Science.gov

Sample records for electrical spark discharges

  1. Fiber optic diagnostic techniques applied to electrical discharge machining sparks

    NASA Astrophysics Data System (ADS)

    Pillans, B. W.; Evensen, M. H.; Taylor, H. F.; Eubank, P. T.; Ma, Lianxi

    2002-02-01

    Plasma sparks from an electrical discharge machining (EDM) process were observed using fiber optics positioned in the dielectric oil. Measurement techniques were developed to observe the spark in the extremely noisy environment. Optical data were used along with current pulse wave forms from the EDM machine to study the temporal characteristics of the spark in both the pulse time and the pause time. During the pause time, extinction of the sparks was longer than previously thought—perhaps due to the remaining infrared radiation after the collapse of the spark. Further, an optical pattern was identified that indicated in advance when an arc was being formed instead of a spark. Spectral data of the plasma spark was obtained by using a scanning grating spectrometer in conjunction with crosscorrelation to maximize the signal-to-noise ratio. Average spark temperatures from the spectral data were found to be significantly higher than those previously predicted from energy balances. The results showed a shift in the optical spectra to longer wavelengths during the spark, showing that the spark temperature decreased with time.

  2. A time-resolved imaging and electrical study on a high current atmospheric pressure spark discharge

    NASA Astrophysics Data System (ADS)

    Palomares, J. M.; Kohut, A.; Galbács, G.; Engeln, R.; Geretovszky, Zs.

    2015-12-01

    We present a time-resolved imaging and electrical study of an atmospheric pressure spark discharge. The conditions of the present study are those used for nanoparticle generation in spark discharge generator setups. The oscillatory bipolar spark discharge was generated between two identical Cu electrodes in different configurations (cylindrical flat-end or tipped-end geometries, electrode gap from 0.5 to 4 mm), in a controlled co-axial N2 flow, and was supplied by a high voltage capacitor. Imaging data with nanosecond time resolution were collected using an intensified CCD camera. This data were used to study the time evolution of plasma morphology, total light emission intensity, and the rate of plasma expansion. High voltage and high current probes were employed to collect electrical data about the discharge. The electrical data recorded allowed, among others, the calculation of the equivalent resistance and inductance of the circuit, estimations for the energy dissipated in the spark gap. By combining imaging and electrical data, observations could be made about the correlation of the evolution of total emitted light and the dissipated power. It was also observed that the distribution of light emission of the plasma in the spark gap is uneven, as it exhibits a "hot spot" with an oscillating position in the axial direction, in correlation with the high voltage waveform. The initial expansion rate of the cylindrical plasma front was found to be supersonic; thus, the discharge releases a strong shockwave. Finally, the results on equivalent resistance and channel expansion are comparable to those of unipolar arcs. This shows the spark discharge has a similar behavior to the arc regime during the conductive phase and until the current oscillations stop.

  3. Method and apparatus for electrical cable testing by pulse-arrested spark discharge

    DOEpatents

    Barnum, John R.; Warne, Larry K.; Jorgenson, Roy E.; Schneider, Larry X.

    2005-02-08

    A method for electrical cable testing by Pulse-Arrested Spark Discharge (PASD) uses the cable response to a short-duration high-voltage incident pulse to determine the location of an electrical breakdown that occurs at a defect site in the cable. The apparatus for cable testing by PASD includes a pulser for generating the short-duration high-voltage incident pulse, at least one diagnostic sensor to detect the incident pulse and the breakdown-induced reflected and/or transmitted pulses propagating from the electrical breakdown at the defect site, and a transient recorder to record the cable response. The method and apparatus are particularly useful to determine the location of defect sites in critical but inaccessible electrical cabling systems in aging aircraft, ships, nuclear power plants, and industrial complexes.

  4. Fast optical and electrical diagnostics of pulsed spark discharges in different gap geometries

    NASA Astrophysics Data System (ADS)

    Höft, Hans; Huiskamp, Tom; Kettlitz, Manfred

    2016-09-01

    Spark discharges in different electrode configurations and with various electrode materials were ignited in air at atmospheric pressure using a custom build pulse charger with 1 μs voltage rise time (up to 28 kV) in single shot operation. Fast voltage and current measurements were combined with iCCD imaging with high spatial resolution (better than 10 μm) on pin-to-pin, pin-to-half-sphere and symmetrical half-sphere tungsten electrodes and symmetrical half-sphere brass electrodes for electrode gaps of 0.1 to 0.7 mm. Breakdown voltages, consumed electrical energies and the discharge emission structures as well as the discharge diameters were obtained. Because of the synchronization of the electrical measurements and the iCCD imaging (i.e. one complete data set for every shot), it was possible to estimate the current density and the change of the discharge pattern, such as single or multiple channels, for all cases. EU funding under Grant No 316216 (PlasmaShape).

  5. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation

    SciTech Connect

    Shao Tao; Zhang Cheng; Yan Ping; Tarasenko, Victor F.; Lomaev, Mikhail I.; Sorokin, Dmitrii A.; Kozyrev, Andrei V.; Baksht, Evgeni Kh.

    2012-01-15

    In this article we report on work where the formation of a spark in nanosecond high-voltage discharges was studied in nitrogen, nitrogen-methane mixtures, and air at increased pressures under the conditions of runaway electron generation. Voltage pulses of amplitude {approx}90 and {approx}250 kV were applied to a point-to-plane gap with a planar anode and a cathode of small curvature radius. Cathode spots appeared early in the discharge, within {approx}200 ps of a corona discharge at high rate of rise of the voltage ({approx}5 x 10{sup 14} V/s) across centimeter point-to-plane gap spacing. The spark leader that bridged the point-to-plane gap propagated from the planar anode with cathode spots and a voltage pulse rise time of less than 1 ns. The discharge from diffuse clouds took the form of diffuse jets with increasing pulse repetition rate, thus achieving the accumulation effect in a repetitively pulsed discharge. Characteristic emission spectra are presented for spark diffuse and corona discharges.

  6. Quantitative infrared spectroscopic analysis of SF 6 decomposition products obtained by electrical partial discharges and sparks using PLS-calibrations

    NASA Astrophysics Data System (ADS)

    Kurte, R.; Heise, H. M.; Klockow, D.

    2001-05-01

    Infrared spectroscopy is a powerful tool for the analysis of gaseous by-products in sulfur hexafluoride gas used as an insulator in high-voltage equipment. Sparks and electrical partial discharges were generated between different point-plane configurations within a custom-made discharge chamber constructed from stainless steel and Teflon ®. Various electrode materials were used such as stainless steel, copper, aluminium, silver, tungsten and tungsten/copper alloy. Owing to the different electrical conditions, a wide concentration range of the decomposition products existed. The main-products found were the sulfuroxyfluorides SOF 4 and SOF 2, as well as HF following experiments with partial discharges and sparking with energies around 1.0 J/spark. All infrared spectra were recorded using an FTIR-spectrometer equipped with a 10 cm gas cell. Quantification was carried out using classical least-squares and partial least-squares (PLS) with multivariate spectral data from selected intervals. PLS calibration models were also optimised under the constraint of a minimum number of spectral variables with a view to developing simple photometers based on a restricted number of laser wavelengths. Standard errors of prediction obtained by cross-validation of different PLS calibration models are reported for the compounds mentioned, as well as for SF 4, SO 2F 2 and SiF 4.

  7. Formation of a spark discharge in an inhomogeneous electric field with current limitation by a large ballast Resistance

    SciTech Connect

    Baldanov, B. B.

    2016-01-15

    Results of studies of a spark discharge initiated in argon in a point–plane electrode gap with limitation of the discharge current by a large ballast resistance are presented. It is shown that the current flowing through the plasma channel of such a low-current spark has the form of periodic pulses. It is experimentally demonstrated that, when a low-current spark transforms into a constricted glow discharge, current pulses disappear, the spatial structure of the cathode glow changes abruptly, and a brightly glowing positive plasma column forms in the gap.

  8. Synthesis of colloidal CuInSe2 nanoparticles by electrical spark discharge in liquid

    NASA Astrophysics Data System (ADS)

    Mardanian, Mehdi; Nevar, Alena A.; Nedel'ko, Michael; Tarasenko, Nikolai V.

    2013-10-01

    This work presents a low-cost, non-vacuum, and facile process for fabrication of CuInSe2 (CIS) nanoparticles using electrical discharge treatment of mixture of copper, indium, and selenium powders between two tungsten electrodes immersed in pure ethanol. The synthesized particles were characterized by UV-Vis-NIR absorption, X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), Raman spectroscopy, transmission and scanning electron microscopy (TEM and SEM). TEM images exhibited that the final product is mainly composed of a large amount of primary nanoparticles typically 10-40 nm in diameter. The band gap energy value of the nanoparticles was estimated to be around 1.2 eV. The XRD pattern of the as-prepared samples besides the main peaks of chalcopyrite tetragonal CIS showed the diffraction peaks which could be attributed to intermediate phases. To omit the intermediate phases and reach to pure CIS nanoparticles the as-prepared in electrical discharge samples were annealed in vacuum at the temperature of 700 °C during 90 min. The XRD and SEM analysis results of annealed samples clearly indicated that chalcopyrite CuInSe2 particles with good crystallinity and near stoichiometric atomic composition were obtained. The composition and crystalline structure of the product was also confirmed by the room-temperature Raman spectrum showing an intense peak at 172 cm-1 corresponding to the A1 phonon mode of tetragonal CuInSe2 chalcopyrite.

  9. Large discharge-volume, silent discharge spark plug

    DOEpatents

    Kang, Michael

    1995-01-01

    A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

  10. Spark discharge coupled laser multicharged ion source.

    PubMed

    Shaim, Md Haider A; Elsayed-Ali, Hani E

    2015-07-01

    A spark discharge is coupled to a laser multicharged ion source to enhance ion generation. The laser plasma triggers a spark discharge with electrodes located in front of the ablated target. For an aluminum target, the spark discharge results in significant enhancement in the generation of multicharged ions along with higher charge states than observed with the laser source alone. When a Nd:YAG laser pulse (wavelength 1064 nm, pulse width 7.4 ns, pulse energy 72 mJ, laser spot area on target 0.0024 cm(2)) is used, the total multicharged ions detected by a Faraday cup is 1.0 nC with charge state up to Al(3+). When the spark amplification stage is used (0.1 μF capacitor charged to 5.0 kV), the total charge measured increases by a factor of ∼9 with up to Al(6+) charge observed. Using laser pulse energy of 45 mJ, charge amplification by a factor of ∼13 was observed for a capacitor voltage of 4.5 kV. The spark discharge increases the multicharged ion generation without increasing target ablation, which solely results from the laser pulse. This allows for increased multicharged ion generation with relatively low laser energy pulses and less damage to the surface of the target.

  11. Spark discharge in conductive liquid with microbubbles

    NASA Astrophysics Data System (ADS)

    Vetchinin, S. P.; Vasilyak, L. M.; Pecherkin, V. Ya; Panov, V. A.; Son, E. E.

    2016-11-01

    Pulse electrical breakdown in 15% water solution of Isopropyl alcohol with air microbubbles from a pointed anode has been studied experimentally. It is shown, that the breakdown is always initiated from the bright region near the anode (anode “spot”). Detailed investigation into dynamic current-voltage characteristics and synchronized images reveals that it is thermal instability in the near anode region that causes spark channel initiation and development. The breakdown voltage, spark channel propagation speed and short-circuit current increase when the microbubbles are presented in the solution. The spark channel propagation speed is about 4-12 m/s and grows along with microbubbles concentration.

  12. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz

    1988-01-01

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.

  13. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.

    1988-08-23

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.

  14. Application of microplasma discharge in a spark gap for high repetitive switching

    SciTech Connect

    Rahaman, Hasibur; Nam, Sang Hoon; Nam, Jong Woo; Lee, Byung-Joon; Frank, Klaus

    2010-04-05

    The electrical breakdown in a spark gap for repetitive switching has been a long research interest. For this purpose, microplasma discharge is implemented in the spark gap which is further integrated inside a coaxial transmission line. This work addresses important physical properties and insights of the microplasma discharge, to be optimized, such as plasma generation in a spark channel, dielectric recovery process, and residual plasma in the postspark discharge period. Although understanding the microplasma discharge is the primary goal, considerable attention has been focused on an external circuit scheme to drive the discharge system at a high repetition rate.

  15. Observations and Modeling of Long Negative Laboratory Discharges: Identifying the Physics Important to an Electrical Spark in Air

    SciTech Connect

    Biagi, C J; Uman, M A

    2011-12-13

    There are relatively few reports in the literature focusing on negative laboratory leaders. Most of the reports focus exclusively on the simpler positive laboratory leader that is more commonly encountered in high voltage engineering [Gorin et al., 1976; Les Renardieres Group, 1977; Gallimberti, 1979; Domens et al., 1994; Bazelyan and Raizer 1998]. The physics of the long, negative leader and its positive counterpart are similar; the two differ primarily in their extension mechanisms [Bazelyan and Raizer, 1998]. Long negative sparks extend primarily by an intermittent process termed a 'step' that requires the development of secondary leader channels separated in space from the primary leader channel. Long positive sparks typically extend continuously, although, under proper conditions, their extension can be temporarily halted and begun again, and this is sometimes viewed as a stepping process. However, it is emphasized that the nature of positive leader stepping is not like that of negative leader stepping. There are several key observational studies of the propagation of long, negative-polarity laboratory sparks in air that have aided in the understanding of the stepping mechanisms exhibited by such sparks [e.g., Gorin et al., 1976; Les Renardieres Group, 1981; Ortega et al., 1994; Reess et al., 1995; Bazelyan and Raizer, 1998; Gallimberti et al., 2002]. These reports are reviewed below in Section 2, with emphasis placed on the stepping mechanism (the space stem, pilot, and space leader). Then, in Section 3, reports pertaining to modeling of long negative leaders are summarized.

  16. Sparks fly over electric cars

    SciTech Connect

    Griffith, V.

    1994-10-01

    While the US automobile industry scrambles to meet 1998 deadlines to put electric vehicles on the market, controversy about the environmental benefits and commercial viability of battery-operated cars is mounting. Circumstances in the US increasingly favor the electric car. Air quality laws in California and Massachusetts now demand that {open_quotes}zero-emission{close_quotes} vehicles comprise 2 percent of total sales in the car market by 1998. Electric cars are the only vehicles to meet such standards so far. Other states are considering similar laws. This article examines the pros and cons of electric vehicle use.

  17. Investigations of initial particle stages during spark discharge

    NASA Astrophysics Data System (ADS)

    Ludvigsson, Linus; Meuller, Bengt O.; Messing, Maria E.

    2015-08-01

    The number of nanoparticle-based products on the market is expected to increase considerably during the coming decades. This forces the industry to have highly meticulous manufacturing of large amounts of nanoparticles using cheap and environmentally friendly methods. For the production of metal nanoparticles spark discharge generation is a promising route to fulfill these demands. The spark discharge generator can be easily scaled-up for mass production due to its simple design solely by placing several units in parallel. Before doing so, one first needs to optimize a single spark discharge generator unit. To optimize the spark discharge generator in a controlled way the first stage of nanoparticle formation needs to be understood. To improve this understanding we have constructed a customized nanoparticle sampler to enable sampling of the initial stages of particle formation for imaging in a TEM. In this article we present the design of the sampler and discuss optimal sampling parameters. We also present how the generation parameters can be tuned in order to affect the first stages of particle formation and hence the final nanoparticles.

  18. Study of transient spark discharge focused at NOx generation for biomedical applications

    NASA Astrophysics Data System (ADS)

    Janda, M.; Martišovitš, V.; Hensel, K.; Machala, Z.

    2016-10-01

    The paper is focused at nitrogen oxides generation by transient spark (TS) in atmospheric pressure air. The TS is a DC-driven self-pulsing discharge with short duration (∼⃒10-100 ns) high current pulses (>1A), with the repetition frequency 1-10 kHz. Thanks to the short spark duration, highly reactive non-equilibrium plasma is generated, producing ∼⃒300 ppm of NOx per input energy density 100 J.l-1. Further optimization of NO/NO2 production to improve the biomedical/antimicrobial effects is possible by modifying the electric circuit generating the TS.

  19. Pulsed submicrosecond multichannel sliding discharges of opposite polarities: Filling of the discharge gap with spark channels

    SciTech Connect

    Trusov, K. K.

    2012-05-15

    Results are presented from measurements of the discharge current and the factor of the discharge gap filling with spark channels during pulsed sliding discharges of opposite polarities in Ne, Ar, and Xe on an aluminum oxide ceramic surface. The measurements were performed in the regime of single pulses of submi-crosecond duration at discharge voltages of 0-12 kV with two discharge chambers with different thicknesses of the ceramic plate (0.4 and 0.17 cm) and different electrode gap lengths (4 and 10.3 cm) at gas pressures of 30 and 100 kPa. The results obtained for discharges of opposite polarities are compared with one another, and common features of discharges in three gases are revealed. It is shown that the filling of the discharge gap with spark channels in the gases under study is more efficient in the case of the positive polarity of the discharge voltage, except Xe at a pressure of 100 kPa in the electrode gap of length 10.3 cm. The quasi-homogeneous regime of discharge in each of the three gases is attained easier at lower gas pressures. Comparison of the data on the filling factors of the discharge gap and the peak currents of opposite-polarity discharges for each gas at a given pressure indicates that the higher the discharge current, the more densely the discharge gap is filled with spark channels.

  20. Focused shock spark discharge drill using multiple electrodes

    DOEpatents

    Moeny, William M.; Small, James G.

    1988-01-01

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  1. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    PubMed

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.

  2. The spark discharge synthesis of amino acids from various hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ring, D.; Miller, S. L.

    1984-01-01

    The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).

  3. Electric discharge during electrosurgery

    PubMed Central

    Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I.; Keidar, Michael

    2015-01-01

    Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 103 A/cm2. The plasma electron density and electrical conductivities in the channel were found be 1016 cm−3 and (1-2) Ohm−1cm−1, respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold. PMID:25880721

  4. Characterization of a copper spark discharge plasma in argon atmosphere used for nanoparticle generation

    NASA Astrophysics Data System (ADS)

    Kohut, Attila; Galbács, Gábor; Márton, Zsuzsanna; Geretovszky, Zsolt

    2017-04-01

    Spark discharge nanoparticle generation is a dynamically developing application of discharge plasmas. In the present study a spark plasma used for nanoparticle generation is characterized by means of spatially and temporally resolved optical emission spectroscopy (OES) supplemented by fast imaging. The data acquired during the generation of copper nanoparticles in argon ambient is used to describe the spatial and temporal evolution of the species in the spark gap and to derive plasma parameters such as excitation temperature and electron concentration on one hand, and the concentration of the Cu species eroded by a single spark on the other. It is shown that temporally and spatially resolved OES together with a simple equilibrium model are efficient tools to estimate the characteristics of the spark discharge plasma that typically exists in spark discharge nanoparticle generators.

  5. Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges

    NASA Astrophysics Data System (ADS)

    Timoshkin, I. V.; Fouracre, R. A.; Given, M. J.; MacGregor, S. J.

    2006-11-01

    Application of a voltage pulse having a rise time of tens of nanoseconds to electrodes immersed in water results in streamer development and the formation of a highly conductive plasma channel between the electrodes. The electrical resistance of such channels decreases rapidly from a few ohms to a few tens of milliohms due to Joule heating resulting from the high current which flows through the plasma. The dynamics of the plasma resistance depend on the parameters of the discharge circuit and the medium in which the discharge takes place. The resistance of the channel reaches a minimum value approximately at the moment of the peak current for under-damped current oscillations. During the resistance collapse, the pressure inside the channel rises to several GPa, causing a rapid expansion of the channel which forms a cavity in the liquid resulting in a high power ultrasound pulse. The cavity expands to a maximum size which is dependent on the circuit driving the discharge and the properties of the plasma discharge channel. The cavity then collapses producing a second acoustic pulse. In this paper the dynamic resistance of the spark channel is described using a phenomenological model based on the plasma channel energy balance equation used by Braginskii. The model which links the hydrodynamic characteristics of the channel and the resulting cavity with the parameters of the electric driving circuit allows the development of the plasma channel and cavity to be predicted. The peak high-power ultrasound (HPU) pressures calculated using this approach are compared with the pressure values estimated by an analytical model which uses a constant value of the spark channel resistance derived from experimental data. Comparisons are also made with direct measurements of HPU output made using a Pinducer sensor. Although the model is based on a phenomenological description of the plasma channel dynamics and its resistance and requires the value of the spark constant, the results

  6. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Tarasenko, Viktor F.; Shao, Tao; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Wang, Ruixue; Sorokin, Dmitry A.; Yan, Ping

    2015-03-01

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05-0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08-0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%-50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.

  7. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    SciTech Connect

    Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A.

    2015-03-15

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.

  8. Experimental study of micro electrical discharge machining discharges

    NASA Astrophysics Data System (ADS)

    Bragança, I. M. F.; Rosa, P. A. R.; Dias, F. M.; Martins, P. A. F.; Alves, L. L.

    2013-06-01

    Micro electrical discharge machining (μEDM) is an atmospheric-pressure plasma-assisted technology that uses point-to-plane discharges in liquid dielectrics to remove microscopic quantities of electrically conductive materials. In this work, an innovative μEDM prototype machine was specifically designed and fabricated to produce and control single spark discharges, thus, resolving the typical limitations of (multi-discharge) commercial machines. The work analyses the type of discharge and the micro-plasma electron-density values obtained for 0.5-38 μm gap sizes, 3-10 000 μs pulse durations, 75-250 V low breakdown voltages, and 1-20 A discharge currents, using different combinations of metallic electrodes in oil and in water. Results allow fitting, for micro-scale and low voltages, an empirical law between the maximum gap-size for breakdown, the breakdown voltage, and the effective stress-time. The electron density ne is obtained by optical emission spectroscopy diagnostics of the Hα-line Stark broadening (yielding ne˜1016-1017 cm-3, i.e., ionization degrees of ˜2×10-5-10-4) and by a semi-empirical resistive plasma model. The model uses the experimental values of several electrical and geometrical quantities, and of the gas pressure estimated as ˜60 bar-2 kbar from measurements of the plasma mechanical action, obtained using a force sensor. The quantitative information of this phenomenological study can assist the optimization of this micro-fabrication technique.

  9. Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment

    PubMed Central

    Parker, Eric T.; Cleaves, Henderson J.; Dworkin, Jason P.; Glavin, Daniel P.; Callahan, Michael; Aubrey, Andrew; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H2S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H2S, CH4, NH3, and CO2. A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordial environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H2S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H2S may have played an important role in prebiotic reactions in early solar system environments. PMID:21422282

  10. Primordial Synthesis of Amines and Amino Acids in a 1958 Miller H2S-Rich Spark Discharge Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, Henderson J.; Dworkin, Jason P.; Glavin, Daniel P.; Callahan, Michael; Aubrey, Andrew; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H2S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H2S, CH4, NH3, and CO2. A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordia! environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H2S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H2S may have played an important role in prebiotic reactions in early solar system environments.

  11. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  12. Mechanism of gas bubble shoot-off and motion during spark discharge in liquid

    NASA Astrophysics Data System (ADS)

    Yavtushenko, I. O.; Orlov, A. M.; Zharkov, S. V.

    2012-07-01

    The conditions of the excitation of a pulsed plasma discharge on the surface of a processed metal (copper) sample immersed in a conducting aqueous solution have been studied. Cathode polarization of the metal was provided by a high-voltage capacitor bank (4μF) charged to U = 200-1100 V after each discharge. It is established that electric breakdown with a duration not exceeding 0.1 μs is always preceded by the formation of small hydrogen bubbles (with radii r ≈ 37-40 μm) on the polarized metal surface, which takes about 139-159 μs. A mechanism of passivation of the processed metal surface by these hydrogen bubbles, which are synchronously shot off from the electrode surface under the action of the spark discharge, is proposed. Consistent matching of the experimental data and model calculations is used to estimate the main parameters determining the kinetics of bubble detachment from the electrode surface at various voltages U on the capacitor bank.

  13. Apparatus for atmospheric pressure pin-to-hole spark discharge and uses thereof

    SciTech Connect

    Dobrynin, Danil V.; Fridman, Alexander; Cho, Young I.; Fridman, Gregory; Friedman, Gennady

    2016-12-06

    Disclosed herein are atmospheric pressure pin-to-hole pulsed spark discharge devices and methods for creating plasma. The devices include a conduit for fluidically communicating a gas, a plasma, or both, therethrough, portion of the conduit capable of being connected to a gas supply, and a second portion of the conduit capable of emitting a plasma; a positive electrode comprising a sharp tip; and a ground plate electrode. Disclosed are methods for treating a skin ulcer using non-thermal plasma include flowing a gas through a cold spark discharge zone simultaneously with the creation of a pulsed spark discharge to give rise to a non-thermal plasma emitted from a conduit, the non-thermal plasma comprising NO; and contacting a skin ulcer with said non-thermal plasma for sufficient time and intensity to give rise to treatment of the skin ulcer.

  14. Streamer-to-spark transition initiated by a nanosecond overvoltage pulsed discharge in air

    NASA Astrophysics Data System (ADS)

    Lo, A.; Cessou, A.; Lacour, C.; Lecordier, B.; Boubert, P.; Xu, D. A.; Laux, C. O.; Vervisch, P.

    2017-04-01

    This study is focused on the streamer-to-spark transition generated by an overvoltage nanosecond pulsed discharge under atmospheric pressure air in order to provide a quantitative insight into plasma-assisted ignition. The discharge is generated in atmospheric pressure air by the application of a positive high voltage pulse of 35 kV to pin-to-pin electrodes and a rise time of 5 ns. The generated discharge consists of a streamer phase with high voltage and high current followed by a spark phase characterized by a low voltage and a decreasing current in several hundreds of nanosecond. During the streamer phase, the gas temperature measured by optical emission spectroscopy related to the second positive system of nitrogen shows an ultra-fast gas heating up to 1200 K at 15 ns after the current rise. This ultra-fast gas heating, due to the quenching of electronically excited species by oxygen molecules, is followed by a quick dissociation of molecules and then the discharge transition to a spark. At this transition, the discharge contracts toward the channel axis and evolves into a highly conducting thin column. The spark phase is characterized by a high degree of ionization of nitrogen and oxygen atoms shown by the electron number density and temperature measured from optical emission spectroscopy measurements of N+ lines. Schlieren imaging and optical emission spectroscopy techniques provide the time evolution of the spark radius, from which the initial pressure in the spark is estimated. The expansion of the plasma is adiabatic in the early phase. The electronic temperature and density during this phase allows the determination of the isentropic coefficient. The value around 1.2–1.3 is coherent with the high ionization rate of the plasma in the early phase. The results obtained in this study provide a database and the initial conditions for the validation of numerical simulations of the ignition by plasma discharge.

  15. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  16. Nanosecond Glow and Spark Discharges in Ambient Air and in Water Vapor

    NASA Astrophysics Data System (ADS)

    Laux, Christophe; Rusterholtz, Diane; Sainct, Florent; Xu, Da; Lacoste, Deanna; Stancu, Gabi; Pai, David

    2013-09-01

    Nanosecond repetitively pulsed (NRP) discharges are one of the most energy efficient ways to produce active species in atmospheric pressure gases. In both air and water vapor, three discharge regimes can be obtained: 1) corona, with light emission just around the anode, 2) glow, corresponding to a diffuse nonequilibrium plasma, and 3) spark, characterized by higher temperatures and higher active species densities. The glow regime was initially obtained in air preheated at 2000 K. Based on a model defining the transition between glow and spark, we recently succeeded in obtaining a stable glow in ambient air at 300 K, using a judicious combination of electrode geometry, pulse duration, pulse frequency, and applied voltage. We will present these results and describe the characteristics of the discharge obtained in room air. The spark regime was also studied. NRP sparks induce ultrafast gas heating (about 1000 K in 20 ns) and high oxygen dissociation (up to 50% dissociation of O2) . This phenomenon can be explained by a two-step process involving the excitation of molecular nitrogen followed by exothermic dissociative quenching of molecular oxygen. The characteristics of NRP discharges in water vapor will also be discussed. This work is supported by the ANR PREPA program (grant number ANR-09-BLAN-0043).

  17. Particle size selection in post-spark dusty plasma in non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Kim, Woongsik; Pikhitsa, Peter V.; Choi, Mansoo

    2016-11-01

    We report a strong size-selective effect of the non-uniform external electric field on unitary charged nanoparticles in a residual dusty plasma generated by spark discharge. It has been found that the field influences the outcome particle size distribution function considerably by expelling smaller particles out of the residual plasma cloud so that they cannot neutralize or agglomerate. Meantime, larger particles being dragged by the plasma cloud neutralize and disappear at walls; therefore, the particle size distribution function shifts to small sizes. We give a simple theory explaining the field effect and suggest its application for a patterning technique.

  18. Application of pulsed spark discharge for calcium carbonate precipitation in hard water.

    PubMed

    Yang, Yong; Kim, Hyoungsup; Starikovskiy, Andrey; Fridman, Alexander; Cho, Young I

    2010-06-01

    The effect of underwater pulsed spark discharge on the precipitation of dissolved calcium ions was investigated in the present study. Water samples with different calcium hardness were prepared by continuous evaporation of tap water using a laboratory cooling tower. It was shown that the concentration of calcium ions dropped by 20-26% after 10-min plasma treatment, comparing with no drop for untreated cases. A laser particle counting method demonstrated that the total number of solid particles suspended in water increased by over 100% after the plasma treatment. The morphology and the crystal form of the particles were identified by both scanning electron microscopy and X-ray diffraction. Calcite with rhombohedron morphology was observed for plasma treated cases, comparing with the round structure observed for no-treatment cases. It was hypothesized that the main mechanisms for the plasma-assisted calcium carbonate precipitation might include electrolysis, local heating in the vicinity of plasma channel and a high electric field at the tip of plasma streamers, inducing structural changes in the electric double layer of hydrated ions.

  19. Water purification by electrical discharges

    NASA Astrophysics Data System (ADS)

    Arif Malik, Muhammad; Ghaffar, Abdul; Akbar Malik, Salman

    2001-02-01

    There is a continuing need for the development of effective, cheap and environmentally friendly processes for the disinfection and degradation of organic pollutants from water. Ozonation processes are now replacing conventional chlorination processes because ozone is a stronger oxidizing agent and a more effective disinfectant without any side effects. However, the fact that the cost of ozonation processes is higher than chlorination processes is their main disadvantage. In this paper recent developments targeted to make ozonation processes cheaper by improving the efficiency of ozone generation, for example, by incorporation of catalytic packing in the ozone generator, better dispersion of ozone in water and faster conversion of dissolved ozone to free radicals are described. The synthesis of ozone in electrical discharges is discussed. Furthermore, the generation and plasma chemical reactions of several chemically active species, such as H2O2, Obullet, OHbullet, HO2bullet, O3*, N2*, e-, O2-, O-, O2+, etc, which are produced in the electrical discharges are described. Most of these species are stronger oxidizers than ozone. Therefore, water treatment by direct electrical discharges may provide a means to utilize these species in addition to ozone. Much research and development activity has been devoted to achieve these targets in the recent past. An overview of these techniques and important developments that have taken place in this area are discussed. In particular, pulsed corona discharge, dielectric barrier discharge and contact glow discharge electrolysis techniques are being studied for the purpose of cleaning water. The units based on electrical discharges in water or close to the water level are being tested at industrial-scale water treatment plants.}

  20. Experimental Investigation of process parameters influence on machining Inconel 800 in the Electrical Spark Eroding Machine

    NASA Astrophysics Data System (ADS)

    Karunakaran, K.; Chandrasekaran, M.

    2016-11-01

    The Electrical Spark Eroding Machining is an entrenched sophisticated machining process for producing complex geometry with close tolerances in hard materials like super alloy which are extremely difficult-to-machine by using conventional machining processes. It is sometimes offered as a better alternative or sometimes as an only alternative for generating accurate 3D complex shapes of macro, micro and nano-features in such difficult-to-machine materials among other advanced machining processes. The accomplishment of such challenging task by use of Electrical Spark Eroding Machining or Electrical Discharge Machining (EDM) is depending upon selection of apt process parameters. This paper is about analyzing the influencing of parameter in electrical eroding machining for Inconel 800 with electrolytic copper as a tool. The experimental runs were performed with various input conditions to process Inconel 800 nickel based super alloy for analyzing the response of material removal rate, surface roughness and tool wear rate. These are the measures of performance of individual experimental value of parameters such as pulse on time, Pulse off time, peak current. Taguchi full factorial Design by using Minitab release 14 software was employed to meet the manufacture requirements of preparing process parameter selection card for Inconel 800 jobs. The individual parameter's contribution towards surface roughness was observed from 13.68% to 64.66%.

  1. Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation

    DTIC Science & Technology

    2014-08-18

    upon chemical heat release from a fuel while achieving similar plume characteristics. Therefore, utilizing chemical energy for an ignition device is...spark discharge ignition process to exhibit similar behavior with peaks and valleys of heat release (but to a lesser extent). The results of using the...supersonic flow- path is self-sustained heat release, directly achiev- ing this can be energy intensive because of the need to engage a significant quantity

  2. Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy.

    PubMed

    Hou, Zongyu; Wang, Zhe; Liu, Jianmin; Ni, Weidou; Li, Zheng

    2014-06-02

    Spark discharge has been proved to be an effective way to enhance the LIBS signal while moderate cylindrical confinement is able to increase the signal repeatability with limited signal enhancement effects. In the present work, these two methods were combined together not only to improve the pulse-to-pulse signal repeatability but also to simultaneously and significantly enhance the signal as well as SNR. Plasma images showed that the confinement stabilized the morphology of the plasma, especially for the discharge assisted process, which explained the improvement of the signal repeatability.

  3. Internal dynamics of electrical discharges

    SciTech Connect

    Kadish, A.; Maier, W.B. II ); Robiscoe, R.T. )

    1990-01-01

    The existence of thresholds for electrical discharge onset suggests a functional relation between macroscopic resistivity and current. At low current, the resistivity should be inversely proportional to the magnitude of the current. Macroscopic models which employ this scaling predict many empirically observed properties of transient electrical discharges, such as (1) thresholds for onset of current, (2) abrupt termination of current in active regions of a current channel, (3) current restart in passive regions of current channels, (4) leaders, and (5) residual charge, both in channels and at sources when current terminates. We present an overview of research with these models and use examples to illustrate the results that have been obtained. We also show how these models predict current channel formation and describe results of efforts to benchmark theory with experimental data. 12 refs., 9 figs.

  4. The 'electric stroke' and the 'electric spark': anatomists and eroticism at George Baker's electric eel exhibition in 1776 and 1777.

    PubMed

    Plumb, Christopher

    2010-09-01

    In 1776 and 1777 five living electric eels exhibited in London became a sensational spectacle that appealed to anatomists, electricians and connoisseurs of erotica. George Baker's exhibition made visible the 'electric spark' of the electrical eel and a series of experiments were both witnessed by and participated in by members of the Royal Society and the metropolitan elite. Some participants even grasped the eels firmly in their hands and felt the 'electric stroke' of the eel in addition to observing the spark. In their observation of the electric eel some of these spectators transposed the vivid electric spark from the sphere of electricians and anatomists into that of satirical and erotic literature. Here the erotic electric eel proliferated in the literature and the eel took on quite different connotations that nonetheless were reliant on readers knowledge and experience of the exhibition, experiments and the preoccupations of anatomists. George Baker's electric eel exhibition of 1776 and 1777 is then instructive in exploring the production and circulation of knowledge in Georgian Britain. The story of the electric eel in Georgian culture charts the creation of the electric spark and stroke as objects of observation and encounter, their exhibitionary context, and finally their divergent meanings as the electric eel became erotically charged for a metropolitan masculine elite.

  5. Numerical Modelling of Electrical Discharges

    NASA Astrophysics Data System (ADS)

    Durán-Olivencia, F. J.; Pontiga, F.; Castellanos, A.

    2014-03-01

    The problem of the propagation of an electrical discharge between a spherical electrode and a plane has been solved by means of finite element methods (FEM) using a fluid approximation and assuming weak ionization and local equilibrium with the electric field. The numerical simulation of this type of problems presents the usual difficulties of convection-diffusion-reaction problems, in addition to those associated with the nonlinearities of the charged species velocities, the formation of steep gradients of the electric field and particle densities, and the coexistence of very different temporal scales. The effect of using different temporal discretizations for the numerical integration of the corresponding system of partial differential equations will be here investigated. In particular, the so-called θ-methods will be used, which allows to implement implicit, semi-explicit and fully explicit schemes in a simple way.

  6. Classification of electrical discharges in DC Accelerators

    NASA Astrophysics Data System (ADS)

    Banerjee, Srutarshi; Deb, A. K.; Rajan, Rehim N.; Kishore, N. K.

    2016-08-01

    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  7. Electrical discharges in Chinese salamander Andrias davidianus.

    PubMed

    Olshanskii, V M; Baron, V D; Wei, Xue

    2016-11-01

    In 2-year-old Chinese giant salamanders Andrias davidianus, occasional electric discharges with a characteristic pattern similar to the electric discharges of weakly electric catfish, Polypterus and Protopterus, were recorded for the first time. The discharges markedly differ in shape from the myograms accompanying abrupt movements of the salamander or exceeded them in amplitude by more than an order of magnitude. The discharges were recorded both in the autonomous experiment in the absence of experimenters and at a weak tactile stimulation.

  8. Quantification of monocarboxylic acids from a spark discharge synthesis. [in meteorites

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Lawless, J. G.; Edelson, E. H.

    1981-01-01

    A suite of sixteen monocarboxylic acids having carbon numbers 2 to 7, formed by the Miller-Urey spark discharge process, was identified and quantified by gas chromatography and mass fragmentography using a deuterium spiking technique. The molar concentration and isomeric distribution of these laboratory synthesized monocarboxylic acids are compared to those previously reported for the Murchison meteorite. They show similar trends, namely, decreasing molar concentration with increasing molecular weight, and a ratio of normal/branched isomers tending toward smaller values with increasing carbon numbers.

  9. Cold Microsecond Spark Discharge Plasma Production of Active Species and Their Delivery into Tissue

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil; Fridman, Gregory; Friedman, Gary; Fridman, Alexander

    Mechanisms of the Plasma Medicine techniques, first of all plasma ­sterilization and healing of wounds, are immediately related to the effects of ­reactive neutral and charged species produced by plasma and delivered to the treated object. Here we report experimental results on measurement of production of reactive ­oxygen species in liquid media and their delivery into tissue by microsecond spark discharge plasma. We also show that a simple agarose gel model may closely mimic physicochemical characteristics of tissue.

  10. Flame Speed and Spark Intensity

    NASA Technical Reports Server (NTRS)

    Randolph, D W; Silsbee, F B

    1925-01-01

    This report describes a series of experiments undertaken to determine whether or not the electrical characteristics of the igniting spark have any effect on the rapidity of flame spread in the explosive gas mixtures which it ignites. The results show very clearly that no such effect exists. The flame velocity in carbon-monoxide oxygen, acetylene oxygen, and gasoline-air mixtures was found to be unaffected by changes in spark intensity from sparks which were barely able to ignite the mixture up to intense condenser discharge sparks having fifty time this energy. (author)

  11. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    NASA Astrophysics Data System (ADS)

    Xin, Y. B.; Sun, B.; Zhu, X. M.; Yan, Z. Y.; Liu, H.; Liu, Y. J.

    2016-07-01

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.

  12. Final report on development of Pulse Arrested Spark Discharge (PASD) for aging aircraft wiring application

    SciTech Connect

    Lockner, Thomas Ramsbeck; Howard, R. Kevin; Pena, Gary Edward; Schneider, Larry X.; Higgins, Matthew B.; Glover, Steven Frank

    2006-09-01

    Pulsed Arrested Spark Discharge (PASD) is a Sandia National Laboratories Patented, non-destructive wiring system diagnostic that has been developed to detect defects in aging wiring systems in the commercial aircraft fleet. PASD was previously demonstrated on relatively controlled geometry wiring such as coaxial cables and shielded twisted-pair wiring through a contract with the U.S. navy and is discussed in a Sandia National Laboratories report, SAND2001-3225 ''Pulsed Arrested Spark Discharge (PASD) Diagnostic Technique for the Location of Defects in Aging Wiring Systems''. This report describes an expansion of earlier work by applying the PASD technique to unshielded twisted-pair and discrete wire configurations commonly found in commercial aircraft. This wiring is characterized by higher impedances as well as relatively non-uniform impedance profiles that have been found to be challenging for existing aircraft wiring diagnostics. Under a three year contract let by the Federal Aviation Administration, Interagency Agreement DTFA-03-00X90019, this technology was further developed for application on aging commercial aircraft wiring systems. This report describes results of the FAA program with discussion of previous work conducted under U.S. Department of Defense funding.

  13. Strong Peak Electric Field in Streamer Discharges Caused by Rapid Changes in the External Electric Field

    NASA Astrophysics Data System (ADS)

    Ihaddadene, K. M. A.; Celestin, S. J.

    2015-12-01

    Laboratory spark discharges in air and lightning stepped leaders produce X-rays [e.g., Dwyer et al., GRL, 32, L20809, 2005; Nguyen et al., J. Phys. D: Appl. Phys., 41, 234012, 2008; Rahman et al., GRL, 35, L06805, 2008; March and Montanyà, GRL, 37, L19801, 2010; 38, L04803, 2011; Kochkin et al., J. Phys. D: Appl., 45, 425202, 2012; 48, 025205, 2015]. However, the processes behind the production of these X-rays are still not fully understood. Recently, the encounter between negative and positive streamers has been suggested as a plausible mechanism for the production of X-rays by spark discharges [Cooray et al., JASTP, 71, 1890, 2009; Kochkin et al., J. Phys. D: Appl. Phys., 45, 425202, 2012], but the increase of the electric field involved in this process is accompanied by a strong increase of the conductivity, which in turn makes this electric field collapse over a few tens of picoseconds, preventing the production of significant X-ray emissions [Ihaddadene and Celestin, GRL, 45, 5644, 2015]. Moreover, it has been reported that X-ray emission in laboratory spark discharges is influenced by the time derivative of the applied voltage [March and Montanya, GRL, 37, L19801, 2010]. Additionally, Celestin and Pasko [JGR, 116, A03315, 2011, Section 3.3] have indicated that quickly increasing applied voltages had an impact on peak electric fields in streamer numerical models. In this work, we simulate numerically the effect of impulsive applied electric fields on the dynamics of streamer discharges in air at ground level and investigate conditions under which production of thermal runaway electrons and the associated X-rays is possible.

  14. Surface-spark discharges compared with exploding wires/films as high temperature uv sources. [40,000/sup 0/K

    SciTech Connect

    Ware, K.D.; Johnson, T.M.; Jones, C.R.

    1983-01-01

    Extensive experimental studies of electrically exploded 0.05- to 0.25-mm-diameter metal wires and film thicknesses from 0.1 to 10 ..mu..m (coated on 0.6- to 10.0-cm diameter substrates) were made for lengths from 3.0 to 100 cm. These exploded metal-conductor-initiated discharges proved to be excellent sources for intense radiation in the near-ultraviolet range, 200 to 300 nm, with brightness temperatures measured over 40,000 K. The impedance-matching characteristics and scaling laws developed through these studies will be presented and used as a basis to compare more recent results on surface-spark discharges. These latter discharges do not appear to be as nearly blackbody as the conductor-initiated discharges, but through selected insulator surfaces, intense emission in the spectral range of interest can be obtained.

  15. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  16. Photoionization in a Numerical Simulation of a Spark Discharge in Air

    DTIC Science & Technology

    2016-09-01

    electric discharges can heat the air to very high temperatures and become an intense source of ultraviolet light that can photoionize the ambient air...did result in a decrease of the arc’s core temperature and an increase in its electrical conductivity. Since the measurement of the core temperature is...

  17. Recent Topics on Electrical Discharge Technologies

    NASA Astrophysics Data System (ADS)

    Nakano, Toshiki

    Resent topics on electrical-discharge-related technologies along with the research activities of the technical committee on electrical discharges (TC-ED) of IEEJ are presented briefly. Following the introduction of the major research subjects that TC-ED is responsible to cover, a few examples of the investigating R&D committees' (IRDCs) activity are mentioned.

  18. Electrical discharges in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Ksanfomaliti, L. V.; Vasilchikov, N. M.; Ganpantserova, O. F.; Petrova, Y. V.; Suvorov, A. P.; Filippov, G. F.; Yablonskaya, O. V.; Yabrova, L. V.

    1979-01-01

    Data received from Venera 11 and 12 experiments involving the electrical activity of the atmosphere of Venus show that the electrical discharges occur in the cloud layer. Their energy is roughly the same as in terrestrial lightning, but with a pulse repetition frequency of the discharges which is much greater.

  19. CNC electrical discharge machining centers

    SciTech Connect

    Jaggars, S.R.

    1991-10-01

    Computer numerical control (CNC) electrical discharge machining (EDM) centers were investigated to evaluate the application and cost effectiveness of establishing this capability at Allied-Signal Inc., Kansas City Division (KCD). In line with this investigation, metal samples were designed, prepared, and machined on an existing 15-year-old EDM machine and on two current technology CNC EDM machining centers at outside vendors. The results were recorded and evaluated. The study revealed that CNC EDM centers are a capability that should be established at KCD. From the information gained, a machine specification was written and a shop was purchased and installed in the Engineering Shop. The older machine was exchanged for a new model. Additional machines were installed in the Tool Design and Fabrication and Precision Microfinishing departments. The Engineering Shop machine will be principally used for the following purposes: producing deep cavities in small corner radii, machining simulated casting models, machining difficult-to-machine materials, and polishing difficult-to-hand polish mold cavities. 2 refs., 18 figs., 3 tabs.

  20. Fluid jet electric discharge source

    DOEpatents

    Bender, Howard A.

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  1. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus.

    PubMed

    Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih

    2008-10-01

    Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.

  2. A modified resistance equation for modeling underwater spark discharge with salinity and high pressure conditions

    SciTech Connect

    Zhao, Pengfei; Roy, Subrata

    2014-05-07

    This work investigates the performance of underwater spark discharge relating to bubble growth and decay under high pressure and with salinity conditions by introducing a modified form of the resistance equation. Here, we study salinity influence on circuit parameters by fitting the experimental data for which gap resistance is much larger in conductive water than in dielectric water. Accordingly, the resistance equation is modified by considering the influence of both plasma and its surrounding liquid. Thermal radiation effect of the bubble is also studied by comparing two different radiation models. Numerical results predict a larger bubble pressure for saline water but a reduced size and a smaller bubble cycle at a greater water depth. Such study may be useful in many saltwater applications, including that for deep sea conditions.

  3. Investigation of Luna-20 soil samples, using a mass spectrometer with a spark-discharge ion source

    NASA Technical Reports Server (NTRS)

    Hubbard, N. J.; Ramendik, G. I.; Gronskaia, S. I.; Gubina, I. IA.; Gushchin, V. N.

    1979-01-01

    A method of analyzing soil samples with a mass spectrometer employing a spark-discharge ion source is described, and the effectiveness of the method is demonstrated by applying it to the determination of impurities, in amounts of less than 10 mg, in lunar samples. It is shown that four parts of the Luna-20 lunar highland sample differ in their chemical composition.

  4. Reliable prediction of electric spark sensitivity of nitramines: a general correlation with detonation pressure.

    PubMed

    Keshavarz, Mohammad Hossein; Pouretedal, Hamid Reza; Semnani, Abolfazl

    2009-08-15

    For nitramines, a general correlation has been introduced to predict electric spark sensitivity through detonation pressure. New method uses maximum obtainable detonation pressure as a fundamental relation so that it can be corrected for some nitramines which have some specific molecular structure. There is no need to use crystal density and heat of formation of nitramine explosives for predicting detonation pressure and electric spark sensitivity. The predicted electric spark sensitivities are compared with calculated results on the basis of quantum mechanical computations for some nitramines that latter can be applied. The root mean square (rms) deviations from experiment for new method and the predicted results of complicated quantum mechanical method are 1.18 and 3.49J, respectively.

  5. [A Time-Spatial Resolvable High Speed Spectrograph and Its Application on Spectrum Measurement of a Nanosecond Pulsed Underwater Spark Discharge].

