Sample records for electrical stimulation increases

  1. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  2. Enhanced insulin sensitivity and acute regulation of metabolic genes and signaling pathways after a single electrical or manual acupuncture session in female insulin-resistant rats.

    PubMed

    Benrick, Anna; Maliqueo, Manuel; Johansson, Julia; Sun, Miao; Wu, Xiaoke; Mannerås-Holm, Louise; Stener-Victorin, Elisabet

    2014-12-01

    To compare the effect of a single session of acupuncture with either low-frequency electrical or manual stimulation on insulin sensitivity and molecular pathways in the insulin-resistant dihydrotestosterone-induced rat polycystic ovary syndrome (PCOS) model. Both stimulations cause activation of afferent nerve fibers. In addition, electrical stimulation causes muscle contractions, enabling us to differentiate changes induced by activation of sensory afferents from contraction-induced changes. Control and PCOS rats were divided into no-stimulation, manual-, and electrical stimulation groups and insulin sensitivity was measured by euglycemic hyperinsulinemic clamp. Manually stimulated needles were rotated 180° ten times every 5 min, or low-frequency electrical stimulation was applied to evoke muscle twitches for 45 min. Gene and protein expression were analyzed by real-time PCR and Western blot. The glucose infusion rate (GIR) was lower in PCOS rats than in controls. Electrical stimulation was superior to manual stimulation during treatment but both methods increased GIR to the same extent in the post-stimulation period. Electrical stimulation decreased mRNA expression of Adipor2, Adrb1, Fndc5, Erk2, and Tfam in soleus muscle and increased ovarian Adrb2 and Pdf. Manual stimulation decreased ovarian mRNA expression of Erk2 and Sdnd. Electrical stimulation increased phosphorylated ERK levels in soleus muscle. One acupuncture session with electrical stimulation improves insulin sensitivity and modulates skeletal muscle gene and protein expression more than manual stimulation. Although electrical stimulation is superior to manual in enhancing insulin sensitivity during stimulation, they are equally effective after stimulation indicating that it is activation of sensory afferents rather than muscle contraction per se leading to the observed changes.

  3. Electrical stimulation of anal sphincter or pudendal nerve improves anal sphincter pressure.

    PubMed

    Damaser, Margot S; Salcedo, Levilester; Wang, Guangjian; Zaszczurynski, Paul; Cruz, Michelle A; Butler, Robert S; Jiang, Hai-Hong; Zutshi, Massarat

    2012-12-01

    Stimulation of the pudendal nerve or the anal sphincter could provide therapeutic options for fecal incontinence with little involvement of other organs. The goal of this project was to assess the effects of pudendal nerve and anal sphincter stimulation on bladder and anal pressures. Ten virgin female Sprague Dawley rats were randomly allocated to control (n = 2), perianal stimulation (n = 4), and pudendal nerve stimulation (n = 4) groups. A monopolar electrode was hooked to the pudendal nerve or placed on the anal sphincter. Aballoon catheter was inserted into the anus to measure anal pressure, and a catheter was inserted into the bladder via the urethra to measure bladder pressure. Bladder and anal pressures were measured with different electrical stimulation parameters and different timing of electrical stimulation relative to spontaneous anal sphincter contractions. Increasing stimulation current had the most dramatic effect on both anal and bladder pressures. An immediate increase in anal pressure was observed when stimulating either the anal sphincter or the pudendal nerve at stimulation values of 1 mA or 2 mA. No increase in anal pressure was observed for lower current values. Bladder pressure increased at high current during anal sphincter stimulation, but not as much as during pudendal nerve stimulation. Increased bladder pressure during anal sphincter stimulation was due to contraction of the abdominal muscles. Electrical stimulation caused an increase in anal pressures with bladder involvement only at high current. These initial results suggest that electrical stimulation can increase anal sphincter pressure, enhancing continence control.

  4. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces

    PubMed Central

    Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-01-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734

  5. [Electrical acupoint stimulation increases athletes' rapid strength].

    PubMed

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  6. [Intracellular free calcium changes of mouse oocytes during activation induced by ethanol or electrical stimulations and parthenogenetic development].

    PubMed

    Deng, M Q; Fan, B Q

    1994-09-01

    Oocytes collected 18-19 h after HCG injection were stimulated with 7-8% ethanol or electrical pulses (1.7 KV/cm field strength, 80-100 microseconds duration, 3-4 times, 5-6 min interval). The parthenogenetic embryos derived from the above-mentioned methods developed to blastocyst stage just like those developed from fertilized eggs. Mouse oocytes were rather sensitive to ethanol stimulation. More than 95% of the treated oocytes were activated after stimulation of 7-8% ethanol for 5 min. Multiple electrical stimulations induced higher activation percentages of oocytes than only single electrical stimulation (71.5% vs. 63.6%). Intact oocytes were loaded with fluorescent Ca2+ indicator fura-2 and intracellular free calcium changes during artificial activation were measured by fluorescence detector. The results showed that ethanol could induce repetitive transient Ca2+ concentration increase in activated oocytes. Single electrical stimulation only induced single free calcium concentration elevation in oocyte while multiple electrical pulses could induce repetitive Ca2+ increase (each electrical pulse elicited the corresponding Ca2+ concentration peak). The pronuclei were not observed in the oocytes which had not exhibited calcium concentration rise during activation. Apart from electrical stimulation parameter, sufficient amount of Ca2+ in electric medium was crucial to mouse oocyte activation when stimulated with electrical pulses. The oocytes were hardly activated by electrical stimulations in a medium without Ca2+ even with longer pulse duration and the intracellular free calcium concentration in the oocytes showed no elevation. This indicates that the inflow of extracellular Ca2+ from tiny pores across the oocyte membrane caused by electrical stimulation is the main source of intracellular free calcium increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE

    PubMed Central

    Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A.; Redl, Heinz; Tracey, Kevin J.

    2010-01-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre–electrical vagus nerve stimulation = 1033 ± 210 s versus post–electrical vagus nerve stimulation = 585 ± 111 s; P < 0.05) and total blood loss (pre–electrical vagus nerve stimulation = 48.4 ± 6.8 mL versus post–electrical vagus nerve stimulation = 26.3 ± 6.7 mL; P < 0.05). Reduced bleeding time after vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity. PMID:19953009

  8. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    PubMed

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.

  9. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    PubMed Central

    Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.

    2016-01-01

    Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064

  10. Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients.

    PubMed

    Groehs, Raphaela V; Antunes-Correa, Ligia M; Nobre, Thais S; Alves, Maria-Janieire Nn; Rondon, Maria Urbana Pb; Barreto, Antônio Carlos Pereira; Negrão, Carlos E

    2016-10-01

    We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with decompensated chronic heart failure. © The European Society of Cardiology 2016.

  11. Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury.

    PubMed

    Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan

    2018-06-25

    High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and NGF in accordance with the in vivo results. Immediate or late transcutaneous high-frequency electrical stimulation exhibited the potential to stimulate the motor nerve regeneration. However, immediate electrical stimulation had a predilection to develop neuropathic pain. A delay in TENS initiation appears to be a reasonable approach for nerve repair and provides the appropriate time profile for its clinical application.

  12. Electronic enhancement of tear secretion

    NASA Astrophysics Data System (ADS)

    Brinton, Mark; Lim Chung, Jae; Kossler, Andrea; Kook, Koung Hoon; Loudin, Jim; Franke, Manfred; Palanker, Daniel

    2016-02-01

    Objective. To study electrical stimulation of the lacrimal gland and afferent nerves for enhanced tear secretion, as a potential treatment for dry eye disease. We investigate the response pathways and electrical parameters to safely maximize tear secretion. Approach. We evaluated the tear response to electrical stimulation of the lacrimal gland and afferent nerves in isofluorane-anesthetized rabbits. In acute studies, electrical stimulation was performed using bipolar platinum foil electrodes, implanted beneath the inferior lacrimal gland, and a monopolar electrode placed near the afferent ethmoid nerve. Wireless microstimulators with bipolar electrodes were implanted beneath the lacrimal gland for chronic studies. To identify the response pathways, we applied various pharmacological inhibitors. To optimize the stimulus, we measured tear secretion rate (Schirmer test) as a function of pulse amplitude (1.5-12 mA), duration (0.1-1 ms) and repetition rate (10-100 Hz). Main results. Stimulation of the lacrimal gland increased tear secretion by engaging efferent parasympathetic nerves. Tearing increased with stimulation amplitude, pulse duration and repetition rate, up to 70 Hz. Stimulation with 3 mA, 500 μs pulses at 70 Hz provided a 4.5 mm (125%) increase in Schirmer score. Modulating duty cycle further increased tearing up to 57%, compared to continuous stimulation in chronically implanted animals (36%). Ethmoid (afferent) nerve stimulation increased tearing similar to gland stimulation (3.6 mm) via a reflex pathway. In animals with chronically implanted stimulators, a nearly 6 mm increase (57%) was achieved with 12-fold less charge density per pulse (0.06-0.3 μC mm-2 with 170-680 μs pulses) than the damage threshold (3.5 μC mm-2 with 1 ms pulses). Significance. Electrical stimulation of the lacrimal gland or afferent nerves may be used as a treatment for dry eye disease. Clinical trials should validate this approach in patients with aqueous tear deficiency, and further optimize electrical parameters for maximum clinical efficacy.

  13. [Effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage].

    PubMed

    Li, Xiao-Li; Jia, Tian-Ming; Luan, Bin; Liu, Tao; Yuan, Yan

    2011-04-01

    To study the effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible mechanism. One hundred and eighty 7-day-old neonatal Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group) and HIBD with and without electric stimulation (n=60 each). The HIBD model of neonatal rats was prepared by the Rice-Vennucci method. Electric stimulation at the cerebellar fastigial nucleus was given 24 hrs after the operation in the electric stimulation group once daily and lasted for 30 minutes each time. The other two groups were not subjected to electric stimulation but captured to fix in corresponding periods. Rats were sacrificed 3, 7, 14 and 21 days after stimulations to observe the glial fibrillary acidic protein (GFAP) expression by immunohistochemisty and the ultrastructural changes of astrocytes in the hippocampus under an electron microscope. Immunohistochemical analysis showed the expression of GFAP in the HIBD groups with and without electric stimulation increased significantly compared with the control group on day 3, reached the peak on day 7, and the increased expression remained till to day 21. The GFAP expression in the electric stimulation group was significantly lower than that in the untreated HIBD group at all time points. Under the electron microscope, the astrocytes in the untreated HIBD group were swollen and the amount of organelles was reduced, while the swelling of astrocytes was alleviated and the organelles remained in integrity in the electric stimulation group. The electric stimulation at the cerebellar fastigial nucleus can inhibit the excessive proliferation of astrocytes and relieve the structural damage of astrocytes in neonatal rats following HIBD.

  14. Effects of electrical stimulation on the histological properties of wounds in diabetic mice.

    PubMed

    Thawer, H A; Houghton, P E

    2001-01-01

    The purpose of this study was to identify mechanisms underlying electrically stimulated wound closure in diabetic mice. Adult male mice (n = 58) with full-thickness excisional wounds were treated five times using negative polarity over the wound site for 15 minutes each over a 16-day period with sham (0 Volts) or 5.0, 10.0, 12.5 Volts. In addition, animals (diabetic (n = 33) and nondiabetic (n = 22)) received treatments of electrical stimulation (12.5 V), or sham treatment (0 V) at wound sites which were then harvested and prepared for histological analysis at 2, 8, and 16 days postwounding. Using computerized image analysis of sections stained with a picro sirus red-fast green staining technique, we found that increasing doses of electrical stimulation reduced collagen/noncollagenous protein ratios measured in the superficial scar of nondiabetic animals, with no effect in diabetic animals. In the deep scar, lower doses of electrical stimulation (5.0 V) produced significantly (p < 0.01) increased collagen deposition in wounds of nondiabetic animals compared with sham controls. Higher doses of electrical stimulation (12.5 V) were required to produce changes in diabetic animals than were observed in nondiabetic animals. These results suggest that electrical stimulation altered collagen deposition in excisional wounds of diabetic and nondiabetic animals. Electrical stimulation had a differential effect on wound healing in diabetic compared with nondiabetic animals. These data speak to the need to study the effects of electrical stimulation on healing in disease-specific models.

  15. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    PubMed

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  16. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study.

    PubMed

    Chipchase, Lucy S; Schabrun, Siobhan M; Hodges, Paul W

    2011-09-01

    To evaluate the effect of 6 electric stimulation paradigms on corticospinal excitability. Using a same subject pre-post test design, transcranial magnetic stimulation (TMS) was used to measure the responsiveness of corticomotor pathway to biceps and triceps brachii muscles before and after 30 minutes of electric stimulation over the biceps brachii. Six different electric stimulation paradigms were applied in random order, at least 3 days apart. Motor control research laboratory. Healthy subjects (N=10; 5 women, 5 men; mean age ± SD, 26 ± 3.6y). Six different electric stimulation paradigms with varied stimulus amplitude, frequency, and ramp settings. Amplitudes of TMS-induced motor evoked potentials at biceps and triceps brachii normalized to maximal M-wave amplitudes. Electric stimulation delivered at stimulus amplitude sufficient to evoke a sensory response at both 10 Hz and 100 Hz, and stimulus amplitude to create a noxious response at 10 Hz decreased corticomotor responsiveness (all P<0.01). Stimulation sufficient to induce a motor contraction (30 Hz) applied in a ramped pattern to mimic a voluntary activation increased corticomotor responsiveness (P=0.002), whereas constant low- and high-intensity motor stimulation at 10 Hz did not. Corticomotor excitability changes were similar for both the stimulated muscle and its antagonist. Stimulus amplitude (intensity) and the nature (muscle flicker vs contraction) of motor stimulation have a significant impact on changes in corticospinal excitability induced by electric stimulation. Here, we demonstrate that peripheral electric stimulation at stimulus amplitude to create a sensory response reduces corticomotor responsiveness. Conversely, stimulus amplitude to create a motor response increases corticomotor responsiveness, but only the parameters that create a motor response that mimics a voluntary muscle contraction. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Neurite Outgrowth On Electrospun PLLA Fibers Is Enhanced By Exogenous Electrical Stimulation

    PubMed Central

    Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.

    2014-01-01

    Objective Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from DRG neurons than the presence of electrical stimulation or aligned topography alone. Approach To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide (PLLA) films or electrospun fibers (2 μm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Results Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurite, indicating topographical cues are responsible to guide neurite extension. Significance Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury. PMID:24891494

  18. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.

    PubMed

    Koppes, A N; Zaccor, N W; Rivet, C J; Williams, L A; Piselli, J M; Gilbert, R J; Thompson, D M

    2014-08-01

    Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.

  19. [A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens].

    PubMed

    Ni, D

    1992-12-01

    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.

  20. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.

    PubMed

    Vaca-González, Juan J; Guevara, Johana M; Moncayo, Miguel A; Castro-Abril, Hector; Hata, Yoshie; Garzón-Alvarado, Diego A

    2017-09-01

    Objective Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. Design Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. Results It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. Conclusion The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.

  1. Electric fields in hippocampus due to transcranial focal electrical stimulation via concentric ring electrodes.

    PubMed

    Besio, Walter G; Hadidi, Ruba; Makeyev, Oleksandr; Luna-Munguía, Hiram; Rocha, Luisa

    2011-01-01

    As epilepsy affects approximately one percent of the world population, electrical stimulation of brain has recently shown potential as an additive seizure control therapy. In this study we applied focal transcranial electrical stimulation (TFS) on the surface of the skull of rats via concentric ring electrodes. We recorded electric potentials with a bipolar electrode consisting of two stainless steel wires implanted into the left ventral hippocampus. TFS current was gradually increased by 20% starting at 103 μA allowing us to assess the relationship between TFS current and both potentials recorded from the bipolar electrode and the resulting electric field. Generally, increases in TFS current resulted in increases in the electric field. This allows us to estimate what extra-cranial TFS current would be sufficient to cause the activation of neurons in the hippocampus.

  2. A Systematic Review of Electric-Acoustic Stimulation

    PubMed Central

    Ching, Teresa Y. C.; Cowan, Robert

    2013-01-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259

  3. Electrical stimulation in exercise training

    NASA Technical Reports Server (NTRS)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve muscle strength for over a century. Bigelow reported in 1894, for example, the use of electrical stimulation on a young man for the purpose of increasing muscle strength. Employing a rapidly alternating sinusoidal induced current and a dynamometer for strength testing, Bigelow reported that the total lifting capacity of a patient increased from 4328 pounds to 4639 pounds after only 25 minutes of stimulation. In 1965, Massey et al. reported on the use of an Isotron electrical stimulator that emitted a high frequency current. Interestingly enough, the frequencies used by Massey et al. and the frequencies used by Bigelow in 1894 were in the same range of frequencies reported by Kots as being the most effective in strength development. It would seem the Russian secret of high frequency electrical stimulation for strength development, then, is not a modern development at all.

  4. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    NASA Astrophysics Data System (ADS)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  5. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    PubMed Central

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Fà, Mauro; Gessa, Gian Luigi

    2005-01-01

    Background Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled. PMID:15865626

  6. Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke.

    PubMed

    Hong, Il Ki; Choi, Jong Bae; Lee, Jong Ha

    2012-09-01

    Paresis of the upper extremity after stroke is not effectively solved by existing therapies. We investigated whether mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic upper extremity in patients with chronic stroke and induced cortical changes. Fourteen subjects with chronic stroke (≥12 months) were randomly allocated to receive mental imagery training combined with electromyogram-triggered electric stimulation (n=7) or generalized functional electric stimulation (n=7) on the forearm extensor muscles of the paretic extremity in 2 20-minute daily sessions 5 days a week for 4 weeks. The upper extremity component of the Fugl-Meyer Motor Assessment, the Motor Activity Log, the modified Barthel Index, and (18)F-fluorodeoxyglucose brain positron emission tomography were measured before and after the intervention. The group receiving mental imagery training combined with electromyogram-triggered electric stimulation exhibited significant improvements in the upper extremity component of the Fugl-Meyer Motor Assessment after intervention (median, 7; interquartile range, 5-8; P<0.05), but the group receiving functional electric stimulation did not (median, 0; interquartile range, 0-3). Differences in score changes between the 2 groups were significant. The mental imagery training combined with electromyogram-triggered electric stimulation group showed significantly increased metabolism in the contralesional supplementary motor, precentral, and postcentral gyri (P(uncorrected)<0.001) after the intervention, but the functional electric stimulation group showed no significant differences. Mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic extremity in patients with chronic stroke. The intervention increased metabolism in the contralesional motor-sensory cortex. Clinical Trial Registration- URL: https://e-irb.khmccri.or.kr/eirb/receipt/index.html?code=02&status=5. Unique identifier: KHUHMDIRB 1008-02.

  7. Differential effect of brief electrical stimulation on voltage-gated potassium channels

    PubMed Central

    Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.

    2017-01-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (NaV channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (KV channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different KV-channel subtypes. Computational modeling reveals substantial differences in the response of specific KV-channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different KV-channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that KV-channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (KV channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between KV channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or “fading,” may be attributed to KV-channel activation. PMID:28202576

  8. Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field

    PubMed Central

    Grimaldi, Piercesare; Schweers, Nicole

    2013-01-01

    Recent studies have demonstrated that strong neural modulations can be evoked with optogenetic stimulation in macaque motor cortex without observing any evoked movements (Han et al., 2009, 2011; Diester et al., 2011). It remains unclear why such perturbations do not generate movements and if conditions exist under which they may evoke movements. In this study, we examine the effects of five optogenetic constructs in the macaque frontal eye field and use electrical microstimulation to assess whether optical perturbation of the local network leads to observable motor changes during optical, electrical, and combined stimulation. We report a significant increase in the probability of evoking saccadic eye movements when low current electrical stimulation is coupled to optical stimulation compared with when electrical stimulation is used alone. Experiments combining channelrhodopsin 2 (ChR2) and electrical stimulation with simultaneous fMRI revealed no discernible fMRI activity at the electrode tip with optical stimulation but strong activity with electrical stimulation. Our findings suggest that stimulation with current ChR2 optogenetic constructs generates subthreshold activity that contributes to the initiation of movements but, in most cases, is not sufficient to evoke a motor response. PMID:24133271

  9. Alternating frequencies of transcutaneous electric nerve stimulation: does it produce greater analgesic effects on mechanical and thermal pain thresholds?

    PubMed

    Tong, K C; Lo, Sing Kai; Cheing, Gladys L

    2007-10-01

    To determine whether alternating frequency transcutaneous electric nerve stimulation (TENS) at 2 and 100Hz (2/100Hz) has a more potent hypoalgesic effect than a fixed frequency at 2 or 100Hz in healthy participants. A single-blind randomized controlled trial with a convenience sample. University physiotherapy department. Sixty-four healthy volunteers (32 men [mean age, 28.1+/-5.9y], 32 women [mean age, 27.7+/-5.6y]) were recruited and randomly divided into 4 groups. The 4 groups received TENS delivered at (1) 2Hz; (2) 100Hz; (3) 2/100Hz alternating frequency; and (4) no treatment (control group), respectively. Electric stimulation was applied over the anterior aspect of the dominant forearm for 30 minutes. Mechanical pain thresholds (MPTs) and heat pain thresholds (HPTs) were recorded before, during, and after TENS stimulation. The data were analyzed using linear mixed models, with group treated as a between-subject factor and time a within-subject factor. During and shortly after electric stimulation, HPT increased significantly in the alternating frequency stimulation group (P=.024). MPT increased significantly in both the 100Hz (P=.008) and the alternating frequency groups (P=.012), but the increase was substantially larger in the 100Hz group. Alternating frequency stimulation produced a greater elevation in the HPT, but a greater increase in the MPT was achieved using 100Hz stimulation.

  10. Acromiohumeral Distance During Neuromuscular Electrical Stimulation of the Lower Trapezius and Serratus Anterior Muscles in Healthy Participants.

    PubMed

    Bdaiwi, Alya H; Mackenzie, Tanya Anne; Herrington, Lee; Horsley, Ian; Cools, Ann M

    2015-07-01

    Compromise to the acromiohumeral distance has been reported in participants with subacromial impingement syndrome compared with healthy participants. In clinical practice, patients with subacromial shoulder impingement are given strengthening programs targeting the lower trapezius (LT) and serratus anterior (SA) muscles to increase scapular posterior tilt and upward rotation. We are the first to use neuromuscular electrical stimulation to stimulate these muscle groups and evaluate how the muscle contraction affects the acromiohumeral distance. To investigate if electrical muscle stimulation of the LT and SA muscles, both separately and simultaneously, increases the acromiohumeral distance and to identify which muscle-group contraction or combination most influences the acromiohumeral distance. Controlled laboratory study. Human performance laboratory. Twenty participants (10 men and 10 women, age = 26.9 ± 8.0 years, body mass index = 23.8) were screened. Neuromuscular electrical stimulation of the LT and SA. Ultrasound measurement of the acromiohumeral distance. Acromiohumeral distance increased during contraction via neuromuscular electrical stimulation of the LT muscle (t(19) = -3.89, P = .004), SA muscle (t(19) = -7.67, P = .001), and combined LT and SA muscles (t(19) = -5.09, P = .001). We observed no differences in the increased acromiohumeral distance among the 3 procedures (F(2,57) = 3.109, P = .08). Our results supported the hypothesis that the muscle force couple around the scapula is important in rehabilitation and scapular control and influences acromiohumeral distance.

  11. Robust Neurite Extension Following Exogenous Electrical Stimulation within Single Walled Carbon Nanotube-Composite Hydrogels

    PubMed Central

    Koppes, A. N.; Keating, K. W.; McGregor, A. L.; Koppes, R. A.; Kearns, K. R.; Ziemba, A. M.; McKay, C. A.; Zuidema, J. M.; Rivet, C. J.; Gilbert, R. J.; Thompson, D. M.

    2016-01-01

    The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: 1) nanofillers influence neurite extension and 2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10–100-μg/ml) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. PMID:27167609

  12. Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation of the motor cortex.

    PubMed Central

    Thompson, P D; Day, B L; Crockard, H A; Calder, I; Murray, N M; Rothwell, J C; Marsden, C D

    1991-01-01

    Activity in descending motor pathways after scalp electrical and magnetic brain stimulation of the motor cortex was recorded from the exposed cervico-medullary junction in six patients having trans-oral surgery of the upper cervical spine. Recordings during deep anaesthesia without muscle paralysis revealed an initial negative potential (D wave) at about 2 ms with electrical stimulation in five of the six patients. This was followed by a muscle potential which obscured any later waveforms. Magnetic stimulation produced clear potentials in only one patient. The earliest wave to magnetic stimulation during deep anaesthesia was 1-2 ms later than the earliest potential to electrical stimulation. Following lightening of the anaesthetic and the administration of muscle relaxants a series of later negative potentials (I waves) were more clearly seen to both electrical and magnetic stimulation. More I waves were recorded to magnetic stimulation during light anaesthesia than during deep anaesthesia. Increasing the intensity of electrical stimulation also produced an extra late I wave. At the highest intensity of magnetic stimulation the latency of the earliest potential was comparable to the D wave to electrical stimulation. The intervals between these various D and I waves corresponded to those previously described for the timing of single motor unit discharge after cortical stimulation. PMID:1654395

  13. [Finite element analysis of temperature field of retina by electrical stimulation with microelectrode array].

    PubMed

    Wang, Wei; Qiao, Qingli; Gao, Weiping; Wu, Jun

    2014-12-01

    We studied the influence of electrode array parameters on temperature distribution to the retina during the use of retinal prosthesis in order to avoid thermal damage to retina caused by long-term electrical stimulation. Based on real epiretinal prosthesis, a three-dimensional model of electrical stimulation for retina with 4 X 4 microelectrode array had been established using the finite element software (COMSOL Multiphysics). The steady-state temperature field of electrical stimulation of the retina was calculated, and the effects of the electrode parameters such as the distance between the electrode contacts, the materials and area of the electrode contact on temperature field were considered. The maximum increase in the retina steady temperature was about 0. 004 degrees C with practical stimulation current. When the distance between the electrode contacts was changed from 130 microm to 520 microm, the temperature was reduced by about 0.006 microC. When the contact radius was doubled from 130 microm to 260 microm, the temperature decrease was about 0.005 degrees C. It was shown that there were little temperature changes in the retina with a 4 x 4 epiretinal microelectrode array, reflecting the safety of electrical stimulation. It was also shown that the maximum temperature in the retina decreased with increasing the distance between the electrode contacts, as well as increasing the area of electrode contact. However, the change of the maximum temperature was very small when the distance became larger than the diameter of electrode contact. There was no significant difference in the effects of temperature increase among the different electrode materials. Rational selection of the distance between the electrode contacts and their area in electrode design can reduce the temperature rise induced by electrical stimulation.

  14. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice.

    PubMed

    Park, Dong-Wook; Ness, Jared P; Brodnick, Sarah K; Esquibel, Corinne; Novello, Joseph; Atry, Farid; Baek, Dong-Hyun; Kim, Hyungsoo; Bong, Jihye; Swanson, Kyle I; Suminski, Aaron J; Otto, Kevin J; Pashaie, Ramin; Williams, Justin C; Ma, Zhenqiang

    2018-01-23

    Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 μC/cm 2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.

  15. Effect of electrical stimulation and cooking temperature on the within-sample variation of cooking loss and shear force of lamb.

    PubMed

    Lewis, P K; Babiker, S A

    1983-01-01

    Electrical stimulation decreased the shear force and increased the cooking loss in seven paired lamb Longissimus dorsi (LD) muscles. This treatment did not have any effect on the within-sample variation. Cooking in 55°, 65° and 75°C water baths for 90 min caused a linear increase in the cooking loss and shear force. There was no stimulation-cooking temperature interaction observed. Cooking temperature also had no effect on the within-sample variation. A possible explanation as to why electrical stimulation did not affect the within-sample variation is given. Copyright © 1983. Published by Elsevier Ltd.

  16. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  17. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Cyclic AMP Production in Chicken and Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    2000-01-01

    Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  18. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed tomore » differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.« less

  19. Differential effect of brief electrical stimulation on voltage-gated potassium channels.

    PubMed

    Cameron, Morven A; Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H; Morley, John W

    2017-05-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (Na V channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (K V channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different K V -channel subtypes. Computational modeling reveals substantial differences in the response of specific K V -channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different K V -channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that K V -channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (K V channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between K V channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or "fading," may be attributed to K V -channel activation. Copyright © 2017 the American Physiological Society.

  20. Electrical stimulation as a means for achieving recovery of function in stroke patients.

    PubMed

    Popović, Dejan B; Sinkaer, Thomas; Popović, Mirjana B

    2009-01-01

    This review presents technologies used in and assesses the main clinical outcomes of electrical therapies designed to speed up and increase functional recovery in stroke patients. The review describes methods which interface peripheral systems (e.g., cyclic neural stimulation, stimulation triggered by electrical activity of muscles, therapeutic functional electrical stimulation) and transcranial brain stimulation with surface and implantable electrodes. Our conclusion from reviewing these data is that integration of electrical therapy into exercise-active movement mediated by electrical activation of peripheral and central sensory-motor mechanisms enhances motor re-learning following damage to the central nervous system. Motor re-learning is considered here as a set of processes associated with practice or experience that leads to long-term changes in the capability for movement. An important suggestion is that therapeutic effects are likely to be much more effective when treatment is applied in the acute, rather than in the chronic, phase of stroke.

  1. The Effect of Transcutaneous Electrical Nerve Stimulation of Sympathetic Ganglions and Acupuncture Points on Distal Blood Flow.

    PubMed

    Kamali, Fahimeh; Mirkhani, Hossein; Nematollahi, Ahmadreza; Heidari, Saeed; Moosavi, Elahesadat; Mohamadi, Marzieh

    2017-04-01

    Transcutaneous electrical nerve stimulation (TENS) is a widely-practiced method to increase blood flow in clinical practice. The best location for stimulation to achieve optimal blood flow has not yet been determined. We compared the effect of TENS application at sympathetic ganglions and acupuncture points on blood flow in the foot of healthy individuals. Seventy-five healthy individuals were randomly assigned to three groups. The first group received cutaneous electrical stimulation at the thoracolumbar sympathetic ganglions. The second group received stimulation at acupuncture points. The third group received stimulation in the mid-calf area as a control group. Blood flow was recorded at time zero as baseline and every 3 minutes after baseline during stimulation, with a laser Doppler flow-meter. Individuals who received sympathetic ganglion stimulation showed significantly greater blood flow than those receiving acupuncture point stimulation or those in the control group (p<0.001). Data analysis revealed that blood flow at different times during stimulation increased significantly from time zero in each group. Therefore, the application of low-frequency TENS at the thoracolumbar sympathetic ganglions was more effective in increasing peripheral blood circulation than stimulation at acupuncture points. Copyright © 2017 Medical Association of Pharmacopuncture Institute. Published by Elsevier B.V. All rights reserved.

  2. Effect of noxious electrical stimulation of the peroneal nerve on stretch reflex activity of the hamstring muscle in rats: possible implications of neuronal mechanisms in the development of tight hamstrings in lumbar disc herniation.

    PubMed

    Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige

    2005-05-01

    The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.

  3. Propofol, more than halothane, depresses electroencephalographic activation resulting from electrical stimulation in reticular formation.

    PubMed

    Antognini, J F; Bravo, E; Atherley, R; Carstens, E

    2006-09-01

    Halothane and propofol depress the central nervous system, and this is partly manifested by a decrease in electroencephalographic (EEG) activity. Little work has been performed to determine the differences between these anesthetics with regard to their effects on evoked EEG activity. We examined the effects of halothane and propofol on EEG responses to electrical stimulation of the reticular formation. Rats (n= 12) were anesthetized with either halothane or propofol, and EEG responses were recorded before and after electrical stimulation of the reticular formation. Two anesthetic concentrations were used (0.8 and 1.2 times the amount needed to prevent gross, purposeful movement in response to supramaximal noxious stimulation), and both anesthetics were studied in each rat using a cross-over design. Electrical stimulation in the reticular formation increased the spectral edge (SEF) and median edge (MEF) frequencies by approximately 1-2 Hz during halothane anesthesia at low and high concentrations. During propofol anesthesia, MEF increased at the low propofol infusion rate, but SEF was unaffected. At the high propofol infusion rate, SEF and MEF decreased following electrical stimulation in the reticular formation. At immobilizing concentrations, propofol produces a larger decrease than halothane in EEG responses to reticular formation stimulation, consistent with propofol having a more profound depressant effect on cortical and subcortical structures.

  4. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  5. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    NASA Astrophysics Data System (ADS)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  6. [EFFECTS OF ELECTRICAL STIMULATION OF NUCLEUS RETICULARIS PONTIS ORALIS ON THE SLEEP-WAKING STATES IN KRUSHINSKII-MOLODKINA STRAIN RATS].

    PubMed

    Vataev, S I; Malgina, N A; Oganesyan, G A

    2015-07-01

    The effects of electrical stimulation of nucleus reticularis pontis oralis on the behavior and brain electrical activity during all phases of the sleep-waking cycle was studied in Krushinskii-Molodkina strain rats, which have an inherited predisposition to audiogenic seizures. Electrical stimulation with 7 Hz frequency in the deep stage of slow-wave sleep cause appearance the fast-wave sleep. Similar stimulation during fast-wave sleep periods did not effects on the electrographic patterns and EEG spectral characteristics of hippocampus, visual, auditory and somatocnen nrnrenc nf the cnrtey ThPe sfimul1stinns did nnt break a fast-wave sleenhut increased almost twice due the duration of these sleep episodes. After electrical stimulation by same frequency during the wakeftlness and superficial slow-wave sleep states, the patterns and spectral characteristics of brain electrical activity in rats showed no significant changes as compared with controls. The results of this study indicate that the state of the animals sleep-waking cycle at the time of stimulation is a critical variable that influences the responses which are induced by electrical stimulation of the nucleus reticularis pontis oralis.

  7. An Electrical Muscle Stimulation Suit for Increasing Blood Pressure

    DTIC Science & Technology

    2008-09-01

    an exploratory way in about 100 trials. Maximal indi- vidual stimulation intensity was selected to give a solid, tetanic muscle contraction without...therapy and in muscle strength training in athletes. However, if the electrical stimulation is too intense, the result will be muscle contraction pain...Each subject was instructed to have the investigator lower the intensity or stop the stimulation if muscle contraction pain was experienced

  8. Repeated cycles of electrical stimulation decrease vasoconstriction and axon-reflex vasodilation to noradrenaline in the human forearm

    PubMed Central

    Drummond, Peter D

    2007-01-01

    What is already known about this subject Repeated cycles of electrical stimulation inhibit cutaneous vasoconstriction to noradrenaline, but the mechanism is unknown. Investigating this is important because peripheral electrical stimulation is useful for pain modulation and appears to assist cutaneous wound healing. What this study adds Intermittent, brief electrical stimulation of the forearm over a 10-day period inhibited vasoconstriction and axon-reflex vasodilation to noradrenaline, but did not affect vasoconstriction to vasopressin or axon-reflex vasodilation to histamine. Thus, electrical stimulation may evoke a specific reduction in responsiveness to noradrenaline. Aim To investigate whether desensitization to the vasomotor effects of noradrenaline is a specific effect of electrical stimulation. Methods Three sites on the forearm of 10 healthy volunteers were stimulated with 0.2 mA direct current for 2 min twice daily for 10 days. Noradrenaline and histamine were then displaced from ring-shaped iontophoresis chambers into two of the pretreated sites and two untreated sites on the contralateral forearm. Axon-reflex vasodilation was measured from the centre of the ring described by the iontophoresis chamber with a laser Doppler flowmeter. One or two days later, noradrenaline and vasopressin were introduced into pretreated and untreated sites by iontophoresis, and vasoconstriction at sites of administration was measured in the heated forearm. Results The pretreatment blocked vasoconstriction to noradrenaline [median increase in flow 1%, interquartile range (IR) −41 to 52%; median decrease at the untreated site 53%, IR. −70 to −10%; P < 0.05], but did not block vasoconstriction to vasopressin (median decrease 42% at the untreated site and 45% at the pretreated site). Axon-reflex vasodilation to noradrenaline was diminished at the pretreated site (median increase in flow 33%, IR 2–321%; untreated site 247%, IR 31–1087%; P < 0.05). However, axon-reflex vasodilation to histamine did not differ significantly between the pretreated site (median increase 1085%) and the untreated site (median increase 1345%). Conclusions The conditioning pretreatment appears to evoke a specific decrease in responsiveness to noradrenaline. Repeated cycles of electrical stimulation may downregulate neural and vascular responses to noradrenaline by repetitively activating cutaneous sympathetic nerve fibres. PMID:17441931

  9. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

    PubMed

    Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-04-24

    Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.

  10. [Physical exercise versus exercise program using electrical stimulation devices for home use].

    PubMed

    Santos, F M; Rodrigues, R G S; Trindade-Filho, E M

    2008-02-01

    To evaluate the effects of electrical muscle stimulation with devices for home use on neuromuscular conditioning. The study sample comprised 20 sedentary, right-handed, voluntary women aged from 18 to 25 years in the city of Maceió, Northeastern Brazil, in 2006. Subjects were randomly divided into two groups: group A included women who underwent muscle stimulation using commercial electrical devices; group B included those women who performed physical activities with loads. The training program for both groups consisted of two weekly sessions for two months, in a total of 16 sessions. Comparisons of body weight, cirtometry, fleximetry, and muscle strength before and after exercise were determined using the paired t-test. For the comparisons between both groups, Student's t-test was used and a 5% significance level was adopted. Muscle strength subjectively assessed before and after each intervention was increased in both groups. Significant increases in muscle mass and strength were seen only in those subjects who performed voluntary physical activity. Resisted knee flexion and extension exercises effectively increased muscle mass and strength when compared to electrical stimulation at 87 Hz which did not produce a similar effect. The study results showed that electrical stimulation devices for passive physical exercising commercially available are less effective than voluntary physical exercise.

  11. Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: A systematic review and meta-analysis.

    PubMed

    Lin, Shuqin; Sun, Qi; Wang, Haifeng; Xie, Guomin

    2018-01-10

    To evaluate the influence of transcutaneous electrical nerve stimulation in patients with stroke through a systematic review and meta-analysis. PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation vs placebo transcutaneous electrical nerve stimulation on stroke were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was modified Ashworth scale (MAS). Meta-analysis was performed using the random-effect model. Seven randomized controlled trials were included in the meta-analysis. Compared with placebo transcutaneous electrical nerve stimulation, transcutaneous electrical nerve stimulation supplementation significantly reduced MAS (standard mean difference (SMD) = -0.71; 95% confidence interval (95% CI) = -1.11 to -0.30; p = 0.0006), improved static balance with open eyes (SMD = -1.26; 95% CI = -1.83 to -0.69; p<0.0001) and closed eyes (SMD = -1.74; 95% CI = -2.36 to -1.12; p < 0.00001), and increased walking speed (SMD = 0.44; 95% CI = 0.05 to 0.84; p = 0.03), but did not improve results on the Timed Up and Go Test (SMD = -0.60; 95% CI=-1.22 to 0.03; p = 0.06). Transcutaneous electrical nerve stimulation is associated with significantly reduced spasticity, increased static balance and walking speed, but has no influence on dynamic balance.

  12. Electrical pelvic floor stimulation in the management of urinary incontinence due to neuropathic overactive bladder.

    PubMed

    Ishigooka, M; Hashimoto, T; Izumiya, K; Katoh, T; Yaguchi, H; Nakada, T; Handa, Y; Hoshimiya, N

    1993-01-01

    Electrical pelvic floor stimulation employing a portable functional electrical stimulation system with percutaneously indwelling electrodes was carried out to improve detrusor urinary incontinence. Cyclic stimulation using negative going pulse trains of 20 Hz was applied 3 to 6 times daily to the bilateral pudendal nerves distributing to the pelvic floor muscles for the purpose of strengthening these muscles, including the urethral sphincter, and simultaneously, suppressing detrusor overactivity and increasing cystometric capacity. Electrical training for 4-8 weeks resulted in an improvement of urinary incontinence in five of six patients. In two of six cases incontinence had subjectively disappeared. Urodynamic investigations demonstrated an increase in detrusor reflex threshold and less tendency for abortive detrusor contraction. No apparent complications were encountered during these periods. This procedure appears to be efficient for the management of patients with detrusor incontinence who respond poorly to conservative therapies.

  13. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    NASA Astrophysics Data System (ADS)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  14. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less

  15. Effects of antidromic stimulation of the ventral root on glucose utilization in the ventral horn of the spinal cord in the rat.

    PubMed Central

    Kadekaro, M; Vance, W H; Terrell, M L; Gary, H; Eisenberg, H M; Sokoloff, L

    1987-01-01

    Electrical stimulation of the proximal stump of the transected sciatic nerve increased glucose utilization in the ventral horn of the spinal cord, with the greater increase in Rexed's lamina IX. Antidromic stimulation of the ventral root, however, did not change glucose utilization in the ventral horn. These results suggest that the axon terminals and not the cell bodies are the sites of enhanced metabolic activity during increased electrical activity in these elements. Images PMID:3474665

  16. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Coupling Efficiency in Chicken and Rat Skeleton Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    1999-01-01

    Expression of the beta-adrenergic receptor (bAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the bAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the bAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. Thus, in chicken muscle cells an enhanced level of contraction reduced the coupling efficiency of bAR for cyclic AMP production by approximately 55% compared to controls. In contrast, the bAR population in rat muscle cells was increased by approximately 25% by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was also increased by almost two-fold. Thus, in rat muscle cells an enhanced level of contraction increased the coupling efficiency of bAR for cyclic AMP production by approximately 50% compared to controls. The basal levels of intracellular cyclic AMP in both rat muscle cells and chicken muscle cells were not affected by electrical stimulation.

  17. Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells.

    PubMed

    McCullen, Seth D; McQuilling, John P; Grossfeld, Robert M; Lubischer, Jane L; Clarke, Laura I; Loboa, Elizabeth G

    2010-12-01

    Electric stimulation is known to initiate signaling pathways and provides a technique to enhance osteogenic differentiation of stem and/or progenitor cells. There are a variety of in vitro stimulation devices to apply electric fields to such cells. Herein, we describe and highlight the use of interdigitated electrodes to characterize signaling pathways and the effect of electric fields on the proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). The advantage of the interdigitated electrode configuration is that cells can be easily imaged during short-term (acute) stimulation, and this identical configuration can be utilized for long-term (chronic) studies. Acute exposure of hASCs to alternating current (AC) sinusoidal electric fields of 1 Hz induced a dose-dependent increase in cytoplasmic calcium in response to electric field magnitude, as observed by fluorescence microscopy. hASCs that were chronically exposed to AC electric field treatment of 1 V/cm (4 h/day for 14 days, cultured in the osteogenic differentiation medium containing dexamethasone, ascorbic acid, and β-glycerol phosphate) displayed a significant increase in mineral deposition relative to unstimulated controls. This is the first study to evaluate the effects of sinusoidal AC electric fields on hASCs and to demonstrate that acute and chronic electric field exposure can significantly increase intracellular calcium signaling and the deposition of accreted calcium under osteogenic stimulation, respectively.

  18. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue

    NASA Astrophysics Data System (ADS)

    Jezernik, Sašo; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  19. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    PubMed

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  20. Acromiohumeral Distance During Neuromuscular Electrical Stimulation of the Lower Trapezius and Serratus Anterior Muscles in Healthy Participants

    PubMed Central

    Bdaiwi, Alya H.; Mackenzie, Tanya Anne; Herrington, Lee; Horsley, Ian; Cools, Ann M.

    2015-01-01

    Context Compromise to the acromiohumeral distance has been reported in participants with subacromial impingement syndrome compared with healthy participants. In clinical practice, patients with subacromial shoulder impingement are given strengthening programs targeting the lower trapezius (LT) and serratus anterior (SA) muscles to increase scapular posterior tilt and upward rotation. We are the first to use neuromuscular electrical stimulation to stimulate these muscle groups and evaluate how the muscle contraction affects the acromiohumeral distance. Objective To investigate if electrical muscle stimulation of the LT and SA muscles, both separately and simultaneously, increases the acromiohumeral distance and to identify which muscle-group contraction or combination most influences the acromiohumeral distance. Design Controlled laboratory study. Setting Human performance laboratory. Patients or Other Participants Twenty participants (10 men and 10 women, age = 26.9 ± 8.0 years, body mass index = 23.8) were screened. Intervention(s) Neuromuscular electrical stimulation of the LT and SA. Main Outcome Measure(s) Ultrasound measurement of the acromiohumeral distance. Results Acromiohumeral distance increased during contraction via neuromuscular electrical stimulation of the LT muscle (t19 = −3.89, P = .004), SA muscle (t19 = −7.67, P = .001), and combined LT and SA muscles (t19 = −5.09, P = .001). We observed no differences in the increased acromiohumeral distance among the 3 procedures (F2,57 = 3.109, P = .08). Conclusions Our results supported the hypothesis that the muscle force couple around the scapula is important in rehabilitation and scapular control and influences acromiohumeral distance. PMID:25933249

  1. [Sex differences in neuromodulation of mucosal mast cells in the rat jejunum].

