in the individual pulses were 50 mV/m or larger, aligned mostly parallel to B, and the corresponding potentials were at leat 100 mV (kT approximately 0.3 eV). A lower limit of 15 km/sec can be set on the velocity of these structures, indicating that they were not ion acoustic double layers. The pulse trains, each consisting of on the order of 100 pulses, were observed in close association with intense plasma frequency waves. This correlation is consistent with the interpretation of these trains as Langmuir solitons. The pulse trains correlate better with the intensity of the field-aligned currents than with the energetic electron flux.

  14. Spectroscopy of Charged Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.; Korenev, V. L.

    2006-03-01

    Spins of single charges in quantum dots are attractive for many quantum information and spintronic proposals. Scalable quantum information applications require the ability to entangle and operate on multiple spins in coupled quantum dots (CQDs). To further the understanding of these systems, we present detailed spectroscopic studies of InAs CQDs with control of the discrete electron or hole charging of the system. The optical spectrum reveals a pattern of energy anticrossings and crossings in the photoluminescence as a function of applied electric field. These features can be understood as a superposition of charge and spin configurations of the two dots and represent clear signatures of quantum mechanical coupling. The molecular resonance leading to these anticrossings is achieved at different electric fields for the optically excited (trion) states and the ground (hole) states allowing for the possibility of using the excited states for optically induced coupling of the qubits.

  15. Effect of high pressure on the electrical resistivity of Ge-Te-In glasses

    NASA Astrophysics Data System (ADS)

    Prasad, K. N. N.; Varma, G. Sreevidya; Rukmani, K.; Asokan, S.

    2015-06-01

    The variation in the electrical resistivity of the chalcogenide glasses Ge15Te85-xInx has been studied as a function of high pressure for pressures up to 8.5GPa. All the samples studied undergo a semi-conductor to metallic transition in a continuous manner at pressures between 1.5-2.5GPa. The transition pressure at which the samples turn metallic increases with increase in percentage of Indium. This increase is a direct consequence of the increase in network rigidity with the addition of Indium. At a constant pressure of 0.5GPa, the normalized resistivity shows some signature of the existence of the intermediate phase. Samples recovered after a pressure cycle remain amorphous suggesting that the semi-conductor to metallic transition arises from a reduction of the band gap due to pressure or the movement of the Fermi level into the conduction or valence band.

  16. Chiral magnetoresistance in the Weyl semimetal NbP

    NASA Astrophysics Data System (ADS)

    Niemann, Anna Corinna; Gooth, Johannes; Wu, Shu-Chun; Bäßler, Svenja; Sergelius, Philip; Hühne, Ruben; Rellinghaus, Bernd; Shekhar, Chandra; Süß, Vicky; Schmidt, Marcus; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius

    2017-03-01

    NbP is a recently realized Weyl semimetal (WSM), hosting Weyl points through which conduction and valence bands cross linearly in the bulk and exotic Fermi arcs appear. The most intriguing transport phenomenon of a WSM is the chiral anomaly-induced negative magnetoresistance (NMR) in parallel electric and magnetic fields. In intrinsic NbP the Weyl points lie far from the Fermi energy, making chiral magneto-transport elusive. Here, we use Ga-doping to relocate the Fermi energy in NbP sufficiently close to the W2 Weyl points, for which the different Fermi surfaces are verified by resultant quantum oscillations. Consequently, we observe a NMR for parallel electric and magnetic fields, which is considered as a signature of the chiral anomaly in condensed-matter physics. The NMR survives up to room temperature, making NbP a versatile material platform for the development of Weyltronic applications.

  17. Violation of Ohm's law in a Weyl metal.

    PubMed

    Shin, Dongwoo; Lee, Yongwoo; Sasaki, M; Jeong, Yoon Hee; Weickert, Franziska; Betts, Jon B; Kim, Heon-Jung; Kim, Ki-Seok; Kim, Jeehoon

    2017-11-01

    Ohm's law is a fundamental paradigm in the electrical transport of metals. Any transport signatures violating Ohm's law would give an indisputable fingerprint for a novel metallic state. Here, we uncover the breakdown of Ohm's law owing to a topological structure of the chiral anomaly in the Weyl metal phase. We observe nonlinear I-V characteristics in Bi 0.96 Sb 0.04 single crystals in the diffusive limit, which occurs only for a magnetic-field-aligned electric field (E∥B). The Boltzmann transport theory with the charge pumping effect reveals the topological-in-origin nonlinear conductivity, and it leads to a universal scaling function of the longitudinal magnetoconductivity, which completely describes our experimental results. As a hallmark of Weyl metals, the nonlinear conductivity provides a venue for nonlinear electronics, optical applications, and the development of a topological Fermi-liquid theory beyond the Landau Fermi-liquid theory.

  18. Electron plasma oscillations in the Venus foreshock

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1990-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.

  19. Electrostatic wave heating and possible formation of self-generated high electric fields in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Celona, L.; Gammino, S.; Miracoli, R.; Castro, G.; Gambino, N.; Ciavola, G.

    2011-10-01

    A plasma reactor operates at the Laboratori Nazionali del Sud of INFN, Catania, and it has been used as a test-bench for the investigation of innovative mechanisms of plasma ignition based on electrostatic waves (ES-W), obtained via the inner plasma EM-to-ES wave conversion. Evidences of Bernstein wave (BW) generation will be shown. The Langmuir probe measurements have revealed a strong increase of the ion saturation current, where the BW are generated or absorbed, this being a signature of possible high energy ion flows. The results are interpreted through the Bernstein wave heating theory, which predicts the formation of high speed rotating layers of the plasma (a dense plasma ring is in fact observed). High intensity inner plasma self-generated electric fields (on the order of several tens of kV/cm) come out by our calculations.

  20. Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalra, Rachpon; Laucht, Arne; Dehollain, Juan Pablo

    Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5–10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnosemore » and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.« less

Top