    PubMed

    Niu, Zhi-wen; Yan, Xian-feng; Li, Shu-han; Wen, Xiao-qiong; Liu, Jin-yuan

    2015-10-01

    Recently, the diagnosis of the characteristic of pulsed underwater electrical discharges plasma have received significant attention. The measurement of a time-spatial resolved spectrum emitted from a single discharge pulse is important for understanding the time-spatial evolution characteristics of plasma generated by a pulsed high-voltage discharge in water. In this paper, a high speed time-spatial resolvable spectrograph for measuring the emission spectrum of a single electrical discharge pulse was reported. The high speed time-spatial resolvable spectrograph has been constructed by combining an ultrahigh-speed frame camera system with monochromator. Software for the spectral analyzing was also developed. The performance of the spectrograph was tested by using a 632.8 nm He-Ne laser beam at a 1 200 g x mm(-1) grating. The pixel resolution for 632.8 nm spectra is 0.013 nm. The instrument broadening for 632.8 nm spectra is (0.150 ± 0.009)nm when the exposure.time of the camera is 20 ns and the width of entrance slit is 0.2 mm, and increases with increasing the slit width. The change of exposure time of the camera has no influence on the instrument broadening, ensuring the spectrograph in a steady performance while adjusting the exposure time of the camera. With the spectrograph, time-spatial resolved spectra emitted from a single discharge pulse of an underwater nanoseconds spark discharge were obtained. It provides good data for investigating the time-spatial evolution characteristics of the discharge plasma during a single discharge pulse. The spectrograph developed in this work provides a technical approach for studying the time-spatial evolution characteristic of, plasma generated by a single electrical discharge pulse.

  6. Hazard of electrostatic generation in a pneumatic conveying system: electrostatic effects on the accuracy of electrical capacitance tomography measurements and generation of spark

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Chii Liang, Yung; Wang, Chi-Hwa

    2008-01-01

    The study of the hazard of electrostatic generation in pneumatic conveying systems was attempted by examining the sensitivity of electrical capacitance tomography (ECT) and the phenomena of spark generation due to strong electrostatics. The influence on ECT measurement accuracy of an electrostatic charge was analysed with reference to a switch capacitor configuration model. Consequently, it was found that the electrostatic charge introduced at the bend with sharp angles influenced the ECT results most significantly in pneumatic conveying systems, especially for the cases where a spark was generated. The investigation of spark generation indicated that a strong electrostatic charge can cause major discharges inside or outside the pipeline to damage the experimental instrument in severe cases.

  7. Contour dynamics model for electric discharges.

    PubMed

    Arrayás, M; Fontelos, M A; Jiménez, C

    2010-03-01

    We present an effective contour model for electrical discharges deduced as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, in the limit of small electron diffusion. The incorporation of curvature effects to the velocity propagation and not to the boundary conditions is a feature and makes it different from the classical Laplacian growth models. The dispersion relation for a nonplanar two-dimensional discharge is calculated. The development and propagation of fingerlike patterns are studied and their main features quantified.

  8. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    NASA Astrophysics Data System (ADS)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s‑1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  9. Comparison of Nitrogen Incorporation in Tholins Produced by FUV Irradiation and Spark Discharge

    NASA Technical Reports Server (NTRS)

    Horst, S. M.; DeWitt, H. L.; Trainer, M. G.; Tolbert, M. A.

    2012-01-01

    The discovery of very heavy ions (Coates et al., 2007) in Titan's thermosphere has dramatically altered our understanding of the processes involved in the formation of the complex organic aerosols that comprise Titan's characteristic haze. Before Cassini's arrival, it was believed that aerosol production began in the stratosphere where the chemical processes were predominantly initiated by FUV radiation. This understanding guided the design of Titan atmosphere simulation experiments. However, the energy environment of the thermosphere is significantly different than the stratosphere; in particular there is a greater flux of EUV photons and energetic particles available to initiate chemical reactions, including the destruction of N2. in the upper atmosphere. Using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), we have obtained in situ composition measurements of aerosol particles (so'called "tholins") produced in CH4/N2 gas mixtures subjected to either FUV radiation (deuterium lamp, 115-400 nm) (Trainer et al., 2012) or a spark discharge. A comparison of the composition of tholins produced using the two different energy sources will be presented, in particular with regard to the variation in nitrogen content of the two types of tholin. Titan's aerosols are known to contain significant amounts of nitrogen (Israel et al., 2005) and therefore understanding the role of nitrogen in the aerosol chemistry is important to further our knowledge of the formation and evolution of aerosols in Titan's atmosphere.

  10. Physicochemical Characterization of Simulated Welding Fume from a Spark Discharge System

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Kim, Jong Sung; Stanam, Aditya; Thorne, Peter S.; Grassian, Vicki H.; Peters, Thomas M.

    2014-01-01

    This study introduces spark discharge system (SDS) as a way to simulate welding fumes. The SDS was developed using welding rods as electrodes with an optional coagulation chamber. The size, morphology, composition, and concentration of the fume produced and the concentration of ozone (O3) and nitrogen oxides (NOX) were characterized. The number median diameter (NMD) and total number concentration (TNC) of fresh fume particles were ranged 10–23 nm and 3.1×107–6×107 particles/cm3, respectively. For fresh fume particles, the total mass concentration (TMC) measured gravimetrically ranged 85–760 μg/m3. The size distribution was stable over a period of 12 h. The NMD and TNC of aged fume particles were ranged 81–154 nm and 1.5×106–2.7×106 particles/cm3, respectively. The composition of the aged fume particles was dominated by Fe and O with an estimated stoichiometry between that of Fe2O3 and Fe3O4. Concentrations of O3 and NOX were ranged 0.07–2.2 ppm and 1–20 ppm, respectively. These results indicate that the SDS is capable of producing stable fumes over a long-period that are similar to actual welding fumes. This system may be useful in toxicological studies and evaluation of instrumentation. PMID:25097299

  11. Generation of copper, nickel, and CuNi alloy nanoparticles by spark discharge

    NASA Astrophysics Data System (ADS)

    Muntean, Alex; Wagner, Moritz; Meyer, Jörg; Seipenbusch, Martin

    2016-08-01

    The generation of copper, nickel, and copper-nickel alloy nanoparticles by spark discharge was studied, using different bespoke alloy feedstocks. Roughly spherical particles with a primary particle Feret diameter of 2-10 nm were produced and collected in agglomerate form. The copper-to-nickel ratios determined by Inductively coupled plasma mass spectrometry (ICP-MS), and therefore averaged over a large number of particles, matched the nominal copper content quite well. Further investigations showed that the electrode compositions influenced the evaporation rate and the primary particle size. The evaporation rate decreased with increasing copper content, which was found to be in good accordance with the Llewellyn-Jones model. However, the particle diameter was increasing with an increasing copper content, caused by a decrease in melting temperature due to the lower melting point of copper. Furthermore, the alloy compositions on the nanoscale were investigated via EDX. The nanoparticles exhibited almost the same composition as the used alloy feedstock, with a deviation of less than 7 percentage points. Therefore, no segregation could be detected, indicating the presence of a true alloy even on the nanoscale.

  12. Nonprotein Amino Acids from Spark Discharges and Their Comparison with the Murchison Meteorite Amino Acids

    PubMed Central

    Wolman, Yecheskel; Haverland, William J.; Miller, Stanley L.

    1972-01-01

    All the nonprotein amino acids found in the Murchison meteorite are products of the action of electric discharge on a mixture of methane, nitrogen, and water with traces of ammonia. These amino acids include α-amino-n-butyric acid, α-aminoisobutyric acid, norvaline, isovaline, pipecolic acid, β-alanine, β-amino-n-butyric acid, β-aminoisobutyric acid, γ-aminobutyric acid, sarcosine, N-ethylglycine, and N-methylalanine. In addition, norleucine, alloisoleucine, N-propylglycine, N-isopropylglycine, N-methyl-β-alanine, N-ethyl-β-alanine α,β-diaminopropionic acid, isoserine, α,γ-diaminobutyric acid, and α-hydroxy-γ-aminobutyric acid are produced by the electric discharge, but have not been found in the meteorite. PMID:16591973

  13. Electric Dipole Moment Experiment Systematic from Electric Field Discharge Current

    NASA Astrophysics Data System (ADS)

    Feinberg, B.; Gould, Harvey

    2014-09-01

    A magnetic field, in the direction of the electric field and synchronous with the electric field reversal, will mimic an EDM signal. One might expect a discharge across the electric field plates to produce magnetic fields with only small or vanishing components parallel to the electric field, minimizing its systematic effect. Our experimental model, using simulated discharge currents, found otherwise: the discharge current may be at an angle to the normal, and thus generate a normal magnetic field. Comparison of data from the experimental model with the results from calculations will be presented, along with estimates of the time-averaged normal magnetic field seen by atoms in an electron EDM experiment using a fountain of laser-cooled francium, as a function of discharge current.

  14. Pulsed electrical discharge in conductive solution

    NASA Astrophysics Data System (ADS)

    Panov, V. A.; Vasilyak, L. M.; Vetchinin, S. P.; Pecherkin, V. Ya; Son, E. E.

    2016-09-01

    Electrical discharge in a conductive solution of isopropyl alcohol in tap water (330 μ S cm-1) has been studied experimentally applying high voltage millisecond pulses (rise time  ˜0.4 μ \\text{s} , amplitude up to 15 kV, positive polarity) to a pin anode electrode. Dynamic current-voltage characteristics synchronized with high-speed images of the discharge were studied. The discharge was found to develop from high electric field region in the anode vicinity where initial conductive current with density  ˜100 A cm-2 results in fast heating and massive nucleation of vapor bubbles. Discharges in nucleated bubbles then produce a highly conductive plasma region and facilitate overheating instability development with subsequent formation of a thermally ionized plasma channel. The measured plasma channel propagation speed was 3-15 m s-1. A proposed thermal model of plasma channel development explains the low observed plasma channel propagation speed.

  15. Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation.

    PubMed

    Anastasopol, Anca; Pfeiffer, Tobias V; Middelkoop, Joost; Lafont, Ugo; Canales-Perez, Roger J; Schmidt-Ott, Andreas; Mulder, Fokko M; Eijt, Stephan W H

    2013-05-29

    Spark discharge generation was used to synthesize Mg-Ti nanocomposites consisting primarily of a metastable body-centered-cubic (bcc) alloy of Mg and Ti. The bcc Mg-Ti alloy transformed upon hydrogenation into the face-centered-cubic fluorite Mg1-yTiyHx phase with favorable hydrogen storage properties. Both metal and metal hydride nanocomposites showed a fractal-like porous morphology, with a primary particle size of 10-20 nm. The metal content of 70 atom % (at %) Mg and 30 at % Ti, consistently determined by XRD, TEM-EDS, and ICP-OES, was distributed uniformly across the as-prepared sample. Pressure-composition isotherms for the Mg-Ti-H nanocomposites revealed large differences in the thermodynamics relative to bulk MgH2, with a much less negative enthalpy of formation of the hydride as small as -45 ± 3 kJ/molH2 as deduced from van't Hoff plots. The plateau pressures of hydrogenation were substantially higher than those for bulk MgH2 in the low temperature range from 150 to 250 °C. The reaction entropy was simultaneously reduced to values down to 84 ± 5 J/K mol H2, following a linear relationship between the enthalpy and entropy. Plausible mechanisms for the modified thermodynamics are discussed, including the effect of lattice strains, the presence of interfaces and hydrogen vacancies, and the formation of excess free volume due to local deformations. These mechanisms all rely on the finely interdispersed nanocomposite character of the samples which is maintained by grain refinement.

  16. Fast and stable electrical discharge machining (EDM)

    NASA Astrophysics Data System (ADS)

    Wu, Jianyang; Zhou, Ming; Xu, Xiaoyi; Yang, Jianwei; Zeng, Xiangwei; Xu, Donghui

    2016-05-01

    In order to improve EDM performances, the most important issue is to develop a highly stable control system. As a serious defect in EDM adaptive control system by minimum-variance control law, the occasional instability deterred its full applications in industries. This paper focuses on stabilizing EDM process by establishing a new minimum-variance and pole-placement coupled control law. Based on real-time estimation of EDM process model parameters, this adaptive control system directly controls electrode discharging cycle not only to follow a specified gap state for fast machining but also to track the dynamical response of a reference model for stabilizing EDM process. Confirmation experiment demonstrates that this control system can timely adjust electrode discharging cycle in terms of different machining situations quantified as a series of varied gap states to maintain a stable and fast fabrication. The adaptive control system by this newly developed control law exhibits its superior machining ability and capability of stabilizing sparking process to those of the adaptive control system by minimum-variance control law. The adaptive system has actually theoretically and technically solved the stability issue puzzled EDM circle for decades.

  17. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  18. Monitor For Electrical-Discharge Machining

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1993-01-01

    Circuit monitors electrical-discharge-machining (EDM) process to detect and prevent abnormal arcing, which can produce unacceptable "burn" marks on workpiece. When voltage between EDM electrode and workpiece behaves in manner indicative of abnormal arcing, relay made to switch off EDM power, which remains off until operator attends to EDM setup and resets monitor.

  19. Electrical-Discharge Machining Of Curved Passages

    NASA Technical Reports Server (NTRS)

    Guirguis, Kamal S.

    1993-01-01

    Electrical-discharge machining (EDM) used to cut deep hole with bends. EDM process done with articulating segmented electrode. Originally straight, electrode curved as it penetrates part, forming long, smoothly curving hole. After hole cut, honed with slurry to remove thin layer of recast metal created by EDM. Breakage of tools, hand deburring, and drilling debris eliminated.

  20. Au-TiO(2) nanoscale heterodimers synthesis from an ambient spark discharge for efficient photocatalytic and photothermal activity.

    PubMed

    Byeon, Jeong Hoon; Kim, Young-Woo

    2014-01-22

    Ultrafine Au particles incorporating TiO2 heterodimers were synthesized using an ambient heterogeneous spark discharge and the resultant materials were employed both in oxidizing photocatalytically CO gas and killing photothermally cancerous cells. Ti-Au spark configuration was employed to vaporize Ti and Au components into an airflow and finally ultrafine Au particles (∼2 nm in lateral dimension) were incorporated with TiO2 nanoparticles in the form of Au-TiO2 heterodimers (∼38 nm in lateral dimension) with enhanced photocatalytic (in CO oxidation) and photothermal activity (in cancerous cell killing) under visible light. We propose that the localized surface plasmon resonance of ultrafine Au particles on TiO2 supports, induced by the visible light, would promote the adsorption-oxidation of CO and photothermal killing of HeLa cells. The present strategy may be suitable to fabricate other Au-metal oxide nanocomposites for catalytic and biomedical applications.

  1. Sensitivity of Lead Azide to Electric Spark (Chuvstvitelnost Azida Svintsa k Elektricheskoi Iskre)

    DTIC Science & Technology

    1974-08-01

    On supplying a voltage pulse to the Incendiary electrode of the triple - electrode v.clay P, it operated, one of the specimen electrodes got connected...azide to electric spark. Substances which can cover particles of explosive materials (paraffin, ceresin, wax, castor oil, camphor , etc.) are often...modern concepts, excitation of explosion in an explo- sive material leads to the formation of "hot points " and to thermal trigger- ing. Increase of

  2. Electric-discharge-pumped nitrogen ion laser

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.; Wittig, C.

    1976-01-01

    The routine operation is described of an N2(+) laser oscillating on the first negative band system of N2(+) which is produced in a preionized transverse discharge device. The discharge design incorporates features which favor the efficient production of the excitation transfer reaction of He2(+) with N2. A capacitive discharge switched by means of a high-current grounded grid thyratron is used to meet the design requirement of a volumetric discharge in high-pressure gas mixtures where the electric discharge need not have an ultrafast rise time (greater than 10 nsec) but should be capable of transferring large quantities of stored electric energy to the gas. A peak power of 180 kW in an 8-nsec laser pulse was obtained with a 0.1% mixture of N2 in helium at a total pressure of 3 atm. The most intense laser oscillations were observed on the (0,1) vibrational transition at 427.8 microns.

  3. Investigating heating dynamics in sparks

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram; Zhang, Jin; van Heesch, Bert; Ebert, Ute

    2013-04-01

    After the first streamer discharge front in a spark, heating and gas expansion sets in.This effect underlies the streamer to leader transition in air, and becomes strongerwith increasing density of the medium. We model and solve heat generation by the discharge,the thermal shock and the induced pressure wave. In particular, we investigate the electric breakdown of supercritical nitrogen and the subsequent recovery of insulation, motivated by a possible applicationas a high voltage switch.

  4. Application of Pulse Spark Discharges for Scale Prevention and Continuous Filtration Methods in Coal-Fired Power Plant

    SciTech Connect

    Cho, Young; Fridman, Alexander

    2012-06-30

    The overall objective of the present work was to develop a new scale-prevention technology by continuously precipitating and removing dissolved mineral ions (such as calcium and magnesium) in cooling water while the COC could be doubled from the present standard value of 3.5. The hypothesis of the present study was that if we could successfully precipitate and remove the excess calcium ions in cooling water, we could prevent condenser-tube fouling and at the same time double the COC. The approach in the study was to utilize pulse spark discharges directly in water to precipitate dissolved mineral ions in recirculating cooling water into relatively large suspended particles, which could be removed by a self-cleaning filter. The present study began with a basic scientific research to better understand the mechanism of pulse spark discharges in water and conducted a series of validation experiments using hard water in a laboratory cooling tower. Task 1 of the present work was to demonstrate if the spark discharge could precipitate the mineral ions in water. Task 2 was to demonstrate if the selfcleaning filter could continuously remove these precipitated calcium particles such that the blowdown could be eliminated or significantly reduced. Task 3 was to demonstrate if the scale could be prevented or minimized at condenser tubes with a COC of 8 or (almost) zero blowdown. In Task 1, we successfully completed the validation study that confirmed the precipitation of dissolved calcium ions in cooling water with the supporting data of calcium hardness over time as measured by a calcium ion probe. In Task 2, we confirmed through experimental tests that the self-cleaning filter could continuously remove precipitated calcium particles in a simulated laboratory cooling tower such that the blowdown could be eliminated or significantly reduced. In addition, chemical water analysis data were obtained which were used to confirm the COC calculation. In Task 3, we conducted a series

  5. Electric Discharge Excitation and Energy Source Integration.

    DTIC Science & Technology

    1985-01-06

    only one side of the machined bar connecting the mounting plate to the cathode. An electrical schematic of the PFN utilized for the discharge studies...for the initial charge voltage to be 2 VG for optimum energy transfer is still present. All arrangements of transmision lines studied showed the... side of the anode screen are used to achieve a smooth physical transition and, thereby, minimize flow-generated turbulence. With this arrangement the

  6. Electrical-Discharge Machining With Additional Axis

    NASA Technical Reports Server (NTRS)

    Malinzak, Roger M.; Booth, Gary N.

    1991-01-01

    Proposed electrical-discharge-machining (EDM) apparatus uses moveable vertical wire as electrode. Wire positionable horizontally along one axis as it slides vertically past workpiece. Workpiece indexed in rotation about horizontal axis. Because of symmetry of parts, process used to make two such parts at a time by defining boundary between them. Advantages: cost of material reduced, imparts less residual stress to workpiece, and less time spent machining each part when parts produced in such symmetrical pairs.

  7. Magnetite Nanoparticles Prepared By Spark Erosion

    NASA Astrophysics Data System (ADS)

    Maiorov, M.; Blums, E.; Kronkalns, G.; Krumina, A.; Lubane, M.

    2016-08-01

    In the present research, we study a possibility of using the electric spark erosion method as an alternative to the method of chemical co-precipitation for preparation of magnetic nanoparticles. Initiation of high frequency electric discharge between coarse iron particles under a layer of distilled water allows obtaining pure magnetite nanoparticles.

  8. Spark plasma sintering of alumina nanopowders produced by electrical explosion of wires.

    PubMed

    An, Vladimir; Khasanov, Alexey; de Izarra, Charles

    2015-01-01

    Alumina nanopowders produced by electrical explosion of wires were sintered using the spark plasma sintering technique. The results of XRD analysis show that the main phase in the compacted nanopowders is α-Al2O3. According to the SEM observations, the sintered alumina nanopowder consists of micron-sized faceted grains and nano-sized necked grains. The increase in sintering temperature resulted in a higher density of the sintered powders: from 78.44 to 98.21 % of theoretical density.

  9. Characterization of Microwave-Induced Electric Discharge Phenomena in Metal–Solvent Mixtures

    PubMed Central

    Chen, Wen; Gutmann, Bernhard; Kappe, C Oliver

    2012-01-01

    Electric discharge phenomena in metal–solvent mixtures are investigated utilizing a high field density, sealed-vessel, single-mode 2.45 GHz microwave reactor with a built-in camera. Particular emphasis is placed on studying the discharges exhibited by different metals (Mg, Zn, Cu, Fe, Ni) of varying particle sizes and morphologies in organic solvents (e.g., benzene) at different electric field strengths. Discharge phenomena for diamagnetic and paramagnetic metals (Mg, Zn, Cu) depend strongly on the size of the used particles. With small particles, short-lived corona discharges are observed that do not lead to a complete breakdown. Under high microwave power conditions or with large particles, however, bright sparks and arcs are experienced, often accompanied by solvent decomposition and formation of considerable amounts of graphitized material. Small ferromagnetic Fe and Ni powders (<40 μm) are heated very rapidly in benzene suspensions and start to glow in the microwave field, whereas larger particles exhibit extremely strong discharges. Electric discharges were also observed when Cu metal or other conductive materials such as silicon carbide were exposed to the microwave field in the absence of a solvent in an argon or nitrogen atmosphere. PMID:24551491

  10. Extreme-UV electrical discharge source

    DOEpatents

    Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.

    2002-01-01

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  11. Closed cycle electric discharge laser design investigation

    NASA Technical Reports Server (NTRS)

    Baily, P. K.; Smith, R. C.

    1978-01-01

    Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.

  12. Electric organ discharges and electric images during electrolocation

    NASA Technical Reports Server (NTRS)

    Assad, C.; Rasnow, B.; Stoddard, P. K.

    1999-01-01

    Weakly electric fish use active electrolocation - the generation and detection of electric currents - to explore their surroundings. Although electrosensory systems include some of the most extensively understood circuits in the vertebrate central nervous system, relatively little is known quantitatively about how fish electrolocate objects. We believe a prerequisite to understanding electrolocation and its underlying neural substrates is to quantify and visualize the peripheral electrosensory information measured by the electroreceptors. We have therefore focused on reconstructing both the electric organ discharges (EODs) and the electric images resulting from nearby objects and the fish's exploratory behaviors. Here, we review results from a combination of techniques, including field measurements, numerical and semi-analytical simulations, and video imaging of behaviors. EOD maps are presented and interpreted for six gymnotiform species. They reveal diverse electric field patterns that have significant implications for both the electrosensory and electromotor systems. Our simulations generated predictions of the electric images from nearby objects as well as sequences of electric images during exploratory behaviors. These methods are leading to the identification of image features and computational algorithms that could reliably encode electrosensory information and may help guide electrophysiological experiments exploring the neural basis of electrolocation.

  13. ICPP: Transient Electrical Discharges in Small Devices

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo

    2000-10-01

    Small devices of low energy and high power are used to study the basic physics and applications of transient electrical discharges. Three experiments are discussed: a) ionization processes and early stage of a Z-pinch under various initial conditions driven by a small generator (10^12 A/s current derivative) (1, 2) , b) high brightness VUV to soft X-ray emission from a fast capillary discharge (5ns rise time, 5kA peak current and 10^12 A/s current derivative) (3), c) neutron pulses (10^4 -10^5 neutrons per pulse) from a small plasma focus (160 nF capacitor bank, 100 - 200 J energy storage) (4). The last device is oriented to repetitive neutron pulses for substance detection. Numerical simulations of the MHD equations have been carried out to assist the experimental design and diagnostics. The diagnostics developed include current and voltage monitors, multipinhole camera with a multichannel plate (four frames, one frame every 4 ns), in order to obtain the plasma dynamics. Also, 1 ns pulse interferometry was implemented to observe the evolution of the electron density profiles. In addition, VUV spectroscopy was applied to characterize the capillary discharge. Electrical characterization of the plasma focus was established. A comprehensive picture of the plasma dynamics and radiation emission behavior is obtained. This work has been funded by FONDECYT grant 1980187 and a Presidential Chair in Science granted by Chilean government. Part of this work, in collaboration with PLADEMA, Argentina (Bilateral agreement CNEA-CCHEN) and in collaboration with Institute of Spectroscopy, ISAN, Troitsk, Russia. 1.- L. Soto, H. Chuaqui, M. Favre, R. Saavedra. E. Wyndham, M. Skowronek, P. Romeas, R. Aliaga-Rossel, and I. Mitchell, IEEE Trans. Plasma Sci. 26, 1179 (1998) 2.- A. Esaulov, P. Sasorov, L. Soto and M. Zambra, ``MHD Simulation of Gas Embedded Plasma Discharge'', submitted for publication. 3.- P. Choi and M. Favre, Rev. Sci. Instrum. 69, 3118, (1998) 4.- C. Moreno, H

  14. Development of an Eco-Friendly Electrical Discharge Machine (E-EDM) Using TRIZ Approach

    NASA Astrophysics Data System (ADS)

    Sreebalaji, V. S.; Saravanan, R.

    Electrical Discharge Machine (EDM) is one of the non-traditional machining processes. EDM process is based on thermoelectric energy between the work and an electrode. A pulse discharge occurs in a small gap between the work piece and the electrode and removes the unwanted material from the parent metal through melting and vaporization. The electrode and the work piece must have an electrical conductivity in order to generate the spark. Dielectric fluid acts as a spark conductor, concentrating the energy to a very narrow region. There are various types of products can be produced and finished using EDM such as Moulds, Dies, Parts of Aerodynamics, Automotives and Surgical components. This research work reveals how an Eco friendly EDM (E-EDM) can be modeled to replace die electric fluid and introducing ozonised oxygen in to EDM to eliminate harmful effects generated while machining by using dielectric, to make pollution free machining environment through a new design of EEDM using TRIZ (a Russian acronym for Theory of Inventive Problem Solving) approach, since Eco friendly design is the need of the hour.

  15. Characterizing the effective density and primary particle diameter of airborne nanoparticles produced by spark discharge using mobility and mass measurements (tandem DMA/APM)

    NASA Astrophysics Data System (ADS)

    Charvet, Augustin; Bau, Sébastien; Paez Coy, Natalia Estefania; Bémer, Denis; Thomas, Dominique

    2014-05-01

    Nanoparticles are increasingly used in a wide variety of industries. As yet, their health effects are incompletely characterized. Effective density is among the key characteristics of airborne nanoparticles due to its role in particle deposition in the human respiratory tract and in the conversion of number distributions to mass distributions. Because it cannot be measured directly, different methods have been developed to accede to this parameter. The approach chosen in this study is based on the tandem measurement of airborne nanoparticles electrical mobility and mass (tandem differential mobility analyzer/aerosol particle mass analyzer), which major advantage lies in the absence of hypothesis contrary to the tandem differential mobility analyzer/electrical low pressure impactor (DMA/ELPI). The methodology was first applied to spherical model particles to validate the associated data treatment and protocol. In particular, the influence of APM rotational velocity and airflow rate were investigated with regards to the separation of multiply charged particles and electrometer signal. It emerged from experimental data that a compromise between separation efficiency and detection limit shall be found, depending on the nanoparticles to characterize. Accounting for their wide use in different domains, airborne nanoparticles of constantan®, copper, graphite, iron, silver and titanium, produced by spark discharge appear to be representative of ultrafine particles stemming from different industrial processes. In addition to their effective density, the mass-mobility exponents and primary particle diameters were determined for these particles, and found to agree well with published data.

  16. N-heptane decomposition in multi-needle to plate electrical discharge

    NASA Astrophysics Data System (ADS)

    Pekarek, Stanislav; Pospisil, Milan

    2003-10-01

    Plasma based technologies are becoming more and more important for destruction of volatile organic compounds in air streams. The most frequent electrical discharges tested for VOC decomposition are corona and dielectric barrier discharge. We proposed [1] multi-hollow needles to plate atmospheric pressure discharge enhanced by the flow of the mixture of air with VOC through the needles. In this case all reactive mixture will pass through the active zone of the discharge. The high-speed gas flow near the exit of the needle will also efficiently cool the electrodes. Hence the higher values of the discharge current can be obtained without the danger of the discharge transition to the spark. The chemical reactions leading to the VOC decomposition can therefore be enhanced [2]. We performed an experimental study of the n-heptane decomposition efficiency on its concentration in air in the input of the discharge. We choose n-heptane, an important part of organic solvents and part of automotive fuels, as a representative of saturated alkanes. We found that with decreasing n-heptane concentration the decomposition efficiency increases. Acknowledgement: This work was supported by the research program No: J04/98:212300016 "Pollution control and monitoring of the Environment" of the Czech Technical University in Prague. References [1] S. Pekárek, V. Køíha, M. Pospíil - J. Physics D, Appl. Physics, 34, 117 (2001). [2] O. Goosens, T. Callebaut, Y. Akishev, C. Leys - IEEE Trans. Plasma Sc. 30, 176 (2002).

  17. Development of Extreme Ultraviolet Radiation Source using Laser Triggered Vacuum Spark Discharge Plasma

    SciTech Connect

    Watanabe, Masato; Yamada, Junzaburo; Zhu Qiushi; Hotta, Eiki

    2009-01-21

    A laser triggerd discharge produced Sn plasma light source has been developed. Experimental parameters such as electrode separation and laser irradiation power are varied to optimize EUV emission power. It is clear that the maximum EUV radiation was occurred in the position where the pinch was observed.

  18. Discharge processes of UV pre-ionized electric-discharge pulsed DF laser

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Shao, Chunlei; Wang, Chunrui; Shao, Mingzhen; Guo, Jin

    2016-03-01

    The discharge processes of ultraviolet (UV) pre-ionized electric-discharge pulsed DF laser operating with a SF6-D2 gas mixture are studied. A mathematical model based on continuity equation of electrons and Kirchhoff equations for discharge circuit is established to describe the discharge processes. Voltage and current waveforms of main discharge and voltage waveforms of pre-ionization are solved numerically utilizing the model. The calculations correctly display some physical processes, such as the delay time between pre-ionization and main discharge, breakdown of the main electrode and self-sustained volume discharge (SSVD). The results of theory are consistent with the experiments, which are performed in our non-chain pulsed DF laser. Then the delay inductance and peak capacitance are researched to analyze their influences on discharge processes, and the circuit parameters of DF laser are given which is useful to improve the discharge stability.

  19. Electric Pulse Discharge Activated Carbon Supercapacitors for Transportation Application

    NASA Astrophysics Data System (ADS)

    Nayak, Subhadarshi; Agrawal, Jyoti

    2012-03-01

    ScienceTomorrow is developing a high-speed, low-cost process for synthesizing high-porosity electrodes for electrochemical double-layer capacitors. Four types of coal (lignite, subbituminous, bituminous, and anthracite) were used as precursor materials for spark discharge activation with multiscale porous structure. The final porosity and pore distribution depended, among other factors, on precursor type. The high gas content in low-grade carbon resulted in mechanical disintegration, whereas high capacitance was attained in higher-grade coal. The properties, including capacitance, mechanical robustness, and internal conductivity, were excellent when the cost is taken into consideration.

  20. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Shao, Tao; Tarasenko, Victor; Ma, Hao; Ren, Chengyan; Kostyrya, Igor D.; Zhang, Dongdong; Yan, Ping

    2012-12-01

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  1. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    SciTech Connect

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong; Tarasenko, Victor; Kostyrya, Igor D.; Ma Hao; Yan Ping

    2012-12-15

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  2. Effects of Corona, Spark and Surface Discharges on Ignition Delay and Deflagration-to-Detonation Times in Pulsed Detonation Engines (Postprint)

    DTIC Science & Technology

    2006-12-01

    AFRL-RZ-WP-TP-2008-2034 EFFECTS OF CORONA, SPARK AND SURFACE DISCHARGES ON IGNITION DELAY AND DEFLAGRATION-TO-DETONATION TIMES IN PULSED ...DETONATION ENGINES (POSTPRINT) Kenneth Busby, Jennifer Corrigan , Sheng-Tao Yu, Skip Williams, Campbell D. Carter, Frederick Schauer, John Hoke...DELAY AND DEFLAGRATION-TO-DETONATION TIMES IN PULSED DETONATION ENGINES (POSTPRINT) 5c. PROGRAM ELEMENT NUMBER 61102F 5d. PROJECT NUMBER 2308 5e

  3. Wire electric-discharge machining and other fabrication techniques

    NASA Technical Reports Server (NTRS)

    Morgan, W. H.

    1983-01-01

    Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.

  4. The Electrical Characteristics of a Filamentary Dielectric Barrier Discharge

    SciTech Connect

    Tay, W. H.; Yap, S. L.; Wong, C. S.

    2010-07-07

    The electrical characteristics of a filamentary dielectric barrier discharge using parallel-plate electrodes geometry were statistically studied. The DBD's system was powered by a 50 Hz power supply and operated at atmospheric pressure. The influence of the air gap and position of dielectric on the discharge had been investigated. It was found that the air gap distance and position of dielectric had significant influence on the discharge current pulse. The results showed that discharge with large distance between the high voltage electrode and the dielectric would generate higher current pulses during the positive cycle. The discharge energy of single pulse was also determined.

  5. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  6. Electrical discharge heating of chondrules in the solar nebula

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Keil, Klaus; Scott, Edward R. D.

    1995-01-01

    We present a rudimentary theoretical assessment of electrical discharge heating as a candidate mechanism for the formation of chondrules in the solar nebula. The discharge model combines estimates of the properties of the nebula, a mechanism for terrestrial thunderstorm electrification, and some fundamental electrical properties of gases. Large uncertainties in the model inputs limit these calculations to order-or-magnitude accuracy. Despite the uncertainty, it is possible to estimate an upper limit to the efficiency of nebular discharges at melting millimeter-sized stony objects. We find that electrical arcs analogous to terrestrial lightning could have occurred in the nebula, but that under most conditions these discharges probably could not have melted chondrules. Despite our difficulties, we believe the topic worthy of further investigation and suggest some experiments which could improve our understanding of nebular discharges.

  7. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge.

    PubMed

    Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert

    2012-07-07

    Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators.

  8. Physics of Electrical Discharges to Control and to Utilize Them

    NASA Astrophysics Data System (ADS)

    Yumoto, Motoshige

    Three topics related to the field of the technical committee on electrical discharges (TC-ED) are summarized for this special issue. First one deals with the fundamental process of long gap discharge. As the second one, the topics of a vacuum discharge occurred on the solar cell of the spacecraft is introduced. The last one shows the arc motion in the rail-gun.

  9. Development of the electric discharge oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Carroll, David L.; Verdeyen, Joseph T.; King, Darren M.; Palla, Andrew D.; Laystrom, Julia K.; Benavides, Gabriel F.; Zimmerman, Joseph W.; Woodard, Brian S.; Solomon, Wayne C.

    2007-05-01

    In the hybrid electric discharge Oxygen-Iodine laser (ElectricOIL), the desired O II(a1Δ) is produced using a low-to-medium pressure electric discharge. The discharge production of atomic oxygen, ozone, and other excited species adds higher levels of complexity to the post-discharge kinetics which are not encountered in a classic purely chemical O II(a1Δ) generation system. Experimental studies over the past six years using electric discharges have demonstrated O II(a) yields greater than 20%, gain, and cw laser power. Several modeling studies have also been performed for ElectricOIL and similar systems. As the development of this type of iodine laser continues, the roles of oxygen atoms and NO/NO II are found to be very significant in both the discharge region and downstream of the discharge region. A series of O II(1Δ) emission, I* emission, O-atom titrations, gain, and O II(1Δ) yield, NO II* emission, and laser power measurements have been taken to explore the complex phenomena that are being observed. As the overall system is better understood improvements are being made in laser power and efficiency.

  10. Electrical Discharges in Water. A Hydrodynamic Description

    DTIC Science & Technology

    1974-12-23

    6ary of the liquid as a consequence of a chang-e in the nature of the ex- JrnorJnf- the proe.;sure of the gas insioe the cavity, correct f’or thc...Condit.ions of g•rk equilitrium In the dischargu channel. 63 Section 5. Compos*!-on of the gas in a discharge channel. 69 Section 6. Kinetic coefflcients of...the gas in the discha.rge channel. 77 Section 7. Temperature of the plasma In a channel. Energy balance equation. 88 Chapter 4. Hydrodynamic Problems

  11. Dielectric Barrier Discharges: Pulsed Breakdown, Electrical Characterization and Chemistry

    DTIC Science & Technology

    2013-06-01

    for pulsed driven Dielectric Barrier Discharges ( DBDs ) in particular. Fast electrical, optical and spectroscopic methods enable the study of...ignition, breakdown statistics and spatio- temporally resolved development of pulsed DBD microdischarges. The determination of electrical parameters such...equivalent circuit which is consistent with sinusoidal- voltage driven or miniature pulsed driven DBDs . The characterization of the dominant chemical

  12. Electric-field-vector measurement in a glow discharge

    SciTech Connect

    Ganguly, B.N.; Garscadden, A.

    1985-10-01

    The magnetic quantum number selection rule implies that radiation that is linearly polarized perpendicular to the electric field will not excite ..delta..m = 0 transitions. This phenomenon in Stark spectra has been used to determine the electric field vector in a positive column dc discharge in helium. The technique is applicable to both linear and nonlinear Stark effects.

  13. Preparation of Bulk Graphene Nanoplatelets by Spark Plasma Sintering — Electrical and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Prasad, Mattipally; Rao, Tata N.; Prasad, P. S. R.; Babu, D. Suresh

    2016-10-01

    Consolidation of graphene nanoplatelets (GNPs) by spark plasma sintering (SPS) to study the feasibility of its structure retention at extreme temperature and pressure conditions. Structural characterization of the GNP powder and pellet were carried out by Micro-Raman, SEM, and TEM. HT-XRD. A.C. and D.C. conductivity of GNP pellet is carried out at room temperature. GNPs survived its structure in the SPS processing at an extreme temperature of 1850∘C and uni-axial pressure 60MPa, vacuum at 2.5-3.2 × 10-3 Torr. Our study shows the potential for GNPs to be successfully used as a reinforcing in ceramic matrix composites using SPS. The diffraction has been accurately calibrated to waterfall the shift in 2θ values at elevated temperatures. The corrected lattice parameter data have been used to estimate the instantaneous and mean thermal expansion coefficients as a function of temperature. The lattice parameters “a” and “c” for powder and pellet GNP is found to be 0.2456(1)nm and 0.6700(2)nm, respectively. The thermal expansivity of GNP powder and pellet along “a”- and “c”-axis are found to be 22.6×10-6K-1, 13.01×10-6K-1 and 15.11×10-6K-1, 10.44×10-6K-1, respectively. Electrical conductivity of GNP pellet is found to be 5700S/m.

  14. Testing of the J-2X Augmented Spark Igniter (ASI) and Its Electronics

    NASA Technical Reports Server (NTRS)

    Osborne, Robin

    2015-01-01

    Reliable operation of the spark ignition system electronics in the J-2X Augmented Spark Igniter (ASI) is imperative in assuring ASI ignition and subsequent Main Combustion Chamber (MCC) ignition events are reliable in the J-2X Engine. Similar to the man-rated J-2 and RS-25 engines, the J-2X ignition system electronics are equipped with spark monitor outputs intended to indicate that the spark igniters are properly energized and sparking. To better understand anomalous spark monitor data collected on the J-2X development engines at NASA Stennis Space Center (SSC), a comprehensive subsystem study of the engine's low- and high-tension spark ignition system electronics was conducted at NASA Marshall Space Flight Center (MSFC). Spark monitor output data were compared to more detailed spark diagnostics to determine if the spark monitor was an accurate indication of actual sparking events. In addition, ignition system electronics data were closely scrutinized for any indication of an electrical discharge in some location other than the firing tip of the spark igniter - a problem not uncommon in the development of high voltage ignition systems.

  15. Electric discharge for treatment of trace contaminants

    NASA Technical Reports Server (NTRS)

    Flamm, D. L.; Wydeven, T. J. (Inventor)

    1978-01-01

    A radio frequency glow discharge reactor is described for removing trace oxidizable contaminants from an oxygen bearing atmosphere. The reaction chamber is defined by an inner metal electrode facing a dielectric backed by an outer conductive electrode. In one embodiment, a conductive liquid forms the conductor of an outer electrode and cools the dielectric. A resonator coupled to a variable radio frequency source generates the high voltages for creating a glow discharge in the chamber at a predetermined pressure whereby the trace contaminants are oxidized into a few simple non-toxic products that may be easily recovered. The corresponding process for removal of trace contaminants from an oxygen-bearing atmosphere with high efficiency independent of the concentration level is also disclosed.

  16. SparkJet Efficiency

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  17. Laser-assisted guiding of electric discharges around objects

    PubMed Central

    Clerici, Matteo; Hu, Yi; Lassonde, Philippe; Milián, Carles; Couairon, Arnaud; Christodoulides, Demetrios N.; Chen, Zhigang; Razzari, Luca; Vidal, François; Légaré, François; Faccio, Daniele; Morandotti, Roberto

    2015-01-01

    Electric breakdown in air occurs for electric fields exceeding 34 kV/cm and results in a large current surge that propagates along unpredictable trajectories. Guiding such currents across specific paths in a controllable manner could allow protection against lightning strikes and high-voltage capacitor discharges. Such capabilities can be used for delivering charge to specific targets, for electronic jamming, or for applications associated with electric welding and machining. We show that judiciously shaped laser radiation can be effectively used to manipulate the discharge along a complex path and to produce electric discharges that unfold along a predefined trajectory. Remarkably, such laser-induced arcing can even circumvent an object that completely occludes the line of sight. PMID:26601188

  18. Underwater electrical discharge in plate to plate configuration

    NASA Astrophysics Data System (ADS)

    Stelmashuk, Vitaliy

    2016-09-01

    Two main configurations of high voltage electrodes submersed in water have been used for an electrical discharge generation: pin to pin and pin to plate. An electrical breakdown between plate electrodes is generally difficult to reproduce, because there is a uniform and weak electric field. One major advantage of using plate electrodes is their greater ``wear hardness'' to high-energy discharges. The plate electrodes can withstand extremely high energy deposition at which the pin electrode is quickly destroyed. The electrical discharge between plate electrodes can be initiated by creating an inhomogeneity in the electrical field. Two methods of discharge initiation between plate electrodes are proposed for this aim: 1) focusing of a shock wave in the interelectrode region; 2) a bubble injection into the electrode gap. The shock wave creates favourable conditions for the electrical breakdown between the two plate electrodes: it causes that numerous microbubbles of dissolved air start to grow and serve as locations for streamer initiation. In the second method the gas bubble is injected from the one of the electrodes, which has a gas inlet hole on the lateral face for this purpose. A ``volcano'' like morphology of positive streamers are observed in the experiments with weak electric field. The authors are grateful to MEYS grant INGO LG 15013.

  19. Pulsed electrical discharge in gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  20. Discharging a DC bus capacitor of an electrical converter system

    DOEpatents

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2014-10-14

    A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.

  1. Role of electric discharges in the generation of atmospheric vortices

    NASA Astrophysics Data System (ADS)

    Sinkevich, O. A.; Maslov, S. A.; Gusein-zade, N. G.

    2017-02-01

    The existing thermohydrodynamic and hydroelectromagnetic models of tornado are considered. The potentialities of the humid atmosphere as a heat engine generating air vortices are analyzed in detail. The ability of long-term atmospheric electric discharges to form a tornado funnel and create an initial twist of up to 10-3-10-2 s-1 in it are estimated. The possible effect of a lightning discharge on the initiation and evolution of the tornado is discussed. It is shown that the electric current flowing along the lightning channel can lead to helical instability and generation of a weak primary vortex. The channel formed in the atmosphere by a lightning discharge and the vortex motion of the parent thundercloud can enhance the primary vortex and promote its transformation into a tornado. Possible mechanisms of enhancement of the primary vortex created by a lightning discharge and the possibility of its transformation into a tornado in the postdischarge stage are discussed.

  2. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    NASA Astrophysics Data System (ADS)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  3. Multiple performance characteristics optimization for Al 7075 on electric discharge drilling by Taguchi grey relational theory

    NASA Astrophysics Data System (ADS)

    Khanna, Rajesh; Kumar, Anish; Garg, Mohinder Pal; Singh, Ajit; Sharma, Neeraj

    2015-05-01

    Electric discharge drill machine (EDDM) is a spark erosion process to produce micro-holes in conductive materials. This process is widely used in aerospace, medical, dental and automobile industries. As for the performance evaluation of the electric discharge drilling machine, it is very necessary to study the process parameters of machine tool. In this research paper, a brass rod 2 mm diameter was selected as a tool electrode. The experiments generate output responses such as tool wear rate (TWR). The best parameters such as pulse on-time, pulse off-time and water pressure were studied for best machining characteristics. This investigation presents the use of Taguchi approach for better TWR in drilling of Al-7075. A plan of experiments, based on L27 Taguchi design method, was selected for drilling of material. Analysis of variance (ANOVA) shows the percentage contribution of the control factor in the machining of Al-7075 in EDDM. The optimal combination levels and the significant drilling parameters on TWR were obtained. The optimization results showed that the combination of maximum pulse on-time and minimum pulse off-time gives maximum MRR.

  4. Runaway breakdown and electrical discharges in thunderstorms

    NASA Astrophysics Data System (ADS)

    Milikh, Gennady; Roussel-Dupré, Robert

    2010-12-01

    This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/lightning include γ-ray and X-ray flux intensifications over thunderstorms, γ-ray and X-ray bursts in conjunction with stepped leaders, terrestrial γ-ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character are touched upon briefly.

  5. On the Propagation of Streamers in Electrical Discharges

    NASA Astrophysics Data System (ADS)

    Qin, J.; Pasko, V. P.

    2014-12-01

    Streamers are non-thermal filamentary plasmas developing in insulating mediums under influence of strong external electric fields. Decades of extensive research have been dedicated to the understanding of streamer physics and their related applications. It is now well known that streamers are fundamental components in many types of gas discharges in laboratory and in the Earth's atmosphere, such as the dielectric-barrier discharges, the lightning discharges in thunderstorms, and the sprite discharges in the upper atmosphere. Recent studies also suggest that streamers might play an essential role in the production of terrestrial gamma ray flashes in thunderstorms. In industry, streamers have a long history of being used for various applications such as ozone production, plasma-assisted combustion, and pollution control. Moreover, benefiting from their non-thermal property, streamers have recently shown a great medical potential, for example, in wound healing and treatment of skin diseases. Understanding of the streamer propagation mechanism is of essential importance for the studies of the above-mentioned electrical discharge phenomena, as well as the industrial and medical applications of streamers. According to the present knowledge on the streamer physics, the applied electric field plays a decisive role in controlling the streamer dynamics. In this study, we propose a new understanding of the streamer propagation mechanism, in which we refine some fundamental concepts in the streamer physics. We will discuss possible ways to flexibly control the streamer parameters in applications, and also implications of this new mechanism for understanding of fundamental sprite physics.

  6. Consumption of the electric power inside silent discharge reactors

    SciTech Connect

    Yehia, Ashraf

    2015-01-15

    An experimental study was made in this paper to investigate the relation between the places of the dielectric barriers, which cover the surfaces of the electrodes in the coaxial cylindrical reactors, and the rate of change of the electric power that is consumed in forming silent discharges. Therefore, silent discharges have been formed inside three coaxial cylindrical reactors. The dielectric barriers in these reactors were pasted on both the internal surface of the outer electrode in the first reactor and the external surface of the inner electrode in the second reactor as well as the surfaces of the two electrodes in the third reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at normal temperature and pressure, in parallel with the application of a sinusoidal ac voltage between the electrodes of the reactor. The electric power consumed in forming the silent discharges inside the three reactors was measured as a function of the ac peak voltage. The validity of the experimental results was investigated by applying Manley's equation on the same discharge conditions. The results have shown that the rate of consumption of the electric power relative to the ac peak voltage per unit width of the discharge gap improves by a ratio of either 26.8% or 80% or 128% depending on the places of the dielectric barriers that cover the surfaces of the electrodes inside the three reactors.