    PubMed

    Gottwald, T; Becker, H D; Stead, R H

    1997-01-01

    The effect of electrical stimulation of both cervical vagal nerves on mucosal mast cells in the jejunum was investigated in an in vivo animal model with rats of both sexes. Males showed a significant increase of mast cell densities after electrical stimulation (1.0 mA, 5 Hz, 5 ms, 12 min) in the lamina propria. Simultaneously, we observed a significant increase of tissue histamine levels (ANOVA: P < 0.05), whereas serum levels remained unchanged. However, even though females had significantly higher levels throughout compared to males (ANOVA: P < 0.05), they did not show any significant reaction to electrical stimulation. These in vivo data support morphological and in vitro data from other investigators, who hypothesized a functional interaction between mucosal mast cells and nerves. However, degranulation seems to be a poor in situ indicator for mast-cell stimulation, as mast-cell densities increased in males, while the percentage of degranulated cells remained the same in all groups (about 40%). Instead, electrical stimulation of the vagal nerve seems to trigger histamine synthesis, or simply stabilization of mast cells. Interestingly, this phenomenon seems to be sex-dependent, suggesting a regulatory role for sex hormones in this scenario.

  2. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves

    PubMed Central

    Zhao, Feng; He, Wei; Zhang, Yingze; Tian, Dehu; Zhao, Hongfang; Yu, Kunlun; Bai, Jiangbo

    2013-01-01

    Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves. PMID:25206506

  3. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    NASA Astrophysics Data System (ADS)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  4. Acetylation mediates Cx43 reduction caused by electrical stimulation

    PubMed Central

    Meraviglia, Viviana; Azzimato, Valerio; Colussi, Claudia; Florio, Maria Cristina; Binda, Anna; Panariti, Alice; Qanud, Khaled; Suffredini, Silvia; Gennaccaro, Laura; Miragoli, Michele; Barbuti, Andrea; Lampe, Paul D.; Gaetano, Carlo; Pramstaller, Peter P.; Capogrossi, Maurizio C.; Recchia, Fabio A.; Pompilio, Giulio; Rivolta, Ilaria; Rossini, Alessandra

    2015-01-01

    Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. PMID:26264759

  5. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    PubMed

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  6. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    PubMed

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.

  7. Simultaneous masking between electric and acoustic stimulation in cochlear implant users with residual low-frequency hearing.

    PubMed

    Krüger, Benjamin; Büchner, Andreas; Nogueira, Waldo

    2017-09-01

    Ipsilateral electric-acoustic stimulation (EAS) is becoming increasingly important in cochlear implant (CI) treatment. Improvements in electrode designs and surgical techniques have contributed to improved hearing preservation during implantation. Consequently, CI implantation criteria have been expanded toward people with significant residual low-frequency hearing, who may benefit from the combined use of both the electric and acoustic stimulation in the same ear. However, only few studies have investigated the mutual interaction between electric and acoustic stimulation modalities. This work characterizes the interaction between both stimulation modalities using psychophysical masking experiments and cone beam computer tomography (CBCT). Two psychophysical experiments for electric and acoustic masking were performed to measure the hearing threshold elevation of a probe stimulus in the presence of a masker stimulus. For electric masking, the probe stimulus was an acoustic tone while the masker stimulus was an electric pulse train. For acoustic masking, the probe stimulus was an electric pulse train and the masker stimulus was an acoustic tone. Five EAS users, implanted with a CI and ipsilateral residual low-frequency hearing, participated in the study. Masking was determined at different electrodes and different acoustic frequencies. CBCT scans were used to determine the individual place-pitch frequencies of the intracochlear electrode contacts by using the Stakhovskaya place-to-frequency transformation. This allows the characterization of masking as a function of the difference between electric and acoustic stimulation sites, which we term the electric-acoustic frequency difference (EAFD). The results demonstrate a significant elevation of detection thresholds for both experiments. In electric masking, acoustic-tone thresholds increased exponentially with decreasing EAFD. In contrast, for the acoustic masking experiment, threshold elevations were present regardless of the tested EAFDs. Based on the present findings, we conclude that there is an asymmetry between the electric and the acoustic masker modalities. These observations have implications for the design and fitting of EAS sound-coding strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate.

    PubMed

    Cavus, Idil; Widi, Gabriel A; Duckrow, Robert B; Zaveri, Hitten; Kennard, Jeremy T; Krystal, John; Spencer, Dennis D

    2016-02-01

    The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated glutamate increase was related to elevation in basal interictal glutamate, suggesting a common mechanism, possibly impaired glutamate metabolism. Divergent mechanisms may exist for seizure induction and increased glutamate in patients with epilepsy. These data highlight the potential risk of 50 Hz stimulation in patients with epilepsy. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  9. The impact of neuromuscular electrical stimulation on recovery after intensive, muscle damaging, maximal speed training in professional team sports players.

    PubMed

    Taylor, Tom; West, Daniel J; Howatson, Glyn; Jones, Chris; Bracken, Richard M; Love, Thomas D; Cook, Christian J; Swift, Eamon; Baker, Julien S; Kilduff, Liam P

    2015-05-01

    During congested fixture periods in team sports, limited recovery time and increased travel hinder the implementation of many recovery strategies; thus alternative methods are required. We examined the impact of a neuromuscular electrical stimulation device on 24-h recovery from an intensive training session in professional players. Twenty-eight professional rugby and football academy players completed this randomised and counter-balanced study, on 2 occasions, separated by 7 days. After baseline perceived soreness, blood (lactate and creatine kinase) and saliva (testosterone and cortisol) samples were collected, players completed a standardised warm-up and baseline countermovement jumps (jump height). Players then completed 60 m × 50 m maximal sprints, with 5 min recovery between efforts. After completing the sprint session, players wore a neuromuscular electrical stimulation device or remained in normal attire (CON) for 8 h. All measures were repeated immediately, 2 and 24-h post-sprint. Player jump height was reduced from baseline at all time points under both conditions; however, at 24-h neuromuscular electrical stimulation was significantly more recovered (mean±SD; neuromuscular electrical stimulation -3.2±3.2 vs. CON -7.2±3.7%; P<0.001). Creatine kinase concentrations increased at all time points under both conditions, but at 24-h was lower under neuromuscular electrical stimulation (P<0.001). At 24-h, perceived soreness was significantly lower under neuromuscular electrical stimulation, when compared to CON (P=0.02). There was no effect of condition on blood lactate, or saliva testosterone and cortisol responses (P>0.05). Neuromuscular electrical stimulation improves recovery from intensive training in professional team sports players. This strategy offers an easily applied recovery strategy which may have particular application during sleep and travel. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Differences in Salivary Alpha-Amylase and Cortisol Responsiveness following Exposure to Electrical Stimulation versus the Trier Social Stress Tests

    PubMed Central

    Maruyama, Yoshihiro; Kawano, Aimi; Okamoto, Shizuko; Ando, Tomoko; Ishitobi, Yoshinobu; Tanaka, Yoshihiro; Inoue, Ayako; Imanaga, Junko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Akiyoshi, Jotaro

    2012-01-01

    Background Cortisol is an essential hormone in the regulation of the stress response along the HPA axis, and salivary cortisol has been used as a measure of free circulating cortisol levels. Recently, salivary alpha-amylase (sAA) has also emerged as a novel biomarker for psychosocial stress responsiveness within the sympathetic adrenomedullary (SAM) system. Principal Findings We measured sAA and salivary cortisol in healthy volunteers after exposure to the Trier Social Stress Test (TSST) and electric stimulation stress. One hundred forty-nine healthy volunteers participated in this study. All subjects were exposed to both the TSST and electric stimulation stress on separate days. We measured sAA and salivary cortisol levels three times immediately before, immediately after, and 20 min after the stress challenge. The State (STAI-S) and Trait (STAI-T) versions of the Spielberger Anxiety Inventory test and the Profile of Mood State (POMS) tests were administered to participants before the electrical stimulation and TSST protocols. We also measured HF, LF and LF/HF Heart Rate Variability ratio immediately after electrical stimulation and TSST exposure. Following TSST exposure or electrical stimulation, sAA levels displayed a rapid increase and recovery, returning to baseline levels 20 min after the stress challenge. Salivary cortisol responses showed a delayed increase, which remained significantly elevated from baseline levels 20 min after the stress challenge. Analyses revealed no differences between men and women with regard to their sAA response to the challenges (TSST or electric stimulations), while we found significantly higher salivary cortisol responses to the TSST in females. We also found that younger subjects tended to display higher sAA activity. Salivary cortisol levels were significantly correlated with the strength of the applied electrical stimulation. Conclusions These preliminary results suggest that the HPA axis (but not the SAM system) may show differential response patterns to distinct kinds of stressors. PMID:22859941

  11. A Study on Duration of Effect of Transcutaneous Electrical Nerve Stimulation Therapy on Whole Saliva Flow.

    PubMed

    Bhasin, Neha; Reddy, Sreedevi; Nagarajappa, Anil Kumar; Kakkad, Ankur

    2015-06-01

    Saliva is a complex fluid, whose important role is to maintain the well being of oral cavity. Salivary gland hypofunction or hyposalivation is the condition of having reduced saliva production which leads to the subjective complaint of oral dryness termed xerostomia.(7) Management of xerostomia includes palliative therapy using topical agents or systemic therapy. Electrostimulation to produce saliva was studied in the past and showed moderate promise but never became part of mainstream therapy. Hence, this study was undertaken to evaluate the effect of transcutaneous electrical nerve stimulation (TENS) on whole salivary flow rate in healthy adults and to evaluate how long this effect of TENS lasts on salivary flow. One hundred healthy adult subjects were divided into five age groups with each group containing 20 subjects equally divided into males and females in each group. Unstimulated saliva was collected using a graduated test tube fitted with funnel and quantity was measured. Transcutaneous electrical nerve stimulation unit was activated and stimulated saliva was collected. Saliva was again collected 30 minutes and 24 hours post stimulation. The mean unstimulated whole saliva flow rate for all subjects (n = 100) was 2.60 ml/5 min. During stimulation, it increased to 3.60 ± 0.39 ml/5 min. There was 38.46% increase in salivary flow. Ninety six out of 100 responded positively to TENS therapy. Salivary flow remained increased 30 minutes and 24 hours post stimulation with the values being 3.23 ± 0.41 ml/5 min and 2.69 ± 0.39 ml/5 min respectively. Repeated measures One way analysis of variance (ANOVA) test showed that the difference between these values were statistically significant. Transcutaneous electrical nerve stimulation therapy was effective for stimulation of whole saliva in normal, healthy subjects and its effect retained till 30 minutes and a little up to 24 hours. Transcutaneous electrical nerve stimulation may work best synergistically with other sialagogues and can be used for the management of xerostomia.

  12. Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators.

    PubMed

    Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine

    2016-06-13

    Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs.

  13. Frequency dependence of behavioral modulation by hippocampal electrical stimulation

    PubMed Central

    La Corte, Giorgio; Wei, Yina; Chernyy, Nick; Gluckman, Bruce J.

    2013-01-01

    Electrical stimulation offers the potential to develop novel strategies for the treatment of refractory medial temporal lobe epilepsy. In particular, direct electrical stimulation of the hippocampus presents the opportunity to modulate pathological dynamics at the ictal focus, although the neuroanatomical substrate of this region renders it susceptible to altering cognition and affective processing as a side effect. We investigated the effects of three electrical stimulation paradigms on separate groups of freely moving rats (sham, 8-Hz and 40-Hz sine-wave stimulation of the ventral/intermediate hippocampus, where 8- and 40-Hz stimulation were chosen to mimic naturally occurring hippocampal oscillations). Animals exhibited attenuated locomotor and exploratory activity upon stimulation at 40 Hz, but not at sham or 8-Hz stimulation. Such behavioral modifications were characterized by a significant reduction in rearing frequency, together with increased freezing behavior. Logistic regression analysis linked the observed changes in animal locomotion to 40-Hz electrical stimulation independently of time-related variables occurring during testing. Spectral analysis, conducted to monitor the electrophysiological profile in the CA1 area of the dorsal hippocampus, showed a significant reduction in peak theta frequency, together with reduced theta power in the 40-Hz vs. the sham stimulation animal group, independent of locomotion speed (theta range: 4–12 Hz). These findings contribute to the development of novel and safe medical protocols by indicating a strategy to constrain or optimize parameters in direct hippocampal electrical stimulation. PMID:24198322

  14. Hypothermia augments non-cholinergic neuronal bronchoconstriction in pithed guinea-pigs.

    PubMed

    Rechtman, M P; King, R G; Boura, A L

    1991-08-16

    Electrical stimulation at C4-C7 in the spinal canal of pithed guinea-pigs injected with atropine, d-tubocurarine and pentolinium caused frequency-dependent bronchoconstriction. Such non-cholinergic responses to electrical stimulation, unlike responses to substance P, were abolished by pretreatment with capsaicin but not by mepyramine or propranolol. Bronchoconstrictor responses to electrical stimulation were inversely related to rectal temperature (between 30-40 degrees C) whereas responses to substance P increased with increasing temperature over the same range. Ouabain (i.v.) augmented responses to electrical stimulation at 35-37 degrees C but depressed those at 30-32 degrees C. Both morphine and the alpha 2-adrenoceptor agonist B-HT920 (i.v.) inhibited non-cholinergic-mediated bronchoconstrictor responses at 30-32 degrees C. These results stress the importance of adequate control of body temperature in this preparation. Lowered body temperature may increase neuronal output of neuropeptides whilst depressing bronchial smooth muscle sensitivity. The data support previous conclusions regarding the role of Na+/K+ activated ATPase in temperature-induced changes in sensitivity to bronchoconstrictor stimuli.

  15. The effect of temperature on basal tension and thyroarytenoid muscle contraction in an isolated rat glottis model.

    PubMed

    Wang, Hsing-Won; Chu, Yueng-Hsiang; Chao, Pin-Zhir; Lee, Fei-Peng

    2014-10-01

    The pitch of voice is closely related to the vocal fold tension, which is the end result of coordinated movement of the intralaryngeal muscles, and especially the thyroarytenoid muscle. It is known that vocal quality may be affected by surrounding temperature; however, the effect of temperature on vocal fold tension is mostly unknown. Thus, the aim of this study was to evaluate the effect of temperature on isolated rat glottis and thyroarytenoid muscle contraction induced by electrical field stimulation. In vitro isometric tension of the glottis ring from 30 Sprague-Dawley rats was continuously recorded by the tissue bath method. Electrical field stimulation was applied to the glottis ring with two wire electrodes placed parallel to the glottis and connected to a direct-current stimulator. The tension changes of the rat glottis rings that were either untreated or treated with electrical field stimulation were recorded continuously at temperatures from 37 to 7 °C or from 7 to 37 °C. Warming from 7 to 37 °C increased the basal tension of the glottis rings and decreased the electrical field stimulation-induced glottis ring contraction, which was chiefly due to thyroarytenoid muscle contraction. In comparison, cooling from 37 to 7 °C decreased the basal tension and enhanced glottis ring contraction by electrical field stimulation. We concluded that warming increased the basal tension of the glottis in vitro and decreased the amplitude of electrical field stimulation-induced thyroarytenoid muscle contraction. Thus, vocal pitch and the fine tuning of vocal fold tension might be affected by temperature in vivo.

  16. Spatial and temporal variability in response to hybrid electro-optical stimulation

    NASA Astrophysics Data System (ADS)

    Duke, Austin R.; Lu, Hui; Jenkins, Michael W.; Chiel, Hillel J.; Jansen, E. Duco

    2012-06-01

    Hybrid electro-optical neural stimulation is a novel paradigm combining the advantages of optical and electrical stimulation techniques while reducing their respective limitations. However, in order to fulfill its promise, this technique requires reduced variability and improved reproducibility. Here we used a comparative physiological approach to aid the further development of this technique by identifying the spatial and temporal factors characteristic of hybrid stimulation that may contribute to experimental variability and/or a lack of reproducibility. Using transient pulses of infrared light delivered simultaneously with a bipolar electrical stimulus in either the marine mollusk Aplysia californica buccal nerve or the rat sciatic nerve, we determined the existence of a finite region of excitability with size altered by the strength of the optical stimulus and recruitment dictated by the polarity of the electrical stimulus. Hybrid stimulation radiant exposures yielding 50% probability of firing (RE50) were shown to be negatively correlated with the underlying changes in electrical stimulation threshold over time. In Aplysia, but not in the rat sciatic nerve, increasing optical radiant exposures (J cm-2) beyond the RE50 ultimately resulted in inhibition of evoked potentials. Accounting for the sources of variability identified in this study increased the reproducibility of stimulation from 35% to 93% in Aplysia and 23% to 76% in the rat with reduced variability.

  17. High-Frequency Transcutaneous Peripheral Nerve Stimulation Induces a Higher Increase of Heat Pain Threshold in the Cutaneous Area of the Stimulated Nerve When Confronted to the Neighbouring Areas

    PubMed Central

    Buonocore, M.; Camuzzini, N.; Cecini, M.; Dalla Toffola, E.

    2013-01-01

    Background. TENS (transcutaneous electrical nerve stimulation) is probably the most diffused physical therapy used for antalgic purposes. Although it continues to be used by trial and error, correct targeting of paresthesias evoked by the electrical stimulation on the painful area is diffusely considered very important for pain relief. Aim. To investigate if TENS antalgic effect is higher in the cutaneous area of the stimulated nerve when confronted to neighbouring areas. Methods. 10 volunteers (4 males, 6 females) underwent three different sessions: in two, heat pain thresholds (HPTs) were measured on the dorsal hand skin before, during and after electrical stimulation (100 Hz, 0.1 msec) of superficial radial nerve; in the third session HPTs, were measured without any stimulation. Results. Radial nerve stimulation induced an increase of HPT significantly higher in its cutaneous territory when confronted to the neighbouring ulnar nerve territory, and antalgic effect persisted beyond the stimulation time. Conclusions. The location of TENS electrodes is crucial for obtaining the strongest pain relief, and peripheral nerve trunk stimulation is advised whenever possible. Moreover, the present study indicates that continuous stimulation could be unnecessary, suggesting a strategy for avoiding the well-known tolerance-like effect of prolonged TENS application. PMID:24027756

  18. Electrolysis stimulates creatine transport and transporter cell surface expression in incubated mouse skeletal muscle: potential role of ROS.

    PubMed

    Derave, Wim; Straumann, Nadine; Olek, Robert A; Hespel, Peter

    2006-12-01

    Electrical field stimulation of isolated, incubated rodent skeletal muscles is a frequently used model to study the effects of contractions on muscle metabolism. In this study, this model was used to investigate the effects of electrically stimulated contractions on creatine transport. Soleus and extensor digitorum longus muscles of male NMRI mice (35-50 g) were incubated in an oxygenated Krebs buffer between platinum electrodes. Muscles were exposed to [(14)C]creatine for 30 min after either 12 min of repeated tetanic isometric contractions (contractions) or electrical stimulation of only the buffer before incubation of the muscle (electrolysis). Electrolysis was also investigated in the presence of the reactive oxygen species (ROS) scavenging enzymes superoxide dismutase (SOD) and catalase. Both contractions and (to a lesser degree) electrolysis stimulated creatine transport severalfold over basal. The amount of electrolysis, but not contractile activity, induced (determined) creatine transport stimulation. Incubation with SOD and catalase at 100 and 200 U/ml decreased electrolysis-induced creatine transport by approximately 50 and approximately 100%, respectively. The electrolysis effects on creatine uptake were completely inhibited by beta-guanidino propionic acid, a competitive inhibitor of (creatine for) the creatine transporter (CRT), and were accompanied by increased cell surface expression of CRT. Muscle glucose transport was not affected by electrolysis. The present results indicate that electrical field stimulation of incubated mouse muscles, independently of contractions per se, stimulates creatine transport by a mechanism that depends on electrolysis-induced formation of ROS in the incubation buffer. The increased creatine uptake is paralleled by an increased cell surface expression of the creatine transporter.

  19. Optical imaging of the retina in response to the electrical stimulation

    NASA Astrophysics Data System (ADS)

    Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo

    2008-02-01

    Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.

  20. Improved Walking Claudication Distance with Transcutaneous Electrical Nerve Stimulation: An Old Treatment with a New Indication in Patients with Peripheral Artery Disease.

    PubMed

    Labrunée, Marc; Boned, Anne; Granger, Richard; Bousquet, Marc; Jordan, Christian; Richard, Lisa; Garrigues, Damien; Gremeaux, Vincent; Sénard, Jean-Michel; Pathak, Atul; Guiraud, Thibaut

    2015-11-01

    The aim of this study was to determine whether 45 mins of transcutaneous electrical nerve stimulation before exercise could delay pain onset and increase walking distance in peripheral artery disease patients. After a baseline assessment of the walking velocity that led to pain after 300 m, 15 peripheral artery disease patients underwent four exercise sessions in a random order. The patients had a 45-min transcutaneous electrical nerve stimulation session with different experimental conditions: 80 Hz, 10 Hz, sham (presence of electrodes without stimulation), or control with no electrodes, immediately followed by five walking bouts on a treadmill until pain occurred. The patients were allowed to rest for 10 mins between each bout and had no feedback concerning the walking distance achieved. Total walking distance was significantly different between T10, T80, sham, and control (P < 0.0003). No difference was observed between T10 and T80, but T10 was different from sham and control. Sham, T10, and T80 were all different from control (P < 0.001). There was no difference between each condition for heart rate and blood pressure. Transcutaneous electrical nerve stimulation immediately before walking can delay pain onset and increase walking distance in patients with class II peripheral artery disease, with transcutaneous electrical nerve stimulation of 10 Hz being the most effective.

  1. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics.

    PubMed

    Shannon, R V

    1983-08-01

    Basic psychophysical measurements were obtained from three patients implanted with multichannel cochlear implants. This paper presents measurements from stimulation of a single channel at a time (either monopolar or bipolar). The shape of the threshold vs. frequency curve can be partially related to the membrane biophysics of the remaining spiral ganglion and/or dendrites. Nerve survival in the region of the electrode may produce some increase in the dynamic range on that electrode. Loudness was related to the stimulus amplitude by a power law with exponents between 1.6 and 3.4, depending on frequency. Intensity discrimination was better than for normal auditory stimulation, but not enough to offset the small dynamic range for electrical stimulation. Measures of temporal integration were comparable to normals, indicating a central mechanism that is still intact in implant patients. No frequency analysis of the electrical signal was observed. Each electrode produced a unique pitch sensation, but they were not simply related to the tonotopic position of the stimulated electrode. Pitch increased over more than 4 octaves (for one patient) as the frequency was increased from 100 to 300 Hz, but above 300 Hz no pitch change was observed. Possibly the major limitation of single channel cochlear implants is the 1-2 ms integration time (probably due to the capacitative properties of the nerve membrane which acts as a low-pass filter at 100 Hz). Another limitation of electrical stimulation is that there is no spectral analysis of the electrical waveform so that temporal waveform alone determines the effective stimulus.

  3. Electrical Stimulation of the Ventral Tegmental Area Induces Reanimation from General Anesthesia

    PubMed Central

    Solt, Ken; Van Dort, Christa J.; Chemali, Jessica J.; Taylor, Norman E.; Kenny, Jonathan D.; Brown, Emery N.

    2014-01-01

    BACKGROUND Methylphenidate or a D1 dopamine receptor agonist induce reanimation (active emergence) from general anesthesia. We tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (SN, n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120μA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. RESULTS To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 μg/ml ± 1.1 μg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from δ (<4 Hz) to θ (4–8 Hz). In all rats with SN electrodes, stimulation did not elicit an arousal response or significant electroencephalogram changes. CONCLUSIONS Electrical stimulation of the VTA, but not the SN, induces reanimation during general anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA, but not SN, neurons induces reanimation from general anesthesia. PMID:24398816

  4. Cardiac cycle-synchronized electrical muscle stimulator for lower limb training with the potential to reduce the heart's pumping workload

    PubMed Central

    Matsuse, Hiroo; Akimoto, Ryuji; Kamiya, Shiro; Moritani, Toshio; Sasaki, Motoki; Ishizaki, Yuta; Ohtsuka, Masanori; Nakayoshi, Takaharu; Ueno, Takafumi; Shiba, Naoto; Fukumoto, Yoshihiro

    2017-01-01

    Background The lower limb muscle may play an important role in decreasing the heart’s pumping workload. Aging and inactivity cause atrophy and weakness of the muscle, leading to a loss of the heart-assisting role. An electrical lower limb muscle stimulator can prevent atrophy and weakness more effectively than conventional resistance training; however, it has been reported to increase the heart’s pumping workload in some situations. Therefore, more effective tools should be developed. Methods We newly developed a cardiac cycle-synchronized electrical lower limb muscle stimulator by combining a commercially available electrocardiogram monitor and belt electrode skeletal muscle electrical stimulator, making it possible to achieve strong and wide but not painful muscle contractions. Then, we tested the stimulator in 11 healthy volunteers to determine whether the special equipment enabled lower limb muscle training without harming the hemodynamics using plethysmography and a percutaneous cardiac output analyzer. Results In 9 of 11 subjects, the stimulator generated diastolic augmentation waves on the dicrotic notches and end-diastolic pressure reduction waves on the plethysmogram waveforms of the brachial artery, showing analogous waveforms in the intra-aortic balloon pumping heart-assisting therapy. The heart rate, stroke volume, and cardiac output significantly increased during the stimulation. There was no change in the systolic or diastolic blood pressure during the stimulation. Conclusion Cardiac cycle-synchronized electrical muscle stimulation for the lower limbs may enable muscle training without harmfully influencing the hemodynamics and with a potential to reduce the heart’s pumping workload, suggesting a promising tool for effectively treating both locomotor and cardiovascular disorders. PMID:29117189

  5. Immediate effects of transcutaneous electrical stimulation on physiological swallowing effort in older versus young adults.

    PubMed

    Berretin-Felix, Giédre; Sia, Isaac; Barikroo, Ali; Carnaby, Giselle D; Crary, Michael A

    2016-09-01

    This study compared the immediate impact of different transcutaneous electrical stimulation (TES) amplitudes on physiological swallowing effort in healthy older adults versus young adults. Swallowing physiology changes with age. Reduced physiological swallowing effort in older adults including lower lingua-palatal and pharyngeal pressures may increase risk for swallowing dysfunction (i.e. dysphagia). Transcutaneous electrical stimulation (TES) has been advocated as an adjunctive modality to enhance outcomes in exercise-based therapy for individuals with dysphagia. However, significant variation in how TES is applied during therapy remains and the physiological swallowing response to TES is poorly studied, especially in older adults. Physiological change in swallowing associated with no stimulation, sensory stimulation and motor stimulation was compared in 20 young adults versus 14 older adults. Lingua-palatal and pharyngeal manometric pressures assessed physiological swallowing effort. Multivariate analyses identified interactions between age and stimulation amplitude on lingual and pharyngeal functions. Motor stimulation reduced anterior tongue pressure in both age groups but selectively reduced posterior lingua-palatal pressures in young adults only. Sensory stimulation increased base of tongue (BOT) pressures in older adults but decreased BOT pressures in young adults. Motor stimulation increased hypopharyngeal pressures in both groups. Age and TES level interact in determining immediate physiological responses on swallow performance. A one-size-fit-all approach to TES in dysphagia rehabilitation may be misdirected. © 2014 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  6. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    PubMed Central

    Ponnath, Abhilash; Farris, Hamilton E.

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437

  7. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    PubMed

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  8. Effect of neuromuscular electrical muscle stimulation on energy expenditure in healthy adults.

    PubMed

    Hsu, Miao-Ju; Wei, Shun-Hwa; Chang, Ya-Ju

    2011-01-01

    Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES) at different intensities on energy expenditure (oxygen and calories) in healthy adults. The secondary aim was to develop a generalized linear regression (GEE) model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender) associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females) participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1), motor threshold (E2), and maximal intensity comfortably tolerated (E3). Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject's demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

  9. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    NASA Astrophysics Data System (ADS)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications.

  10. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation.

    PubMed

    Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing

    2017-11-08

    Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.

  11. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Transcutaneous Electrical Acupoint Stimulation in Children with Autism and Its Impact on Plasma Levels of Arginine-Vasopressin and Oxytocin: A Prospective Single-Blinded Controlled Study

    ERIC Educational Resources Information Center

    Zhang, Rong; Jia, Mei-Xiang; Zhang, Ji-Sui; Xu, Xin-Jie; Shou, Xiao-Jing; Zhang, Xiu-Ting; Li, Li; Li, Ning; Han, Song-Ping; Han, Ji-Sheng

    2012-01-01

    Acupuncture increases brain levels of arginine-vasopressin (AVP) and oxytocin (OXT), which are known to be involved in the modulation of mammalian social behavior. Transcutaneous electrical acupoint stimulation (TEAS) is often used clinically to produce a similar stimulation to that of acupuncture on the acupoints. In the present study, TEAS was…

  13. Systematic study of the effects of stimulus parameters and stimulus location on afterdischarges elicited by electrical stimulation in the rat.

    PubMed

    Shigeto, Hiroshi; Boongird, Atthaporn; Baker, Kenneth; Kellinghaus, Christoph; Najm, Imad; Lüders, Hans

    2013-03-01

    Electrical brain stimulation is used in a variety of clinical situations, including cortical mapping for epilepsy surgery, cortical stimulation therapy to terminate seizure activity in the cortex, and in deep brain stimulation therapy. However, the effects of stimulus parameters are not fully understood. In this study, we systematically tested the impact of various stimulation parameters on the generation of motor symptoms and afterdischarges (ADs). Focal electrical stimulation was delivered at subdural cortical, intracortical, and hippocampal sites in a rat model. The effects of stimulus parameter on the generation of motor symptoms and on the occurrence of ADs were examined. The effect of stimulus irregularity was tested using random or regular 50Hz stimulation through subdural electrodes. Hippocampal stimulation produced ADs at lower thresholds than neocortical stimulation. Hippocampal stimulation also produced significantly longer ADs. Both in hippocampal and cortical stimulation, when the total current was kept constant with changing pulse width, the threshold for motor symptom or AD was lowest between 50 and 100Hz and higher at both low and high frequencies. However, if the pulse width was fixed, the threshold did not increase above 100Hz and it apparently continued to decrease through 800Hz even if the difference did not reach statistical significance. There was no significant difference between random and regular stimulation. Overall, these results indicate that electrode location and several stimulus parameters including frequency, pulse width, and total electricity are important in electrical stimulation to produce motor symptoms and ADs. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. [Effects of Electric Stimulation and Biofeedback for Pelvic Floor Muscle Exercise in Women with Vaginal Rejuvenation Women].

    PubMed

    Lee, Jung Bok; Choi, So Young

    2015-10-01

    The purpose of this study was to investigate the effects of pelvic floor muscle exercise using electric stimulation and biofeedback on maximum pressure of vaginal contraction, vaginal contraction duration and sexual function in women who have had vaginal rejuvenation. The research design was a non-equivalent control group non-synchronized design study. Participants in this study were women who had vaginal rejuvenation at C obstetrics and gynecology hospital. The 15 participants in the experimental group were given pelvic floor muscle exercise using electric stimulation and biofeedback and the 15 participants in the control group received self pelvic floor muscle exercise. For maximum pressure of vaginal contraction, the experimental group showed a statistically significant increase compared to than the control group (t=5.96, p<.001). For vaginal contraction duration, the experimental group also showed a statistically significant increase compared to the control group (t=3.23, p=.003). For women's sexual function, the experimental group showed a significant increase when compared to the control group in total sexual function scores (t=3.41, p=.002). The results indicate that pelvic floor muscle exercise with electric stimulation and biofeedback after vaginal rejuvenation is effective in strengthening vaginal contraction pressure, vaginal contraction and that it also positively functions to increase women's sexual function.

  15. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    PubMed Central

    Miura, Naoto; Watanabe, Takashi

    2016-01-01

    Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556

  16. The release of labelled acetylcholine and choline from cerebral cortical slices stimulated electrically

    PubMed Central

    Richardson, I.W.; Szerb, J.C.

    1974-01-01

    1 In order to establish the origin of the increased efflux of radioactivity caused by electrical stimulation of cerebral cortical slices which had been incubated with [3H]-choline, labelled choline and acetylcholine (ACh) collected by superfusion were separated by gold precipitation. 2 In the presence of physostigmine electrical stimulation (1 Hz, 10 min) increased the release of only [3H]-ACh which was greatly enhanced by the addition of atropine. 3 Continuous stimulation in the presence of physostigmine resulted in an evoked release of [3H]-ACh which declined asymptotically. This evoked release appeared to follow first-order kinetics with a rate constant which remained stable over the course of prolonged stimulation. 4 The rate constant for the evoked release of [3H]-ACh with 1 Hz stimulation was three times greater in the presence of physostigmine and atropine than in the presence of physostigmine alone, while the size of the store from which [3H]-ACh was released was nearly identical under these two conditions. 5 In the absence of physostigmine and atropine, stimulation caused the appearance of only [3H]-choline in the samples. 6 Reduction of [3H]-ACh stores before the application of physostigmine resulted in a reduced evoked release of total radioactivity, both in the absence or presence of physostigmine and atropine, and decreased the evoked release of [3H]-ACh without affecting the release of [3H]-choline. 7 Results suggest that electrical stimulation of cortical slices which had been incubated with [3H]-choline causes the release of only [3H]-ACh, both in the presence or absence of an anticholinesterase. The evoked increase in the efflux of total radioactivity is therefore a good measure of the release of [3H]-ACh. PMID:4455326

  17. Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation

    PubMed Central

    Gittens, Rolando A.; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J.; Alamgir, Faisal M.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. PMID:23996899

  18. Breathing-synchronised electrical stimulation of the abdominal muscles in patients with acute tetraplegia: A prospective proof-of-concept study.

    PubMed

    Liebscher, Thomas; Schauer, Thomas; Stephan, Ralph; Prilipp, Erik; Niedeggen, Andreas; Ekkernkamp, Axel; Seidl, Rainer O

    2016-11-01

    To examine whether, by enhancing breathing depth and expectoration, early use of breathing-synchronised electrical stimulation of the abdominal muscles (abdominal functional electrical stimulation, AFES) is able to reduce pulmonary complications during the acute phase of tetraplegia. Prospective proof-of-concept study. Spinal cord unit at a level 1 trauma center. Following cardiovascular stabilisation, in addition to standard treatments, patients with acute traumatic tetraplegia (ASIA Impairment Scale A or B) underwent breathing-synchronised electrical stimulation of the abdominal muscles to aid expiration and expectoration. The treatment was delivered in 30-minute sessions, twice a day for 90 days. The target was for nine of 15 patients to remain free of pneumonia meeting Centers for Disease Control and Prevention (CDC) diagnostic criteria. Eleven patients were recruited to the study between October 2011 and November 2012. Two patients left the study before completion. None of the patients contracted pneumonia during the study period. No complications from electrical stimulation were observed. AFES led to a statistically significant increase in peak inspiratory and expiratory flows and a non-statistically significant increase in tidal volume and inspiratory and expiratory flow. When surveyed, 6 out of 9 patients (67%) reported that the stimulation procedure led to a significant improvement in breathing and coughing. AFES appears to be able to improve breathing and expectoration and prevent pneumonia in the acute phase of tetraplegia (up to 90 days post-trauma). This result is being validated in a prospective multicentre comparative study.

  19. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.

    PubMed

    Howell, Bryan; McIntyre, Cameron C

    2016-06-01

    Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  20. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  1. Nanostructured Polyaniline Coating on ITO Glass Promotes the Neurite Outgrowth of PC 12 Cells by Electrical Stimulation.

    PubMed

    Wang, Liping; Huang, Qianwei; Wang, Jin-Ye

    2015-11-10

    A conducting polymer polyaniline (PANI) with nanostructure was synthesized on indium tin oxide (ITO) glass. The effect of electrical stimulation on the proliferation and the length of neurites of PC 12 cells was investigated. The dynamic protein adsorption on PANI and ITO surfaces in a cell culture medium was also compared with and without electrical stimulation. The adsorbed proteins were characterized using SDS-PAGE. A PANI coating on ITO surface was shown with 30-50 nm spherical nanostructure. The number of PC 12 cells was significantly greater on the PANI/ITO surface than on ITO and plate surfaces after cell seeding for 24 and 36 h. This result confirmed that the PANI coating is nontoxic to PC 12 cells. The electrical stimulation for 1, 2, and 4 h significantly enhanced the cell numbers for both PANI and ITO conducting surfaces. Moreover, the application of electrical stimulation also improved the neurite outgrowth of PC 12 cells, and the number of PC 12 cells with longer neurite lengths increased obviously under electrical stimulation for the PANI surface. From the mechanism, the adsorption of DMEM proteins was found to be enhanced by electrical stimulation for both PANI/ITO and ITO surfaces. A new band 2 (around 37 kDa) was observed from the collected adsorbed proteins when PC 12 cells were cultured on these surfaces, and culturing PC 12 cells also seemed to increase the amount of band 1 (around 90 kDa). When immersing PANI/ITO and ITO surfaces in a DMEM medium without a cell culture, the number of band 3 (around 70 kDa) and band 4 (around 45 kDa) proteins decreased compared to that of PC 12 cell cultured surfaces. These results are valuable for the design and improvement of the material performance for neural regeneration.

  2. Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of the stomach in rabbits under conditions of hunger and satiation.

    PubMed

    Zenina, O Yu; Kromin, A A

    2012-10-01

    Stimulation of the lateral hypothalamus in preliminary fed animals in the presence of the food is associated with successful food-procuring behavior, accompanied by regular generation of high-amplitude slow electrical waves by muscles of the lesser curvature, body, and antrum of the stomach, which was reflected in the structure of temporal organization of slow electrical activity in the form of unimodal distribution of slow wave periods typical of satiation state. Despite increased level of food motivation caused by stimulation of the lateral hypothalamus, the additional food intake completely abolished the inhibitory effects of hunger motivation excitement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach of satiated rabbits. Changes in slow electrical activity of the stomach muscles in rabbits deprived of food over 24 h and offered food and associated food-procuring behavior during electrical stimulation of the lateral hypothalamus have a two-phase pattern. Despite food intake during phase I of electrical stimulation, the downstream inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature of stomach abolishes the stimulating effect of food reinforcement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach. During phase II of electrical stimulation, the food reinforcement decreases inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature that paces maximal rhythm of slow electrical waves for muscles activity in the lesser curvature, body, and antrum of the stomach, which is reflected by unimodal distribution of slow electrical wave periods. Our results indicated that the structure of temporal organization of slow electrical activity of the stomach muscles reflects convergent interactions of food motivation and reinforcement excitations on the dorsal vagal complex neurons in medulla oblongata.

  3. The influence of local versus global heat on the healing of chronic wounds in patients with diabetes.

    PubMed

    Petrofsky, Jerrold S; Lawson, Daryl; Suh, Hye Jin; Rossi, Christine; Zapata, Karina; Broadwell, Erin; Littleton, Lindsay

    2007-12-01

    In a previous study, it was shown that placing a subject with chronic diabetic ulcers in a warm room prior to the use of electrical stimulation dramatically increased the healing rate. However, global heating is impractical in many therapeutic environments, and therefore in the present investigation the effect of global heat versus using a local heat source to warm the wound was investigated. Twenty-nine male and female subjects participated in a series of experiments to determine the healing associated with electrical stimulation with the application of local heat through a heat lamp compared to global heating of the subject in a warm room. Treatment consisted of biphasic electrical stimulation at currents at 20 mA for 30 min three times per week for 4 weeks in either a 32 degrees C room or, with the application of local heat, to raise skin temperature to 37 degrees C. Skin blood flow was measured by a laser Doppler imager. Blood flow increased with either local or global heating. During electrical stimulation, blood flow almost doubled on the outside and on the edge of the wound with a smaller increase in the center of the wound. However, the largest increase in blood flow was in the subjects exposed to global heating. Further, healing rates, while insignificant for subjects who did not receive electrical stimulation, showed 74.5 +/- 23.4% healing with global heat and 55.3 +/- 31.1% healing with local heat in 1 month; controls actually had a worsening of their wounds. The best healing modality was global heat. However, there was still a significant advantage in healing with local heat.

  4. Modelling the cost-utility of bio-electric stimulation therapy compared to standard care in the treatment of elderly patients with chronic non-healing wounds in the UK.

    PubMed

    Clegg, John P; Guest, Julian F

    2007-04-01

    To estimate the cost-utility of bio-electric stimulation therapy (Posifect) compared to standard care in elderly patients with chronic, non-healing wounds of > 6 months duration, from the perspective of the National Health Service (NHS) in the UK. Clinical and resource use data from a 16 week clinical evaluation of bio-electric stimulation therapy among patients who had recalcitrant wounds were combined with utility data obtained from a standard gamble analysis to construct a 16 week Markov model. The model considers the decision by a clinician to continue with a patient's previous care plan or treat with bio-electric stimulation therapy. Unit resource costs at 2005/2006 prices were applied to the resource utilisation estimates within the model, enabling the cost-utility of bio-electric stimulation therapy compared to standard care to be estimated. The acquisition cost of Posifect had not been decided at the time of performing this study. Hence, the base case analysis used a cost of 50 pounds per dressing. 33% of all wounds are expected to heal within 16 weeks after the start of bio-electric stimulation therapy. Consequently, using bio-electric stimulation therapy is expected to lead to a 51% decrease in the number of domiciliary clinician visits, from 4.7 to 2.3 per week. The model also showed that using bio-electric stimulation therapy instead of patients' standard care is expected to reduce the NHS cost of managing them by 16% from 2287 pounds (95% CI: 1838 pounds; 2735 pounds) to 1921 pounds (95% CI: 1609 pounds; 2233 pounds) and result in a health gain of 0.023 QALYs over 16 weeks. Hence, bio-electric stimulation therapy was found to be a dominant treatment. Sensitivity analyses demonstrated that the cost-utility of using bio-electric stimulation therapy relative to standard care is very sensitive to the acquisition cost of the therapy, the acquisition cost of patients' drugs and the number of clinician visits and less sensitive to utility values and the acquisition cost of other dressings. Within the limitations of the model, bio-electric stimulation therapy is expected to afford the NHS a cost-effective dressing compared to standard care in the management of chronic non-healing wounds of > 6 months duration. Bio-electric stimulation therapy's acquisition cost is expected to be offset by a reduction in the requirement for domiciliary clinician visits, leading to a release of NHS resources for use elsewhere in the system, thereby generating an increase in NHS efficiency.

  5. Spatial distribution of motor units recruited during electrical stimulation of the quadriceps muscle versus the femoral nerve.

    PubMed

    Rodriguez-Falces, Javier; Maffiuletti, Nicola A; Place, Nicolas

    2013-11-01

    In this study we investigated differences in the spatial recruitment of motor units (MUs) in the quadriceps when electrical stimulation is applied over the quadriceps belly versus the femoral nerve. M-waves and mechanical twitches were evoked using over-the-quadriceps and femoral nerve stimulation of gradually increasing intensity from 22 young, healthy subjects. Spatial recruitment was investigated using recruitment curves of M-waves recorded from the vastus medialis (VM) and vastus lateralis (VL) and of twitches recorded from the quadriceps. At maximal stimulation intensity (Imax), no differences were found between nerve and over-the-quadriceps stimulation. At submaximal intensities, VL M-wave amplitude was higher for over-the-quadriceps stimulation at 40% Imax, and peak twitch force was greater for nerve stimulation at 60% and 80% Imax. For the VM, MU spatial recruitment during nerve and over-the-quadriceps stimulation of increasing intensity occurred in a similar manner, whereas significant differences were observed for the VL. Copyright © 2013 Wiley Periodicals, Inc.

  6. The effect of stimulus frequency on the analgesic response to percutaneous electrical nerve stimulation in patients with chronic low back pain.

    PubMed

    Ghoname, E S; Craig, W F; White, P F; Ahmed, H E; Hamza, M A; Gajraj, N M; Vakharia, A S; Noe, C E

    1999-04-01

    Low back pain (LBP) is one of the most common medical problems in our society. Increasingly, patients are turning to nonpharmacologic analgesic therapies such as percutaneous electrical nerve stimulation (PENS). We designed this sham-controlled study to compare the effect of three different frequencies of electrical stimulation on the analgesic response to PENS therapy. Sixty-eight consenting patients with LBP secondary to degenerative lumbar disc disease were treated with PENS therapy at 4 Hz, alternating 15 Hz and 30 Hz (15/30 Hz), and 100 Hz, as well as sham-PENS (0 Hz), according to a randomized, cross-over study design. Each treatment was administered for a period of 30 min three times per week for 2 wk. The pre- and posttreatment assessments included the health status survey short form and visual analog scales for pain, physical activity, and quality of sleep. After receiving all four treatments, patients completed a global assessment questionnaire. The sham-PENS treatments failed to produce changes in the degree of pain, physical activity, sleep quality, or daily intake of oral analgesic medications. In contrast, 4-Hz, 15/30-Hz, and 100-Hz stimulation all produced significant decreases in the severity of pain, increases in physical activity, improvements in the quality of sleep, and decreases in oral analgesic requirements (P < 0.01). Of the three frequencies, 15/30 Hz was the most effective in decreasing pain, increasing physical activity, and improving the quality of sleep (P < 0.05). In the global assessment, 40% of the patients reported that 15/30 Hz was the most desirable therapy, and it was also more effective in improving the patient's sense of well-being. We conclude that the frequency of electrical stimulation is an important determinant of the analgesic response to PENS therapy. Alternating stimulation at 15-Hz and 30-Hz frequencies was more effective than either 4 Hz or 100 Hz in improving outcome measures in patients with LBP. The frequency of electrical stimulation seems to be an important determinant of the analgesic efficacy of percutaneous electrical nerve stimulation. Mixed low- and high-frequency stimulation was more effective than either low or high frequencies alone in the treatment of patients with low back pain.