  7. Pulsed Electrical Discharge in a Gas Bubble in Water

    NASA Astrophysics Data System (ADS)

    Schaefer, Erica; Gershman, Sophia; Mozgina, Oksana

    2005-10-01

    This experiment is an investigation of the electrical and optical characteristics of a pulsed electrical discharge ignited in a gas bubble in water in a needle-to-plane electrode geometry. Argon or oxygen gas is fed through a platinum hypodermic needle that serves as the high voltage electrode. The gas filled bubble forms at the high voltage electrode with the tip of the needle inside the bubble. The discharge in the gas bubble in water is produced by applying 5 -- 15 kV, microsecond long rectangular pulses between the electrodes submerged in water. The voltage across the electrodes and the current are measured as functions of time. Electrical measurements suggest a discharge ignited in the bubble (composed of the bubbled gas and water vapor) without breakdown of the entire water filled electrode gap. Time-resolved optical emission measurements are taken in the areas of the spectrum corresponding to the main reactive species produced in the discharge, e.g. OH 309 nm, Ar 750 nm, and O 777 nm emissions using optical filters. The discharge properties are investigated as a function of the applied voltage, the distance between the electrodes, the gas in the bubble (Ar or O2). Work supported by the US Army, Picatinny Arsenal, NJ and the US DOE (Contract number DE-AC02-76CH03073).

  8. Optical alignment of electrodes on electrical discharge machines

    NASA Technical Reports Server (NTRS)

    Boissevain, A. G.; Nelson, B. W.

    1972-01-01

    Shadowgraph system projects magnified image on screen so that alignment of small electrodes mounted on electrical discharge machines can be corrected and verified. Technique may be adapted to other machine tool equipment where physical contact cannot be made during inspection and access to tool limits conventional runout checking procedures.

  9. Clean Electrical-Discharge Machining Of Delicate Honeycomb

    NASA Technical Reports Server (NTRS)

    Johnson, Clarence S.

    1993-01-01

    Precise recesses in fragile metal honeycomb blocks formed in special electrical-discharge machining process. Special tooling used, and recesses bored with workpiece in nonstandard alignment. Cutting electrode advances into workpiece along x axis to form pocket of rectangular cross section. Deionized water flows from fitting, along honeycomb tubes of workpiece, to electrode/workpiece interface.

  10. Discharging Static Electricity From Inside A Glass Tube

    NASA Technical Reports Server (NTRS)

    Ellsbury, Walter L.

    1994-01-01

    Device that contains emitter of alpha particles discharges static electricity from inside wall of glass tube of volumetric-flow calibrator. Includes cylinder that has wall thickness of 1/16 in., diameter about 1/2 in. smaller than inside diameter of tube, and height that extends about 1/2 in. above piston that moves along tube and is part of calibrator.

  11. Resistance of a water spark.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lehr, Jane Marie

    2005-11-01

    The later time phase of electrical breakdown in water is investigated for the purpose of improving understanding of the discharge characteristics. One dimensional simulations in addition to a zero dimensional lumped model are used to study the spark discharge. The goal is to provide better electrical models for water switches used in the pulse compression section of pulsed power systems. It is found that temperatures in the discharge channel under representative drive conditions, and assuming small initial radii from earlier phases of development, reach levels that are as much as an order of magnitude larger than those used to model discharges in atmospheric gases. This increased temperature coupled with a more rapidly rising conductivity with temperature than in air result in a decreased resistance characteristic compared to preceding models. A simple modification is proposed for the existing model to enable the approximate calculation of channel temperature and incorporate the resulting conductivity increase into the electrical circuit for the discharge channel. Comparisons are made between the theoretical predictions and recent experiments at Sandia. Although present and past experiments indicated that preceding late time channel models overestimated channel resistance, the calculations in this report seem to underestimate the resistance relative to recent experiments. Some possible reasons for this discrepancy are discussed.

  12. Electric discharge processes in the ISS plasma environment

    NASA Astrophysics Data System (ADS)

    Tverdokhlebova, E. M.; Korsun, A. G.; Gabdullin, F. F.; Karabadzhak, G. F.

    We consider the behaviour of the electric discharges which can be initiated between constructional elements of the International Space Station (ISS) due to the electric field of high-voltaic solar arrays (HVSA). The characteristics of the ISS plasma environment are evaluated taking into account the influence of space ionizing fluxes, the Earth's magnetic field, and the HVSA's electric field. We offer the statement of the space experiment "Plasma-ISS", the aim of which is to investigate, using optical emission characteristics, parameters of the ISS plasma environment formed at operation of both the onboard engines and other plasma sources.

  13. Vehicle exhaust treatment using electrical discharge and materials chemistry

    SciTech Connect

    Tonkyn, R.G.; Balmer, M.L.; Barlow, S.E.; Orlando, T.M.; Goulette, D.; Hoard, J.

    1997-12-31

    Current 3-way catalytic converters have proven quite effective at removing NO{sub x} from the exhaust of spark ignition vehicles operating near stoichiometric air-to-fuel ratios. However, diesel engines typically operate at very high air-to-fuel ratios. Under such lean burn conditions current catalytic converters are ineffective for NO{sub x} removal. As a result, considerable effort has been made to develop a viable lean NO{sub x} catalyst. Although some materials have been shown to reduce NO{sub x} under lean burn conditions, none exhibit the necessary activity and stability at the high temperatures and humidities found in typical engine exhaust,. As a result, alternative technologies are being explored in an effort to solve the so-called lean NO{sub x} problem. Packed-bed barrier discharge systems are well suited to take advantage of plasma-surface interactions due to the large number of contaminant surface collisions in the bed. The close proximity of the active surface to transient species produced by the plasma may lead to favorable chemistry at considerably lower temperatures than required by thermal catalysts. The authors present data in this paper illustrating that the identity and surface properties of the packing material can alter the discharge-driven chemistry in synthetic leanburn exhaust mixtures. Results using non-porous glass beads as the packing material suggest the limits of NO{sub x} reduction using purely gas phase discharge chemistry. By comparison, encouraging results are reported for several alternative packing materials.

  14. Upward electrical discharges observed above Tropical Depression Dorian

    PubMed Central

    Liu, Ningyu; Spiva, Nicholas; Dwyer, Joseph R.; Rassoul, Hamid K.; Free, Dwayne; Cummer, Steven A.

    2015-01-01

    Observation of upward electrical discharges from thunderstorms has been sporadically reported in the scientific literature. According to their terminal altitudes, they are classified as starters (20–30 km), jets (40–50 km) and gigantic jets (70–90 km). They not only have a significant impact on the occupied atmospheric volumes but also electrically couple different atmospheric regions. However, as they are rare and unpredictable, our knowledge of them has been built on observations that typically record only one type of such discharges. Here we report a close-distance observation of seven upward discharges including one starter, two jets and four gigantic jets above Tropical Depression Dorian. Our optical and electromagnetic data indicate that all events are of negative polarity, suggesting they are initiated in the same thundercloud charge region. The data also indicate that the lightning-like discharge channel can extend above thunderclouds by about 30 km, but the discharge does not emit low-frequency electromagnetic radiation as normal lightning. PMID:25607345

  15. Comparative study of INPIStron and spark gap

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron.

  16. Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge.

    PubMed

    Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M

    2016-11-30

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas.

  17. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  18. Microsecond-scale electric field pulses in cloud lightning discharges

    NASA Technical Reports Server (NTRS)

    Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.

    1994-01-01

    From wideband electric field records acquired using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of cloud-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the cloud flash suggests that they are related to the initial in-cloud channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in cloud flashes are the K processes which occur in the final, or J type, part of the cloud discharge.

  19. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    SciTech Connect

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-07-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives.

  20. ElectricOIL discharge and post-discharge kinetics experiments and modeling

    NASA Astrophysics Data System (ADS)

    Palla, A. D.; Zimmerman, J. W.; Woodard, B. S.; Carroll, D. L.; Verdeyen, J. T.; Lim, T. C.; Rawlins, W. T.; Lee, S.; Davis, S. J.; Solomon, W. C.

    2007-02-01

    Laser oscillation at 1315 nm on the I(2P 1/2) --> I(2P 3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O II(a1Δ) produced using a low-pressure oxygen/helium/nitric-oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O II(a1Δ) generation system. The advanced model BLAZE-IV has been introduced in order to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O 3, O II(b1Σ), and O atom, and gas temperature measurements, but is under-predicting the increase in O II(a1Δ) concentration resulting from the presence of NO in the discharge. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O II(a1Δ) concentrations downstream of the discharge in part via a recycling process, however there are still some important processes related to the NO X discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  1. Microelectrode array fabrication by electrical discharge machining and chemical etching.

    PubMed

    Fofonoff, Timothy A; Martel, Sylvain M; Hatsopoulos, Nicholas G; Donoghue, John P; Hunter, Ian W

    2004-06-01

    Wire electrical discharge machining (EDM), with a complementary chemical etching process, is explored and assessed as a method for developing microelectrode array assemblies for intracortically recording brain activity. Assembly processes based on these methods are highlighted, and results showing neural activity successfully recorded from the brain of a mouse using an EDM-based device are presented. Several structures relevant to the fabrication of microelectrode arrays are also offered in order to demonstrate the capabilities of EDM.

  2. High energy XeBr electric discharge laser

    DOEpatents

    Sze, R.C.; Scott, P.B.

    A high energy XeBr laser for producing coherent radiation at 282 nm is disclosed. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr, is used as the halogen donor which undergoes harpooning reactions with Xe/sub M/ to form XeBr.

  3. High energy XeBr electric discharge laser

    DOEpatents

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  4. The electrical characteristics of the dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Yehia, Ashraf

    2016-06-01

    The electrical characteristics of the dielectric barrier discharges have been studied in this paper under different operating conditions. The dielectric barrier discharges were formed inside two reactors composed of electrodes in the shape of two parallel plates. The dielectric layers inside these reactors were pasted on the surface of one electrode only in the first reactor and on the surfaces of the two electrodes in the second reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at the normal temperature and pressure, in parallel with applying a sinusoidal ac voltage between the electrodes of the reactor. The amount of the electric charge that flows from the reactors to the external circuit has been studied experimentally versus the ac peak voltage applied to them. An analytical model has been obtained for calculating the electrical characteristics of the dielectric barrier discharges that were formed inside the reactors during a complete cycle of the ac voltage. The results that were calculated by using this model have agreed well with the experimental results under the different operating conditions.

  5. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy.

    PubMed

    Yu, Binglan; Muenster, Stefan; Blaesi, Aron H; Bloch, Donald B; Zapol, Warren M

    2015-07-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff. The objective of this study was to develop a lightweight, portable device to serve as a simple and economical method of producing pure NO from air for bedside or portable use. Two NO generators were designed and tested: an offline NO generator and an inline NO generator placed directly within the inspiratory line. Both generators use pulsed electrical discharges to produce therapeutic range NO (5 to 80 parts per million) at gas flow rates of 0.5 to 5 liters/min. NO was produced from air, as well as gas mixtures containing up to 90% O2 and 10% N2. Potentially toxic gases produced in the plasma, including nitrogen dioxide (NO2) and ozone (O3), were removed using a calcium hydroxide scavenger. An iridium spark electrode produced the lowest ratio of NO2/NO. In lambs with acute pulmonary hypertension, breathing electrically generated NO produced pulmonary vasodilation and reduced pulmonary arterial pressure and pulmonary vascular resistance index. In conclusion, electrical plasma NO generation produces therapeutic levels of NO from air. After scavenging to remove NO2 and O3 and filtration to remove particles, electrically produced NO can provide safe and effective treatment of pulmonary hypertension.

  6. Electrical Discharges in the Overshooting Tops of Five Storms

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.; Elliott, M.

    2013-12-01

    Individual electrical discharges detected by VHF Lightning Mapping Arrays (LMAs) in the overshooting tops of strong storms typically occur continually at rates of roughly 1 - 10 per second and do not appear to cluster systematically in time or space as flashes. This study analyzed discharges relative to S-band polarimetric radar data and to GOES infrared imagery in the overshooting tops of five storms ranging from moderately strong multicell storms to supercell storms. Although the density of VHF sources in overshooting tops was much less than the maximum densities below the level of neutral bouyancy, the overshooting top typically contained a secondary maximum of density. The onset of discharges in an overshooting top corresponded to an increase in the maximum magnitude and height of reflectivity as the top substantially penetrated the level of neutral bouyancy. Once the discharges began, most were within reflectivities of at least 18 dBZ and formed a dome having geometry similar to that of the dome in reflectivity. Discharges persisted for approximately as long as the reflectivity dome persisted and could last anywhere from a few minutes for short-lived overshooting tops to a few hours for cases with an overlapping series of overshooting tops produced by a succession of updraft pulses. The 99.99th percentile in the height of VHF sources was well correlated (correlation coefficient of at least 0.8) with the height of 18 and 30 dBZ, and the timing of variations in height of these parameters agreed well. We suggest the discharges are caused by turbulent cells bringing negative screening layer charge close to positive charge in the updraft core. The onset of discharges in an overshooting top preceded the detection of overshooting tops in satellite imagery. The poorer performance probably was the result of the poorer spatiotemporal resolution of infrared cloud-top imagery in the present GOES constellation. Severe weather was either imminent or occurring when

  7. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  8. Quasi-DC electrical discharge characterization in a supersonic flow

    NASA Astrophysics Data System (ADS)

    Houpt, Alec; Hedlund, Brock; Leonov, Sergey; Ombrello, Timothy; Carter, Campbell

    2017-04-01

    A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M = 2, stagnation pressure P 0 = (0.9-2.6) × 105 Pa, stagnation temperature T 0 = 300 K, unit Reynolds number ReL = 7-25 × 106 m-1, and plasma power W pl = 3-21 kW. The plasma parameters are measured with current-voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave-boundary layer interaction.

  9. Magic trait electric organ discharge (EOD): Dual function of electric signals promotes speciation in African weakly electric fish.

    PubMed

    Feulner, Philine Gd; Plath, Martin; Engelmann, Jacob; Kirschbaum, Frank; Tiedemann, Ralph

    2009-07-01

    A unique evolutionary specialization of African weakly electric fish (Mormyridae) is their ability to produce and perceive electric signals. Mormyrids use their electric organs discharge (EOD) for electrolocation and electrocommunication. Here we discuss the adaptive significance of the EOD in foraging (electric prey detection) in light of recent results demonstrating that mormyrid fish mate assortatively according to EOD waveform characteristics (electric mate choice). Therefore the EOD as a single trait pleiotropically combines natural divergent selection and reproductive isolation. Consequently we postulate the EOD as a "magic trait" promoting the diversification of African weakly electric fish.

  10. Electric field step in air gap streamer discharges

    SciTech Connect

    Zeng Rong; Zhuang Chijie; Yu Zhanqing; Li Zhizhao; Geng Yinan

    2011-11-28

    Electric field (E-field) in air gap streamer discharges under positive lightning impulse was measured by specifically developed integrated electro-optic sensors. An E-field step phenomenon was observed. The E-field firstly agreed with the Laplace field, then suddenly increased with a rise time of {mu}s. The occurrence probability of this phenomenon increased as the applied voltage increased. The discharge current waveforms and photos taken by a fast camera prove the E-field step was caused by the space net charge. From the E-step rise time and the corona area range, the average electron drift speed under the experiment situation was estimated about 0.2 x 10{sup 6} - 0.6x 10{sup 6} m/s.

  11. Generalized current-voltage characteristics of electric discharge liquid cathode

    NASA Astrophysics Data System (ADS)

    Valiev, R. I.; Shakirov, Yu I.; Khafizov, A. A.; Valiev, R. A.; Nuriev, I. M.

    2017-01-01

    The experimental and calculated current-voltage characteristics of the electric discharge between the metal anode and liquid cathode was got. As the liquid electrode process water, copper sulfate solution and various concentrations of sodium chloride were used, a solid cylindrical electrode rods were made of copper, iron and steel of different diameters. The influence of pressure, distance between electrodes, the anode material, electrolyte composition of the cathode on the current-voltage characteristics of the discharge was researched. The current-voltage characteristics are falling, increasing the distance between electrodes raises these curves along the voltage axis. The methods of simulation based on the similarity theory and the dimension formula is obtained for calculating the generalized current-voltage characteristics, taking into account, inter alia, the effect of pressure and electrode spacing.

  12. Electrode configuration for extreme-UV electrical discharge source

    DOEpatents

    Spence, Paul Andrew; Fornaciari, Neal Robert; Chang, Jim Jihchyun

    2002-01-01

    It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

  13. Numerical simulation of nanosecond-pulse electrical discharges

    NASA Astrophysics Data System (ADS)

    Poggie, J.; Adamovich, I.; Bisek, N.; Nishihara, M.

    2013-02-01

    Recent experiments with a nanosecond-pulse, dielectric barrier discharge at the stagnation point of a Mach 5 cylinder flow have demonstrated the formation of weak shock waves near the electrode edge, which propagate upstream and perturb the bow shock. This is a promising means of flow control, and understanding the detailed physics of the conversion of electrical energy into gas motion will aid in the design of efficient actuators based on the concept. In this work, a simplified configuration with planar symmetry was chosen as a vehicle to develop a physics-based model of nanosecond-pulse discharges, including realistic air kinetics, electron energy transport, and compressible bulk gas flow. A reduced plasma kinetic model (23 species and 50 processes) was developed to capture the dominant species and reactions for energy storage and thermalization in the discharge. The kinetic model included electronically and vibrationally excited species, and several species of ions and ground state neutrals. The governing equations included the Poisson equation for the electric potential, diffusion equations for each neutral species, conservation equations for each charged species, and mass-averaged conservation equations for the bulk gas flow. The results of calculations with this model highlighted the path of energy transfer in the discharge. At breakdown, the input electrical energy was transformed over a time scale on the order of 1 ns into chemical energy of ions, dissociation products, and vibrationally and electronically excited particles. About 30% of this energy was subsequently thermalized over a time scale of 10 µs. Since the thermalization time scale was faster than the acoustic time scale, the heat release led to the formation of weak shock waves originating near the sheath edge, consistent with experimental observations. The computed translational temperature rise (40 K) and nitrogen vibrational temperature rise (370 K) were of the same order of magnitude as

  14. Sample preparation of metal alloys by electric discharge machining

    NASA Technical Reports Server (NTRS)

    Chapman, G. B., II; Gordon, W. A.

    1976-01-01

    Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported.

  15. Electrical discharge machining of type-N(f) microwave connectors

    SciTech Connect

    Haushalter, R.J.

    1996-07-01

    A particular out-of-specification mechanical dimension on Type-N(f) [Type-N(female)] microwave connectors sometimes disqualifies otherwise perfectly acceptable microwave devices from being used in calibration systems. The Miniature Machining Group at Sandia National Laboratories applied a technique called Electrical Discharge Machining (EDM) to quickly and economically machine these devices without disassembly. In so doing, they facilitated the use of existing components without the need to purchase new devices. The technique also improves an uncertainty of calibration known as Mismatch Uncertainty by optimizing the reflection coefficient of the calibration test port. This effects a reduction in overall calibration uncertainties.

  16. A methodology to investigate the intrinsic effect of the pulsed electric current during the spark plasma sintering of electrically conductive powders

    PubMed Central

    Locci, Antonio Mario; Cincotti, Alberto; Todde, Sara; Orrù, Roberto; Cao, Giacomo

    2010-01-01

    A novel methodology is proposed for investigating the effect of the pulsed electric current during the spark plasma sintering (SPS) of electrically conductive powders without potential misinterpretation of experimental results. First, ensemble configurations (geometry, size and material of the powder sample, die, plunger and spacers) are identified where the electric current is forced to flow only through either the sample or the die, so that the sample is heated either through the Joule effect or by thermal conduction, respectively. These ensemble configurations are selected using a recently proposed mathematical model of an SPS apparatus, which, once suitably modified, makes it possible to carry out detailed electrical and thermal analysis. Next, SPS experiments are conducted using the ensemble configurations theoretically identified. Using aluminum powders as a case study, we find that the temporal profiles of sample shrinkage, which indicate densification behavior, as well as the final density of the sample are clearly different when the electric current flows only through the sample or through the die containing it, whereas the temperature cycle and mechanical load are the same in both cases. PMID:27877354

  17. A methodology to investigate the intrinsic effect of the pulsed electric current during the spark plasma sintering of electrically conductive powders.

    PubMed

    Locci, Antonio Mario; Cincotti, Alberto; Todde, Sara; Orrù, Roberto; Cao, Giacomo

    2010-08-01

    A novel methodology is proposed for investigating the effect of the pulsed electric current during the spark plasma sintering (SPS) of electrically conductive powders without potential misinterpretation of experimental results. First, ensemble configurations (geometry, size and material of the powder sample, die, plunger and spacers) are identified where the electric current is forced to flow only through either the sample or the die, so that the sample is heated either through the Joule effect or by thermal conduction, respectively. These ensemble configurations are selected using a recently proposed mathematical model of an SPS apparatus, which, once suitably modified, makes it possible to carry out detailed electrical and thermal analysis. Next, SPS experiments are conducted using the ensemble configurations theoretically identified. Using aluminum powders as a case study, we find that the temporal profiles of sample shrinkage, which indicate densification behavior, as well as the final density of the sample are clearly different when the electric current flows only through the sample or through the die containing it, whereas the temperature cycle and mechanical load are the same in both cases.

  18. A methodology to investigate the intrinsic effect of the pulsed electric current during the spark plasma sintering of electrically conductive powders

    NASA Astrophysics Data System (ADS)

    Locci, Antonio Mario; Cincotti, Alberto; Todde, Sara; Orrù, Roberto; Cao, Giacomo

    2010-08-01

    A novel methodology is proposed for investigating the effect of the pulsed electric current during the spark plasma sintering (SPS) of electrically conductive powders without potential misinterpretation of experimental results. First, ensemble configurations (geometry, size and material of the powder sample, die, plunger and spacers) are identified where the electric current is forced to flow only through either the sample or the die, so that the sample is heated either through the Joule effect or by thermal conduction, respectively. These ensemble configurations are selected using a recently proposed mathematical model of an SPS apparatus, which, once suitably modified, makes it possible to carry out detailed electrical and thermal analysis. Next, SPS experiments are conducted using the ensemble configurations theoretically identified. Using aluminum powders as a case study, we find that the temporal profiles of sample shrinkage, which indicate densification behavior, as well as the final density of the sample are clearly different when the electric current flows only through the sample or through the die containing it, whereas the temperature cycle and mechanical load are the same in both cases.

  19. Destruction of humic substances by pulsed electrical discharge

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.; Davidenko, M. A.

    2017-01-01

    Currently, the water recourses in the territory of Tomsk region are groundwater which is limited to the high concentration of iron and manganese ions and organic substances. These impurities present in water in different forms such as soluble salts ant the colloid forms. Therefore, the present work is a part of a continuations researcher of the processes in natural waters containing humic substances at the influence of pulsed electrical discharges in a layer of iron pellets. It is shown that the main stage of water purification process of humic substances during treatment by pulsed electric discharge in the layer of iron granules is a difficult process including several stages such as formation of iron oxyhydroxide colloid particles, sorption and coagulation with humic macromolecules substances, growth of particle dispersed phase and precipitation. The reason for the formation and coagulation of the dispersed phase is a different state of charge of the colloid particles (zeta potentials of (Fe (OH)3) is +8 mV, zeta potentials of (Humic substances) is -70 mV. The most intense permanganate oxidation reduction to the maximum permissible concentration occurs at the processing time equal to 10 seconds. The contact time of active erosion products with sodium humate is established and it equals to 1 hour. The value of permanganate oxidation achieves maximum permissible concentration during this time and iron concentration in solution achieves maximum permissible concentration after filtration.

  20. Study of asymmetrical electric discharges using particle simulation

    NASA Astrophysics Data System (ADS)

    Alves, Maria Virginia

    1990-11-01

    Asymmetrical electric discharges are widely used in the microelectronics industry. The asymmetry in the electrode areas determines the magnitude of the plasma-to-electrode voltage (V sub a) at the powered electrode, which determines the ion bombarding energy. Two many-particle simulation codes, PDC1 and PDC2, were developed. These codes are electrostatic, one-dimensional (radial) and model a bounded plasma between two infinite cylinders or two concentric spheres that can be connected to an RLC external circuit. Both codes consider asymmetrical electrode areas. In order to simulate electrical discharges, Monte-Carlo simulation of electron-neutral and ion-neutral collisions were included. These codes were used to study the relationship between the voltage area ratio across the sheaths, V(sub a)/V(sub b), and the electrode area ratio A(sub b)/A(sub a). Simulation results agree with experimental results and also with the analytical model that includes local ionization near the electrodes which is observed to occur in almost all of the simulations.

  1. Observations of electrical discharges during eruptions of Sakurajima volcano

    NASA Astrophysics Data System (ADS)

    Edens, H. E.; Thomas, R. J.; Behnke, S. A.; McNutt, S. R.; Smith, C. M.; Farrell, A. K.; Van Eaton, A. R.; Cimarelli, C.; Cigala, V.; Michel, C. W.; Miki, D.; Iguchi, M.

    2015-12-01

    In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions. Prior studies of volcanic lightning have shown that there are several types of electrical discharges that can occur in volcanic eruption clouds. One of these is referred to as continuous RF, which manifests itself as a continual production of VHF emissions that typically last several seconds to a minute during the initial, active phase of an eruption. Its nature and origins are not well understood. Another type of discharge are small, discrete lightning flashes, which start occurring later on within the eruption cloud and are similar to atmospheric lightning. During the 2015 field program we studied the characteristics of continuous RF and discrete flashes during volcanic eruptions of Sakurajima volcano using a comprehensive set of instrumentation. This included a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras. We present correlated LMA, waveform, photographs and video recordings of continuous RF and discrete volcanic lightning flashes. We discuss the nature of continuous RF and its possible origins, and how it compares to VHF emissions from regular, discrete flashes. We also discuss the polarity of leaders of discrete flashes and the general time evolution of the charge structure in eruption clouds.

  2. Morphological Processing of Ultraviolet Emissions of Electrical Corona Discharge for Analysis and Diagnostic Use

    NASA Technical Reports Server (NTRS)

    Schubert, Matthew R.; Moore, Andrew J.

    2015-01-01

    Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore can have diagnostic utility.

  3. Mars Spark Source Prototype

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  4. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  5. Electrical discharge from a thundercloud top to the lower ionosphere.

    PubMed

    Pasko, Victor P; Stanley, Mark A; Mathews, John D; Inan, Umran S; Wood, Troy G

    2002-03-14

    For over a century, numerous undocumented reports have appeared about unusual large-scale luminous phenomena above thunderclouds and, more than 80 years ago, it was suggested that an electrical discharge could bridge the gap between a thundercloud and the upper atmosphere. Since then, two classes of vertically extensive optical flashes above thunderclouds have been identified-sprites and blue jets. Sprites initiate near the base of the ionosphere, develop very rapidly downwards at speeds which can exceed 107 m s-1 (ref. 15), and assume many different geometrical forms. In contrast, blue jets develop upwards from cloud tops at speeds of the order of 105 m s-1 and are characterized by a blue conical shape. But no experimental data related to sprites or blue jets have been reported which conclusively indicate that they establish a direct path of electrical contact between a thundercloud and the lower ionosphere. Here we report a video recording of a blue jet propagating upwards from a thundercloud to an altitude of about 70 km, taken at the Arecibo Observatory, Puerto Rico. Above an altitude of 42 km-normally the upper limit for blue jets and the lower terminal altitude for sprites-the flash exhibited some features normally observed in sprites. As we observed this phenomenon above a relatively small thunderstorm cell, we speculate that it may be common and therefore represent an unaccounted for component of the global electric circuit.

  6. Experimental investigation of surface roughness in electrical discharge turning process

    NASA Astrophysics Data System (ADS)

    Gohil, Vikas; Puri, Y. M.

    2016-10-01

    In the present study the effects of machining parameters on the average surface roughness (Ra) in electrical discharge turning (EDT) is investigated. EDT is a new machining process in which a rotary spindle is added to a conventional die-sinking EDM machine in order to produce cylindrical components. In this method a new process parameter (spindle rotation) along with pulse on time and current is introduced to study its effect on Ra. This has been done by means of full factorial design (21 × 32) of experiments. A mathematical model has been developed for Ra by regression analysis and factor effects were analyzed using analysis of variance (ANOVA). Signal-to-noise ratio analysis is used to find the optimal condition.

  7. Efficiency of SparkJet

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, M.; Knight, D.; Wilkinson, S.

    2013-01-01

    The thermal efficiency of a SparkJet is evaluated by measuring the impulse response of a pendulum subject to a single spark discharge. The SparkJet is attached to the end of a pendulum. A laser displacement sensor is used to measure the displacement of the pendulum upon discharge. The pendulum motion is a function of the fraction of the discharge energy that is channeled into the heating of the gas (i.e., increasing the translational-rotational temperature). A theoretical perfect gas model is used to estimate the portion of the energy from the heated gas that results in equivalent pendulum displacement as in the experiment. The earlier results from multiple runs for different capacitances of C = 3, 5, 10, 20, and 40(micro)F demonstrate that the thermal efficiency decreases with higher capacitive discharges.1 In the current paper, results from additional run cases have been included and confirm the previous results

  8. PREFACE: Diagnostics for electrical discharge light sources: pushing the limits Diagnostics for electrical discharge light sources: pushing the limits

    NASA Astrophysics Data System (ADS)

    Zissis, Georges; Haverlag, Marco

    2010-06-01

    Light sources play an indispensable role in the daily life of any human being. Quality of life, health and urban security related to traffic and crime prevention depend on light and on its quality. In fact, every day approximately 30 billion electric light sources operate worldwide. These electric light sources consume almost 19% of worldwide electricity production. Finding new ways to light lamps is a challenge where the stakes are scientific, technological, economic and environmental. The production of more efficient light sources is a sustainable solution for humanity. There are many opportunities for not only enhancing the efficiency and reliability of lighting systems but also for improving the quality of light as seen by the end user. This is possible through intelligent use of new technologies, deep scientific understanding of the operating principles of light sources and knowledge of the varied human requirements for different types of lighting in different settings. A revolution in the domain of light source technology is on the way: high brightness light emitting diodes arriving in the general lighting market, together with organic LEDs (OLEDs), are producing spectacular advances. However, unlike incandescence, electrical discharge lamps are far from disappearing from the market. In addition, new generations of discharge lamps based on molecular radiators are becoming a reality. There are still many scientific and technological challenges to be raised in this direction. Diagnostics are important for understanding the fundamental mechanisms taking place in the discharge plasma. This understanding is an absolute necessity for system optimization leading to more efficient and high quality light sources. The studied medium is rather complex, but new diagnostic techniques coupled to innovative ideas and powerful tools have been developed in recent years. This cluster issue of seven papers illustrates these efforts. The selected papers cover all domains, from

  9. Comparative Study of Electric Field Measurement in Glow Discharges using Laser Optogalvanic Spectroscopy

    SciTech Connect

    Hussain, Shahid; Saleem, M.; Baig, M. A.

    2008-10-22

    The net electric field inside low-pressure glow discharges has been measured using laser optogalvanic spectroscopy of 1s2s {sup 1}S{sub 0}{yields}np{sup 1}P{sub 1} Rydberg series of atomic helium. Three different types of discharges, an inductively coupled RF discharge cell operating at 4 MHz, a homemade DC discharge cell and a commercial see-through hollow cathode lamp have been used for these studies. The Rydberg series terminates earlier in the high electric field discharge as compared to that in the low electric field discharge. The net electric field also produces shift and broadens the observed spectral lines especially in the high lying Rydberg transitions. The electric field has been determined from the series termination and also from the energy shift of the observed transitions.

  10. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    PubMed

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  11. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    PubMed Central

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  12. Electric Field Measurements in Non-Equilibrium Electric Discharge Plasmas Using Picosecond Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.

    This dissertation presents the results of development of a picosecond four wave mixing technique and its use for electric field measurements in nanosecond pulse discharges. This technique is similar to coherent anti-Stokes Raman spectroscopy and is well suited for electric field measurements in high pressure plasmas with high spatial and temporal resolution. The results show that the signal intensity scales proportionally to the square of the electric field, the signal is emitted as a coherent beam, and is polarized parallel to the electric field vector, making possible electric field vector component measurements. The signal is generated when a collinear pair of pump and Stokes beams, which are generated in a stimulated Raman shifting cell (SRS), generate coherent excitation of molecules into a higher energy level, hydrogen for the present work. The coherent excitation mixes with a dipole moment induced by an external electric field. The mixing of these three "waves'" allows the molecules to radiate at their Raman frequency, producing a fourth, signal, wave which is proportional to the square of the electric field. The time resolution of this technique is limited by the coherence decay time of the molecules, which is a few hundred picoseconds.

  13. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 4. Destruction of Weeds by High Voltage Discharge

    NASA Astrophysics Data System (ADS)

    Mizuno, Akira

    In an attempt to replace chemicals for weed control, high voltage spark discharge has been applied. With the application of high voltage, discharge takes place, and current flows through the stem and root. Microscopic observation indicates that cells are damaged. The electrical resistance of the damage plant’s stems and roots decreased significantly. Several different types of apparatus were constructed, and field test results show the effectiveness of electrical discharge for weed control.

  14. Electrical Properties for Capacitively Coupled Radio Frequency Discharges of Helium and Neon at Low Pressure

    NASA Astrophysics Data System (ADS)

    Tanisli, Murat; Sahin, Neslihan; Demir, Suleyman

    2016-10-01

    In this study, the symmetric radio frequency (RF) electrode discharge is formed between the two electrodes placing symmetric parallel. The electrical properties of symmetric capacitive RF discharge of pure neon and pure helium have been obtained from current and voltage waveforms. Calculations are done according to the homogeneous discharge model of capacitively coupled radio frequency (CCRF) using with the data in detail. Electrical properties of bulk plasma and sheath capacitance are also investigated at low pressure with this model. This study compares the electrical characteristics and sheath capacitance changes with RF power and pressure for helium and neon discharges. Also, the aim of the study is to see the differences between helium and neon discharges' current and voltage values. Their root-mean-square voltages and currents are obtained from Tektronix 3052C oscilloscope. Modified homogeneous discharge model of CCRF is used for low pressure discharges and the calculations are done using experimental results. It is seen that homogeneous discharge model of CCRF is usable with modification and then helium and neon discharge's electrical properties are investigated and presented with a comparison. Helium discharge's voltage and current characteristic have smaller values than neon's. It may be said that neon discharge is a better conductor than helium discharge. It is seen that the sheath capacitance is inversely correlation with sheath resistance.

  15. The effect of pulse energy on the removal form of silicon crystal in electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Mingbo, Qiu; Zongjun, Tian; Ye, Tian; Lida, Shen; Haoran, Chen; Hao, Ding

    2016-09-01

    A single-pulse discharge system for semiconductors was designed and produced. Single-pulse discharge experiments with single-crystal silicon were conducted, and the morphology of the electric erosion pit under different discharge energy levels was observed. Three removal forms, namely, heat removal, stress removal, and secondary crushing in electrical discharge machining (EDM) of single-crystal silicon, were discovered, and the mechanisms of semiconductor discharge processing were described. Finally, the role of different removal forms in single-crystal silicon EDM was explained and verified.

  16. Low Pressure Experimental Simulation of Electrical Discharges Above and Inside a Cloud

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1996-01-01

    A low pressure laboratory experiment to generate sporadic electrical discharges in either a particulate dielectric or air, representing a competing path of preferred electrical breakdown, was investigated. At high pressures, discharges occurred inside the dielectric particulate; at low pressures, discharges occurred outside the dielectric particulate; at a transition pressure regime, which depends on conductivity of the dielectric particulate, discharges were simultaneously generated in both particulate dielectric and air. Unique use of a particulate dielectric was critical for sporadic discharges at lower pressures which were not identical in character to discharges without the particulate dielectric. Application of these experimental results to the field of atmospheric electricity and simulation of the above-cloud type discharges that have recently been documented, called jets and sprites, are discussed.

  17. The use of electrical discharge for ignition and control of combustion of solid propellants

    NASA Technical Reports Server (NTRS)

    Tachibana, Takeshi; Kobayashi, Tsuruo; Matsuda, Takashi; Kimura, Itsuro

    1987-01-01

    As the first step of the study of the combustion control of solid propellants by electrical discharges, the effects of an arc discharge, which flows along the burning surface, on the burning rate and on the increase of enthalpy of the combustion product were investigated. For specially devised composite propellants, which are composed of Al and Teflon powders, it was shown that the combination can be controlled by an arc discharge; the combustion continues when the arc discharge is applied and is interrupted when the arc discharge breaks. In the present investigation, it was also shown that an arc discharge coupled with a high-frequency electrical discharge has potential as an effective ignition method for solid propellants. For the application of this type of combustion control to an ignitor for a solid propellant rocket motor or to a control rocket motor, this method lacks flexibility in the configuration scale and needs relatively high electric power at the present stage.

  18. Power spectrum of electrical discharges seen on earth and at Saturn

    NASA Astrophysics Data System (ADS)

    Warwick, J. W.

    1989-07-01

    A technique is described for deriving the radio spectrum of electrical discharges by using the properties of the time series of charges crossing the discharge gap. The method was applied to the spectrum of lightning and to the Saturn's electrical discharges (SEDs). It is shown that the occurrence and the power density of SEDs have subtle, but important, differences from these observables described in the last five years. The reasons for these differences are discussed.

  19. Development of the Cylindrical Wire Electrical Discharge Machining Process.

    SciTech Connect

    McSpadden, SB

    2002-01-22

    Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.

  20. Interaction between hollow needles - electric field, light emission and ozone generation study in multineedle to plate electrical discharge

    NASA Astrophysics Data System (ADS)

    Kriha, Vitezslav

    2004-09-01

    Multi hollow needle to plate electrical discharges in air are studied as ozone sources. Dependence of ozone concentration as an function of applied voltage, discharge current, mutual hollow needles position and electrical connection, working gas flow rate, distances between needles tips and plate electrode, visible light emission was measured experimentally in these systems. Electric field was numerically modeled. Light emission and electrical field distributions were compared. Coming from light emission and electric field a model of energy density spatial distribution was built. This model was finally compared with ozone generation.

  1. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.; Mckay, Christopher P.; Borucki, William J.; Giver, Lawrence P.; Van Ghyseghem, Hilde

    1989-01-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  2. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Astrophysics Data System (ADS)

    Scattergood, T. W.; McKay, C. P.; Borucki, W. J.; Giver, L. P.; van Ghyseghem, H.; Parris, J. E.; Miller, S. L.

    1989-10-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  3. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  4. Scaled-Up Nonequilibrium Air Plasmas Generated by DC and Pulsed Discharges

    DTIC Science & Technology

    2010-09-08

    scalability of nonequilibrium plasmas produced by electrical discharges in atmospheric pressure air. Both DC and repetitively pulsed discharges ...Key results demonstrate that both DC glow discharge and pulsed transient spark generate air plasmas of required parameters. Glow discharge is easier...Corona discharge as a temperature probe was developed to diagnose the microwave torch preheated air. A new concept of the DC-driven pulsed

  5. Spark Plug Defects and Tests

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Sawyer, L G; Fonseca, E L; Dickinson, H C; Agnew, P G

    1920-01-01

    The successful operation of the spark plug depends to a large extent on the gas tightness of the plug. Part 1 of this report describes the method used for measuring the gas tightness of aviation spark plugs. Part 2 describes the methods used in testing the electrical conductivity of the insulation material when hot. Part 3 describes the testing of the cold dielectric strength of the insulation material, the resistance to mechanical shock, and the final engine test.

  6. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    NASA Technical Reports Server (NTRS)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  7. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    PubMed

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  8. Application of Microsecond Voltage Pulses for Water Disinfection by Diaphragm Electric Discharge

    NASA Astrophysics Data System (ADS)

    Kakaurov, S. V.; Suvorov, I. F.; Yudin, A. S.; Solovyova, T. L.; Kuznetsova, N. S.

    2015-11-01

    The paper presents the dependence of copper and silver ions formation on the duration of voltage pulses of diaphragm electric discharge and on the pH of treated liquid medium. Knowing it allows one to create an automatic control system to control bactericidal agent's parameters obtained in diaphragm electric discharge reactor. The current-voltage characteristic of the reactor with a horizontal to the diaphragm membrane water flow powered from the author's custom pulse voltage source is also presented. The results of studies of the power consumption of diaphragm electric discharge depending on temperature of the treated liquid medium are given.

  9. Temporal characteristics of the pulsed electric discharges in small gaps filled with hydrocarbon oil

    NASA Astrophysics Data System (ADS)

    Maradia, U.; Hollenstein, Ch; Wegener, K.

    2015-02-01

    In order to understand the role of electrode materials in electrical discharges with micro gaps (<200 µm) filled with a liquid hydrocarbon dielectric, the post-breakdown phase of low ignition voltage (100 V) and low current (<20 A) pulsed electric discharges is experimentally investigated. The electric discharge energies are selected in the range from 1 to 150 mJ. Due to the non-repetitive and transient nature of the micro-discharges, time-resolved imaging, spectroscopy and electrical analysis of single discharges are performed. The plasma-material interaction is investigated by analysing the erosion craters on anode and cathode. It is found that the electrode materials in these multiphase discharges affect the gas bubble dynamics, the transport properties of the discharge plasmas and the transition from the gaseous to metallic vapour plasma. The change in the energy fractions dissipated in the electrodes in function of the discharge time is influenced by the thermo-physical properties of the electrode materials. The simulation of craters in multiple discharge process requires consideration of the gas bubble dynamics due to different energy fractions and plasma flushing efficiencies.

  10. Decomposition of phenol by hybrid gas/liquid electrical discharge reactors with zeolite catalysts.

    PubMed

    Kusić, Hrvoje; Koprivanac, Natalija; Locke, Bruce R

    2005-10-17

    Application of hybrid gas/liquid electrical discharge reactors and a liquid phase direct electrical discharge reactor for degradation of phenol in the presence and absence of zeolites have been investigated. Hybrid gas/liquid electrical discharges involve simultaneous high voltage electrical discharges in water and in the gas phase above the water surface leading to the additional OH radicals in the liquid phase and ozone formation in the gas phase with subsequent dissolution into the liquid. The role of applied zeolites, namely NH4ZSM5, FeZSM5 and HY, were also studied. Phenol degradation and production of primary phenol by-products, catechol and hydroquinone, during the treatment were monitored by HPLC measurements. The highest phenol removal results, 89.4-93.6%, were achieved by electrical discharge in combination with FeZSM5 in all three configurations of corona reactors. These results indicate that the Fenton reaction has significant influence on overall phenol removal efficiency in the electrical discharge/FeZSM5 system due to the additional OH radical formation from hydrogen peroxide generated by the water phase discharge.

  11. Low pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, Daniel S.

    1985-01-01

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  12. Characterization of electrical discharges on Teflon dielectrics used as spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Yadlowsky, E. J.; Hazelton, R. C.; Churchill, R. J.

    1979-01-01

    The dual effects of system degradation and reduced life of synchronous-orbit satellites as a result of differential spacecraft charging underscore the need for a clearer understanding of the prevailing electrical discharge phenomena. In a laboratory simulation, the electrical discharge current, surface voltage, emitted particle fluxes, and photo-emission associated with discharge events on electron beam irradiated silver-backed Teflon samples were measured. Sample surface damage was examined with optical and electron beam microscopes. The results are suggestive of a model in which the entire sample surface is discharged by lateral sub-surface currents flowing from a charge deposition layer through a localized discharge channel to the back surface of the sample. The associated return current pulse appears to have a duration which may be a signature by which different discharge processes may be characterized.

  13. Electric Organ Discharges of Mormyrid Fish as a Possible Cue for Predatory Catfish

    NASA Astrophysics Data System (ADS)

    Hanika, S.; Kramer, B.

    During reproductive migration the electroreceptive African sharptooth catfish, Clarias gariepinus (Siluriformes), preys mainly on a weakly electric fish, the bulldog Marcusenius macrolepidotus (Mormyridae; Merron 1993). This is puzzling because the electric organ discharges of known Marcusenius species are pulses of a duration (<1ms) too short for being detected by the catfishes' low-frequency electroreceptive system (optimum sensitivity, 10-30Hz Peters and Bretschneider 1981). On the recent discovery that M. macrolepidotus males emit discharges lasting approximately ten times longer than those of females (Kramer 1997a) we determined behavioral thresholds for discharges of both sexes, using synthetic playbacks of field-recorded discharges. C. gariepinus detected M. macrolepidotus male discharges down to a field gradient of 103μVpeak-peak/cm and up to a distance of 1.5m at natural field conditions. In contrast, thresholds for female discharges were not reached with our setup, and we presume the bulldogs eaten by catfish are predominantly male.

  14. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    PubMed

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  15. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  16. Ignition and Flameholding in a Supersonic Combustor by an Electrical Discharge Combined with a Fuel Injector

    DTIC Science & Technology

    2014-01-01

    1 Ignition and Flameholding in a Supersonic Combustor by an Electrical Discharge Combined with a Fuel Injector K. V. Savelkin 1 , D. A...presents the results of an experimental study of supersonic combustor operation enhanced by an electrical discharge. A novel scheme of plasma assisted...experimental combustor with the cross section of 72 mm (width)  60 mm (height) and length of 600 mm operates at a Mach number of M=2, initial stagnation

  17. Influence of Space Propulsions and Plasma Sources on Electric-Discharge Phenomena on the ISS

    NASA Astrophysics Data System (ADS)

    Tverdokhlebova, E. M.; Korsun, A. G.; Garkusha, V. I.; Strashinsky, V. A.; Gabdullin, F. F.; Tverdokhlebov, S. O.

    2004-10-01

    The electric field generated by the high voltage solar array of the International Space Station (ISS) induces electric discharges between constructions of the Station. The intensity of these discharges is affected by the plasma environment resulting from the activity of space propulsions and other onboard plasma sources. Parameters of the plasma environment are calculated taking into account the effect of the geomagnetic field and ionizing fluxes in space.

  18. Spark Ignition: Effects of Fluid Dynamics and Electrode Geometry

    NASA Astrophysics Data System (ADS)

    Bane, Sally; Ziegler, Jack; Shepherd, Joseph

    2010-11-01

    The concept of minimum ignition energy (MIE) has traditionally formed the basis for studying ignition hazards of fuels, and standard test methods for determining the MIE use a capacitive spark discharge as the ignition source. Developing the numerical tools necessary to quantitatively predict ignition is a challenging research problem and remains primarily an experimental issue. In this work a two-dimensional model of spark discharge in air and spark ignition was developed using the non-reactive and reactive Navier-Stokes equations. The simulations were performed with three different electrode geometries to investigate the effect of the geometry on the fluid mechanics of the evolving spark kernel and on flame formation. The computational results were compared with high-speed schlieren visualization of spark and ignition kernels. It was found that the electrode geometry had a significant effect on the fluid motion following spark discharge and hence influences the ignition process and the required spark energy.

  19. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    PubMed

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  20. Simulation of partial discharges in conducting and non-conducting electrical tree structures

    NASA Astrophysics Data System (ADS)

    Champion, J. V.; Dodd, S. J.

    2001-04-01

    Electrical treeing is of interest to the electrical generation, transmission and distribution industries as it is one of the causes of insulation failure in electrical machines, switchgear and transformer bushings. Previous experimental investigations of electrical treeing in epoxy resins have found evidence that the tree structures formed were either electrically conducting or non-conducting, depending on whether the epoxy resin was in a flexible state (above its glass transition temperature) or in the glassy state (below its glass transition temperature). In this paper we extend an existing model, of partial discharges within an arbitrarily defined non-conducting electrical tree structure, to the case of electrical conducting trees. With the inclusion of tree channel conductivity, the partial discharge model could simulate successfully the experimentally observed partial discharge activity occurring in trees grown in both the flexible and glassy epoxy resins. This modelling highlights a fundamental difference in the mechanism of electrical tree growth in flexible and glassy epoxy resins. The much lower resistivities of the tree channels grown in the glassy epoxy resins may be due to conducting decomposition (carbonized) products condensing on the side walls of the existing channels, whereas, in the case of non-conducting tree channels, subsequent discharges within the main branches lead to side-wall erosion and a consequent widening of the tubules. The differing electrical characteristics of the tree tubules also have consequences for the development of diagnostic tools for the early detection of pre-breakdown phenomena.