  7. Electrotonic and action potentials in the Venus flytrap.

    PubMed

    Volkov, Alexander G; Vilfranc, Chrystelle L; Murphy, Veronica A; Mitchell, Colee M; Volkova, Maia I; O'Neal, Lawrence; Markin, Vladislav S

    2013-06-15

    The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations.

    PubMed

    Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom

    2013-10-15

    Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of transcranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Classification of methods in transcranial Electrical Stimulation (tES) and evolving strategy from historical approaches to contemporary innovations

    PubMed Central

    Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom

    2013-01-01

    Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of trans-cranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES. PMID:23954780

  10. Effects of electric stimulation of the hunger center in the lateral hypothalamus on slow electric activity and spike activity of fundal and antral stomach muscles in rabbits under conditions of hunger and satiation.

    PubMed

    Kromin, A A; Zenina, O Yu

    2013-09-01

    In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.

  11. Investigation of shape, position, and permeability of shielding material in quadruple butterfly coil for focused transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Zhang, Bowen; Tang, Yalun; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    2018-05-01

    Transcranial magnetic stimulation has been gaining popularity in the therapy for several neurological disorders. A time-varying magnetic field is used to generate electric field in the brain. As the development of TMS methods takes place, emphasis on the coil design increases in order to improve focal stimulation. Ideally reduction of stimulation of neighboring regions of the target area is desired. This study, focused on the improvement of the focality of the Quadruple Butterfly Coil (QBC) with supplemental use of different passive shields. Parameters such as shape, position and permeability of the shields have been explored to improve the focus of stimulation. Results have been obtained with the help of computer modelling of a MRI derived heterogeneous head model over the vertex position and the dorsolateral prefrontal cortex position using a finite element tool. Variables such as maximum electric field induced on the grey matter and scalp, volume and area of stimulation above half of the maximum value of electric field on the grey matter, and ratio of the maximum electric field in the brain versus the scalp have been investigated.

  12. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom

    2013-06-01

    Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.

  13. Electrical Stimulation of the Primate Lateral Habenula Suppresses Saccadic Eye Movement through a Learning Mechanism

    PubMed Central

    Matsumoto, Masayuki; Hikosaka, Okihide

    2011-01-01

    The lateral habenula (LHb) is a brain structure which represents negative motivational value. Neurons in the LHb are excited by unpleasant events such as reward omission and aversive stimuli, and transmit these signals to midbrain dopamine neurons which are involved in learning and motivation. However, it remains unclear whether these phasic changes in LHb neuronal activity actually influence animal behavior. To answer this question, we artificially activated the LHb by electrical stimulation while monkeys were performing a visually guided saccade task. In one block of trials, saccades to one fixed direction (e.g., right direction) were followed by electrical stimulation of the LHb while saccades to the other direction (e.g., left direction) were not. The direction-stimulation contingency was reversed in the next block. We found that the post-saccadic stimulation of the LHb increased the latencies of saccades in subsequent trials. Notably, the increase of the latency occurred gradually as the saccade was repeatedly followed by the stimulation, suggesting that the effect of the post-saccadic stimulation was accumulated across trials. LHb stimulation starting before saccades, on the other hand, had no effect on saccade latency. Together with previous studies showing LHb activation by reward omission and aversive stimuli, the present stimulation experiment suggests that LHb activity contributes to learning to suppress actions which lead to unpleasant events. PMID:22039537

  14. Direct current stimulation of titanium interbody fusion devices in primates.

    PubMed

    Cook, Stephen D; Patron, Laura P; Christakis, Petros M; Bailey, Kirk J; Banta, Charles; Glazer, Paul A

    2004-01-01

    The fusion rate for anterior lumbar interbody fusion (ALIF) varies widely with the use of different interbody devices and bone graft options. Adjunctive techniques such as electrical stimulation may improve the rate of bony fusion. To determine if direct current (DC) electrical stimulation of a metallic interbody fusion device enhanced the incidence or extent of anterior bony fusion. ALIF was performed using titanium alloy interbody fusion devices with and without adjunctive DC electrical stimulation in nonhuman primates. ALIF was performed through an anterolateral approach in 35 macaques with autogenous bone graft and either a titanium alloy (Ti-6Al-4V) fusion device or femoral allograft ring. The fusion devices of 19 animals received high (current density 19.6 microA/cm2) or low (current density 5.4 microA/cm2) DC electrical stimulation using an implanted generator for a 12- or 26-week evaluation period. Fusion sites were studied using serial radiographs, computed tomography imaging, nondestructive mechanical testing and qualitative and semiquantitative histology. Fusion was achieved with the titanium fusion device and autogenous bone graft. At 12 weeks, the graft was consolidating and early to moderate bridging callus was observed in and around the device. By 26 weeks, the anterior callus formation was more advanced with increased evidence of bridging trabeculations and early bone remodeling. The callus formation was not as advanced or abundant for the allograft ring group. Histology revealed the spinal fusion device had an 86% incidence of bony fusion at 26 weeks compared with a 50% fusion rate for the allograft rings. DC electrical stimulation of the fusion device had a positive effect on anterior interbody fusion by increasing both the presence and extent of bony fusion in a current density-dependent manner. Adjunctive DC electrical stimulation of the fusion device improved the rate and extent of bony fusion compared with a nonstimulated device. The fusion device was equivalent to or better than the femoral allograft ring in all evaluations. The use of adjunctive direct current electrical stimulation may provide a means of improving anterior interbody fusion.

  15. Increased electrical nerve stimulation threshold of the sciatic nerve in patients with diabetic foot gangrene: a prospective parallel cohort study.

    PubMed

    Keyl, Cornelius; Held, Tanja; Albiez, Georg; Schmack, Astrid; Wiesenack, Christoph

    2013-07-01

    Peripheral neuropathy may affect nerve conduction in patients with diabetes mellitus. This study was designed to test the hypothesis that the electrical stimulation threshold for a motor response of the sciatic nerve is increased in patients suffering from diabetic foot gangrene compared to non-diabetic patients. Prospective non-randomised trial with two parallel groups. Two university-affiliated hospitals. Patients scheduled for surgical treatment of diabetic foot gangrene (n = 30) and non-diabetic patients (n = 30) displaying no risk factors for neuropathy undergoing orthopaedic foot or ankle surgery. The minimum current intensity required to elicit a typical motor response (dorsiflexion or eversion of the foot) at a pulse width of 0.1 ms and a stimulation frequency of 1 Hz when the needle tip was positioned under ultrasound control directly adjacent to the peroneal component of the sciatic nerve. The non-diabetic patients were younger [64 (SD 12) vs. 74 (SD 7) years] and predominantly female (23 vs. 8). The geometric mean of the motor stimulation threshold was 0.26 [95% confidence interval (95% CI) 0.24 to 0.28] mA in non-diabetic and 1.9 (95% CI 1.6 to 2.2) mA in diabetic patients. The geometric mean of the electrical stimulation threshold was significantly (P < 0.001) increased by a factor of 7.2 (95% CI 6.1 to 8.4) in diabetic compared to non-diabetic patients. The electrical stimulation threshold for a motor response of the sciatic nerve is increased by a factor of 7.2 in patients with diabetic foot gangrene, which might hamper nerve identification.

  16. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  17. The application of direct current electrical stimulation of the ear and cervical spine kinesitherapy in tinnitus treatment.

    PubMed

    Mielczarek, Marzena; Konopka, Wieslaw; Olszewski, Jurek

    2013-02-01

    The aim of the study was to evaluate the effectiveness of electrical stimulations of the hearing organ in tinnitus treatment adapting the frequency of stimulation according to tinnitus frequency, to assess the influence of cervical spine kinesitherapy on tinnitus, as well as to evaluate hearing after electrical stimulations alone and together with cervical spine kinesitherapy. The study comprised 80 tinnitus, sensorineural hearing loss patients (119 tinnitus ears) divided into two groups. In group I (n - 58 tinnitus ears) electrical stimulation of the hearing organ was performed, in group II (n - 61 tinnitus ears) electrical stimulation together with cervical spine kinesitherapy. Hydrotransmissive, selective electrical stimulations were conducted using direct, rectangular current. The passive electrode was placed on the forehead, the active--a silver probe--was immersed in the external ear canal in 0.9% saline solution. The treatment involved fifteen applications of electrical stimulations (each lasted for 4 min) administered three or four times a week (whole treatment lasted approximately 30 days). The evaluation of the results considered a case history (change from permanent to temporary tinnitus), questionnaires (the increase/decrease of the total points) and the audiometric evaluation of hearing level. Before the treatment, group I comprised 51 ears (87.93%) with permanent, and 7 ears (12.07%) with temporary tinnitus; group II - 55 ears (90.17%) with permanent and 6 ears (9.83%) with temporary tinnitus. After the treatment, in both groups the number of ears with permanent tinnitus decreased considerably obtaining the pauses or disappearing of tinnitus. Directly after the treatment, group I comprised 25 ears (43.11%) with permanent, and 10 ears (17.24%) with temporary tinnitus, in 23 ears (39.65%) tinnitus disappeared; group II - 33 ears (54.1%) with permanent and 11 ears (18.03%) with temporary tinnitus, in 17 ears (27.87%) tinnitus disappeared. Regarding questionnaires, improvement was observed in group I - in 43.11% of ears, in group II - 32.8%. In both groups audiometric improvement of hearing was recognized. (1) Electrical stimulation of the hearing organ, with the application of current frequencies according to tinnitus frequencies (selective electrical stimulation), was an efficient method in severe tinnitus treatment. (2) Cervical spine kinesitherapy in the treatment of tinnitus, using electrical stimulation, did not have any supporting influence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Application of electrical stimulation for functional tissue engineering in vitro and in vivo

    NASA Technical Reports Server (NTRS)

    Park, Hyoungshin (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor); Langer, Robert (Inventor); Radisic, Milica (Inventor)

    2013-01-01

    The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.

  19. Differential contribution of electrically evoked dorsal root reflexes to peripheral vasodilatation and plasma extravasation

    PubMed Central

    2011-01-01

    Background Dorsal root reflexes (DRRs) are antidromic activities traveling along the primary afferent fibers, which can be generated by peripheral stimulation or central stimulation. DRRs are thought to be involved in the generation of neurogenic inflammation, as indicated by plasma extravasation and vasodilatation. The hypothesis of this study was that electrical stimulation of the central stump of a cut dorsal root would lead to generation of DRRs, resulting in plasma extravasation and vasodilatation. Methods Sprague-Dawley rats were prepared to expose spinal cord and L4-L6 dorsal roots under pentobarbital general anesthesia. Electrical stimulation of either intact, proximal or distal, cut dorsal roots was applied while plasma extravasation or blood perfusion of the hindpaw was recorded. Results While stimulation of the peripheral stump of a dorsal root elicited plasma extravasation, electrical stimulation of the central stump of a cut dorsal root generated significant DRRs, but failed to induce plasma extravasation. However, stimulation of the central stump induced a significant increase in blood perfusion. Conclusions It is suggested that DRRs are involved in vasodilatation but not plasma extravasation in neurogenic inflammation in normal animals. PMID:21356101

  20. The effect of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease: randomised controlled trial.

    PubMed

    Öncü, Emine; Zincir, Handan

    2017-07-01

    The aim of the present study was to assess the efficacy of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease. In patients with stable chronic obstructive pulmonary disease, transcutaneous electrical nerve stimulation has been known to attain improvement in forced expiratory volume in 1 seconds, physical activity, and quality of life. However, information about the effects of transcutaneous electrical nerve stimulation on acute exacerbation of chronic obstructive pulmonary disease is quite limited. A single-blind, randomised controlled trial. Data were collected between August 2013-May 2014. Eighty-two patients who were hospitalised with a diagnosis of acute exacerbation of chronic obstructive pulmonary disease were randomly assigned to a transcutaneous electrical nerve stimulation group receiving transcutaneous electrical nerve stimulation treatment for 20 seance over the acupuncture points with pharmacotherapy or placebo group receiving the same treatment without electrical current output from the transcutaneous electrical nerve stimulation device. Pulmonary functional test, six-minute walking distance, dyspnoea and fatigue scale, and St. George's Respiratory Questionnaire scores were assessed pre- and postprogram. The program started at the hospital by the researcher was sustained in the patient's home by the caregiver. All patients were able to complete the program, despite the exacerbation. The 20 seance transcutaneous electrical nerve stimulation program provided clinically significant improvement in forced expiratory volume in 1 seconds 21 ml, 19·51% but when compared with the placebo group, the difference was insignificant (p > 0·05). The six-minute walking distance increased by 48·10 m more in the placebo group (p < 0·05). There were no significant differences between the two groups' St. George's Respiratory Questionnaire, dyspnoea and fatigue score (p > 0·05). Adding transcutaneous electrical nerve stimulation therapy to pharmacotherapy in patients with acute exacerbation of chronic obstructive pulmonary disease provided clinical improvement in forced expiratory volume in 1 seconds and add benefit in exercise capacity, but no significant effect on the other outcomes measured. Transcutaneous electrical nerve stimulation can be used as a non-invasive complementary therapy due to its beneficial effects on forced expiratory volume in 1 seconds and exercise capacity in patients with acute exacerbation of chronic obstructive pulmonary disease. © 2016 John Wiley & Sons Ltd.

  1. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Geng, Le; Wang, Zidun; Cui, Chang; Zhu, Yue; Shi, Jiaojiao; Wang, Jiaxian; Chen, Minglong

    2018-06-15

    Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Rapid electrical stimulation (RES) at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz) were set as no electrical stimulation (NES) control or low-frequency electrical stimulation (LES) control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI) staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and caused electrophysiological remodeling in a time-dependent manner. CaMKII played a central role in the damages induced by RES, pharmacological inhibition of CaMKII activity partly reversed the adverse effects of RES on both structural and electrophysiological properties of cells. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Can angiogenesis induced by chronic electrical stimulation enhance latissimus dorsi muscle flap survival for application in cardiomyoplasty?

    PubMed

    Overgoor, Max L E; Carroll, Sean M; Papanicolau, George; Carroll, Camilla M A; Ustüner, Tuncay E T; Stremel, Richard W; Anderson, Gary L; Franken, Ralph J P M; Kon, Moshe; Barker, John H

    2003-01-01

    In cardiomyoplasty, the latissimus dorsi muscle is lifted on its primary neurovascular pedicle and wrapped around a failing heart. After 2 weeks, it is trained for 6 weeks using chronic electrical stimulation, which transforms the latissimus dorsi muscle into a fatigue-resistant muscle that can contract in synchrony with the beating heart without tiring. In over 600 cardiomyoplasty procedures performed clinically to date, the outcomes have varied. Given the data obtained in animal experiments, the authors believe these variable outcomes are attributable to distal latissimus dorsi muscle flap necrosis. The aim of the present study was to investigate whether the chronic electrical stimulation training used to transform the latissimus dorsi muscle into fatigue-resistant muscle could also be used to induce angiogenesis, increase perfusion, and thus protect the latissimus dorsi muscle flap from distal necrosis. After 14 days of chronic electrical stimulation (10 Hz, 330 microsec, 4 to 6 V continuous, 8 hours/day) of the right or left latissimus dorsi muscle (randomly selected) in 11 rats, both latissimus dorsi muscles were lifted on their thoracodorsal pedicles and returned to their anatomical beds. Four days later, the resulting amount of distal flap necrosis was measured. Also, at predetermined time intervals throughout the experiment, muscle surface blood perfusion was measured using scanning laser Doppler flowmetry. Finally, latissimus dorsi muscles were excised in four additional stimulated rats, to measure angiogenesis (capillary-to-fiber ratio), fiber type (oxidative or glycolytic), and fiber size using histologic specimens. The authors found that chronic electrical stimulation (1) significantly (p < 0.05) increased angiogenesis (mean capillary-to-fiber ratio) by 82 percent and blood perfusion by 36 percent; (2) did not reduce the amount of distal flap necrosis compared with nonchronic electrical stimulation controls (29 +/- 5.3 percent versus 26.6 +/- 5.1 percent); (3) completely transformed the normally mixed (oxidative and glycolytic) fiber type distribution into all oxidative fibers; and (4) reduced fiber size in the proximal and middle but not in the distal segments of the flap. Despite the significant increase in angiogenesis and blood perfusion, distal latissimus dorsi muscle flap necrosis did not decrease. This might be because of three reasons: first, the change in muscle metabolism from anaerobic to aerobic may have rendered the muscle fibers more susceptible to ischemia. Second, because of the larger diameter of the distal fibers in normal and stimulated latissimus dorsi muscle, the diffusion distance for oxygen to the center of the distal fibers is increased, making fiber survival more difficult. Third, even though angiogenesis was significantly increased in the flap, cutting all but the single vascular pedicle resulted in the newly formed capillaries not receiving enough blood to provide nourishment to the distal latissimus dorsi muscle. The authors' findings indicate that chronic electrical stimulation as tested in these experiments could not be used to prevent distal latissimus dorsi muscle flap ischemia and necrosis in cardiomyoplasty.

  3. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction

    PubMed Central

    Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan

    2014-01-01

    Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808

  4. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing

    PubMed Central

    Reid, Brian; Zhao, Min

    2014-01-01

    Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358

  5. MO-F-CAMPUS-I-01: EIT Imaging to Monitor Human Salivary Gland Functionality: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohli, K; Karvat, A; Liu, J

    Purpose: Clinically, there exists a need to develop a non-invasive technique for monitoring salivary activity. In this study, we investigate the feasibility of a using the electrical conductivity information from Electrical Impedance Tomography (EIT) to monitor salivary flow activity. Methods: To acquire EIT data, eight Ag/AgCl ECG electrodes were placed around the mandible of the subject. An EIT scan was obtained by injecting current at 50 KHz, 0.4 mA through each pair of electrodes and recording voltage across other electrode pairs. The functional conductivity image was obtained through reconstruction of the voltage data, using Electrical Impedance Tomography and Diffuse Opticalmore » Tomography Reconstruction Software (EIDORS) in Matlab. In using EIDORS, forward solution was obtained using a user-defined finite element model shape and inverse solution was obtained using one-step Gaussian solver. EIT scans of volunteer research team members were acquired for three different physiological states: pre-stimulation, stimulation and post-stimulation. For pre-stimulation phase, data were collected in intervals of 5 minutes for 15 minutes. The salivary glands were then stimulated in the subject using lemon and the data were collected immediately. Post-stimulation data were collected at 4 different timings after stimulation. Results: Variations were observed in the electrical conductivity patterns near parotid regions between the pre- and post-stimulation stages. The three images acquired during the 15 minute pre-stimulation phase showed no major changes in the conductivity. Immediately after stimulation, electrical conductivity increased near parotid regions and 15 minutes later slowly returned to pre-stimulation level. Conclusion: In the present study involving human subjects, the change in electrical conductivity pattern shown in the EIT images, acquired at different times with and without stimulation of salivary glands, appeared to be consistent with the change in salivary gland activity. The conductivity changes imaged through EIT are potentially useful for the purpose of salivary monitoring.« less

  6. Restoration of gait by functional electrical stimulation in paraplegic patients: a modified programme of treatment.

    PubMed

    Malezic, M; Hesse, S

    1995-03-01

    Restoration of standing and of gait by functional electrical stimulation in clinically complete paraplegic patients was modified in the course of treatment and in the stimulation parameters. By substituting an initial cyclic muscle strengthening with an active stimulated standing, four patients with T3-11 lesions started walking with electrical stimulation in 10-17 days. They walked without ankle-foot orthoses. With a satisfactory stride length of 0.75-0.97 m, their gait velocity ranged from very slow to that of a leisurely healthy gait. Already established stimulation of the quadriceps muscles for standing and of the peroneal nerves for lower limb flexion during the swing phase of gait was applied. Diminished limb flexion after several weeks was restored by an increase of the stimulation frequency of the peroneal nerve from 20 to 60 Hz. EMG and kinesiological measurements displayed an improved direct response of the ankle as well as of the reflex mediated hip, knee and ankle flexion response. At the same time stimulation frequency was reduced to 16 Hz for the quadriceps muscles in order to reduce fatigue.

  7. Effect of Dorsal and Ventral Hippocampal Lesions on Contextual Fear Conditioning and Unconditioned Defensive Behavior Induced by Electrical Stimulation of the Dorsal Periaqueductal Gray

    PubMed Central

    Ballesteros, Carolina Irurita; de Oliveira Galvão, Bruno; Maisonette, Silvia; Landeira-Fernandez, J.

    2014-01-01

    The dorsal (DH) and ventral (VH) subregions of the hippocampus are involved in contextual fear conditioning. However, it is still unknown whether these two brain areas also play a role in defensive behavior induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into the dPAG to determine freezing and escape response thresholds after sham or bilateral electrolytic lesions of the DH or VH. The duration of freezing behavior that outlasted electrical stimulation of the dPAG was also measured. The next day, these animals were subjected to contextual fear conditioning using footshock as an unconditioned stimulus. Electrolytic lesions of the DH and VH impaired contextual fear conditioning. Only VH lesions disrupted conditioned freezing immediately after footshock and increased the thresholds of aversive freezing and escape responses to dPAG electrical stimulation. Neither DH nor VH lesions disrupted post-dPAG stimulation freezing. These results indicate that the VH but not DH plays an important role in aversively defensive behavior induced by dPAG electrical stimulation. Interpretations of these findings should be made with caution because of the fact that a non-fiber-sparing lesion method was employed. PMID:24404134

  8. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  9. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  10. Effects of Surface Electrical Stimulation Both at Rest and During Swallowing in Chronic Pharyngeal Dysphagia§

    PubMed Central

    Ludlow, Christy L.; Humbert, Ianessa; Saxon, Keith; Poletto, Christopher; Sonies, Barbara; Crujido, Lisa

    2006-01-01

    We tested two hypotheses using surface electrical stimulation in chronic pharyngeal dysphagia: that stimulation 1) lowered the hyoid bone and/or larynx when applied at rest, and 2) increased aspiration, penetration or pharyngeal pooling during swallowing. Bipolar surface electrodes were placed on the skin overlying the submandibular and laryngeal regions. Maximum tolerated levels of stimulation were applied while patients held their mouth closed at rest. Videofluoroscopic recordings were used to measure hyoid movements in the superior-inferior (s-i) and anterior-posterior (a-p) dimensions and the subglottic air column (s-i) position while stimulation was on and off. Patients swallowed 5 ml liquid when stimulation was off, at low sensory stimulation levels, and at maximum tolerated levels (motor). Speech pathologists blinded to condition, tallied the frequency of aspiration, penetration, pooling and esophageal entry from videofluorographic recordings of swallows. Only significant (p=0.0175) hyoid depression occurred during stimulation at rest. Aspiration and pooling were significantly reduced only with low sensory threshold levels of stimulation (p=0.025) and not during maximum levels of surface electrical stimulation. Those patients who had reduced aspiration and penetration during swallowing with stimulation had greater hyoid depression during stimulation at rest (p= 0.006). Stimulation may have acted to resist patients’ hyoid elevation during swallowing. PMID:16718620

  11. Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells

    PubMed Central

    Chen, Michael Q.; Xie, Xiaoyan; Wilson, Kitchener D.; Sun, Ning; Wu, Joseph C.; Giovangrandi, Laurent; Kovacs, Gregory T. A.

    2010-01-01

    Stem cell therapy is emerging as a promising clinical approach for myocardial repair. However, the interactions between the graft and host, resulting in inconsistent levels of integration, remain largely unknown. In particular, the influence of electrical activity of the surrounding host tissue on graft differentiation and integration is poorly understood. In order to study this influence under controlled conditions, an in vitro system was developed. Electrical pacing of differentiating murine embryonic stem (ES) cells was performed at physiologically relevant levels through direct contact with microelectrodes, simulating the local activation resulting from contact with surrounding electroactive tissue. Cells stimulated with a charged balanced voltage-controlled current source for up to 4 days were analyzed for cardiac and ES cell gene expression using real-time PCR, immunofluorescent imaging, and genome microarray analysis. Results varied between ES cells from three progressive differentiation stages and stimulation amplitudes (nine conditions), indicating a high sensitivity to electrical pacing. Conditions that maximally encouraged cardiomyocyte differentiation were found with Day 7 EBs stimulated at 30 µA. The resulting gene expression included a sixfold increase in troponin-T and a twofold increase in β-MHCwithout increasing ES cell proliferation marker Nanog. Subsequent genome microarray analysis revealed broad transcriptome changes after pacing. Concurrent to upregulation of mature gene programs including cardiovascular, neurological, and musculoskeletal systems is the apparent downregulation of important self-renewal and pluripotency genes. Overall, a robust system capable of long-term stimulation of ES cells is demonstrated, and specific conditions are outlined that most encourage cardiomyocyte differentiation. PMID:20652088

  12. [Effects of stimulation of dorso-medial area of nucleus facialis on respiration related units in ventro-lateral region of nucleus tractus solitaris in rabbits].

    PubMed

    Gao, J X; Liu, L

    1990-10-01

    In urethane-anesthetized, vagotomized and paralyzed rabbits, effects of electrical stimulation of the dorso-medial area of the nucleus facialis (DMNF) on the respiration-related units (RRUs) in ventro-lateral region of nucleus tractus solitaris (VLNTS) were observed. The experimental results showed that during electrical stimulation of DMNF the majority of the inspiratory (I) neurons (64.4%) were increased in frequency and duration of discharge, some to a marked extent. During electrical stimulation of DMNF the expiratory neurons (35%) were decreased in their frequency and duration of discharge, some to a marked extent too. The responses of RRUs in ipsilateral and contralateral VLNTS to stimulation of DMNF was not statistically significant (P greater than 0.05). It is suggested that DMNF may have a facilitating effect on the inspiratory neurons and an inhibiting effect on the expiratory neurons in VLNTS.

  13. Distributed stimulation increases force elicited with functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Buckmire, Alie J.; Lockwood, Danielle R.; Doane, Cynthia J.; Fuglevand, Andrew J.

    2018-04-01

    Objective. The maximum muscle forces that can be evoked using functional electrical stimulation (FES) are relatively modest. The reason for this weakness is not fully understood but could be partly related to the widespread distribution of motor nerve branches within muscle. As such, a single stimulating electrode (as is conventionally used) may be incapable of activating the entire array of motor axons supplying a muscle. Therefore, the objective of this study was to determine whether stimulating a muscle with more than one source of current could boost force above that achievable with a single source. Approach. We compared the maximum isometric forces that could be evoked in the anterior deltoid of anesthetized monkeys using one or two intramuscular electrodes. We also evaluated whether temporally interleaved stimulation between two electrodes might reduce fatigue during prolonged activity compared to synchronized stimulation through two electrodes. Main results. We found that dual electrode stimulation consistently produced greater force (~50% greater on average) than maximal stimulation with single electrodes. No differences, however, were found in the fatigue responses using interleaved versus synchronized stimulation. Significance. It seems reasonable to consider using multi-electrode stimulation to augment the force-generating capacity of muscles and thereby increase the utility of FES systems.

  14. Electrical foot stimulation and implications for the prevention of venous thromboembolic disease.

    PubMed

    Kaplan, Robert E; Czyrny, James J; Fung, Tat S; Unsworth, John D; Hirsh, Jack

    2002-08-01

    Venous stasis caused by immobility is an important risk factor for deep vein thrombosis following surgery and lower limb trauma, in bed-ridden medical patients, and in high-risk long distance air travelers. A safe and convenient method for reducing venous stasis would be useful in patients while in hospital and after discharge during their rehabilitation. 49 healthy subjects aged 51-76 were seated for 4 hours during which they received mild electrical stimulation of the calf, or sole of the foot (plantar muscles). Popliteal and femoral venous blood flow velocities were measured via doppler ultrasound. The non-stimulated lower extremity served as the simultaneous control. Subjects completed a questionnaire regarding their acceptance and tolerance of the electrical stimulation. There was a significant increase in venous femoral and popliteal blood flow for both calf (p < 0.035, p < 0.003), and plantar muscles (p < 0.0001, p < 0.009) on the stimulated side compared to the unstimulated side. The magnitude of the effect was similar for calf and plantar muscle stimulation. Subjects did not find the experience uncomfortable, and would use an electrical stimulator if told by their physician that they were at risk for developing blood clots. Mild electrical stimulation of the feet, as well as the calf, is a safe effective and convenient method for counteracting venous stasis and therefore has the potential to reduce the risk of deep vein thrombosis and pulmonary embolism for subjects who are immobilized.

  15. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  16. Effect of nitric oxide synthase inhibitor on increase in nasal mucosal blood flow induced by sensory and parasympathetic nerve stimulation in rats.

    PubMed

    Ogawa, Fumio; Hanamitsu, Masakazu; Ayajiki, Kazuhide; Aimi, Yoshinari; Okamura, Tomio; Shimizu, Takeshi

    2010-06-01

    Neural control of nasal blood flow (NBF) has not been systematically investigated. The aim of the present study was to evaluate the effect of electrical stimulation of both sensory and parasympathetic nerves innervating the nasal mucosal arteries on NBF in rats. In anesthetized rats, nasociliary (sensory) nerves and postganglionic (parasympathetic) nerves derived from the right sphenopalatine ganglion were electrically stimulated. We measured NBF with a laser-Doppler flowmeter. The nerve stimulation increased NBF on both sides and increased the mean arterial blood pressure. The increase in NBF was larger on the ipsilateral side than on the contralateral side. Hexamethonium bromide, a ganglion blocker, abolished the stimulation-induced pressure effect and the increase in NBF on the contralateral side, but did not abolish the increase in NBF on the ipsilateral side. The remaining increase in NBF was abolished by N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor. Histochemical analysis with nicotinamide adenine dinucleotide phosphate-diaphorase showed neuronal nitric oxide synthase-containing nerves that innervate nasal mucosal arteries. Nitric oxide released from parasympathetic nitrergic nerves may contribute to an increase in NBF in rats. The afferent impulses induced by sensory nerve stimulation may lead to an increase in mean arterial blood pressure that is partly responsible for the increase in NBF.

  17. Dry cupping for plantar fasciitis: a randomized controlled trial.

    PubMed

    Ge, Weiqing; Leson, Chelsea; Vukovic, Corey

    2017-05-01

    [Purpose] The purpose of this study was to determine the effects of dry cupping on pain and function of patients with plantar fasciitis. [Subjects and Methods] Twenty-nine subjects (age 15 to 59 years old, 20 females and 9 males), randomly assigned into the two groups (dry cupping therapy and electrical stimulation therapy groups), participated in this study. The research design was a randomized controlled trial (RCT). Treatments were provided to the subjects twice a week for 4 weeks. Outcome measurements included the Visual Analogue Pain Scale (VAS) (at rest, first in the morning, and with activities), the Foot and Ankle Ability Measure (FAAM), the Lower Extremity Functional Scale (LEFS), as well as the pressure pain threshold. [Results]The data indicated that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function significantly in the population tested, as all the 95% Confidence Intervals (CIs) did not include 0 except for the pressure pain threshold. There was no significant difference between the dry cupping therapy and electrical stimulation groups in all the outcome measurements. [Conclusion] These results support that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function in the population tested.

  18. Dry cupping for plantar fasciitis: a randomized controlled trial

    PubMed Central

    Ge, Weiqing; Leson, Chelsea; Vukovic, Corey

    2017-01-01

    [Purpose] The purpose of this study was to determine the effects of dry cupping on pain and function of patients with plantar fasciitis. [Subjects and Methods] Twenty-nine subjects (age 15 to 59 years old, 20 females and 9 males), randomly assigned into the two groups (dry cupping therapy and electrical stimulation therapy groups), participated in this study. The research design was a randomized controlled trial (RCT). Treatments were provided to the subjects twice a week for 4 weeks. Outcome measurements included the Visual Analogue Pain Scale (VAS) (at rest, first in the morning, and with activities), the Foot and Ankle Ability Measure (FAAM), the Lower Extremity Functional Scale (LEFS), as well as the pressure pain threshold. [Results]The data indicated that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function significantly in the population tested, as all the 95% Confidence Intervals (CIs) did not include 0 except for the pressure pain threshold. There was no significant difference between the dry cupping therapy and electrical stimulation groups in all the outcome measurements. [Conclusion] These results support that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function in the population tested. PMID:28603360

  19. Frequency modulation detection in cochlear implant subjects

    NASA Astrophysics Data System (ADS)

    Chen, Hongbin; Zeng, Fan-Gang

    2004-10-01

    Frequency modulation (FM) detection was investigated in acoustic and electric hearing to characterize cochlear-implant subjects' ability to detect dynamic frequency changes and to assess the relative contributions of temporal and spectral cues to frequency processing. Difference limens were measured for frequency upward sweeps, downward sweeps, and sinusoidal FM as a function of standard frequency and modulation rate. In electric hearing, factors including electrode position and stimulation level were also studied. Electric hearing data showed that the difference limen increased monotonically as a function of standard frequency regardless of the modulation type, the modulation rate, the electrode position, and the stimulation level. In contrast, acoustic hearing data showed that the difference limen was nearly a constant as a function of standard frequency. This difference was interpreted to mean that temporal cues are used only at low standard frequencies and at low modulation rates. At higher standard frequencies and modulation rates, the reliance on the place cue is increased, accounting for the better performance in acoustic hearing than for electric hearing with single-electrode stimulation. The present data suggest a speech processing strategy that encodes slow frequency changes using lower stimulation rates than those typically employed by contemporary cochlear-implant speech processors. .

  20. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  1. Change in the P300 index - a pilot randomized controlled trial of low-frequency electrical stimulation of acupuncture points in middle-aged men and women.

    PubMed

    Choi, Kwang-Ho; Kwon, O Sang; Cho, Seong Jin; Lee, Sanghun; Kang, Seok-Yun; Ryu, Yeon Hee

    2017-05-03

    The P300 is a major index used to evaluate improvements in brain function. Although a few studies have reported evaluating the effectiveness of manual acupuncture or electro-acupuncture by monitoring the P300, research in this field is not yet very active. The aim of this study was to investigate the effects of periodic low-frequency electrical stimulation applied to BL62 and KI6 on brain activity by analyzing the P300. The study was conducted as a randomized double-blind test of 55 subjects in their 50s, including 26 males and 29 females. Each subject received 12 sessions of stimulation over a one-month period. In each session, low-frequency electrical stimulation at an average of 24 μA and 2 Hz was applied to the acupuncture points BL62 and KI6, and event-related potentials (ERPs) were measured before the first session and after the last session of the electrical stimulation. The results of a chi-square test indicated that the double-blind test was conducted correctly. Compared to the Sham group, all the subjects in the Real stimulation group showed a tendency toward a decreasing P300 latency and increasing P300 amplitude after all 12 sessions of stimulation. In the women, the amplitude significantly increased at Fz, Fcz, Cz, Cpz, and Pz. With this experiment, the low-frequency electrical stimulation of two acupuncture points (BL62 and K16) was confirmed to have a positive influence on the prevention of natural cerebral aging. This study was registered at the Clinical Research Information Service (CRIS) of the National Research Institute of Health ( https://cris.nih.go.kr/cris/search/search_result_st01_en.jsp? , Registration Number: KCT0001940). The date of registration was June 9, 2016.

  2. Basic and functional effects of transcranial Electrical Stimulation (tES)-An introduction.

    PubMed

    Yavari, Fatemeh; Jamil, Asif; Mosayebi Samani, Mohsen; Vidor, Liliane Pinto; Nitsche, Michael A

    2018-02-01

    Non-invasive brain stimulation (NIBS) has been gaining increased popularity in human neuroscience research during the last years. Among the emerging NIBS tools is transcranial electrical stimulation (tES), whose main modalities are transcranial direct, and alternating current stimulation (tDCS, tACS). In tES, a small current (usually less than 3mA) is delivered through the scalp. Depending on its shape, density, and duration, the applied current induces acute or long-lasting effects on excitability and activity of cerebral regions, and brain networks. tES is increasingly applied in different domains to (a) explore human brain physiology with regard to plasticity, and brain oscillations, (b) explore the impact of brain physiology on cognitive processes, and (c) treat clinical symptoms in neurological and psychiatric diseases. In this review, we give a broad overview of the main mechanisms and applications of these brain stimulation tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation.

    PubMed

    Zhu, Wei; Ye, Tao; Lee, Se-Jun; Cui, Haitao; Miao, Shida; Zhou, Xuan; Shuai, Danmeng; Zhang, Lijie Grace

    2017-05-25

    Carbon-based nanomaterials have shown great promise in regenerative medicine because of their unique electrical, mechanical, and biological properties; however, it is still difficult to engineer 2D pure carbon nanomaterials into a 3D scaffold while maintaining its structural integrity. In the present study, we developed novel carbon nanofibrous scaffolds by annealing electrospun mats at elevated temperature. The resultant scaffold showed a cohesive structure and excellent mechanical flexibility. The graphitic structure generated by annealing renders superior electrical conductivity to the carbon nanofibrous scaffold. By integrating the conductive scaffold with biphasic electrical stimulation, neural stem cell proliferation was promoted associating with upregulated neuronal gene expression level and increased microtubule-associated protein 2 immunofluorescence, demonstrating an improved neuronal differentiation and maturation. The findings suggest that the integration of the conducting carbon nanofibrous scaffold and electrical stimulation may pave a new avenue for neural tissue regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Shansky, J.; Karlisch, P.; Solerssi, R. L.

    1993-01-01

    Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins (PG) E2 and F2 alpha which regulate protein turnover rates and muscle cell growth. These stretch-induced PG increases are reduced in low extracellular calcium medium and by specific phospholipase inhibitors. Mechanical stimulation increases the breakdown rate of 3H-arachidonic acid labelled phospholipids, releasing free 3H-arachidonic acid, the rate-limiting precursor of PG synthesis. Mechanical stimulation also increases 3H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-[2-3H]inositol labelled phospholipids. Phospholipase A2 (PLA2), phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are all activated by stretch. The stretch-induced increases in PG production, 3H-arachidonic acid labelled phospholipid breakdown, and 3H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-[2-3H]inositol labelled phospholipids is dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and PG through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.

  5. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2017-08-01

    Objective. Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). Main results. Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off visual pathways.

  6. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles.

    PubMed

    Maneski, Lana Z Popović; Malešević, Nebojša M; Savić, Andrej M; Keller, Thierry; Popović, Dejan B

    2013-12-01

    One important reason why functional electrical stimulation (FES) has not gained widespread clinical use is the limitation imposed by rapid muscle fatigue due to non-physiological activation of the stimulated muscles. We aimed to show that asynchronous low-pulse-rate (LPR) electrical stimulation applied by multipad surface electrodes greatly postpones the occurrence of muscle fatigue compared with conventional stimulation (high pulse rate, HPR). We compared the produced force vs. time of the forearm muscles responsible for finger flexion in 2 stimulation protocols, LPR (fL = 10 Hz) and HPR (fH = 40 Hz). Surface-distributed low-frequency asynchronous stimulation (sDLFAS) doubles the time interval before the onset of fatigue (104 ± 80%) compared with conventional synchronous stimulation. Combining the performance of multipad electrodes (increased selectivity and facilitated positioning) with sDLFAS (decreased fatigue) can improve many FES applications in both the lower and upper extremities. Copyright © 2013 Wiley Periodicals, Inc.

  7. Electrocutaneous stimulation system for Braille reading.

    PubMed

    Echenique, Ana Maria; Graffigna, Juan Pablo; Mut, Vicente

    2010-01-01

    This work is an assistive technology for people with visual disabilities and aims to facilitate access to written information in order to achieve better social inclusion and integration into work and educational activities. Two methods of electrical stimulation (by current and voltage) of the mechanoreceptors was tested to obtain tactile sensations on the fingertip. Current and voltage stimulation were tested in a Braille cell and line prototype, respectively. These prototypes are evaluated in 33 blind and visually impaired subjects. The result of experimentation with both methods showed that electrical stimulation causes sensations of touch defined in the fingertip. Better results in the Braille characters reading were obtained with current stimulation (85% accuracy). However this form of stimulation causes uncomfortable sensations. The latter feeling was minimized with the method of voltage stimulation, but with low efficiency (50% accuracy) in terms of identification of the characters. We concluded that electrical stimulation is a promising method for the development of a simple and unexpensive Braille reading system for blind people. We observed that voltage stimulation is preferred by the users. However, more experimental tests must be carry out in order to find the optimum values of the stimulus parameters and increase the accuracy the Braille characters reading.

  8. Influence of transcutaneous electrical stimulation on heterotopic ossification: an experimental study in Wistar rats

    PubMed Central

    Zotz, T.G.G.; de Paula, J.B.

    2015-01-01

    Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues, resulting in joint mobility deficit and pain. Different treatment modalities have been tried to prevent HO development, but there is no consensus on a therapeutic approach. Since electrical stimulation is a widely used resource in physiotherapy practice to stimulate joint mobility, with analgesic and anti-inflammatory effects, its usefulness for HO treatment was investigated. We aimed to identify the influence of electrical stimulation on induced HO in Wistar rats. Thirty-six male rats (350-390 g) were used, and all animals were anesthetized for blood sampling before HO induction, to quantify the serum alkaline phosphatase. HO induction was performed by bone marrow implantation in both quadriceps of the animals, which were then divided into 3 groups: control (CG), transcutaneous electrical nerve stimulation (TENS) group (TG), and functional electrical stimulation (FES) group (FG) with 12 rats each. All animals were anesthetized and electrically stimulated twice per week, for 35 days from induction day. After this period, another blood sample was collected and quadriceps muscles were bilaterally removed for histological and calcium analysis and the rats were killed. Calcium levels in muscles showed significantly lower results when comparing TG and FG (P<0.001) and between TG and CG (P<0.001). Qualitative histological analyses confirmed 100% HO in FG and CG, while in TG the HO was detected in 54.5% of the animals. The effects of the muscle contractions caused by FES increased HO, while anti-inflammatory effects of TENS reduced HO. PMID:26292223

  9. Closed-Loop Efficient Searching of Optimal Electrical Stimulation Parameters for Preferential Excitation of Retinal Ganglion Cells

    PubMed Central

    Guo, Tianruo; Yang, Chih Yu; Tsai, David; Muralidharan, Madhuvanthi; Suaning, Gregg J.; Morley, John W.; Dokos, Socrates; Lovell, Nigel H.

    2018-01-01

    The ability for visual prostheses to preferentially activate functionally-distinct retinal ganglion cells (RGCs) is important for improving visual perception. This study investigates the use of high frequency stimulation (HFS) to elicit RGC activation, using a closed-loop algorithm to search for optimal stimulation parameters for preferential ON and OFF RGC activation, resembling natural physiological neural encoding in response to visual stimuli. We evaluated the performance of a wide range of electrical stimulation amplitudes and frequencies on RGC responses in vitro using murine retinal preparations. It was possible to preferentially excite either ON or OFF RGCs by adjusting amplitudes and frequencies in HFS. ON RGCs can be preferentially activated at relatively higher stimulation amplitudes (>150 μA) and frequencies (2–6.25 kHz) while OFF RGCs are activated by lower stimulation amplitudes (40–90 μA) across all tested frequencies (1–6.25 kHz). These stimuli also showed great promise in eliciting RGC responses that parallel natural RGC encoding: ON RGCs exhibited an increase in spiking activity during electrical stimulation while OFF RGCs exhibited decreased spiking activity, given the same stimulation amplitude. In conjunction with the in vitro studies, in silico simulations indicated that optimal HFS parameters could be rapidly identified in practice, whilst sampling spiking activity of relevant neuronal subtypes. This closed-loop approach represents a step forward in modulating stimulation parameters to achieve appropriate neural encoding in retinal prostheses, advancing control over RGC subtypes activated by electrical stimulation. PMID:29615857

  10. Short-Term effects of neuromuscular electrical stimulation on muscle architecture of the tibialis anterior and gastrocnemius in children with cerebral palsy: preliminary results of a prospective controlled study.

    PubMed

    Karabay, İlkay; Öztürk, Gökhan Tuna; Malas, Fevziye Ünsal; Kara, Murat; Tiftik, Tülay; Ersöz, Murat; Özçakar, Levent

    2015-09-01

    The aim of this study was to explore the short-term effects of neuromuscular electrical stimulation application on tibialis anterior (stimulated muscle) and gastrocnemius (antagonist) muscles' size and architecture in children with cerebral palsy by using ultrasound. This prospective, controlled study included 28 children diagnosed with spastic diplegic cerebral palsy. Participants were treated either with neuromuscular electrical stimulation application and conventional physiotherapy (group A) or with conventional physiotherapy alone (group B). Outcome was evaluated by clinical (gross motor function, selective motor control, range of motion, spasticity) and ultrasonographic (cross-sectional area, pennation angle, fascicle length of tibialis anterior and gastrocnemius muscles) measurements before and after treatment in both groups. Cross-sectional area values of tibialis anterior (238.7 ± 61.5 vs. 282.0 ± 67.1 mm) and gastrocnemius (207.9 ± 48.0 vs. 229.5 ± 52.4 mm) (P < 0.001 and P = 0.008, respectively) muscles were increased after treatment in group A. Cross-sectional area values of tibialis anterior muscle were decreased (257.3 ± 64.7 vs. 239.7 ± 60.0 mm) after treatment in group B (P < 0.001), and the rest of the measurements were found not to have changed significantly in either group. These results have shown that cross-sectional area of both the agonist and antagonist muscles increased after 20 sessions of neuromuscular electrical stimulation treatment. Future studies with larger samples and longer follow-up are definitely awaited for better evaluation of neuromuscular electrical stimulation application on muscle architecture and its possible correlates in clinical/functional outcome.

  11. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats

    NASA Astrophysics Data System (ADS)

    Li, Yu-Ting; Wickens, Jeffery R.; Huang, Yi-Ling; Pan, Wynn H. T.; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Objective. Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. Approach. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. Main results. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg-1 cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. Significance. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning behavior studies of freely moving rats.

  12. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.

    PubMed

    Li, Yu-Ting; Wickens, Jeffery R; Huang, Yi-Ling; Pan, Wynn H T; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg(-1) cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning behavior studies of freely moving rats.

  13. The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)

    NASA Astrophysics Data System (ADS)

    Azman, M. F.; Azman, A. W.

    2017-11-01

    Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.

  14. Electromyographic activity of the hyoepiglotticus muscle and control of epiglottis position in horses.

    PubMed

    Holcombe, Susan J; Cornelisse, Cornelis J; Berney, Cathy; Robinson, N Edward

    2002-12-01

    To determine whether the hyoepiglotticus muscle has respiratory-related electromyographic activity and whether electrical stimulation of this muscle changes the position and conformation of the epiglottis, thereby altering dimensions of the aditus laryngis. 6 Standardbred horses. Horses were anesthetized, and a bipolar fine-wire electrode was placed in the hyoepiglotticus muscle of each horse. Endoscopic images of the nasopharynx and larynx were recorded during electrical stimulation of the hyoepiglotticus muscle in standing, unsedated horses. Dorsoventral length and area of the aditus laryngis were measured on images obtained before and during electrical stimulation. Electromyographic activity of the hyoepiglotticus muscle and nasopharyngeal pressures were measured while horses exercised on a treadmill at 50, 75, 90, and 100% of the speed that produced maximum heart rate. Electrical stimulation of the hyoepiglotticus muscle changed the shape of the epiglottis, displaced it ventrally, and significantly increased the dorsoventral length and area of the aditus laryngis. The hyoepiglotticus muscle had inspiratory activity that increased significantly with treadmill speed as a result of an increase in phasic and tonic activity. Expiratory activity of the hyoepiglotticus muscle did not change with treadmill speed in 4 of 6 horses. Findings reported here suggest that contraction of the hyoepiglotticus muscle increases dimensions of the airway in horses by depressing the epiglottis ventrally during intense breathing efforts. The hyoepiglotticus muscle may be an important muscle for dilating the airway in horses, and contraction of the hyoepiglotticus muscle may induce conformational changes in the epiglottis.

  15. Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability.

    PubMed

    Inukai, Yasuto; Saito, Kei; Sasaki, Ryoki; Tsuiki, Shota; Miyaguchi, Shota; Kojima, Sho; Masaki, Mitsuhiro; Otsuru, Naofumi; Onishi, Hideaki

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a representative non-invasive brain stimulation method (NIBS). tDCS increases cortical excitability not only in healthy individuals, but also in stroke patients where it contributes to motor function improvement. Recently, two additional types of transcranial electrical stimulation (tES) methods have been introduced that may also prove beneficial for stimulating cortical excitability; these are transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS). However, comparison of tDCS with tRNS and tACS, in terms of efficacy in cortical excitability alteration, has not been reported thus far. We compared the efficacy of the three different tES methods for increasing cortical excitability using the same subject population and same current intensity. Fifteen healthy subjects participated in this study. Similar stimulation patterns (1.0 mA and 10 min) were used for the three conditions of stimulation (tDCS, tRNS, and tACS). Cortical excitability was explored via single-pulse TMS elicited motor evoked potentials (MEPs). Compared with pre-measurements, MEPs significantly increased with tDCS, tACS, and tRNS ( p < 0.05). Compared with sham measurements, significant increases in MEPs were also observed with tRNS and tACS ( p < 0.05), but not with tDCS. In addition, a significant correlation of the mean stimulation effect was observed between tRNS and tACS ( p = 0.019, r = 0.598). tRNS induced a significant increase in MEP compared with the Pre or Sham at all time points. tRNS resulted in the largest significant increase in MEPs. These findings suggest that tRNS is the most effective tES method and should be considered as part of a treatment plan for improving motor function in stroke patients.

  16. Electrical Stimulation Improves Microbial Salinity Resistance and Organofluorine Removal in Bioelectrochemical Systems

    PubMed Central

    Feng, Huajun; Zhang, Xueqin; Guo, Kun; Vaiopoulou, Eleni; Shen, Dongsheng; Long, Yuyang; Yin, Jun

    2015-01-01

    Fed batch bioelectrochemical systems (BESs) based on electrical stimulation were used to treat p-fluoronitrobenzene (p-FNB) wastewater at high salinities. At a NaCl concentration of 40 g/liter, p-FNB was removed 100% in 96 h in the BES, whereas in the biotic control (BC) (absence of current), p-FNB removal was only 10%. By increasing NaCl concentrations from 0 g/liter to 40 g/liter, defluorination efficiency decreased around 40% in the BES, and in the BC it was completely ceased. p-FNB was mineralized by 30% in the BES and hardly in the BC. Microorganisms were able to store 3.8 and 0.7 times more K+ and Na+ intracellularly in the BES than in the BC. Following the same trend, the ratio of protein to soluble polysaccharide increased from 3.1 to 7.8 as the NaCl increased from 0 to 40 g/liter. Both trends raise speculation that an electrical stimulation drives microbial preference toward K+ and protein accumulation to tolerate salinity. These findings are in accordance with an enrichment of halophilic organisms in the BES. Halobacterium dominated in the BES by 56.8% at a NaCl concentration of 40 g/liter, while its abundance was found as low as 17.5% in the BC. These findings propose a new method of electrical stimulation to improve microbial salinity resistance. PMID:25819966

  17. Neuron discharges in the rat auditory cortex during electrical intracortical stimulation.

    PubMed

    Maldonado, P E; Altman, J A; Gerstein, G L

    1998-01-01

    Studies were carried out in rats anesthetized with ketamine or nembutal, with recording of multicellular activity (with separate identification of responses from individual neurons) in the primary auditory cortex before and after electrical intracortical microstimulation. These experiments showed that about half of the set of neurons studied produced responses to short tonal bursts, these responses having two components-initial discharges arising in response to the sound, and afterdischarge occurring after pauses of 50-100 msec. Afterdischarges lasted at least several seconds, and were generally characterized by a rhythmic structure (with a frequency of 8-12 Hz). After electrical microstimulation, the level of spike activity increased, especially in afterdischarges, and this increase could last up to 4 h. Combined peristimulus histograms, cross-correlations, and gravitational analyses were used to demonstrate interactions of neurons, which increased after electrical stimulation and were especially pronounced in the response afterdischarges.

  18. Neuromuscular electric stimulation in patellofemoral dysfunction: literature review

    PubMed Central

    dos Santos, Ricardo Lucas; Souza, Márcia Leal São Pedro; dos Santos, Fernanda Andrade

    2013-01-01

    Patellofemoral dysfunction is a fairly common deficiency among young individuals that primarily affects females and may be characterized by pain, swelling and retropatellar crepitation. The purpose of this review of literature from the period between 2005 and 2011 was to systematize knowledge in relation to the increase in quadriceps muscle strength and pain relief in patients with patellofemoral dysfunction, using neuromuscular electrical stimulation and resistance exercises. The inclusion criteria were intervention articles from the past six years, in English, Spanish and Portuguese, which used muscle strengthening and neuromuscular electrical stimulation for rehabilitation obtained through searches in the electronic databases Medline and Lilacs and in the Bireme library. The bibliographic search yielded 28 references, of which nine were excluded in accordance with the aims and inclusion criteria while 16 articles were selected for reading of the abstracts and subsequent analysis. Mediumfrequency Neuromuscular Electrical Stimulation (NMES) can be used in association with resistance exercises as an adjuvant in the treatment of patellofemoral dysfunction (PFD), both to achieve muscle rebalance and for pain relief. PMID:24453645

  19. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Shansky, Janet; Karlisch, Patricia; Solerssi, Rosa Lopez

    1991-01-01

    Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins E2 and F2(alpha) which regulate protein turnover rates and muscle cell growth. Mechnical stimulation significantly increases the breakdown rate of (3)H-arachidonic acid labelled phospholipids, releasing free (3)H-arachidonic acid, and the rate-limiting precursor of prostaglandin synthesis. Mechanical stimulation also significantly increases (3)H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-2-(3)H inositol labelled phospholipids. Phospholipase A2, phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are activated by stretch. The lipase inhibitors bromophenacylbromide and RHC80267 together reduce stretch-induced prostaglandin production by 73-83 percent. The stretch-induced increases in prostaglandin production, (3)H-arachidonic acid labelled phospholipid breakdown, and (3)H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-2-(3)H inositol labelled phospholipids are dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and prostaglandins through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.

  20. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    PubMed

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  1. Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.

    PubMed

    Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L

    2017-11-01

    Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.

  2. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells.

    PubMed

    Díaz-Vegas, Alexis; Campos, Cristian A; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.

  3. Orientation selective deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom

    2017-02-01

    Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.

  4. Actin dynamics mediates the changes of calcium level during the pulvinus movement of Mimosa pudica

    PubMed Central

    Yao, Heng; Xu, Qiangyi

    2008-01-01

    The bending movement of the pulvinus of Mimosa pudica is caused by a rapid change in volume of the abaxial motor cells, in response to various environmental stimuli. We investigated the relationship between the actin cytoskeleton and changes in the level of calcium during rapid contractile movement of the motor cells that was induced by electrical stimulation. The bending of the pulvinus was retarded by treatments with actin-affecting reagents and calcium channel inhibitors. The actin filaments in the motor cells were fragmented in response to electrical stimulation. Further investigations were performed using protoplasts from the motor cells of M. pudica pulvini. Calcium-channel inhibitors and EGTA had an inhibitory effect on contractile movement of the protoplasts. The level of calcium increased and became concentrated in the tannin vacuole after electrical stimulation. Ruthenium Red inhibited the increase in the level of calcium in the tannin vacuole and the contractile movement of the protoplasts. However, treatment with latrunculin A abolished the inhibitory effect of Ruthenium Red. Phalloidin inhibited the contractile movement and the increase in the level of calcium in the protoplasts. Our study demonstrates that depolymerization of the actin cytoskeleton in pulvinus motor cells in response to electrical signals results in increased levels of calcium. PMID:19513198

  5. Exploring the tolerability of spatiotemporally complex electrical stimulation paradigms.

    PubMed

    Nelson, Timothy S; Suhr, Courtney L; Lai, Alan; Halliday, Amy J; Freestone, Dean R; McLean, Karen J; Burkitt, Anthony N; Cook, Mark J

    2011-10-01

    A modified cortical stimulation model was used to investigate the effects of varying the synchronicity and periodicity of electrical stimuli delivered to multiple pairs of electrodes on seizure initiation. In this model, electrical stimulation of the motor cortex of rats, along four pairs of a microwire electrode array, results in an observable seizure with quantifiable electrographic duration and behavioural severity. Periodic stimuli had a constant inter-stimulus intervals across the two-second stimulus duration, whilst synchronous stimuli consisted of singular biphasic, bipolar pulses delivered to the four pairs of electrodes at precisely the same time for the entire two second stimulation period. In this way four combinations of stimulation were possible; periodic/synchronous (P/S), periodic/asynchronous (P/As), aperiodic/synchronous (Ap/S) and aperiodic/asynchronous (Ap/As). All stimulation types were designed with equal pulse width, current intensity and mean frequency of stimulation (60 Hz), standardizing net charge transfer. It was expected that the periodicity of the stimulus would be the primary determinant of seizure initiation and therefore severity and electrographic duration. However, the results showed that significant differences in both severity and duration only occurred when the synchronicity was altered. For periodic stimuli, synchronous delivery increased median seizure duration from 5 s to 13 s and increased median Racine severity from 1 to 3. In the aperiodic case, synchronous stimulus delivery increased median duration from 5.5 s to 11s and resulted in seizures of median severity 3 vs. 0 in the asynchronous case. These findings may have implications for the design of future neurostimulation waveform designs as higher numbers of electrodes and stimulator output channels become available in next generation implants. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.

    PubMed

    Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel

    2017-07-26

    Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required. Copyright © 2017 the authors 0270-6474/17/377188-10$15.00/0.

  7. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    PubMed

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  8. One-shot percutaneous electrical nerve stimulation vs. transcutaneous electrical nerve stimulation for low back pain: comparison of therapeutic effects.

    PubMed

    Hsieh, Ru-Lan; Lee, Wen-Chung

    2002-11-01

    To investigate the therapeutic effects of one shot of low-frequency percutaneous electrical nerve stimulation one shot of transcutaneous electrical nerve stimulation in patients with low back pain. In total, 133 low back pain patients were recruited for this randomized, control study. Group 1 patients received medication only. Group 2 patients received medication plus one shot of percutaneous electrical nerve stimulation. Group 3 patients received medication plus one shot of transcutaneous electrical nerve stimulation. Therapeutic effects were measured using a visual analog scale, body surface score, pain pressure threshold, and the Quebec Back Pain Disability Scale. Immediately after one-shot treatment, the visual analog scale improved 1.53 units and the body surface score improved 3.06 units in the percutaneous electrical nerve stimulation group. In the transcutaneous electrical nerve stimulation group, the visual analog scale improved 1.50 units and the body surface score improved 3.98 units. The improvements did not differ between the two groups. There were no differences in improvement at 3 days or 1 wk after the treatment among the three groups. Simple one-shot treatment with percutaneous electrical nerve stimulation or transcutaneous electrical nerve stimulation provided immediate pain relief for low back pain patients. One-shot transcutaneous electrical nerve stimulation treatment is recommended due to the rarity of side effects and its convenient application.

  9. Electrical and mechanical stimulation of cardiac cells and tissue constructs.

    PubMed

    Stoppel, Whitney L; Kaplan, David L; Black, Lauren D

    2016-01-15

    The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Cutaneous electrical stimulation treatment in unresolved facial nerve paralysis: an exploratory study.

    PubMed

    Hyvärinen, Antti; Tarkka, Ina M; Mervaala, Esa; Pääkkönen, Ari; Valtonen, Hannu; Nuutinen, Juhani

    2008-12-01

    The purpose of this study was to assess clinical and neurophysiological changes after 6 mos of transcutaneous electrical stimulation in patients with unresolved facial nerve paralysis. A pilot case series of 10 consecutive patients with chronic facial nerve paralysis either of idiopathic origin or because of herpes zoster oticus participated in this open study. All patients received below sensory threshold transcutaneous electrical stimulation for 6 mos for their facial nerve paralysis. The intervention consisted of gradually increasing the duration of electrical stimulation of three sites on the affected area for up to 6 hrs/day. Assessments of the facial nerve function were performed using the House-Brackmann clinical scale and neurophysiological measurements of compound motor action potential distal latencies on the affected and nonaffected sides. Patients were tested before and after the intervention. A significant improvement was observed in the facial nerve upper branch compound motor action potential distal latency on the affected side in all patients. An improvement of one grade in House-Brackmann scale was observed and some patients also reported subjective improvement. Transcutaneous electrical stimulation treatment may have a positive effect on unresolved facial nerve paralysis. This study illustrates a possibly effective treatment option for patients with the chronic facial paresis with no other expectations of recovery.

  11. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  12. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  13. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  14. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  15. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transcutaneous electrical nerve stimulator for... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...

  16. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transcutaneous electrical nerve stimulator for...

  17. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transcutaneous electrical nerve stimulator for...

  18. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transcutaneous electrical nerve stimulator for...

  19. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transcutaneous electrical nerve stimulator for...

  20. Burst stimulation improves hemodynamics during resuscitation after prolonged ventricular fibrillation.

    PubMed

    Walcott, Gregory; Melnick, Sharon; Killingsworth, Cheryl; Ideker, Raymond

    2009-02-01

    Although return of spontaneous circulation (ROSC) is frequently achieved during resuscitation for sudden cardiac arrest, systolic blood pressure can then decrease, requiring additional myocardial support. Previous studies have shown that a series of 1-ms electrical pulses delivered through the defibrillation patches during ventricular fibrillation (VF) can stimulate the autonomic nervous system to increase myocardial function following defibrillation. We hypothesized that a similar series of electrical pulses could increase myocardial function and blood pressure during the early post-resuscitation period. Six swine were studied that underwent 6-7 min. Each animal received 5, 10, 15, or 20 pulse packets consisting of 6 10 A, 1-ms pulses every 3-4 s in random order whenever systolic blood pressure became less than 50 mmHg. All four sets of pulse packets were delivered to each animal. Systolic blood pressure and cardiac function (left ventricular +dP/dt) were increased to pre-stimulation levels or above by all four sets of pulse packets. The increases were significantly greater for the longer than the shorter number of pulse packets. The mean+/-SD duration of the time that the systolic pressure remained above 50 mmHg following pulse delivery was 4.2+/-2.5 min. Electrical stimulation during regular rhythm following prolonged VF and resuscitation can increase blood pressure and cardiac function to above prestimulation levels.

  1. Burst Stimulation Improves Hemodynamics During Resuscitation after Prolonged Ventricular Fibrillation

    PubMed Central

    Walcott, Gregory; Melnick, Sharon; Killingsworth, Cheryl; Ideker, Raymond

    2009-01-01

    Background Although return of spontaneous circulation (ROSC) is frequently achieved during resuscitation for sudden cardiac arrest, systolic blood pressure can then decrease, requiring additional myocardial support. Previous studies have shown that a series of 1-ms electrical pulses delivered through the defibrillation patches during ventricular fibrillation (VF) can stimulate the autonomic nervous system to increase myocardial function following defibrillation. We hypothesized that a similar series of electrical pulses could increase myocardial function and blood pressure during the early post-resuscitation period. Methods and Results Six swine were studied that underwent 6–7 min. Each animal received 5, 10, 15, or 20 pulse packets consisting of 6 10 A, 1-ms pulses every 3–4 s in random order whenever systolic blood pressure became less than 50 mmHg. All four sets of pulse packets were delivered to each animal. Systolic blood pressure and cardiac function (left ventricular +dP/dt) were increased to pre-stimulation levels or above by all four sets of pulse packets. The increases were significantly greater for the longer than the shorter number of pulse packets. The mean±SD duration of the time that the systolic pressure remained above 50 mmHg following pulse delivery was 4.2±2.5 min. Conclusions Electrical stimulation during regular rhythm following prolonged VF and resuscitation can increase blood pressure and cardiac function to above pre-arrest levels. PMID:19655042

  2. Phasic action of the tensor muscle modulates the calling song in cicadas

    PubMed

    Fonseca; Hennig

    1996-01-01

    The effect of tensor muscle contraction on sound production by the tymbal was investigated in three species of cicadas (Tettigetta josei, Tettigetta argentata and Tympanistalna gastrica). All species showed a strict time correlation between the activity of the tymbal motoneurone and the discharge of motor units in the tensor nerve during the calling song. Lesion of the tensor nerve abolished the amplitude modulation of the calling song, but this modulation was restored by electrical stimulation of the tensor nerve or by mechanically pushing the tensor sclerite. Electrical stimulation of the tensor nerve at frequencies higher than 30­40 Hz changed the sound amplitude. In Tett. josei and Tett. argentata there was a gradual increase in sound amplitude with increasing frequency of tensor nerve stimulation, while in Tymp. gastrica there was a sudden reduction in sound amplitude at stimulation frequencies higher than 30 Hz. This contrasting effect in Tymp. gastrica was due to a bistable tymbal frame. Changes in sound pulse amplitude were positively correlated with changes in the time lag measured from tymbal motoneurone stimulation to the sound pulse. The tensor muscle acted phasically because electrical stimulation of the tensor nerve during a time window (0­10 ms) before electrical stimulation of the tymbal motoneurone was most effective in eliciting amplitude modulations. In all species, the tensor muscle action visibly changed the shape of the tymbal. Despite the opposite effects of the tensor muscle on sound pulse amplitude observed between Tettigetta and Tympanistalna species, the tensor muscle of both acts by modulating the shape of the tymbal, which changes the force required for the tymbal muscle to buckle the tymbal.

  3. Novel degradable co-polymers of polypyrrole support cell proliferation and enhance neurite out-growth with electrical stimulation.

    PubMed

    Durgam, Hymavathi; Sapp, Shawn; Deister, Curt; Khaing, Zin; Chang, Emily; Luebben, Silvia; Schmidt, Christine E

    2010-01-01

    Synthetic polymers such as polypyrrole (PPy) are gaining significance in neural studies because of their conductive properties. We evaluated two novel biodegradable block co-polymers of PPy with poly(epsilon-caprolactone) (PCL) and poly(ethyl cyanoacrylate) (PECA) for nerve regeneration applications. PPy-PCL and PPy-PECA co-polymers can be processed from solvent-based colloidal dispersions and have essentially the same or greater conductivity (32 S/cm for PPy-PCL, 19 S/cm for PPy-PECA) compared to the PPy homo-polymer (22 S/cm). The PPy portions of the co-polymers permit electrical stimulation whereas the PCL or PECA blocks enable degradation by hydrolysis. For in vitro tests, films were prepared on polycarbonate sheets by air brushing layers of dispersions and pressing the films. We characterized the films for hydrolytic degradation, electrical conductivity, cell proliferation and neurite extension. The co-polymers were sufficient to carry out electrical stimulation of cells without the requirement of a metallic conductor underneath the co-polymer film. In vitro electrical stimulation of PPy-PCL significantly increased the number of PC12 cells bearing neurites compared to unstimulated PPy-PCL. For in vivo experiments, the PPy co-polymers were coated onto the inner walls of nerve guidance channels (NGCs) made of the commercially available non-conducting biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV). The NGCs were implanted in a 10 mm defect made in the sciatic nerve of rats, and harvested after 8 weeks. Histological staining showed axonal growth. The studies indicated that these new conducting degradable biomaterials have good biocompatibility and support proliferation and growth of PC12 cells in vitro (with and without electrical stimulation) and neurons in vivo (without electrical stimulation).

  4. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.

    PubMed

    Tillein, J; Hartmann, R; Kral, A

    2015-04-01

    The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  5. It's all in the timing: modeling isovolumic contraction through development and disease with a dynamic dual electromechanical bioreactor system.

    PubMed

    Morgan, Kathy Ye; Black, Lauren Deems

    2014-01-01

    This commentary discusses the rationale behind our recently reported work entitled "Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs," introduces new data supporting our hypothesis, and discusses future applications of our bioreactor system. The ability to stimulate engineered cardiac tissue in a bioreactor system that combines both electrical and mechanical stimulation offers a unique opportunity to simulate the appropriate dynamics between stretch and contraction and model isovolumic contraction in vitro. Our previous study demonstrated that combined electromechanical stimulation that simulated the timing of isovolumic contraction in healthy tissue improved force generation via increased contractile and calcium handling protein expression and improved hypertrophic pathway activation. In new data presented here, we further demonstrate that modification of the timing between electrical and mechanical stimulation to mimic a non-physiological process negatively impacts the functionality of the engineered constructs. We close by exploring the various disease states that have altered timing between the electrical and mechanical stimulation signals as potential future directions for the use of this system.

  6. Peripheral nerve recruitment curve using near-infrared stimulation

    NASA Astrophysics Data System (ADS)

    Dautrebande, Marie; Doguet, Pascal; Gorza, Simon-Pierre; Delbeke, Jean; Nonclercq, Antoine

    2018-02-01

    In the context of near-infrared neurostimulation, we report on an experimental hybrid electrode allowing for simultaneous photonic or electrical neurostimulation and for electrical recording of evoked action potentials. The electrode includes three contacts and one optrode. The optrode is an opening in the cuff through which the tip of an optical fibre is held close to the epineurium. Two contacts provide action potential recording. The remaining contact, together with a remote subcutaneous electrode, is used for electric stimulation which allows periodical assessment of the viability of the nerve during the experiment. A 1470 nm light source was used to stimulate a mouse sciatic nerve. Neural action potentials were not successfully recorded because of the electrical noise so muscular activity was used to reflect the motor fibres stimulation. A recruitment curve was obtained by stimulating with photonic pulses of same power and increasing duration and recording the evoked muscular action potentials. Motor fibres can be recruited with radiant exposures between 0.05 and 0.23 J/cm2 for pulses in the 100 to 500 μs range. Successful stimulation at short duration and at a commercial wavelength is encouraging in the prospect of miniaturisation and practical applications. Motor fibres recruitment curve is a first step in an ongoing research work. Neural action potential acquisition will be improved, with aim to shed light on the mechanism of action potential initiation under photonic stimulation.

  7. Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel.

    PubMed

    Chiu, Loraine L Y; Janic, Katarina; Radisic, Milica

    2012-04-30

    Surface topography and electrical field stimulation are important guidance cues that aid the organization and contractility of cardiomyocytes in vivo. We report here on the use of these biomimetic cues in vitro to engineer an implantable contractile cardiac tissue. Photocrosslinkable collagen-chitosan hydrogels with microgrooves of 10 µm, 20 µm and 100 µm in width were fabricated using polydimethylsiloxane (PDMS) molds. The hydrogels were seeded with cardiomyocytes, placed into a bioreactor array with the microgrooves aligned with the electrical field lines, and stimulated with biphasic square pulses at 1 Hz and 2.5 V/cm. At Day 6, cardiomyocytes were aligned in the direction of the microgrooves. When cultivated without electrical stimulation, the excitation threshold of engineered cardiac tissues using micropatterned hydrogels was significantly lower than using smooth hydrogels, thus showing the importance of cell alignment to cardiac function. The success rate of achieving beating constructs was higher with the application of electrical stimulation. In addition, formation of dense contractile cardiac organoids was observed in groups with both biomimetic cues. The cultivation of cardiomyocytes on hydrogels with 10 µm grooves yielded 100% beating tissues with or without electrical stimulation, thus suggesting a smaller groove width is necessary for cells to communicate and form proper gap junctions. However, electrical field stimulation further increased cell density and enhanced tissue morphology which may be essential for the integration of the tissue construct to the native heart tissue upon implantation. The biodegradability of the hydrogel substrate allows for the rapid translation of the engineered, oriented cardiac tissue to clinical applications.

  8. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue

    PubMed Central

    Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana

    2012-01-01

    Maintenance of normal myocardial function depends intimately on synchronous tissue contraction driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue, but due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation, and unconstrained (i.e., not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate in concert these three key factors. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modeling studies. We then culture cardiac cells obtained from neonatal rats in porous, channeled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After eight days of culture, constructs grown with the simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23±0.10% vs. 0.14±0.05, 0.13±0.08, or 0.09±0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization than either control group. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. PMID:22170772

  9. The influence of postmortem electrical stimulation on rigor mortis development, calpastatin activity, and tenderness in broiler and duck pectoralis.

    PubMed

    Alvarado, C Z; Sams, A R

    2000-09-01

    This study was conducted to evaluate the effects of electrical stimulation (ES) on rigor mortis development, calpastatin activity, and tenderness in anatomically similar avian muscles composed primarily of either red or white muscle fibers. A total of 72 broilers and 72 White Pekin ducks were either treated with postmortem (PM) ES (450 mA) at the neck in a 1% NaCl solution for 2 s on and 1 s off for a total of 15 s or were used as nonstimulated controls. Both pectoralis muscles were harvested from the carcasses after 0.25, 1.25, and 24 h PM and analyzed for pH, inosine:adenosine ratio (R-value), sarcomere length, gravimetric fragmentation index, calpastatin activity, shear value, and cook loss. All data were analyzed within species for the effects of ES. Electrically stimulated ducks had a lower muscle pH at 0.25 and 1.25 h PM and higher R-values at 0.25 h PM compared with controls. Electrically stimulated broilers had a lower muscle pH at 1.25 h and higher R-values at 0.25 and 1.25 h PM compared with controls. Muscles of electrically stimulated broilers exhibited increased myofibrillar fragmentation at 0.25 and 1.25 h PM, whereas there was no such difference over PM time in the duck muscle. Electrical stimulation did not affect calpastatin activity in either broilers or ducks; however, the calpastatin activity of the broilers did decrease over the aging time period, whereas that of the ducks did not. Electrical stimulation decreased shear values in broilers at 1.25 h PM compared with controls; however, there was no difference in shear values of duck muscle due to ES at any sampling time. Cook loss was lower for electrically stimulated broilers at 0.25 and 1.25 h PM compared with the controls, but had no effect in the ducks. These results suggest that the red fibers of the duck pectoralis have less potential for rigor mortis acceleration and tenderization due to ES than do the white fibers of the broiler pectoralis.

  10. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  11. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  12. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  13. Autonomic regulation of mucociliary transport rate in the oesophagus of the frog, Rana temporaria.

    PubMed Central

    Morley, J; Sanjar, S

    1984-01-01

    Transport of lead particles along the mucosal surface of the frog oesophagus has been measured by direct observation with the aid of video recording. Electrical stimulation of the vagus nerve increased the rate of particle transport. This acceleration was suppressed by atropine or by hexamethonium. Acetylcholine and other parasympathomimetic agents accelerated particle transport rate. Such acceleration was abolished by atropine. Nicotine increased the rate of particle transport and this effect was suppressed by hexamethonium or by atropine. Atropine did not significantly alter basal particle transport rate. Neither basal particle transport rate nor the response to vagal nerve stimulation were affected by eserine. Adrenaline, noradrenaline or isoprenaline did not affect basal particle transport rate. Adrenaline or noradrenaline were without effect on the increased particle transport rate due to electrical stimulation of the vagus. PMID:6332901

  14. Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study

    PubMed Central

    Mangia, Anna L.; Pirini, Marco; Cappello, Angelo

    2014-01-01

    Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions. PMID:25147519

  15. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds.

    PubMed

    Radisic, Milica; Park, Hyoungshin; Shing, Helen; Consi, Thomas; Schoen, Frederick J; Langer, Robert; Freed, Lisa E; Vunjak-Novakovic, Gordana

    2004-12-28

    The major challenge of tissue engineering is directing the cells to establish the physiological structure and function of the tissue being replaced across different hierarchical scales. To engineer myocardium, biophysical regulation of the cells needs to recapitulate multiple signals present in the native heart. We hypothesized that excitation-contraction coupling, critical for the development and function of a normal heart, determines the development and function of engineered myocardium. To induce synchronous contractions of cultured cardiac constructs, we applied electrical signals designed to mimic those in the native heart. Over only 8 days in vitro, electrical field stimulation induced cell alignment and coupling, increased the amplitude of synchronous construct contractions by a factor of 7, and resulted in a remarkable level of ultrastructural organization. Development of conductive and contractile properties of cardiac constructs was concurrent, with strong dependence on the initiation and duration of electrical stimulation.

  16. Short-term anomia training and electrical brain stimulation.

    PubMed

    Flöel, Agnes; Meinzer, Marcus; Kirstein, Robert; Nijhof, Sarah; Deppe, Michael; Knecht, Stefan; Breitenstein, Caterina

    2011-07-01

    Language training success in chronic aphasia remains only moderate. Electric brain stimulation may be a viable way to enhance treatment efficacy. In a randomized, double-blind, sham-controlled crossover trial, we assessed if anodal transcranial direct current stimulation compared to cathodal transcranial direct current stimulation and sham stimulation over the right temporo-parietal cortex would improve the success of short-term high-frequency anomia training. Twelve chronic poststroke aphasia patients were studied. Naming outcome was assessed after training and 2 weeks later. All training conditions led to a significant increase in naming ability, which was retained for at least 2 weeks after the end of the training. Application of anodal transcranial direct current stimulation significantly enhanced the overall training effect compared to sham stimulation. Baseline naming ability significantly predicted anodal transcranial direct current stimulation effects. Anodal transcranial direct current stimulation applied over the nonlanguage dominant hemisphere can enhance language training outcome in chronic aphasia. Clinical Trial Registration- URL: www.clinicaltrials.gov/. Unique identifier: NCT00822068.

  17. Referred pain and cutaneous responses from deep tissue electrical pain stimulation in the groin.

    PubMed

    Aasvang, E K; Werner, M U; Kehlet, H

    2015-08-01

    Persistent postherniotomy pain is located around the scar and external inguinal ring and is often described as deep rather than cutaneous, with frequent complaints of pain in adjacent areas. Whether this pain is due to local pathology or referred/projected pain is unknown, hindering mechanism-based treatment. Deep tissue electrical pain stimulation by needle electrodes in the right groin (rectus muscle, ilioinguinal/iliohypogastric nerve and perispermatic cord) was combined with assessment of referred/projected pain and the cutaneous heat pain threshold (HPT) at three prespecified areas (both groins and the lower right arm) in 19 healthy subjects. The assessment was repeated 10 days later to assess the reproducibility of individual responses. Deep electrical stimulation elicited pain at the stimulation site in all subjects, and in 15 subjects, pain from areas outside the stimulation area was reported, with 90-100% having the same response on both days, depending on the location. Deep pain stimulation significantly increased the cutaneous HPT (P<0.014). Individual HPT responses before and during deep electrical pain stimulation were significantly correlated (ρ>0.474, P≤0.040) at the two test days for the majority of test areas. Our results corroborate a systematic relationship between deep pain and changes in cutaneous nociception. The individual referred/projected pain patterns and cutaneous responses are variable, but reproducible, supporting individual differences in anatomy and sensory processing. Future studies investigating the responses to deep tissue electrical stimulation in persistent postherniotomy pain patients may advance our understanding of underlying pathophysiological mechanisms and strategies for treatment and prevention. ClinicalTrials.gov (NCT01701427). © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Recovery after high-intensity intermittent exercise in elite soccer players using VEINOPLUS sport technology for blood-flow stimulation.

    PubMed

    Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe

    2012-01-01

    Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Randomized controlled clinical trial. National Institute of Sport, Expertise, and Performance (INSEP). Twenty-six healthy professional male soccer players. The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods.

  19. Magnetic field therapy: a review.

    PubMed

    Markov, Marko S

    2007-01-01

    There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation.

  20. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty.

    PubMed

    Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre; Vaes, Peter

    2014-01-01

    To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.

  1. Effects of electrical stimulation of the rat vestibular labyrinth on c-Fos expression in the hippocampus.

    PubMed

    Hitier, Martin; Sato, Go; Zhang, Yan-Feng; Besnard, Stephane; Smith, Paul F

    2018-06-11

    Several studies have demonstrated that electrical activation of the peripheral vestibular system can evoke field potential, multi-unit neuronal activity and acetylcholine release in the hippocampus (HPC). However, no study to date has employed the immediate early gene protein, c-Fos, to investigate the distribution of activation of cells in the HPC following electrical stimulation of the vestibular system. We found that vestibular stimulation increased the number of animals expressing c-Fos in the dorsal HPC compared to sham control rats (P ≤ 0.02), but not in the ventral HPC. c-Fos was also expressed in an increased number of animals in the dorsal dentate gyrus (DG) compared to sham control rats (P ≤ 0.0001), and to a lesser extent in the ventral DG (P ≤ 0.006). The results of this study show that activation of the vestibular system results in a differential increase in the expression of c-Fos across different regions of the HPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The Effects of Transcutaneous Electrical Stimulation on the Orthodontic Movement of Teeth.

    DTIC Science & Technology

    1985-05-01

    Transcutaneous electrical nerve stimulation is an alternating electrical current applied k., ’ to the skin or gingiva with surface electrodes. Many...AD-AI68 889 THE EFFECTS OF TRANSCUTANEOUS ELECTRICAL STIMULATION ON 1/i THE ORTHODONTIC MOVEMENT OF TEETH(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON...SPECIAL FIELD OF THE THESIS: of Transcutaneous Electrical Stimiu- Transcutaneous Electrical Stimulation lation on the Orthodontic Movement

  3. Cisplatin-induced gastric dysrhythmia and emesis in dogs and possible role of gastric electrical stimulation.

    PubMed

    Yu, Xiaoyun; Yang, Jie; Hou, Xiaohua; Zhang, Kan; Qian, Wei; Chen, J D Z

    2009-05-01

    The aim of this study was to investigate the effect of cisplatin on gastric myoelectrical activity and the role of gastric electrical stimulation in the treatment of cisplatin-induced emesis in dogs. Seven dogs implanted with electrodes on the gastric serosa were used in a two-session study. Cisplatin was infused in both the control session and the gastric electrical stimulation session, and gastric electrical stimulation was applied in the gastric electrical stimulation session. Gastric slow waves and emesis, as well as behaviors suggestive of nausea, were recorded during each session. The results were as follows: (1) cisplatin induced vomiting and other symptoms and induced gastric dysrhythmia. The percentage of normal slow waves decreased significantly during the 2.5 h before vomiting (P=0.01) and the period of vomiting (P<0.001). (2) Gastric electrical stimulation reduced emesis and the symptoms score. The total score in the control session was higher than that in the gastric electrical stimulation session (P=0.02). However, gastric electrical stimulation had no effects on gastric dysrhythmia. It is concluded that cisplatin induces emesis and gastric dysrhythmia. Gastric electrical stimulation may play a role in relieving chemotherapy-induced emetic responses and deserves further investigation.

  4. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    PubMed

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery more than hyoid muscles.

  5. Intramuscular Electrical Stimulation for Muscle Activation of the Tibialis Anterior After Surgical Repair: A Case Report.

    PubMed

    Hollis, Sharon; McClure, Philip

    2017-12-01

    Background Loss of voluntary activation of musculature can result in muscle weakness. External neuromuscular stimulation can be utilized to improve voluntary activation but is often poorly tolerated because of pain associated with required stimulus level. Intramuscular electrical stimulation requires much lower voltage and may be better tolerated, and therefore more effective at restoring voluntary muscle activation. Case Description A 71-year-old man sustained a rupture of the distal attachment of the tibialis anterior tendon. Thirty-two weeks after surgical repair, there was no palpable or visible tension development in the muscle belly or tendon. Dorsiflexion was dependent on toe extensors. Electrical stimulation applied via a dry needling placement in the muscle belly was utilized to induce an isometric contraction. Outcomes Five sessions of intramuscular electrical stimulation were delivered. By day 4 (second visit), the patient was able to dorsiflex without prominent use of the extensor hallucis longus. By day 6 (third visit), active-range-of-motion dorsiflexion with toes flexed increased 20° (-10° to 10°). Eighteen days after the initial treatment, the patient walked without his previous high-step gait pattern, and the tibialis anterior muscle test improved to withstanding moderate resistance (manual muscle test score, 4/5). Discussion The rapid change in muscle function observed suggests that intramuscular electrical stimulation may facilitate voluntary muscle activation. Level of Evidence Therapy, level 5. J Orthop Sports Phys Ther 2017;47(12):965-969. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7368.

  6. Femoral artery blood flow and microcirculatory perfusion during acute, low-level functional electrical stimulation in spinal cord injury.

    PubMed

    Barton, Thomas J; Low, David A; Janssen, Thomas W J; Sloots, Maurits; Smit, Christof A J; Thijssen, Dick H J

    2018-04-19

    Functional electrical stimulation (FES) may help to reduce the risk of developing macro- and microvascular complications in people with SCI. Low-intensity FES has significant clinical potential since this can be applied continuously throughout the day. This study examines the acute effects of low intensity FES using wearable clothing garment on vascular blood flow and oxygen consumption in people with SCI. Cross-sectional observation study METHODS: Eight participants with a motor complete SCI received 4x3 minutes of unilateral FES to the gluteal and hamstring muscles. Skin and deep femoral artery blood flow and oxygen consumption were measured at baseline and during each bout of stimulation. Femoral artery blood flow increased by 18.1% with the application of FES (P=0.02). Moreover, femoral artery blood flow increased further during each subsequent block of FES (P=0.004). Skin perfusion did not change during an individual block of stimulation (P=0.66). Skin perfusion progressively increased with each subsequent bout (P<0.001). There was no change in femoral or skin perfusion across time in the non-stimulated leg (all P>0.05). Low-intensity FES acutely increased blood flow during stimulation, with a progressive increase across subsequent FES bouts. These observations suggest continuous, low-intensity FES may represent a practical and effective strategy to improve perfusion and reduce the risk of vascular complications.

  7. Energy-optimal electrical excitation of nerve fibers.

    PubMed

    Jezernik, Saso; Morari, Manfred

    2005-04-01

    We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.

  8. Pain-related somatosensory evoked potentials and functional brain magnetic resonance in the evaluation of neurologic recovery after cardiac arrest: a case study of three patients.

    PubMed

    Zanatta, Paolo; Messerotti Benvenuti, Simone; Baldanzi, Fabrizio; Bendini, Matteo; Saccavini, Marsilio; Tamari, Wadih; Palomba, Daniela; Bosco, Enrico

    2012-03-31

    This case series investigates whether painful electrical stimulation increases the early prognostic value of both somatosensory-evoked potentials and functional magnetic resonance imaging in comatose patients after cardiac arrest. Three single cases with hypoxic-ischemic encephalopathy were considered. A neurophysiological evaluation with an electroencephalogram and somatosensory-evoked potentials during increased electrical stimulation in both median nerves was performed within five days of cardiac arrest. Each patient also underwent a functional magnetic resonance imaging evaluation with the same neurophysiological protocol one month after cardiac arrest. One patient, who completely recovered, showed a middle latency component at a high intensity of stimulation and the activation of all brain areas involved in cerebral pain processing. One patient in a minimally conscious state only showed the cortical somatosensory response and the activation of the primary somatosensory cortex. The last patient, who was in a vegetative state, did not show primary somatosensory evoked potentials; only the activation of subcortical brain areas occurred. These preliminary findings suggest that the pain-related somatosensory evoked potentials performed to increase the prognosis of comatose patients after cardiac arrest are associated with regional brain activity showed by functional magnetic resonance imaging during median nerves electrical stimulation. More importantly, this cases report also suggests that somatosensory evoked potentials and functional magnetic resonance imaging during painful electrical stimulation may be sensitive and complementary methods to predict the neurological outcome in the acute phase of coma. Thus, pain-related somatosensory-evoked potentials may be a reliable and a cost-effective tool for planning the early diagnostic evaluation of comatose patients.

  9. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in major depressive disorder patients.

    PubMed

    Tanaka, Yoshihiro; Ishitobi, Yoshinobu; Maruyama, Yoshihiro; Kawano, Aimi; Ando, Tomoko; Okamoto, Shizuko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Kodama, Kensuke; Isogawa, Koichi; Akiyoshi, Jotaro

    2012-03-30

    Major depressive disorder (MDD) is often associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis by chronic stress. In comparison, psychosocial stress-induced activation of salivary α-amylase (sAA) functions as a marker of sympathoadrenal medullary system (SAM) activity. However, in contrast to salivary cortisol, sAA has been less extensively studied in MDD patients. The present study measured sAA and salivary cortisol levels in patients with MDD. The authors determined Profile of Mood State (POMS) and State-Trait anxiety Inventory (STAI) scores, Heart Rate Variability (HRV), and sAA and salivary cortisol levels in 88 patients with MDD and 41 healthy volunteers following the application of electrical stimulation stress. Patients with major depressive disorder were 8 points or more on Hamilton Depression Scale (HAM-D) scores. Tension-Anxiety, Depression-Dejection, Anger-Hostility, Fatigue, and Confusion scores in patients with major depressive disorder were significantly increased compared to healthy controls. In contrast, Vigor scores in patients with MDD were significantly decreased compared with healthy controls. There was no difference in heart rate variability measures between MDD patients and healthy controls. The threshold of electrical stimulation applied in MDD patients was lower than that in healthy controls. SAA levels in female MDD patients were significantly elevated relative to controls both before and after electrical stimulation. Finally, there were no differences in salivary cortisol levels between major depressive patients and controls. In the present study only three time points were explored. Furthermore, the increased secretion of sAA before and after stimulation could allude to an increased responsiveness of novel and uncontrollable situations in patients with MDD. These preliminary results suggest that sAA might be a useful biological marker of MDD. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Sub-threshold depolarizing pre-pulses can enhance the efficiency of biphasic stimuli in transcutaneous neuromuscular electrical stimulation.