  1. Mechanism of singlet oxygen deactivation in an electric discharge oxygen - iodine laser

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Mikheyev, P. A.; Pershin, A. A.; Torbin, A. P.; Heaven, M. C.

    2014-12-01

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O2(a 1Δ) + O3(ν) → 2O2 + O on the removal rate of O2(a 1Δ) in an electric-discharge-driven oxygen - iodine laser. This reaction has been shown to be a major channel of O2(a 1Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O2(a 1Δ) in the discharge region of the generator.

  2. Response of nickel to zinc cells to electric vehicle chopper discharge waveforms

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1981-01-01

    The preliminary results of simulated electric vehicle chopper controlled discharge of a Nickel/Zinc battery shows delivered energy increases of 5 to 25 percent compared to constant current discharges of the same average current. The percentage increase was a function of chopper frequency, the ratio of peak to average current, and the magnitude of the discharge current. Because the chopper effects are of a complex nature, electric vehicle battery/speed controller interaction must be carefully considered in vehicle design to optimize battery performance.

  3. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  4. Direct spark ignition system

    SciTech Connect

    Gann, R.A.

    1986-12-02

    This patent describes a direct spark ignition system having a gas burner, an electrically operable valve connected to the burner to admit fuel thereto, a gated oscillator having a timing circuit for timing a trial ignition, a spark generator responsive to the oscillator for igniting fuel emanating from the burner, and a flame sensor for sustaining oscillations of the oscillator while a flame exists at the burner. The spark generator has an inverter connected to a low voltage dc source and responsive to the oscillator for converting the dc voltage to a high ac voltage, a means for rectifying the high ac voltage, a capacitor connected to the rectifying means for storing the rectified high voltage, an ignition coil in series between the storage capacitor and a switch, and a means for periodically turning on the switch to produce ignition pulses through the coil. The ignition system is powered from the dc source but controlled by the oscillator. An improvement described here is wherein the inverter is comprised of a step-up transformer having its primary winding connected in series with the dc source and a common emitter transistor having its collector connected to the primary winding. The transistor has its base connected to be controlled by the oscillator to chop the dc into ac in the primary winding, and a diode connected between the storage capacitor and the collector of the transistor, the diode being poled to couple into the capacitor back EMF energy when the transistor is turned off.

  5. Electric arc discharge damage to ion thruster grids

    NASA Technical Reports Server (NTRS)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  6. High energy KrCl electric discharge laser

    DOEpatents

    Sze, R.C.; Scott, P.B.

    A high energy KrCl laser is presented for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr/sub M/ to form KrCl.

  7. High energy KrCl electric discharge laser

    DOEpatents

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  8. Closed cycle annular-return gas flow electrical discharge laser

    SciTech Connect

    Bletzinger, P.; Garscadden, A.; Hasinger, S.H.; Olson, R.A.; Sarka, B.

    1981-06-16

    A closed cycle, high repetition pulsed laser is disclosed that has a laser flow channel with an annular flow return surrounding the laser flow channel. Ultra high vacuum components and low out-gassing materials are used in the device. An externally driven axial flow fan is used for gas recirculation. A thyratron-switched lowinductance energy storage capacitor is used to provide a transverse discharge between profiled electrodes in the laser cavity.

  9. Changes in electric organ discharge after pausing the electromotor system of Gymnotus carapo.

    PubMed

    Schuster, S

    2000-05-01

    During their entire lives, weakly electric fish produce an uninterrupted train of discharges to electrolocate objects and to communicate. In an attempt to learn about activity-dependent processes that might be involved in this ability, the continuous train of discharges of intact Gymnotus carapo was experimentally interrupted to investigate how this pausing affects post-pause electric organ discharges. In particular, an analysis was conducted of how the amplitude and relative timing of the three major deflections of the complex discharge change over the course of the first 1000 post-pause discharges. The dependence of these variables on the duration of the preceding pause and on water temperature is analysed. In addition, pause-induced small reverberations at the end of the discharge are described. Common to all amplitude changes is a fast initial decrease in amplitude with a slow recovery phase; amplitude changes scale with the duration of the preceding pause and are independent of the interdischarge interval. The absence of changes in the postsynaptic-potential-derived first phase of the discharge together with changes in the amplitude ratio of the third and fourth deflections suggest that the amplitude changes are mainly due to pause-induced changes in the inner resistance of the electric organ. A model is formulated that approximates the pattern of amplitude changes. The post-pause changes described here may provide a new way to test current models of complex discharge generation in Gymnotus carapo and illustrate the speed at which changes of an electric organ discharge can take place.

  10. Comparative evaluation of electrical conductivity of hydroxyapatite ceramics densified through ramp and hold, spark plasma and post sinter Hot Isostatic Pressing routes.

    PubMed

    Buchi Suresh, M; Biswas, P; Mahender, V; Johnson, Roy

    2017-01-01

    Hydroxyapatite ceramics synthesized through sonochemical route were processed and densified through ramp & hold (R&H) and Spark Plasma Sintering (SPS) routes. The effect of processing route on the relative density and electrical conductivity were studied. Further, the samples were Hot Isostatically Pressed (HIP) under argon pressure at elevated temperature to further densify the sample. All these samples processed under different conditions were characterized by X-ray diffraction, Scanning Electron Microscopy and AC Conductivity. The samples have exhibited hydroxyapatite phase; however, microstructures exhibited distinctly different grain morphologies and grain sizes. AC impedance spectroscopic measurement was carried out on hydroxyapatite samples processed through different routes and the corresponding spectra were analyzed by the analogy to equivalent circuit involving resistors and capacitors. SPS sintered sample after HIPing has exhibited the highest conductivity. This can be attributed to the higher density in combination with finer grain sizes. Activation energy based on Arrhenius equation is calculated and the prominent conduction mechanism is proposed.

  11. Initiation of a discharge channel in water by means of electrical explosion of aluminum foil

    NASA Astrophysics Data System (ADS)

    Sil'nikov, M. V.; Krivosheev, S. I.; Kulakov, K. S.; Kulakov, S. L.

    2013-12-01

    This paper reports the results of an experimental investigation into initiation of the electric discharge in service water by means of explosion of aluminum foil having various mass and dimensions. The electric discharge was formed in a chamber with a movable wall (the piston). As an electric energy storage, the capacitor bank having the capacity C = 200-600 μF with charging voltage U 0 = 2-5 kV (stored energy Q 0 = 0.4-7.5 kJ) and the rate of rise of the discharging current dI/ dt = (3-4) × 109 A/s. The results of experiments showed that destruction (loss of conductivity) of foil occurs at the value of the integral of the current density h j = (0.3-0.65) × 109 (A2/cm4)/s. The stage of the repeated breakdown in the electric discharge occurs when the value of the intensity of the electric field along the discharge channel is of E rb ≥ 50 V/mm. Geometric dimensions and mass of the initiating conductor that provide the maximum efficiency of conversion of the value of Q 0 into kinetic energy of the piston have been determined.

  12. Electric Discharge in the Martian Atmosphere, Paschen Curves and Implications for Future Missions

    NASA Astrophysics Data System (ADS)

    Manning, Heidi L. K.; ten Kate, I. L.; Battel, S. J.; Mahaffy, P. R.

    2010-10-01

    Electric discharge between two electrically charged surfaces occurs at a well-defined, gas-dependent combination of atmospheric pressure and the distance between those two surfaces, as described by Paschen's law. The understanding of when the discharge will occur in the conditions present on Mars is essential for designing space flight hardware that will operate on the Martian surface as well as understanding electrical discharge processes occurring in the Martian atmosphere. We present experimentally measured Paschen curves for a gas mixture representative of the Martian atmosphere and compare our results to breakdown voltages of carbon dioxide, nitrogen, and helium as measured with our system and from the literature. We will discuss possible implications for instrument development as well as implications for processes in the Martian atmosphere. The DC voltage at which electric discharge occurred between two stainless steel spheres was measured at pressures from 10-2 to 100 torr in all gases. We measured a minimum voltage for discharge in the Mars ambient atmosphere of 410±10 volts at 0.3 torr cm. As an application, the breakdown properties of space-qualified, electrical wires to be used in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) were studied. H. Manning was funded in the framework of the Sample Analysis at Mars development; I. ten Kate was funded by the Goddard Center for Astrobiology.

  13. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  14. Wide-aperture electric-discharge XeCl lasers

    NASA Astrophysics Data System (ADS)

    Konovalov, Ivan; Losev, Valery F.; Liu, Jingry; Panchenko, Yury N.

    2004-05-01

    Experimental results of long-pulse generation in X-ray preionized XeCl lasers with the 9x7 cm2 and 5.4x3 cm2 apertures are described. The lasers operate in the Ne-Xe-HCl mixture with the pressure up to 4 atm. Paper-oil pulse forming lines and a rail-gap switch for the discharge pumping were used. A 3.5 and 10 J output with the optical pulse duration of 250-300 ns (FWHM) has been extracted.

  15. Electrical double layers at shock fronts in glow discharges and afterglows

    SciTech Connect

    Siefert, Nicholas S.

    2010-12-15

    This paper examines the propagation of spark-generated shockwaves (1.0discharges and their afterglow. Diagnostic methods were employed and expanded in order to capture the dynamics of the shock front in these weakly-ionized, nonmagnetized, collisional plasmas. We used a microwave hairpin resonator to measure the electron number density, and, for all cases, we measured an increase in the electron number density at the shock front. By comparing the increase in electron number density at the shock front in the active discharge and in the afterglow, we conclude that electrons with a temperature much greater than room temperature can be compressed at the shock front. The ratio of electron number density before and after the shock front can be approximately predicted using the Rankine-Hugoniot relationship. The large gradient in electron density, and hence a large gradient in the flux of charged species, created a region of space-charge separation, i.e., a double layer, at the shock front. The double layer balances the flux of charged particles on both sides of the shock front. The double layer voltage drop was measured in the current-carrying discharge using floating probes and compared with previous models. As well, we measured argon 1s{sup 5} metastable-state density and demonstrate that metastable-state neutral species can be compressed across a shock front and approximately predicted using the Rankine-Hugoniot relationship.

  16. Television image of a large upward electrical discharge above a thunderstorm system

    NASA Technical Reports Server (NTRS)

    Franz, R. C.; Nemzek, R. J.; Winckler, J. R.

    1990-01-01

    A low light-level TV camera is used to obtain an unusual image of luminous electrical discharge over a thunderstorm 250 km from the observation site. The image is presented and the discharge in the image is described. It is suggested that the image is probably due to two localized electric charge concentrations at the cloud tops. The hazard of these discharges for aircraft and rocket launches is examined. Consideration is given to the possibility that these discharges may account for unexplained photometric observations of distant lightning events that show a low rise rate of the luminous pulse and no electromagnetic sferic pulse like that in cloud-to-earth lightning strokes. The photometric events of this type that occurred on September 22-23, 1989 during hurricane Hugo are noted.

  17. Distribution of Electric Field across Shock Structure Propagating through a DC Glow Discharge

    NASA Astrophysics Data System (ADS)

    Popovic, S.; Vuskovic, L.

    1998-10-01

    A number of experiments confirmed the existence of double electric layer (DEL) due to ambipolar diffusion of electrons and ions in the shock front propagating through partially ionized gas. It was used to visualize shock shapes with an electric discharge transverse to the flow. Charge separation generated local electric field that interacted with the electric field of the discharge, to slow down the electron drift, and resulted in a decrease of luminosity along shock front. DEL effect was used to demonstrate a "bow shock generator." Voltage difference between upstream and downstream region of partially ionized gas depended on shock strength manifested in electron temperature and number density gradients. These two gradients did not necessarily coincide, and more than one DEL could be associated with the shock. Based on these facts, we derived reduced electric field distributions in a planar and oblique shock structure. We also determined the parameters and stability criteria for the regions of enhanced degree of ionization associated with DEL.

  18. Dynamic generation of supercritical water fluid in a strong electrical discharge in a liquid

    NASA Astrophysics Data System (ADS)

    Antonov, V.; Kalinin, N.; Kovalenko, A.

    2016-11-01

    A new impetus for the development of electro physics is associated with using different types of electrical discharges in biology and medicine. These applications are based on their energetic and non-toxic factors affecting the medium on a cellular level. For the study of such processes, a mathematical model of a high-current low-temperature Z-discharge in a liquid, forming by the electrical explosion of a thin-walled metal shell, connected to a pulsed high-voltage generator, has been developed. High efficiency energy conversion, introduced into the plasma discharge to the energy of fluid motion, provides various bio chemical applications of such physical processes. The investigation is conducted through numerical solution of one-dimensional single-temperature non-stationary equations of radiation magneto hydrodynamics, one way describing the evolution of hydrodynamic, thermal and electrical characteristics of the medium throughout the area under consideration. The electrical approximation based on the assumption that the electric field in the discharge has a uniform distribution. The results are presented as a function of the electric current and the plasma channel length of time, as well as the temperature and pressure distributions at different time points along the radius of the cylindrical region in which the explosion occurs.

  19. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    PubMed

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  20. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    NASA Astrophysics Data System (ADS)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  1. Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow

    NASA Astrophysics Data System (ADS)

    Leonov, Sergey B.; Adamovich, Igor V.; Soloviev, Victor R.

    2016-12-01

    The main focus of the review is on dynamics and kinetics of near-surface discharge plasmas, such as surface dielectric barrier discharges sustained by AC and repetitively pulsed waveforms, pulsed DC discharges, and quasi-DC discharges, generated in quiescent air and in the airflow. A number of technical issues related to plasma flow control applications are discussed in detail, including discharge development via surface ionization waves, charge transport and accumulation on dielectric surface, discharge contraction, different types of flow perturbations generated by surface discharges, and effect of high-speed flow on discharge dynamics. In the first part of the manuscript, plasma morphology and results of electrical and optical emission spectroscopy measurements are discussed. Particular attention is paid to dynamics of surface charge accumulation and dissipation, both in diffuse discharges and during development of ionization instabilities resulting in discharge contraction. Contraction leads to significant increase of both the surface area of charge accumulation and the energy coupled to the plasma. The use of alternating polarity pulse waveforms accelerates contraction of surface dielectric barrier discharges and formation of filamentary plasmas. The second part discusses the interaction of discharge plasmas with quiescent air and the external airflow. Four major types of flow perturbations have been identified: (1) low-speed near-surface jets generated by electrohydrodynamic interaction (ion wind); (2) spanwise and streamwise vortices formed by both electrohydrodynamic and thermal effects; (3) weak shock waves produced by rapid heating in pulsed discharges on sub-microsecond time scale; and (4) near-surface localized stochastic perturbations, on sub-millisecond time, detected only recently. The mechanism of plasma-flow interaction remains not fully understood, especially in filamentary surface dielectric barrier discharges. Localized quasi-DC surface

  2. Optical Characteristics of Cuinse2 Nanocrystals Synthesized by Electric Discharge in Ethanol

    NASA Astrophysics Data System (ADS)

    Burakov, V. S.; Nedelko, M. I.; Tarasenko, N. V.

    2016-01-01

    The optical characteristics of CuInSe 2 nanocrystals synthesized by electric discharged treatment of a stoichiometric mixture of copper, indium, and selenium powders in ethanol are discussed. The forbidden band width for the particles produced in various discharge regimes was determined by analysis of the absorption spectra. Data on the effect of laser radiation on the variation of the optical characteristics of the nanoparticles are presented.

  3. Modelling of Current Density Redistribution in Hollow Needle to Plate Electrical Discharge Designed for Ozone Generation

    NASA Astrophysics Data System (ADS)

    Kriha, Vitezslav

    2003-10-01

    Non-thermal plasma of atmospheric pressure electrical discharges in flowing air can be used to generation of ozone. We have been observed two modes of discharge burning in a hollow needle to plane electrodes configuration studied in the ozone generation experiments: A low current diffuse mode is characterized by increasing of the ozone production with the discharge current; a high current filamentary mode is disadvantageous for the ozone generation(the ozone production decreases when the discharge current increases). A possible interpretation of this effect is following: The filamentary mode discharge current density is redistributed and high current densities in filaments cores lead to degradation of the ozone generation. Local fields in the discharge can be modified by charged metallic and/or dielectric components (passive modulators) in the discharge space. An interactive numerical model has been developed for this purpose. This model is based on Ferguson's polynomial objects for both the discharge chamber scene modelling and the discharge fields analyzing. This approach allows intuitive modifications of modulators shapes and positions in 3D scene followed by quantitative comparison of the current density distribution with previous configurations.

  4. Subthreshold electrical stimulation reduces motor unit discharge variability and decreases the force fluctuations of plantar flexion.

    PubMed

    Kouzaki, Motoki; Kimura, Tetsuya; Yoshitake, Yasuhide; Hayashi, Tatsuya; Moritani, Toshio

    2012-04-04

    The purpose of this study was to examine the influence of subthreshold electrical stimulation on the force fluctuations and motor-unit discharge variability during low-level, steady contraction of the plantar flexor muscles. Seven subjects performed a force-matching task of isometric plantar flexion at 5% of maximal voluntary contraction with and without random electrical stimulation applied to the tibial nerve. During the task, the motor unit action potential was continuously recorded with fine-wire electrodes, and the inter-spike intervals of a single motor unit were calculated. The coefficient of variation (CV) of the force fluctuations and the inter-spike intervals of the motor unit discharge were significantly decreased by the intervention of subthreshold electrical stimulation, although there were no changes in the mean values. These results suggest that subthreshold stimulation reduced the motor-unit discharge variability, which in turn, increased the steadiness of the force.

  5. Short-pulsed, electric-discharge degradation of toxic and sludge wastes

    SciTech Connect

    Rosocha, L.A.; Bystritskii, V.M.; Wessel, F.J.

    1998-12-01

    This is the final report of a three-year, Directed Research and Development (LDRD) project funded by the Los Alamos National Laboratory (LANL). The project was a collaborative effort with the University of California at Irvine (UCI), which was the lead project performer. Short-pulse, electric-discharge streamers were used to degrade aromatic and chlorinated compounds in water aerosols. An atomizer supplies 10--50 {micro}m aerosol droplets to a discharge chamber containing thin wires that are driven by electric pulses of 50--90 kV amplitude, 50--150 ns pulse duration, and 100 Hz repetition rate. The combination of a high electric field, large H{sub 2}O dielectric constant and atomization provide efficient degradation of organic molecules including: paranitrophenol, di-chlorophenol and perchloroethylene. The specific energy input for degradation of a pollutant molecule depends on the particular compound, its concentration, and the operational parameters of the discharge.

  6. Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds

    NASA Technical Reports Server (NTRS)

    Jarzembski, M. A.; Srivastava, V.

    1995-01-01

    Recently, extremely interesting high-altitude cloud-ionosphere electrical discharges, like lightning above thunderstorms, have been observed from NASA's space shuttle missions and during airborne and ground-based experiments. To understand these discharges, a new experiment was conceived to simulate a thundercloud in a vacuum chamber using a dielectric in particulate form into which electrodes were inserted to create charge centers analogous to those in an electrified cloud. To represent the ionosphere, a conducting medium (metallic plate) was introduced at the top of the chamber. It was found that for different pressures between approximately 1 and 300 mb, corresponding to various upper atmospheric altitudes, different discharges occurred above the simulated thundercloud, and these bore a remarkable similarity to the observed atmospheric phenomena. At pressures greater than 300 mb, these discharges were rare and only discharges within the simulated thundercloud were observed. Use of a particulate dielectric was critical for the successful simulation of the high-altitude lightning.

  7. A tomographic visualization of electric discharge sound fields in atmospheric pressure plasma using laser diffraction

    NASA Astrophysics Data System (ADS)

    Nakamiya, Toshiyuki; Mitsugi, Fumiaki; Iwasaki, Yoichiro; Ikegami, Tomoaki; Tsuda, Ryoichi; Sonoda, Yoshito; Danuta Stryczewska, Henryka

    2013-02-01

    The phase modulation of transparent gas can be detected using Fraunhofer diffraction technique, which we call optical wave microphone (OWM). The OWM is suitable for the detection of sonic wave from audible sound to ultrasonic wave. Because this technique has no influence on sound field or electric field during the measurement, we have applied it to the sound detection for the electric discharges. There is almost no research paper that uses the discharge sound to examine the electrical discharge phenomenon. Two-dimensional visualization of the sound field using the OWM is also possible when the computerized tomography (CT) is combined. In this work, coplanar dielectric barrier discharge sin different gases of Ar, N2, He were characterized via the OWM as well as applied voltage and discharge current. This is the first report to investigate the influence of the type of the atmospheric gas on the two-dimensional sound field distribution for the coplanar dielectric barrier discharge using the OWM with CT. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  8. Effects of mixing on post-discharge modeling of ElectricOIL experiments

    NASA Astrophysics Data System (ADS)

    Palla, Andrew D.; Carroll, David L.; Verdeyen, Joseph T.; Solomon, Wayne C.

    2006-02-01

    In an electric discharge Oxygen-Iodine laser (ElectricOIL), the desired O II(a1Δ) is produced using a low-to-medium pressure electric discharge. The discharge production of atomic oxygen, ozone, and other excited species adds higher levels of complexity to the post-discharge kinetics which are not encountered in a classic purely chemical O II(a1-Δ) generation system. Mixing effects are also present. In this paper we present post-discharge modeling results obtained using a modified version of the Blaze-II gas laser code. A 28 specie, 105 reaction chemical kinetic reaction set for the post-discharge kinetics is presented. Calculations were performed to ascertain the impact of a two stream mixing mechanism on the numerical model and to study gain as a function of reactant mass flow rates. The calculations were compared with experimental data. Agreement with experimental data was improved with the addition of new kinetics and the mixing mechanism.

  9. High Specific Energy Pulsed Electric Discharge Laser Research.

    DTIC Science & Technology

    1975-12-01

    drop out excess water, filtered, dried, filtered again, and then pumped up to the storage bottle pressure (Fig. 47). At the exit of the high...pressure pump, an oil filter was used to remove any oil that may have been introduced by the compressor. Bottles were pumped up to 2000 psig...Lowder, R. S. , "Air-Combustion Product N2-C02 Electric Laser, " J. Appl. Phys. Lett. 26, 373 (1975). 5. Miller, D. J. and Millikan , R. C

  10. Electron density measurements in a photoinitiated, impulse-enhanced, electrically excited laser gas discharge

    NASA Astrophysics Data System (ADS)

    Seguin, V. A.; Seguin, H. J. J.; Capjack, C. E.; Nikumb, S. K.

    1986-11-01

    Measurements of the electron density within a photo-initiated, impulse-enhanced, electrically excited (PIE) laser gas discharge are presented. Ion current measurements were made using a single Langmuir electrostatic probe positioned within the laser discharge volume. Calculations of the electron density were made utilizing a thick-sheath analysis. The results indicate that the electron density increases by two orders of magnitude as the pulser power level is increased. In addition, the electron density was observed to decrease markedly as the dc discharge current was increased.

  11. XVIIth international symposium on discharges and electrical insulation in vacuum. Volume 1 and 2

    SciTech Connect

    1996-12-31

    This is the proceedings of the XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, held in Berkeley, CA, July 21-26, 1996. Papers were presented in the following areas: vacuum breakdown and prebreakdown phenomena; vacuum arcs; switching in vacuum; surface flashover; vacuum insulation including magnetic insulation, accelerators, and others; high current diodes, intense particle beams, and vacuum arc ion sources; discharges in the space environment; arcing in controlled fusion devices; emission processes and electrode phenomena; cathodic arc deposition; pseudospark discharges; industrial applications. Separate abstracts have been indexed into the database for some articles from this proceedings.

  12. Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Anpilov, A. M.; Barkhudarov, E. M.; Bark, Yu B.; Zadiraka, Yu V.; Christofi, M.; Kozlov, Yu N.; Kossyi, I. A.; Kop'ev, V. A.; Silakov, V. P.; Taktakishvili, M. I.; Temchin, S. M.

    2001-03-01

    Results are presented from investigations of multispark electric discharge in water excited along multielectrode metal-dielectric systems with gas supply into the interelectrode gaps. The intensity distribution of discharge radiation in the region covering the biologically active soft UV (190≤λ≤430 nm) has been determined and the absolute number of quanta in this wavelength interval has been measured. The potentiality of the slipping surface discharge in water for its disinfection is analysed. The energy expenditure for water cleansing is estimated to be as low as ~10-4 kWh l-1.

  13. Relativistic electrons from sparks in the laboratory

    NASA Astrophysics Data System (ADS)

    Østgaard, N.; Carlson, B. E.; Nisi, R. S.; Gjesteland, T.; Grøndahl, Ø.; Skeltved, A.; Lehtinen, N. G.; Mezentsev, A.; Marisaldi, M.; Kochkin, P.

    2016-03-01

    Discharge experiments were carried out at the Eindhoven University of Technology in 2013. The experimental setup was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the high voltage (HV) electrode. Five thin (1 mm) plastic detectors (5 cm2 each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers is developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated at this location, that could be in the strong electric field from counterstreamers of opposite polarity. Comparing our measurements with modeling results, we find that ˜300 keV electrons produced about 30-60 cm from the negative electrode are the most likely source of our measurements. A statistical analysis of expected detection of photon bursts by these fiber detectors indicates that only 20%-45% of the detected bursts could be from soft (˜10 keV) photons, which further supports that the majority of detected bursts are produced by relativistic electrons.

  14. Relativistic electrons from sparks in the laboratory.

    PubMed

    Østgaard, N; Carlson, B E; Nisi, R S; Gjesteland, T; Grøndahl, Ø; Skeltved, A; Lehtinen, N G; Mezentsev, A; Marisaldi, M; Kochkin, P

    2016-03-27

    Discharge experiments were carried out at the Eindhoven University of Technology in 2013. The experimental setup was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the high voltage (HV) electrode. Five thin (1 mm) plastic detectors (5 cm(2) each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers is developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated at this location, that could be in the strong electric field from counterstreamers of opposite polarity. Comparing our measurements with modeling results, we find that ∼300 keV electrons produced about 30-60 cm from the negative electrode are the most likely source of our measurements. A statistical analysis of expected detection of photon bursts by these fiber detectors indicates that only 20%-45% of the detected bursts could be from soft (∼10 keV) photons, which further supports that the majority of detected bursts are produced by relativistic electrons.

  15. Transverse-type laser assembly using induced electrical discharge excitation and method

    DOEpatents

    Ault, Earl R.

    1994-01-01

    A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase.

  16. Transverse-type laser assembly using induced electrical discharge excitation and method

    DOEpatents

    Ault, E.R.

    1994-04-19

    A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase. 3 figures.

  17. Vibrator improves spark erosion cutting process

    NASA Technical Reports Server (NTRS)

    Thrall, L. R.

    1966-01-01

    Variable frequency mechanical vibrator improves spark erosion cutting process. The vibration of the cutting tip permits continual flushing away of residue around the cut area with nondestructive electric transformer oil during the cutting process.

  18. Plasma rotation by electric and magnetic fields in a discharge cylinder

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  19. Gas temperature layer visualization in hypersonic shock tunnel using electric discharge

    NASA Astrophysics Data System (ADS)

    Jagadeesh, Gopalan; Nagashetty, K.; Srinivasa Rao, B. R.; Reddy, K. P. J.

    2001-04-01

    A novel technique for visualizing the gas temperature layer around bodies flying at hypersonic speeds is presented. The high temperature zone is visualized by photographing the light emitted from the electric discharge generated over a model exposed to hypersonic flow in a shock tunnel. The technique is based on electrical discharge phenomena, where the frequency of radiation emitted by the discharge path passing through the flow field varies with the temperature of the gas medium in the discharge path. The experiments are carried out in the Indian Institute of Science (IISc), Bangalore, India, hypersonic shock tunnel HST-1 at a nominal Mach number of 5.75 using helium as the driver gas, with free stream velocity of 1.38 km/s and free stream molecular density of 2.3396 X 1016 molecules/cm3. The electric discharge is generated across a line electrode embedded in the model surface and a point electrode suspended in the free stream. A high voltage discharge device (1.6 kV and 1 A) along with a micro-controller based pulse delay control module is integrated with the shock tunnel for generating and controlling electric discharge which lasts for approximately 2 microseconds. The gas temperature layer at zero angle of incidence around a flat plate and slightly blunted (5 mm bluntness radius) 20 degree apex angle slender cone model are visualized in this study. The visualized thickness of the high temperature layer around the flat plate is approximately 2 mm, which agrees well with numerical simulation, carried out using 2-D Navier-Stokes equations.

  20. Classification of atmospheric discharges according to patterns of the near-surface electric field disturbances

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, Hripsime; Chilingarian, Ashot

    2016-04-01

    Registration of near surface electric field associated with thunderstorms and lightning are performed 24 h daily and 12 months yearly in three different locations of the Aragats Space Environmental Center. Such measurements have been used previously to understand charge distribution in the thundercloud. "Stormy" patterns of disturbances of the near surface electric field are attributed to different types of atmospheric discharges: negative or positive, intracloud or cloud to ground. In the presented report we discuss the patterns of the lightning occurrences as measured by the network of the electric mills located on the earth's surface, differences of positive and negative flashes and shapes of the recovery curves using data from a stormy day on Aragats - May 23, 2015. Our observations show that after- lightning near surface electric field recovery curves besides exponential shape sometimes has a form of power law or linear dependence. Positive discharges are stronger and have shorter duration comparing with negative ones.

  1. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  2. Bibliography and author index for electrical discharges in vacuum (1897 to 1980)

    SciTech Connect

    Miller, H.C.

    1982-01-29

    This bibliography covers the field of electrical discharges in vacuum, comprising both electrical breakdown in vacuum and vacuum arcs. A brief review section lists some review papers which would be helpful to the novice in this field. The bulk of the paper consists of bibliographic listings, arranged by year of publication and within each year, alphabetically by first author. An author index refers one to all papers authored or coauthored by a particular person. There are 2450 papers listed through December 1980.

  3. Wire Electrical Discharge Truing of Metal Bond Diamond Grinding Wheels

    SciTech Connect

    McSpadden, SB

    2002-01-24

    Cylindrical wire EDM profile truing of the metal bond diamond wheel for precision form grinding of ceramics is presented in this report. First a corrosion-resistant, precise spindle with the high-electrical current capability for wire EDM truing of grinding wheel was fabricated. An arc profile was adopted in order to determine form tolerances capabilities of this process. Results show the wire EDM process can generate {micro}m-scale precision form on the diamond wheel efficiently. The wheel, after truing, was used to grind silicon nitride. Grinding forces, surface finish of ground components, and wheel wear were measured. The EDM trued wheel showed a reduction in grinding force from that of the stick dressed wheel. Surface finishes between the two truing methods were similar. In the beginning of the grinding, significant wheel wear rate was identified. The subsequent wheel wear rate stabilized and became considerably lower.

  4. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments

    PubMed Central

    Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf , Marc

    2017-01-01

    Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning. PMID:28053312

  5. Low-dielectric layer increases nanosecond electric discharges in distilled water

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Cha, Min Suk

    2016-10-01

    Electric discharge in liquids is an emerging field of research, and is involved into various environmental applications (water purification, fuel reforming, nanomaterial synthesis, etc.). Increasing the treatment efficiency with simultaneous decreasing of the energy consumption are the main goals of today's research. Here we present an experimental study of nanosecond discharge in distilled water covered by a layer of dielectric material. We demonstrate through this paper that the discharge efficiency can be improved by changing the interface position regarding the anode tip. The efficiency increase is due to the increase of the discharge probability as well as the plasma volume. The understanding of the experimental results is brought and strengthened by simulating the electric field distribution, using Comsol Multiphysics software. Because the dielectric permittivity ( ɛ ) is discontinuous at the interface, the electric field is enhanced by a factor that depends on the relative value of ɛ of the two liquids. The present result is very promising in future: opportunities for potential applications as well as fundamental studies for discharges in liquid.

  6. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments

    NASA Astrophysics Data System (ADS)

    Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf, Marc

    2017-01-01

    Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning.

  7. Electric-discharge contour-dynamics model: the effects of curvature and finite conductivity.

    PubMed

    Arrayás, M; Fontelos, M A

    2011-08-01

    In this paper we present the complete derivation of the effective contour model for electrical discharges which appears as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, when the electron diffusion is small. It consists of two integro-differential equations defined at the boundary of the plasma region: one for the motion and a second equation for the net charge density at the interface. We have computed explicit solutions with cylindrical symmetry and found the dispersion relation for small symmetry-breaking perturbations in the case of finite resistivity. We implement a numerical procedure to solve our model in general situations. As a result we compute the dispersion relation for the cylindrical case and compare it with the analytical predictions. Comparisons with experimental data for a 2D positive streamers discharge are provided and predictions confirmed.

  8. Mechanism of singlet oxygen deactivation in an electric discharge oxygen – iodine laser

    SciTech Connect

    Azyazov, V N; Mikheyev, P A; Torbin, A P; Pershin, A A; Heaven, M C

    2014-12-31

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O{sub 2}(a {sup 1}Δ) + O{sub 3}(ν) → 2O{sub 2} + O on the removal rate of O{sub 2}(a {sup 1}Δ) in an electric-discharge-driven oxygen – iodine laser. This reaction has been shown to be a major channel of O{sub 2}(a {sup 1}Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O{sub 2}(a {sup 1}Δ) in the discharge region of the generator. (lasers)

  9. EPA Announces National Limits to Reduce Toxic Pollutants Discharged into Waterways by Steam Electric Power Plants

    EPA Pesticide Factsheets

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) today finalized a rule that will reduce the discharge of toxic pollutants into America's waterways from steam electric power plants by 1.4 billion pounds annually, as well as reduce water w

  10. Physics of Electrical Discharges is a Profound and an Extensive World

    NASA Astrophysics Data System (ADS)

    Yumoto, Motoshige

    Three topics related to the field of the technical committee on electrical discharges (TC-ED) are summarized for this special issue. First one deals with the protection against the lightning damages. As the second one, a prototype high voltage vacuum interrupter is introduced. The last one shows the problem on the electromagnetic relays.

  11. Numerical simulations of electrical asymmetry effect on electronegative plasmas in capacitively coupled rf discharge

    SciTech Connect

    Zhang Quanzhi; Jiang Wei; Wang Younian; Hou Lujing

    2011-01-01

    Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled radio-frequency (CCRF) discharges, was discovered theoretically by Heil et al. [J. Phys. D: Appl. Phys. 41, 165202 (2008)] and was confirmed by experiments and theory/numerical simulations later on for electropositive argon discharges. In this work simulations based on particle-in-cell/Monte Carlo collision are performed to study the EAE on electronegative oxygen plasmas in geometrically symmetric CCRF discharges. Dual frequency discharges operating at 13.56 and 27.12 MHz are simulated for different pressures and the results are compared with those of electropositive argon discharges at the same conditions. It is found that in general the EAE on oxygen discharges has similar behavior as on argon discharge: The self-bias voltage {eta} increases monotonically and almost linearly with the increase in the phase angle {theta} between the two driving voltages in the range 0<{theta}<90 deg. , and the maximum ion energy varies by a factor of 3 by adjusting {theta}. However, the ion flux varies with {theta} by {+-}12% for low pressure and by {+-}15% for higher pressure, due primarily to an enhanced plasma series resonance, which then leads to dramatic changes in plasma density, power absorption and consequently the electronegativity. This may place a limitation for achieving separate control of ion energy and flux for electronegative plasma via the EAE.

  12. An investigation of the reduction of carbon dioxide in a silent electric discharge

    NASA Technical Reports Server (NTRS)

    Luce, R. S.; Greenough, B. (Editor)

    1978-01-01

    The reduction of CO2 to O2 and CO in a silent electric discharge was studied. It was found that current alone (in the ionized plasma induced by the silent electric discharge) was reponsible for the CO2 reduction process. Voltage and frequency were important only in so far as they induced current in the plasma. Pressure and temperature were of minimum influence in the process. The large power consumption in the process was recognized as resulting from the low power factor of the reactor vessel which electrically behaved like a capacitor. The power factor was subsequently improved by adding an inductive element to make the reactor vessel capacitance part of a resonant circuit. It was found that the CO2 reduction process was most efficient in terms of power vs reduction rate when a voltage was employed that was only slightly higher than that needed to induce the plasma.

  13. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  14. Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps

    DOEpatents

    Thayer, III, William J.

    1990-01-01

    A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.

  15. Electrical discharge phenomena application for solid fossil fuels in-situ conversion

    NASA Astrophysics Data System (ADS)

    Bukharkin, A. A.; Lopatin, V. V.; Martemyanov, S. M.; Koryashov, I. A.

    2014-11-01

    The application of high voltage to oil shale initiates partial discharges (PDs) with the following treeing like in insulating dielectrics. Critical PDs and treeing with a high propagation rate occur under the low electrical intensity ~102 V/cm due to oil shale's high porosity, heterogeneity and anisotropy. The completed discharge occurs as a result of these phenomena. Carbonization is initiated around a plasma channel at the treeing stage and extended during electromagnetic action time. Carbonized rock electrical resistance decreases by 8÷10 degrees to 10 ohm·cm, and shale and coal could be heated by Joule heat in carbonized volume and discharge plasma. A high-current supply is necessary for this heating stage. Also, a high- voltage supply with steep-grade characteristics can be used for PDs and treeing initiating and heating the carbonized rock with low resistance. Thus, these phenomena allow in-situ processing in order to produce a flammable gas and synthetic oil from inferior solid fossil fuels by pyrolytic conversion. Computations show that the ratio between energy derived from gas flaming and energy for shale conversion is more than fifty. Therefore, oil shale conversion with the help of electrical discharge phenomena application can be very efficient, as it needs little energy.

  16. Television image of a large upward electrical discharge above a thunderstorm system.

    PubMed

    Franz, R C; Nemzek, R J; Winckler, J R

    1990-07-06

    An image of an unusual luminous electrical discharge over a thunderstorm 250 kilometers from the observing site has been obtained with a low-light-level television camera. The discharge began at the cloud tops at 14 kilometers and extended into the clear air 20 kilometers higher. The image, which had a duration of less than 30 milliseconds,resembled two jets or fountains and was probably caused by two localizd electric charge concentrations at the cloud tops. Large upward discharges may create a hazard for aircraft and rocket launches and, by penetrating into the ionosphere, may initiate whistler waves and other effects on a magnetospheric scale. Such upward electrical discharges may account for unexplained photometric observations of distant lightning events that showed a low rise rate of the luminous pulse and no electromagnetic sferic pulse of the type that accompanies cloud-to-earth lightning strokes. An unusually high rate of such photometric events was recorded during the night of 22 to 23 September 1989 during a storm associated with hurricane Hugo.

  17. Measurement and simulation of partial discharge in oil impregnated pressboard with an electrical aging process

    NASA Astrophysics Data System (ADS)

    Li, Junhao; Si, Wenrong; Yao, Xiu; Li, Yanming

    2009-10-01

    The continuous test on oil impregnated pressboard insulation with internal void defect was developed and the phase resolved partial discharge (PRPD) pattern of partial discharge (PD) signals during the electrical aging process was measured. Two different void structures which have different void volume were used in this experiment. It shows that the PD pattern could be classified into five stages and a great diversity in the first four stages is observed. The larger void volume leads to larger PD magnitude. The computer numerical simulation model which is based on a physical discharge process was used and the causes of PD pattern change were interpreted by comparison with computer numerical simulation results. The initial values and change tendency of gas pressure and surface conductivity were determined through experiment. The model parameters in different stages have been studied as well as the insight into the physical changes in the void during electrical aging. The results provide rules for the identification of the electrical aging stage through the partial discharge measurements.

  18. Self-Consolidation Mechanism of Nanostructured Ti5Si3 Compact Induced by Electrical Discharge

    PubMed Central

    Lee, W. H.; Cheon, Y. W.; Jo, Y. H.; Seong, J. G.; Jo, Y. J.; Kim, Y. H.; Noh, M. S.; Jeong, H. G.; Van Tyne, C. J.; Chang, S. Y.

    2015-01-01

    Electrical discharge using a capacitance of 450 μF at 7.0 and 8.0 kJ input energies was applied to mechanical alloyed Ti5Si3 powder without applying any external pressure. A solid bulk of nanostructured Ti5Si3 with no compositional deviation was obtained in times as short as 159 μsec by the discharge. During an electrical discharge, the heat generated is the required parameter possibly to melt the Ti5Si3 particles and the pinch force can pressurize the melted powder without allowing the formation of pores. Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3 compact. Three stepped processes during an electrical discharge for the formation of nanostructured Ti5Si3 compact are proposed: (a) a physical breakdown of the surface oxide of Ti5Si3 powder particles, (b) melting and condensation of Ti5Si3 powder by the heat and pinch pressure, respectively, and (c) rapid cooling for the preservation of nanostructure. Complete conversion yielding a single phase Ti5Si3 is primarily dominated by the solid-liquid mechanism. PMID:25884039

  19. Indirect determination of the electric field in plasma discharges using laser-induced fluorescence spectroscopy

    SciTech Connect

    Vaudolon, J. Mazouffre, S.

    2014-09-15

    The evaluation of electric fields is of prime interest for the description of plasma characteristics. In this work, different methods for determining the electric field profile in low-pressure discharges using one- and two-dimensional Laser-Induced Fluorescence (LIF) measurements are presented and discussed. The energy conservation, fluid, and kinetic approaches appear to be well-suited for the electric field evaluation in this region of the plasma flow. However, the numerical complexity of a two-dimensional kinetic model is penalizing due to the limited signal-to-noise ratio that can be achieved, making the computation of the electric field subject to large error bars. The ionization contribution which appears in the fluid model makes it unattractive on an experimental viewpoint. The energy conservation and 1D1V kinetic approaches should therefore be preferred for the determination of the electric field when LIF data are used.

  20. Measurement and modeling of electric field and space-charge distributions in obstructed helium discharge

    NASA Astrophysics Data System (ADS)

    Fendel, Peter; Ganguly, Biswa N.; Bletzinger, Peter

    2015-08-01

    Axial and radial variations of electric field have been measured in dielectric shielded 0.025 m diameter parallel plate electrode with 0.0065 m gap for 1.6 mA, 2260 V helium dc discharge at 1.75 Torr. The axial and radial electric field profiles have been measured from the Stark splitting of 21S→11 1P transition through collision induced fluorescence from 43D→23P. The electric field values showed a strong radial variation peaking to 500 kV/m near the cathode radial boundary, and decreasing to about 100 kV/m near the anode edge, suggesting the formation of an obstructed discharge for this low nd condition, where n is the gas density and d is the gap distance. The off-axis Stark spectra showed that the electric field vector deviates from normal to the cathode surface which permits longer path electron trajectories in the inter-electrode gap. Also, the on-axis electric field gradient was very small and off-axis electric field gradient was large indicating a radially non-uniform current density. In order to obtain information about the space charge distribution in this obstructed discharge, it was modeled using the 2-d axisymmetric Poisson solver with the COMSOL finite element modeling program. The best fit to the measured electric field distribution was obtained with a space charge variation of ρ(r) = ρ0(r/r0)3, where ρ(r) is the local space charge density, ρ0 = 6 × 10-3 Coulomb/m3, r is the local radial value, and r0 is the radius of the electrode.

  1. Measurement and modeling of electric field and space-charge distributions in obstructed helium discharge

    SciTech Connect

    Fendel, Peter; Ganguly, Biswa N.; Bletzinger, Peter

    2015-08-15

    Axial and radial variations of electric field have been measured in dielectric shielded 0.025 m diameter parallel plate electrode with 0.0065 m gap for 1.6 mA, 2260 V helium dc discharge at 1.75 Torr. The axial and radial electric field profiles have been measured from the Stark splitting of 2{sup 1}S→11 {sup 1}P transition through collision induced fluorescence from 4{sup 3}D→2{sup 3}P. The electric field values showed a strong radial variation peaking to 500 kV/m near the cathode radial boundary, and decreasing to about 100 kV/m near the anode edge, suggesting the formation of an obstructed discharge for this low nd condition, where n is the gas density and d is the gap distance. The off-axis Stark spectra showed that the electric field vector deviates from normal to the cathode surface which permits longer path electron trajectories in the inter-electrode gap. Also, the on-axis electric field gradient was very small and off-axis electric field gradient was large indicating a radially non-uniform current density. In order to obtain information about the space charge distribution in this obstructed discharge, it was modeled using the 2-d axisymmetric Poisson solver with the COMSOL finite element modeling program. The best fit to the measured electric field distribution was obtained with a space charge variation of ρ(r) = ρ{sub 0}(r/r{sub 0}){sup 3}, where ρ(r) is the local space charge density, ρ{sub 0} = 6 × 10{sup −3} Coulomb/m{sup 3}, r is the local radial value, and r{sub 0} is the radius of the electrode.

  2. Simple spark erosion device based on optical disk or hard disk drive actuators.

    PubMed

    Kamer, O

    2011-12-01

    We present the design of a compact electric discharge device incorporating hard disk or optical disk drive actuators. It is simple enough to be assembled in the absence of a mechanical workshop. The electronic circuit allows the adjustment of current, voltage, and discharge power. The system has been tested with organic dielectric liquids and deionized water and spark conditions; dynamic properties and machining characteristics were investigated. This device can be used to shape materials or to produce powdered samples with low material loss and minimal liquid consumption.

  3. What makes a good spark plug?

    NASA Astrophysics Data System (ADS)

    Yu, Andrew

    2006-05-01

    The quality and condition of spark plugs play a key role in achieving peak efficiency of a gasoline internal combustion engine. Since the first mass-produced spark plug, the design has remained constant, but the materials used in making them have changed. The original copper and nickel center and ground electrodes have been replaced with materials such as platinum and iridium. I will study the thermal and electrical conductivity and resistance to corrosion of a variety of spark plugs, and compare their performance to manufacturer's claims.

  4. Optical and electrical investigation of a cylindrical diffuse-discharge chamber

    SciTech Connect

    Teng, Yun; Li, Lee Cheng, Yong; Ma, Ning; Peng, Ming-yang; Liu, Ming-hai

    2015-03-15

    More and more attention has been attached to atmospheric-pressure air diffuse plasma due to its enormous potential applications. In this paper, we designed a large-scale, cylindrical diffuse-plasma chamber using wire electrodes and a repetitive nanosecond pulse generator. The plasma chamber can be completely exposed in the open air without any barrier dielectric, and the length of cylindrical plasma chamber was extensible. Using optical and electrical measurements, we investigated the effects of electrode distance, electrode length, pulse repetition frequency, and electrode angle on the uniformity of discharge space. Four discharge regions were distinguished based on different spectral characteristics. Additionally, it was found that the discharge uniformity was improved as the electrode distance decreases, but remained almost constant with the variations of electrode length and pulse repetition frequency. Both of the plasma uniformity and the power density increased significantly as the electrode angle reduced.

  5. Effects of the roughness characteristics on the wire tool surface for the electrical discharge machining properties

    SciTech Connect

    Fukuzawa, Yasushi; Yamashita, Masahide; Mamuro, Hiroaki; Yamashita, Ken; Ogata, Masayoshi

    2011-01-17

    Wire electrical discharge machining (WEDM) has been investigated to obtain the better discharge machining properties of the removal rate and the surface roughness in a few decades. Recently, it revealed that the rough tool electrodes can improve the WEDM properties for some sort of materials. In this study, the rough wire electrodes using a wet blasting method was developed and evaluated the machining performance for the insulated Si{sub 3}N{sub 4} in the WEDM processes. As the results, it could not recognize the advantage of roughness wire electrode under the high-energy condition, but it found that the electro-conductive layer thickness became thinner in comparison with those of normal wires. On the contrary, it could be obtained the better surface roughness in the low energy condition. It was supposed that the roughed wire surface generates the homogeneous dispersion discharges on the workpiece.