    PubMed

    Vargas Luna, Jose Luis; Mayr, Winfried; Cortés-Ramirez, Jorge-Armando

    2018-06-09

    There is multiple evidence in the literature that a sub-threshold pre-pulse, delivered immediately prior to an electrical stimulation pulse, can alter the activation threshold of nerve fibers and motor unit recruitment characteristics. So far, previously published works combined monophasic stimuli with sub-threshold depolarizing pre-pulses (DPPs) with inconsistent findings-in some studies, the DPPs decreased the activation threshold, while in others it was increased. This work aimed to evaluate the effect of DPPs during biphasic transcutaneous electrical stimulation and to study the possible mechanism underlying those differences. Sub-threshold DPPs between 0.5 and 15 ms immediately followed by biphasic or monophasic pulses were administered to the tibial nerve; the electrophysiological muscular responses (motor-wave, M-wave) were monitored via electromyogram (EMG) recording from the soleus muscle. The data show that, under the specific studied conditions, DPPs tend to lower the threshold for nerve fiber activation rather than elevating it. DPPs with the same polarity as the leading phase of biphasic stimuli are more effective to increase the sensitivity. This work assesses for the first time the effect of DPPs on biphasic pulses, which are required to achieve charge-balanced stimulation, and it provides guidance on the effect of polarity and intensity to take full advantage of this feature. Graphical abstract In this work, the effect of sub-threshold depolarizing pre-pulses (DPP) is investigated in a setup with transcutaneous electrical stimulation. We found that, within the tested 0-15 ms DPP duration range, the DPPs administered immediately before biphasic pulses proportionally increase the nerve excitability as visible in the M-waves recorded from the soleus muscle. Interestingly, these findings oppose published results, where DPPs, administered immediately before monophasic stimuli via implanted electrodes, led to decrease of nerve excitability.

  11. Electrically evoked compound action potentials recorded from the sheep spinal cord.

    PubMed

    Parker, John L; Karantonis, Dean M; Single, Peter S; Obradovic, Milan; Laird, James; Gorman, Robert B; Ladd, Leigh A; Cousins, Michael J

    2013-01-01

    The study aims to characterize the electrical response of dorsal column axons to depolarizing stimuli to help understand the mechanisms of spinal cord stimulation (SCS) for the relief of chronic pain. We recorded electrically evoked compound action potentials (ECAPs) during SCS in 10 anesthetized sheep using stimulating and recording electrodes on the same epidural SCS leads. A novel stimulating and recording system allowed artifact contamination of the ECAP to be minimized. The ECAP in the sheep spinal cord demonstrates a triphasic morphology, with P1, N1, and P2 peaks. The amplitude of the ECAP varies along the length of the spinal cord, with minimum amplitudes recorded from electrodes positioned over each intervertebral disc, and maximum amplitudes recorded in the midvertebral positions. This anatomically correlated depression of ECAP also correlates with the areas of the spinal cord with the highest thresholds for stimulation; thus regions of weakest response invariably had least sensitivity to stimulation by as much as a factor of two. The choice of stimulating electrode location can therefore have a profound effect on the power consumption for an implanted stimulator for SCS. There may be optimal positions for stimulation in the sheep, and this observation may translate to humans. Almost no change in conduction velocity (∼100 ms) was observed with increasing currents from threshold to twice threshold, despite increased Aβ fiber recruitment. Amplitude of sheep Aβ fiber potentials during SCS exhibit dependence on electrode location, highlighting potential optimization of Aβ recruitment and power consumption in SCS devices. © 2013 International Neuromodulation Society.

  12. 76 FR 48062 - Effective Date of Requirement for Premarket Approval for Cranial Electrotherapy Stimulator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... devices include headaches following treatment with electrical stimulation. Potential risk of seizure--electrical stimulation of the brain may result in seizures, particularly in patients with a history of... effects from electrical stimulation of the brain--The physiological effects associated with electrical...

  13. Topographic and functional neuroanatomical study of GABAergic disinhibitory striatum-nigral inputs and inhibitory nigrocollicular pathways: neural hodology recruiting the substantia nigra, pars reticulata, for the modulation of the neural activity in the inferior colliculus involved with panic-like emotions.

    PubMed

    Castellan-Baldan, Lissandra; da Costa Kawasaki, Mateus; Ribeiro, Sandro José; Calvo, Fabrício; Corrêa, Vani Maria Alves; Coimbra, Norberto Cysne

    2006-08-01

    Considering the influence of the substantia nigra on mesencephalic neurons involved with fear-induced reactions organized in rostral aspects of the dorsal midbrain, the present work investigated the topographical and functional neuroanatomy of similar influence on caudal division of the corpora quadrigemina, addressing: (a) the neural hodology connecting the neostriatum, the substantia nigra, periaqueductal gray matter and inferior colliculus (IC) neural networks; (b) the influence of the inhibitory neostriatonigral-nigrocollicular GABAergic links on the control of the defensive behavior organized in the IC. The effects of the increase or decrease of activity of nigrocollicular inputs on defensive responses elicited by either electrical or chemical stimulation of the IC were also determined. Electrolytic or chemical lesions of the substantia nigra, pars reticulata (SNpr), decreased the freezing and escape behaviors thresholds elicited by electrical stimulation of the IC, and increased the behavioral responses evoked by the GABAA blockade in the same sites of the mesencephalic tectum (MT) electrically stimulated. These findings were corroborated by similar effects caused by microinjections of the GABAA-receptor agonist muscimol in the SNpr, followed by electrical and chemical stimulations of the IC. The GABAA blockade in the SNpr caused a significant increase in the defensive behavior thresholds elicited by electrical stimulation of the IC and a decrease in the mean incidence of panic-like responses induced by microinjections of bicuculline in the mesencephalic tectum (inferior colliculus). These findings suggest that the substantia nigra receives GABAergic inputs that modulate local and also inhibitory GABAergic outputs toward the IC. In fact, neurotracing experiments with fast blue and iontophoretic microinjections of biotinylated dextran amine either into the inferior colliculus or in the reticular division of the substantia nigra demonstrated a neural link between these structures, as well as between the neostriatum and SNpr.

  14. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells

    PubMed Central

    Díaz-Vegas, Alexis; Campos, Cristian A.; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC. PMID:26053483

  15. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior.

    PubMed

    Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F

    2013-11-01

    To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Effect of contacts configuration and location on selective stimulation of cuff electrode.

    PubMed

    Taghipour-Farshi, Hamed; Frounchi, Javad; Ahmadiasl, Nasser; Shahabi, Parviz; Salekzamani, Yaghoub

    2015-01-01

    Cuff electrodes have been widely used chronically in different clinical applications. Advancements have been made in selective stimulation by using multi-contact cuff electrodes. Steering anodic current is a strategy to increase selectivity by reshaping and localizing electric fields. There are two configurations for contacts to be implemented in cuff, monopolar and tripolar. A cuff electrode with tripolar configuration can restrict the activation to a more localized region within a nerve trunk compared to a cuff with monopolar configuration and improve the selectivity. Anode contacts in tripolar configuration can be made in two structures, "ring" and "dot". In this study, the stimulation capabilities of these two structures were evaluated. The recruitment properties and the selectivity of stimulation were examined by measuring the electric potential produced by stimulation currents. The results of the present study indicated that using dot configuration, the current needed to stimulate fascicles in tripolar topologies would be reduced by 10%. It was also shown that stimulation threshold was increased by moving anode contacts inward the cuff. On the other hand, stimulation threshold was decreased by moving the anode contacts outward the cuff which would decrease selectivity, too. We conclude that dot configuration is a better choice for stimulation. Also, a cuff inward placement of 10% relative to the cuff length was near optimal.

  17. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  18. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  19. Numerical dosimetry of transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  20. A system for evaluation and exercise-conditioning of paralyzed leg muscles.

    PubMed

    Gruner, J A; Glaser, R M; Feinberg, S D; Collins, S R; Nussbaum, N S

    1983-07-01

    The purpose of this project was to develop instrumentation and protocols in which electrical stimulation is used to induce exercise in paralyzed quadriceps muscles strength and endurance evaluation and conditioning. A computer-controlled electrical stimulation system, using surface electrodes, automatically regulates the bouts of leg extension exercise. Load weights attached just above the ankles can be progressively increased over a number of training sessions in such a manner that a measure of the fitness of the legs can be obtained. With three exercise sessions per week for 9 weeks, the strength and endurance of the quadriceps muscles of two paraplegic and four quadriplegic subjects were gradually and safely increased. During exercise at a means load weight of 5.4 kg, means heart rate did not rise above rest, whereas systolic blood pressure increased about 20 mm Hg, and skin temperature above the active muscles increased about 1.75 degrees C. Such exercise conditioning appears to be safe and may provide important health benefits, including improved fitness of the muscles and bones, better circulation in the paralyzed limbs, and enhanced self-image. Conditioned electrically stimulated paralyzed leg muscles may be used for locomotion in conjunction with special vehicles.

  1. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin

    PubMed Central

    2017-01-01

    Fast-scan cyclic voltammetry (FCV) is an established method to monitor increases in extracellular dopamine (DA) concentration ([DA]o) in the striatum, which is densely innervated by DA axons. Ex vivo brain slice preparations provide an opportunity to identify endogenous modulators of DA release. For these experiments, local electrical stimulation is often used to elicit release of DA, as well as other transmitters, in the striatal microcircuitry; changes in evoked increases in [DA]o after application of a pharmacological agent (e.g., a receptor antagonist) indicate a regulatory role for the transmitter system interrogated. Optogenetic methods that allow specific stimulation of DA axons provide a complementary, bottom-up approach for elucidating factors that regulate DA release. To this end, we have characterized DA release evoked by local electrical and optical stimulation in striatal slices from mice that genetically express a variant of channelrhodopsin-2 (ChR2). Evoked increases in [DA]o in the dorsal and ventral striatum (dStr and vStr) were examined in a cross of a Cre-dependent ChR2 line (“Ai32” mice) with a DAT::Cre mouse line. In dStr, repeated optical pulse-train stimulation at the same recording site resulted in rundown of evoked [DA]o using heterozygous mice, which contrasted with the stability seen with electrical stimulation. Similar rundown was seen in the presence of a nicotinic acetylcholine receptor (nAChR) antagonist, implicating the absence of concurrent nAChR activation in DA release instability in slices. Rundown with optical stimulation in dStr could be circumvented by recording from a population of sites, each stimulated only once. Same-site rundown was less pronounced with single-pulse stimulation, and a stable baseline could be attained. In vStr, stable optically evoked increases in [DA]o at single sites could be achieved using heterozygous mice, although with relatively low peak [DA]o. Low release could be overcome by using mice with a second copy of the Ai32 allele, which doubled ChR2 expression. The characteristics reported here should help future practitioners decide which Ai32;DAT::Cre genotype and recording protocol is optimal for the striatal subregion to be examined. PMID:28177213

  2. Electrical stimulation of the lumbrical muscles in an incomplete quadriplegic patient: case report.

    PubMed

    Carroll, S G; Bird, S F; Brown, D J

    1992-03-01

    The increasing number of incomplete cervical spinal cord injuries means that more attention needs to be focused on the rehabilitation of the incomplete quadriplegic hand. A case study, describing the application of electrical stimulation for strengthening the paretic lumbrical muscles, is presented. A 2 week strengthening program resulted in a 33% increase in the force produced by the lumbrical muscles. No loss of strength had occurred 4 weeks after cessation of the treatment. The magnitude and speed of this result should be of interest to those clinicians who seek to maximise patient independence in minimal time.

  3. Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges.

    PubMed

    Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison

    2015-10-01

    Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, noninvasive, direct current stimulation uses an active electrode in the ear canal, tympanic membrane, or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms.

  4. Tinnitus Treatment with Precise and Optimal Electric Stimulation: Opportunities and Challenges

    PubMed Central

    Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison

    2015-01-01

    Purpose of review Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent findings Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, non-invasive, direct-current stimulation uses an active electrode in the ear canal, tympanic membrane or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Summary Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms. PMID:26208122

  5. Extracellular potassium changes in the rat neurohypophysis during activation of the magnocellular neurosecretory system.

    PubMed Central

    Leng, G; Shibuki, K

    1987-01-01

    1. Potassium-sensitive microelectrodes were used to measure extracellular [K+] in the isolated rat neurohypophysis maintained in vitro. Electrical stimulation of the neurohypophysial stalk (20 Hz 5 s) increased the inferred extracellular [K+] by 9.2 +/- 0.4 mM (mean +/- S.E. of mean; n = 21). 2. Veratridine (10 microM) enhanced the response to stalk stimulation, and at a higher concentration (50 microM) increased extracellular [K+] in the absence of stimulation. By contrast, tetrodotoxin (1 microM) blocked the [K+] increase completely and reversibly in each of five experiments, indicating that the increase was a consequence of action potential generation. 3. At the end of brief periods of stimulation, the raised extracellular [K+] returned to pre-stimulation levels within 30 s. In the presence of ouabain (100 microM), the recovery was slower: the half-decay time was extended by 150-300% in each of three experiments. 4. Replacement of calcium in the medium with cobalt, cadmium or magnesium reduced the amplitude of the [K+] increase by 26-30%, indicating that the [K+] increase was largely independent of events subsequent to evoked release of hormone and/or transmitters. 5. Potassium-sensitive microelectrodes were placed in the neurohypophysis of rats anaesthetized with urethane. Electrical stimulation of the pituitary stalk (50 Hz, 5 s) produced transient voltage increases of 7.6 +/- 0.9 mV (mean +/- S.E. of mean of seven experiments). These voltage increases were similar in magnitude to the response of the electrodes to the addition of 7.6 +/- 1.0 mM-K+ to rat plasma. 6. In seven lactating rats, the suckling of a litter of hungry pups evoked periodic reflex milk ejections, as detected by increases in intramammary pressure. Potassium-sensitive microelectrodes in the neurohypophysis recorded transient voltage increases prior to each milk ejection (0.4-5.5 mV). Each increase preceded an increase in intramammary pressure by 12-30 s. 7. Thus synchronized high-frequency activation of magnocellular neurones can produce large changes in extracellular [K+]. The implications of these findings for stimulus-secretion coupling in the neurohypophysis are discussed in the light of previous reports that hormone release from the neurohypophysis is highly dependent on the frequency and pattern of electrical stimulation. PMID:2451734

  6. Energy utilization and gluconeogenesis in isolated leech segmental ganglia: Quantitative studies on the control and cellular localization of endogenous glycogen.

    PubMed

    Pennington, A J; Pentreath, V W

    1988-01-01

    The isolated segmental ganglia of the horse leech Haemopis sanguisuga were used as a model system to study the utilization and control of glycogen stores within nervous tissue. The glycogen in the ganglia was extracted and assayed fluorimentrically and its cellular localization and turnover studied by autoradiography in conjunction with [(3)H]glucose. We measured the glycogen after various periods of electrical stimulation and after incubation with K(+), Ca(2+), ouabain and glucose. The results for each experimental ganglion were compared to a paired control ganglion and the results analysed by paired t-tests. Electrical stimulation caused sequential changes in glycogen levels: a reduction of up to 67% (5-10 min); followed by an increase of up to 124% (between 15-50 min); followed by a reduction of up to 63% (60-90 min). Values were calculated for glucose utilization (e.g. 0.53 ?mol glucose/gm wet weight/min after 90 min) and estimates derived for glucose consumption per action potential per neuron (e.g. 0.12 fmol at 90 min). Glucose (1.5-10 mM) increased the amount of glycogen (1.5 mM by 30% at 60 min) and attenuated the effects of electrical stimulation. Ouabain (1 mM) blocked the effect of 5 min electrical stimulation. Nine millimolar K(+) increased glycogen by 27% after 10 min and decreased glycogen by 34% after 60 min; 3 mM Ca(2+) had no effect after 10 or 20 min and decreased glycogen by 29% after 60 min. Other concentrations of K(+) and Ca(2+) reduced glycogen after 60 min. Autoradiographic analysis demonstrated that the effects of elevated K(+) were principally within the glial cells. We conclude that (i) the glycogen stores in the glial cells of leech segmental ganglia provide an endogenous energy source which can support sustained neuronal activity, (ii) both electrical stimulation and elevated K(+) can induce gluconeogenesis within the ganglia, (iii) that electrical activation of neurons produces changes in the glycogen in the glial cells which are controlled in part by changes in K(+).

  7. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty

    PubMed Central

    Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre

    2014-01-01

    Objective: To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. Data Sources: PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Review Methods: Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. Results: A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. Conclusion: This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality. PMID:26770730

  8. Bio-heat transfer model of deep brain stimulation-induced temperature changes

    NASA Astrophysics Data System (ADS)

    Elwassif, Maged M.; Kong, Qingjun; Vazquez, Maribel; Bikson, Marom

    2006-12-01

    There is a growing interest in the use of chronic deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. Fundamental questions remain about the physiologic effects of DBS. Previous basic research studies have focused on the direct polarization of neuronal membranes by electrical stimulation. The goal of this paper is to provide information on the thermal effects of DBS using finite element models to investigate the magnitude and spatial distribution of DBS-induced temperature changes. The parameters investigated include stimulation waveform, lead selection, brain tissue electrical and thermal conductivities, blood perfusion, metabolic heat generation during the stimulation and lead thermal conductivity/heat dissipation through the electrode. Our results show that clinical DBS protocols will increase the temperature of surrounding tissue by up to 0.8 °C depending on stimulation/tissue parameters.

  9. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  10. Recovery of TES-MEPs during surgical decompression of the spine: a case series of eight patients.

    PubMed

    Visser, Jetze; Verra, Wiebe C; Kuijlen, Jos M; Horsting, Philip P; Journée, Henricus L

    2014-12-01

    This study aimed to illustrate the recovery of transcranial electrical stimulation motor evoked potentials during surgical decompression of the spinal cord in patients with impaired motor function preoperatively. Specific attention was paid to the duration of neurologic symptoms before surgery and the postoperative clinical recovery. A case series of eight patients was selected from a cohort of 74 patients that underwent spine surgery. The selected patients initially had low or absent transcranial electrical stimulation motor evoked potentials followed by a significant increase after surgical decompression of the spinal cord. A significant intraoperative increase in amplitude of motor evoked potentials was detected after decompression of the spinal cord or cauda equina in patients suffering from spinal canal stenosis (n = 2), extradural meningioma (n = 3), or a herniated nucleus polposus (n = 3). This was related to an enhanced neurologic outcome only if patients (n = 6) had a short onset (less than ½ year) of neurologic impairment before surgery. In patients with a short onset of neurologic impairment because of compression of the spinal cord or caudal fibers, an intraoperative recovery of transcranial electrical stimulation motor evoked potentials can indicate an improvement of motor function postoperatively. Therefore, transcranial electrical stimulation motor evoked potentials can be considered as a useful tool to the surgeon to monitor the quality of decompression of the spinal cord.

  11. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats

    PubMed Central

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-01-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord. PMID:29557386

  12. Differential effects of subcutaneous electrical stimulation (SQS) and transcutaneous electrical nerve stimulation (TENS) in rodent models of chronic neuropathic or inflammatory pain.

    PubMed

    Vera-Portocarrero, Louis P; Cordero, Toni; Billstrom, Tina; Swearingen, Kim; Wacnik, Paul W; Johanek, Lisa M

    2013-01-01

    Electrical stimulation has been used for many years for the treatment of pain. Present-day research demonstrates that stimulation targets and parameters impact the induction of specific pain-modulating mechanisms. New targets are increasingly being investigated clinically, but the scientific rationale for a particular target is often not well established. This present study compares the behavioral effects of targeting peripheral axons by electrode placement in the subcutaneous space vs. electrode placement on the surface of the skin in a rodent model. Rodent models of inflammatory and neuropathic pain were used to investigate subcutaneous electrical stimulation (SQS) vs. transcutaneous electrical nerve stimulation (TENS). Electrical parameters and relative location of the leads were held constant under each condition. SQS had cumulative antihypersensitivity effects in both inflammatory and neuropathic pain rodent models, with significant inhibition of mechanical hypersensitivity observed on days 3-4 of treatment. In contrast, reduction of thermal hyperalgesia in the inflammatory model was observed during the first four days of treatment with SQS, and reduction of cold allodynia in the neuropathic pain model was seen only on the first day with SQS. TENS was effective in the inflammation model, and in agreement with previous studies, tolerance developed to the antihypersensitivity effects of TENS. With the exception of a reversal of cold hypersensitivity on day 1 of testing, TENS did not reveal significant analgesic effects in the neuropathic pain rodent model. The results presented show that TENS and SQS have different effects that could point to unique biologic mechanisms underlying the analgesic effect of each therapy. Furthermore, this study is the first to demonstrate in an animal model that SQS attenuates neuropathic and inflammatory-induced pain behaviors. © 2013 Medtronic, Inc.

  13. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue.

    PubMed

    Maidhof, Robert; Tandon, Nina; Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana

    2012-11-01

    Maintenance of normal myocardial function depends intimately on synchronous tissue contraction, driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue but, due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation and unconstrained (i.e. not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate these three key factors in concert. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modelling studies. We then cultured cardiac cells obtained from neonatal rats in porous, channelled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After 8 days of culture, constructs grown with simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23 ± 0.10% vs 0.14 ± 0.05%, 0.13 ± 0.08% or 0.09 ± 0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization compared to control groups. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    PubMed

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.

    PubMed

    2017-01-01

    Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers reported that pressure injuries were burdensome and reduced their quality of life. Patients and caregivers also noted that electrical stimulation seemed to reduce the time it took the wounds to heal. While electrical stimulation is safe to use (GRADE quality of evidence: high) there is uncertainty about whether it improves wound healing (GRADE quality of evidence: low). In Ontario, publicly funding electrical stimulation for pressure injuries could result in extra costs of $0.77 to $3.85 million yearly for the next 5 years.

  16. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.

    PubMed

    Fonoff, Erich Talamoni; Dale, Camila Squarzoni; Pagano, Rosana Lima; Paccola, Carina Cicconi; Ballester, Gerson; Teixeira, Manoel Jacobsen; Giorgi, Renata

    2009-01-03

    Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids.

  17. Effect of Electrical Stimulation of the Suprahyoid Muscles in Brain-Injured Patients with Dysphagia.

    PubMed

    Beom, Jaewon; Oh, Byung-Mo; Choi, Kyoung Hyo; Kim, Won; Song, Young Jin; You, Dae Sang; Kim, Sang Jun; Han, Tai Ryoon

    2015-08-01

    The purpose of this study is to determine whether neuromuscular electrical stimulation of the suprahyoid muscle is effective compared to that of the infrahyoid muscle in brain-injured patients with dysphagia. A total of 132 patients with stroke, traumatic brain injury, or brain tumor in 2 university hospitals were allocated to 2 groups: those who received electrical stimulation therapy (EST) on the suprahyoid muscles (SM group, n = 66) and those who received EST with one pair of electrodes on the suprahyoid muscle and the other pair on the infrahyoid muscle (SI group, n = 66). Patients received 11.2 ± 3.4 sessions of electrical stimulation in the SM group and 11.9 ± 3.4 sessions in the SI group. The functional dysphagia scale (FDS), swallow function score (SFS), supraglottic penetration, and subglottic aspiration were measured using videofluoroscopic swallowing study. FDS scores decreased from 42.0 ± 19.1 to 32.3 ± 17.8 in the SM group and from 44.8 ± 17.4 to 32.9 ± 18.8 in the SI group by per-protocol (PP) analysis, and those decreased from 41.2 ± 20.9 to 34.5 ± 20.3 in the SM group and from 44.3 ± 19.1 to 35.7 ± 20.5 in the SI group by intention-to-treat (ITT) analysis, after electrical stimulation (p < 0.001 for each). SFSs increased from 3.3 ± 1.8 to 4.2 ± 1.6 in the SM group and from 2.8 ± 1.8 to 4.0 ± 1.8 in the SI group by PP analysis, and those increased from 3.3 ± 1.6 to 3.9 ± 1.6 in the SM group and from 2.8 ± 1.9 to 3.6 ± 2.0 in the SI group by ITT analysis, after electrical stimulation (p < 0.001, respectively). However, changes in FDS scores, SFSs, penetration, and aspiration were comparable between the SM and the SI groups. The results suggest that both SM and SI therapies induced similar improvements in swallowing function in brain-injured patients.

  18. Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation.

    PubMed

    Arabi, K; Sawan, M A

    1999-06-01

    An advanced stimulator for neuromuscular stimulation of spinal cord injured patients has been developed. The stimulator is externally controlled and powered by a single encoded radio frequency carrier and has four independently controlled bipolar stimulation channels. It offers a wide range of reprogrammability and flexibility, and can be used in many neuromuscular electrical stimulation applications. The implant system is adaptable to patient's needs and to future developments in stimulation algorithms by reprogramming the stimulator. The stimulator is capable of generating a wide range of stimulation waveforms and stimulation patterns and therefore is very suitable for selective nerve stimulation techniques. The reliability of the implant has been increased by using a forward error detection and correction communication protocol and by designing the chip for structural testability based on scan test approach. Implemented testability scheme makes it possible to verify the complete functionality of the implant before and after implantation. The stimulators architecture is designed to be modular and therefore its different blocks can be reused as standard building blocks in the design and implementation of other neuromuscular prostheses. Design for low-power techniques have also been employed to reduce power consumption of the electronic circuitry.

  19. Hair growth-promotion effects of different alternating current parameter settings are mediated by the activation of Wnt/β-catenin and MAPK pathway.

    PubMed

    Sohn, Ki Min; Jeong, Kwan Ho; Kim, Jung Eun; Park, Young Min; Kang, Hoon

    2015-12-01

    Electrical stimulation is being used in variable skin therapeutic conditions. There have been clinical studies demonstrating the positive effect of electrical stimuli on hair regrowth. However, the underlying exact mechanism and optimal parameter settings are not clarified yet. To investigate the effects of different parameter settings of electrical stimuli on hair growth by examining changes in human dermal papilla cells (hDPCs) in vitro and by observing molecular changes in animal tissue. In vitro, cultured hDPCs were electrically stimulated with different parameter settings at alternating current (AC). Cell proliferation was measured by MTT assay. The Ki67 expression was measured by immunofluorescence. Hair growth-related gene expressions were measured by RT-PCR. In animal model, different parameter settings of AC were applied to the shaved dorsal skin of rabbit for 8 weeks. Expression of hair-related genes in the skin of rabbit was examined by RT-PCR. At low voltage power (3.5 V) and low frequency (1 or 2 MHz) with AC, in vitro proliferation of hDPCs was successfully induced. A significant increase in Wnt/β-catenin, Ki67, p-ERK and p-AKT expressions was observed under the aforementioned settings. In animal model, hair regrowth was observed in the entire stimulated areas under individual conditions. Expression of hair-related genes in the skin significantly increased on the 6th week of treatment. There are optimal conditions for electrical stimulated hair growth, and they might be different in the cells, animals and human tissues. Electrical stimuli induce mechanisms such as the activation of Wnt/β-catenin and MAPK pathway in hair follicles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The effects of neuromuscular electrical stimulation at different frequencies on the activations of deep abdominal stabilizing muscles.

    PubMed

    Cho, Hee Kyung; Jung, Gil Su; Kim, Eun Hyuk; Cho, Yun Woo; Kim, Sang Woo; Ahn, Sang Ho

    2016-01-01

    Low back pain is associated with transversus abdominis (TrA) dysfunction. Recently, it was proposed that Neuromuscular Electrical Stimulation (NMES) could be used to stimulate deep abdominal muscle contractions and improve lumbopelvic stability. The purpose of this study was to determine the optimal stimulation frequency required during NMES for the activation of deep abdominal muscles. Twenty healthy volunteers between the ages of 24 and 32 were included. The portable research-stimulator was applied using a 10 second contraction time, and a 10 second resting time at 20 Hz, 50 Hz, and 80 Hz. Changes in muscle thicknesses were determined for the TrA, obliquus internus (OI), and obliquus externus (OE) by real time ultrasound imaging. Significant thickness increases in the TrA, OI, and OE were observed during NMES versus the resting state (p < 0.05). Of the frequencies examined, 50 Hz NMES produced the greatest increase in TrA thickness (1.33 fold as compared with 1.22 fold at 20 Hz and 1.21 fold at 80 Hz) (p < 0.05). Our results indicate that NMES can preferentially stimulate contractions in deep abdominal stabilizing muscles. Most importantly, 50 Hz NMES produced greater muscle thickness increases than 20 or 80 Hz.

  1. Relaxations of the isolated portal vein of the rabbit induced by nicotine and electrical stimulation

    PubMed Central

    Hughes, J.; Vane, J. R.

    1970-01-01

    1. A pharmacological analysis of the inhibitory innervation of the isolated portal vein of the rabbit has been made. 2. In untreated preparations, transmural stimulation elicited a long-lasting relaxation at low frequencies (0·2-1 Hz); at higher frequencies a contraction followed by a prolonged after-relaxation occurred. Tetrodotoxin abolished the contractions but a higher dose was required to abolish the relaxations. Veratrine lowered the threshold of stimulation for producing relaxations in the untreated vein. The relaxations were unaffected by hyoscine or hexamethonium. They were reduced or altered by antagonists of α-adrenoceptors for catecholamines and by adrenergic neurone blockade. They were sometimes slightly reduced by antagonists of β-adrenoceptors. 3. In the presence of antagonists of α-adrenoceptors, electrical stimulation elicited relaxations which increased with frequency of stimulation and became maximal at 20-30 Hz. These relaxations were partially reduced by antagonists of β-adrenoceptors, or by adrenergic neurone block; the antagonisms were more pronounced at the higher frequencies of stimulation. Noradrenaline also caused relaxations which were abolished by β-adrenoceptor blocking drugs. Cocaine increased the sensitivity to noradrenaline by 7-8 fold after α-adrenoceptor blockade but had little or no effect on the relaxations induced by electrical stimulation at high frequencies. 4. In the presence of antagonists of α- and β-adrenoceptors, or adrenergic neurone blocking agents, or in veins taken from rabbits pretreated with reserpine, electrical stimulation elicited rapid relaxations which were greatest at 20-30 Hz. These relaxations were increased by veratrine and abolished by tetrodotoxin or by storing the vein for 9 days at 4° C. They were unaffected by antagonists of acetylcholine, or by dipyridamole. 5. Prostaglandins E1, E2 and F2α inhibited contractions elicited by electrical stimulation and noradrenaline, but in higher doses caused contractions themselves. 6. Nicotine (10-6-10-5 g/ml) relaxed the portal vein; higher concentrations elicited mixed inhibitory and excitatory effects. All these effects were abolished by tetrodotoxin, cocaine, hexamethonium or storage. The contractor effects were abolished by drugs or procedures that blocked adrenergic mechanisms. 7. The relaxations produced by nicotine in untreated preparations and in veins from rabbits pretreated with reserpine were mediated mainly by a non-adrenergic non-cholinergic nervous mechanism. Relaxations induced by nicotine in the presence of antagonists of a-adrenoceptors were only partially antagonized by antagonists of f3-adrenoceptors. 8. It was concluded that all the effects of nicotine and transmural stimulation were mediated by nerves. Part of the inhibitory effects was mediated by non-adrenergic, non-cholinergic nerves. PMID:4394338

  2. Stimulus-dependent regulation of nuclear Ca2+ signaling in cardiomyocytes: a role of neuronal calcium sensor-1.

    PubMed

    Nakao, Shu; Wakabayashi, Shigeo; Nakamura, Tomoe Y

    2015-01-01

    In cardiomyocytes, intracellular calcium (Ca2+) transients are elicited by electrical and receptor stimulations, leading to muscle contraction and gene expression, respectively. Although such elevations of Ca2+levels ([Ca2+]) also occur in the nucleus, the precise mechanism of nuclear [Ca2+] regulation during different kinds of stimuli, and its relationship with cytoplasmic [Ca2+] regulation are not fully understood. To address these issues, we used a new region-specific fluorescent protein-based Ca2+ indicator, GECO, together with the conventional probe Fluo-4 AM. We confirmed that nuclear Ca2+ transients were elicited by both electrical and receptor stimulations in neonatal mouse ventricular myocytes. Kinetic analysis revealed that electrical stimulation-elicited nuclear Ca2+ transients are slower than cytoplasmic Ca2+ transients, and chelating cytoplasmic Ca2+ abolished nuclear Ca2+ transients, suggesting that nuclear Ca2+ are mainly derived from the cytoplasm during electrical stimulation. On the other hand, receptor stimulation such as with insulin-like growth factor-1 (IGF-1) preferentially increased nuclear [Ca2+] compared to cytoplasmic [Ca2+]. Experiments using inhibitors revealed that electrical and receptor stimulation-elicited Ca2+ transients were mainly mediated by ryanodine receptors and inositol 1,4,5-trisphosphate receptors (IP3Rs), respectively, suggesting different mechanisms for the two signals. Furthermore, IGF-1-elicited nuclear Ca2+ transient amplitude was significantly lower in myocytes lacking neuronal Ca2+ sensor-1 (NCS-1), a Ca2+ binding protein implicated in IP3R-mediated pathway in the heart. Moreover, IGF-1 strengthened the interaction between NCS-1 and IP3R. These results suggest a novel mechanism for receptor stimulation-induced nuclear [Ca2+] regulation mediated by IP3R and NCS-1 that may further fine-tune cardiac Ca2+ signal regulation.

  3. Electrostimulation of rat callus cells and human lymphocytes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aro, H.; Eerola, E.; Aho, A.J.

    1984-01-01

    Asymmetrical pulsing low voltage current was supplied via electrodes to cultured rat fracture callus cells and human peripheral blood lymphocytes. The (/sup 3/H)thymidine incorporation of the callus cells and 5-(/sup 125/I)iodo-2'-deoxyuridine incorporation of the lymphocytes were determined. The growth pattern of callus cells (estimated by cellular density) did not respond to electrical stimulation. However, the uptake of (/sup 3/H)thymidine was increased at the early phase of cell proliferation and inhibited at later phases of proliferation. The (/sup 3/H)thymidine uptake of confluent callus cell cultures did not respond to electrical stimulation. Lymphocytes reacted in a similar way; stimulated cells took upmore » more DNA precursor than control cells at the early phase of stimulation. During cell division, induced by the mitogens phytohemagglutinin and Concanavalin-A, the uptake of DNA precursor by stimulated cells was constantly inhibited. The results suggest that electrical stimuli affect the uptake mechanisms of cell membranes. The duality of the effect seems to be dependent on the cell cycle.« less

  4. Transcutaneous Electrical Nerve Stimulation Improves Walking Performance in Patients With Intermittent Claudication.

    PubMed

    Seenan, Chris; McSwiggan, Steve; Roche, Patricia A; Tan, Chee-Wee; Mercer, Tom; Belch, Jill J F

    2016-01-01

    The purpose of this study was to investigate the effects of 2 types of transcutaneous electrical nerve stimulation (TENS) on walking distance and measures of pain in patients with peripheral arterial disease (PAD) and intermittent claudication (IC). In a phase 2a study, 40 participants with PAD and IC completed a graded treadmill test on 2 separate testing occasions. Active TENS was applied to the lower limb on the first occasion; and placebo TENS, on the second. The participants were divided into 2 experimental groups. One group received high-frequency TENS; and the other, low-frequency TENS. Measures taken were initial claudication distance, functional claudication distance, and absolute claudication distance. The McGill Pain Questionnaire (MPQ) vocabulary was completed at the end of the intervention, and the MPQ-Pain Rating Index score was calculated. Four participants were excluded from the final analysis because of noncompletion of the experimental procedure. Median walking distance increased with high-frequency TENS for all measures (P < .05, Wilcoxon signed rank test, all measures). Only absolute claudication distance increased significantly with low-frequency TENS compared with placebo (median, 179-228; Ws = 39; z = 2.025; P = .043; r = 0.48). No difference was observed between reported median MPQ-Pain Rating Index scores: 21.5 with placebo TENS and 21.5 with active TENS (P = .41). Transcutaneous electrical nerve stimulation applied to the lower limb of the patients with PAD and IC was associated with increased walking distance on a treadmill but not with any reduction in pain. Transcutaneous electrical nerve stimulation may be a useful adjunctive intervention to help increase walking performance in patients with IC.

  5. Effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy

    PubMed Central

    Choi, Jong-Bae

    2016-01-01

    [Purpose] The aim of this study was to investigate the effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. [Subjects and Methods] Nine subjects received the electrical stimulation and traditional dysphagia therapy. Electrical stimulation was applied to stimulate each subject’s facial muscles 30 minutes a day, 5 days a week, for 4 weeks. [Results] Subjects showed significant improvement in cheek and lip strength and oral function after the intervention. [Conclusion] This study demonstrates that electrical stimulation improves facial muscle strength and oral function in stroke patients with dysphagia. PMID:27799689

  6. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed

    Sun, J; Sakamoto, T; Chung, K F

    1995-08-01

    Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation.

  7. Amygdala stimulation promotes recovery of behavioral performance in a spatial memory task and increases GAP-43 and MAP-2 in the hippocampus and prefrontal cortex of male rats.

    PubMed

    Mercerón-Martínez, D; Almaguer-Melian, W; Alberti-Amador, E; Bergado, J A

    2018-06-19

    The relationships between affective and cognitive processes are an important issue of present neuroscience. The amygdala, the hippocampus and the prefrontal cortex appear as main players in these mechanisms. We have shown that post-training electrical stimulation of the basolateral amygdala (BLA) speeds the acquisition of a motor skill, and produces a recovery in behavioral performance related to spatial memory in fimbria-fornix (FF) lesioned animals. BLA electrical stimulation rises bdnf RNA expression, BDNF protein levels, and arc RNA expression in the hippocampus. In the present paper we have measured the levels of one presynaptic protein (GAP-43) and one postsynaptic protein (MAP-2) both involved in synaptogenesis to assess whether structural neuroplastic mechanisms are involved in the memory enhancing effects of BLA stimulation. A single train of BLA stimulation produced in healthy animals an increase in the levels of GAP-43 and MAP-2 that lasted days in the hippocampus and the prefrontal cortex. In FF-lesioned rats, daily post-training stimulation of the BLA ameliorates the memory deficit of the animals and induces an increase in the level of both proteins. These results support the hypothesis that the effects of amygdala stimulation on memory recovery are sustained by an enhanced formation of new synapses. Copyright © 2018. Published by Elsevier Inc.

  8. In Vivo Electrochemical Evidence for Simultaneous 5-HT and Histamine Release in the Rat Substantia Nigra pars Reticulata Following Medial Forebrain Bundle Stimulation

    PubMed Central

    Hashemi, Parastoo; Dankoski, Elyse C.; Wood, Kevin M.; Ambrose, R. Ellen; Wightman, R. Mark

    2011-01-01

    Exploring the mechanisms of serotonin (5-hydoxytryptophan (5-HT)) in the brain requires an in vivo method that combines fast temporal resolution with chemical selectivity. Fast-scan cyclic voltammetry (FSCV) is a technique with sufficient temporal and chemical resolution for probing dynamic 5-HT neurotransmission events; however, traditionally it has not been possible to probe in vivo 5-HT mechanisms. Recently, we optimized FSCV for measuring 5-HT release and uptake in vivo in the substantia nigra pars reticulata (SNR) with electrical stimulation of the dorsal raphe nucleus (DRN) in the rat brain. Here, we address technical challenges associated with rat DRN surgery by electrically stimulating 5-HT projections in the medial forebrain bundle (MFB), a more accessible anatomical location. MFB stimulation elicits 5-HT in the SNR; furthermore, we find simultaneous release of an additional species. We use electrochemical and pharmacological methods and describe physiological, anatomical and independent chemical analyses to identify this species as histamine. We also show pharmacologically that increasing the lifetime of extracellular histamine significantly decreases 5-HT release, most likely due to increased activation of histamine H-3 receptors that inhibit 5-HT release. Despite this, under physiological conditions, we find by kinetic comparisons of DRN and MFB stimulations that the simultaneous release of histamine does not interfere with the quantitative 5-HT concentration profile. We therefore present a novel and robust electrical stimulation of the MFB that is technically less challenging than DRN stimulation to study 5-HT and histamine release in the SNR. PMID:21682723

  9. Potentiated antibodies to mu-opiate receptors: effect on integrative activity of the brain.

    PubMed

    Geiko, V V; Vorob'eva, T M; Berchenko, O G; Epstein, O I

    2003-01-01

    The effect of homeopathically potentiated antibodies to mu-receptors (10(-100) wt %) on integrative activity of rat brain was studied using the models of self-stimulation of the lateral hypothalamus and convulsions produced by electric current. Electric current was delivered through electrodes implanted into the ventromedial hypothalamus. Single treatment with potentiated antibodies to mu-receptors increased the rate of self-stimulation and decreased the threshold of convulsive seizures. Administration of these antibodies for 7 days led to further activation of the positive reinforcement system and decrease in seizure thresholds. Distilled water did not change the rate of self-stimulation and seizure threshold.

  10. Effects of neuromuscular electrical stimulation combined with effortful swallowing on post-stroke oropharyngeal dysphagia: a randomised controlled trial.

    PubMed

    Park, J-S; Oh, D-H; Hwang, N-K; Lee, J-H

    2016-06-01

    Neuromuscular electrical stimulation (NMES) has been used as a therapeutic intervention for dysphagia. However, the therapeutic effects of NMES lack supporting evidence. In recent years, NMES combined with traditional swallowing therapy has been used to improve functional recovery in patients with post-stroke dysphagia. This study aimed to investigate the effects of effortful swallowing combined with neuromuscular electrical stimulation on hyoid bone movement and swallowing function in stroke patients. Fifty stroke patients with mild dysphagia who were able to swallow against the resistance applied by using NMES and cooperate actively in training were included. This study was designed as a 6-week single-blind, randomised, controlled study. In the experimental group, two pairs of electrodes were placed horizontally in the infrahyoid region to depress the hyoid bone. The NMES intensity was increased gradually until the participants felt a grabbing sensation in their neck and performed an effortful swallow during the stimulation. In the placebo group, the same procedure was followed except for the intensity, which was increased gradually until the participants felt an electrical sensation. All participants underwent this intervention for 30 min per session, 5 sessions per week, for 6 weeks. Videofluoroscopic swallowing studies (VFSS) were carried out before and after the intervention and kinematics of the hyoid bone and swallowing function were analysed based on the VFSS. The experimental group revealed a significant increase in anterior and superior hyoid bone movement and the pharyngeal phase of the swallowing function. This intervention can be used as a novel remedial approach in dysphagic stroke patients. © 2016 John Wiley & Sons Ltd.

  11. Effect of LKB1 deficiency on mitochondrial content, fiber type, and muscle performance in the mouse diaphragm

    PubMed Central

    Brown, Jacob D.; Hancock, Chad R.; Mongillo, Anthony D.; Barton, J. Benjamin; DiGiovanni, Ryan A.; Parcell, Allen C.; Winder, William W.; Thomson, David M.