  6. Profuse activity of blue electrical discharges at the tops of thunderstorms

    NASA Astrophysics Data System (ADS)

    Chanrion, Olivier; Neubert, Torsten; Mogensen, Andreas; Yair, Yoav; Stendel, Martin; Singh, Rajesh; Siingh, Devendraa

    2017-01-01

    Thunderstorm clouds may reach the lower stratosphere, affecting the exchange of greenhouse gases between the troposphere and stratosphere. This region of the atmosphere is difficult to access experimentally, and our knowledge of the processes taking place here is incomplete. We recently recorded color video footage of thunderstorms over the Bay of Bengal from the International Space Station. The observations show a multitude of blue, kilometer-scale, discharges at the cloud top layer at 18 km altitude and a pulsating blue discharge propagating into the stratosphere reaching 40 km altitude. The emissions are related to the so-called blue jets, blue starters, and possibly pixies. The observations are the first of their kind and give a new perspective on the electrical activity at the top of tropical thunderstorms; further, they underscore that thunderstorm discharges directly perturb the chemistry of the stratosphere with possible implications for the Earth's radiation balance.

  7. Limitation of the output power of cw electric-discharge CO{sub 2} lasers

    SciTech Connect

    Nevdakh, Vladimir V

    1999-04-30

    The output power of a sealed-off tunable cw CO{sub 2} laser was optimised. The dependences of the small-signal gain for the 10P(20) line and of the output powers for different transmittances of the cavity on the discharge current were determined. The distributed loss coefficient and the saturation parameter were measured. The saturation parameter increased continuously with increase in the discharge current, leading to a mismatch between the output power and gain maxima. It was established that the principal factor limiting the output power of cw electric-discharge CO{sub 2} lasers is not an increase in the temperature of the active medium but the dissociation of CO{sub 2} molecules. When the latter is minimised in order to achieve the maximum laser power, low gas temperatures are not required. (lasers)

  8. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  9. The roles of ozone and zeolite on reactive dye degradation in electrical discharge reactors.

    PubMed

    Peternel, L; Kusic, H; Koprivanac, N; Locke, B R

    2006-05-01

    In this study high voltage pulsed corona electrical discharge advanced oxidation processes (AOPs) were applied to bleach and degrade C.I. Reactive Green 8 and C.I. Reactive Red 45 organic dyes in water solutions. Two types of hybrid gas/liquid high voltage electrical discharge (corona) reactors, known as hybrid series and hybrid parallel were studied. The difference between these reactors relates to electrode configuration, which affects the amounts of ozone, hydrogen peroxide and hydroxyl radicals produced. Experiments were conducted using dye concentrations of 20 mgl(-1) and 75 mgl(-1), with and without NH4ZSM5 zeolite addition in order to determine possible effects of added solid particles to total process efficiency. The role of ozone in combination with zeolites was assessed through comparative direct ozonation experiments with ozone supplied by an ozone generator. UV/VIS spectrophotometric measurements and measurements of total organic carbon (TOC) were used for the determination of decolorization and mineralization rates.

  10. Electric discharges produced by clouds of charged water droplets in the presence of moving conducting object

    NASA Astrophysics Data System (ADS)

    Kostinskiy, Alexander Y.; Syssoev, Vladimir S.; Mareev, Eugene A.; Rakov, Vladimir A.; Andreev, Mikhail G.; Bogatov, Nikolai A.; Makal'sky, Leonid M.; Sukharevsky, Dmitry I.; Aleshchenko, Alexander S.; Kuznetsov, Vladimir E.; Shatalina, Maria V.

    2015-12-01

    The possibility of initiation of electric discharges by a crossbow bolt (projectile) moving in the electric field of a cloud of negatively charged water droplets has been demonstrated for the first time. Over one hundred of discharges have been produced. For each event, a high-speed video camera recorded the images of upward positive leaders developing from both the nearby grounded sphere and the projectile, followed by the return-stroke-like process. Corresponding currents were measured and integrated photos of the events were obtained. The results can help to improve our understanding of lightning initiation by airborne vehicles and by a vertical conductor rapidly extended below the thundercloud in order to trigger lightning with the rocket-and-wire technique.

  11. Production of pure ozone by means of electric discharges for measuring absorption coefficients

    NASA Astrophysics Data System (ADS)

    Cacciani, Marco; Disarra, Alcide

    1988-05-01

    Ozone production methods and the main chemical reaction on which the methods are based are studied. The procedures discussed include electrical discharges at room temperature and at cryogenic temperatures. Photochemical reactions at 185 to 254 nm wavelength and 140 to 170 nm wavelength, electrolysis, and thermal decomposition. The prototype described works at oxygen pressures between 900 and 130 Torr and 77 K. The ozone produced in liquid phase is very pure. The stability is low, with risks of explosion.

  12. Production of ball-lightning-like luminous balls by electrical discharges in silicon.

    PubMed

    Paiva, Gerson Silva; Pavão, Antonio Carlos; Alpes de Vasconcelos, Elder; Mendes, Odim; da Silva, Eronides Felisberto

    2007-01-26

    We performed electric arc discharges in pure Si to generate luminous balls with lifetime in the order of seconds and several properties usually reported for natural ball lightning. This simple experiment does not rely on energy sources and excitation mechanisms that are improbable in the natural phenomenon and clearly demonstrates the role of vaporization and oxidation of Si, as proposed by the Abrahamson-Dinniss theory for ball-lightning formation.

  13. Determination of steel bar dispersed mass in electric discharge with alternative electrode

    NASA Astrophysics Data System (ADS)

    Shakirova, G. Yu; Shakirov, Yu I.; Ilyin, V. I.; Valiev, R. A.; Drogaylova, L. N.

    2017-01-01

    The mathematical model of plane problem of metal bar dispersion in electric discharge with liquid electrolyte is suggested in this research. The analogy with the plane problem of the theory of jets in an ideal fluid is used to solve the task. It actually means determination of analytic function in the field with one area of unknown boundary. The formula for determination of dispersed metal powder mass assuming the bar axial symmetry has been calculated.

  14. 10-J long-pulse electric-discharge XeCl laser

    NASA Astrophysics Data System (ADS)

    Losev, Valery F.; Konovalov, Ivan; Liu, Jingru; Panchenko, Yury

    2003-11-01

    An X-ray preionized XeCl laser with a large aperture (9x7 cm) is described. Laser operates at Ne-Xe-HCl mixture with pressure up to 4 atm. Paper-oil pulse forming lines and rail-gap switch for discharge pump was used. 10 J output with optical pulse duration up to 300 ns (FWHM) have been extracted from active volume 5.4 l with an electric efficiency 1.2%.

  15. Numerical Modeling of Pulsed Electrical Discharges for High-Speed Flow Control

    DTIC Science & Technology

    2012-02-01

    productive means for treating hypersonic rarefied gas flows and microscale flows . An alternative approach is to employ the formalism of statistical...compressible bulk gas flow . Discharge parameters (temperature, pressure, and input waveform) were selected to be representative of recent experiments on...fluid conservation laws for the bulk gas flow , a model for charged particle motion, and a self-consistent computation of the electric potential. This code

  16. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Giannetas, V.

    2010-11-10

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  17. Restructured review on Electrical Discharge Machining - A state of the art

    NASA Astrophysics Data System (ADS)

    Gnanavel, C.; Saravanan, R.; Chandrasekaran, M.; Pugazhenthi, R.

    2017-03-01

    In this literature survey, an attempt made to review the Electrical Discharge machining and its related machine operating parameters and machining parameters were studied the various research works. This work is unique and innovatively constructed which helps to be aware of each parameter in machining collectively and individually. This review furnishes both indispensable and restructured information EDM, PMEDM, WEDM, MEDM, NDEDM etc. The choice of electrodes, optimization methods and influencing parameters and their influences are precisely presented and concluded with research gaps.

  18. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOEpatents

    Fenstermacher, Charles A.; Boyer, Keith

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  19. Power consumption and byproducts in electron beam and electrical discharge processing of volatile organic compounds

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.

    1996-02-20

    Among the new methods being investigated for the post-process reduction of volatile organic compounds (VOCs) in atmospheric-pressure air streams are based on non-thermal plasmas. Electron beam, pulsed corona and dielectric-barrier discharge methods are among the more extensively investigated techniques for producing non-thermal plasmas. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. In this paper the authors present experimental results using a compact electron beam reactor, a pulsed corona and a dielectric-barrier discharge reactor. They have used these reactors to study the removal of a wide variety of VOCs. The effects of background gas composition and gas temperature on the decomposition chemistry have been studied. They present a description of the reactions that control the efficiency of the plasma process. They have found that pulsed corona and other types of electrical discharge reactors are most suitable only for processes requiring O radicals. For VOCs requiring copious amounts of electrons, ions, N atoms or OH radicals, the use of electron beam reactors is generally the best way of minimizing the electrical power consumption. Electron beam processing is remarkably more effective for all of the VOCs tested. For control of VOC emissions from dilute, large volume sources such as paint spray booths, cost analysis shows that the electron beam method is cost-competitive to thermal and catalytic methods that employ heat recovery or hybrid techniques.

  20. Propagation of negative electrical discharges through 2-dimensional packed bed reactors

    NASA Astrophysics Data System (ADS)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Xiong, Zhongmin; Kushner, Mark J.

    2017-01-01

    Plasma-based pollutant remediation and value-added gas production have recently gained increased attention as possible alternatives to the currently-deployed chemical reactor systems. Electrical discharges in packed bed reactors (PBRs) are of interest, due to their ability to synergistically combine catalytic and plasma chemical processes. In principle, these systems could be tuned to produce specific products, based on their application by combinations of power formats, materials, geometries and working gases. Negative voltage, atmospheric-pressure plasma discharges sustained in humid air in a PBR-like geometry were experimentally characterized using ICCD imaging and simulated in 2-dimensions (2D) to provide insights into possible routes to this tunability. Surface ionization waves (SIWs) and positive restrikes through the lattice of dielectric rods were shown to be the principal means of producing reactive species. The number and intensity of SIWs and restrikes are sensitive functions of the alignment of the lattice of dielectric beads (or rods in 2D) with respect to the applied electric field. Decreased spacing between the dielectric elements leads to an increased electric field enhancement in the gas, and therefore locally higher plasma densities, but does not necessarily impact the types of discharges that occur through the lattice.

  1. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    PubMed

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  2. Modeling of small scale radio-frequency inductive discharges for electric propulsion applications

    NASA Astrophysics Data System (ADS)

    Mistoco, Valerie F. M.

    This work is motivated by the increasing interest in small-scale radio-frequency ion thrusters for micro- and nanosatellite applications, in particular for stationkeeping. This specific type of thruster relies on an inductive discharge to produce positive ions that are accelerated by an external electric field in order to produce thrust. Analyzing the particle dynamics within the discharge vessel is critical for determining the performance of these thrusters, particularly as scaling down the size and thrust level of ion thrusters remains a major challenge. Until now the application of this type of propulsion system has been limited to large satellites and space platforms. The approach taken in this work was, first, to perform a simple analysis of the inductive discharge using a transformer model. However, the dimensions of the thruster and the pressure ranges at which it operates called for a different approach than those used in larger thrusters and reactors as the collisional domain and non-locality effects differ significantly. After estimating the non-locality effects by calculating the non-locality parameter, a kinetic description of the discharge was developed. From the input power, mass flow rate, and the properties of the gas used in the discharge, the density numbers, temperatures of the particles, and thrust are calculated. Simulation values are compared with experimental values obtained with the Miniature Radio-frequency Ion Thruster being developed at The Pennsylvania State University. The approach employed to model this small scale inductive discharge can be summarized as follows. First, conditions of operation and the various plasma parameters of the discharge were derived. Then, a one-dimensional kinetic model of an inductive discharge, using a Maxwellian electron distribution, was built. Results from this model were validated on data available in the literature. Finally, from the beam current derived from the 1-D model, using a two-grid ion optics

  3. A strategy of load leveling by charging and discharging time control of electric vehicles

    SciTech Connect

    Koyanagi, Fumiko; Uriu, Yoshihisa

    1998-08-01

    By ZEV regulation of the California government in 1992, not only The United States but also many developing countries are largely interested in replacing gasoline car by electric vehicle(EV). The electric utility expects that the electric vehicle improves the difference between the daytime and nighttime of a recent demand as a new market of electric power demand. There are some reports that indicate on the danger which generates the new peaks as the electric vehicles spread through the market in charging start hour. As the countermeasure for avoiding this problem, the authors propose that (1) the regional charging time shift method is introduced in the midnight charging time zone, (2) inverse load flow by the discharge of the contract private use EV is carried out as an energy consumption of the automobile was investigated, and future demand is predicted by the mathematical consumption modeling. Especially, it shows a strategy of optimum introduction on scheme and rate of electric vehicle for effective energy shift. And authors point out the necessity of market regulation for electric vehicle.

  4. The influence of the intensity of electric field on methane-air mixed gas discharge electron transport parameters

    NASA Astrophysics Data System (ADS)

    Shen, Shuang-yan; Jin, Xing; Zhang, Peng

    2016-10-01

    Plasma enhanced ignition is an important way in the field of ignition auxiliary. It has got wide attention throughout the researchers both at home and abroad. The plasma is usually added in the form of discharge. It makes a big difference in the discharge form according to different discharge unit, different kinds of electric field and different kinds of discharge medium. Variety of methods could be used to characterize the parameters of the plasma. The electron transport parameter is an important variable during the process of the plasma discharge. The mathematical model was set up to calculate the electron transport parameters in different reduced electric intensity. The electrons meet the Boltzmann equations in plasma system. Reasonable methods were used to simplify the Boltzmann equations. The electron transport parameters of methane-air mixed gas at the same equivalent ratio and pressure in different reduced electric field were calculated. The calculation results show that the EEDF turns to the right with the increasing of reduced electric field. The average electron energy and average electron energy of the mixed gas increases linearly with the increasing of reduced electric field. The increasing of reduced electric field enhances the electronic/energy diffusion effect and the enhancing effect is more apparent when the reduced electric field is high. The increasing of reduced electric field restrains the electron diffusion and energy transference restrains from the trend of the change. The inhibition effect is weakening with the increasing of the reduced electric field.

  5. Sound production to electric discharge: sonic muscle evolution in progress in Synodontis spp. catfishes (Mochokidae).

    PubMed

    Boyle, Kelly S; Colleye, Orphal; Parmentier, Eric

    2014-09-22

    Elucidating the origins of complex biological structures has been one of the major challenges of evolutionary studies. Within vertebrates, the capacity to produce regular coordinated electric organ discharges (EODs) has evolved independently in different fish lineages. Intermediate stages, however, are not known. We show that, within a single catfish genus, some species are able to produce sounds, electric discharges or both signals (though not simultaneously). We highlight that both acoustic and electric communication result from actions of the same muscle. In parallel to their abilities, the studied species show different degrees of myofibril development in the sonic and electric muscle. The lowest myofibril density was observed in Synodontis nigriventris, which produced EODs but no swim bladder sounds, whereas the greatest myofibril density was observed in Synodontis grandiops, the species that produced the longest sound trains but did not emit EODs. Additionally, S. grandiops exhibited the lowest auditory thresholds. Swim bladder sounds were similar among species, while EODs were distinctive at the species level. We hypothesize that communication with conspecifics favoured the development of species-specific EOD signals and suggest an evolutionary explanation for the transition from a fast sonic muscle to electrocytes.

  6. ElectroSpark Deposition

    DTIC Science & Technology

    2007-01-25

    ElectroSpark Deposition Hard Chrome Alternatives Team Joint Cadmium Alternatives Team Canadian Hard Chrome Alternatives Team Joint Group on Pollution...00-2007 to 00-00-2007 4. TITLE AND SUBTITLE ElectroSpark Deposition 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Processes, Inc. ElectroSpark Deposition (ESD) Results of Materials Testing and Technology Insertion January 25, 2007 Advanced Surfaces And Processes, Inc. 3

  7. High voltage spark carbon fiber detection system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1980-01-01

    The pulse discharge technique was used to determine the length and density of carbon fibers released from fiber composite materials during a fire or aircraft accident. Specifications are given for the system which uses the ability of a carbon fiber to initiate spark discharge across a high voltage biased grid to achieve accurate counting and sizing of fibers. The design of the system was optimized, and prototype hardware proved satisfactory in laboratory and field tests.

  8. Observation of transient electric fields in particle-in-cell simulation of capacitively coupled discharges

    SciTech Connect

    Sharma, S. Mishra, S. K.; Kaw, Predhiman K.

    2014-07-15

    The analytical prediction of the presence of transient electric field regions between the bulk plasma and sheath edge in radio frequency capacitively coupled plasma (RF-CCP) discharges has been reported by Kaganovich [Phys. Rev. Lett. 89, 265006 (2002)]. In this paper, we have used the semi-infinite particle-in-cell (PIC) simulation technique to verify the theoretical prediction for the existence of transient electric field in the linear regime; it is shown that the PIC simulation results are in good agreement with the results predicted by analytical model in this regime. It is also demonstrated that the linear theory overestimates the transient electric field as one moves from linear to weakly nonlinear regime. The effect of applied RF current density and electron temperature on evolution of transition field and phase mixing regime has been explored.

  9. Cylindrical Wire Electrical Discharge Machining of Metal Bond Diamond Wheels- Part II: Wheel Wear Mechanism

    SciTech Connect

    McSpadden, SB

    2002-01-22

    The use of stereo scanning Electron Microscopy (SEM) to investigate the wear mechanism of the wire EDM true metal bond diamond wheel for ceramic grinding is presented. On the grinding wheel, a wedge-shape removal part was machined to enable the examination and measurement of the worn wheel surfaces using the stereo SEM. The stereo SEM was calibrated by comparing results of depth profile of a wear groove with the profilometer measurements. On the surface of the grinding wheel after wire EDM truing and before grinding, the diamond protruding heights were measured in the level of 35 {micro}m, comparing to the 54 {micro}m average size of the diamond in the grinding wheel. The gap between the EDM wire and rotating grinding wheel is estimated to be about 35 to 40 {micro}m. This observation indicates that, during the wire EDM, electrical sparks occur between the metal bond and EDM wire, which leaves the diamond protruding in the gap between the wire and wheel. The protruding diamond is immediately fractured at the start of the grinding process, even under a light grinding condition. After heavy grinding, the grinding wheel surface and the diamond protrusion heights are also investigated using the stereo SEM. The height of diamond protrusion was estimated in the 5 to 15 {micro}m range. This study has demonstrated the use of stereo SEM as a metrology tool to study the grinding wheel surface.

  10. Mars Spark Source Prototype Developed

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.

    2000-01-01

    The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.

  11. Space charge, plasma potential and electric field distributions in HiPIMS discharges of varying configuration

    NASA Astrophysics Data System (ADS)

    Liebig, B.; Bradley, J. W.

    2013-08-01

    An electron-emitting (emissive) probe has been used to study the temporal and spatial distribution of the plasma potential during high-power impulse magnetron sputtering (HiPIMS) discharges with various substrate and magnetic field configurations. The average power was 700 W, with a repetition frequency of 100 Hz and pulse duration of 100 µs. Strongly negative plasma potentials exceeding -300 V and electric fields up to 10 kV m-1, caused by strong separation of charges with net charge carrier densities Δn of about 1014 m-3, were observed during the ignition of the discharge. The spatial distribution of the plasma potential in the stable stage of the discharge showed values consistently 5 V more negative for a floating substrate compared with a grounded one, so enhancing electron transport around the insulated substrate to grounded walls. However, this change in the electrical configuration of the plasma does not alter significantly the fraction of ionized sputtered particles (of about 30%) that can potentially reach the substrate. By changing the degree of unbalance of the sputtering source, we find a strong correlation between the electric field strength in the magnetic trap (created through charge separation) and the absolute value (and shape) of the magnetic field. For the more unbalanced magnetron, a flattening of the plasma potential structure (decrease in the axial electric field) was observed close to the target. Our findings show in principle that manipulation of the potential barrier close to the target through changing the magnetic field can regulate the proportion of sputtered and ionized species reaching the substrate.

  12. Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps

    SciTech Connect

    Belasri, A.; Harrache, Z.

    2010-12-15

    A pulsed dielectric-barrier discharge in xenon has been simulated for operating conditions typical to excimer lamps, in which the discharge is considered spatially homogeneous. The computer model developed is based on the xenon plasma chemistry, the circuit, and the Boltzmann equations. First, the validity of the physical model was checked and compared to experimental and theoretical works, and then the model is applied in the case of a sinusoidal voltage at period frequencies in the range of 50 kHz-2 MHz. The results obtained with the present description are in good agreement with experimental measurements and one-dimensional fluid prediction in terms of electrical characteristics and vacuum ultraviolet (vuv) emission. The effect of operation voltage, power source frequency, dielectric capacitance, as well as gas pressure on the discharge efficiency and the 172, 150, and 147 nm photon generation, under the typical experimental operating conditions and for the case of a sinusoidal applied voltage, have been investigated and discussed. Calculations suggest that the overall conversion efficiency from electrical energy to vuv emission in the lamp is greater than 38%, and it will be very affected at high power source frequency and high gas pressure with a significant dependence on the dielectric capacitance.

  13. Comparative Analysis of Thermography Studies and Electrical Measurement of Partial Discharges in Underground Power Cables

    NASA Astrophysics Data System (ADS)

    Gonzalez-Parada, A.; Guzman-Cabrera, R.; Torres-Cisneros, M.; Guzman-Sepulveda, J. R.

    2015-09-01

    The principal cause of damage in underground power cable installations is partial discharge (PD) activity. PD is a localized non-linear phenomenon of electrical breakdown that occurs in the insulating medium sitting between two conducting materials, which are at different potentials. The damage to the insulating material is induced by the AC voltage to which the insulator is subjected during the discharge process, and it can be directly or indirectly measured by the charge displacement across the insulation and the cavity defect. Non-invasive detection techniques that help in identifying the onset of the discharge process are required as PD is a major issue in terms of maintenance and performance of underground power installations. The main locations of failure are the accessories at points of connection such as terminals or splices. In this article, a study of electrical detection of PD and image processing of thermal pictures is presented. The study was carried out by controllably inducing specific failures in the accessories of the installation. The temporal evolution of the PD signals was supported with thermal images taken during the test in order to compare the PD activity and thermal increase due to failure. The analysis of thermographic images allows location of the failure by means of intensity-based texture segmentation algorithms. This novel technique was found to be suitable for non-invasive detection of the PD activity in underground power cable accessories.

  14. Mixing effects in postdischarge modeling of electric discharge oxygen-iodine laser experiments

    NASA Astrophysics Data System (ADS)

    Palla, Andrew D.; Carroll, David L.; Verdeyen, Joseph T.; Solomon, Wayne C.

    2006-07-01

    In an electric discharge oxygen-iodine laser, laser action at 1315nm on the I(P1/22)→I(P3/22) transition of atomic iodine is obtained by a near resonant energy transfer from O2(aΔ1) which is produced using a low-pressure electric discharge. The discharge production of atomic oxygen, ozone, and other excited species adds higher levels of complexity to the postdischarge kinetics which are not encountered in a classic purely chemical O2(aΔ1) generation system. Mixing effects are also present. In this paper we present postdischarge modeling results obtained using a modified version of the BLAZE-II gas laser code. A 28 species, 105 reaction chemical kinetic reaction set for the postdischarge kinetics is presented. Calculations were performed to ascertain the impact of a two stream mixing mechanism on the numerical model and to study gain as a function of reactant mass flow rates. The calculations were compared with experimental data. Agreement with experimental data was improved with the addition of new kinetics and the mixing mechanism.

  15. Ultrafast traveling wave dominates the electric organ discharge of Apteronotus leptorhynchus: an inverse modelling study.

    PubMed

    Shifman, Aaron R; Longtin, André; Lewis, John E

    2015-10-30

    Identifying and understanding the current sources that give rise to bioelectric fields is a fundamental problem in the biological sciences. It is very difficult, for example, to attribute the time-varying features of an electroencephalogram recorded from the head surface to the neural activity of specific brain areas; model systems can provide important insight into such problems. Some species of fish actively generate an oscillating (c. 1000 Hz) quasi-dipole electric field to communicate and sense their environment in the dark. A specialized electric organ comprises neuron-like cells whose collective signal underlies this electric field. As a step towards understanding the detailed biophysics of signal generation in these fish, we use an anatomically-detailed finite-element modelling approach to reverse-engineer the electric organ signal over one oscillation cycle. We find that the spatiotemporal profile of current along the electric organ constitutes a travelling wave that is well-described by two spatial Fourier components varying in time. The conduction velocity of this wave is faster than action potential conduction in any known neuronal axon (>200 m/s), suggesting that the spatiotemporal features of high-frequency electric organ discharges are not constrained by the conduction velocities of spinal neuron pathways.

  16. Ultrafast traveling wave dominates the electric organ discharge of Apteronotus leptorhynchus: an inverse modelling study

    PubMed Central

    Shifman, Aaron R.; Longtin, André; Lewis, John E.

    2015-01-01

    Identifying and understanding the current sources that give rise to bioelectric fields is a fundamental problem in the biological sciences. It is very difficult, for example, to attribute the time-varying features of an electroencephalogram recorded from the head surface to the neural activity of specific brain areas; model systems can provide important insight into such problems. Some species of fish actively generate an oscillating (c. 1000 Hz) quasi-dipole electric field to communicate and sense their environment in the dark. A specialized electric organ comprises neuron-like cells whose collective signal underlies this electric field. As a step towards understanding the detailed biophysics of signal generation in these fish, we use an anatomically-detailed finite-element modelling approach to reverse-engineer the electric organ signal over one oscillation cycle. We find that the spatiotemporal profile of current along the electric organ constitutes a travelling wave that is well-described by two spatial Fourier components varying in time. The conduction velocity of this wave is faster than action potential conduction in any known neuronal axon (>200 m/s), suggesting that the spatiotemporal features of high-frequency electric organ discharges are not constrained by the conduction velocities of spinal neuron pathways. PMID:26514932

  17. Ultrafast traveling wave dominates the electric organ discharge of Apteronotus leptorhynchus: an inverse modelling study

    NASA Astrophysics Data System (ADS)

    Shifman, Aaron R.; Longtin, André; Lewis, John E.

    2015-10-01

    Identifying and understanding the current sources that give rise to bioelectric fields is a fundamental problem in the biological sciences. It is very difficult, for example, to attribute the time-varying features of an electroencephalogram recorded from the head surface to the neural activity of specific brain areas; model systems can provide important insight into such problems. Some species of fish actively generate an oscillating (c. 1000 Hz) quasi-dipole electric field to communicate and sense their environment in the dark. A specialized electric organ comprises neuron-like cells whose collective signal underlies this electric field. As a step towards understanding the detailed biophysics of signal generation in these fish, we use an anatomically-detailed finite-element modelling approach to reverse-engineer the electric organ signal over one oscillation cycle. We find that the spatiotemporal profile of current along the electric organ constitutes a travelling wave that is well-described by two spatial Fourier components varying in time. The conduction velocity of this wave is faster than action potential conduction in any known neuronal axon (>200 m/s), suggesting that the spatiotemporal features of high-frequency electric organ discharges are not constrained by the conduction velocities of spinal neuron pathways.

  18. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro; Li, Zhongshan

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also be found to take place from spark-type discharges to glow-type discharges. Short-cutting events were often observed as the intermediate states formed during the spark-glow transition. Three different types of short-cutting events have been observed to generate new current paths between two plasma channel segments, and between two electrodes, as well as between the channel segment and the electrodes, respectively. The short-cut upper part of the plasma column that was found to have no current passing through can be detected several hundreds of microseconds after the short-cutting event. The voltage recovery rate, the period of AC voltage-driving signal, the flow rates and the rated input powers were found to play an important role in affecting the transitions among the different types of discharges.

  19. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  20. Plasma kinetics in ethanol/water/air mixture in a 'tornado'-type electrical discharge

    NASA Astrophysics Data System (ADS)

    Levko, D.; Shchedrin, A.; Chernyak, V.; Olszewski, S.; Nedybaliuk, O.

    2011-04-01

    This paper presents the results of a theoretical and experimental study of plasma-assisted reforming of ethanol into molecular hydrogen in a modified 'tornado'-type electrical discharge. Numerical modelling clarifies the nature of non-thermal conversion and explains the kinetic mechanism of non-equilibrium plasma chemical transformations in the gas-liquid system and the evolution of hydrogen during the reforming as a function of discharge parameters and ethanol-to-water ratio in the mixture. We also propose a scheme of chemical reactions for plasma kinetics description. It is shown that some characteristics of the investigated reactor are at least not inferior to the characteristics of other plasma chemical reactors.

  1. Effect of TiN powder mixed in Electrical Discharge Machining

    NASA Astrophysics Data System (ADS)

    Muttamara, A.; Mesee, J.

    2016-11-01

    Many trials were studied about powder mixed in Electrical Discharge Machining (EDM). The experiments were carried for improving surface characteristics and related to the surface modification. The experiment was carried out using a copper tool electrode and EDMed in titanium nitride (TiN) powder mixed in dielectric fluid. In this research, to obtain the even modified layer, the effects of EDMed conditions were investigated. The EDMed surfaces were observed by SEM. Under the suitable discharge conditions in TiN powder mixed kerosene, the stable thick TiN layer adhered on the workpiece surface. The microcrack length per unit area treated in TiN mixed kerosene was greater than that treated in normal kerosene. Titanium carbon nitride (TiCN) was found on the modified layer by XRD analysis. The effect of the diffusion of carbon during cooling on the characteristics of the recast layer was discussed.

  2. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    NASA Astrophysics Data System (ADS)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  3. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    PubMed

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  4. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    SciTech Connect

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-15

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  5. A Study of Electromagnetic Radiation of Corona Discharge Near 500-Kv Electric Installations

    SciTech Connect

    Korzhov, A. V.; Okrainskaya, I. S.; Sidorov, A. I.; Kufel'd, V. D.

    2004-01-15

    Data on the spectral composition and intensity of electromagnetic radiation of corona discharge are obtained in an experimental study performed on the outdoor switchgear of the Shagol 500-kV substation of the Chelyabinsk Enterprise of Trunk Transmission Grids and under a 500-kV Shagol - Kozyrevo overhead transmission line. The electromagnetic environment on the territory of the 500-kV outdoor switchgear is shown to be determined by narrow-band radiations (harmonics of the frequency of electric supply) and wide-band radiations due to corona discharges of high-voltage sources. This means that the personnel experience the action of a commercial-frequency electric field and electromagnetic radiation of a quite wide range, which is not allowed for by the existing guidelines. It is recommended to continue the study in cooperation with medical institutions in order to create guidelines that would allow for the joint action of commercial-frequency electric field and electromagnetic radiation and for the voltage in the line, the current load, the meteorological situation, and other factors.

  6. Generalized Bohm’s criterion and negative anode voltage fall in electric discharges

    SciTech Connect

    Londer, Ya. I.; Ul’yanov, K. N.

    2013-10-15

    The value of the voltage fall across the anode sheath is found as a function of the current density. Analytic solutions are obtained in a wide range of the ratio of the directed velocity of plasma electrons v{sub 0} to their thermal velocity v{sub T}. It is shown that the voltage fall in a one-dimensional collisionless anode sheath is always negative. At the small values of v{sub 0}/v{sub T}, the obtained expression asymptotically transforms into the Langmuir formula. Generalized Bohm’s criterion for an electric discharge with allowance for the space charge density ρ(0), electric field E(0), ion velocity v{sub i}(0), and ratio v{sub 0}/v{sub T} at the plasma-sheath interface is formulated. It is shown that the minimum value of the ion velocity v{sub i}{sup *}(0) corresponds to the vanishing of the electric field at one point inside the sheath. The dependence of v{sub i}{sup *} (0) on ρ(0), E(0), and v{sub 0}/v{sub T} determines the boundary of the existence domain of stationary solutions in the sheath. Using this criterion, the maximum possible degree of contraction of the electron current at the anode is determined for a short high-current vacuum arc discharge.

  7. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGES

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  8. Spark-hdf5

    SciTech Connect

    Asplund, Joshua; Jiang, Ming; Gallagher, Brian; Miller, Mark; Harrison, Cyrus

    2016-07-05

    The spark-hdf5 package is an extension to the Apache Spark program to allow native access to HDF5 files. It allows users to query the structured files using SQL-like syntax, and can parallelize large queries across several workers.

  9. The sparking voltage of spark plugs

    NASA Technical Reports Server (NTRS)

    Silsbee, F B

    1925-01-01

    This report has been prepared in order to collect and correlate into convenient and useful form the available data on this subject. The importance of the subject lies in the fact that it forms the common meeting ground for studies of the performance of spark generators and spark plugs on the one hand and of the internal combustion engines on the other hand. While much of the data presented was obtained from various earlier publications, numerous places were found where necessary data were lacking, and these have been provided by experiments in gasoline engines at the Bureau of Standards.

  10. LASERS: Electric-discharge XeCl laser emitting 10-J, 300-ns pulses

    NASA Astrophysics Data System (ADS)

    Konovalov, I. N.; Losev, V. F.; Panchenko, Yu N.; Ivanov, N. G.; Sukhov, M. Yu

    2005-03-01

    The development of a long-pulse electric-discharge XeCl laser with the 9 × 6 × 100 cm active volume is reported. Laser is excited by using a double circuit with a pulsed charged storage capacitor consisting of paper-oil capacitors forming the pulse-shaping line. The storage capacitor is switched by a multichannel extended gap. The laser mixture was preionised by X-rays. The laser generated the 10-J output pulses with the FWHM of 300 ns, and a uniform intensity distribution over the exit aperture.

  11. Electric Discharge and Afterglow Kinetics for Laser Mixtures with Carbon Monoxide, Oxygen and Iodine

    DTIC Science & Technology

    2006-01-01

    place in the active media of different electric discharge and chemical lasers. 15. SUBJECT TERMS EOARD, Physics, Optics 16 ...Mikheev 15. Dr. A.A. Shel 16 . Dr. S.Yu.Savinov 17. Yu.M. Klimach 18. N.A. Ionina 19. S.A. Vetoshkin 20. A.Yu. Kozlov 21. O.A.Rulev 22. Yu.V...mixtures, laser cavity and excitation pulse, selected in the kinetic modelling. Gas density (Amagat) 0.2 Gas temperature (K) 100 E/N (10- 16 V cm2) 1

  12. Organic solids produced by electrical discharges in reducing atmospheres: Molecular analysis

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Zumberge, J. E.; Sklarew, D.; Nagy, B.

    1978-01-01

    The complex brown polymer produced on passage of an electrical discharge through a mixture of methane, ammonia, and water, is analyzed by pyrolytic GC/MS. Pyrolyzates include a wide range of alkanes, alkenes, aromatic hydrocarbons, aliphatic and aromatic nitriles, pyrroles, and pyridine. Similar pyrolyzates are obtained from polypeptides and polynucleotides with hydrocarbon moieties. This polymer is remarkably stable up to 950 C; its degradation products are candidate constituents of planetary aerosols in the outer solar system and the grains and gas in the interstellar medium.

  13. Analysis on the spectra and synchronous radiated electric field observation of cloud-to-ground lightning discharge plasma

    SciTech Connect

    Cen Jianyong; Yuan Ping; Qu Haiyan; Zhang Tinglong

    2011-11-15

    According to the spectra of cloud-to-ground (CG) lightning discharge plasma captured by a slit-less spectrograph and the information of synchronous radiated electric field, the temperatures, the total intensity of spectra, the peak value of current and its action integral of discharge plasma channel have been calculated. Furthermore, the correlativity of these parameters has been analyzed for the first time. The results indicate that the total intensity of spectra has a positive correlation to the discharge current in different strokes of one CG lightning, and the temperature of discharge plasma is direct proportion to the action integral in the first return strokes of different lightning.

  14. Electric Discharge Sintering and Joining of Tungsten Carbide--Cobalt Composite with High-Speed Steel Substrate

    SciTech Connect

    Grigoryev, Evgeny G.

    2011-01-17

    Simultaneous electro discharge sintering of high strength structure of tungsten carbide-cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide-cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.

  15. Electric Discharge Sintering and Joining of Tungsten Carbide—Cobalt Composite with High-Speed Steel Substrate

    NASA Astrophysics Data System (ADS)

    Grigoryev, Evgeny G.

    2011-01-01

    Simultaneous electro discharge sintering of high strength structure of tungsten carbide—cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide—cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.

  16. Effect of Electrostatic Discharge on Electrical Characteristics of Discrete Electronic Components

    NASA Technical Reports Server (NTRS)

    Wysocki, Phil; Vashchenko, Vladislav; Celaya, Jose; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This article reports on preliminary results of a study conducted to examine how temporary electrical overstress seed fault conditions in discrete power electronic components that cannot be detected with reliability tests but impact longevity of the device. These defects do not result in formal parametric failures per datasheet specifications, but result in substantial change in the electrical characteristics when compared with pristine device parameters. Tests were carried out on commercially available 600V IGBT devices using transmission line pulse (TLP) and system level ESD stress. It was hypothesized that the ESD causes local damage during the ESD discharge which may greatly accelerate degradation mechanisms and thus reduce the life of the components. This hypothesis was explored in simulation studies where different types of damage were imposed to different parts of the device. Experimental results agree qualitatively with the simulation for a number of tests which will motivate more in-depth modeling of the damage.

  17. Spark anemometry of bulk gas velocity at the plug gap of a firing engine

    SciTech Connect

    Kim, J.; Anderson, R.W.

    1995-12-31

    The objective of the present work was to investigate a rapid method of obtaining the convection velocity of the bulk gas near the spark plug gap of a firing engine at the time of ignition. To accomplish this, a simple model was developed which utilized both the secondary current and voltage signals, from a conventional spark discharge. The model assumed the spark path was elongated in a rectangular U-shape by the flow. Based on experimentally measured electrical signals, the mean convection velocity was computed. The convection velocity calculated by the model first needed calibration which was accomplished with a bench test that used a hot wire anemometer. The technique has a weak correlation at low velocities of 1--2 m/s, but correlates well as higher velocities up to 15 m/s. Although the accuracy of prediction by the technique is moderate, it is shown to be suitable for rapidly studying the bulk flow velocity ear the plug gap in an operating engine without modification of the combustion system. It is also shown to favorably compare with data taken with a fiber optic equipped spark plug.

  18. Simulation of electrical discharge in a 3.6 Joule miniature plasma focus device using SIMULINK

    NASA Astrophysics Data System (ADS)

    Jafari, Hossein; Habibi, Morteza

    2014-08-01

    A novel technique has been developed and studied in this paper to simulate the electrical discharge circuit of a 3.6 J miniature plasma focus device (PFD) and investigate the effect of inductance variation on voltage spike and current dip. The technique is based on a correlation between the electrical discharge circuit and plasma dynamics in a very small PFD that operates at the energy of 3.6 J. The simulation inputs include the charging voltage, capacitor bank capacitance, current limiter resistance, by-pass resistance as well as the time-dependent inductance and resistance of the plasma sheath which are calculated by assuming the plasma dynamics as transit times in going from one phase to the next. The variations of the most important elements in the circuit (i.e. the constant and breakdown inductances) and their effects on the current dip are studied in PFDs with low and high constant inductance. The model demonstrated for achieving a good pinch in the PFD, although the total inductance of the system should be low; however there is always an optimum inductance which causes an appropriate pinch. Furthermore, the electrical power produced by the pulsed power supply, the mechanical energy as well as the magnetic energy which are transferred into the plasma tube were obtained from simulation. The graph of electrical power demonstrated a high instantaneous increment in the power transferred into the plasma as one of the greatest advantages of the pulsed power supply. The simulation was performed using software tools within the MATLAB/SIMULINK simulation environment.

  19. A study of electrical generating capacities of self-discharging slim holes

    SciTech Connect

    Pritchett, J.W.

    1996-01-24

    Theoretical calculations have been performed to estimate the electrical generating capacities of small-diameter geothermal wells for off-grid rural electrification using wellhead generators. In these applications, generating capacities of interest are typically in the range 100-1000 kWe. The approach amounted to (1) calculating the “wellhead discharge characteristics” (water/steam discharge rates as functions of wellhead pressure) for a variety of hypothetical well and reservoir descriptions, (2) employing a mathematical representation for the net generating capacity of a wellhead powerplant as a function of its operating inlet pressure and steam inlet rate, and (3) varying the wellhead (= turbine inlet) pressure to identify the “optimum” pressure value at which the net electrical power is maximized. Calculations were carried out for well diameters from 75 mm to 300 mm, for well depths from 300 to 1200 meters, for reservoir temperatures from 100°C to 240°C, for piezometric surface depths (related to shut-in reservoir pressure) from zero to 250 meters, and for downhole productivity indices from 2 kg/s/bar to infinity. A few cases were also included in which the CO2 content of the reservoir fluid was non-zero (up to 1% by mass in the brine). Both backpressure and condensing single-flash steam turbine powerplants were considered. The study was restricted to vertical wells of uniform inside diameter and to all-liquid in-situ reservoir fluids. Over fifteen thousand combinations of the above parameters were examined. The results indicate that slim holes as small as 100 mm inside diameter penetrating reservoirs with temperatures as low as 150°C can produce useful amounts of electrical power using condensing wellhead turbines (> 100 kWe). For higher reservoir temperatures, the electrical capacity of such a well can exceed one megawatt.

  20. Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks — A comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus

    NASA Astrophysics Data System (ADS)

    Scharun, Michael; Fricke-Begemann, Cord; Noll, Reinhard

    2013-09-01

    The identification and separation of different alloys are a permanent task of crucial importance in the metal recycling industry. Laser-induced breakdown spectroscopy (LIBS) offers important advantages in comparison to the state-of-the-art techniques for this application. For LIBS measurement no additional sample preparation is necessary. The overall analysis time is much smaller than for the state-of-the-art techniques. The LIBS setup presented in this study enables mobile operation with a handheld probe for the analysis of metallic materials. Excitation source is a fibre laser with a repetition rate of 30 kHz and a pulse energy of 1.33 mJ. The compact optical setup allows measurements at almost every point of a sample within 5 ms. The generated plasma light is analysed using a Multi-CCD spectrometer. The broad spectral coverage and high resolution provide an outstanding amount of spectroscopic information thereby enabling a variety of calibration approaches. Using a set of Al-based and a set of Fe-based samples the analytical performance of uni- and multivariate calibrations is evaluated. The same sample sets are analysed with a commercial state-of-the-art spark-discharge optical emission spectrometer allowing an assessment of the achieved results. Even though the possible analytical correctness of the fibre laser based LIBS measurements is found to similar or even better than that of the conventional technique, advantages of the multivariate data evaluation have not yet been realised in the investigations. However, due to the in situ sample preparation and short measurement times, fibre-laser based LIBS offers superior features.

  1. Modelling effect of magnetic field on material removal in dry electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Abhishek, Gupta; Suhas, S. Joshi

    2017-02-01

    One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single- and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10% over the respective experimental values.

  2. Electrospray mass spectrometry of methanol and water solutions suppression of electric discharge with SF6 gas.

    PubMed

    Ikonomou, M G; Blades, A T; Kebarle, P

    1991-12-01

    An equation by D. P. H. Smith predicts the capillary voltage required for the onset of electrospray (ES). For different solvents the voltage increases with the square root of the surface tension. Water requires a potential that is 1.8 times higher than that for methanol. This is verified experimentally. The higher potential required for water leads to ES in the presence of corona electric discharge. For low total ES plus corona currents, the electrosprayed analyte ion intensity is not adversely affected by the presence of discharge. At high total currents, there is a large decrease of analyte sensitivity. The sensitivity decrease is probably due to adverse space charge effect at high currents. The discharge can be suppressed by adding sulfur hexafluoride to the ambient gas. Both sensitivity and signal stability are improved. However, the sensitivity still remains lower by a factor of - 4 relative to that observed with methanol. This is attributed to lower efficiency of gas-phase ion formation from charged water, relative to methanol, droplets.

  3. Review of electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to nanomaterials synthesis

    SciTech Connect

    Stauss, Sven Terashima, Kazuo; Muneoka, Hitoshi; Urabe, Keiichiro

    2015-05-15

    Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdown voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors.

  4. Recovery properties of vacuum spark gaps

    SciTech Connect

    Sampayan, S.E. ); Gurbaxani, S.H. . Dept. of Electrical Engineering); Buttram, M.T. . Pulsed Power Systems Dept.)

    1989-12-01

    Multi-kilohertz vacuum spark gap switching utilizing diffuse discharge and counter-pulse techniques has recently been demonstrated. In addition, commercial, high coulomb vacuum interrupter switches have shown free recovery rates greater than 10 kV / {mu}s. Thus, vacuum spark gap switches may provide an alternative method of high average power switching. The authors have investigated the recovery properties of a 90 kV, 15 kA multiple site, triggered vacuum spark gap. Triggering was accomplished with a multisite surface flashover plasma source with approximately 60 sites distributed over a 10 cm/sup 2/ area. Gap dimensions were 1-cm spacing by 7.5-cm diam. Recovery measurements are presented and discussed.

  5. Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension

    NASA Astrophysics Data System (ADS)

    Janmanee, Pichai; Muttamara, Apiwat

    2012-07-01

    Surface modification by a titanium coating layer onto a tungsten carbide surface by electrical discharge coating (EDC) was studied by considering a titanium coating modification as well as the completeness of the tungsten carbide surface. This was carried out by electrical discharge machining (EDM). The tungsten carbide material was produced using a fluid dielectric oil, which was mixed with titanium powder. The current and duty cycles were varied resulting in a change in the titanium coating layer thickness. Also, an analysis of the chemical composition using energy dispersive spectroscopy (EDS) revealed that a titanium coating layer was formed causing the hardness of the titanium surface to be close to that of tungsten carbide. The completeness of the surface was evaluated using scanning electron microscopy (SEM) and a small number of microcracks were found on the surface since the microcracks were filled and substituted by titanium powder and carbon (a hydrocarbon) that decomposed from the dielectric that acted as a combiner (TiC). Also, the high concentration of carbon increased the amount of Ti and C combination and TiC was formed, which enhanced the surface hardness of the coated layer to 1750 HV. The surface roughness of the coated layer decreased and this reduced the formation of microcracks on the surface workpiece.

  6. Research of the possibility of using an electrical discharge machining metal powder in selective laser melting

    NASA Astrophysics Data System (ADS)

    Golubeva, A. A.; Sotov, A. V.; Agapovichev, A. V.; Smelov, V. G.; Dmitriev, V. N.

    2017-02-01

    In this paper the research of a Ni-20Cr-10Fe-3Ti (heat-resistant) alloy metal powder conducted for use in a selective laser melting technology. This metal powder is the slime after electric discharge machining. The technology of cleaning and melting the powder discussed in this article. As a control input of the powder, immediately before 3D printing, dimensional analysis, surface morphology and the internal structure of the powder particles after the treatment were examined using optical and electron microscopes. The powder granules are round, oval, of different diameters with non-metallic inclusions. The internal structure of the particles is solid with no apparent defects. The content of the required diameter of the total volume of test powder granules was 15%. X-ray fluorescence analysis of the powder materials carried out. The possibility of powder melting was investigated in the selective laser melting machine ‘SLM 280HL’. A selection of the melting modes based on the physical properties of the Ni-20Cr-10Fe-3Ti alloy, data obtained from similar studies and a mathematical model of the process. Conclusions on the further investigation of the possibility of using electric discharge machining slime were made.

  7. Effect of electric discharge machining on the fatigue life of Inconel 718

    NASA Technical Reports Server (NTRS)

    Jeelani, S.; Collins, M. R.

    1988-01-01

    The effect of electric discharge machining on the fatigue life of Inconel 718 alloy at room temperature was investigated. Data were generated in the uniaxial tension fatigue mode at ambient temperature using flat 3.175 mm thick specimens. The specimens were machined on a wire-cut electric discharge machine at cutting speeds ranging from 0.5 to 2 mm per minute. The specimens were fatigued at a selected stress, and the resulting fatigue lives compared with that of the virgin material. The surfaces of the fatigued specimens were examined under optical and scanning electron microscopes, and the roughness of the surfaces was measured using a standard profilometer. From the results of the investigation, it was concluded that the fatigue life of the specimens machined using EDM decreased slightly as compared with that of the virgin material, but remained unchanged as the cutting speed was changed. The results are explained using data produced employing microhardness measurements, profilometry, and optical and scanning microscopy.

  8. Amino acids generated from hydrated Titan tholins: Comparison with Miller-Urey electric discharge products

    NASA Astrophysics Data System (ADS)

    Cleaves, H. James; Neish, Catherine; Callahan, Michael P.; Parker, Eric; Fernández, Facundo M.; Dworkin, Jason P.

    2014-07-01

    Various analogues of Titan haze particles (termed ‘tholins’) have been made in the laboratory. In certain geologic environments on Titan, these haze particles may come into contact with aqueous ammonia (NH3) solutions, hydrolyzing them into molecules of astrobiological interest. A Titan tholin analogue hydrolyzed in aqueous NH3 at room temperature for 2.5 years was analyzed for amino acids using highly sensitive ultra-high performance liquid chromatography coupled with fluorescence detection and time-of-flight mass spectrometry (UHPLC-FD/ToF-MS) analysis after derivatization with a fluorescent tag. We compare here the amino acids produced from this reaction sequence with those generated from room temperature Miller-Urey (MU) type electric discharge reactions. We find that most of the amino acids detected in low temperature MU CH4/N2/H2O electric discharge reactions are generated in Titan simulation reactions, as well as in previous simulations of Triton chemistry. This argues that many processes provide very similar mixtures of amino acids, and possibly other types of organic compounds, in disparate environments, regardless of the order of hydration. Although it is unknown how life began, it is likely that given reducing conditions, similar materials were available throughout the early Solar System and throughout the universe to facilitate chemical evolution.

  9. Amino Acids Generated from Hydrated Titan Tholins: Comparison with Miller-Urey Electric Discharge Products

    NASA Technical Reports Server (NTRS)

    Cleaves, H. James, II; Neish, Catherine; Callahan, Michael P.; Parker, Eric; Fernandez, Facundo M.; Dworkin, Jason P.

    2014-01-01

    Various analogues of Titan haze particles (termed tholins) have been made in the laboratory. In certain geologic environments on Titan, these haze particles may come into contact with aqueous ammonia (NH3) solutions, hydrolyzing them into molecules of astrobiological interest. A Titan tholin analogue hydrolyzed in aqueous NH3 at room temperature for 2.5 years was analyzed for amino acids using highly sensitive ultra-high performance liquid chromatography coupled with fluorescence detection and time-of-flight mass spectrometry (UHPLC-FDToF-MS) analysis after derivatization with a fluorescent tag. We compare here the amino acids produced from this reaction sequence with those generated from room temperature Miller-Urey (MU) type electric discharge reactions. We find that most of the amino acids detected in low temperature MU CH4N2H2O electric discharge reactions are generated in Titan simulation reactions, as well as in previous simulations of Triton chemistry. This argues that many processes provide very similar mixtures of amino acids, and possibly other types of organic compounds, in disparate environments, regardless of the order of hydration. Although it is unknown how life began, it is likely that given reducing conditions, similar materials were available throughout the early Solar System and throughout the universe to facilitate chemical evolution.

  10. Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium

    NASA Astrophysics Data System (ADS)

    Navrátil, Zdeněk; Josepson, Raavo; Cvetanović, Nikola; Obradović, Bratislav; Dvořák, Pavel

    2016-06-01

    Time development of electric field strength during radio-frequency sheath formation was measured using Stark polarization spectroscopy in a helium γ-mode radio-frequency (RF, 13.56 MHz) atmospheric pressure glow discharge at high current density (3 A cm-2). A method of time-correlated single photon counting was applied to record the temporal development of spectral profile of He I 492.2 nm line with a sub-nanosecond temporal resolution. By fitting the measured profile of the line with a combination of pseudo-Voigt profiles for forbidden (2 1P-4 1F) and allowed (2 1P-4 1D) helium lines, instantaneous electric fields up to 32 kV cm-1 were measured in the RF sheath. The measured electric field is in agreement with the spatially averaged value of 40 kV cm-1 estimated from homogeneous charge density RF sheath model. The observed rectangular waveform of the electric field time development is attributed to increased sheath conductivity by the strong electron avalanches occurring in the γ-mode sheath at high current densities.

  11. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  12. Scale effects and a method for similarity evaluation in micro electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Liu, Qingyu; Zhang, Qinhe; Wang, Kan; Zhu, Guang; Fu, Xiuzhuo; Zhang, Jianhua

    2016-08-01

    Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM.

  13. Plasma-assisted decomposition of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing

    SciTech Connect

    Hsiao, M.C.; Merritt, B.T.; Penetrante, B.M.; Vogtlin, G.E.; Wallman, P.H.

    1995-09-01

    Experiments are presented on the plasma-assisted decomposition of dilute concentrations of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing. This investigation used two types of discharge reactors, a dielectric-barrier and a pulsed corona discharge reactor, to study the effects of gas temperature and electrical energy input on the decomposition chemistry and byproduct formation. Our experimental data on both methanol and trichloroethylene show that, under identical gas conditions, the type of electrical discharge reactor does not affect the energy requirements for decomposition or byproduct formation. Our experiments on methanol show that discharge processing converts methanol to CO{sub {ital x}} with an energy yield that increases with temperature. In contrast to the results from methanol, CO{sub {ital x}} is only a minor product in the decomposition of trichloroethylene. In addition, higher temperatures decrease the energy yield for trichloroethylene. This effect may be due to increased competition from decomposition of the byproducts dichloroacetyl chloride and phosgene. In all cases plasma processing using an electrical discharge device produces CO preferentially over CO{sub 2}.

  14. Computer simulations of processes in solid-state laser radiators and amplifiers with phototube pumping: Electric-discharge pumping sources. Arc discharges

    NASA Astrophysics Data System (ADS)

    Gradov, V. M.; Mak, A. A.; Kromskiy, G. I.; Sklizkov, G. V.; Fedotov, S. I.; Shcherbakov, A. A.

    1986-03-01

    Problems of modeling and computer simulation are analyzed in reference to the design of solid state laser devices with glow tube pumping. Electric pulse and arc discharges are considered specifically. A model was constructed for a cylindrically symmetric column in the diffusion approximation with the correspoinding system of differential equations put in a form for most efficient and accurate simulation of the processes. For most economical use of the computer, the radiation spectrum is optimally subdivided into intervals. It is necessary to validate the assumption of a plasma in the state of local thermodynamic equilibrium by first accounting for and then discounting the various factors which disturb that equilibrium, namely emission of radiation and temperature gradients, as well as diffusion of charged particles toward the walls. In the case of arc discharge, a theory and a model are constructed for determining the electrophysical characteristics and the radiation characteristics of such discharge in inert gases and in vapors of alkali metals.

  15. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment.

    PubMed

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-11-20

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor's compact size makes it suitable for internal installation in high-voltage electrical equipment.

  16. Streamer development in barrier discharge in air: spectral signatures and electric field

    NASA Astrophysics Data System (ADS)

    Hoder, Tomas; Simek, Milan; Bonaventura, Zdenek; Prukner, Vaclav

    2015-09-01

    Electrical breakdown in the upper atmosphere takes form of so called Transient Luminous Events (TLE). Down to the certain pressure limit, the first phases of the TLE-phenomena are controlled by the streamer mechanism. In order to understand the development of these events, streamers in 10 torr air were generated in volume barrier discharge. Stability and reproducibility of generated streamers were secured by proper electrode geometry and specific applied voltage waveform. In this work, spectrally resolved measurements of the streamer head emission with high spatial and temporal resolution are presented. Precise recordings of the emission of the second positive and first negative systems of molecular nitrogen allowed the determination of the spatio-temporal development of the reduced electric field in the streamer head. This unique experimental result reveals in more details the early stages of the streamer development and gives, besides values for streamer velocity and its diameter, quantitative information on the magnitude of the electric field. T.H. was financed through the ESF Programme TEA-IS (Grant No. 4219), M.S. and V.P. by the AVCR under collaborative project M100431201 and Z.B. acknowledges the support of grant of Czech Science Foundation GA15-04023S.

  17. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment

    PubMed Central

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-01-01

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor’s compact size makes it suitable for internal installation in high-voltage electrical equipment. PMID:26610506

  18. Corona discharges in asymmetric electric fields and its impact on ionic wind generation

    NASA Astrophysics Data System (ADS)

    Tirumala, Rakshit

    configurations that induce asymmetric electric fields in the discharge space. Multiple collector configurations are a particular subset of these and are studied in more detail to characterize their fundamental behavior and to understand the differences from traditional discharges involving a single collecting electrode. The configurations are shown to present characteristics that are suitable for mitigating some of the problems encountered in device miniaturization. The three-electrode configurations are shown to reduce the onset potentials for device operation, increase the total current production, and present a favorable redistribution of current to the various collectors. Traditional corona modeling procedures are demonstrated to have significant shortcomings in asymmetric configurations and an alternative modeling procedure is developed for application in these conditions. The multi-electrode configurations were adapted to the development of an ionic wind blower. In a laboratory setup, these configurations are shown to improve flow rates by a factor of ˜3x and reduce power consumption by up to 0.5x. A prototype fabricated within the constraints imposed by handheld electronic systems on size and operating potential is described. The performance of the prototype-installed system is compared to the baseline system for flow and acoustic characteristics and is shown to be comparable in terms of the flow rates generated and significantly better in the acoustic signature levels. The technology presented in this dissertation has been patented [1].

  19. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus.

    PubMed

    Dunlap, K D; Ragazzi, M A

    2015-11-01

    In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine.

  20. Estimation of the ionic charge of non-metallic species into an electrical discharge through a web application

    NASA Astrophysics Data System (ADS)

    Pérez Gutiérrez, B. R.; Vera-Rivera, F. H.; Niño, E. D. V.

    2016-08-01

    Estimate the ionic charge generated in electrical discharges will allow us to know more accurately the concentration of ions implanted on the surfaces of nonmetallic solids. For this reason, in this research a web application was developed to allow us to calculate the ionic charge generated in an electrical discharge from the experimental parameters established in an ion implantation process performed in the JUPITER (Joint Universal Plasma and Ion Technologies Experimental Reactor) reactor. The estimated value of the ionic charge will be determined from data acquired on an oscilloscope, during startup and shutdown of electrical discharge, which will then be analyzed and processed. The study will provide best developments with regard to the application of ion implantation in various industrial sectors.

  1. White Layer Composition, Heat Treatment, and Crack Formation in Electric Discharge Machining Process

    NASA Astrophysics Data System (ADS)

    Ekmekci, Bülent

    2009-02-01

    Characteristics of electric discharge machined (EDM) surfaces of normalized, quenched, and quenched and tempered-treated steels in kerosene and deionized-water dielectric liquids are investigated. Optical microscopy, scanning electron microscopy (SEM) and X-ray diffractometry are employed to analyze the machined surface. Surface cracks are examined in terms of white layer composition, heat treatment of the workpiece material, and operational parameters used, such as average discharge current and pulse-on duration. The present results reveal that base material properties and white layer composition have a distinctive function on crack formation that results in different crack network layouts on the surface and penetration depths in the substrate. Surface cracks, which initiate at the surface, travel down perpendicularly toward the interferential zone, and terminate at this interference, are mainly formed due to an increase in nonhomogeneities of metallurgical phases within the white layer. Such cracks are usually encountered on the surfaces when machining is performed in a hydrocarbon-based dielectric liquid using high pulse-on duration and low average discharge current. On the other hand, penetrating cracks, which penetrate the entire white layer thickness to an extent into the parent material, are mainly formed due to contraction of the recast structure joined to the circumferential edge of a crater rim during solidification. This type of crack is common when machining is performed in deionized water and the work material is brittle. Crack penetration depth is found to be proportional to the used pulse energy, and its path has a tendency to form parallel cracks to the machined surface at decreased pulse-on duration.

  2. Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals.

    PubMed

    Katz, Itai; Blank, Aharon

    2015-12-01

    Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products.

  3. Experimental study of the water jet induced by underwater electrical discharge in a narrow rectangular tube

    NASA Astrophysics Data System (ADS)

    Koita, T.; Zhu, Y.; Sun, M.

    2017-03-01

    This paper reports an experimental investigation on the effects of explosion depth and tube width on the water jet induced by an underwater electrical discharge in a narrow rectangular tube. The water jet formation and bubble structure were evaluated from the images recorded by a high-speed video camera. Two typical patterns of jet formation and four general patterns of bubble implosion were observed, depending on the explosion depth and tube width. The velocity of the water jet was calculated from the recorded images. The jet velocity was observed to depend on not only the explosion depth and energy, but also on the tube width. We proposed an empirical formula defining the water jet velocity in the tube as a function of the tube width and explosion depth and energy.

  4. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    SciTech Connect

    Park, Seong-Wook; Tian, Chao; Martini, Rainer; Chen, Gang; Chen, I-chun Anderson

    2014-11-03

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N{sub 2}O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX.

  5. Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals

    NASA Astrophysics Data System (ADS)

    Katz, Itai; Blank, Aharon

    2015-12-01

    Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products.

  6. Development of CAD/CAM System for Cross Section’s Changing Hole Electrical Discharge Machining

    NASA Astrophysics Data System (ADS)

    Ishida, Tohru; Ishiguro, Eiki; Kita, Masahiko; Nakamoto, Keiichi; Takeuchi, Yoshimi

    This study deals with the development of a new CAD/CAM system for fabricating holes whose cross sections change variously. The cross sections of machined holes are generally constant. The limitations in the shapes of holes that can be machined make obstacles in the design stage of industrial products. A new device that utilizes electrical discharge machining has been developed that can create holes with various cross sections to solve this problem. However, it has been impossible to put the device into practical use since there has been no software that has enabled the designed shapes to be easily machined. Therefore, we aimed at developing a new CAD/CAM system for machining the beforehand designed holes with changing cross sections by using the device. As the first step in developing the CAD/CAM system, the post processor in the CAM system is formulated in this paper.

  7. Characterisation of TiC layers deposited using an electrical discharge coating process

    NASA Astrophysics Data System (ADS)

    Algodi, S. J.; Murray, J. W.; Clare, A. T.; Brown, P. D.

    2015-10-01

    Electrical discharge machining (EDM) is a non-conventional, high-accuracy machining process for the manufacture of complex shapes, regardless of hardness of the workpiece. There is interest to develop the EDM technique for coating or surface modification by using a powder metallurgy (PM) tool electrode and/or added powder suspended within the dielectric fluid. We report on the EDM deposition of TiC coatings onto stainless steel, using either Cu or TiC electrodes, with and without Ti powder in the working oil. EDM processed layers exhibited hardness values ∼ 3-4 times higher than the substrate, emphasising the ability of EDM to impart improved mechanical performance to the surface of austenitic stainless steel.

  8. Feasibility Study for Electrical Discharge Machining of Large DU-Mo Castings

    SciTech Connect

    Hill, Mary Ann; Dombrowski, David E.; Clarke, Kester Diederik; Forsyth, Robert Thomas; Aikin, Robert M.; Alexander, David John; Tegtmeier, Eric Lee; Robison, Jeffrey Curt; Beard, Timothy Vance; Edwards, Randall Lynn; Mauro, Michael Ernest; Scott, Jeffrey E.; Strandy, Matthew Thomas

    2016-10-31

    U-10 wt. % Mo (U-10Mo) alloys are being developed as low enrichment monolithic fuel for the CONVERT program. Optimization of processing for the monolithic fuel is being pursued with the use of electrical discharge machining (EDM) under CONVERT HPRR WBS 1.2.4.5 Optimization of Coupon Preparation. The process is applicable to manufacturing experimental fuel plate specimens for the Mini-Plate-1 (MP-1) irradiation campaign. The benefits of EDM are reduced machining costs, ability to achieve higher tolerances, stress-free, burr-free surfaces eliminating the need for milling, and the ability to machine complex shapes. Kerf losses are much smaller with EDM (tenths of mm) compared to conventional machining (mm). Reliable repeatability is achievable with EDM due to its computer generated machining programs.

  9. Optimization of wire Electrical Discharge turning operations using robust design of experiment

    NASA Astrophysics Data System (ADS)

    Mohammadi, Aminollah; Fadaei Tehrani, Alireza; Safari, Mahdi

    2011-01-01

    In the present study a multi response optimization method using Taguchi's robust design approach is proposed for wire electrical discharge turning (WEDT) operations. Experimentation was planned as per Taguchi's L18 orthogonal array. Each experiment has been performed under different machining conditions of power, servo, voltage, pulse off time, wire tension, wire feed speed, and rotational speed. Three responses namely material removal rate (MRR), surface roughness, and roundness have been considered for each experiment. The machining parameters are optimized with the multi response characteristics of the material removal rate, surface roughness, and roundness. Multi response S/N (MRSN) ratio is applied to measure the performance characteristics deviating from the actual value. Analysis of variance (ANOVA) is employed to identify the level of importance of the machining parameters on the multiple performance considered characteristics. Finally experimental confirmation was carried out to identify the effectiveness of this proposed method.

  10. Some Studies into Electrical Discharge Machining of Nimonic75 Super Alloy Using Rotary Copper Disk Electrode

    NASA Astrophysics Data System (ADS)

    Singh, S.; Pandey, A.

    2013-05-01

    The present study reports the rotary disk electrical discharge machining of Nimonic75 super alloy, extensively used in aerospace industries. The experiments have been performed using Taguchi's orthogonal array L18 (21 × 35) with copper disk electrode. The control factors considered were, viz., peak current, pulse on time, pulse off-time, gap voltage, and rotational speed of disk electrode with three levels each, and aspect ratio (AR) of the disk electrode having two levels, as noise factor. The novel approach of this article is to study the effect of the AR of the disk electrode on the performance measures, viz., material removal rate, disk electrode wear rate, and surface roughness. The results based on Taguchi's analysis show that among the considered process parameters, the AR and peak current significantly affect the machining characteristics. Furthermore, the rotating disk electrode easily flushes off the debris, resulting in better machining and reducing the chances of re-solidified layer formation.

  11. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration.

    PubMed

    McCown, B H; McCabe, D E; Russell, D R; Robison, D J; Barton, K A; Raffa, K F

    1991-02-01

    Three different target tissues (protoplast-derived cells, nodules, and stems) and two unrelated hybrid genotypes of Populus (P. alba x P. grandidentata 'Crandon' and P. nigra 'Betulifolia' x P. trichocarpa) have been stably transformed by electric discharge particle acceleration using a 18.7 kb plasmid containing NOS-NPT, CaMV 35S-GUS, and CaMV 35S-BT. Four transformed plants of one hybrid genotype, NC5339, containing all 3 genes were recovered and analyzed. Two expressed GUS and one was highly resistant to feeding by 2 lepidopteran pests (the forest tent caterpillar, Malacosoma disstria, and the gypsy moth, Lymantria dispar.) Pretreatment of the target tissues, fine-tuning of the bombardment parameters, and the use of a selection technique employing flooding of the target tissues were important for reliable recovery of transformed plants.

  12. Optical diagnostic and electrical analysis in dusty RF discharges containing plasmoids

    SciTech Connect

    Lagrange, J. F.; Géraud-Grenier, I.; Massereau-Guilbaud, V.

    2015-10-28

    The presence of hydrogenated carbon nitride a-CN{sub x}:H particles confined in an argon dusty discharge induces the appearance of instabilities. Those instabilities, also called plasmoids, are luminous regions which move through the plasma and rotate around the biased electrode circumference. Electrical characteristics of the plasma have been used to evidence the presence of dust particles and to demonstrate that plasmoid appearance is triggered by particles. The light emitted by the plasma is analysed by optical emission spectroscopy. This paper presents the spatial distribution of excited species, such as CN, Ar I… between electrodes both inside plasmoids and in the surrounding dusty plasma. Obtained results allow to get information for the electron energy distribution function. Moreover, the interplay between plasmoid behaviour and particle presence in the plasma is shown.

  13. Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    The synthesis of purines and pyrimidines using Oparin-Urey-type primitive earth atmospheres has been demonstrated by reacting methane, ethane, and ammonia in electrical discharges. Adenine, guaine, 4-aminoimidazole-5-carboxamide (AICA), and isocytosine have been identified by UV spectrometry and paper chromatography as the products of the reaction. The total yields of the identified heterocyclic compounds are 0.0023 percent. It is concluded that adenine synthesis occurs at a much lower concentration of hydrogen cyanide than has been shown by earlier studies. Pathways for the synthesis of purines from hydrogen cyanide are discussed, and a comparison of the heterocyclic compounds that have been identified in meteorites and in prebiotic reactions is presented.

  14. Possibility of nonexistence of hot and superhot hydrogen atoms in electrical discharges

    SciTech Connect

    Loureiro, J.; Amorim, J.

    2010-09-15

    Recently, the existence of extremely energetic hydrogen atoms in electrical discharges has been proposed in the literature with large controversy, from the analysis of the anomalous broadening of hydrogen Balmer lines. In this paper, the velocity distribution of H atoms and the profiles of the emitting atom lines created by the exothermic reaction H{sub 2}{sup +}+H{sub 2}{yields}H{sub 3}{sup +}+H+{Delta}E are calculated, as a function of the internal energy defect {Delta}E. The shapes found for the non-Maxwell-Boltzmann distributions resulting in non-Gaussian line profiles raise serious arguments against the existence of hot and superhot H atoms as it has been proposed, at least with those temperatures.

  15. Heat energy of various ignition sparks

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Fonseca, E L

    1920-01-01

    This report describes a method developed at the Bureau of Standards for measuring the total energy liberated as heat in a spark gap by an ignition system. Since this heat energy is obtained from the electromagnetic energy stored in the windings of the magneto or coil, it is a measure of the effectiveness of the device as an electric generator. Part 2 gives the results of measurements in absolute units of the total heat supplied to a spark gap by ignition systems of different types operating at various speeds, under conditions substantially equivalent to those in the cylinder of a high-compression aviation engine.

  16. Dynamic Electrical Source Imaging (DESI) of Seizures and Interictal Epileptic Discharges Without Ensemble Averaging

    PubMed Central

    Erem, Burak; Hyde, Damon E.; Peters, Jurriaan M.; Duffy, Frank H.; Warfield, Simon K.

    2016-01-01

    We propose an algorithm for electrical source imaging of epileptic discharges that takes a data-driven approach to regularizing the dynamics of solutions. The method is based on linear system identification on short time segments, combined with a classical inverse solution approach. Whereas ensemble averaging of segments or epochs discards inter-segment variations by averaging across them, our approach explicitly models them. Indeed, it may even be possible to avoid the need for the time-consuming process of marking epochs containing discharges altogether. We demonstrate that this approach can produce both stable and accurate inverse solutions in experiments using simulated data and real data from epilepsy patients. In an illustrative example, we show that we are able to image propagation using this approach. We show that when applied to imaging seizure data, our approach reproducibly localized frequent seizure activity to within the margins of surgeries that led to patients’ seizure freedom. The same approach could be used in the planning of epilepsy surgeries, as a way to localize potentially epileptogenic tissue that should be resected. PMID:27479957

  17. Electrical discharge machining: occupational hygienic characterization using emission-based monitoring.

    PubMed

    Evertz, Sven; Dott, Wolfgang; Eisentraeger, Adolf

    2006-09-01

    Hazardous potential in industrial environments is normally assessed by means of immission-based sampling and analyses. This approach is not adequate, if effects of specific technical adjustments at machine tools or working processes on hygienic parameters should be assessed. This work has focused on the optimization of a manufacturing process (electrical discharge machining, EDM), with regard to risk reduction assessment. It is based on emission analyses rather than immision analyses. Several technical EDM parameters have been examined for their influence on air-based emissions. Worktools and workpieces used have a strong influence on aliphatic compounds and metals but not on volatile organic compounds (benzene, toluene, ethylene-benzene and xylene (BTEX)) and polycyclic aromatic hydrocarbons (PAHs) in air emissions. Increasing the dielectric (mineral oil) level above processing location decreases BTEX, chromium, nickel and PAH emissions. Aliphatic compounds, in contrast, increase in air emissions. EDM current used has a positive relationship with all substances analyzed in air emissions. Indicative immission concentrations, as can be expected under EDM conditions, are estimated in a predictive scenario. The results of this characterization give rise to an important conclusion in that risk assessment so far has been using incorrect parameters: total aliphatic compounds. Maximum level of chromium is reached long before limit values of aliphatic compounds are exceeded. Because of the fact that metals, like chromium, also have a higher hazardous potential, metal analysis should be introduced in future risk assessment. This experimental approach, that captures total emission of the electrical discharge machine, and is not solely based on immission values, has lead to a better understanding of the production process. This information is used to extract recommendations regarding monitoring aspects and protection measures.

  18. Dust particles under the influence of crossed electric and magnetic fields in the sheath of an rf discharge

    SciTech Connect

    Puttscher, M. Melzer, A.

    2014-12-15

    Experimental studies on the interaction of micron-sized dust particles in plasmas with external magnetic fields are presented. The particles are levitated in the sheath region of an rf discharge by gravity and electric field force under the presence of a horizontal magnetic field of up to 50 mT. It is observed that the dust particles are pushed either in the E{sup →}×B{sup →}- or in the opposite direction depending on magnetic field strength, particle properties, and discharge conditions. This transport behavior is described by a competition between horizontal ambipolar electric field force and ion and neutral drag.

  19. Calcium Sparks in the Heart: Dynamics and Regulation

    PubMed Central

    Hoang-Trong, Tuan M.; Ullah, Aman; Jafri, M. Saleet

    2016-01-01

    Calcium (Ca2+) plays a central role in the contraction of the heart. It is the bi-directional link between electrical excitation of the heart and contraction. Electrical excitation initiates Ca2+influx across the sarcolemma and T-tubular membrane that triggered calcium release from the sarcoplasmic reticulum. Ca2+sparks are the elementary events of calcium release from the sarcoplasmic reticulum. Therefore, understanding the dynamics of Ca2+sparks is essential for understanding the function of the heart. To this end, numerous experimental and computational studies have focused on this topic, exploring the mechanisms of calcium spark initiation, termination, and regulation and what role these play in normal and patho-physiology. The proper understanding of Ca2+ spark regulation and dynamics serves as the foundation for our insights into a multitude of pathological conditions may develop that can be the result of structural and/or functional changes at the cellular or subcellular level. Computational modeling of Ca2+ spark dynamics has proven to be a useful tool to understand Ca2+ spark dynamics. This review addresses our current understanding of Ca2+ sparks and how synchronized SR Ca2+ release, in which Ca2+ sparks is a major pathway, is linked to the different cardiac diseases, especially arrhythmias. PMID:27212876

  20. SI Engine with repetitive NS spark plug

    NASA Astrophysics Data System (ADS)

    Pancheshniy, Sergey; Nikipelov, Andrey; Anokhin, Eugeny; Starikovskiy, Andrey; Laplase Team; Mipt Team; Pu Team

    2013-09-01

    Now de-facto the only technology for fuel-air mixtures ignition in IC engines exists. It is a spark discharge of millisecond duration in a short discharge gap. The reason for such a small variety of methods of ignition initiation is very specific conditions of the engine operation. First, it is very high-pressure of fuel-air mixture - from 5-7 atmospheres in old-type engines and up to 40-50 atmospheres on the operating mode of HCCI. Second, it is a very wide range of variation of the oxidizer/fuel ratio in the mixture - from almost stoichiometric (0.8-0.9) at full load to very lean (φ = 0.3-0.5) mixtures at idle and/or economical cruising mode. Third, the high velocity of the gas in the combustion chamber (up to 30-50 m/s) resulting in a rapid compression of swirling inlet flow. The paper presents the results of tests of distributed spark ignition system powered by repetitive pulse nanosecond discharge. Dynamic pressure measurements show the increased pressure and frequency stability for nanosecond excitation in comparison with the standard spark plug. Excitation by single nanosecond high-voltage pulse and short train of pulses was examined. In all regimes the nanosecond pulsed excitation demonstrate a better performance.

  1. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Köhn, C.; Chanrion, O.; Neubert, T.

    2017-01-01

    Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show that positive streamers may develop even for low oxygen concentrations. Here we explore if bremsstrahlung ionization facilitates positive streamer propagation. To discriminate between effects of UV and bremsstrahlung ionization, we simulate the formation of a double headed streamer at three different oxygen concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times the conventional breakdown field. We find that bremsstrahlung induced ionization in air, contrary to expectations, reduces the propagation velocity of both positive and negative streamers by about 15%. At low oxygen levels, positive streamers stall; however, bremsstrahlung creates branching sub-streamers emerging from the streamer front that allow propagation of the streamer. Negative streamers propagate more readily forming branching sub-streamers. These results are in agreement with experiments. At both polarities, ionization patches are created ahead of the streamer front. Electrons with the highest energies are in the sub-streamer tips and the patches.

  2. Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma.

    PubMed

    Liang, Wenjun; Li, Jian; Li, Jie; Jin, Yuquan

    2009-10-30

    Destruction of gaseous toluene via ferro-electric packed bed dielectric barrier discharge plasma in a coaxial cylindrical reactor was carried out at atmospheric pressure and room temperature. The difference among three kinds of reactors was compared in terms of specific energy density (SED), energy yield (EY), toluene decomposition. In order to optimize the geometry of the reactor, the removal efficiency of toluene was compared for various inner electrode diameters. In addition, qualitative analysis on by-products and particular discussion on toluene abatement mechanisms were also presented. It has been found that ferro-electric packed bed DBD reactor could effectively decompose toluene. Toluene removal efficiency enhanced with increasing SED. With respect to toluene conversion, 1.62 mm electrode appeared to be superior to 1.06 mm electrodes. BaTiO3 reactor had the highest toluene removal efficiency among the reactors. For NaNO2 reactor, the highest EY could reach 17.0 mg/kWh to a certain extent.

  3. On the pulsating electric wind of a Single Dielectric Barrier Discharge (SDBD) plasma actuator

    NASA Astrophysics Data System (ADS)

    Vernet, Julie; Örlü, Ramis; Alfredsson, P. Henrik

    2014-11-01

    An experimental study is conducted on the electric wind produced by a Single Dielectric Barrier Discharge (SDBD) plasma actuator placed at the top of a half cylinder. Laser Doppler Velocimetry (LDV) measurements were performed and results show that increasing the driving voltage (6-16 kV peak-to-peak) and frequency (0.5-2 kHz) of the actuator increases the induced jet velocity (up to 4 m/s) and thus the momentum added by the actuator. The focus of the present study is on the phase-resolved behavior of the electric wind, in particular, its two strokes. Phase-averaged LDV data reveals that while the velocity during both strokes remains positive, there is nearly a factor of two in amplitude. The difference of behavior between the two strokes and its downstream and wall-normal evolution are mapped for various driving voltages. Results indicate that this difference is restricted to the vicinity of the actuator, thereby justifying the assumption of a steady force in simulations to model the induced force. The study is part of a larger investigation aiming at separation control on the A-pillar of a truck cabin. The support of the Swedish Energy Agency and SCANIA CV of the project Flow Research on Active and Novel Control Efficiency (FRANCE) is greatly acknowledged.

  4. Electrical and optical characterization of an atmospheric pressure, uniform, large-area processing, dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zeniou, A.; Puač, N.; Škoro, N.; Selaković, N.; Dimitrakellis, P.; Gogolides, E.; Petrović, Z. Lj

    2017-04-01

    A printed-circuit-board (PCB) based atmospheric pressure dielectric barrier discharge (DBD) capable of uniform processing over a large area was constructed consisting of two parallel plates. The first perforated plate is comprised of four layers: a RF powered metal layer, a polymeric dielectric layer, a floating metal grid and another dielectric layer. The second, grounded, plate was fluorine doped tin oxide (FTO) glass plate with surface of 100  ×  100 mm2 and thickness of 2 mm. The PCB based atmospheric pressure DBD was characterized by (a) measuring electrical characteristics of the device using derivative I–V probes, (b) ICCD imaging and (c) optical emission spectroscopy (OES). Optical and electrical characteristics, as well as plasma uniformity were measured by changing He flow rate and input power, while keeping the gap between the PCB and the FTO glass plate ground electrode constant at 2 mm. The plasma uniformity strongly depends on the applied power and on the flow rate of the buffer gas. When increasing the flow rate, the intensity of the nitrogen-dominated emission drops, while emission of helium and oxygen lines increases. The source allows low temperature, uniform plasma operation over a wide area of 100  ×  100 mm2, which could be essential for numerous applications. Examples of etching rate and hydrophilization are demonstrated.

  5. Development of a spark sustained by charging the stray capacitance of the external circuit in atmospheric-pressure nitrogen

    SciTech Connect

    Akishev, Yu. S.; Aponin, G. I.; Grushin, M. E.; Karal'nik, V. B.; Monich, A. E.; Pan'kin, M. V.; Trushkin, N. I.

    2007-07-15

    Results are presented from experimental studies and numerical simulations of a spark discharge excited in a short point-plane gap filled with atmospheric-pressure nitrogen. The discharge was powered from a high-voltage source connected to the discharge gap through a large ballast resistance. In this case, a short-term spark develops only due to the charging of the stray capacitance of the external circuit; therefore, the energy released by the spark and its intensity are both low. Rapid current growth in a weak spark is accompanied by the contraction of the current channel rather than by its gasdynamic expansion, as it occurs in long-duration kiloampere sparks. Simulations show that, because of the very short spark lifetime, the plasma in a weak spark is substantially nonequilibrium and the gas temperature is fairly high.

  6. Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Troughton, S. C.; Nominé, A.; Nominé, A. V.; Henrion, G.; Clyne, T. W.

    2015-12-01

    Synchronised electrical current and high speed video information are presented from individual discharges on Al substrates during PEO processing. Exposure time was 8 μs and linear spatial resolution 9 μm. Image sequences were captured for periods of 2 s, during which the sample surface was illuminated with short duration flashes (revealing bubbles formed where the discharge reached the surface of the coating). Correlations were thus established between discharge current, light emission from the discharge channel and (externally-illuminated) dimensions of the bubble as it expanded and contracted. Bubbles reached radii of 500 μm, within periods of 100 μs, with peak growth velocity about 10 m/s. It is deduced that bubble growth occurs as a consequence of the progressive volatilisation of water (electrolyte), without substantial increases in either pressure or temperature within the bubble. Current continues to flow through the discharge as the bubble expands, and this growth (and the related increase in electrical resistance) is thought to be responsible for the current being cut off (soon after the point of maximum radius). A semi-quantitative audit is presented of the transformations between different forms of energy that take place during the lifetime of a discharge.

  7. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  8. 46 CFR 108.437 - Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Pipe sizes and discharge rates for enclosed ventilation... HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing... enclosed ventilation systems for rotating electrical equipment. (a) The minimum pipe size for the...

  9. 46 CFR 108.437 - Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Pipe sizes and discharge rates for enclosed ventilation... HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing... enclosed ventilation systems for rotating electrical equipment. (a) The minimum pipe size for the...

  10. 46 CFR 108.437 - Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Pipe sizes and discharge rates for enclosed ventilation... HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing... enclosed ventilation systems for rotating electrical equipment. (a) The minimum pipe size for the...

  11. The synthesis of higher oxides of alkali and alkaline earth metals in an electric discharge: Theoretical and experimental studies

    NASA Technical Reports Server (NTRS)

    Bell, A. T.; Sadhukhan, P.

    1974-01-01

    Potassium hydroxide was subjected to the products of an electrical discharge sustained in oxygen and produced both potassium peroxide and superoxide. The conversion to higher oxides was shown to strongly depend upon the particle size of KOH, the position of KOH in the discharge zone, and the operating conditions of the discharge. Similar experiments were performed with hydroxides of lithium and calcium which do not form superoxides, but are converted to peroxides. The yields of peroxides were shown to strongly depend upon the operating conditions of the discharge. The absence of superoxides and the presence of peroxides of lithium and calcium was explained from the consideration of relative thermodynamic stability of the oxides of lithium and calcium. Thermogravimetric analysis was shown to provide a more accurate means for determining the amount of KO2 than previous methods.

  12. Extended plasma channels created by UV laser in air and their application to control electric discharges

    SciTech Connect

    Zvorykin, V. D. Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-15

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10{sup 11}–1.5×10{sup 13} and 3×10{sup 6}–3×10{sup 11} W/cm{sup 2}, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10{sup 9}–10{sup 17} cm{sup −3}, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  13. The Effect of a Corona Discharge on a Lightning Attachment

    SciTech Connect

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-15

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strike to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed.

  14. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect

    Li, Lee Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan

    2014-07-15

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0 cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  15. Runaway Electron Preionized Diffuse Discharge and Its Impact on Plane Anode

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor; Erofeev, Michael; Ripenko, Vasilii; Shulepov, Mikhail; Baksht, Evgenii; National Research Tomsk Polytechnic University Collaboration; Institute of High Current Electronics Collaboration

    2016-09-01

    The spatial structure of a runaway electrons preionized diffuse discharge (REP DD) in nonuniform electric field and the influence of its plasma on the surface of a plane anode have been studied. In our experiments, we used a NPG-18/3500N high-voltage generator. The incident voltage had negative polarity, amplitude of 20 kV, and FWHM of 6 ns; the discharge current was up to 200 A. The discharge plasma was formed in nitrogen by applying high voltage pulses to the interelectrode gap which was varied between 2 and 9 mm. Under such conditions, the specific input power reached up to 10 MW/cm3. It is established that diffuse channel is the initial stage of the discharge radiation; then anode spot, channel with high glow intensity based on the anode spot and spark channel are consecutively formed. Spark formation finished within 10-15 ns after the onset of the discharge. Microstructure of spark and diffuse channels with anode spot autograph have been detected. The traces of such discharge represents itself an aggregation of up to 100 microcraters with dimeters of 5-100 micrometers. It was also shown that diffuse discharge does not leave erosive action on an anode surface or on its carbon cover. This work was supported by the Russian Science Foundation under the Grant Number 14-29-00052.

  16. Spark gap device for precise switching

    DOEpatents

    Boettcher, G.E.

    1984-10-02

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

  17. Spark gap device for precise switching

    DOEpatents

    Boettcher, Gordon E.

    1984-01-01

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

  18. Fostering the Curiosity Spark

    ERIC Educational Resources Information Center

    Crow, Sherry R.

    2010-01-01

    Many of the children in the early grades who marveled at the plethora of beautiful resources just did not seem that interested by the time they reached upper elementary school. While some children sustained their spark of curiosity, others did not. The force that keeps children (or people of any age) excited about anything is called…

  19. Role of electrical resistance of electrodes in modeling of discharging and charging of flooded lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Gandhi, K. S.

    2015-03-01

    Electrical resistance of both the electrodes of a lead-acid battery increases during discharge due to formation of lead sulfate, an insulator. Work of Metzendorf [1] shows that resistance increases sharply at about 65% conversion of active materials, and battery stops discharging once this critical conversion is reached. However, these aspects are not incorporated into existing mathematical models. Present work uses the results of Metzendorf [1], and develops a model that includes the effect of variable resistance. Further, it uses a reasonable expression to account for the decrease in active area during discharge instead of the empirical equations of previous work. The model's predictions are compared with observations of Cugnet et al. [2]. The model is as successful as the non-mechanistic models existing in literature. Inclusion of variation in resistance of electrodes in the model is important if one of the electrodes is a limiting reactant. If active materials are stoichiometrically balanced, resistance of electrodes can be very large at the end of discharge but has only a minor effect on charging of batteries. The model points to the significance of electrical conductivity of electrodes in the charging of deep discharged batteries.

  20. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation.

    PubMed

    Wu, Zhong-Shuai; Ren, Wencai; Gao, Libo; Zhao, Jinping; Chen, Zongping; Liu, Bilu; Tang, Daiming; Yu, Bing; Jiang, Chuanbin; Cheng, Hui-Ming

    2009-02-24

    We developed a hydrogen arc discharge exfoliation method for the synthesis of graphene sheets (GSs) with excellent electrical conductivity and good thermal stability from graphite oxide (GO), in combination with solution-phase dispersion and centrifugation techniques. It was found that efficient exfoliation and considerable deoxygenation of GO, and defect elimination and healing of exfoliated graphite can be simultaneously achieved during the hydrogen arc discharge exfoliation process. The GSs obtained by hydrogen arc discharge exfoliation exhibit a high electrical conductivity of approximately 2 x 10(3) S/cm and high thermal stability with oxidization resistance temperature of 601 degrees C, which are much better than those prepared by argon arc discharge exfoliation (approximately 2 x 10(2) S/cm, 525 degrees C) and by conventional thermal exfoliation (approximately 80 S/cm, 507 degrees C) with the same starting GO. These results demonstrate that this hydrogen arc discharge exfoliation method is a good approach for the preparation of GSs with a good quality.

  1. TiO2 Nanoparticles Produced by Electric-Discharge-Nanofluid-Process as Photoelectrode of DSSC

    NASA Astrophysics Data System (ADS)

    Chen, Sih-li; Su, Hung-ting; Chang, Ho; Jwo, Ching-song; Feng, Hsiao Ju

    2010-04-01

    Self-made TiO2 nanoparticles were used as photoelectrode material of dye sensitized solar cell. The TiO2 thin film coats through spreading nanoparticles evenly onto the ITO glass via self-made spin-heat platform, and then TiO2 thin film is soaked in the dye N-719 more than 12 h to prepare the photoelectrode device. The TiO2 nanoparticles produced by electric-discharge-nanofluid-process have premium anatase crystal property, and its diameter can be controlled within a range of 20-50 nm. The surface energy zeta potential of nanofluid is from -22 mV to -28.8 mV, it is a stable particle suspension in the deionized water. A trace of surfactant Triton X-100 put upon the surface of ITO glass can produce a uniform and dense TiO2 thin film and heating up the spin platform to 200 °C is able to eliminate mixed surfactant. Self-made TiO2 film presents excellent dye absorption performance and even doesn't need heat treatment procedure to enhance essential property. Results of energy analysis show the thicker film structure will increase the short-circuit current density that causes higher conversion efficiency. But, as the film structure is large and thick, both the open-circuit voltage and fill factor will decline gradually to lead bad efficiency of dye-sensitized solar cell.

  2. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining.

    PubMed

    Bae, Won Gyu; Song, Ki Young; Rahmawan, Yudi; Chu, Chong Nam; Kim, Dookon; Chung, Do Kwan; Suh, Kahp Y

    2012-07-25

    We present a direct one-step method to fabricate dual-scale superhydrophobic metallic surfaces using wire electrical discharge machining (WEDM). A dual-scale structure was spontaneously formed by the nature of exfoliation characteristic of Al 7075 alloy surface during WEDM process. A primary microscale sinusoidal pattern was formed via a programmed WEDM process, with the wavelength in the range of 200 to 500 μm. Notably, a secondary roughness in the form of microcraters (average roughness, Ra: 4.16 to 0.41 μm) was generated during the exfoliation process without additional chemical treatment. The low surface energy of Al 7075 alloy (γ = 30.65 mJ/m(2)) together with the presence of dual-scale structures appears to contribute to the observed superhydrophobicity with a static contact angle of 156° and a hysteresis less than 3°. To explain the wetting characteristics on dual-scale structures, we used a simple theoretical model. It was found that Cassie state is likely to present on the secondary roughness in all fabricated surfaces. On the other hand, either Wenzel or Cassie state can present on the primary roughness depending on the characteristic length of sinusoidal pattern. In an optimal condition of the serial cutting steps with applied powers of ∼30 and ∼8 kW, respectively, a stable, superhydrophobic metallic surface was created with a sinusoidal pattern of 500 μm wavelength.

  3. Mathematical modeling and multi-criteria optimization of rotary electrical discharge machining process

    NASA Astrophysics Data System (ADS)

    Shrinivas Balraj, U.

    2015-12-01

    In this paper, mathematical modeling of three performance characteristics namely material removal rate, surface roughness and electrode wear rate in rotary electrical discharge machining RENE80 nickel super alloy is done using regression approach. The parameters considered are peak current, pulse on time, pulse off time and electrode rotational speed. The regression approach is very much effective in mathematical modeling when the performance characteristic is influenced by many variables. The modeling of these characteristics is helpful in predicting the performance under a given set of combination of input process parameters. The adequacy of developed models is tested by correlation coefficient and Analysis of Variance. It is observed that the developed models are adequate in establishing the relationship between input parameters and performance characteristics. Further, multi-criteria optimization of process parameter levels is carried using grey based Taguchi method. The experiments are planned based on Taguchi's L9 orthogonal array. The proposed method employs single grey relational grade as a performance index to obtain optimum levels of parameters. It is found that peak current and electrode rotational speed are influential on these characteristics. Confirmation experiments are conducted to validate optimal parameters and it reveals the improvements in material removal rate, surface roughness and electrode wear rate as 13.84%, 12.91% and 19.42% respectively.

  4. Characterization of nanoparticles from abrasive waterjet machining and electrical discharge machining processes.

    PubMed

    Ling, Tsz Yan; Pui, David Y H

    2013-11-19

    Abrasive Waterjet Machining (AWM) and Electrical Discharge Machining (EDM) processes are found to produce nanoparticles during operation. Impacts of engineered nanoparticles released to the environment and biological system have caused much concern. Similarly, the nanoparticles unintentionally produced by the AWM and EDM can lead to comparable effects. By application of the Nanoparticle Tracking Analysis (NTA) technique, the size distribution and concentration of nanoparticles in the water used in AWM and EDM were measured. The particles generally have a peak size of 100-200 nm. The filtration systems of the AWM and EDM processes were found to remove 70% and 90% the nanoparticles present, respectively. However, the particle concentration of the filtered water from the AWM was still four times higher than that found in regular tap water. These nanoparticles are mostly agglomerated, according to the microscopy analysis. Using the electron dispersive spectroscopy (EDS) technique, the particles are confirmed to come from the debris of the materials cut with the equipment. Since AWM and EDM are widely used, the handling and disposal of used filters collected with nanoparticles, release of nanoparticles to the sewer, and potential use of higher performance filters for these processes will deserve further consideration.

  5. Hydrophobic and oleophobic re-entrant steel microstructures fabricated using micro electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Weisensee, Patricia B.; Torrealba, Eduardo J.; Raleigh, Mark; Jacobi, Anthony M.; King, William P.

    2014-09-01

    This paper presents the fabrication of metallic micro-mushroom re-entrant structures and the characterization of their hydrophobicity and oleophobicity. Five different microstructure geometries are introduced, with typical feature sizes in the range of 10-100 μm. These microstructures are realized in steel, and are fabricated over the cm-scale using micro electrical discharge machining (mEDM). The liquid repellency of these surfaces is characterized using droplets of either water (surface energy γlg = 72.4 mN m-1), RL-68H oil (γlg = 28.6 mN m-1), or Isopropanol (IPA) (γlg = 21.7 mN m-1). The water droplets form nearly perfect spheres, with contact angles in the range 146-162°, and contact angle hysteresis of 19-35°. The oil droplet contact angles are in the range 106-152° and the IPA contact angles are in the range 75-123°. Strong re-entrant features and close spacing are necessary to support a fully non-wetting state for use with oil and IPA. Water forms the highest contact angles with narrow, post-like, and widely spaced micro-mushroom geometries.

  6. Wurtzite-type ZnS nanoparticles by pulsed electric discharge.

    PubMed

    Omurzak, Emil; Mashimo, Tsutomu; Sulaimankulova, Saadat; Takebe, Shintaro; Chen, Liliang; Abdullaeva, Zhypargul; Iwamoto, Chihiro; Oishi, Yudai; Ihara, Hirotaka; Okudera, Hiroki; Yoshiasa, Akira

    2011-09-07

    The synthesis of wurtzite-type ZnS nanoparticles by an electric discharge submerged in molten sulfur is reported. Using a pulsed plasma between two zinc electrodes of diameter 5 mm in molten sulfur, we have synthesized high-temperature phase (wurtzite-type) ZnS nanocrystals with an average size of about 20 nm. The refined lattice parameters of the synthesized wurtzite-type ZnS nanoparticles were found to be larger than those of the reported ZnS (JCPDS card no 36-1450). Synthesis of ZnMgS (solid solution of ZnS and MgS) was achieved by using ZnMg alloys as both cathode and anode electrodes. UV-visible absorption spectroscopy analysis showed that the absorption peak of the as-prepared ZnS sample (319 nm) displays a blue-shift compared to the bulk ZnS (335 nm). Photoluminescence spectra of the samples revealed peaks at 340, 397, 423, 455 and 471 nm, which were related to excitonic emission and stoichiometric defects.