    2010-01-01

    Aim The Liver Kinase B1 (LKB1)/AMP-Activated Protein Kinase (AMPK) signaling pathway is a major regulator of skeletal muscle metabolic processes. During exercise, LKB1-mediated phosphorylation of AMPK leads to its activation, promoting mitochondrial biogenesis and glucose transport, among other effects. The roles of LKB1 and AMPK have not been fully characterized in the diaphragm. Methods Two methods of AMPK activation were used to characterize LKB1/AMPK signaling in diaphragms from muscle-specific LKB1 knockout (KO) and littermate control mice: (1) acute injection of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and (2) 5-min direct electrical stimulation of the diaphragm. Diaphragms were excised 60 minutes post-AICAR injection and immediately after electrical stimulation. Results AMPK phosphorylation increased with AICAR and electrical stimulation in control but not KO mice. Acetyl CoA carboxylase phosphorylation increased with AICAR in control but not KO mice, but increased in both genotypes with electrical stimulation. While the majority of mitochondrial protein levels were lower in KO diaphragms, uncoupling protein 3, complex I, and cytochrome oxidase IV protein levels were not different between genotypes. KO diaphragms have a lower percentage of IIx fibers and an elevated percentage of IIb fibers when compared to control diaphragms. While in vitro peak force generation was similar between genotypes, KO diaphragms fatigued more quickly and had an impaired ability to recover. Conclusion LKB1 regulates AMPK phosphorylation, mitochondrial protein expression, fiber type distribution, as well as recovery of the diaphragm from fatigue. PMID:21073663

  12. Autonomous Optimization of Targeted Stimulation of Neuronal Networks

    PubMed Central

    Kumar, Sreedhar S.; Wülfing, Jan; Okujeni, Samora; Boedecker, Joschka; Riedmiller, Martin

    2016-01-01

    Driven by clinical needs and progress in neurotechnology, targeted interaction with neuronal networks is of increasing importance. Yet, the dynamics of interaction between intrinsic ongoing activity in neuronal networks and their response to stimulation is unknown. Nonetheless, electrical stimulation of the brain is increasingly explored as a therapeutic strategy and as a means to artificially inject information into neural circuits. Strategies using regular or event-triggered fixed stimuli discount the influence of ongoing neuronal activity on the stimulation outcome and are therefore not optimal to induce specific responses reliably. Yet, without suitable mechanistic models, it is hardly possible to optimize such interactions, in particular when desired response features are network-dependent and are initially unknown. In this proof-of-principle study, we present an experimental paradigm using reinforcement-learning (RL) to optimize stimulus settings autonomously and evaluate the learned control strategy using phenomenological models. We asked how to (1) capture the interaction of ongoing network activity, electrical stimulation and evoked responses in a quantifiable ‘state’ to formulate a well-posed control problem, (2) find the optimal state for stimulation, and (3) evaluate the quality of the solution found. Electrical stimulation of generic neuronal networks grown from rat cortical tissue in vitro evoked bursts of action potentials (responses). We show that the dynamic interplay of their magnitudes and the probability to be intercepted by spontaneous events defines a trade-off scenario with a network-specific unique optimal latency maximizing stimulus efficacy. An RL controller was set to find this optimum autonomously. Across networks, stimulation efficacy increased in 90% of the sessions after learning and learned latencies strongly agreed with those predicted from open-loop experiments. Our results show that autonomous techniques can exploit quantitative relationships underlying activity-response interaction in biological neuronal networks to choose optimal actions. Simple phenomenological models can be useful to validate the quality of the resulting controllers. PMID:27509295

  13. Autonomous Optimization of Targeted Stimulation of Neuronal Networks.

    PubMed

    Kumar, Sreedhar S; Wülfing, Jan; Okujeni, Samora; Boedecker, Joschka; Riedmiller, Martin; Egert, Ulrich

    2016-08-01

    Driven by clinical needs and progress in neurotechnology, targeted interaction with neuronal networks is of increasing importance. Yet, the dynamics of interaction between intrinsic ongoing activity in neuronal networks and their response to stimulation is unknown. Nonetheless, electrical stimulation of the brain is increasingly explored as a therapeutic strategy and as a means to artificially inject information into neural circuits. Strategies using regular or event-triggered fixed stimuli discount the influence of ongoing neuronal activity on the stimulation outcome and are therefore not optimal to induce specific responses reliably. Yet, without suitable mechanistic models, it is hardly possible to optimize such interactions, in particular when desired response features are network-dependent and are initially unknown. In this proof-of-principle study, we present an experimental paradigm using reinforcement-learning (RL) to optimize stimulus settings autonomously and evaluate the learned control strategy using phenomenological models. We asked how to (1) capture the interaction of ongoing network activity, electrical stimulation and evoked responses in a quantifiable 'state' to formulate a well-posed control problem, (2) find the optimal state for stimulation, and (3) evaluate the quality of the solution found. Electrical stimulation of generic neuronal networks grown from rat cortical tissue in vitro evoked bursts of action potentials (responses). We show that the dynamic interplay of their magnitudes and the probability to be intercepted by spontaneous events defines a trade-off scenario with a network-specific unique optimal latency maximizing stimulus efficacy. An RL controller was set to find this optimum autonomously. Across networks, stimulation efficacy increased in 90% of the sessions after learning and learned latencies strongly agreed with those predicted from open-loop experiments. Our results show that autonomous techniques can exploit quantitative relationships underlying activity-response interaction in biological neuronal networks to choose optimal actions. Simple phenomenological models can be useful to validate the quality of the resulting controllers.

  14. [The role of magnetic stimulation in diagnosis of the peripheral nervous system].

    PubMed

    Dressler, D; Benecke, R; Meyer, B U; Conrad, B

    1988-12-01

    Magnetic stimulation has recently been introduced as a new method for stimulation of neuronal tissues. Up to now most investigators were emphasized the advantages of this method for the investigation of the central nervous system. With this paper we want to show that magnetic stimulation may also be useful for the examination of the peripheral nervous system. Both, magnetic and electrical stimulation, seem to employ the same stimulation mechanisms in the nervous tissue. The results obtained with both methods should therefore be comparable. By measuring EMG-latencies after electrical and magnetic stimulation (Fig. 1) the exact site of magnetic stimulation can be determined. Magnetic stimulation offers major advantages over electrical stimulation: 1) Magnetic stimulation is a painless method even when high stimulus intensities are used. 2) Magnetic stimulation can reach deep neuronal structures that are not easily accessible using electrical stimulation (Fig. 2, Fig. 3). 3) Using a wide range of stimulus intensities (Fig. 4, Fig. 5) magnetic stimulation provides a much better descrimination of different components of the compound muscle action potential than electrical stimulation. Magnetic stimulation seems to be a promising new method for the electrodiagnostic examination of pain- sensitive patients, especially when deep-lying peripheral nerves have to be investigated.

  15. Electrical stimulation for gastroesophageal reflux disease: current state of the art.

    PubMed

    Kim, Sharon E; Soffer, Edy

    2016-01-01

    Patients with gastroesophageal reflux disease (GERD) who are not satisfied with acid suppression therapy can benefit primarily from fundoplication, a surgical intervention. Fundoplication has been the standard surgical procedure for GERD. It is effective but is associated with adverse effects, resulting in a declining number of interventions, creating a need for alternative interventions that are effective, yet have a better adverse effect profile. One such alternative involves the application of electrical stimulation to the lower esophageal sphincter. A number of animal studies showed that such stimulation can increase resting lower esophageal sphincter pressure. An acute human study confirmed this effect, and was followed by two open-label studies, with a follow-up of up to 3 years. Results thus far show that the therapy is associated with a significant improvement in symptoms, a significant reduction in esophageal acid exposure, and a very good safety profile. This review will describe the evolution of electrical stimulation therapy for GERD, as well as the safety and efficacy of this intervention.

  16. Comparison of treatment effect of neuromuscular electrical stimulation and thermal-tactile stimulation on patients with sub-acute dysphagia caused by stroke.

    PubMed

    Byeon, Haewon; Koh, Hyeung Woo

    2016-06-01

    [Purpose] The effectiveness of neuromuscular electrical stimulation in the rehabilitation of swallowing remains controversial. This study compared the effectiveness of neuromuscular electrical stimulation and thermal tactile oral stimulation, a traditional swallowing recovery treatment, in patients with sub-acute dysphagia caused by stroke. [Subjects and Methods] Subjects of the present study were 55 patients diagnosed with dysphagia caused by stroke. This study had a nonequivalent control group pretest-posttest design. [Results] Analysis of pre-post values of videofluoroscopic studies of the neuromuscular electrical stimulation and thermal tactile oral stimulation groups using a paired t-test showed no significant difference between the two groups despite both having decreased mean values of the videofluoroscopic studies after treatment. [Conclusion] This study's findings show that both neuromuscular electrical stimulation and thermal tactile oral stimulation significantly enhanced the swallowing function of patients with sub-acute dysphagia.

  17. Comparison of treatment effect of neuromuscular electrical stimulation and thermal-tactile stimulation on patients with sub-acute dysphagia caused by stroke

    PubMed Central

    Byeon, Haewon; Koh, Hyeung Woo

    2016-01-01

    [Purpose] The effectiveness of neuromuscular electrical stimulation in the rehabilitation of swallowing remains controversial. This study compared the effectiveness of neuromuscular electrical stimulation and thermal tactile oral stimulation, a traditional swallowing recovery treatment, in patients with sub-acute dysphagia caused by stroke. [Subjects and Methods] Subjects of the present study were 55 patients diagnosed with dysphagia caused by stroke. This study had a nonequivalent control group pretest-posttest design. [Results] Analysis of pre-post values of videofluoroscopic studies of the neuromuscular electrical stimulation and thermal tactile oral stimulation groups using a paired t-test showed no significant difference between the two groups despite both having decreased mean values of the videofluoroscopic studies after treatment. [Conclusion] This study’s findings show that both neuromuscular electrical stimulation and thermal tactile oral stimulation significantly enhanced the swallowing function of patients with sub-acute dysphagia. PMID:27390421

  18. Synchronous electrical stimulation of laryngeal muscles: an alternative for enhancing recovery of unilateral recurrent laryngeal nerve paralysis.

    PubMed

    Garcia Perez, Alejandro; Hernández López, Xochiquetzal; Valadez Jiménez, Víctor Manuel; Minor Martínez, Arturo; Ysunza, Pablo Antonio

    2014-07-01

    Although electrical stimulation of the larynx has been widely studied for treating voice disorders, its effectiveness has not been assessed under safety and comfortable conditions. This article describes design, theoretical issues, and preliminary evaluation of an innovative system for transdermal electrical stimulation of the larynx. The proposed design includes synchronization of electrical stimuli with laryngeal neuromuscular activity. To study whether synchronous electrical stimulation of the larynx could be helpful for improving voice quality in patients with dysphonia due to unilateral recurrent laryngeal nerve paralysis (URLNP). A 3-year prospective study was carried out at the Instituto Nacional de Rehabilitacion in the Mexico City. Ten patients were subjected to transdermal current electrical stimulation synchronized with the fundamental frequency of the vibration of the vocal folds during phonation. The stimulation was triggered during the phase of maximum glottal occlusion. A complete acoustic voice analysis was performed before and after the period of electrical stimulation. Acoustic analysis revealed significant improvements in all parameters after the stimulation period. Transdermal synchronous electrical stimulation of vocal folds seems to be a safe and reliable procedure for enhancing voice quality in patients with (URLNP). Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  19. Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord

    NASA Astrophysics Data System (ADS)

    Capogrosso, Marco; Gandar, Jerome; Greiner, Nathan; Moraud, Eduardo Martin; Wenger, Nikolaus; Shkorbatova, Polina; Musienko, Pavel; Minev, Ivan; Lacour, Stephanie; Courtine, Grégoire

    2018-04-01

    Objective. We recently developed soft neural interfaces enabling the delivery of electrical and chemical stimulation to the spinal cord. These stimulations restored locomotion in animal models of paralysis. Soft interfaces can be placed either below or above the dura mater. Theoretically, the subdural location combines many advantages, including increased selectivity of electrical stimulation, lower stimulation thresholds, and targeted chemical stimulation through local drug delivery. However, these advantages have not been documented, nor have their functional impact been studied in silico or in a relevant animal model of neurological disorders using a multimodal neural interface. Approach. We characterized the recruitment properties of subdural interfaces using a realistic computational model of the rat spinal cord that included explicit representation of the spinal roots. We then validated and complemented computer simulations with electrophysiological experiments in rats. We additionally performed behavioral experiments in rats that received a lateral spinal cord hemisection and were implanted with a soft interface. Main results. In silico and in vivo experiments showed that the subdural location decreased stimulation thresholds compared to the epidural location while retaining high specificity. This feature reduces power consumption and risks of long-term damage in the tissues, thus increasing the clinical safety profile of this approach. The hemisection induced a transient paralysis of the leg ipsilateral to the injury. During this period, the delivery of electrical stimulation restricted to the injured side combined with local chemical modulation enabled coordinated locomotor movements of the paralyzed leg without affecting the non-impaired leg in all tested rats. Electrode properties remained stable over time, while anatomical examinations revealed excellent bio-integration properties. Significance. Soft neural interfaces inserted subdurally provide the opportunity to deliver electrical and chemical neuromodulation therapies using a single, bio-compatible and mechanically compliant device that effectively alleviates locomotor deficits after spinal cord injury.

  20. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    NASA Astrophysics Data System (ADS)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  1. Effect of hindpaw electrical stimulation on capillary flow heterogeneity and oxygen delivery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Yuandong; Wei, Wei; Li, Chenxi; Wang, Ruikang K.

    2017-02-01

    We report a novel use of optical coherence tomography (OCT) based angiography to visualize and quantify dynamic response of cerebral capillary flow pattern in mice upon hindpaw electrical stimulation through the measurement of the capillary transit-time heterogeneity (CTH) and capillary mean transit time (MTT) in a wide dynamic range of a great number of vessels in vivo. The OCT system was developed to have a central wavelength of 1310 nm, a spatial resolution of 8 µm and a system dynamic range of 105 dB at an imaging rate of 92 kHz. The mapping of dynamic cerebral microcirculations was enabled by optical microangiography protocol. From the imaging results, the spatial homogenization of capillary velocity (decreased CTH) was observed in the region of interest (ROI) corresponding to the stimulation, along with an increase in the MTT in the ROI to maintain sufficient oxygen exchange within the brain tissue during functional activation. We validated the oxygen consumption due to an increase of the MTT through demonstrating an increase in the deoxygenated hemoglobin (HbR) during the stimulation by the use of laser speckle contrast imaging.

  2. Electrical and optical co-stimulation in the deaf white cat

    NASA Astrophysics Data System (ADS)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  3. Electrical stimulation reveals relatively ineffective sural nerve projections to dorsal horn neurons in the cat.

    PubMed

    Pubols, L M; Foglesong, M E; Vahle-Hinz, C

    1986-04-16

    Electrical stimulation of the sural nerve (SN) revealed input from sural nerve afferents to L6 and L7 dorsal horn neurons that were not apparent using natural mechanical stimuli, especially in cells with variable latency responses to SN stimulation. Nearly all (31/32) cells that had reliable, fixed latency responses to SN stimulation also had an excitatory receptive field (RF) in the region of skin innervated by the sural nerve (SN region). About one-third (20/57) of the cells with variable latency responses to SN stimulation, however, had an RF outside the SN region. Most (130/146) cells with no response to SN stimulation had RFs outside the SN region. There were no obvious differences between variable latency cells with RFs in the SN region vs those with RFs outside it in latency of response to SN stimulation, recording depth, RF sizes or modality properties. In a subsample of 31 postsynaptic dorsal column neurons all cells responding to SN stimulation also had an RF in the SN region. Strengthening of relatively ineffective projections from the sural nerve by lesions might be expected to lead to an increase in the proportion of cells responding with impulses to natural stimulation of the skin innervated by the sural nerve, and, hence, to an increase in average RF size.

  4. [A comparison of time resolution among auditory, tactile and promontory electrical stimulation--superiority of cochlear implants as human communication aids].

    PubMed

    Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T

    1992-09-01

    Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.

  5. Capacitive Feedthroughs for Medical Implants

    PubMed Central

    Grob, Sven; Tass, Peter A.; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging. PMID:27660602

  6. Capacitive Feedthroughs for Medical Implants.

    PubMed

    Grob, Sven; Tass, Peter A; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  7. Inter-electrode tissue resistance is not affected by tissue oedema when electrically stimulating the lower limb of sepsis patients.

    PubMed

    Durfee, William K; Young, Joseph R; Ginz, Hans F

    2014-05-01

    ICU patients typically are given large amounts of fluid and often develop oedema. The purpose of this study was to evaluate whether the oedema would change inter-electrode resistance and, thus, require a different approach to using non-invasive electrical stimulation of nerves to assess muscle force. Inter-electrode tissue resistance in the lower leg was measured by applying a 300 µs constant current pulse and measuring the current through and voltage across the stimulating electrodes. The protocol was administered to nine ICU patients with oedema, eight surgical patients without oedema and eight healthy controls. No significant difference in inter-electrode resistance was found between the three groups. For all groups, resistance decreased as stimulation current increased. In conclusion, inter-electrode resistance in ICU patients with severe oedema is the same as the resistance in regular surgical patients and healthy controls. This means that non-invasive nerve stimulation devices do not need to be designed to accommodate different resistances when used with oedema patients; however, surface stimulation does require higher current levels with oedema patients because of the increased distance between the skin surface and the targeted nerve or muscle.

  8. Electrically responsive microstructured polypyrrole-polyurethane composites for stimulated osteogenesis

    NASA Astrophysics Data System (ADS)

    Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Zamfirescu, Marian; Dinescu, Maria; Calin, Bogdan Stefanita; Popescu, Andrei; Chioibasu, Diana; Cristian, Dan; Paun, Irina Alexandra

    2018-03-01

    In this work, we demonstrate the efficiency of substrate-mediated electrical stimulation of micropatterned polypyrrole/polyurethane (PPy/PU) composites for enhancing the osteogenesis in osteoblast-like cells. The PPy/PU substrates were obtained by dispersing electrically conductive PPy nanograins within a mechanically resistant PU matrix. Spin-coated PPy/PU layers were micropatterned with predefined 3D geometries by ultrashort laser ablation. Then they were conformally coated by Matrix Assisted Pulsed Laser Evaporation, in order to restore their chemical and electrical integrity. The chemical structure of the laser-processed PPy/PU substrates was investigated by 2D and 3D mapping of the laser-processed areas, via Raman microspectroscopy. In vitro studies revealed that the micropatterned PPy/PU substrates facilitated the topological and electrical communication of the seeded osteoblasts. Specifically, we demonstrated the cells attachment on the predefined 3D micropatterns. More importantly, we found evidence about the cells mineralization inside the 3D micropatterns by investigating the calcium deposits by Energy-Dispersive X-Ray Spectroscopy (EDS) and Alizarin Red staining. We found that the substrate-mediated electrical stimulation of the PPy/PU substrates induced a twofold increase of the Ca deposits in the cultured cells.

  9. Nanomaterial-Enabled Neural Stimulation

    PubMed Central

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  10. Effect of electrical stimulation therapy on upper extremity functional recovery and cerebral cortical changes in patients with chronic hemiplegia.

    PubMed

    Sasaki, Kana; Matsunaga, Toshiki; Tomite, Takenori; Yoshikawa, Takayuki; Shimada, Yoichi

    2012-04-01

    Hemiplegia is a common sequel of stroke and assisted living care is needed in many cases. The purpose of this study was to evaluate the effect of using surface electrode stimulation device in rehabilitation, in terms of functional improvement in upper limb and the changes in brain activation related to central nervous system reconstruction. Five patients with chronic hemiplegia received electrical stimulation therapy using the orthosis-type surface electrode stimulation device for 12 weeks. Training time was 30 min/day for the first weeks, and increased 30 min/day in every 4 weeks. Upper limb outcome measures included Brunnstrom stage, range of motion, Fugl-Meyer assessment and manual function test. Brain activation was measured using functional MRI. After therapy with therapeutic electrical stimulation (TES) for 12 weeks upper limb function improved in all cases. The results of brain activation showed two patterns. In the first, the stimulation produced an activity in the bilateral somatosensory cortices (SMC), which was seen to continue over time. The second, activation was bilateral and extensive before stimulation, but localized to the SMC after intervention. Treatment with TES using an orthosis-type electrode stimulation device improves upper limb function in chronic hemiplegia patients. The present findings suggest that there are not only efferent but also afferent effects that may promote central nervous system remodeling.

  11. A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.

    PubMed

    Chang, Gwo-Ching

    2013-01-01

    Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.

  12. [Physiotherapy in Women with Overactive Bladder].

    PubMed

    Henscher, U; Tholen, R; Kirschner-Hermanns, R

    2016-08-01

    As regards treatment for overactive bladder, physiotherapeutic interventions can be seen as an alternative to drug treatment. Targeted pelvic floor and bladder training is used to decrease the number of voids and the incontinence episodes or to increase the average voided volume in women with overactive bladder (3 systematic reviews with evidence level 1/1a).An additional option to treat women with overactive bladder is to use functional electrical stimulation and magnetic stimulation.2 systematic reviews 1 2 and 2 RCTs 3 4 reveal a low level of evidence (2 studies with level 2/2b) for the use of electrical stimulation (transcutaneous, vaginal or transanal) to reduce incontinence episodes and the number of voids and to increase the average voided volume. The trial from Yamanishi et al. (2014) shows that magnetic stimulation has a positive effect 5. Further studies are needed to evaluate the benefit of conservative treatment procedures for overactive bladder. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment

    PubMed Central

    Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years. Patients and caregivers reported that pressure injuries were burdensome and reduced their quality of life. Patients and caregivers also noted that electrical stimulation seemed to reduce the time it took the wounds to heal. Conclusions While electrical stimulation is safe to use (GRADE quality of evidence: high) there is uncertainty about whether it improves wound healing (GRADE quality of evidence: low). In Ontario, publicly funding electrical stimulation for pressure injuries could result in extra costs of $0.77 to $3.85 million yearly for the next 5 years. PMID:29201261

  14. Multi-Scale Computational Models for Electrical Brain Stimulation

    PubMed Central

    Seo, Hyeon; Jun, Sung C.

    2017-01-01

    Electrical brain stimulation (EBS) is an appealing method to treat neurological disorders. To achieve optimal stimulation effects and a better understanding of the underlying brain mechanisms, neuroscientists have proposed computational modeling studies for a decade. Recently, multi-scale models that combine a volume conductor head model and multi-compartmental models of cortical neurons have been developed to predict stimulation effects on the macroscopic and microscopic levels more precisely. As the need for better computational models continues to increase, we overview here recent multi-scale modeling studies; we focused on approaches that coupled a simplified or high-resolution volume conductor head model and multi-compartmental models of cortical neurons, and constructed realistic fiber models using diffusion tensor imaging (DTI). Further implications for achieving better precision in estimating cellular responses are discussed. PMID:29123476

  15. Focal clonus elicited by electrical stimulation of the motor cortex in humans.

    PubMed

    Hamer, Hajo M; Lüders, Hans O; Rosenow, Felix; Najm, Imad

    2002-09-01

    Focal clonic seizures are a frequent epileptic phenomenon. However, there are little data about their pathomechanism. In four patients with focal epilepsy and subdural electrodes, focal clonus was elicited by electrical stimulation of the motor cortex. Three additional patients underwent intraoperative stimulation of the spinal cord. Rhythmic clonic muscle responses were elicited by cortical stimulation with 20-50 Hz. The clonus consisted of simultaneous trains of compound muscle action potentials (CMAP) in agonistic and antagonistic muscles alternating with periods of muscular silence despite continuous stimulation. Clonus frequency decreased from 4.0-8.0 Hz at 50 Hz stimulation to 3.0-3.5 Hz at 20 Hz paralleled by a prolongation of the trains of CMAP. The stimulation frequency correlated with the number of stimuli blocked during relaxation. During the stable stimulation periods, the clonus frequency decreased over time. The number of stimuli which formed a train of CMAP and which were blocked during relaxation increased towards the end of the stimulation periods. Increasing intensity of stimulation at the same frequency converted a clonic to a tonic response. There was always an 1:1 relationship between stimulus and CMAP during spinal cord stimulation. We hypothesize that during cortical stimulation, clonus is elicited by synchronous activation of pyramidal tract (PT) neurons which results in excitation of intracortical GABA(B)ergic interneurons by recurrent axon-collaterals. This leads to stepwise hyperpolarization of PT neurons intermittently suppressing the output of PT neurons despite continuous stimulation. This mechanism can explain our finding that temporal and spatial summation of the stimuli were needed for clonus generation. Copyright 2002 Elsevier Science B.V.

  16. Infrared light excites cells by changing their electrical capacitance

    PubMed Central

    Shapiro, Mikhail G.; Homma, Kazuaki; Villarreal, Sebastian; Richter, Claus-Peter; Bezanilla, Francisco

    2012-01-01

    Optical stimulation has enabled important advances in the study of brain function and other biological processes, and holds promise for medical applications ranging from hearing restoration to cardiac pace making. In particular, pulsed laser stimulation using infrared wavelengths >1.5 μm has therapeutic potential based on its ability to directly stimulate nerves and muscles without any genetic or chemical pre-treatment. However, the mechanism of infrared stimulation has been a mystery, hindering its path to the clinic. Here we show that infrared light excites cells through a novel, highly general electrostatic mechanism. Infrared pulses are absorbed by water, producing a rapid local increase in temperature. This heating reversibly alters the electrical capacitance of the plasma membrane, depolarizing the target cell. This mechanism is fully reversible and requires only the most basic properties of cell membranes. Our findings underscore the generality of pulsed infrared stimulation and its medical potential. PMID:22415827

  17. Recovery After High-Intensity Intermittent Exercise in Elite Soccer Players Using VEINOPLUS Sport Technology for Blood-Flow Stimulation

    PubMed Central

    Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe

    2012-01-01

    Context Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. Objective To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Design Randomized controlled clinical trial. Setting National Institute of Sport, Expertise, and Performance (INSEP). Patients or Other Participants Twenty-six healthy professional male soccer players. Intervention(s) The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Main Outcome Measures(s) Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. Results The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Conclusions Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods. PMID:23068586

  18. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.

    PubMed

    Henríquez-Olguín, Carlos; Altamirano, Francisco; Valladares, Denisse; López, José R; Allen, Paul D; Jaimovich, Enrique

    2015-07-01

    Duchenne muscular dystrophy is a fatal X-linked genetic disease, caused by mutations in the dystrophin gene, which cause functional loss of this protein. This pathology is associated with an increased production of reactive oxygen (ROS) and nitrogen species. The aim of this work was to study the alterations in NF-κB activation and interleukin-6 (IL-6) expression induced by membrane depolarization in dystrophic mdx myotubes. Membrane depolarization elicited by electrical stimulation increased p65 phosphorylation, NF-κB transcriptional activity and NF-κB-dependent IL-6 expression in wt myotubes, whereas in mdx myotubes it had the opposite effect. We have previously shown that depolarization-induced intracellular Ca2+ increases and ROS production are necessary for NF-κB activation and stimulation of gene expression in wt myotubes. Dystrophic myotubes showed a reduced amplitude and area under the curve of the Ca2+ transient elicited by electrical stimulation. On the other hand, electrical stimuli induced higher ROS production in mdx than wt myotubes, which were blocked by NOX2 inhibitors. Moreover, mRNA expression and protein levels of the NADPH oxidase subunits: p47phox and gp91phox were increased in mdx myotubes. Looking at ROS-dependence of NF-κB activation we found that in wt myotubes external administration of 50 μM H2O2 increased NF-κB activity; after administration of 100 and 200 μM H2O2 there was no effect. In mdx myotubes there was a dose-dependent reduction in NF-κB activity in response to external administration of H2O2, with a significant effect of 100 μM and 200 μM, suggesting that ROS levels are critical for NF-κB activity. Prior blockage with NOX2 inhibitors blunted the effects of electrical stimuli in both NF-κB activation and IL-6 expression. Finally, to ascertain whether stimulation of NF-κB and IL-6 gene expression by the inflammatory pathway is also impaired in mdx myotubes, we studied the effect of lipopolysaccharide on both NF-κB activation and IL-6 expression. Exposure to lipopolysaccharide induced a dramatic increase in both NF-κB activation and IL-6 expression in both wt and mdx myotubes, suggesting that the altered IL-6 gene expression after electrical stimulation in mdx muscle cells is due to dysregulation of Ca2+ release and ROS production, both of which impinge on NF-κB signaling. IL-6 is a key metabolic modulator that is released by the skeletal muscle to coordinate a multi-systemic response (liver, muscle, and adipocytes) during physical exercise; the alteration of this response in dystrophic muscles may contribute to an abnormal response to contraction and exercise. Copyright © 2015. Published by Elsevier B.V.

  19. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue.

    PubMed

    Ahadian, Samad; Ramón-Azcón, Javier; Ostrovidov, Serge; Camci-Unal, Gulden; Hosseini, Vahid; Kaji, Hirokazu; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu

    2012-09-21

    Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.

  20. Effect of electrical stimulation and hot boning on the eating quality of Gannan yak longissimus lumborum.

    PubMed

    Lang, Yumiao; Sha, Kun; Zhang, Rui; Xie, Peng; Luo, Xin; Sun, Baozhong; Li, Haipeng; Zhang, Li; Zhang, Songshan; Liu, Xuan

    2016-02-01

    The objective of this study was to evaluate the effects of electrical stimulation (ES) versus non-electrical stimulation (NES) and type of boning (hot versus cold) on the eating quality of Gannan yak longissimus lumborum. Eighteen Gannan yak bulls were randomly divided into two groups: ES and NES. Hot boning (HB) and cold boning (CB) were applied to the left and right side of the carcasses, respectively. All of the four treatments missed the "ideal" pH/temperature window. HB reduced the rate of pH decline, decreased meat tenderness and water holding capacity. ES increased the rate of pH decline and improved yak meat tenderness (P<0.05); however, ES explained only 1% of the variation in WBSF. HB and ES had no significant effects on cooking loss, L* or b* values of yak meat. Postmortem aging increased yak meat tenderness and improved meat color parameters. HB had negative effects on yak meat quality, while ES could not reverse these deleterious effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes

    NASA Astrophysics Data System (ADS)

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert

    2011-06-01

    Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Zt) and access resistance (Ra) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between Ra and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation, suggesting that the level of stimulation applied was creating localized changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation.

  2. New directions in the rational design of electrical and magnetic seizure therapies: individualized Low Amplitude Seizure Therapy (iLAST) and Magnetic Seizure Therapy (MST).

    PubMed

    Radman, Thomas; Lisanby, Sarah H

    2017-04-01

    Electroconvulsive therapy remains a key treatment option for severe cases of depression, but undesirable side-effects continue to limit its use. Innovations in the design of novel seizure therapies seek to improve its risk benefit ratio through enhanced control of the focality of stimulation. The design of seizure therapies with increased spatial precision is motivated by avoiding stimulation of deep brain structures implicated in memory retention, including the hippocampus. The development of two innovations in seizure therapy-individualized low-amplitude seizure therapy (iLAST) and magnetic seizure therapy (MST), are detailed. iLAST is a method of seizure titration involving reducing current spread in the brain by titrating current amplitude from the traditional fixed amplitudes. MST, which can be used in conjunction with iLAST dosing methods, involves the use of magnetic stimulation to reduce shunting and spreading of current by the scalp occurring during electrical stimulation. Evidence is presented on the rationale for increasing the focality of ECT in hopes of preserving its effectiveness, while reducing cognitive side-effects. Finally, the value of electric field and neural modelling is illustrated to explain observed clinical effects of modifications to ECT technique, and their utility in the rational design of the next generation of seizure therapies.

  3. Mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in INS-1E clonal beta cells.

    PubMed

    Akhmedov, Dmitry; Braun, Matthias; Mataki, Chikage; Park, Kyu-Sang; Pozzan, Tullio; Schoonjans, Kristina; Rorsman, Patrik; Wollheim, Claes B; Wiederkehr, Andreas

    2010-11-01

    Glucose-evoked mitochondrial signals augment ATP synthesis in the pancreatic β cell. This activation of energy metabolism increases the cytosolic ATP/ADP ratio, which stimulates plasma membrane electrical activity and insulin granule exocytosis. We have recently demonstrated that matrix pH increases during nutrient stimulation of the pancreatic β cell. Here, we have tested whether mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in the rat β-cell line INS-1E. Acidification of the mitochondrial matrix pH by nigericin blunted nutrient-dependent respiratory and ATP responses (continuously monitored in intact cells). Using electrophysiology and single cell imaging, we find that the associated defects in energy metabolism suppress glucose-stimulated plasma membrane electrical activity and cytosolic calcium transients. The same parameters were unaffected after direct stimulation of electrical activity with tolbutamide, which bypasses mitochondrial function. Furthermore, lowered matrix pH strongly inhibited sustained, but not first-phase, insulin secretion. Our results demonstrate that the matrix pH exerts a control function on oxidative phosphorylation in intact cells and that this mode of regulation is of physiological relevance for the generation of downstream signals leading to insulin granule exocytosis. We propose that matrix pH serves a novel signaling role in sustained cell activation.

  4. Mechanisms of inhibition in cat visual cortex.

    PubMed Central

    Berman, N J; Douglas, R J; Martin, K A; Whitteridge, D

    1991-01-01

    1. Neurones from layers 2-6 of the cat primary visual cortex were studied using extracellular and intracellular recordings made in vivo. The aim was to identify inhibitory events and determine whether they were associated with small or large (shunting) changes in the input conductance of the neurones. 2. Visual stimulation of subfields of simple receptive fields produced depolarizing or hyperpolarizing potentials that were associated with increased or decreased firing rates respectively. Hyperpolarizing potentials were small, 5 mV or less. In the same neurones, brief electrical stimulation of cortical afferents produced a characteristic sequence of a brief depolarization followed by a long-lasting (200-400 ms) hyperpolarization. 3. During the response to a stationary flashed bar, the synaptic activation increased the input conductance of the neurone by about 5-20%. Conductance changes of similar magnitude were obtained by electrically stimulating the neurone. Neurones stimulated with non-optimal orientations or directions of motion showed little change in input conductance. 4. These data indicate that while visually or electrically induced inhibition can be readily demonstrated in visual cortex, the inhibition is not associated with large sustained conductance changes. Thus a shunting or multiplicative inhibitory mechanism is not the principal mechanism of inhibition. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1804983

  5. Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.

    PubMed

    Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z

    2017-03-01

    A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.

  6. Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats.

    PubMed

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing

    2009-10-01

    Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.

  7. [Electrical stimulation therapy and its effects on the general activity of motor impaired cerebral palsied children; a comparative study of the Bobath physiotherapy and its combination with the Hufschmidt electrical stimulation therapy (author's transl)].

    PubMed

    Leyendecker, C

    1975-08-01

    The purpose of this study was to answer the following questions: (1) Is it more effective to treat spastic cerebral palsy with the Hufschmidt electrical stimulation therapy combined with the Bobath neuro-development treatment or only with the Bobath therapy? (2) Can a general increase in activity be obtained by the electrotherapeutic muscle stimulation? A test group (combined Hufschmidt/Bobath therapy) and a control group (Bobath), both consisting of 10 subjects, were observed for four months. The duration of observation was divided into two four months treatment periods with a rest interval of two months in between. At the start of therapeutic measures, motor activity and psychic condition were tested with corresponding motormetric and psychodiagnostic techniques; three check-up examinations were carried out at the end of the first, and at the beginning and end of the second period of treatment. The motor-metric control examination showed that at the end of the first period the test group had achieved by far the better results, but at the end of the second therapeutic period, both groups were equally successful. The combined electrophysiotherapy hence reached in a relatively shorter time - as it were by leaps and bounds - the optimal obtainable state of functional improvements which, with the Bobath therapy alone, can be effected more slowly but with more continuity. The psychodiagnostic controls clearly indicate that the electrical stimulation produced an unspecified increase in activity, especially after the first phase of treatment, whereas in the second phase this could only be proven in a graded form. The report closes with an examination of the results and their consequences for the implementation of the treatment for cerebral palsied children.

  8. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed Central

    Sun, J.; Sakamoto, T.; Chung, K. F.

    1995-01-01

    BACKGROUND--Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. METHODS--Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. RESULTS--Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. CONCLUSIONS--MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation. Images PMID:7570440

  9. Microprocessor controlled movement of liquid gastric content using sequential neural electrical stimulation

    PubMed Central

    Mintchev, M; Sanmiguel, C; Otto, S; Bowes, K

    1998-01-01

    Background—Gastric electrical stimulation has been attempted for several years with little success. 
Aims—To determine whether movement of liquid gastric content could be achieved using microprocessor controlled sequential electrical stimulation. 
Methods—Eight anaesthetised dogs underwent laparotomy and implantation of four sets of bipolar stainless steel wire electrodes. Each set consisted of two to six electrodes (10×0.25 mm, 3 cm apart) implanted circumferentially. The stomach was filled with water and the process of gastric emptying was monitored. Artificial contractions were produced using microprocessor controlled phase locked bipolar four second trains of 50 Hz, 14 V (peak to peak) rectangular voltage. In four of the dogs four force transducers were implanted close to each circumferential electrode set. In one gastroparetic patient the effect of direct electrical stimulation was determined at laparotomy. 
Results—Using the above stimulating parameters circumferential gastric contractions were produced which were artificially propagated distally by phase locking the stimulating voltage. Averaged stimulated gastric emptying times were significantly shorter than spontaneus emptying times (t1/2 6.7 (3.0) versus 25.3 (12.9) minutes, p<0.01). Gastric electrical stimulation of the gastroparetic patient at operation produced circumferential contractions. 
Conclusions—Microprocessor controlled electrical stimulation produced artificial peristalsis and notably accelerated the movement of liquid gastric content. 

 Keywords: gastric electrical stimulation; gastric motility PMID:9824339

  10. Restoring mobility after stroke: first kinematic results from a pilot study with a hybrid drop foot stimulator.

    PubMed

    Yao, D; Jakubowitz, E; Tecante, K; Lahner, M; Ettinger, S; Claassen, L; Plaass, C; Stukenborg-Colsman, C; Daniilidis, K

    2016-12-01

    The objective was to obtain first insights into the kinematic and kinetic walking patterns resulting from an implanted functional electrical stimulation system in subjects with a drop foot caused by stroke. Four subjects who experienced a stroke were chosen due to a comparatively long/short time after surgery and young/old at the stroke event were examined retrospectively with gait analysis. Kinematics and kinetics of normal walking were assessed in comparison with and without activated drop foot stimulation. In general, an improvement regarding spatiotemporal parameters as a result of the stimulation could be observed. Walking speed was increased by 45 % and stride length by 22 % after a mean usage of 7 (2-14) months, whereas both younger subjects improved significantly more. Dorsiflexion increased in all subjects on average from 1.3° to 11.6° during initial contact as well as from 11.3° to 17.0° during mid-swing and therefore implies an advantage of around 5.5 inch foot clearance. Pathologic elements like knee hyperextension during loading response and mid-stance, leg circumduction during swing or the increased hip flexion of the contralateral leg during mid-stance could be in general adjusted with stimulation. An implantable functional electrical stimulation system seems to be a promising treatment of drop feet following strokes. Further clinical investigations are necessary to confirm these first insights.

  11. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    PubMed

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Effect of combined thermal and electrical muscle stimulation on cardiorespiratory fitness and adipose tissue in obese individuals.

    PubMed

    Rostrup, Espen; Slettom, Grete; Seifert, Reinhard; Bjørndal, Bodil; Berge, Rolf K; Nordrehaug, Jan Erik

    2014-10-01

    To better understand how prolonged electrical muscle stimulation can improve cardiorespiratory risk markers in obese subjects, we investigated the effect of prolonged combined thermal and electrical muscle stimulation (cTEMS) on peak oxygen consumption (VO2peak) and body composition with subsequent lipolytic and mitochondrial activity in adipocytes. Eleven obese (BMI ≥ 30 kg/m(2)) individuals received cTEMS in three 60-minute sessions per week for 8 weeks. Activity levels and dietary habits were kept unchanged. Before and after the stimulation period, functional capacity was assessed by VO2peak, and body composition was analysed. Lipolytic activity was determined in abdominal adipose tissue by 24 hours of microdialysis on a sedentary day, and adipose tissue biopsies were taken for the gene expression analysis. Eight weeks of cTEMS significantly increased VO2peak from 28.9 ± 5.7 to 31.7 ± 6.2 ml/kg/min (p < 0.05), corresponding to an average increase of 1.2% per week. Oxygen uptake and work capacity also increased at the anaerobic threshold. Mean microdialytic glycerol concentration over 24 hours, an index of sedentary lipolytic activity, increased from 238 ± 60 to 306 ± 55 µM (p < 0,0001), but no significant changes in body composition were observed. In addition, PGC-1α and carnitine-palmitoyltransferase-2 mRNAs were significantly upregulated in subcutaneous abdominal adipose tissue. In obese individuals with unchanged lifestyles, 8 weeks of cTEMS significantly improved functional capacity towards a higher fatigue resistance. This increase also gave rise to elevated lipolytic activity and increased mitochondrial activity in abdominal adipose tissue. © Authors 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Mean diffusivity as a potential diffusion tensor biomarker of motor rehabilitation after electrical stimulation incorporating task specific exercise in stroke: a pilot study.

    PubMed

    Boespflug, Erin L; Storrs, Judd M; Allendorfer, Jane B; Lamy, Martine; Eliassen, James C; Page, Stephen

    2014-09-01

    Changes in diffusion tensor imaging (DTI) values co-occur with neurological and functional changes after stroke. However, quantitative DTI metrics have not been examined in response to participation in targeted rehabilitative interventions in chronic stroke. The primary purpose of this pilot study was to examine whether changes in DTI metrics co-occur with paretic arm movement changes among chronic stroke patients participating in a regimen of electrical stimulation targeting the paretic arm. Three subjects exhibiting stable arm hemiparesis were administered 30-minute (n = 1) or 120-minute (n = 2) therapy sessions emphasizing paretic arm use during valued, functional tasks and incorporating an electrical stimulation device. These sessions occurred every weekday for 8 weeks. A fourth subject served as a treatment control, participating in a 30-minute home exercise regimen without electrical stimulation every weekday for 8 weeks. DTI and behavioral outcome measures were acquired at baseline and after intervention. DTI data were analyzed using a region of interest (ROI) approach, with ROIs chosen based on tract involvement in sensorimotor function or as control regions. Behavioral outcome measures were the Fugl-Meyer Scale (FM) and the Action Research Arm Test (ARAT). The treatment control subject exhibited gains in pinch and grasp, as shown by a 5-point increase on the ARAT. The subject who participated in 30-minute therapy sessions exhibited no behavioral gains. Subjects participating in 120-minute therapy sessions displayed consistent impairment reductions and distal movement changes. DTI changes were largest in subjects two and three, with mean diffusivity (MD) decreases in the middle cerebellar peduncle and posterior limb of the internal capsule following treatment. No changes in fractional anisotropy (FA) were observed for sensorimotor tracts. Our preliminary results suggest that active rehabilitative therapies augmented by electrical stimulation may induce positive behavioral changes which are underscored by DTI changes indicative of increased white matter tract integrity in regions specific to sensory-motor function.

  14. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat.

    PubMed

    Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire

    2014-07-01

    The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.

  15. Determination of stimulation focality in heterogeneous head models during transcranial magnetic stimulation (TMS)

    NASA Astrophysics Data System (ADS)

    Lee, Erik; Hadimani, Ravi; Jiles, David

    2015-03-01

    Transcranial Magnetic Stimulation (TMS) is an increasingly popular tool used by both the scientific and medical community to understand and treat the brain. TMS has the potential to help people with a wide range of diseases such as Parkinson's, Alzheimer's, and PTSD, while currently being used to treat people with chronic, drug-resistant depression. Through computer simulations, we are able to see the electric field that TMS induces in anatomical human models, but there is no measure to quantify this electric field in a way that relates to a specific patient undergoing TMS therapy. We propose a way to quantify the focality of the induced electric field in a heterogeneous head model during TMS by relating the surface area of the brain being stimulated to the total volume of the brain being stimulated. This figure would be obtained by conducting finite element analysis (FEA) simulations of TMS therapy on a patient specific head model. Using this figure to assist in TMS therapy will allow clinicians and researchers to more accurately stimulate the desired region of a patient's brain and be more equipped to do comparative studies on the effects of TMS across different patients. This work was funded by the Carver Charitable Trust.

  16. Comparative effects of contraction and angiotensin II on growth of adult feline cardiocytes in primary culture

    NASA Technical Reports Server (NTRS)

    Wada, H.; Zile, M. R.; Ivester, C. T.; Cooper, G. 4th; McDermott, P. J.

    1996-01-01

    The purposes of this study were 1) to determine whether angiotensin II causes growth of adult feline cardiocytes in long-term culture, 2) to compare the growth effects of angiotensin II with those resulting from electrically stimulated contraction, and 3) to determine whether the anabolic effects of contraction are exerted via the angiotensin type 1 receptor. Adult feline cardiocytes were cultured on laminin-coated trays in a serum-free medium. Cardiocytes were either electrically stimulated to contract (1 Hz, 5-ms pulse duration, alternating polarity) or were nonstimulated and quiescent. Quiescent cells were studied as controls and after treatment with angiotensin II (10(-8) M), losartan (10(-6) M; an angiotensin type 1-receptor antagonist), or angiotensin II plus losartan. Contracting cells were studied in the presence and absence of angiotensin II or losartan. In quiescent cardiocytes, angiotensin II treatment on day 7 significantly increased protein synthesis rates by 22% and protein content per cell by 17%. The effects of angiotensin II were completely blocked by losartan. Electrically stimulated contraction on days 4 and 7 in culture significantly increased protein synthesis rate by 18 and 38% and protein content per cell by 19 and 46%, respectively. Angiotensin II treatment did not further increase protein synthesis rate or protein content in contracting cardiocytes. Furthermore, losartan did not block the anabolic effects of contraction on protein synthesis rates or protein content. In conclusion, angiotensin II can exert a modest anabolic effect on adult feline cardiocytes in culture. In contracting feline cardiocytes, angiotensin II has no effect on growth. Growth caused by electrically stimulated contraction occurs more rapidly and is greater in magnitude than that caused by angiotensin II. Growth of contracting adult feline cardiocytes is not dependent on activation of the angiotensin receptor.

  17. Gold nano-decorated aligned polyurethane nanofibers for enhancement of neurite outgrowth and elongation.

    PubMed

    Demir, Ulku Selcen; Shahbazi, Reza; Calamak, Semih; Ozturk, Sukru; Gultekinoglu, Merve; Ulubayram, Kezban

    2018-06-01

    Neurite outgrowth and elongation of neural cells is the most important subject that is considered in nerve tissue engineering. In this regard, aligned nanofibers have taken much attention in terms of providing guidance for newly outgrown neurites. The main objective of this study was to fabricate aligned polyurethane nanofibers by electrospinning process and decorate them with gold nanoparticles to further investigate the synergistic effects of nanotopography, biological nerve growth factor (NGF) and electrical stimulations on neurite outgrowth and elongation of pheochromocytoma (PC-12) model cells. In this regard, smooth and uniform aligned polyurethane nanofibers with the average diameter of 519 ± 56 nm were fabricated and decorated with the gold nanoparticles with the average diameter of ∼50 nm. PC-12 cells were cultured on the various nanofiber surfaces inside the bio-mimetic bioreactor system and exposed either to NGF alone or combination of NGF and electrical stimulation. It was found that 50 ng/mL NGF concentration is an optimal value for the stimulation of neurite outgrowth. After 4 days of culture under 100 mV, 10 ms electrical stimulation in 1 h/day period it was found that the gold nanoparticle decorated aligned polyurethane nanofibers increased the neurite outgrowth and elongation more with the combinational NGF and electrical stimulation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1604-1613, 2018. © 2018 Wiley Periodicals, Inc.