  7. Surface Preparation of Powder Metallurgical Tool Steels by Means of Wire Electrical Discharge Machining

    NASA Astrophysics Data System (ADS)

    Hatami, Sepehr; Shahabi-Navid, Mehrdad; Nyborg, Lars

    2012-09-01

    The surface of two types of powder metallurgical (PM) tool steels ( i.e., with and without nitrogen) was prepared using wire electrical discharge machining (WEDM). From each grade of tool steel, seven surfaces corresponding to one to seven passes of WEDM were prepared. The WEDM process was carried out using a brass wire as electrode and deionized water as dielectric. After each WEDM pass the surface of the tool steels was thoroughly examined. Surface residual stresses were measured by the X-ray diffraction (XRD) technique. The measured stresses were found to be of tensile nature. The surface roughness of the WEDM specimens was measured using interference microscopy. The surface roughness as well as the residual stress measurements indicated an insignificant improvement of these parameters after four passes of WEDM. In addition, the formed recast layer was characterized by means of scanning electron microscopy (SEM), XRD, and X-ray photoelectron spectroscopy (XPS). The characterization investigation clearly shows diffusion of copper and zinc from the wire electrode into the work material, even after the final WEDM step. Finally, the importance of eliminating excessive WEDM steps is thoroughly discussed.

  8. Electrical characterization and an equivalent circuit model of a microhollow cathode discharge reactor

    SciTech Connect

    Taylan, O.; Berberoglu, H.

    2014-07-28

    This paper reports the electrical characterization and an equivalent circuit of a microhollow cathode discharge (MHCD) reactor in the self-pulsing regime. A MHCD reactor was prototyped for air plasma generation, and its current-voltage characteristics were measured experimentally in the self-pulsing regime for applied voltages from 2000 to 3000 V. The reactor was modeled as a capacitor in parallel with a variable resistor. A stray capacitance was also introduced to the circuit model to represent the capacitance of the circuit elements in the experimental setup. The values of the resistor and capacitors were recovered from experimental data, and the proposed circuit model was validated with independent experiments. Experimental data showed that increasing the applied voltage increased the current, self-pulsing frequency and average power consumption of the reactor, while it decreased the peak voltage. The maximum and the minimum voltages obtained using the model were in agreement with the experimental data within 2.5%, whereas the differences between peak current values were less than 1%. At all applied voltages, the equivalent circuit model was able to accurately represent the peak and average power consumption as well as the self-pulsing frequency within the experimental uncertainty. Although the results shown in this paper was for atmospheric air pressures, the proposed equivalent circuit model of the MHCD reactor could be generalized for other gases at different pressures.

  9. Wurtzite-type ZnS nanoparticles by pulsed electric discharge

    NASA Astrophysics Data System (ADS)

    Omurzak, Emil; Mashimo, Tsutomu; Sulaimankulova, Saadat; Takebe, Shintaro; Chen, Liliang; Abdullaeva, Zhypargul; Iwamoto, Chihiro; Oishi, Yudai; Ihara, Hirotaka; Okudera, Hiroki; Yoshiasa, Akira

    2011-09-01

    The synthesis of wurtzite-type ZnS nanoparticles by an electric discharge submerged in molten sulfur is reported. Using a pulsed plasma between two zinc electrodes of diameter 5 mm in molten sulfur, we have synthesized high-temperature phase (wurtzite-type) ZnS nanocrystals with an average size of about 20 nm. The refined lattice parameters of the synthesized wurtzite-type ZnS nanoparticles were found to be larger than those of the reported ZnS (JCPDS card no 36-1450). Synthesis of ZnMgS (solid solution of ZnS and MgS) was achieved by using ZnMg alloys as both cathode and anode electrodes. UV-visible absorption spectroscopy analysis showed that the absorption peak of the as-prepared ZnS sample (319 nm) displays a blue-shift compared to the bulk ZnS (335 nm). Photoluminescence spectra of the samples revealed peaks at 340, 397, 423, 455 and 471 nm, which were related to excitonic emission and stoichiometric defects.

  10. Comparative Study on Electrical Discharge Machining of Ultrafine-Grain Al, Cu, and Steel

    NASA Astrophysics Data System (ADS)

    Mahdieh, Mohammad Sajjad; Mahdavinejad, RamezanAli

    2016-12-01

    Recently, manufacturing of industrial parts out of ultrafine-grain (UFG) materials became prevalent due to their lightweight and high strength. Machining processes such as electrical discharge machining (EDM) are necessary to produce parts with accurate dimensions and tolerance. On the other hand, recast layer, heat-affected zone (HAZ), and the micro-cracks are the effects of the EDM process, reducing the surface integrity of the workpieces. These undesirable effects are more noticeable on the UFG materials because of the excess energy stored in them. This excess stored energy is because of the high strain and stress imposed on the microstructure of UFG material during severe plastic deformation processes. In this article, a comparative study is conducted about the effects of the EDM process on three applicable UFG materials: aluminum, steel, and copper. These UFG materials are produced by equal channel angular pressing, which is a well-known method in producing UFG materials. The surface integrity factors including thickness of recast layer and HAZ, cracks density, micro-hardness, and surface roughness are measured and investigated via optical microscopy, scanning electron microscopy, X-ray diffraction technique, roughness tester, and micro-hardness tester. Results show that after the EDM process, thicker recast layer, and HAZ, more cracks density and more microstructural changes are observed among the UFG aluminum samples than among the copper and steel samples.

  11. Comparison between Mach 2 rarefied airflow modification by an electrical discharge and numerical simulation of airflow modification by surface heating

    NASA Astrophysics Data System (ADS)

    Parisse, J. D.; Léger, L.; Depussay, E.; Lago, V.; Burtschell, Y.

    2009-10-01

    This study is devoted to numerical and experimental investigations about the influence of an electrical discharge over a flat plate immersed in a rarefied Mach 2 airflow. Regarding the experimental work, a negative dc discharge is created by applying a potential difference gap between two spanwise aluminum electrodes flush mounted on the plate. The electrode placed close to the leading edge is connected to the negative dc voltage, the second one is grounded. The influence due to the presence of the electric discharge is investigated with a glass Pitot tube by measuring the pressure proles above the flat plate. These experimental results are compared to the numerical work, where the effect of a surface temperature increase is simulated. Different effects can be attributed to the electrical discharge: the ionization of the gas above the plate with the creation of charged species, the acceleration of the positive charged species, the heat of the gas volume above the flat plate, and the heating of the surface of the flat plate. The Pitot probe measurements have shown a thickening of the boundary layer and the increasing of the angle of the shock wave, and the simulation of the surface temperature increase shows the same effect. These arguments let to think that the heating effect due to the temperature increase in the flat plate is the major one among the other effects mentioned above.

  12. Experimental study of low-temperature plasma of electrical discharges with liquid electrodes

    NASA Astrophysics Data System (ADS)

    Zheltukhin, Viktor; Gaisin, Almaz

    2016-09-01

    Results of the experimental research of discharge between the liquid jet cathode (LJC) and the metal anode are presented. The discharge was studied over the voltage range U = 100 - 600 V, discharge current range I = 0 . 1 - 0 . 25 A, external pressure range P =105 Pa, discharge power Pd = 10 - 150 W. We used the techniques of infrared thermography and spectral measurements. Schlieren's photography is applied for describing the processes in liquid and gas phase. Results of the experimental researches of discharge current-voltage characteristic (CVC), the surface temperature distribution both on the LJC and the metal anode, a spectral measurements are showed. Effects of action both of breakdown and discharge on the jet flow as well as on the air flow near the discharge are described. It is found that the discharge CVC has an ascending behavior due to increase of plasma current density. The discharge is generated on the borders between the LJC and the metal anode as well as along the LJC misshaping this one. It is established that both the convection streams and an electrolyte drops are formed during the discharge burn. It is found that the discharge temperature in the vicinity of electrode surface reaches T 348 K. The work was funded by RFBR, according to the research projects No.,14-01-0755.

  13. Towards spark-proof gaseous pixel detectors

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; Beuzekom, M. v.; Chan, H. W.; Graaf, H. v. d.; Hartjes, F.; Heijhoff, K.; Hessey, N. P.; Prodanovic, V.

    2016-11-01

    The micro-pattern gaseous pixel detector, is a promising technology for imaging and particle tracking applications. It is a combination of a gas layer acting as detection medium and a CMOS pixelated readout-chip. As a prevention against discharges we deposit a protection layer on the chip and then integrate on top a micromegas-like amplification structure. With this technology we are able to reconstruct 3D track segments of particles passing through the gas thanks to the functionality of the chip. We have turned a Timepix3 chip into a gaseous pixel detector and tested it at the SPS at Cern. The preliminary results are promising and within the expectations. However, the spark protection layer needs further improvement to make reliable detectors. For this reason, we have created a setup for spark-testing. We present the first results obtained from the lab-measurements along with preliminary results from the testbeam.

  14. Small-size controlled vacuum spark-gap in an external magnetic field

    SciTech Connect

    Asyunin, V. I. Davydov, S. G.; Dolgov, A. N. Pshenichnyi, A. A.; Yakubov, R. Kh.

    2015-02-15

    It is demonstrated that the operation of a small-size controlled spark-gap can be controlled by applying a uniform external magnetic field. It is shown that the magnetic field of such a simple configuration efficiently suppresses the effect of localization of the discharge current after multiple actuations of the spark-gap.

  15. ElectroSpark Deposited Coatings for Replacement of Chrome Electroplating

    DTIC Science & Technology

    2001-04-26

    roger.johnson@pnl.gov, 509-375-6906 ElectroSpark Deposited Coatings for Replacement of Chrome Electroplating (SERDP Project 1147) Report Documentation...3. DATES COVERED 00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE ElectroSpark Deposited Coatings for Replacement of Chrome Electroplating 5a...Northwest National Laboratory 2 Electrospark Deposition Technology Coatings: Electrically conductive metals, alloys, or cermets Micro-welding

  16. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    PubMed Central

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  17. The Effects of Self-Discharge on the Performance of Symmetric Electric Double-Layer Capacitors and Active Electrolyte-Enhanced Supercapacitors: Insights from Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-02-01

    The effects of self-discharge on the performance of symmetric electric double-layer capacitors (EDLCs) and active electrolyte-enhanced supercapacitors were examined by incorporating self-discharge into electrochemical capacitor models during charging and discharging. The sources of self-discharge in capacitors were side reactions or redox reactions and several impurities and electric double-layer (EDL) instability. The effects of self-discharge during capacitor storage was negligible since it took a fully charged capacitor a minimum of 14.0 days to be entirely discharged by self-discharge in all conditions studied, hence self-discharge in storage condition can be ignored. The first and second charge-discharge cycle energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a capacitor of electrode effective conductivity α1 = 0.05 S/cm with only EDL instability self-discharge with current density J_{{VR}} = 1.25 × 10-3 A/cm2 were 72.33% and 72.34%, respectively. Also, energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a similar capacitor with both side reactions and redox reactions and EDL instability self-discharges with current densities J_{{VR}} = 0.00125 A/cm2 and J_{{{{VR}}1}} = 0.0032 A/cm2 were 38.13% and 38.14% respectively, compared with 84.24% and 84.25% in a similar capacitor without self-discharge. A capacitor with only EDL instability self-discharge and that with both side reactions and redox reactions and EDL instability self-discharge lost 9.73 Wh and 28.38 Wh of energy, respectively, through self-discharge during charging and discharging. Hence, EDLCs charging and discharging time is significantly dependent on the self-discharge rate which are too large to be ignored.

  18. Application of surface electrical discharges to the study of lightning strikes on aircraft

    NASA Technical Reports Server (NTRS)

    Boulay, J. L.; Larigaldie, S.

    1991-01-01

    Considered here is the characterization of surface discharges which provide a facility complementary to that of artificially triggered lightning. General characteristics of a simplified surface discharge, including current waveforms and the constitution of a surface discharge are outlined, and the application of this approach to the study of aircraft lightning strikes is considered. Representations of leader-streamer and return-stroke phases are discussed, and the application to the two-dimensional discharge phase is covered. It is noted that the fact that the initiation times of surface discharges could be controlled, and the path followed by the discharge channels could be predetermined, indicates that it is possible to produce a highly dedicated high performance instrumentation system.

  19. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    NASA Astrophysics Data System (ADS)

    Qazi, H. I. A.; Nie, Qiu-Yue; Li, He-Ping; Zhang, Xiao-Fei; Bao, Cheng-Yu

    2015-12-01

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A-X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  20. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    SciTech Connect

    Qazi, H. I. A.; Li, He-Ping Zhang, Xiao-Fei; Bao, Cheng-Yu; Nie, Qiu-Yue

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  1. Electrical Resistivity Tomography to characterize localized freshwater discharge in coastal environment

    NASA Astrophysics Data System (ADS)

    Kumm, Max; Scheuermann, Alexander; Hauck, Christian; Welti, Nina

    2014-05-01

    North Stradbroke Island, located in the Pacific Ocean about 40 km east of Brisbane in Queensland, Australia, is formed by massive sand dunes of heights up to 229 m. The Island represents a reservoir for vast amounts of groundwater and plays an important role for the regional water supply. Therefore a detailed understanding of its hydrogeological features is of particular interest. In the intertidal zone on the western shores of the island, two localized freshwater springs with 4 m and 6 m in diameter were found. Hydrochemical investigations could not unequivocally identify the source of the freshwater by comparing its chemical properties to adjacent surface water and groundwater features. This case study presents the application of electrical resistivity tomography (ERT) in order to identify the source of the discharged freshwater and to delineate preferential flow paths in the saturated sand sediments. Several measurements with in-line arrays switching 48 electrodes as well as square arrays with 96 electrodes were conducted. The results of two- and three-dimensional data inversion were refined and verified implementing additional information. In-lab resistivity measurements on undisturbed samples of the sand sediments from the area under investigation as well as data from drill cores were considered for the refinement of the inversion model. The field work was impeded by the tides and allowed only for short periods for set up and measurement. A semi-confined aquifer formed by a layer of cemented sand at 7 m to 8 m depth perforated at the location of the springs could be identified. The interpretation of ERT data without considering additional geological and in lab resistivity data did not unambiguously indicate the real geological structure of the subsurface. High conductivities in the saturated sandy sediments lead to low investigation depths. Porosity-conductivity relationships for the loose sediments as well as for the cemented sand layer had to be modified to

  2. Simulation of the electric field distribution in the electrode system of a device forming a high-voltage gas discharge

    NASA Astrophysics Data System (ADS)

    Markushin, M. A.; Kolpakov, V. A.; Krichevskii, S. V.; Kolpakov, A. I.

    2015-03-01

    We propose a model of the electric field distribution in the electrode system of a gas-discharge device. The possibility of application the method of conformal mapping of a function of a complex variable for describing analytically the form of the distribution of equipotential lines of the field in the region of the circular orifice in the anode of the gas discharge device is demonstrated. The method for obtaining a system of parametric equations for determining the equipotential lines and field lines is described. We obtain the theoretical maps of the electric field distribution, which make it possible to determine their relation with the electrophysical parameters of the electrode system of the device.

  3. Origin of life: hypothesized roles of high-energy electrical discharges, infrared radiation, thermosynthesis and pre-photosynthesis.

    PubMed

    Trevors, J T

    2012-12-01

    The hypothesis is proposed that during the organization of pre-biotic bacterial cell(s), high-energy electrical discharges, infrared radiation (IR), thermosynthesis and possibly pre-photosynthesis were central to the origin of life. High-energy electrical discharges generated some simple organic molecules available for the origin of life. Infrared radiation, both incoming to the Earth and generated on the cooling Earth with day/night and warming/cooling cycles, was a component of heat engine thermosynthesis before enzymes and the genetic code were present. Eventually, a primitive forerunner of photosynthesis and the capability to capture visible light emerged. In addition, the dual particle-wave nature of light is discussed from the perspective that life requires light acting both as a wave and particle.

  4. DC discharges in atmospheric air for bio-decontamination - spectroscopic methods for mechanism identification

    NASA Astrophysics Data System (ADS)

    Machala, Z.; Jedlovský, I.; Chládeková, L.; Pongrác, B.; Giertl, D.; Janda, M.; Ikurová, L. Å.; Polčic, P.

    2009-08-01

    Three types of DC electrical discharges in atmospheric air (streamer corona, transient spark and glow discharge) were tested for bio-decontamination of bacteria and yeasts in water solution, and spores on surfaces. Static vs. flowing treatment of contaminated water were compared, in the latter the flowing water either covered the grounded electrode or passed through the high voltage needle electrode. The bacteria were killed most efficiently in the flowing regime by transient spark. Streamer corona was efficient when the treated medium flew through the active corona region. The spores on plastic foil and paper surfaces were successfully inactivated by negative corona. The microbes were handled and their population evaluated by standard microbiology cultivation procedures. The emission spectroscopy of the discharges and TBARS (thiobarbituric acid reactive substances) absorption spectrometric detection of the products of lipid peroxidation of bacterial cell membranes indicated a major role of radicals and reactive oxygen species among the bio-decontamination mechanisms.

  5. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.

    PubMed

    Waddell, Joseph C; Rodríguez-Cattáneo, Alejo; Caputi, Angel A; Crampton, William G R

    2016-10-26

    Descriptions of the head-to-tail electric organ discharge (ht-EOD) waveform - typically recorded with electrodes at a distance of approximately 1-2 body lengths from the center of the subject - have traditionally been used to characterize species diversity in gymnotiform electric fish. However, even taxa with relatively simple ht-EODs show spatiotemporally complex fields near the body surface that are determined by site-specific electrogenic properties of the electric organ and electric filtering properties of adjacent tissues and skin. In Brachyhypopomus, a pulse-discharging genus in the family Hypopomidae, the regional characteristics of the electric organ and the role that the complex 'near field' plays in communication and/or electrolocation are not well known. Here we describe, compare, and discuss the functional significance of diversity in the ht-EOD waveforms and near-field spatiotemporal patterns of the electromotive force (emf-EODs) among a species-rich sympatric community of Brachyhypopomus from the upper Amazon.

  6. Development and Experimental Study of Surface-Electrical Discharge Diamond Grinding of Al-10 wt%SiC Composite

    NASA Astrophysics Data System (ADS)

    Agrawal, Shyam Sunder; Yadava, Vinod

    2016-01-01

    As silicon carbide possesses small fracture toughness, it is difficult to grind because it leads to cracking. Metal matrix composites can be machined using electrical discharge machining (EDM) but the process is slow. Electrical discharge diamond grinding (EDDG), which consists of diamond grinding and EDM with a rotating disk which enhanced material removal rate (MRR) and produce better surface finish. This paper describes the machining characteristic of Al-SiC composite using EDDG in surface grinding configuration which is called as surface-electrical discharge diamond grinding (S-EDDG). A chain of experiments were performed on S-EDDG set up by mounting newly self designed and fabricated set up on conventional die sinking EDM machine using the approach of one parameter-at-a-time concept. Surface roughness (Ra) and MRR are taken as output parameters as both are important outcome in the manufacturing process and they materialize a major division in the manufacturing system. The effects of current, wheel speed and depth of cut is analyzed on MRR and Ra. Finally, optimization have been done through weighted principal component analysis.

  7. Heterogeneous effects in the process of ozone synthesis in electrical discharges

    SciTech Connect

    Schmidt-Szalowski, K.; Borucka, A. )

    1989-06-01

    Catalytic effects of solid surfaces in the synthesis of ozone have been examined under semicorona discharges conditions. It was found out that in the presence of a granular dielectric (silica) in the discharge gap, the ozone formation was accelerated and higher ozone concentrations were obtained. The mechanism of catalytic effects of silica is discussed.

  8. Process of commutation of a vacuum electric-discharge gap by laser plasma

    SciTech Connect

    Davydov, S. G. Dolgov, A. N.; Kozlovskaya, T. I.; Revazov, V. O.; Seleznev, V. P.; Yakubov, R. Kh.

    2016-01-15

    The temporal parameters of a process of vacuum gap commutation under exposure to a nanosecond pulse of laser radiation incident on the cathode has been studied depending on the radiation energy. Based on the experiment data, it is suggested that a glow discharge is initially ignited in electrode erosion products under exposure to the laser pulse, which due to development of the ionization-overheating instability undergoes the contraction of current channel and transits to an arc discharge. With the radiation energy exceeding a threshold value, the radiation (incident on the cathode) accelerates directly the instability development and the glow discharge transition to the arc discharge due to the radiation absorption in the discharge plasma.

  9. Unraveling the Image of Commutation Spark Generated in Universal Motors

    NASA Astrophysics Data System (ADS)

    Hanazawa, Tamio; Almazroui, Ali; Egashira, Torao

    A universal motor, which is mainly used in vacuum cleaners, generates commutation sparks at the moment when the brush and the commutator segment are separated from each other during rotation. This study investigates the mechanism of commutation spark generation by analyzing high-speed camera images and its electrical aspect. We invented a new external trigger method that used laser light as the trigger signal for the shuttering a high-speed camera. This method enabled us to photograph sparks on any desired commutator segments during high-speed rotation, and that made the analysis after photographing easier. This paper shows that commutation sparks in universal motors are generated on every other commutator segment and at the peak of pulses in the voltage between the brush and commutator segment. Other aspects are also clarified, such as the generation of the singular and plural number of sparks on one commutator segment at a time, the time from the moment of spark generation to extinction, and spark generation during a single rotation.

  10. Two-color interferometer for the study of laser filamentation triggered electric discharges in air

    SciTech Connect

    Point, Guillaume Brelet, Yohann; Arantchouk, Leonid; Carbonnel, Jérôme; Prade, Bernard; Mysyrowicz, André; Houard, Aurélien

    2014-12-15

    We present a space and time resolved interferometric plasma diagnostic for use on plasmas where neutral-bound electron contribution to the refractive index cannot be neglected. By recording simultaneously the plasma optical index at 532 and 1064 nm, we are able to extract independently the neutral and free electron density profiles. We report a phase resolution of 30 mrad, corresponding to a maximum resolution on the order of 4×10{sup 22} m{sup −3} for the electron density, and of 10{sup 24} m{sup −3} for the neutral density. The interferometer is demonstrated on centimeter-scale sparks triggered by laser filamentation in air with typical currents of a few tens of A.

  11. Laboratory studies of spacecraft response to transient discharge pulses

    NASA Technical Reports Server (NTRS)

    Nanevicz, J. E.; Adamo, R. C.

    1985-01-01

    The in-orbit measurement of spacecraft discharge properties was investigated. The experiments include design and fabrication of appropriate sensors and effects of spacecraft electromagnetic responses on the interpretation of the discharge data. Electric field sensors especially designed to response to high-speed transient signals were installed on a mock-up of a satellite. The simple mock-up was basically a sheet of aluminum rolled to form a cylinder. A movable spark-discharge noise source designed to be electromagnetically isolated from its power supply system was used to induce transient signals at various locations on the spacecraft's outer surface. The measurements and their implications are described. It is concluded that practical orbital measurements to define discharge noise source properties should be possible, and that simple mock-ups of the type described below are useful in sensor system design and data interpretation.

  12. Experimental study of plume induced by nanosecond repetitively pulsed spark microdischarges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Benard, Nicolas; Moreau, Eric; Pai, David

    2016-09-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been widely studied due to their high chemical reactivity, low gas temperature, and high ionization efficiency. They are useful in many research areas: nanomaterials synthesis, combustion, and aerodynamic flow control. In all of these fields, particular attention has been devoted to chemical species transport and/or hydrodynamic and thermal effects for applications. The aim of this study is to generate an electro-thermal plume by combining an NRP spark microdischarge in a pin-to-pin configuration with a third DC-biased electrode placed a few centimeters away. First, electrical characterization and optical emission spectroscopy were performed to reveal important plasma processes. Second, particle image velocimetry was combined with schlieren photography to investigate the main characteristics of the generated flow. Heating processes are measured by using the N2(C ->B) (0,2) and (1,3) vibrational bands, and effects due to the confinement of the discharge are described. Moreover, the presence of atomic ions N+ and O+ is discussed. Finally, the electro-thermal plume structure is characterized by a flow velocity around 1.8 m.s-1, and the thermal kernel has a spheroidal shape.

  13. Rapid prototyping of zirconium diboride/copper electrical discharge machining electrodes

    NASA Astrophysics Data System (ADS)

    Stucker, Brent Eric

    The acceptance of rapid prototyping (RP) as the predominant technique for producing polymer and paper parts directly from computer-aided design (CAD) models has led many corporations and universities to try to extend its capabilities to more robust materials. In addition to producing prototype metal and ceramic parts, a significant effort has been made to create parts that are useful as tools and dies or that reduce the time necessary to create tools and dies. Most materials used for tools and dies are very hard, because they need to be able to withstand millions of cycles before failing. Electrical discharge machining (EDM) is the most common method used to machine tools and dies out of hard materials. A method for producing EDM electrodes using RP could greatly reduce the time and cost involved in creating tools and dies. A new EDM electrode material made up of zirconium diboride and copper (ZrBsb2/Cu) that is superior to traditional EDM electrodes has been investigated. The processing techniques necessary for creating Zrsb2/Cu electrodes from powders of ZrB2 and copper have been developed. These ZrBsb2/Cu electrodes have a better wear ratio and a faster sink rate than graphite, copper or tungsten/copper EDM electrodes. Performance variables that were tracked are: (1) wear ratio, (2) sink rate and (3) surface finish, where ZrBsb2/Cu, copper, graphite and W/Cu were used as anodes (electrodes) and stainless steel as cathodes (workpieces). The ZrBsb2/Cu electrode material system retains its superior EDM electrode performance across a number of materials processing and compositional variations. Scanning electron microscopy (SEM) was used to study the electrodes after EDM. These SEM observations facilitated an understanding of the superior EDM electrode performance characteristics of ZrBsb2/Cu to traditional EDM electrode material systems. A method for creating geometrically-complex ZrBsb2/Cu EDM electrodes using the selective laser sintering (SLS) RP technique was

  14. The Chlorella killed by pulsed electrical discharge in liquid with two different reactors

    NASA Astrophysics Data System (ADS)

    Gao, Z. Y.; Sun, B.; Yan, Z. Y.; Zhu, X. M.; Liu, H.; Song, Y. J.; Sato, M.

    2013-03-01

    The application of pulsed high-voltage discharge in liquid has attracted wide attention as an effective water treatment. In this paper, two different liquid high-voltage discharge systems were constructed with plate-hole-plate and needle-plate electrode structures, and the inactivation behaviors of Chlorella were studied in the two reactors. The results show that the killing rates of algae in both reactors all increased significantly with increasing discharge voltage and the killing rates were intensely related to discharge power, instantaneous power and single pulse input energy. Furthermore, the inactivation effect in needle-plate reactor was superior to that in plate-hole-plate reactor under the same experimental conditions.

  15. Investigation of Electron Loss Processes in CO2/He/N2 Electric Discharges.

    DTIC Science & Technology

    1980-12-01

    CO2 laser to be used to perform studies of the effects of laser radiation on various materials. The design of the laser requires accurate prediction of...up used in this study. Structure of a Discharge Most gases at room temperature, atmospheric pressure, and under no external influences are...the non-self-sustained discharge, uses some external source of electrons to pro- vide ionization. External sources of electrons commonly are heated

  16. Electrical discharge occurring between a negatively charged particle cloud and a grounded sphere electrode

    NASA Astrophysics Data System (ADS)

    Higashiyama, Y.; Migita, S.; Toki, K.; Sugimoto, T.

    2008-12-01

    Electrostatic discharge occurring between a space-charge cloud and a grounded object was investigated using a large-scale charged particle cloud formed by using three set of cloud generators consisting of a blower and corona charger. The ejecting velocity of the particles affects the formation of the charged cloud. At the lower velocity, the charged cloud spread due to electrostatic repulsion force, while at the higher velocity cloud forms an elongated conical shape. To cause electrostatic discharge between the cloud and a grounded object, a grounded sphere electrode with 100 mm in diameter was set at the inside or outside of the cloud. The brush-like discharge channels reached the maximum length of 0.55 m. The discharge current has a waveform with single or multi-peak, a current peak of several amperes, the maximum charge quantity of 2 μC, and the duration of several microseconds. The relationship between the charge quantity and the current peak or the duration in each discharge was examined. The discharge between the cloud and the electrode placed at the outside of the cloud has relatively longer channels and multi-peak current with the longer duration, while that at the inside of the cloud has the lower charge quantity with single peak.

  17. The influence of Kr, CO2, and iso-C4H8 admixtures on the time of the formation of a stable flame front in mixtures of natural gas and isobutylene with oxygen and hydrogen with air under initiation with a spark discharge

    NASA Astrophysics Data System (ADS)

    Rubtsov, N. M.; Seplyarskii, B. S.; Chernysh, V. I.; Tsvetkov, G. I.

    2010-05-01

    High-speed color filming was used to study laminar spherical flame propagation at the initial stage in preliminarily mixed stoichiometric mixtures of natural gas and isobutylene with oxygen containing krypton and carbon dioxide and in hydrogen-air mixtures at atmospheric pressure in a bomb with a constant volume. Under experimental conditions ( T 0 = 298 K, p 0 = 100 torr, spark discharge energy E 0 = 0.91 J), the dilution of mixtures with Kr and CO2 increased the time of formation of a stable flame front by more than 10 times. The introduction of a small chemically active admixture (1.2% isobutylene) into a stoichiometric mixture of hydrogen and air sharply increased the time of formation of a stable flame front, which was evidence of an important role played by the chemical mechanism of the reaction in the formation of the combustion field.

  18. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S. Hamid R.; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-10-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µs duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N2, and O2, each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N2 2nd positive system. N2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  104 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ~1018 cm-3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s-1, which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages.

  19. Measurement of elemental concentration of aerosols using spark emission spectroscopy.

    PubMed

    Diwakar, Prasoon K; Kulkarni, Pramod

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~10(16) cm(-3)), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation.

  20. Measurement of elemental concentration of aerosols using spark emission spectroscopy†

    PubMed Central

    Diwakar, Prasoon K.

    2015-01-01

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~1016 cm−3), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation. PMID:26491209

  1. Conditions for uniform impact of the plasma of a runaway-electron-induced pulsed diffuse discharge on an anode

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Baksht, E. Kh.; Burachenko, A. G.; Tarasenko, V. F.

    2015-09-01

    The subject matters in this work are (i) the spatial structure of a volume (diffuse) discharge initiated in atmospheric-pressure air in a heavily nonuniform electric field by nanosecond voltage pulses and (ii) the influence of its plasma on the surface of a plane aluminum anode. It is shown that a diffuse discharge initiated by nanosecond voltage pulses makes it possible to uniformly process the anode's surface in atmospheric-pressure air in contrast to a spark discharge, which results in microcracking, locally changes the surface properties, and thereby degrades the surface.

  2. Tool grinding and spark testing

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1993-01-01

    The objectives were the following: (1) to revive the neglected art of metal-sparking; (2) to promote quality-assurance in the workplace; (3) to avoid spark-ignited explosions of dusts or volatiles; (4) to facilitate the salvage of scrap metals; and (5) to summarize important references.

  3. Composition analyzer for microparticles using a spark ion source

    NASA Technical Reports Server (NTRS)

    Auer, S.; Berg, O. E.

    1975-01-01

    Iron microparticles were fired onto a capacitor-type microparticle detector which responded to an impact with a spark discharge. Ion currents were extracted from the spark and analyzed in a time-of-flight mass spectrometer. The mass spectra showed the elements of both detector and particle materials. The total extracted ion current was typically 10 A within a period of 100 nsec, indicating very efficient vaporization of the particle and ionization of the vapor. Potential applications include research on cosmic dust, atmospheric aerosols and cloud droplets, particles ejected by rocket or jet engines, by machining processes or by nuclear bomb explosions.

  4. Machining Performance and Surface Integrity of AISI D2 Die Steel Machined Using Electrical Discharge Surface Grinding Process

    NASA Astrophysics Data System (ADS)

    Choudhary, Rajesh; Kumar, Harmesh; Singh, Shankar

    2013-12-01

    The aim of this study is to establish optimum machining conditions for EDSG of AISI D2 die steel through an experimental investigation using Taguchi Methodology. To achieve combined grinding and electrical discharge machining, metal matrix composite electrodes (Cu-SiCp) were processed through powder metallurgy route. A rotary spindle attachment was developed to perform the EDSG experimental runs on EDM machine. Relationships were developed between various input parameters such as peak current, speed, pulse-on time, pulse-off time, abrasive particle size, and abrasive particle concentration, and output characteristics such as material removal rate and surface roughness. The optimized parameters were further validated by conducting confirmation experiments.

  5. Search for relativistic electrons in laboratory discharge experiments

    NASA Astrophysics Data System (ADS)

    Ostgaard, Nikolai; Carlson, Brant E.; Grøndahl, Øystein; Kochkin, Pavlo; Nisi, Ragnhild S.; Gjesteland, Thomas

    2015-04-01

    Discharge experiments were carried out at the Technical University of Eindhoven in 2013. The experimental set-up was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the HV electrode. Five thin (1 mm) plastic detectors (5 cm2 each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers has developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated in this location, probably in the strong electric field from countestreaming streamers of opposite polarity. Comparing our measurements with modeling results we find that 200-400 keV electrons produced about 30-60 cm from the negative electrode is the most likely source of our measurements.

  6. Measurement of OH density and gas temperature in incipient spark-ignited hydrogen-air flame

    SciTech Connect

    Ono, Ryo; Oda, Tetsuji

    2008-01-15

    To investigate the electrostatic ignition of hydrogen-air mixtures, the density of OH radicals and the gas temperature are measured in an incipient spark-ignited hydrogen-air flame using laser-induced predissociation fluorescence (LIPF). The assessment of the electrostatic hazard of hydrogen is necessary for developing hydrogen-based energy systems in which hydrogen is used in fuel cells. The spark discharge occurs across a 2-mm gap with pulse duration approximately 10 ns. First, a hydrogen (50%)-air mixture is ignited by spark discharge with E=1.35E{sub -}, where E is the spark energy and E{sub -} is the minimum ignition energy. In this mixture, OH density decreases after spark discharge. It is 3 x 10{sup 16}cm{sup -3} at t=0{mu}s and 4 x 10{sup 15}cm{sup -3} at t=100{mu}s, where t is the postdischarge time. On the other hand, the gas temperature increases after spark discharge. It is 900 K at t=30{mu}s and 1400 K at t=200{mu}s. Next, a stoichiometric (hydrogen (30%)-air) mixture is ignited by spark discharge with E=1.25E{sub -}. In this mixture, OH density is approximately constant at 4 x 10{sup 16}cm{sup -3} for 150 {mu}s after spark discharge, and the gas temperature increases from 1000 K (t=0{mu}s) to 1800 K (t=150{mu}s). (author)

  7. Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration

    SciTech Connect

    Stelmashuk, V.

    2014-01-15

    When a high voltage pulse with an amplitude of 30 kV is applied to a pair of disk electrodes at a time when a shock wave is passing between them, an electrical spark is generated. The dynamic changes in the spark morphology are studied here using a high-speed framing camera. The primary result of this work is the provision of experimental evidence of plasma instability that was observed in the channel of the electric spark.

  8. Electrical and chemical properties of XeCl*(308 nm) exciplex lamp created by a dielectric barrier discharge

    SciTech Connect

    Baadj, S.; Harrache, Z. Belasri, A.

    2013-12-15

    The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl{sub 2} mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl{sub 2} percentage in the Xe/Cl{sub 2} gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.

  9. Electro-spark deposition technology

    SciTech Connect

    Johnson, R.N.

    1997-12-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated critical to the life and economy of the advanced fossil energy systems as the higher temperatures and corrosive environments exceed the limits of known structural materials to accommodate the service conditions. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. A new development is the demonstration of advanced aluminide-based ESD coatings for erosion and wear applications. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that yields an order of magnitude increase in deposition rates and achievable coating thicknesses. Achieving this regime has required the development of advanced ESD electronic capabilities. Development is now focused on further improvements in deposition rates, system reliability when operating at process extremes, and economic competitiveness.

  10. Fish Geometry and Electric Organ Discharge Determine Functional Organization of the Electrosensory Epithelium

    PubMed Central

    Sanguinetti-Scheck, Juan Ignacio; Pedraja, Eduardo Federico; Cilleruelo, Esteban; Migliaro, Adriana; Aguilera, Pedro; Caputi, Angel Ariel; Budelli, Ruben

    2011-01-01

    Active electroreception in Gymnotus omarorum is a sensory modality that perceives the changes that nearby objects cause in a self generated electric field. The field is emitted as repetitive stereotyped pulses that stimulate skin electroreceptors. Differently from mormyriformes electric fish, gymnotiformes have an electric organ distributed along a large portion of the body, which fires sequentially. As a consequence shape and amplitude of both, the electric field generated and the image of objects, change during the electric pulse. To study how G. omarorum constructs a perceptual representation, we developed a computational model that allows the determination of the self-generated field and the electric image. We verify and use the model as a tool to explore image formation in diverse experimental circumstances. We show how the electric images of objects change in shape as a function of time and position, relative to the fish's body. We propose a theoretical framework about the organization of the different perceptive tasks made by electroreception: 1) At the head region, where the electrosensory mosaic presents an electric fovea, the field polarizing nearby objects is coherent and collimated. This favors the high resolution sampling of images of small objects and perception of electric color. Besides, the high sensitivity of the fovea allows the detection and tracking of large faraway objects in rostral regions. 2) In the trunk and tail region a multiplicity of sources illuminate different regions of the object, allowing the characterization of the shape and position of a large object. In this region, electroreceptors are of a unique type and capacitive detection should be based in the pattern of the afferents response. 3) Far from the fish, active electroreception is not possible but the collimated field is suitable to be used for electrocommunication and detection of large objects at the sides and caudally. PMID:22096578

  11. Enhanced Homogenization of Vanadium in Spark Plasma Sintering of Ti-10V-2Fe-3Al Alloy from Titanium and V-Fe-Al Master Alloy Powder Blends

    NASA Astrophysics Data System (ADS)

    Yang, Y. F.; Imai, H.; Kondoh, K.; Qian, M.

    2017-02-01

    Strong and ductile powder metallurgy (PM) Ti-10V-2Fe-3Al alloy has been fabricated by spark plasma sintering (SPS) of titanium and V-Fe-Al master alloy powder blends at 1100°C for 30 min under 30 MPa. The homogenization of vanadium, which dictates the realization of a uniform microstructure of the Ti-10V-2Fe-3Al alloy, was markedly accelerated by SPS. The mechanism is attributed to the intensive Joule heating effect produced by the direct current passing through the electric conducting powder blends, rather than through spark plasma discharge, because homogenization occurred mainly after near full identification had been achieved. The chemical and microstructural homogeneity ensured the achievement of excellent tensile properties of PM Ti-10V-2Fe-3Al in the as-sintered state, with tensile strength >1250 MPa and elongation >10%.

  12. Time-resolved imaging of electrical discharge development in underwater bubbles

    SciTech Connect

    Tu, Yalong; Xia, Hualei; Yang, Yong E-mail: luxinpei@hust.edu.cn; Lu, Xinpei E-mail: luxinpei@hust.edu.cn

    2016-01-15

    The formation and development of plasma in single air bubbles submerged in water were investigated. The difference in the discharge dynamics and the after-effects on the bubble were investigated using a 900 000 frame per second high-speed charge-coupled device camera. It was observed that depending on the position of the electrodes, the breakdown could be categorized into two modes: (1) direct discharge mode, where the high voltage and ground electrodes were in contact with the bubble, and the streamer would follow the shortest path and propagate along the axis of the bubble and (2) dielectric barrier mode, where the ground electrode was not in touch with the bubble surface, and the streamer would form along the inner surface of the bubble. The oscillation of the bubble and the development of instabilities on the bubble surface were also discussed.

  13. Fiber Optic Sensor for Acoustic Detection of Partial Discharges in Oil-Paper Insulated Electrical Systems

    PubMed Central

    Posada-Roman, Julio; Garcia-Souto, Jose A.; Rubio-Serrano, Jesus

    2012-01-01

    A fiber optic interferometric sensor with an intrinsic transducer along a length of the fiber is presented for ultrasound measurements of the acoustic emission from partial discharges inside oil-filled power apparatus. The sensor is designed for high sensitivity measurements in a harsh electromagnetic field environment, with wide temperature changes and immersion in oil. It allows enough sensitivity for the application, for which the acoustic pressure is in the range of units of Pa at a frequency of 150 kHz. In addition, the accessibility to the sensing region is guaranteed by immune fiber-optic cables and the optical phase sensor output. The sensor design is a compact and rugged coil of fiber. In addition to a complete calibration, the in-situ results show that two types of partial discharges are measured through their acoustic emissions with the sensor immersed in oil. PMID:22666058

  14. Experimental Study of Material Removal Rate in Electrical Discharge Turning of Titanium Alloy (Ti-6al-4v)

    NASA Astrophysics Data System (ADS)

    Puri, Y. M.; Gohil, Vikas

    2017-03-01

    Electrical discharge turning (EDT) is a new machining process in which an external axis is added to a conventional EDM machine in order to produce precise cylindrical forms on hard and difficult to machine materials. By feeding a pre shaped tool electrode against a rotating work piece, axially symmetrical pats can be produce. The machining performance of EDT process is influenced by its machining parameters, which directly affect the quality of the machined component. This paper presents an experimental study on the effects of EDM parameters namely pulse-on time, peak current, gap voltage, spindle speed and flushing pressure on material removal rate (MRR) in electrical discharge turning of titanium alloy Ti-6Al-4V. This has been done by means of the Taguchi’s design of experiment technique. A mathematical model has been developed for MRR by regression analysis and factor effects were analyzed using analysis of variance (ANOVA). Signal-to-noise ratio analysis is used to find the optimal condition.

  15. Objectivization of the electrical discharge measurement results taken by the acoustic emission method

    NASA Astrophysics Data System (ADS)

    Boczar, T.; Borucki, S.; Cichoń, A.; Lorenc, M.

    2006-11-01

    The subject matter of this paper refers to the improvement of the acoustic emission method (AE) in its application for diagnostics of insulation systems of power appliances whereas the detailed subject matter is connected with determining the possibilities and indicating the range of using statistical and digital methods of signal processing for the evaluation of the AE pulses generated by partial discharges (PDs), which can occur in paper-oil insulation of power transformers.

  16. Ignition and Supersonic Burning of Air - Fuel Mixtures Initiated by Electrical Discharges

    DTIC Science & Technology

    2005-08-04

    second order accuracy is used. On every time step the flowfield parameters are computed due Gauss - Seidel line relaxation numerical technique. inv GF...flame plasma is undertaken by the spectroscopy methods in the first section of the combustor (directly behind the step) and in the diagnostic chamber...bottom wall, 8 – fuel supply into the flame holder zones 1.3. Diagnostic complex. Main experimental methods of plasma discharges

  17. Hypersonic Flow over a Cylinder with a Nanosecond Pulse Electrical Discharge

    DTIC Science & Technology

    2014-03-01

    nanosecond pulsedielectric barrier discharge (ns- DBD ) in a Mach 5 flow demonstrated the feasibility of a plasma-based supersonic flow controller. In the...generated, due to rapid localized heating from the DBD , which propagated upstream from the cylinder surface and interacted with the standing bow shock. This...demonstrations using the ns- DBD have included separated flow reattachment in airflows [3] up to Mach 0.85, characterization of compression wave propagation in

  18. Sparking protection for MFTF-B neutral beam power supplies

    SciTech Connect

    Cummings, D.B.

    1983-11-30

    This paper describes the upgrade of MFTF-B Neutral Beam Power Supplies for sparking protection. High performance ion sources spark repeatedly so ion source power supplies must be insensitive to sparking. The hot deck houses the series tetrode, arc and filament supplies, and controls. Hot deck shielding has been upgraded and a continuous shield around the arc, filament, gradient grid, and control cables now extends from the hot deck, through the core snubber, to the source. The shield carries accelerating current and connects only to the source. Shielded source cables go through an outer duct which now connects to a ground plane under the hot deck. This hybrid transmission line is a low inductance path for sparks discharging the stray capacitance of the hot deck and isolation transformers, reducing coupling to building steel. Parallel dc current return cables inside the duct lower inductance to reduce inductive turn-off transients. MOVs to ground further limit surges in the remote power supply return. Single point grounding is at the source. No control or rectifier components have been damaged nor are there any known malfunctions due to sparking up to 80 kV output.

  19. On the origin of hard X-rays in the growth of meter long sparks

    NASA Astrophysics Data System (ADS)

    van Deursen, A. P.; Kochkin, P.; Nguyen, V.; Ebert, U.

    2012-12-01

    Meter-long laboratory sparks generate high-energetic radiation in a similar way as lightning: Bremsstrahlung generated in collisions between high-energy electrons and air molecules. This study aims to localize and characterize the X-ray source and to visualize the relevant processes. A Marx generator delivers a standardized lightning impulse voltage pulse of 1.2/50~ μ s rise/fall time of positive or negative polarity. The generator was loaded by a spark gap formed by two conical electrodes at about 1~m distance; one of the electrodes was grounded. Applied voltages were 1~MV, which lead to breakdown of the gap. The voltage was measured by a high-voltage divider. Both electrodes were equipped with current probes to determine the electrical characteristics of the discharge. Two LaBr 3 (Ce + ) scintillation detectors measured the X-rays; different distances and angles gave information on the spatial distribution around the spark gap. Lead collimators limited the field of view. Lead attenuators of different thicknesses helped to determine the energy distribution. An intensified CCD camera allows us to capture images of pre-breakdown phenomena with ten-ns resolution. All diagnostics was synchronized to better than 1~ns. Many hundreds of discharges allowed statistical analysis. The X-ray emission area is concentrated in the vicinity of the cathode. The variation with detector position shows a 1/r 2 dependence of the detection rate, characteristic of a point-like source of constant luminosity. The reduction with attenuators of variable thickness agrees with a characteristic X-ray energy of 200~keV. The X-rays never occur before there is any cathode current. The nanosecond-fast photography allowed us to follow all pre-breakdown stages of the discharge, from the formation of a first inception cloud, to the formation and propagation of streamers crossing the gap. At a later stage, some cold streamer channels developed into hot leaders which then lead to breakdown. For the X

  20. Generation in electric-discharge XeCl lasers of a high energy long pulses

    NASA Astrophysics Data System (ADS)

    Konovalov, Ivan; Losev, Valery F.; Panchenko, Yury N.

    2004-06-01

    Experimental results of long-pulse generation in X-ray preionized XeCl lasers with a 9 x 7 cm2 and 5.4 x 3 cm2 apertures are described. Lasers operate at Ne-Xe-HCl mixture with pressure up to 4 atm. Paper-oil pulse forming lines and rail-gap switch for discharge pump was used. An 2 - 10 J output with optical pulse duration of 250 - 300 ns (FWHM) have been extracted. Problems and peculiarities of long laser pulse formation are discussed.

  1. Laser-filament-induced corona discharges and remote measurements of electric fields.

    PubMed

    Sugiyama, K; Fujii, T; Miki, M; Yamaguchi, M; Zhidkov, A; Hotta, E; Nemoto, K

    2009-10-01

    Femtosecond laser pulses were used to make plasma filaments near an isolated positively or negatively highly biased electrode. The electrode was well positioned to sustain a high voltage up to U(max)=+/-400 kV to avoid the induced breakdown or a glow discharge; the shape of the electrode was chosen to reduce the corona effects at the maximal voltage. The filament's UV emission is shown to be very sensitive to the voltage applied: it increases nonlinearly with the electrode potential. Along with nanosecond filament-induced flashes at both polarities, long, about a half microsecond, corona flashes were observed at the negative polarity.

  2. The Spark and Its Ember

    PubMed Central

    González, A.; Kirsch, W.G.; Shirokova, N.; Pizarro, G.; Stern, M.D.; Ríos, E.

    2000-01-01

    Amplitude, spatial width, and rise time of Ca2+ sparks were compared in frog fast-twitch muscle, in three conditions that alter activation of release channels by [Ca2+]. A total of ∼17,000 sparks from 30 cells were evaluated. In cells under voltage clamp, caffeine (0.5 or 1 mM) increased average spark width by 28%, rise time by 18%, and amplitude by 7%. Increases in width were significant even among events of the same rise time. Spontaneous events recorded in permeabilized fibers with low internal [Mg2+] (0.4 mM), had width and rise times greater than in reference, and not significantly different than those in caffeine. The spark average in reference rides on a continuous fluorescence “ridge” and is continued by an “ember,” a prolongation of width ∼1 μm and amplitude <0.2, vanishing in ∼100 ms. Ridge and ember were absent in caffeine and in permeabilized cells. Exposure of voltage-clamped cells to high internal [Mg2+] (7 mM) had effects opposite to caffeine, reducing spark width by 26% and amplitude by 27%. In high [Mg2+], the ember was visible in individual sparks as a prolongation of variable duration and amplitude up to 1.2. Based on simulations and calculation of Ca2+ release flux from averaged sparks, the increase in spark width caused by caffeine was interpreted as evidence of an increase in radius of the release source—presumably by recruitment of additional channels. Conversely, spark narrowing suggests loss of contributing channels in high Mg2+. Therefore, these changes in spark width at constant rise times are evidence of a multichannel origin of sparks. Because ridge and ember were reduced by promoters of Ca2+-dependent activation (caffeine, low [Mg2+]) and became more visible in the presence of its inhibitors, they are probably manifestations of Ca2+ release directly operated by voltage sensors. PMID:10653893

  3. Nitric Oxide Studies in Low Temperature Plasmas Generated with a Nanosecond Pulse Sphere Gap Electrical Discharge

    NASA Astrophysics Data System (ADS)

    Burnette, David Dean

    This dissertation presents studies of NO kinetics in a plasma afterglow using various nanosecond pulse discharges across a sphere gap. The discharge platform is developed to produce a diffuse plasma volume large enough to allow for laser diagnostics in a plasma that is rich in vibrationally-excited molecules. This plasma is characterized by current and voltage traces as well as ICCD and NO PLIF images that are used to monitor the plasma dimensions and uniformity. Temperature and vibrational loading measurements are performed via coherent anti-Stokes Raman spectroscopy (CARS). Absolute NO concentrations are obtained by laser-induce fluorescence (LIF) measurements, and N and O densities are found using two photon absorption laser-induced fluorescence (TALIF). For all dry air conditions studied, the NO behavior is characterized by a rapid rate of formation consistent with an enhanced Zeldovich process involving electronically-excited nitrogen species that are generated within the plasma. After several microseconds, the NO evolution is entirely controlled by the reverse Zeldovich process. These results show that under the chosen range of conditions and even in extreme instances of vibrational loading, there is no formation channel beyond ~2 musec. Both the NO formation and consumption mechanisms are strongly affected by the addition of fuel species, producing much greater NO concentrations in the afterglow.

  4. Simulation of the electric potential and plasma generation coupling in magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Krueger, Dennis; Schmidt, Frederik; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2016-09-01

    Magnetron sputtering typically operated at low pressures below 1 Pa is a widely applied deposition technique. For both, high power impulse magnetron sputtering (HiPIMS) as well as direct current magnetron sputtering (dcMS) the phenomenon of rotating ionization zones (also referred to as spokes) has been observed. A distinct spatial profile of the electric potential has been associated with the latter, giving rise to low, mid, and high energy groups of ions observed at the substrate. The adherent question of which mechanism drives this process is still not fully understood. This query is approached using Monte Carlo simulations of the heavy particle (i.e., ions and neutrals) transport consistently coupled to a pre-specified electron density profile via the intrinsic electric field. The coupling between the plasma generation and the electric potential, which establishes correspondingly, is investigated. While the system is observed to strive towards quasi-neutrality, distinct mechanisms governing the shape of the electric potential profile are identified. This work is supported by the German Research Foundation (DFG) in the frame of the transregional collaborative research centre TRR 87.

  5. Numerical simulations of spark channels propagating along the ground surface: Comparison with high-current experiment

    SciTech Connect

    Bazelyan, E. M.; Sysoev, V. S.; Andreev, M. G.

    2009-08-15

    A numerical model of a spark discharge propagating along the ground surface from the point at which an {approx}100-kA current pulse is input into the ground has been developed based on experiments in which the velocity of a long leader was measured as a function of the leader current. The results of numerical simulations are in good agreement with the measured characteristics of creeping discharges excited in field experiments by using a high-power explosive magnetic generator. The reason why the length of a spark discharge depends weakly on the number of simultaneously developing channels is found. Analysis of the influence of the temporal characteristics of the current pulse on the parameters of the creeping spark discharge shows that actual lighting may exhibit similar behavior.

  6. Experimental study of hard-X ray emission from laboratory sparks

    NASA Astrophysics Data System (ADS)

    Marisaldi, Martino; Rizzi, Rolando; Levi, Giuseppe; Malgesini, Roberto; Villa, Andrea; Mazza, Paolo; Labanti, Claudio; Fuschino, Fabio; Campana, Riccardo; Bianchini, David; Brancaccio, Rossella; Montanari, Alessandro; Patrizii, Laura

    2014-05-01

    We present the characterization of hard-X rays produced by meter-long laboratory sparks carried out at the high-voltage laboratory of RSE, Milano, Italy. Sparks are known to emit X-rays when positive and negative streamers connect, before breakdown. Numerical simulations suggest that X-rays are produced by Bremsstrahlung in air by electrons accelerated to the runaway regime in the high electric field at the streamers tip. Positive meter-long discharges are produced by a Marx generator loaded by a meter-long air gap formed by a spherical anode and a conical-shaped cathode. Maximum voltage at breakdown is about 1 MV. We investigate the production of X-rays by means of an array of scintillation detectors deployed around the cathode. Each detector is a 2'' NaI(Tl) scintillating crystal coupled to a photomultiplier tube (PMT). Each detector is battery-powered and enclosed in a metallic housing for EM shielding. Analog signal output is trasmitted to a shielded control room by means of optical fibre tranceivers, and then collected by a fast digitizer. We present the experimental setup and first results concerning detection efficiency, energy spectra, and geometrical distribution of the emission.

  7. Numerical optimization of the electrical characteristics of an EUV laser on 3 p-3 s transition in neonlike argon ions in low-inductance capillary-type discharge

    NASA Astrophysics Data System (ADS)

    Burtsev, V. A.; Kalinin, N. V.; Vaganov, S. A.

    2017-01-01

    Electrical characteristics of low-inductance capillary-type discharge have been determined by numerical model calculations, which ensure high efficiency of energy supply to a plasma column with an aspect ratio of 1: 100. The EUV argon laser based on this discharge provides a gain of g + > 1 cm-1 on the operating transition and ensures single-pass spontaneous lasing with g + l > 25 (where l is the active medium length).

  8. Ignition of a combustible gas mixture by a laser spark excited in the reactor volume

    SciTech Connect

    Kazantsev, S. Yu.; Kononov, I. G.; Kossyi, I. A.; Tarasova, N. M.; Firsov, K. N.

    2009-03-15

    Ignition of a stoichiometric CH{sub 4}: O{sub 2} mixture by a laser spark excited in the reactor volume is studied experimentally. It is found that the spark initiates a feebly radiating incomplete-combustion wave, which is much faster than the combustion wave, but is substantially slower than the detonation wave. With a time delay of 500-700 {mu}s, a bright optical flash occupying the entire chamber volume is observed, which indicates fast (involving branching chain reactions) ignition of the gas mixture. A conclusion is drawn regarding the common nature of the process of ignition of a combustible gas mixture by a laser spark excited in the reactor volume and the previously investigated initiation of combustion by laser sparks excited at solid targets, high-power microwave discharges, and high-current gliding discharges.

  9. Electric Field in a Plasma Channel in a High-Pressure Nanosecond Discharge in Hydrogen: A Coherent Anti-Stokes Raman Scattering Study

    NASA Astrophysics Data System (ADS)

    Yatom, S.; Tskhai, S.; Krasik, Ya. E.

    2013-12-01

    Experimental results of a study of the electric field in a plasma channel produced during nanosecond discharge at a H2 gas pressure of (2-3)×105 Pa by the coherent anti-Stokes scattering method are reported. The discharge was ignited by applying a voltage pulse with an amplitude of ˜100 kV and a duration of ˜5 ns to a blade cathode placed at a distance of 10 and 20 mm from the anode. It was shown that this type of gas discharge is characterized by the presence of an electric field in the plasma channel with root-mean-square intensities of up to 30 kV/cm. Using polarization measurements, it was found that the direction of the electric field is along the cathode-anode axis.

  10. Search for a ''3.5-eV isomer'' in {sup 229}Th in a hollow-cathode electric discharge

    SciTech Connect

    Inamura, T. T.; Haba, H.

    2009-03-15

    A hollow-cathode electric discharge, a well-established source in optical spectroscopy, was used to populate the ''3.5-eV isomer'' in {sup 229}Th with use of nuclear excitation by electron transition (NEET). The radiochemically purest {sup 229}Th sample was loaded into the hollow cathode in which the electric discharge excited the {sup 229}Th to atomic states some of which could be expected to lie close to the excitation energy of the sought isomer. Although there remain some uncertainties, our experiments indicate that the isomer was populated by NEET and its {alpha} decay observed after switching off the electric discharge with a corresponding isomer half-life 1 min < or approx. T{sub 1/2}{sup m} < or approx. 3 min. From the present NEET condition, the isomer appears to lie between 3 eV and 7 eV. The probability of the isomer population by NEET is discussed.

  11. Optical and electrical characteristics of a single surface DBD micro-discharge produced in atmospheric-pressure nitrogen and synthetic air

    NASA Astrophysics Data System (ADS)

    Šimek, M.; Prukner, V.; Schmidt, J.

    2011-05-01

    Basic opto-electrical characteristics of a single micro-discharge generated in a surface DBD reactor with a coplanar electrode arrangement were studied with nanosecond time resolution. The discharge electrode geometry based on machinable glass-ceramic was optimized in order to get a system free of the circulating dielectric liquids that are frequently used to insulate and cool metallic electrodes. The build-up and decay of UV-vis-NIR emission by a single micro-discharge unaffected by concurrent or preceding discharge events was inspected during the first 10 µs of the micro-discharge evolution in nitrogen and in synthetic air. Obtained emission waveforms show a great similarity between the surface and volume streamers. The streamer volume-averaged N2(A) concentrations of ~8 × 1014 cm-3 were estimated at t = 1 µs decay time and concentrations of ~(2-4) × 1015 cm-3 were estimated during the streamer propagation phase in nitrogen.

  12. Estimation of submarine groundwater discharge from bulk ground electrical conductivity measurements

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Rapaglia, John; Bokuniewicz, Henry

    2008-08-01

    The utility of bulk ground conductivity (BGC) measurements in the estimation of submarine groundwater discharge (SGD) was investigated at four sites covering a range of hydrogeological settings, namely Cockburn Sound (Australia); Shelter Island (USA); Ubatuba Bay (Brazil) and Flic-en-Flac Bay (Mauritius). At each of the sites, BGC was surveyed in the intertidal zone, and seepage meters were used for direct measurements of SGD flow rates. In the presence of detectable salinity gradients in the sediment, a negative correlation between SGD and BGC was recorded. The correlation is site-specific and is dependent on both the type of sediment and the mixing processes. For example, at Shelter Island the maximum mean flow rates were 65 cm d-1 at a BGC of ˜0 mS cm-1 while at Mauritius maximum mean flow rates were 364 cm d-1 at a BGC of ˜0 mS cm-1. BGC measurements are used to estimate SGD over a large scale, and to separate its fresh and saline components. Extrapolating BGC measurements throughout the study sites yields a total discharge of 2.91, 1.59, 7.16, and 25.4 103 m3 d-1 km-1 of shoreline with a freshwater fraction of 41, 24, 29, and 63% at Cockburn Sound, Shelter Island, Ubatuba Bay, and Flic-en-Flac Bay respectively. The results demonstrate that ground conductivity is a useful tracer to survey and separate freshwater and recirculated seawater component of SGD. The presented investigation is a subset within a series of experiments designed to compare different methods to investigate SGD co-organized and carried out by SCOR, LOICZ, IOC and IAEA.

  13. Study of Mechanisms of Filamentary Pulse Electric Discharge Interaction with Gaseous Flow of Nonuniform Composition

    DTIC Science & Technology

    2013-06-01

    driver through the optical coupler that allows avoiding of the triggering caused by the EM noise. The accuracy of the synchronization is about 0.1 s. It...triggering of the whole schlieren system, is controlled by the pulse generator through the optical coupler . Spectroscopic system is typically used...MOhm) buffer resistors. This fact facilitates the process of the switcher electrical strength recovery and allows to get delays of the switcher

  14. Effect of metal oxide and oxygen on the growth of single-walled carbon nanotubes by electric arc discharge

    NASA Astrophysics Data System (ADS)

    He, Delong; Liu, Yongning; Zhao, Tingkai; Zhu, Jiewu; Yu, Guang

    2008-03-01

    The effect of oxygen on the growth of single-walled carbon nanotubes was studied with Ni-Co alloy powder as catalyst under helium atmosphere of 500 Torr by electric arc discharge. The oxygen included in nickel or (and) cobalt oxides was added in catalyst. The content of oxygen in atmosphere was controlled by changing vacuum degree inside furnace before inputting buffer gas. The examinations of TEM and Raman scattering showed that oxygen in metal oxide as catalyst promotes the nucleation of SWCNT by taking effect on the metal catalyst particles. However, O2 in atmosphere has the role of oxidizing amorphous particles along with nanotubes. When its molar proportion is higher than 0.22 ppm (Parts per million), the carbon nanotubes produced are oxidized and their purity decreases. The diameter of single-walled carbon nanotube obtained under different condition has a narrow distribution around 1.28 nm.

  15. Development of a Discharge Channel upon Electric Explosion of a Wire in Interrupted- and Uninterrupted-Current Regimes

    SciTech Connect

    Romanova, Vera; Tkachenko, Svetlana; Mingaleev, Albert; Agafonov, Alexey; Ter-Oganesyan, Alexey; Shelkovenko, Tatiana; Pikuz, Sergey

    2009-01-21

    Experimental results on the electrical explosion of thin W, Cu and Ni wires with a current density of {approx}10{sup 12} A/m{sup 2}, a current rise rate (dI/dt){approx}40 A/ns and a current pulse with amplitude 9 kA are presented. The structures of the discharge channels developed in single wire explosions in air and vacuum using laser shadow and schlieren imaging have been studied under the condition that the current in the circuit was interrupted. A difference in the shock wave propagation in air and the expansion of the exploded wire dense core in interrupted- and uninterrupted-current regimes has been observed. Analysis of the optical images has been performed in a shunting breakdown scenario.

  16. Microstructure investigation of 13Cr-2Mo ODS steel components obtained by high voltage electric discharge compaction technique

    SciTech Connect

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; Chernov, Ivan; Staltsov, Maxim; Khasanov, Oleg; Olevsky, Eugene

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. As a result, the choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  17. Study on mild and severe wear of 7075 aluminum alloys by high-speed wire electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Xu, Jinkai; Qiu, Rongxian; Xia, Kui; Wang, Zhichao; Xu, Lining; Yu, Huadong

    2017-01-01

    The recast and the carbon layers were fabricated on 7075Al alloys surface by the high-speed wire electrical discharge machining (HS-WEDM) technologyunder various working parameters. The mechanical properties and friction behaviors of the layers were investigated by UMT. 7075 Al alloys were used to do dry sliding wear tests on a pin-ondisk wear tester at room temperature under various contact pressures. 7075 Al alloys had almost the same wear regularity as a function of sliding velocity and rated frequency. The hardness of recast layer was improved. And this method can enhance durability of 7075 Al alloy effectively.The transition to severe wear occurred at a higher load (12N) for asmachined samples, compared with 7075 matrix (9N), the as-machined samples exhibited lower wear rates within the tested loading range.

  18. Electro-spark deposition technology

    SciTech Connect

    Johnson, R.N.

    1996-08-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated as one of the enabling technologies for advanced energy systems. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that promises an order of magnitude increase in deposition rates and achievable coating thicknesses. Since this regime borders on and exceeds the normal operating limits of existing ESD electronic equipment, development is in progress to produce equipment that can consistently and reliably achieve these conditions for a broad range of materials. Progress so far has resulted in a consistent 500% increase in deposition rates, and greater rates still are anticipated. Technology transfer activities are a significant portion of the ESD program effort. Notable successes now include the start-up of a new business to commercialize the ESD technology, the incorporation of the process into the operations of a major gas turbine manufacturer, major new applications in gas turbine blade and steam turbine blade protection and repair, and in military, medical, metal-working, and recreational equipment applications.

  19. Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry.

    PubMed

    Preis, S; Klauson, D; Gregor, A

    2013-01-15

    Increased volatile organic compounds emissions and commensurate tightening of applicable legislation mean that the development and application of effective, cost-efficient abatement methods are areas of growing concern. This paper reviews the last two decades' publications on organic vapour emissions from food processing, their sources, impacts and treatment methods. An overview of the latest developments in conventional air treatment methods is presented, followed by the main focus of the paper, non-thermal plasma technology. The results of the review suggest that non-thermal plasma technology, in its pulsed corona discharge configuration, is an emerging treatment method with potential for low-cost, effective abatement of a wide spectrum of organic air pollutants. It is found that the combination of plasma treatment with catalysis is a development trend that demonstrates considerable potential. The as yet relatively small number of plasma treatment applications is considered to be due to the novelty of pulsed electric discharge techniques and a lack of reliable pulse generators and reactors. Other issues acting as barriers to widespread adoption of the technique include the possible formation of stable oxidation by-products, residual ozone and nitrogen oxides, and sensitivity towards air humidity.

  20. Study of the machining process of nano-electrical discharge machining based on combined atomistic-continuum modeling method

    NASA Astrophysics Data System (ADS)

    Zhang, Guojun; Guo, Jianwen; Ming, Wuyi; Huang, Yu; Shao, Xinyu; Zhang, Zhen

    2014-01-01

    Nano-electrical discharge machining (nano-EDM) is an attractive measure to manufacture parts with nanoscale precision, however, due to the incompleteness of its theories, the development of more advanced nano-EDM technology is impeded. In this paper, a computational simulation model combining the molecular dynamics simulation model and the two-temperature model for single discharge process in nano-EDM is constructed to study the machining mechanism of nano-EDM from the thermal point of view. The melting process is analyzed. Before the heated material gets melted, thermal compressive stress higher than 3 GPa is induced. After the material gets melted, the compressive stress gets relieved. The cooling and solidifying processes are also analyzed. It is found that during the cooling process of the melted material, tensile stress higher than 3 GPa arises, which leads to the disintegration of material. The formation of the white layer is attributed to the homogeneous solidification, and additionally, the resultant residual stress is analyzed.

  1. Particle model analyses of N{sub 2}O dilution with He on electrical characteristics of radio-frequency discharges

    SciTech Connect

    Younis, G.; Yousfi, M.; Despax, B.

    2009-05-01

    The electrical characteristics (voltage, electric field, charged particle densities, dissipated power, particle energy, etc.) are analyzed in the case of low pressure (0.5 and 1 Torr) radio-frequency (rf) discharges in nitrous oxide (N{sub 2}O)/Helium (He) mixtures. An optimized and validated particle model has been used for these analyses in the case of gradual dilutions of N{sub 2}O with He buffer gas. A specific care is carried on the power density evolution and variation which show a complex behavior as a function of He proportion (up to 85%). These analyses are based on a microscopic approach enabling one to show the contribution of the different inelastic processes mainly between electrons and respectively N{sub 2}O and He gases. This approach enables also one to show the discharge region (the positive column or the plasma region) where the power is preferentially dissipated. The power density variation is found to be mainly proportional to the electron density variation. The latter is dependent on the different processes occurring between the charged particles [i.e., electrons, negative ions (O{sup -} and NO{sup -}), and positive ions (N{sub 2}O{sup +} and He{sup +})] and the neutral gas mixture (N{sub 2}O and He). Furthermore, the particle model shows the role of the electron-He collisions on the variation in the electron energy and distribution. This allows more particularly explaining the effects of N{sub 2}O dilution with He on the dissipated power variation in terms of creation and loss of electrons through collision processes.

  2. Influence of the type of electric discharge on the properties of the produced aluminium nanoparticles

    NASA Astrophysics Data System (ADS)

    Shiyan, L. N.; Yavorovskii, N. A.; Pustovalov, A. V.; Gryaznova, E. N.

    2015-04-01

    The effect of the method of aluminum nanopowder production on the aluminum products with water reaction is described. It has been established that the interaction of aluminum nanopowder prepared by the electric wire explosion, the phase composition of the reaction products mainly consists of boehmite (AlOOH) and has a fibrous structure. Therefore, that boehmite (AlOOH) can be used for modification of polymer membranes. The modified membranes can be used as water treatment from the impurity of formed true solutions according to adsorptive mechanism, and from colloidal nanometer and micron particles according to the mechanism of mechanical separation of particles depending on sizes.

  3. In-process electrical discharge dressing of arc-shaped metal bonded diamond wheels

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Fan, Fei; Tian, Guoyu; Zhang, Feihu; Liu, Zhongde

    2016-10-01

    Due to the high hardness of SiC ceramics, the wear of the arc-shaped metal bonded diamond wheels is very serious during the grinding process of large-aperture aspheric SiC mirrors. The surface accuracy and surface/sub-surface quality of the aspheric mirror will be affected seriously if the grinding wheel is not timely dressed. Therefore, this paper focus on the in-process dressing of the arc-shaped metal bonded diamond wheels. In this paper, the application of the asymmetric arc profile grinding wheel in the grinding of aspheric mirrors is discussed first. Then a rotating cup-shaped electrode in-process electro discharge dressing device for the arc-shaped wheels is developed based on the analysis. The dressing experiments are carried out with the device. The experimental results show that the in-process dressing device can did the dressing for the asymmetric and symmetric arc-shaped wheel. The profile error of the arc can reach to 3μm with the in-process dressing device.

  4. Correlation of the neutron yield anisotropy with the electrical characteristics of a plasma focus discharge

    SciTech Connect

    Ablesimov, V. E.; Dolin, Yu. N.; Pashko, O. V.; Tsibikov, Z. S.

    2010-05-15

    The anisotropy of the yield and energy of neutrons generated in a small-size plasma focus chamber with a total neutron yield of about 4 x 10{sup 9} DD neutrons per shot was investigated experimentally. The neutrons were recorded using scintillation detectors on a 3-m-long flight base. The measurements were performed at the angles 0{sup o} and 90{sup o} with respect to the chamber axis. The maximum neutron energy measured by the time-of-flight method at the angles 0{sup o} and 90{sup o} was found to be 2.8 and 2.5 MeV, respectively. The measured anisotropy of the neutron yield was in the range 1.15-1.88. The integral DD neutron yield of the source was measured using the activation method (by activating silver isotopes). It is found that the neutron yield and the yield anisotropy depend linearly on the discharge current jump {Delta}I at the instant of neutron generation.

  5. Process for Ignition of Gaseous Electrical Discharge Between Electrodes of a Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2000-01-01

    The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.

  6. On the origin of hard X-rays in the growth of meter long sparks

    NASA Astrophysics Data System (ADS)

    Kochkin, Pavlo; van Deursen, A. P. J.; Ebert, Ute

    2013-04-01

    Meter-long laboratory sparks generate high-energetic radiation in a similar way as lightning: Bremsstrahlung generated in collisions between high-energy electrons and air molecules. This study aims to localize and characterize the X-ray source and to visualize the relevant processes. A Marx generator delivers a standardized lightning impulse voltage pulse of 1.2/50 microsec rise/fall time of positive or negative polarity. The generator was loaded by a spark gap formed by two conical electrodes at about 1 m distance; one of the electrodes was grounded. Applied voltages were 1 MV, which lead to breakdown of the gap. The voltage was measured by a high-voltage divider. Both electrodes were equipped with current probes to determine the electrical characteristics of the discharge. Two La(Ce)Br3 scintillation detectors measured the X-rays; different distances and angles gave information on the spatial distribution around the spark gap. Lead collimators limited the field of view. Lead attenuators of different thicknesses helped to determine the energy distribution. An intensified CCD camera allows us to capture images of pre-breakdown phenomena with ten-ns resolution. All diagnostics was synchronized to better than 1 ns. Many hundreds of discharges allowed statistical analysis. The X-ray emission area is concentrated in the vicinity of the cathode. The variation with detector position shows a 1/r2 dependence of the detection rate, characteristic of a point-like source of constant luminosity. The reduction with attenuators of variable thickness agrees with a characteristic X-ray energy of 200 keV. The X-rays never occur before there is any cathode current. The nanosecond-fast photography allowed us to follow all pre-breakdown stages of the discharge, from the formation of a first inception cloud, to the formation and propagation of streamers crossing the gap. At a later stage, some cold streamer channels developed into hot leaders which then lead to breakdown. For the X

  7. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry

    NASA Astrophysics Data System (ADS)

    Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.

    2016-12-01

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.

  8. By-product Generation through Electrical Discharge in CF3I Gas and its Effect to Insulation Characteristics

    NASA Astrophysics Data System (ADS)

    Takeda, Toshinobu; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    CF3I gas, which is one of promising SF6 substitutions, is investigated from the view point of by-product generated in gas discharge, since its global warming potential (GWP) is quite low and its insulation performance is equivalent or superior to SF6 gas. The insulation performance of CF3I gas is examined through measuring sparkover voltage in various electric fields and flashover voltage on the surface of insulating material together with analyzing by-products of CF3I gas. Gas chromatography analysis shows that C2F6, C2F4, CHF3, C3F8, C3F6, and C2F5I are generated by the sparkover and the flashover. The sparkover voltage after 1300 times sparkover in uniform electric field is decreased by 11%. The flashover voltage for a virgin insulator in CF3I gas is almost equal to that in SF6 gas. The flashover voltage in CF3I gas is, however, 0.6 times lower than that in SF6 gas, when the number of surface flashover is increased.

  9. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry

    PubMed Central

    Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.

    2016-01-01

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs. PMID:27934904

  10. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry.

    PubMed

    Allagui, Anis; Freeborn, Todd J; Elwakil, Ahmed S; Maundy, Brent J

    2016-12-09

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.

  11. Are Crab nanoshots Schwinger sparks?

    SciTech Connect

    Stebbins, Albert; Yoo, Hojin

    2015-05-21

    The highest brightness temperature ever observed are from "nanoshots" from the Crab pulsar which we argue could be the signature of bursts of vacuum e± pair production. If so this would be the first time the astronomical Schwinger effect has been observed. These "Schwinger sparks" would be an intermittent but extremely powerful, ~103 L, 10 PeV e± accelerator in the heart of the Crab. These nanosecond duration sparks are generated in a volume less than 1 m3 and the existence of such sparks has implications for the small scale structure of the magnetic field of young pulsars such as the Crab. As a result, this mechanism may also play a role in producing other enigmatic bright short radio transients such as fast radio bursts.

  12. Spectroscopic investigation of the spatiotemporal dynamics of an electric field in plasma of a beam-type high-voltage discharge in helium

    SciTech Connect

    Demkin, V. P.; Mel'nichuk, S. V.

    2015-02-15

    In the present work, a method of determining the spatiotemporal characteristics of the electric field strength in an accelerating gap and a plasma flare of a beam-type high-voltage pulsed discharge in He at moderate pressure is presented. The method is based on spectroscopic data on the Stark splitting of π-components of He 2P–4Q transitions; Q = D(4921.93 Å), F(4920.35 Å) in the near-cathode region of the discharge and on the spatiotemporal characteristics of intensities of He(2s{sup 1}S–3p{sup 1}P{sup 0}) spectral lines with λ = 5015 Å and He{sup +}(3d–4f) spectral lines with λ = 4685 Å measured experimentally and calculated from the data of statistical simulation of the electron kinetics by the Monte Carlo method. The shape and strength of the electric field of the space charge in the interelectrode gap and the drift region of the discharge are estimated. It is demonstrated that the electric field created by the current pulse of uncompensated space charge in the near-anode region changes the discharge regime and causes degradation of the electron beam in the plasma flare. It is established that the flux of secondary electrons from the drift region to the anode has significant effect on the radiation intensity distribution in this region of the discharge.

  13. Conversion of NO to NO(2) in air by a micro electric NO(x) converter based on a corona discharge process.

    PubMed

    Yoon, Seung-Il; Heo, Sungmoo; Song, Soonho; Kim, Yong-Jun

    2010-06-01

    A micro-electric-NO(x)-converter based on volume treatment is proposed for the evaluation of NO(x) concentrations in air. It can electrically convert NO(x) mixture from variable mixing rates into a fixed-mixing rate of 25% NO(2) and 75% NO using the corona discharge process with stable conversion efficiency and high throughput (space velocity = 6.3 x 10(4) h(-1)). The micro-electric-NO(x)-converter is based on a volume process. Applying high voltage to the electrodes of the micro-electric-NO(x)-converter generates a corona discharge. This discharge creates high-energy electrons, which collide with gas molecules. After these collisions, NO and O(2) are broken into single atoms, and they are re-combined as a balanced form, NO(2) in this case. The fabricated micro-electric-NO(x)-converter converted NO into NO(2) at conversion efficiency of 25.63%, when 5.5 kV (the applied corona power = 0.196 W) was applied to the micro-electric-NO(x)-converter.

  14. Bright Sparks of Our Future!

    NASA Astrophysics Data System (ADS)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  15. Partial Discharge Characteristics of Polymer Nanocomposite Materials in Electrical Insulation: A Review of Sample Preparation Techniques, Analysis Methods, Potential Applications, and Future Trends

    PubMed Central

    Izzati, Wan Akmal; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends. PMID:24558326

  16. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends.

    PubMed

    Izzati, Wan Akmal; Arief, Yanuar Z; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.

  17. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  18. Ignition-Spark Detector for Engine Testing

    NASA Technical Reports Server (NTRS)

    Kuhr, G.

    1985-01-01

    Optical fiber views sparks directly. In fuel or oxidizer tube, optical fiber collects light from ignition spark. Fibers also used to collect light from combustion reactions for spectrographic analysis. Useful in engine testing, detector helps determine reason for engine failure.

  19. New Technology Sparks Smoother Engines and Cleaner Air

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.

  20. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    NASA Astrophysics Data System (ADS)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  1. Influence of specific energy expenditures in electric-discharge sintering on the structure and properties of a copper-tin-abrasive composite

    SciTech Connect

    Baidenko, A.A.; Istomina, T.I.; Popov, V.P.; Raichenko, A.I.; Gol'dberg, M.Sh.; Svechkov, A.V.

    1986-08-01

    The purpose of this work is a study of the influence of the energy consumptions in electric-discharge sintering on the sintering temperature, phase composition, porosity, hardness, and specific electric resistance of a copper-tin-abrasive sintered composite. The investigations were made on specimens in the form of 50 x 6 x 4 mm parallelepipeds sintered from an electrocorundum composite. The structural transformations were studied by x-ray diffraction on a DRON-2.0 instrument in CuK/sub gamma/-radiation and metallographic analysis. It is established that by changing the specific energy consumption, parts with different structures and properties are obtained from this composite by electric discharge sintering.

  2. GAS DISCHARGE DEVICES

    DOEpatents

    Arrol, W.J.; Jefferson, S.

    1957-08-27

    The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

  3. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications

    NASA Astrophysics Data System (ADS)

    Benard, Nicolas; Zouzou, Nourredine; Claverie, Alain; Sotton, Julien; Moreau, Eric

    2012-02-01

    Flow control consists of manipulating flows in an effective and robust manner to improve the global performances of transport systems or industrial processes. Plasma technologies, and particularly surface dielectric barrier discharge (DBD), can be a good candidate for such purpose. The present experimental study focuses on optical and electrical characterization of plasma sheet formed by applying a pulse of voltage with rising and falling periods of 50 ns for a typical surface DBD geometry. Positive and negative polarities are compared in terms of current behavior, deposited energy, fast-imaging of the plasma propagation, and resulting modifications of the surrounding medium by using shadowgraphy acquisitions. Positive and negative pulses of voltage produce streamers and corona type plasma, respectively. Both of them result in the production of a localized pressure wave propagating in the air with a speed maintained at 343 m/s (measurements at room temperature of 20 °C). This suggests that the produced pressure wave can be considered as a propagating sound wave. The intensity of the pressure wave is directly connected to the dissipated energy at the dielectric wall with a linear increase with the applied voltage amplitude and a strong dependence toward the rising time. At constant voltage amplitude, the pressure wave is reinforced by using a positive pulse. The present investigation also reveals that rising and decaying periods of a single pulse of voltage result in two distinct pressure waves. As a result, superposition or successive pressure wave can be produced by adjusting the width of the pulse.

  4. Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in a weakly electric mormyrid fish

    PubMed Central

    Alviña, Karina

    2014-01-01

    Although it has been suggested that the cerebellum functions to predict the sensory consequences of motor commands, how such predictions are implemented in cerebellar circuitry remains largely unknown. A detailed and relatively complete account of predictive mechanisms has emerged from studies of cerebellum-like sensory structures in fish, suggesting that comparisons of the cerebellum and cerebellum-like structures may be useful. Here we characterize electrophysiological response properties of Purkinje cells in a region of the cerebellum proper of weakly electric mormyrid fish, the posterior caudal lobe (LCp), which receives the same mossy fiber inputs and projects to the same target structures as the electrosensory lobe (ELL), a well-studied cerebellum-like structure. We describe patterns of simple spike and climbing fiber activation in LCp Purkinje cells in response to motor corollary discharge, electrosensory, and proprioceptive inputs and provide evidence for two functionally distinct Purkinje cell subtypes within LCp. Protocols that induce rapid associative plasticity in ELL fail to induce plasticity in LCp, suggesting differences in the adaptive functions of the two structures. Similarities and differences between LCp and ELL are discussed in light of these results. PMID:24790163

  5. Effects of sandblasting and electrical discharge machining on porcelain adherence to cast and machined commercially pure titanium.

    PubMed

    Inan, Ozgür; Acar, Asli; Halkaci, Selçuk

    2006-08-01

    The aim of this study was to determine the effect of sandblasting and electrical discharge machining (EDM) on cast and machined titanium surfaces and titanium-porcelain adhesion. Twenty machined titanium specimens were prepared by manufacturer (groups 1 and 2). Thirty specimens were prepared with autopolymerizing acrylic resin. Twenty of these specimens (groups 3 and 4) were cast with commercially pure titanium and the alpha-case layer was removed. For control group (group 5), 10 specimens were cast by using NiCr alloy. Groups 2 and 4 were subjected to EDM while groups 1, 3, and 5 were subjected to sandblasting. Surface examinations were made by using a scanning electron microscope (SEM). A low-fusing porcelain was fused on the titanium surfaces, whereas NiCr specimens were covered using a conventional porcelain. Titanium-porcelain adhesion was characterized by a 3-point bending test. Results were analyzed by Kruskal-Wallis and Mann-Whitney U tests. Metal-porcelain interfaces were characterized by SEM. The bond strength of control group was higher than that of the titanium-porcelain system. There was no significant difference between cast and machined titanium groups (p > 0.05). There was no significant difference between EDM and sandblasting processes (p > 0.05). The use of EDM as surface treatment did not improve titanium-porcelain adhesion compared with sandblasting.

  6. Full multi grid method for electric field computation in point-to-plane streamer discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kacem, S.; Eichwald, O.; Ducasse, O.; Renon, N.; Yousfi, M.; Charrada, K.

    2012-01-01

    Streamers dynamics are characterized by the fast propagation of ionized shock waves at the nanosecond scale under very sharp space charge variations. The streamer dynamics modelling needs the solution of charged particle transport equations coupled to the elliptic Poisson's equation. The latter has to be solved at each time step of the streamers evolution in order to follow the propagation of the resulting space charge electric field. In the present paper, a full multi grid (FMG) and a multi grid (MG) methods have been adapted to solve Poisson's equation for streamer discharge simulations between asymmetric electrodes. The validity of the FMG method for the computation of the potential field is first shown by performing direct comparisons with analytic solution of the Laplacian potential in the case of a point-to-plane geometry. The efficiency of the method is also compared with the classical successive over relaxation method (SOR) and MUltifrontal massively parallel solver (MUMPS). MG method is then applied in the case of the simulation of positive streamer propagation and its efficiency is evaluated from comparisons to SOR and MUMPS methods in the chosen point-to-plane configuration. Very good agreements are obtained between the three methods for all electro-hydrodynamics characteristics of the streamer during its propagation in the inter-electrode gap. However in the case of MG method, the computational time to solve the Poisson's equation is at least 2 times faster in our simulation conditions.

  7. Microstructure investigation of 13Cr-2Mo ODS steel components obtained by high voltage electric discharge compaction technique

    DOE PAGES

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; ...

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining themore » initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. As a result, the choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.« less

  8. Calculation of net emission coefficient of electrical discharge machining arc plasmas in mixtures of nitrogen with graphite, copper and tungsten

    NASA Astrophysics Data System (ADS)

    Adineh, V. R.; Coufal, O.; Bartlova, M.

    2015-10-01

    This work reports theoretical calculations of electrical discharge machining (EDM) radiative properties for mixture systems of N2-C, N2-Cu and N2-W arc plasmas, in the temperature range of 3000-10 000 K, and at 1 and 10 bar pressures. Radiative properties are computed for various plasma sizes as well as vapour proportions. Calculations consider line overlapping with spectrum coverage from 30 to 10 000 nm. Doppler, Natural, Van-der-Waals, Resonance and Stark broadening are taken into account as the line broadening mechanisms. Besides, continuum calculations consider bound-free and free-free emissions along with molecular bands radiation for selected molecular systems. Results show that contamination vapours of EDM electrode have strong influence on the amount of EDM plasma radiation to the surrounding environment. However, comparison of impurities from workpiece with electrode one indicates that Fe vapour has stronger impact on modifying the EDM arc plasma radiative properties, compared to the C, Cu and W species studied in this research.

  9. Removal of hexavalent chromium in carbonic acid solution by oxidizing slag discharged from steelmaking process in electric arc furnace

    NASA Astrophysics Data System (ADS)

    Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu

    2014-02-01

    Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.

  10. The changes in electrical and interfacial properties of polyimide exposed to dielectric barrier discharge in SF₆ medium.

    PubMed

    Alisoy, Hafiz Z; Koseoglu, Murat

    2013-01-01

    The formation mechanism of space charges in polyimide (PI) which was exposed to dielectric barrier discharge (DBD) in SF6 medium and the effects of the space charges on interfacial and electrical properties of PI were investigated. The variation of normalized surface charge density on PI sample was calculated and illustrated for different DBD exposure times. The surface potential was measured to determine the effect of the space charges on the sample. Then, the contact angle values were measured to obtain the relation between the surface energy and the surface charge density. The expressions for the total charge and the concentration of trapped electrons were derived by using Poisson and continuity equations at stationary state. The space charges were determined experimentally by using thermally stimulated depolarization current (TSDC) method. Also, SEM image and FTIR spectrum of virgin and treated samples were presented to observe the structural variations. It was seen that the approach for the formation mechanism of the space charges agreed with the experimental data. However, it was concluded particularly for the short-time DBD treatments that the space charges accumulated in the sample should be considered besides the effects of surface functionalization in the determination of the surface energy.

  11. The Changes in Electrical and Interfacial Properties of Polyimide Exposed to Dielectric Barrier Discharge in SF6 Medium

    PubMed Central

    Alisoy, Hafiz Z.; Koseoglu, Murat

    2013-01-01

    The formation mechanism of space charges in polyimide (PI) which was exposed to dielectric barrier discharge (DBD) in SF6 medium and the effects of the space charges on interfacial and electrical properties of PI were investigated. The variation of normalized surface charge density on PI sample was calculated and illustrated for different DBD exposure times. The surface potential was measured to determine the effect of the space charges on the sample. Then, the contact angle values were measured to obtain the relation between the surface energy and the surface charge density. The expressions for the total charge and the concentration of trapped electrons were derived by using Poisson and continuity equations at stationary state. The space charges were determined experimentally by using thermally stimulated depolarization current (TSDC) method. Also, SEM image and FTIR spectrum of virgin and treated samples were presented to observe the structural variations. It was seen that the approach for the formation mechanism of the space charges agreed with the experimental data. However, it was concluded particularly for the short-time DBD treatments that the space charges accumulated in the sample should be considered besides the effects of surface functionalization in the determination of the surface energy. PMID:23844414

  12. Non-chemical biofouling control in heat exchangers and seawater piping systems using acoustic pulses generated by an electrical discharge.

    PubMed

    Brizzolara, Robert A; Nordham, David J; Walch, Marianne; Lennen, Rebecca M; Simmons, Ron; Burnett, Evan; Mazzola, Michael S

    2003-02-01

    Acoustic pulses generated by an electrical discharge (pulsed acoustics) were investigated as a means for biofouling control in two test formats, viz. a 5/8" outside diameter titanium tube and a mockup heat exchanger. The pulsed acoustic device, when operated at 17 kV, demonstrated 95% inhibition of microfouling over a 20 ft length of titanium tube over a 4-week period, comparable to chlorination in combination with a high-velocity flush. The pulsed acoustic device inhibited microfouling over a downstream distance of 15 ft, therefore, a single pulsed acoustic device is theoretically capable of protecting at least 30 ft of tube from microfouling (15 ft on either side of the device). A correlation between acoustic intensity in the frequency range 0.01-1 MHz and the level of biofouling inhibition was observed. The threshold acoustic intensity for microfouling inhibition was determined for this frequency range. It was also observed that the orientation of the device is critical to obtaining microfouling inhibition.

  13. Effect of Carbon in the Dielectric Fluid and Workpieces on the Characteristics of Recast Layers Machined by Electrical Discharge Machining

    NASA Astrophysics Data System (ADS)

    Muttamara, Apiwat; Kanchanomai, Chaosuan

    2016-06-01

    Electrical discharge machining (EDM) is a popular non-traditional machining technique that is usually performed in kerosene. Carbon from the kerosene is mixed into the recast layer during EDM, increasing its hardness. EDM can be performed in deionized water, which causes decarburization. We studied the effects of carbon in the dielectric fluid and workpiece on the characteristics of recast layers. Experiments were conducted using gray cast iron and mild steel workpieces in deionized water or kerosene under identical operating conditions. Scanning electron microscopy revealed that the recast layer formed on gray iron was rougher than that produced on mild steel. Moreover, the dispersion of graphite flakes in the gray iron seemed to cause subsurface cracks, even when EDM was performed in deionized water. Dendritic structures and iron carbides were found in the recast layer of gray iron treated in deionized water. Kerosene caused more microcracks to form and increased surface roughness compared with deionized water. The microcrack length per unit area of mild steel treated in deionized water was greater than that treated in kerosene, but the cracks formed in kerosene were wider. The effect of the diffusion of carbon during cooling on the characteristics of the recast layer was discussed.

  14. A spark counter as a control unit of a radio frequency surgery device.

    PubMed

    Wurzer, H; Maeckel, R; Lademann, J; Audring, H; Liess, H D

    1997-09-01

    A new approach in radio frequency (rf) electrosurgery, used for tissue treatment, is achieved by using a new process control method. An external control unit allows a commonly available rf-generator to automatically supply the appropriate power for differing tissue types, thus ensuring best cutting quality. The sparks, generated during the scalpel electrode interaction with the tissue, appear statistically distributed. The spark rate depends on various factors and is monotonic with the supplied electrical power. This allows it to be used as the controlled variable in the cutting process. The ac current passing through the tissue is evaluated by an external control unit using an analyzation algorithm to determine the number of sparks. The external unit is comprised of a system, which measures the spark rate, and a subsequent proportional integral (P.I.) controller. The functionality of the control method as well as the electrical circuitry is verified through cuts with different degrees of carbonization and cuts through tissue heterojunctions.

  15. Hard-facing with electro-spark deposition. Final report

    SciTech Connect

    Kees, K.P.

    1983-01-01

    A common method to improve wear resistance of metals in rubbing contact is to increase their surface hardness. Electro-Spark Deposition is a process which uses capacitive discharge pulses of high current passing through a hard carbide electrode in contact with and scanning the metal surface to be hardened. The result is a thin, hard, adherent coating of carbide deposited with a minimum of heat influence on the substrate and a significant increase in wear life of the coated metal. Electro-Spark Deposition is similar to a micro-welding process. It is a simple, portable and inexpensive coating method, which has great potential for commercial utilization. This thesis is an in depth study of the parameters associated with the ESD process and the wear resistance of the coatings.

  16. Fiber coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  17. Spark ignited turbulent flame kernel growth. Annual report, January--December 1991

    SciTech Connect

    Santavicca, D.A.

    1994-06-01

    An experimental study of the effect of spark power on the growth rate of spark-ignited flame kernels was conducted in a turbulent flow system at 1 atm, 300 K conditions. All measurements were made with premixed, propane-air at a fuel/air equivalence ratio of 0.93, with 0%, 8% or 14% dilution. Two flow conditions were studied: a low turbulence intensity case with a mean velocity of 1.25 m/sec and a turbulence intensity of 0.33 m/sec, and a high turbulence intensity case with a mean velocity of 1.04 m/sec and a turbulence intensity of 0.88 m/sec. The growth of the spark-ignited flame kernel was recorded over a time interval from 83 {mu}sec to 20 msec following the start of ignition using high speed laser shadowgraphy. In order to evaluate the effect of ignition spark power, tests were conducted with a long duration (ca 4 msec) inductive discharge ignition system with an average spark power of ca 14 watts and two short duration (ca 100 nsec) breakdown ignition systems with average spark powers of ca 6 {times} 10{sup 4} and ca 6 {times} 10{sup 5} watts. The results showed that increased spark power resulted in an increased growth rate, where the effect of short duration breakdown sparks was found to persist for times of the order of milliseconds. The effectiveness of increased spark power was found to be less at high turbulence and high dilution conditions. Increased spark power had a greater effect on the 0--5 mm burn time than on the 5--13 mm burn time, in part because of the effect of breakdown energy on the initial size of the flame kernel. And finally, when spark power was increased by shortening the spark duration while keeping the effective energy the same there was a significant increase in the misfire rate, however when the spark power was further increased by increasing the breakdown energy the misfire rate dropped to zero.

  18. Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining

    NASA Astrophysics Data System (ADS)

    Prakash, Chander; Kansal, H. K.; Pabla, B. S.; Puri, Sanjeev

    2015-09-01

    Herein, a β-Ti-based implant was subjected to powder mixed electric discharge machining (PMEDM) for surface modification to produce a novel biomimetic nanoporous bioceramic surface. The microstructure, surface topography, and phase composition of the non-machined and machined (PMEDMed) surfaces were investigated using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The microhardness of the surfaces was measured on a Vickers hardness tester. The corrosion resistance of the surfaces was evaluated via potentiodynamic polarization measurements in simulated body fluid. The application of PMEDM not only altered the surface chemistry, but also imparted the surface with a nanoporous topography or a natural bone-like surface structure. The characterization results confirmed that the alloyed layer mainly comprised bioceramic oxides and carbide phases (TiO2, Nb2O5, ZrO2, SiO2, TiC, NbC, SiC). The microhardness of PMEDMed surface was twofold higher than that of the base material (β-Ti alloy), primarily because of the formation of the hard carbide phases on the machined layer. Electrochemical analysis revealed that PMEDMed surface featured insulative and protective properties and thus displayed higher corrosion resistance ability when compared with the non-machined surface. This result was attributed to the formation of the bioceramic oxides on the machined surface. Additionally, the in vitro biocompatibility of the surfaces was evaluated using human osteoblastic cell line MG-63. PMEDMed surface with a micro-, sub-micro-, and nano-structured topography exhibited bioactivity and improved biocompatibility relative to β-Ti surface. Furthermore, PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the non-machined substrate.

  19. A study on prevention of an electric discharge at an extraction electrode of an electron cyclotron resonance ion source for cancer therapy.

    PubMed

    Kishii, Y; Kawasaki, S; Kitagawa, A; Muramatsu, M; Uchida, T

    2014-02-01

    A compact ECR ion source has utilized for carbon radiotherapy. In order to increase beam intensity with higher electric field at the extraction electrode and be better ion supply stability for long periods, electric geometry and surface conditions of an extraction electrode have been studied. Focusing attention on black deposited substances on the extraction electrode, which were observed around the extraction electrode after long-term use, the relation between black deposited substances and the electrical insulation property is investigated. The black deposited substances were inspected for the thickness of deposit, surface roughness, structural arrangement examined using Raman spectroscopy, and characteristics of electric discharge in a test bench, which was set up to simulate the ECR ion source.

  20. Lifecycle of laser-produced air sparks

    SciTech Connect

    Harilal, S. S. Brumfield, B. E.; Phillips, M. C.

    2015-06-15

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.