  18. PI3K Phosphorylation Is Linked to Improved Electrical Excitability in an In Vitro Engineered Heart Tissue Disease Model System.

    PubMed

    Kana, Kujaany; Song, Hannah; Laschinger, Carol; Zandstra, Peter W; Radisic, Milica

    2015-09-01

    Myocardial infarction, a prevalent cardiovascular disease, is associated with cardiomyocyte cell death, and eventually heart failure. Cardiac tissue engineering has provided hopes for alternative treatment options, and high-fidelity tissue models for drug discovery. The signal transduction mechanisms relayed in response to mechanoelectrical (physical) stimulation or biochemical stimulation (hormones, cytokines, or drugs) in engineered heart tissues (EHTs) are poorly understood. In this study, an EHT model was used to elucidate the signaling mechanisms involved when insulin was applied in the presence of electrical stimulation, a stimulus that mimics functional heart tissue environment in vitro. EHTs were insulin treated, electrically stimulated, or applied in combination (insulin and electrical stimulation). Electrical excitability parameters (excitation threshold and maximum capture rate) were measured. Protein kinase B (AKT) and phosphatidylinositol-3-kinase (PI3K) phosphorylation revealed that insulin and electrical stimulation relayed electrical excitability through two separate signaling cascades, while there was a negative crosstalk between sustained activation of AKT and PI3K.

  19. Effect of simultaneously induced environmental stimuli on electrical signalling and gas exchange in maize plants.

    PubMed

    Vuralhan-Eckert, Jasmin; Lautner, Silke; Fromm, Jörg

    2018-04-01

    Electrical signalling in response to environmental stimuli is a well-known phenomenon in higher plants. For example, in maize, different stimuli, such as wounding or re-irrigation after drought, incite characteristic electrical signals which have quite particular effects on gas exchange. What is less well understood is how plants (specifically maize) respond when two different environmental stimuli are applied simultaneously. To explore this, a three-stage experiment was designed. In the first stage, drought conditions were simulated by decreasing the soil water content to 30-40 % of field capacity. In these conditions, and in contrast to well-watered plants, the maize exhibited only 60-70% of the original level of stomatal conductance and 50-60 % of the original photosynthesis rate. In the second stage of the experiment the plants were re-irrigated and heat stimulated separately. Re-irrigation led to specific electrical signals followed by a gradual increase of gas exchange. In contrast, after heat stimulation of a leaf an electrical signal was evoked that reduced the net CO 2 -uptake rate as well as stomatal conductance. In the third stage, to elucidate how plants process simultaneous re-irrigation and heat stimulation, the drought-stressed maize plants were re-watered and heat-stimulated at the same time. Results showed a two phase response. In the first phase there was a rapid decrease in both the CO 2 uptake rate and the stomatal conductance, while in the second phase each of these parameters increased gradually. Thus, the results strongly support the view that the responses from both stimuli were combined, indicating that maize plants can process simultaneously applied stimuli. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Compositos CNTs/bioceramico para a estimulacao eletrica ossea in situ

    NASA Astrophysics Data System (ADS)

    Mata, Diogo Miguel Rodrigues Marinho da

    The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of 500 mg/day. The deposition parameters were optimised to obtain high pure CNTs 99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the increase of the cell metabolic activity and DNA content by 130% and 60%, relatively to the non-stimulated condition, after only 3 days of daily stimulation of 15 μA for 15 min. Moreover, the osteoblastic gene expression for Runx2, osteocalcin (OC) and ALP was enhanced by 80%, 50% and 25%, after 5 days of stimulation. Instead, for dielectric materials, the stimulus delivering was less efficient, giving an equal or lower cellular response than the non-stimulated condition. The proposed electroconductive bone grafts offer exciting possibilities in bone regeneration strategies by delivering in situ electrical stimulus to cells and consequent control of the new bone tissue formation rate. It is expected that conductive smart biomaterials might turn the selective bone electrotherapy of clinical relevance by decreasing the postoperative healing times.

  1. Tongue muscle plasticity following hypoglossal nerve stimulation in aged rats

    PubMed Central

    Connor, Nadine P.; Russell, John A.; Jackson, Michelle A.; Kletzien, Heidi; Wang, Hao; Schaser, Allison J.; Leverson, Glen E.; Zealear, David L.

    2012-01-01

    Introduction Age-related decreases in tongue muscle mass and strength have been reported. It may be possible to prevent age-related tongue muscle changes using neuromuscular electrical stimulation (NMES). Our hypothesis was that alterations in muscle contractile properties and myosin heavy chain composition would be found following NMES. Methods Fifty-four young, middle-aged and old Fischer 344/Brown Norway rats were included. Twenty-four rats underwent bilateral electrical stimulation of the hypoglossal nerves for 8 weeks and were compared with control or sham rats. Muscle contractile properties and myosin heavy chain (MHC) in the genioglossus (GG), styloglossus (SG) and hyoglossus (HG) muscles were examined. Results In comparison with unstimulated control rats, we found reduced muscle fatigue, increased contraction and half decay times and increased twitch and tetanic tension. Increased Type I MHC was found, except for GG in old and middle-aged rats. Discussion Transitions in tongue muscle contractile properties and phenotype were found following NMES. PMID:23169566

  2. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds

    PubMed Central

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2011-01-01

    Background This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. Methods and results After electrical stimulation, the number of multinucleated myotubes on the electrospun polyurethane carbon nanotube scaffolds was significantly larger than that on nonconductive electrospun polyurethane scaffolds (5% and 10% w/v polyurethane). In the absence of electrical stimulation, myoblasts also differentiated on the electrospun polyurethane carbon nanotube scaffolds, as evidenced by expression of Myf-5 and myosin heavy chains. The myotube number and length were significantly greater on the electrospun carbon nanotubes with 10% w/v polyurethane than on those with 5% w/v polyurethane. The results suggest that, in the absence of electrical stimulation, skeletal myotube formation is dependent on the morphology of the electrospun scaffolds, while with electrical stimulation it is dependent on the electrical conductivity of the scaffolds. Conclusion This study indicates that electrospun polyurethane carbon nanotubes can be used to modulate skeletal myotube formation with or without application of electrical stimulation. PMID:22072883

  3. The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures.

    PubMed

    Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Zhao, Zhiqing; Long, Yuyang; Fang, Yuan; Wang, Meizhen; Yin, Jun; Shen, Dongsheng

    2015-05-01

    Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h(-1), which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8%, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1% more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.

  4. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation.

    PubMed

    Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki

    2017-01-01

    Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis.

  5. Platinum nanowire microelectrode arrays for neurostimulation applications: Fabrication, characterization, and in-vitro retinal cell stimulation

    NASA Astrophysics Data System (ADS)

    Whalen, John J., III

    Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium hexachloroplatinate solution was characterized, and physical properties of electrodeposited thin films were correlated to deposition conditions used. Second, platinum nanowires were fabricated and their properties characterized, using similar deposition conditions. Third, the feasibility of fabricating platinum nanowire stimulating electrode arrays with a variety of surface structures was demonstrated. Fourth, the enhanced charge transfer characteristics of these structures were demonstrated using electrochemical techniques. Finally, retinal cell stimulation was demonstrated using electrodes from platinum nanowire arrays.

  6. Subacute and chronic electrical stimulation of the hippocampus on intractable temporal lobe seizures: preliminary report.

    PubMed

    Velasco, A L; Velasco, M; Velasco, F; Menes, D; Gordon, F; Rocha, L; Briones, M; Márquez, I

    2000-01-01

    Recent animal experiments show that the application of an electrical stimulus to the amygdala or hippocampus following the kindling stimulus produced a significant and long-lasting suppressive effect on this experimental model of epilepsy. This is a preliminary report on the development of a surgical neuromodulatory procedure by chronic electrical stimulation of the hippocampus (CHCS) for control of intractable temporal lobe seizures in patients in whom anterior temporal lobectomy is not advisable, i.e., patients with bilateral temporal foci or a unilateral focus spreading to surrounding cerebral regions of the dominant hemisphere. This work was divided in two main consecutive stages. In the first stage, we demonstrated that subacute hippocampal stimulation (SAHCS) blocks intractable temporal lobe epileptogenesis with no additional damage to the stimulated tissue, and in a second stage, we attempt to demonstrate that CHCS may produce a sustained, long-lasting antiepileptic condition without additional undesirable effects on language and memory. In addition, taking advantage of this unique and ethically permissible situation, we attempt to determine whether or not the antiepileptic effects of SAHCS and CHCS are due to inhibition of the stimulation of hippocampal tissue by means of a number of electrophysiological, single photon computed tomography (SPECT) perfusion, and autoradiographic techniques.SAHCS during 3-4 weeks prior to anterior temporal lobectomy applied to a critical area located either at the anterior Pes hippocampus close to the amygdala or at the parahippocampal gyrus close to the entorhinal cortex abolished clinical seizures and significantly decreased the number of interictal spikes at focus after 5-6 days. Microscopy analysis of the stimulated tissue showed no evident histopathological differences between stimulated vs. non-stimulated hippocampal tissues. Additionally, CHCS persistently blocked temporal lobe epileptogenesis for 3-4 months with no apparent additional undesirable effects on short memory. Also, inhibition of the stimulated hippocampus seems to be one of the possible mechanisms underlying the beneficial antiepileptic effects of SAHCS and CHCS. This was revealed by increased threshold and decreased duration of the afterdischarges induced by hippocampal stimulation, flattening of the hippocampal-evoked response recovery cycles, SPECT hypoperfusion of the hippocampal region, and increased hippocampal benzodiazepine receptor binding. Future studies increasing the number and time of follow-up of patients under hippocampal stimulation are necessary before considering CHCS a reliable procedure for controlling intractable temporal lobe seizures.

  7. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    PubMed Central

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  8. Recurrence quantification analysis of electrically evoked surface EMG signal.

    PubMed

    Liu, Chunling; Wang, Xu

    2005-01-01

    Recurrence Plot is a quite useful tool used in time-series analysis, in particular for measuring unstable periodic orbits embedded in a chaotic dynamical system. This paper introduced the structures of the Recurrence Plot and the ways of the plot coming into being. Then the way of the quantification of the Recurrence Plot is defined. In this paper, one of the possible applications of Recurrence Quantification Analysis (RQA) strategy to the analysis of electrical stimulation evoked surface EMG. The result shows the percent determination is increased along with stimulation intensity.

  9. Improving respiration in patients with tetraplegia by functional electrical stimulation: an anatomical perspective.

    PubMed

    Bell, Sarah; Shaw-Dunn, John; Gollee, Henrik; Allan, David B; Fraser, Matthew H; McLean, Alan N

    2007-08-01

    Patients with tetraplegia often have respiratory complications because of paralysis of the abdominal and intercostal muscles. Functional electrical stimulation (FES) has been used to improve breathing in these patients by applying surface stimulation to the abdominal muscles. We aimed to find the best nerves to stimulate directly to increase tidal volume and make cough more effective. Surface electrodes were placed on a patient's abdominal wall to find the optimum points for surface stimulation. These positions were plotted on a transparent sheet. The abdomino-intercostal nerves were dissected in five male dissecting room cadavers matched for size with the patient. The plastic sheet was then superimposed over each of the dissections to clarify the relationship between optimum surface stimulation points and the underlying nerves. Results show that the optimum surface stimulation points overlie the course of abdomino-intercostal nerves T9, 10, and 11. The success with selecting stimulation points associated with T9, 10, and 11 is probably because of the large mass of abdominal muscle supplied by these nerves. The constant position of the nerves below the ribs makes the intercostal space a possible site for direct stimulation of the abdomino-intercostal nerves.

  10. Long-term implantation of deep brain stimulation electrodes in the pontine micturition centre of the Göttingen minipig.

    PubMed

    Jensen, Kristian N; Deding, Dorthe; Sørensen, Jens Christian; Bjarkam, Carsten R

    2009-07-01

    To implant deep brain stimulation (DBS) electrodes in the porcine pontine micturition centre (PMC) in order to establish a large animal model of PMC-DBS. Brain stems from four Göttingen minipigs were sectioned coronally into 40-mum-thick histological sections and stained with Nissl, auto-metallographic myelin stain, tyrosine hydroxylase and corticotrophin-releasing factor immunohistochemistry in order to identify the porcine PMC. DBS electrodes were then stereotaxically implanted on the right side into the PMC in four Göttingen minipigs, and the bladder response to electrical stimulation was evaluated by subsequent cystometry performed immediately after the operation and several weeks later. A paired CRF-dense area homologous to the PMC in other species was encountered in the rostral pontine tegmentum medial to the locus coeruleus and ventral to the floor of the fourth ventricle. Electrical stimulation of the CRF-dense area resulted in an increased detrusor pressure followed by visible voiding in some instances. The pigs were allowed to survive between 14 and 55 days, and electrical stimulation resulting in an increased detrusor pressure was performed on more than one occasion without affecting consciousness or general thriving. None of the pigs developed postoperative infections or died prematurely. DBS electrodes can be implanted for several weeks in the identified CRF-dense area resulting in a useful large animal model for basic research on micturition and the future clinical use of this treatment modality in neurogenic supra-pontine voiding disorders.

  11. Increased susceptibility to cortical spreading depression in an animal model of medication-overuse headache

    PubMed Central

    Green, A Laine; Gu, Pengfei; De Felice, Milena; Dodick, David; Ossipov, Michael H; Porreca, Frank

    2014-01-01

    Objective The objective of this article is to evaluate electrically evoked thresholds for cortical spreading depression (CSD) and stress-induced activation of trigeminal afferents in a rat model of medication-overuse headache (MOH). Methods Sumatriptan or saline was delivered subcutaneously by osmotic minipump for six days to Sprague-Dawley rats. Two weeks after pump removal, animals were anesthetized and recording/stimulating electrodes implanted. The animals were pretreated with vehicle or topiramate followed by graded electrical stimulation within the visual cortex. CSD events were identified by decreased EEG amplitude and DC potential shift. Additional unanesthetized sumatriptan or saline-pretreated rats were exposed to bright light environmental stress and periorbital and hindpaw withdrawal thresholds were measured. Following CSD stimulation or environmental stress, immunohistochemical staining for Fos in the trigeminal nucleus caudalis (TNC) was performed. Results Sumatriptan pre-exposure significantly decreased electrical stimulation threshold to generate a CSD event. Topiramate normalized the decreased CSD threshold as well as stress-induced behavioral withdrawal thresholds in sumatriptan-treated rats compared to saline-treated animals. Moreover, CSD and environmental stress increased Fos expression in the TNC of sumatriptan-treated rats, and these effects were blocked by topiramate. Environmental stress did not elicit cutaneous allodynia or elevate TNC Fos expression in saline-treated rats. Conclusions A previous period of sumatriptan exposure produced long-lasting increased susceptibility to evoked CSD and environmental stress-induced activation of the TNC that was prevented by topiramate. Lowered CSD threshold, and enhanced consequences of CSD events (increased activation of TNC), may represent an underlying biological mechanism of MOH related to triptans. PMID:24335852

  12. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...Sept 2015 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury 5a...evaluate the restoration of bladder and bowel function using electrical stimulation and block after spinal cord injury in human subjects. All staff

  13. Effect of Fixed Versus Adjusted Transcutaneous Electrical Nerve Stimulation Amplitude on Chronic Mechanical Low Back Pain.

    PubMed

    Elserty, Noha; Kattabei, Omaima; Elhafez, Hytham

    2016-07-01

    This study aimed to investigate the effect of adjusting pulse amplitude of transcutaneous electrical nerve stimulation versus fixed pulse amplitude in treatment of chronic mechanical low back pain. Randomized clinical trial. El-sahel Teaching Hospital, Egypt. Forty-five patients with chronic low back pain assigned to three equal groups. Their ages ranged from 20 to 50 years. The three groups received the same exercise program. Group A received transcutaneous electrical nerve stimulation with fixed pulse amplitude for 40 minutes. Group B received transcutaneous electrical nerve stimulation with adjusted pulse amplitude for 40 minutes, with the pulse amplitude adjusted every 5 minutes. Group C received exercises only. Treatment sessions were applied three times per week for 4 weeks for the three groups. A visual analogue scale was used to assess pain severity, the Oswestry Disability Index was used to assess functional level, and a dual inclinometer was used to measure lumbar range of motion. Evaluations were performed before and after treatment. Visual analogue scale, Oswestry Disability Index, and back range of motion significantly differed between the two groups that received transcutaneous electrical nerve stimulation and the control group and did not significantly differ between fixed and adjusted pulse amplitude of transcutaneous electrical nerve stimulation. Adjusting pulse amplitude of transcutaneous electrical nerve stimulation does not produce a difference in the effect of transcutaneous electrical nerve stimulation used to treat chronic low back pain.

  14. Spinal Cord Injury-Induced Osteoporosis: Pathogenesis and Emerging Therapies

    PubMed Central

    Battaglino, Ricardo A.; Lazzari, Antonio A.; Garshick, Eric; Morse, Leslie R.

    2012-01-01

    Spinal cord injury causes rapid, severe osteoporosis with increased fracture risk. Mechanical unloading after paralysis results in increased osteocyte expression of sclerostin, suppressed bone formation, and indirect stimulation of bone resorption. At this time there are no clinical guidelines to prevent bone loss after SCI and fractures are common. More research is required to define the pathophysiology and epidemiology of SCI-induced osteoporosis. This review summarizes emerging therapeutics including anti-sclerostin antibodies, mechanical loading of the lower extremity with electrical stimulation, and mechanical stimulation via vibration therapy. PMID:22983921

  15. Plantar flexion force induced by amplitude-modulated tendon vibration and associated soleus V/F-waves as an evidence of a centrally-mediated mechanism contributing to extra torque generation in humans

    PubMed Central

    2013-01-01

    Background High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the predominant mechanisms. Methods Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training. PMID:23531240

  16. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    PubMed

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  17. Unpredictable interference of new transcranial motor-evoked potential monitor against the implanted pacemaker.

    PubMed

    Hayashi, Kazuko

    2016-12-01

    Recently, NuVasive NV-M5 nerve monitoring system, a new transcranial motor-evoked potential (TcMEP) monitor, has been introduced with the spread of flank-approach spinal operations such as extreme lateral interbody fusion, to prevent nerve damage. Conventional TcMEP monitors use changes in MEP wave patterns, such as amplitude and/or latency, whereas the NV-M5 nerve monitor system first measures the MEP baseline waveform from the transcranial-evoked potential then measures the electric current necessary to obtain the standard of the previous baseline wave pattern at subsequent monitoring times. The NV-M5 monitor determines nerve damage according to the increase in necessary electric current threshold. The NV-M5 monitor also uses a local electrical stimulation mode to monitor the safety of setting screws into the lumbar vertebrae. In this way, various electrical stimulations with various durations and frequencies are used, and electrical noise may result in unpredictable interference with cardiac pacemakers. We performed anesthetic management of extreme lateral interbody fusion surgery using the NV-M5 in a patient with an implanted pacemaker, during which TcMEP stimulation caused interference with the implanted pacemaker. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Interaction of post-stroke voluntary effort and functional neuromuscular electrical stimulation

    PubMed Central

    Makowski, Nathaniel; Knutson, Jayme; Chae, John; Crago, Patrick

    2012-01-01

    Functional Electrical Stimulation (FES) may be able to augment functional arm and hand movement after stroke. Post-stroke neuroprostheses that incorporate voluntary effort and FES to produce the desired movement need to consider how the forces generated by voluntary effort and FES combine together, even in the same muscle, in order to provide an appropriate level of stimulation to elicit the desired assistive force. The goal of this study was to determine if the force produced by voluntary effort and FES add together independently of effort, or if the increment in force is dependent on the level of voluntary effort. Isometric force matching tasks were performed under different combinations of voluntary effort and electrical stimulation. Participants reached a steady level of force and while attempting to maintain a constant effort level, FES was applied to augment the force. Results indicate that the increment in force produced by FES decreases as the level of initial voluntary effort increases. Potential mechanisms causing the change in force output are proposed, but the relative contribution of each mechanism is unknown. PMID:23516086

  19. Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells.

    PubMed

    Hernández-Bule, María Luisa; Paíno, Carlos Luis; Trillo, María Ángeles; Úbeda, Alejandro

    2014-01-01

    Capacitive-resistive electric transfer (CRET) is a non invasive electrothermal therapy that applies electric currents within the 400 kHz - 450 kHz frequency range to the treatment of musculoskeletal lesions. Evidence exists that electric currents and electric or magnetic fields can influence proliferative and/or differentiating processes involved in tissue regeneration. This work investigates proliferative responses potentially underlying CRET effects on tissue repair. XTT assay, flow cytometry, immunofluorescence and Western Blot analyses were conducted to asses viability, proliferation and differentiation of adipose-derived stem cells (ADSC) from healthy donors, after short, repeated (5 m On/4 h Off) in vitro stimulation with a 448-kHz electric signal currently used in CRET therapy, applied at a subthermal dose of 50 μA/mm(2) RESULTS: The treatment induced PCNA and ERK1/2 upregulation, together with significant increases in the fractions of ADSC undergoing cycle phases S, G2 and M, and enhanced cell proliferation rate. This proliferative effect did not compromise the multipotential ability of ADSC for subsequent adipogenic, chondrogenic or osteogenic differentiation. These data identify cellular and molecular phenomena potentially underlying the response to CRET and indicate that CRET-induced lesion repair could be mediated by stimulation of the proliferation of stem cells present in the injured tissues. © 2014 S. Karger AG, Basel.

  20. Pairing Voluntary Movement and Muscle-Located Electrical Stimulation Increases Cortical Excitability

    PubMed Central

    Jochumsen, Mads; Niazi, Imran K.; Signal, Nada; Nedergaard, Rasmus W.; Holt, Kelly; Haavik, Heidi; Taylor, Denise

    2016-01-01

    Learning new motor skills has been correlated with increased cortical excitability. In this study, different location of electrical stimulation (ES), nerve, or muscle, was paired with voluntary movement to investigate if ES paired with voluntary movement (a) would increase the excitability of cortical projections to tibialis anterior and (b) if stimulation location mattered. Cortical excitability changes were quantified using motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) at varying intensities during four conditions. Twelve healthy subjects performed 50 dorsiflexions at the ankle during nerve or muscle ES at motor threshold (MTh). ES alone was delivered 50 times and the movement was performed 50 times. A significant increase in the excitability from pre- to post-intervention (P = 0.0061) and pre- to 30 min post-intervention (P = 0.017) measurements was observed when voluntary movement was paired with muscle ES located at tibialis anterior. An increase of 50 ± 57 and 28 ± 54% in the maximum MEPs was obtained for voluntary movement paired with muscle-located and nerve-located ES, respectively. The maximum MEPs for voluntary movement alone and muscle-located ES alone were −5 ± 28 and 2 ± 42%, respectively. Pairing voluntary movement with muscle-located ES increases excitability of corticospinal projections of tibialis anterior in healthy participants. This finding suggests that active participation during muscle-located ES protocols increases cortical excitability to a greater extent than stimulation alone. The next stage of this research is to investigate the effect in people with stroke. The results may have implications for motor recovery in patients with motor impairments following neurological injury. PMID:27733823

  1. Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons?

    PubMed Central

    Coco, Anne; Epp, Stephanie B.; Fallon, James B.; Xu, Jin; Millard, Rodney E.; Shepherd, Robert K.

    2007-01-01

    Increasing numbers of cochlear implant subjects have some level of residual hearing at the time of implantation. The present study examined whether (i) hair cells that have survived one pathological insult (aminoglycoside deafening), can survive and function following long-term cochlear implantation and electrical stimulation (ES); and (ii) chronic ES in these cochleae results in greater trophic support of spiral ganglion neurons (SGNs) compared with cochleae devoid of hair cells. Eight cats, with either partial (n=4) or severe (n=4) sensorineural hearing loss, were bilaterally implanted with scala tympani electrode arrays 2 months after deafening, and received unilateral ES using charge balanced biphasic current pulses for periods of up to 235 days. Frequency-specific compound action potentials and click-evoked auditory brainstem responses (ABRs) were recorded periodically to monitor the residual acoustic hearing. Electrically-evoked ABRs (EABRs) were recorded to confirm the stimulus levels were 3-6 dB above the EABR threshold. On completion of the ES program the cochleae were examined histologically. Partially deafened animals showed no significant increase in acoustic thresholds over the implantation period. Moreover, chronic ES of an electrode array located in the base of the cochlea did not adversely affect hair cells in the middle or apical turns. There was evidence of a small but statistically significant rescue of SGNs in the middle and apical turns of stimulated cochleae in animals with partial hearing. Chronic ES did not, however, prevent a reduction in SGN density for the severely deaf cohort, although SGNs adjacent to the stimulating electrodes did exhibit a significant increase in soma area (p<0.01). In sum, chronic ES in partial hearing animals does not adversely affect functioning residual hair cells apical to the electrode array. Moreover, while there is an increase in the soma area of SGNs close to the stimulating electrodes in severely deaf cochleae, this trophic effect does not result in increased SGN survival. PMID:17258411

  2. The effect of subthreshold continuous electrical stimulation on the facial function of patients with Bell's palsy.

    PubMed

    Kim, Jin; Choi, Jae Young

    2016-01-01

    The drug regimen plus electrical stimulation was more effective in treating Bell's palsy than the conventional drug treatment alone. The effectiveness of such a sub-threshold, continuous, low frequency electrical stimulation suggests a new therapeutic approach to accelerate nerve regeneration and improve functional recovery after injury. The purpose of this study was to determine whether sub-threshold, continuous electrical stimulation at 20 Hz facilitates functional recovery of patients with Bell's palsy. The authors performed a prospective randomized study that included 60 patients with mild-to-moderate grade Bell's palsy (HB grade ≤4, SB grade ≥40), to evaluate the effect of developed electrical stimulation on the resolution of symptoms. Thirty patients were treated with prednisolone or/and acyclovir plus electrical stimulation within 7 days of the onset of symptoms. The other 30 patients were treated with only prednisolone or/and acyclovir as a control group. The overall rate of patient recovery among those treated with prednisolone or/and acyclovir plus electrical stimulation (96%) was significantly better (p < 0.05) than the rate among those treated with only prednisolone or/and acyclovir (88%).

  3. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.

    PubMed

    Zamaninezhad, Ladan; Hohmann, Volker; Büchner, Andreas; Schädler, Marc René; Jürgens, Tim

    2017-02-01

    This study introduces a speech intelligibility model for cochlear implant users with ipsilateral preserved acoustic hearing that aims at simulating the observed speech-in-noise intelligibility benefit when receiving simultaneous electric and acoustic stimulation (EA-benefit). The model simulates the auditory nerve spiking in response to electric and/or acoustic stimulation. The temporally and spatially integrated spiking patterns were used as the final internal representation of noisy speech. Speech reception thresholds (SRTs) in stationary noise were predicted for a sentence test using an automatic speech recognition framework. The model was employed to systematically investigate the effect of three physiologically relevant model factors on simulated SRTs: (1) the spatial spread of the electric field which co-varies with the number of electrically stimulated auditory nerves, (2) the "internal" noise simulating the deprivation of auditory system, and (3) the upper bound frequency limit of acoustic hearing. The model results show that the simulated SRTs increase monotonically with increasing spatial spread for fixed internal noise, and also increase with increasing the internal noise strength for a fixed spatial spread. The predicted EA-benefit does not follow such a systematic trend and depends on the specific combination of the model parameters. Beyond 300 Hz, the upper bound limit for preserved acoustic hearing is less influential on speech intelligibility of EA-listeners in stationary noise. The proposed model-predicted EA-benefits are within the range of EA-benefits shown by 18 out of 21 actual cochlear implant listeners with preserved acoustic hearing. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways.

    PubMed

    Lambernd, S; Taube, A; Schober, A; Platzbecker, B; Görgens, S W; Schlich, R; Jeruschke, K; Weiss, J; Eckardt, K; Eckel, J

    2012-04-01

    Obesity is closely associated with muscle insulin resistance and is a major risk factor for the pathogenesis of type 2 diabetes. Regular physical activity not only prevents obesity, but also considerably improves insulin sensitivity and skeletal muscle metabolism. We sought to establish and characterise an in vitro model of human skeletal muscle contraction, with a view to directly studying the signalling pathways and mechanisms that are involved in the beneficial effects of muscle activity. Contracting human skeletal muscle cell cultures were established by applying electrical pulse stimulation. To induce insulin resistance, skeletal muscle cells were incubated with human adipocyte-derived conditioned medium, monocyte chemotactic protein (MCP)-1 and chemerin. Similarly to in exercising skeletal muscle in vivo, electrical pulse stimulation induced contractile activity in human skeletal muscle cells, combined with the formation of sarcomeres, activation of AMP-activated protein kinase (AMPK) and increased IL-6 secretion. Insulin-stimulated glucose uptake was substantially elevated in contracting cells compared with control. The incubation of skeletal muscle cells with adipocyte-conditioned media, chemerin and MCP-1 significantly reduced the insulin-stimulated phosphorylation of Akt. This effect was abrogated by concomitant pulse stimulation of the cells. Additionally, pro-inflammatory signalling by adipocyte-derived factors was completely prevented by electrical pulse stimulation of the myotubes. We showed that the effects of electrical pulse stimulation on skeletal muscle cells were similar to the effect of exercise on skeletal muscle in vivo in terms of enhanced AMPK activation and IL-6 secretion. In our model, muscle contractile activity eliminates insulin resistance by blocking pro-inflammatory signalling pathways. This novel model therefore provides a unique tool for investigating the molecular mechanisms that mediate the beneficial effects of muscle contraction.

  5. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation

    PubMed Central

    Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki

    2017-01-01

    Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis. PMID:28883745

  6. Electrical Cerebral Stimulation Modifies Inhibitory Systems

    NASA Astrophysics Data System (ADS)

    Cuéllar-Herrera, M.; Rocha, L.

    2003-09-01

    Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.

  7. Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant

    PubMed Central

    Ross, Deborah A.; Puñal, Vanessa M.; Agashe, Shruti; Dweck, Isaac; Mueller, Jerel; Grill, Warren M.; Wilson, Blake S.

    2016-01-01

    Understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5–80 μA, 100–300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts. SIGNIFICANCE STATEMENT Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in harnessing the sound frequency representation in the IC. Here, we tested the effects of IC stimulation in monkeys trained to report the sound frequencies they heard. Our results indicate that the IC can be used to introduce a range of frequency percepts and suggest that placement of a greater number of electrode contacts may improve the effectiveness of such implants. PMID:27147659

  8. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields

    PubMed Central

    Ruffini, Giulio; Fox, Michael D.; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-01-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint of the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general stimulation protocols, such as alternating current tCS (tACS). PMID:24345389

  9. [The influence of non-invasive electrical stimulation of the spinal cord on the locomotor function of patients presenting with movement disorders of central genesis].

    PubMed

    Balykin, M V; Yakupov, R N; Mashin, V V; Kotova, E Yu; Balykin, Yu M; Gerasimenko, Yu P

    The objective of the present study was to evaluate the influence of non-invasive (transcutaneous) electrical spinal cord stimulation on the locomotor function of the patients suffering from movement disorders. The study involved 10 patients of both sexes at the age from 32 to 70 years (including 40% of men and 60% of women) presenting with the compromised locomotor function of varying severity associated with the disturbances of cerebral blood circulation caused either by an injury to the brain and spinal cord or by stroke. The transcutaneous electrical spinal cord stimulation was applied using different frequency regimes with the placement of the electrodes in the projection onto the region of TXI-TXII vertebrae. The active factors were bipolar electrical stimuli 0.5 ms in duration; the current strength was chosen for each patient on an individual basis taking into consideration its threshold level. Electromyograms and evoked motor responses of selected muscles, viz. m. rectus femoris, m.biceps femoris, m. tibialis anterior, and m.gastrocnemius were recorded with the use of the 'Neuro-MVP-8 eight-channel electromyography' ('Neurosoft', Russia). The data obtained give evidence that the stimulation of the spinal cord with a frequency of 1 Hz induces reflectory responses with monosynaptic and polysynaptic components in the muscles of the lower extremities, with the thresholds of these responses being significantly higher in the patients presenting with serious neurological problems. Stimulation with the frequencies of 5 and 30 Hz caused in the patients with paresis the involuntary movement of the legs the characteristics of which were similar to those of the locomotor movements. It has been demonstrated that the application of transcutaneous electrical spinal cord stimulation leads to increased excitability of the lumbar spinal neural structures of the patients. The study has shown the possibility of regulation of the locomotor functions in the patients presenting with movement disorders of central genesis by means of non-invasive electrical stimulation of the spinal cord.

  10. Neck muscle biomechanics and neural control.

    PubMed

    Fice, Jason Bradley; Siegmund, Gunter P; Blouin, Jean-Sebastien

    2018-04-18

    The mechanics, morphometry, and geometry of our joints, segments and muscles are fundamental biomechanical properties intrinsic to human neural control. The goal of our study was to investigate if the biomechanical actions of individual neck muscles predicts their neural control. Specifically, we compared the moment direction & variability produced by electrical stimulation of a neck muscle (biomechanics) to their preferred activation direction & variability (neural control). Subjects sat upright with their head fixed to a 6-axis load cell and their torso restrained. Indwelling wire electrodes were placed into the sternocleidomastoid (SCM), splenius capitis (SPL), and semispinalis capitis (SSC) muscles. The electrically stimulated direction was defined as the moment direction produced when a current (2-19mA) was passed through each muscle's electrodes. Preferred activation direction was defined as the vector sum of the spatial tuning curve built from RMS EMG when subjects produced isometric moments at 7.5% and 15% of their maximum voluntary contraction (MVC) in 26 3D directions. The spatial tuning curves at 15% MVC were well-defined (unimodal, p<0.05) and their preferred directions were 23, 39, & 21{degree sign} different from their electrically stimulated directions for the SCM, SPL, and SSC respectively (p<0.05). Intra-subject variability was smaller in electrically stimulated moment directions when compared to voluntary preferred directions, and intra-subject variability decreased with increased activation levels. Our findings show that the neural control of neck muscles is not based solely on optimizing individual muscle biomechanics but, as activation increases, biomechanical constraints in part dictate the activation of synergistic neck muscles.

  11. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation

    PubMed Central

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-01-01

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.8 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.86) and depth (r = 0.88) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI: http://dx.doi.org/10.7554/eLife.18834.001 PMID:28169833

  12. Transcranial magnetic stimulation--may be useful as a preoperative screen of motor tract function.

    PubMed

    Galloway, Gloria M; Dias, Brennan R; Brown, Judy L; Henry, Christina M; Brooks, David A; Buggie, Ed W

    2013-08-01

    Transcranial motor stimulation with noninvasive cortical surface stimulation, using a high-intensity magnetic field referred to as transcranial magnetic stimulation generally, is considered a nonpainful technique. In contrast, transcranial electric stimulation of the motor tracts typically cannot be done in unanesthesized patients. Intraoperative monitoring of motor tract function with transcranial electric stimulation is considered a standard practice in many institutions for patients during surgical procedures in which there is potential risk of motor tract impairment so that the risk of paraplegia or paraparesis can be reduced. Because transcranial electric stimulation cannot be typically done in the outpatient setting, transcranial magnetic stimulation may be able to provide a well-tolerated method for evaluation of the corticospinal motor tracts before surgery. One hundred fifty-five patients aged 5 to 20 years were evaluated preoperatively with single-stimulation nonrepetitive transcranial magnetic stimulation for preoperative assessment. The presence of responses to transcranial magnetic stimulation reliably predicted the presence of responses to transcranial electric stimulation intraoperatively. No complications occurred during the testing, and findings were correlated to the clinical history and used in the setup of the surgical monitoring.

  13. 3D finite element modeling of epiretinal stimulation: Impact of prosthetic electrode size and distance from the retina.

    PubMed

    Sui, Xiaohong; Huang, Yu; Feng, Fuchen; Huang, Chenhui; Chan, Leanne Lai Hang; Wang, Guoxing

    2015-05-01

    A novel 3-dimensional (3D) finite element model was established to systematically investigate the impact of the diameter (Φ) of disc electrodes and the electrode-to-retina distance on the effectiveness of stimulation. The 3D finite element model was established based on a disc platinum stimulating electrode and a 6-layered retinal structure. The ground electrode was placed in the extraocular space in direct attachment with sclera and treated as a distant return electrode. An established criterion of electric-field strength of 1000 Vm-1 was adopted as the activation threshold for RGCs. The threshold current (TC) increased linearly with increasing Φ and electrode-to-retina distance and remained almost unchanged with further increases in diameter. However, the threshold charge density (TCD) increased dramatically with decreasing electrode diameter. TCD exceeded the electrode safety limit for an electrode diameter of 50 µm at an electrode-to-retina distance of 50 to 200 μm. The electric field distributions illustrated that smaller electrode diameters and shorter electrode-to-retina distances were preferred due to more localized excitation of RGC area under stimulation of different threshold currents in terms of varied electrode size and electrode-to-retina distances. Under the condition of same-amplitude current stimulation, a large electrode exhibited an improved potential spatial selectivity at large electrode-to-retina distances. Modeling results were consistent with those reported in animal electrophysiological experiments and clinical trials, validating the 3D finite element model of epiretinal stimulation. The computational model proved to be useful in optimizing the design of an epiretinal stimulating electrode for prosthesis.

  14. Different Movement of Hyolaryngeal Structures by Various Application of Electrical Stimulation in Normal Individuals

    PubMed Central

    Kim, Sae Hyun; Oh, Byung-Mo; Han, Tae Ryun; Jeong, Ho Joong

    2015-01-01

    Objective To identify the differences in the movement of the hyoid bone and the vocal cord with and without electrical stimulation in normal subjects. Methods Two-dimensional motion analysis using a videofluoroscopic swallowing study with and without electrical stimulation was performed. Surface electrical stimulation was applied during swallowing using electrodes placed at three different locations on each subject. All subjects were analyzed three times using the following electrode placements: with one pair of electrodes on the suprahyoid muscles and a second pair on the infrahyoid muscles (SI); with placement of the electrode pairs on only the infrahyoid muscles (IO); and with the electrode pairs placed vertically on the suprahyoid and infrahyoid muscles (SIV). Results The main outcomes of this study demonstrated an initial downward displacement as well as different movements of the hyoid bone with the three electrode placements used for electrical stimulation. The initial positions of the hyoid bone with the SI and IO placements resulted in an inferior and anterior displaced position. During swallowing, the hyoid bone moved in a more superior and less anterior direction, resulting in almost the same peak position compared with no electrical stimulation. Conclusion These results demonstrate that electrical stimulation caused an initial depression of the hyoid bone, which had nearly the same peak position during swallowing. Electrical stimulation during swallowing was not dependent on the position of the electrode on the neck, such as on the infrahyoid or on both the suprahyoid and infrahyoid muscles. PMID:26361589

  15. Effects of high-frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys

    PubMed Central

    Kammermeier, Stefan; Pittard, Damien; Hamada, Ikuma

    2016-01-01

    Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs. PMID:27683881

  16. Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats.

    PubMed

    López-González, M V; Díaz-Casares, A; Peinado-Aragonés, C A; Lara, J P; Barbancho, M A; Dawid-Milner, M S

    2013-08-01

    In order to assess the possible interactions between the pontine A5 region and the hypothalamic defence area (HDA), we have examined the pattern of double staining for c-Fos protein immunoreactivity (c-Fos-ir) and tyrosine hydroxylase, throughout the rostrocaudal extent of the A5 region in spontaneously breathing anaesthetized male Sprague-Dawley rats during electrical stimulation of the HDA. Activation of the HDA elicited a selective increase in c-Fos-ir with an ipsilateral predominance in catecholaminergic and non-catecholaminergic A5 somata (P < 0.001 in both cases). A second group of experiments was done to examine the importance of the A5 region in modulating the cardiorespiratory response evoked from the HDA. Cardiorespiratory changes were analysed in response to electrical stimulation of the HDA before and after ipsilateral microinjection of muscimol within the A5 region. Stimulation of the HDA evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (P < 0.001) due to a decrease in expiratory time (P < 0.01). The respiratory response was accompanied by a pressor response (P < 0.001) and tachycardia (P < 0.001). After muscimol microinjection within the A5 region, pressor and heart rate responses to HDA stimulation were reduced (P < 0.01 and P < 0.001, respectively). The respiratory response persisted unchanged. Finally, to confirm functional interactions between the HDA and the A5 region, extracellular recordings of putative A5 neurones were obtained during HDA stimulation. Seventy-five A5 cells were recorded, 35 of which were affected by the HDA (47%). These results indicate that neurones of the A5 region participate in the cardiovascular response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  17. Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins

    PubMed Central

    Titushkin, Igor; Cho, Michael

    2009-01-01

    Abstract Cellular mechanics is known to play an important role in the cell homeostasis including proliferation, motility, and differentiation. Significant variation in the mechanical properties between different cell types suggests that control of the cell metabolism is feasible through manipulation of the cell mechanical parameters using external physical stimuli. We investigated the electrocoupling mechanisms of cellular biomechanics modulation by an electrical stimulation in two mechanically distinct cell types—human mesenchymal stem cells and osteoblasts. Application of a 2 V/cm direct current electric field resulted in approximately a twofold decrease in the cell elasticity and depleted intracellular ATP. Reduction in the ATP level led to inhibition of the linker proteins that are known to physically couple the cell membrane and cytoskeleton. The membrane separation from the cytoskeleton was confirmed by up to a twofold increase in the membrane tether length that was extracted from the cell membrane after an electrical stimulation. In comparison to human mesenchymal stem cells, the membrane-cytoskeleton attachment in osteoblasts was much stronger but, in response to the same electrical stimulation, the membrane detachment from the cytoskeleton was found to be more pronounced. The observed effects mediated by an electric field are cell type- and serum-dependent and can potentially be used for electrically assisted cell manipulation. An in-depth understanding and control of the mechanisms to regulate cell mechanics by external physical stimulus (e.g., electric field) may have great implications for stem cell-based tissue engineering and regenerative medicine. PMID:19167316

  18. Prospective phase II study of the efficacy of transcutaneous electrical nerve stimulation in post-radiation patients.

    PubMed

    Vijayan, A; Asha, M L; Babu, S; Chakraborty, S

    2014-12-01

    To evaluate the effectiveness of transcutaneous electrical nerve stimulation (TENS) delivered using an extra-oral device in patients with radiation-induced xerostomia. Thirty oral cavity and oropharyngeal cancer patients post-adjuvant (n = 26) or definitive radiotherapy (n = 4) were enrolled in this study. The TENS electrode pads were placed externally on the skin overlying the parotid glands. Unstimulated whole saliva was collected for 5 min into graduated tubes using the low forced spitting method. The TENS unit was then activated and stimulated saliva was collected for an additional 5 min. The difference between unstimulated and stimulated saliva output was measured using the paired t-test. Linear regression was used to determine factors significantly influencing the improvement in salivary output. Twenty-nine of 30 patients showed increased saliva flow during stimulation. A statistically significant improvement in saliva production (P < 0.05) during stimulation was noted. The mean unstimulated saliva flow was 0.056 ml/min and the mean stimulated saliva flow was 0.12 ml/min with a median increase of 0.06 ml/min. The interval to the application of TENS after radiotherapy significantly influenced the improvement in salivary flow. Extra-oral application of TENS is effective in increasing the whole salivary flow in most of the post-radiated oral cavity/oropharyngeal cancer patients with xerostomia. TENS therapy may be useful as an effective supportive treatment modality in post-radiated oral cancer patients. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Technique of electrical stimulation of the vestibular analyzer under clinical conditions

    NASA Technical Reports Server (NTRS)

    Khechinashvili, S. N.; Zargaryan, B. M.; Karakozov, K. G.

    1980-01-01

    Vestibular reactions appear under the action of direct current (dc) on the labyrinth of man and animals. A decrease of the stimulation effect of dc on the extralabyrinthine nervous formations in the suggested method is achieved by the use of electric pulses with steep front and back parts, as well as by previous anesthetization of the skin in the electrode application area by means of novocain solution electrophoresis. For this purpose a pulse producer giving trapezoid pulses with smoothly changing fronts and duration was constructed. With the help of an interrupter it is possible to stop the current increase instantly, and stimulation is performed at the level of the pulse 'plateau'. To induce vestibular reactions under monopolar stimulation, it is necessary to apply the current twice as high as that with bipolar electrode position. The use of short pulses with steep front and back parts for electrode stimulation of the vestibular analyzer is considered to be inexpedient.

  20. The effects of high-frequency transcranial magnetic stimulation combined with transcutaneous electrical stimulation in a severe stroke patient.

    PubMed

    Koyama, Soichiro; Tanabe, Shigeo; Takeda, Kazuya; Warashina, Hiroaki; Sakurai, Hiroaki; Kanada, Yoshikiyo; Okumura, Ryuji; Shinoda, Jun; Nagata, Junji; Kanno, Tetsuo

    2012-10-12

    The case report describes the effects of 5 Hz repetitive transcranial magnetic stimulation (rTMS) combined with transcutaneous electrical stimulation (TES) in a patient with severe stroke. The patient was a 69-year-old male who was affected by a left middle cerebral artery infarction. The patient had no movement in his right hand. To assess the effects, cerebral blood flow and motor function were measured before and after treatment. This treatment delivered rTMS over the affected M1 with TES at the paretic wrist extensor muscles for 10 days. The regional cerebral blood flow (rCBF) in the entire brain was measured by positronemission tomography. To evaluate the motor function, the Fugl-Meyer assessment (FMA) was used. After treatment, the rCBF was increased (except for the stimulated region), and the FMA score was slightly improved. These results suggest the potential therapeutic use of rTMS combined with TES for recovery in severe stroke.

  1. Toward rational design of electrical stimulation strategies for epilepsy control

    PubMed Central

    Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom

    2009-01-01

    Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525

  2. Efficacy of Transcutaneous Electric Nerve Stimulation on Parotid Saliva Flow Rate in Relation to Age and Gender

    PubMed Central

    Dhillon, Manu; M Raju, Srinivasa; S Mohan, Raviprakash; Tomar, Divya

    2016-01-01

    Statement of the Problem Treatment with salivary substitutes and stimulation of salivary flow by either mechanical or pharmacologic methods has side effects and only provides symptomatic relief but no long-lasting results. Purpose To assess the effectiveness of extraoral transcutaneous electric nerve stimulation (TENS) as a mean of stimulating salivary function in healthy adult subjects; as well as to determine the gender and age-dependent changes in salivary flow rates of unstimulated and stimulated parotid saliva. Materials and Method Hundred patients were divided into two groups; Group I aged 20-40 and Group II aged ≥ 60 years. The TENS electrode pads were externally placed on the skin overlying the parotid glands. Unstimulated and stimulated parotid saliva was collected for 5 minutes each by using standardized collection techniques. Results Eighty seven of 100 subjects demonstrated increased salivary flow when stimulated via the TENS unit. Ten experienced no increase and 3 experienced a decrease. The mean unstimulated salivary flow rate was 0.01872 ml/min in Group I and 0.0088 ml/min in Group II. The mean stimulated salivary flow rate was 0.03084 ml/min (SD= 0.01248) in Group I, and 0.01556 ml/min (SD 0.0101) in Group II. After stimulation, the amount of salivary flow increased significantly in both groups (p< 0.001). Statistical comparison of the two groups revealed them to be significantly different (p< 0.001), with Group I producing more saliva. Gender-wise, no statistically significant difference was seen among the subjects in Group I (p = 0.148), and those in Group II (p= 0.448). Out of 12 subjects with 0 baseline flows, 7 continued to have no flow. Five subjects observed side effects, although minimal and transient. Conclusion The TENS unit was effective in increasing parotid gland salivary flow in healthy subjects. There was age-related but no gender-related variability in parotid salivary flow rate. PMID:27602390

  3. Efficacy of Transcutaneous Electric Nerve Stimulation on Parotid Saliva Flow Rate in Relation to Age and Gender.

    PubMed

    Dhillon, Manu; M Raju, Srinivasa; S Mohan, Raviprakash; Tomar, Divya

    2016-09-01

    Treatment with salivary substitutes and stimulation of salivary flow by either mechanical or pharmacologic methods has side effects and only provides symptomatic relief but no long-lasting results. To assess the effectiveness of extraoral transcutaneous electric nerve stimulation (TENS) as a mean of stimulating salivary function in healthy adult subjects; as well as to determine the gender and age-dependent changes in salivary flow rates of unstimulated and stimulated parotid saliva. Hundred patients were divided into two groups; Group I aged 20-40 and Group II aged ≥ 60 years. The TENS electrode pads were externally placed on the skin overlying the parotid glands. Unstimulated and stimulated parotid saliva was collected for 5 minutes each by using standardized collection techniques. Eighty seven of 100 subjects demonstrated increased salivary flow when stimulated via the TENS unit. Ten experienced no increase and 3 experienced a decrease. The mean unstimulated salivary flow rate was 0.01872 ml/min in Group I and 0.0088 ml/min in Group II. The mean stimulated salivary flow rate was 0.03084 ml/min (SD= 0.01248) in Group I, and 0.01556 ml/min (SD 0.0101) in Group II. After stimulation, the amount of salivary flow increased significantly in both groups (p< 0.001). Statistical comparison of the two groups revealed them to be significantly different (p< 0.001), with Group I producing more saliva. Gender-wise, no statistically significant difference was seen among the subjects in Group I (p = 0.148), and those in Group II (p= 0.448). Out of 12 subjects with 0 baseline flows, 7 continued to have no flow. Five subjects observed side effects, although minimal and transient. The TENS unit was effective in increasing parotid gland salivary flow in healthy subjects. There was age-related but no gender-related variability in parotid salivary flow rate.

  4. Functional electrical stimulation to the abdominal wall muscles synchronized with the expiratory flow does not induce muscle fatigue.

    PubMed

    Okuno, Yukako; Takahashi, Ryoichi; Sewa, Yoko; Ohse, Hirotaka; Imura, Shigeyuki; Tomita, Kazuhide

    2017-03-01

    [Purpose] Continuous electrical stimulation of abdominal wall muscles is known to induce mild muscle fatigue. However, it is not clear whether this is also true for functional electrical stimulation delivered only during the expiratory phase of breathing. This study aimed to examine whether or not intermittent electrical stimulation delivered to abdominal wall muscles induces muscle fatigue. [Subjects and Methods] The subjects were nine healthy adults. Abdominal electrical stimulation was applied for 1.5 seconds from the start of expiration and then turned off during inspiration. The electrodes were attached to both sides of the abdomen at the lower margin of the 12th rib. Abdominal electrical stimulation was delivered for 15 minutes with the subject in a seated position. Expiratory flow was measured during stimulus. Trunk flexor torque and electromyography activity were measured to evaluate abdominal muscle fatigue. [Results] The mean stimulation on/off ratio was 1:2.3. The declining rate of abdominal muscle torque was 61.1 ± 19.1% before stimulus and 56.5 ± 20.9% after stimulus, not significantly different. The declining rate of mean power frequency was 47.8 ± 11.7% before stimulus and 47.9 ± 10.2% after stimulus, not significantly different. [Conclusion] It was found that intermittent electrical stimulation to abdominal muscles synchronized with the expiratory would not induce muscle fatigue.

  5. Bioelectrical activity of limb muscles during cold shivering of stimulation of the vestibular apparatus

    NASA Technical Reports Server (NTRS)

    Kuzmina, G. I.

    1980-01-01

    The effects of caloric and electric stimulation of the vestibular receptors on the EMG activity of limb muslces in anesthetized cats during cold induced shivering involved flexor muscles alone. Both types of stimulation suppressed bioelectrical activity more effectively in the ipsilateral muscles. The suppression of shivering activity seems to be due to the increased inhibitory effect of descending labyrinth pathways on the function of flexor motoneurons.

  6. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    NASA Astrophysics Data System (ADS)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  7. High frequency oscillations evoked by peripheral magnetic stimulation.

    PubMed

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  8. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  9. A Nonlinear Model for Hippocampal Cognitive Prosthesis: Memory Facilitation by Hippocampal Ensemble Stimulation

    PubMed Central

    Hampson, Robert E.; Song, Dong; Chan, Rosa H.M.; Sweatt, Andrew J.; Riley, Mitchell R.; Gerhardt, Gregory A.; Shin, Dae C.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Samuel A.

    2012-01-01

    Collaborative investigations have characterized how multineuron hippocampal ensembles encode memory necessary for subsequent successful performance by rodents in a delayed nonmatch to sample (DNMS) task and utilized that information to provide the basis for a memory prosthesis to enhance performance. By employing a unique nonlinear dynamic multi-input/multi-output (MIMO) model, developed and adapted to hippocampal neural ensemble firing patterns derived from simultaneous recorded CA1 and CA3 activity, it was possible to extract information encoded in the sample phase necessary for successful performance in the nonmatch phase of the task. The extension of this MIMO model to online delivery of electrical stimulation delivered to the same recording loci that mimicked successful CA1 firing patterns, provided the means to increase levels of performance on a trial-by-trial basis. Inclusion of several control procedures provides evidence for the specificity of effective MIMO model generated patterns of electrical stimulation. Increased utility of the MIMO model as a prosthesis device was exhibited by the demonstration of cumulative increases in DNMS task performance with repeated MIMO stimulation over many sessions on both stimulation and nonstimulation trials, suggesting overall system modification with continued exposure. Results reported here are compatible with and extend prior demonstrations and further support the candidacy of the MIMO model as an effective cortical prosthesis. PMID:22438334

  10. Different mechanisms for the short-term effects of real versus sham transcutaneous electrical nerve stimulation (TENS) in patients with chronic pain: a pilot study.

    PubMed

    Oosterhof, Jan; Wilder-Smith, Oliver H; Oostendorp, Rob A; Crul, Ben J

    2012-01-01

    Transcutaneous electrical nerve stimulation (TENS) has existed since the early 1970s. However, randomized placebo controlled studies show inconclusive results in the treatment of chronic pain. These results could be explained by assuming that TENS elicits a placebo response. However, in animal research TENS has been found to decrease hyperalgesia, which contradicts this assumption. The aim of this study is to use quantitative sensory testing to explore changes in pain processing during sham versus real TENS in patients with chronic pain. Patients with chronic pain (N = 20) were randomly allocated to real TENS or sham TENS application. Electrical pain thresholds (EPTs) were determined inside and outside the segment stimulated, before and after the first 20 minutes of the intervention, and after a period of 10 days of daily real/sham TENS application. Pain relief did not differ significantly for real versus sham TENS. However, by comparing time courses of EPTs, it was found that EPT values outside the segment of stimulation increased for sham TENS, whereas for real TENS these values decreased. There were, however, no differences for EPT measurements inside the segment stimulated. These results illustrate the importance of including mechanism-reflecting parameters in addition to symptoms when conducting pain research.

  11. Neuromodulation: Selected approaches and challenges

    PubMed Central

    Parpura, Vladimir; Silva, Gabriel A.; Tass, Peter A.; Bennet, Kevin E.; Meyyappan, Meyya; Koehne, Jessica; Lee, Kendall H.; Andrews, Russell J.

    2012-01-01

    The brain operates through complex interactions in the flow of information and signal processing within neural networks. The “wiring” of such networks, being neuronal or glial, can physically and/or functionally go rogue in various pathological states. Neuromodulation, as a multidisciplinary venture, attempts to correct such faulty nets. In this review, selected approaches and challenges in neuromoduation are discussed. The use of water-dispersible carbon nanotubes have proven effective in modulation of neurite outgrowth in culture as well as in aiding regeneration after spinal cord injury in vivo. Studying neural circuits using computational biology and analytical engineering approaches brings to light geometrical mapping of dynamics within neural networks, much needed information for stimulation interventions in medical practice. Indeed, sophisticated desynchronization approaches used for brain stimulation have been successful in coaxing “misfiring” neuronal circuits to resume productive firing patterns in various human disorders. Devices have been developed for the real time measurement of various neurotransmitters as well as electrical activity in the human brain during electrical deep brain stimulation. Such devices can establish the dynamics of electrochemical changes in the brain during stimulation. With increasing application of nanomaterials in devices for electrical and chemical recording and stimulating in the brain, the era of cellular, and even intracellular, precision neuromodulation will soon be upon us. PMID:23190025

  12. The Effect of Surface Electrical Stimulation on Vocal Fold Position

    PubMed Central

    Humbert, Ianessa A.; Poletto, Christopher J.; Saxon, Keith G.; Kearney, Pamela R.; Ludlow, Christy L.

    2008-01-01

    Objectives/Hypothesis Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Design Prospective single effects study. Methods The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using ten different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Results Vocal fold angles changed only to a small extent during two electrode placements (p ≤ 0.05). When two sets of electrodes were placed vertically on the neck the mean true vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (p=0.03). Conclusions Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing and one position may produce a slight increase in true vocal fold opening. PMID:18043496

  13. Posterior tibial nerve stimulation vs parasacral transcutaneous neuromodulation for overactive bladder in children.

    PubMed

    Barroso, Ubirajara; Viterbo, Walter; Bittencourt, Joana; Farias, Tiago; Lordêlo, Patrícia

    2013-08-01

    Parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation have emerged as effective methods to treat overactive bladder in children. However, to our knowledge no study has compared the 2 methods. We evaluated the results of parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation in children with overactive bladder. We prospectively studied children with overactive bladder without dysfunctional voiding. Success of treatment was evaluated by visual analogue scale and dysfunctional voiding symptom score, and by level of improvement of each specific symptom. Parasacral transcutaneous electrical nerve stimulation was performed 3 times weekly and posterior tibial nerve stimulation was performed once weekly. A total of 22 consecutive patients were treated with posterior tibial nerve stimulation and 37 with parasacral transcutaneous electrical nerve stimulation. There was no difference between the 2 groups regarding demographic characteristics or types of symptoms. Concerning the evaluation by visual analogue scale, complete resolution of symptoms was seen in 70% of the group undergoing parasacral transcutaneous electrical nerve stimulation and in 9% of the group undergoing posterior tibial nerve stimulation (p = 0.02). When the groups were compared, there was no statistically significant difference (p = 0.55). The frequency of persistence of urgency and diurnal urinary incontinence was nearly double in the group undergoing posterior tibial nerve stimulation. However, this difference was not statistically significant. We found that parasacral transcutaneous electrical nerve stimulation is more effective in resolving overactive bladder symptoms, which matches parental perception. However, there were no statistically significant differences in the evaluation by dysfunctional voiding symptom score, or in complete resolution of urgency or diurnal incontinence. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Noxious electrical stimulation of the pelvic floor and vagina induces transient voiding dysfunction in a rabbit survival model of pelvic floor dystonia.

    PubMed

    Dobberfuhl, Amy D; Spettel, Sara; Schuler, Catherine; Levin, Robert M; Dubin, Andrew H; De, Elise J B

    2015-12-01

    Existing data supports a relationship between pelvic floor dysfunction and lower urinary tract symptoms. We developed a survival model of pelvic floor dysfunction in the rabbit and evaluated cystometric (CMG), electromyographic (EMG) and ambulatory voiding behavior. Twelve female adult virgin rabbits were housed in metabolic cages to record voiding and defecation. Anesthetized CMG/EMG was performed before and after treatment animals (n=9) received bilateral tetanizing needle stimulation to the pubococcygeous (PC) muscle and controls (n=3) sham needle placement. After 7 days all animals were subjected to tetanizing transvaginal stimulation and CMG/EMG. After 5 days a final CMG/EMG was performed. Of rabbits that underwent needle stimulation 7 of 9 (78%) demonstrated dysfunctional CMG micturition contractions versus 6 of 12 (50%) after transvaginal stimulation. Needle stimulation of the PC musculature resulted in significant changes in: basal CMG pressure, precontraction pressure change, contraction pressure, interval between contractions and postvoid residual; with time to 3rd contraction increased from 38 to 53 minutes (p=0.008 vs. prestimulation). Vaginal noxious stimulation resulted in significant changes in: basal CMG pressure and interval between contractions; with time to 3rd contraction increased from 37 to 46 minutes (p=0.008 vs. prestimulation). Changes in cage parameters were primarily seen after direct needle stimulation. In a majority of animals, tetanizing electrical stimulation of the rabbit pelvic floor resulted in voiding changes suggestive of pelvic floor dysfunction as characterized by a larger bladder capacity, longer interval between contractions and prolonged contraction duration.

  15. Blockade of hyperpolarization-activated channels modifies the effect of beta-adrenoceptor stimulation.

    PubMed

    Zefirov, T L; Ziyatdinova, N I; Gainullin, A A; Zefirov, A L

    2002-05-01

    Experiments on rats showed that blockade of hyperpolarization-activated currents moderates tachycardia induced by beta-adrenoceptor agonist isoproterenol and potentiates the increase in stroke volume produced by this agonist. Electrical stimulation of the vagus nerve against the background of isoproterenol treatment augmented bradycardia and increased stroke volume. Blockade of hyperpolarization-activated currents followed by application of isoproterenol moderated vagus-induced bradycardia and had no effect on the dynamics of stroke volume.

  16. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice.

    PubMed

    Kolodziej, Angela; Lippert, Michael; Angenstein, Frank; Neubert, Jenni; Pethe, Annette; Grosser, Oliver S; Amthauer, Holger; Schroeder, Ulrich H; Reymann, Klaus G; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2014-12-01

    Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Electrical Stimulation Modulates High γ Activity and Human Memory Performance

    PubMed Central

    Berry, Brent M.; Miller, Laura R.; Khadjevand, Fatemeh; Ezzyat, Youssef; Wanda, Paul; Sperling, Michael R.; Lega, Bradley; Stead, S. Matt

    2018-01-01

    Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62–118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with “poor” memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation. PMID:29404403

  18. Functional and ultrastructural neuroanatomy of interactive intratectal/tectonigral mesencephalic opioid inhibitory links and nigrotectal GABAergic pathways: involvement of GABAA and mu1-opioid receptors in the modulation of panic-like reactions elicited by electrical stimulation of the dorsal midbrain.

    PubMed

    Ribeiro, S J; Ciscato, J G; de Oliveira, R; de Oliveira, R C; D'Angelo-Dias, R; Carvalho, A D; Felippotti, T T; Rebouças, E C C; Castellan-Baldan, L; Hoffmann, A; Corrêa, S A L; Moreira, J E; Coimbra, N C

    2005-12-01

    In the present study, the functional neuroanatomy of nigrotectal-tectonigral pathways as well as the effects of central administration of opioid antagonists on aversive stimuli-induced responses elicited by electrical stimulation of the midbrain tectum were determined. Central microinjections of naloxonazine, a selective mu(1)-opiod receptor antagonist, in the mesencephalic tectum (MT) caused a significant increase in the escape thresholds elicited by local electrical stimulation. Furthermore, either naltrexone or naloxonazine microinjected in the substantia nigra, pars reticulata (SNpr), caused a significant increase in the defensive thresholds elicited by electrical stimulation of the continuum comprised by dorsolateral aspects of the periaqueductal gray matter (dlPAG) and deep layers of the superior colliculus (dlSC), as compared with controls. These findings suggest an opioid modulation of GABAergic inhibitory inputs controlling the defensive behavior elicited by MT stimulation, in cranial aspects. In fact, iontophoretic microinjections of the neurotracer biodextran into the SNpr, a mesencephalic structure rich in GABA-containing neurons, show outputs to neural substrate of the dlSC/dlPAG involved with the generation and organization of fear- and panic-like reactions. Neurochemical lesion of the nigrotectal pathways increased the sensitivity of the MT to electrical (at alertness, freezing and escape thresholds) and chemical (blockade of GABA(A) receptors) stimulation, suggesting a tonic modulatory effect of the nigrotectal GABAergic outputs on the neural networks of the MT involved with the organization of the defensive behavior and panic-like reactions. Labeled neurons of the midbrain tectum send inputs with varicosities to ipsi and contralateral dlSC/dlPAG and ipsilateral substantia nigra, pars reticulata and compacta, in which the anterograde and retrograde tracing from a single injection indicates that the substantia nigra has reciprocal connections with the dlSC/dlPAG featuring close axo-somatic and axo-dendritic appositions in both locations. In addition, ultrastructural approaches show inhibitory axo-axonic synapses in MT and inhibitory axo-somatic/axo-axonic synapses in the SNpr. These findings, in addition to the psychopharmacological evidence for the interaction between opioid and GABAergic mechanisms in the cranial aspects of the MT as well as in the mesencephalic tegmentum, offer a neuroanatomical basis of a pre-synaptic opioid inhibition of GABAergic nigrotectal neurons modulating fear in defensive behavior-related structures of the cranial mesencephalon, in a short link, and through a major neural circuit, also in GABA-containing perikarya and axons of nigrotectal neurons.

  19. Transcranial electric stimulation (tES) and NeuroImaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience.

    PubMed

    Soekadar, Surjo R; Herring, Jim Don; McGonigle, David

    2016-10-15

    Transcranial electric stimulation (tES) of the brain has attracted an increased interest in recent years. Yet, despite remarkable research efforts to date, the underlying neurobiological mechanisms of tES' effects are still incompletely understood. This Special Issue aims to provide a comprehensive and up-to-date overview of the state-of-the-art in studies combining tES and neuroimaging, while introducing most recent insights and outlining future prospects related to this new and rapidly growing field. The findings reported here combine methodological advancements with insights into the underlying mechanisms of tES itself. At the same time, they also point to the many caveats and specific challenges associated with such studies, which can arise from both technical and biological sources. Besides promising to advance basic neuroscience, combined tES and neuroimaging studies may also substantially change previous conceptions about the methods of action of electric or magnetic stimulation on the brain. Copyright © 2016. Published by Elsevier Inc.

  20. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.

  1. Long-term intensive electrically stimulated cycling by spinal cord-injured people: effect on muscle properties and their relation to power output.

    PubMed

    Duffell, Lynsey D; Donaldson, Nick de N; Perkins, Tim A; Rushton, David N; Hunt, Kenneth J; Kakebeeke, Tanja H; Newham, Di J

    2008-10-01

    Inactivity and muscular adaptations following spinal cord injury (SCI) result in secondary complications such as cardiovascular disease, obesity, and pressure sores. Functional electrically stimulated (FES) cycling can potentially reduce these complications, but previous studies have provided inconsistent results. We studied the effect of intensive long-term FES cycle training on muscle properties in 11 SCI subjects (mean +/- SEM: 41.8 +/- 2.3 years) who had trained for up to 1 hour/day, 5 days/week, for 1 year. Comparative measurements were made in 10 able-bodied (AB) subjects. Quadriceps maximal electrically stimulated torque increased fivefold (n = 5), but remained lower than in AB individuals. Relative force response at 1 HZ decreased, relaxation rate remained unchanged, and fatigue resistance improved significantly. Power output (PO) improved to a lesser extent than quadriceps torque and not to a greater extent than has been reported previously. We need to understand the factors that limit PO in order to maximize the benefits of FES cycling.

  2. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins.

    PubMed

    Andrews, Russell J

    2003-05-01

    Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.

  3. Transcutaneous Electrical Nerve Stimulation Combined with Oxybutynin is Superior to Monotherapy in Children with Urge Incontinence: A Randomized, Placebo Controlled Study.

    PubMed

    Borch, Luise; Hagstroem, Soeren; Kamperis, Konstantinos; Siggaard, C V; Rittig, Soeren

    2017-08-01

    We evaluated whether combination therapy with transcutaneous electrical nerve stimulation and oxybutynin results in a superior treatment response compared to either therapy alone in children with urge incontinence. In this placebo controlled study 66 children with a mean ± SD age of 7.3 ± 1.6 years who were diagnosed with urge incontinence were randomized to 3 treatment groups. Group 1 consisted of 22 children undergoing transcutaneous electrical nerve stimulation plus active oxybutynin administration. Group 2 included 21 children undergoing active transcutaneous electrical nerve stimulation plus placebo oxybutynin administration. Group 3 consisted of 23 children undergoing active oxybutynin administration plus placebo transcutaneous electrical nerve stimulation. The children received active or placebo transcutaneous electrical nerve stimulation over the sacral S2 to S3 outflow for 2 hours daily in combination with 5 mg active or placebo oxybutynin twice daily. The intervention period was 10 weeks. Primary outcome was number of wet days weekly. Secondary outcomes were severity of incontinence, frequency, maximum voided volume over expected bladder capacity for age, average voided volume over expected bladder capacity for age and visual analogue scale score. Combination therapy was superior to oxybutynin monotherapy, with an 83% greater chance of treatment response (p = 0.05). Combination therapy was also significantly more effective than transcutaneous electrical nerve stimulation monotherapy regarding reduced number of wet days weekly (mean difference -2.28, CI -4.06 to -0.49), severity of incontinence (-3.11, CI -5.98 to -0.23) and daily voiding frequency (-2.82, CI -4.48 to -1.17). Transcutaneous electrical nerve stimulation in combination with oxybutynin for childhood urge incontinence was superior to monotherapy consisting of transcutaneous electrical nerve stimulation or oxybutynin, although the latter only reached borderline statistical significance. Furthermore, transcutaneous electrical nerve stimulation was associated with a decreased risk of oxybutynin induced post-void residual urine greater than 20 ml. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Focal activation of primary visual cortex following supra-choroidal electrical stimulation of the retina: Intrinsic signal imaging and linear model analysis.

    PubMed

    Cloherty, Shaun L; Hietanen, Markus A; Suaning, Gregg J; Ibbotson, Michael R

    2010-01-01

    We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.

  5. Prolonged Stimulation of a Brainstem Raphe Region Attenuates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Madsen, Pernille M.; Sloley, Stephanie S.; Vitores, Alberto A.; Carballosa-Gautam, Melissa M.; Brambilla, Roberta; Hentall, Ian D.

    2017-01-01

    Multiple sclerosis (MS), a neuroinflammatory disease, has few treatment options, none entirely adequate. We studied whether prolonged electrical stimulation of a hindbrain region (the nucleus raphe magnus) can attenuate experimental autoimmune encephalomyelitis, a murine model of MS induced by MOG35-55 injection. Eight days after symptoms emerged, a wireless electrical stimulator with a connectorless protruding microelectrode was implanted cranially, and daily intermittent stimulation of awake, unrestrained mice began immediately. The thoracic spinal cord was analyzed for changes in histology (on day 29) and gene expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19–25 that stimulation for >16 days eliminated. Prolonged stimulation also reduced infiltrating immune cells and increased numbers of myelinated axons. It additionally lowered gene expression for some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and for platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising it for myelin basic protein. Restorative treatments for MS might profitably consider ways to stimulate the raphe magnus, directly or via its inputs, or to emulate its serotonergic and peptidergic output. PMID:28147248

  6. Focused intracochlear electric stimulation with phased array channels.

    PubMed

    van den Honert, Chris; Kelsall, David C

    2007-06-01

    A method is described for producing focused intracochlear electric stimulation using an array of N electrodes. For each electrode site, N weights are computed that define the ratios of positive and negative electrode currents required to produce cancellation of the voltage within scala tympani at all of the N-1 other sites. Multiple sites can be stimulated simultaneously by superposition of their respective current vectors. The method allows N independent stimulus waveforms to be delivered to each of the N electrode sites without spatial overlap. Channel interaction from current spread associated with monopolar stimulation is substantially eliminated. The method operates by inverting the spread functions of individual monopoles as measured with the other electrodes. The method was implemented and validated with data from three human subjects implanted with 22-electrode perimodiolar arrays. Results indicate that (1) focusing is realizable with realistic precision; (2) focusing comes at the cost of increased total stimulation current; (3) uncanceled voltages that arise beyond the ends of the array are weak except when stimulating the two end channels; and (4) close perimodiolar positioning of the electrodes may be important for minimizing stimulation current and sensitivity to measurement errors.

  7. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training

    PubMed Central

    Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.

    2012-01-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI. PMID:16575026

  8. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

    PubMed

    Shields, Richard K; Dudley-Javoroski, Shauna; Littmann, Andrew E

    2006-08-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.

  9. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. I. Characteristics of evoked head movements.

    PubMed

    Quessy, Stephan; Freedman, Edward G

    2004-06-01

    The nucleus reticularis gigantocellularis (NRG) receives monosynaptic input from the superior colliculus (SC) and projects directly to neck motor neuron pools. Neurons in NRG are well situated to play a critical role in transforming SC signals into head movement commands. A previous study of movements evoked by NRG stimulation in the primate reported a variety of ipsilateral and contralateral head movements with horizontal, vertical and torsional components. In addition to head movements, it was reported that NRG stimulation could evoke movements of the pinnae, face, upper torso, and co-contraction of neck muscles. In this report, the role of the rhesus monkey NRG in head movement control was investigated using electrical stimulation of the rostral portion of the NRG. The goal was to characterize head movements evoked by NRG stimulation, describe the effects of altering stimulation parameters, and assess the relative movements of the eyes and head. Results indicate that electrical stimulation in the rostral portion of the NRG of the primate can consistently evoke ipsilateral head rotations in the horizontal plane. Head movement amplitude and peak velocity depend upon stimulation parameters (primarily frequency and duration of stimulation trains). During stimulation-induced head movements the eyes counter-rotate (presumably a result of the vestibulo-ocular reflex: VOR). At 46 stimulation sites from two subjects the average gain of this counter-rotation was -0.38 (+/-0.18). After the end of the stimulation train the head generally continued to move. During this epoch, after electrical stimulation ceased, VOR gain remained at this reduced level. In addition, VOR gain was similarly low when electrical stimulation was carried out during active fixation of a visual target. These data extend existing descriptions of head movements evoked by electrical stimulation of the NRG, and add to the understanding of the role of this structure in producing head movements.

  10. Effects of locus coeruleus stimulation on the responses of SI neurons of the rat to controlled natural and electrical stimulation of the skin.

    PubMed

    Snow, P J; Andre, P; Pompeiano, O

    1999-02-01

    1. The effects of microstimulation of the locus coeruleus (LC) region on the spontaneous discharge and the response of SI neurons to natural and electrical stimulation of the skin have been investigated in 26 urethane anesthetized Sprague-Dawley rats. In particular, one or two air puffs, 5-10 msec in duration, 1-2 psi, usually separated by an interval of 40 msec, were applied on the hairy skin of the wrist or the forepaw at the presentation rate of 1/sec. For units unresponsive to air puffs, similar presentation of low intensity electrical stimuli (0.2-5.0 V, 0.2-0.4 msec pulses) were applied through two needles inserted on the most effective area of the skin. Both natural and electrical stimulations of the skin were applied under control conditions, as well as 50 msec after a 250 msec train of 0.3 msec pulses at 40 Hz. 20-30 microA applied stereotaxically to the LC complex through a tungsten microelectrode. 2. Not all cortical units exhibited spontaneous discharge. Most of the units, however, which were spontaneously active, were inhibited by electrical stimulation of the LC complex, while the remaining ones were excited. The sites of stimulation, which included either the LC proper or the locus subcoeruleus, were identified following both anatomical and physiological criteria. 3. SI neurons recorded at sites between 400 and 950 microns below the surface of the cortex, thus being most likely granule cells of layers III and IV, responded to cutaneous stimuli with spikes which occurred with a latency of 20-30 msec in response to single air puffs and a latency of 15-20 msec in response to single electrical pulses to the skin. In both instances the response to the second stimulus applied at the interstimulus interval of 40 msec was markedly reduced or abolished due to postexcitatory inhibition following the response to the first stimulus (in-field inhibition). In contrast, units particularly located at or below 1000 microns from the cortical surface, which were of very large size probably corresponding to large layer V pyramidal cells, were often difficult to activate with air puffs applied at the centre of the receptive field (RF) and were submitted to electrical stimulation of the skin. 4. Among the 59 isolated SI units tested either to air puffs (45 neurons) or to electrical skin stimulation (14 neurons), 15 units (i.e., 25.4%) were facilitated, while 12 units (i.e., 20.3%) were inhibited following stimulation of the LC complex. 5. A marked feature of the facilitatory effects which usually involved the predominant response to the first air puff, but also the smaller response to the second puff, was that the increase in the number of spikes per stimulus was accompanied by a temporal focusing of the responses characterized by a clear tightening of the latency and narrowing of the peak of activity, which was often accompanied by some level of tonic inhibition of the background discharge. Thus, LC stimulation increased the signal-to-noise ratio of SI neuronal responses to skin stimulation. When inhibitory effects were induced by LC stimulation, they clearly affected the unit response to the first air puff, which was severely depressed. However, the response to the second puff could be facilitated, suggesting that LC stimulation might have produced inhibition of those inhibitory interneurons responsible for the postexcitatory inhibition of the units under examination. Evidence for spatial focusing of the response was not easily documented. In some units, however, LC stimulation produced either facilitation of the responses to puffs at the receptive field center and inhibition of the responses to puffs at the edge at the receptive field or vice versa. 6. Since the LC complex contains in the rat a predominant population of noradrenergic neurons, it is likely that the effects described above were mainly due to activation of these noradrenergic neurons. 7. (ABSTRACT TRUNCATED)

  11. Neuromuscular Electrical Stimulation for Mobility Support of Elderly

    PubMed Central

    2015-01-01

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within “MOBIL” we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in “compliance data storage” as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the correlation between normalized MVC and normalized MSC was calculated. It is obvious that MVC can increase to strongly variable extent (3 to 65 %), but in few cases also decrease (-4 to 15 %) over the study period. The correlation suggests that an increase of roughly 1 % of normalized MSC can lead to an increase of about 10 % in MVC in the given training conditions. Overall, we can say that we have a stimulator that has turned out to work sufficiently. The most important feature is the integrated compliance recording because this is very useful for interpretation of the study outcome. The electrical stimulation training has shown that even with relatively small induced contraction intensity we still get some increase in the achievable voluntary extension torque. PMID:26913167

  12. Neuromuscular Electrical Stimulation for Mobility Support of Elderly.

    PubMed

    Mayr, Winfried

    2015-08-24

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within "MOBIL" we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in "compliance data storage" as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the correlation between normalized MVC and normalized MSC was calculated. It is obvious that MVC can increase to strongly variable extent (3 to 65 %), but in few cases also decrease (-4 to 15 %) over the study period. The correlation suggests that an increase of roughly 1 % of normalized MSC can lead to an increase of about 10 % in MVC in the given training conditions. Overall, we can say that we have a stimulator that has turned out to work sufficiently. The most important feature is the integrated compliance recording because this is very useful for interpretation of the study outcome. The electrical stimulation training has shown that even with relatively small induced contraction intensity we still get some increase in the achievable voluntary extension torque.

  13. Neurophysiological responses to unpleasant stimuli (acute electrical stimulations and emotional pictures) are increased in patients with schizophrenia

    PubMed Central

    Duval, Céline Z.; Goumon, Yannick; Kemmel, Véronique; Kornmeier, Jürgen; Dufour, André; Andlauer, Olivier; Vidailhet, Pierre; Poisbeau, Pierrick; Salvat, Eric; Muller, André; Mensah-Nyagan, Ayikoé G.; Schmidt-Mutter, Catherine; Giersch, Anne

    2016-01-01

    Patients with schizophrenia have often been described as insensitive to nociceptive signals, but objective evidence is sparse. We address this question by combining subjective behavioral and objective neurochemical and neurophysiological measures. The present study involved 21 stabilized and mildly symptomatic patients with schizophrenia and 21 control subjects. We applied electrical stimulations below the pain threshold and assessed sensations of pain and unpleasantness with rating scales, and Somatosensory Evoked Potentials (SEPs/EEG). We also measured attention, two neurochemical stress indices (ACTH/cortisol), and subjective VEPs/EEG responses to visual emotional stimuli. Our results revealed that, subjectively, patients’ evaluations do not differ from controls. However, the amplitude of EEG evoked potentials was greater in patients than controls as early as 50 ms after electrical stimulations and beyond one second after visual processing of emotional pictures. Such responses could not be linked to the stress induced by the stimulations, since stress hormone levels were stable. Nor was there a difference between patients and controls in respect of attention performance and tactile sensitivity. Taken together, all indices measured in patients in our study were either heightened or equivalent relative to healthy volunteers. PMID:26935652

  14. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    PubMed

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  15. Effects of transportation during the hot season, breed and electrical stimulation on histochemical and meat quality characteristics of goat longissimus muscle.

    PubMed

    Kadim, Isam T; Mahgoub, Osman; Al-Marzooqi, Waleed; Khalaf, Samera; Al-Sinawi, Shadia S H; Al-Amri, Issa

    2010-06-01

    The effects of transportation and electrical stimulation (90 V) on physiological, histochemical and meat quality characteristics of two breeds of Omani goats were assessed. Twenty 1-year-old male goats from each breed (Batina and Dhofari) were divided into two groups: 3 h transported during the hot season (42 degrees C day time temperature) and non-transported. Animals were blood-sampled before loading and prior to slaughter. Electrical stimulation was applied 20 min postmortem to 50% randomly selected carcasses of both breeds. Temperature and pH decline of the Longissimus was monitored. Ultimate pH, shear force, sarcomere length, myofibrillar fragmentation index, expressed juice, cooking loss and colour were measured from samples of Longissimus dorsi muscles. Electrical stimulation and transportation had a significant effect on most biochemical and meat quality characteristics of Longissimus dorsi. The transported goats had higher plasma cortisol (P < 0.01), adrenaline, nor-adrenaline and dopamine concentrations (P < 0.05) than non-transported goats. Electrical stimulation resulted in a significantly (P < 0.05) more rapid muscle pH fall during the first 12 h after slaughter. Muscles from electrically-stimulated carcasses had significantly (P < 0.05) longer sarcomeres, lower shear force value, a lighter colour (higher L* value), higher expressed juice and myofibrillar fragmentation index than those from non-stimulated ones. Meat from transported goats had significantly higher pH, expressed juice and shear force, but contained significantly lower sarcomere length and L* values than non-transported goats. The proportion of the myosin ATPase staining did not change as a function of stimulation, transportation or breed. These results indicated that subjecting goats to transportation for 3 h under high ambient temperatures can generate major physiological and muscle metabolism responses. Electrical stimulation improved quality characteristics of meat from both groups. This indicates that electrical stimulation may reduce detrimental effects of transportation on meat quality of Omani goats.

  16. Neural hijacking: action of high-frequency electrical stimulation on cortical circuits.

    PubMed

    Cheney, P D; Griffin, D M; Van Acker, G M

    2013-10-01

    Electrical stimulation of the brain was one of the first experimental methods applied to understanding brain organization and function and it continues as a highly useful method both in research and clinical applications. Intracortical microstimulation (ICMS) involves applying electrical stimuli through a microelectrode suitable for recording the action potentials of single neurons. ICMS can be categorized into single-pulse stimulation; high-frequency, short-duration stimulation; and high-frequency, long-duration stimulation. For clinical and experimental reasons, considerable interest focuses on the mechanism of neural activation by electrical stimuli. In this article, we discuss recent results suggesting that action potentials evoked in cortical neurons by high-frequency electrical stimulation do not sum with the natural, behaviorally related background activity; rather, high-frequency stimulation eliminates and replaces natural activity. We refer to this as neural hijacking. We propose that a major component of the mechanism underlying neural hijacking is excitation of axons by ICMS and elimination of natural spikes by antidromic collision with stimulus-driven spikes evoked at high frequency. Evidence also supports neural hijacking as an important mechanism underlying the action of deep brain stimulation in the subthalamic nucleus and its therapeutic effect in treating Parkinson's disease.

  17. The Effect of Surface Electrical Stimulation on Hyo-Laryngeal Movement in Normal Individuals at Rest and During Swallowing

    PubMed Central

    Humbert, Ianessa A.; Poletto, Christopher J.; Saxon, Keith G.; Kearney, Pamela R.; Crujido, Lisa; Wright-Harp, Wilhelmina; Payne, Joan; Jeffries, Neal; Sonies, Barbara C.; Ludlow, Christy L.

    2006-01-01

    Surface electrical stimulation is currently used in therapy for swallowing problems, although little is known about its physiological effects on neck muscles or swallowing. Previously, when one surface electrode placement was used in dysphagic patients at rest, it lowered the hyo-laryngeal complex. Here we examined the effects of nine other placements in normal volunteers to determine: 1) if movements induced by surface stimulation using other placements differ, and 2) if lowering the hyo-laryngeal complex by surface electrical stimulation interfered with swallowing in healthy adults. Ten bipolar surface electrode placements overlying the submental and laryngeal regions were tested. Maximum tolerated stimulation levels were applied at rest while participants held their mouths closed. Videofluoroscopic recordings were used to measure hyoid bone and subglottic air column (laryngeal) movements from resting position and while swallowing 5ml of liquid barium with and without stimulation. Videofluoroscopic recordings of swallows were rated blind to condition using the NIH-Swallowing Safety Scale (NIH-SSS). Significant (p<0.0001) laryngeal and hyoid descent occurred with stimulation at rest. During swallowing, significant (p≤0.01) reductions in both the larynx and hyoid bone peak elevation occurred during stimulated swallows. The stimulated swallows were also judged less safe than non-stimulated swallows using the NIH-SSS (p=0.0275). Because surface electrical stimulation reduced hyo-laryngeal elevation during swallowing in normal volunteers, our findings suggest that surface electrical stimulation will reduce elevation during swallowing therapy for dysphagia. PMID:16873602

  18. Synthesis of nitric oxide in human osteoblasts in response to physiologic stimulation of electrotherapy.

    PubMed

    Hamed, Ayman; Kim, Paul; Cho, Michael

    2006-12-01

    Electrotherapy for bone healing, remodeling and wound healing may be mediated by modulation of nitric oxide (NO). Using NO-specific fluorophore (DAF-2), we report here that application of non-invasive, physiologic electrical stimulation induces NO synthesis in human osteoblasts, and that such NO generation is comparable to that induced by estrogen treatment. For example, application of a sinusoidal 1 Hz, 2 V/cm (peak to peak) electrical stimulation (ES) increases NO-bound DAF-2 fluorescence intensity by a 2-fold within 60 min exposure by activating nitric oxide synthase (NOS). Increase in the NO level is found to depend critically on the frequency and strength of ES. While the frequency of 1 Hz ES seems optimal, the ES strength >0.5 V/cm is required to induce significant NO increase, however. Nitric oxide synthesis in response to ES is completely prevented by blocking estrogen receptors using a competitive inhibitor, suggesting that NO generation is likely initiated by activation of estrogen receptors at the cell surface. Based on these findings, physiologic stimulation of electrotherapy appears to represent a potential non-invasive, non-genomic, and novel physical technique that could be used to regulate NO-mediated bone density and facilitate bone remodeling without adverse effects associated with hormone therapy.

  19. Vestibular stimulation leads to distinct hemodynamic patterning

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Emanuel, B. A.; Yates, B. J.

    2000-01-01

    Previous studies demonstrated that responses of a particular sympathetic nerve to vestibular stimulation depend on the type of tissue the nerve innervates as well as its anatomic location. In the present study, we sought to determine whether such precise patterning of vestibulosympathetic reflexes could lead to specific hemodynamic alterations in response to vestibular afferent activation. We simultaneously measured changes in systemic blood pressure and blood flow (with the use of Doppler flowmetry) to the hindlimb (femoral artery), forelimb (brachial artery), and kidney (renal artery) in chloralose-urethane-anesthetized, baroreceptor-denervated cats. Electrical vestibular stimulation led to depressor responses, 8 +/- 2 mmHg (mean +/- SE) in magnitude, that were accompanied by decreases in femoral vasoconstriction (23 +/- 4% decrease in vascular resistance or 36 +/- 7% increase in vascular conductance) and increases in brachial vascular tone (resistance increase of 10 +/- 6% and conductance decrease of 11 +/- 4%). Relatively small changes (<5%) in renal vascular tone were observed. In contrast, electrical stimulation of muscle and cutaneous afferents produced pressor responses (20 +/- 6 mmHg) that were accompanied by vasoconstriction in all three beds. These data suggest that vestibular inputs lead to a complex pattern of cardiovascular changes that is distinct from that which occurs in response to activation of other types of somatic afferents.

  20. Electrical and chemical stimulation of the same hypothalamic loci in relation to agressive behaviour in cats: a comparison study.

    PubMed

    Bhatia, S C; Manchanda, S K; Kapoor, B K; Aneja, I S

    1995-10-01

    Chemitrodes which permit electrical and chemical stimulation of the same hypothalamic loci were implanted in anterior hypothalamic and preoptic regions. These sites were stimulated electrically using biphasic square wave pulse (1 ms, 60 Hz) at a current strength ranging from 150-800 microA to evoke an aggressive response. At lower current strength of 150-200 micro A, defence response, a sort of non-specific response can be elicited from these regions. Increasing the current strength to 400 microA led to the recruitment of affective and somatic components and changed the response pattern either to affective attack or flight. The loci producing affective attack response were localized more laterally and ventrally while the loci producing flight response were located in the dorsomedial regions of the hypothalamus. In this response the animal made a goal-directed attempt to escape through an escape route. Increasing the current strength to 500 microA in the dorsomedial regions changed the flight response to violent flight, which involved vigorous running with unsheathed claws and attacking objects if obstructed. Similar increase in current strength at loci producing affective attack only led to a decrease in the latency of response and made the attack more vigorous. Microinfusion of carbachol in graded doses of 2-15 microgram at all these loci produced a profound affective display. At lower doses of 2 and 5 microgram, only some components of affective display like alertness, pupillary dilation and ear flatness were exhibited. Increasing the dose to 10 micrograms and 15 micrograms led to the recruitment of other affective components like piloerection, salivation, hissing and baring of teeth. Microinfusion of carbachol at all loci producing affective attack on electrical stimulation produced a prononced affective display while microinfusion of carbachol at loci producing flight response led to the development of defence posture. At six loci a typical flight response was obtained while violent flight was never exhibited at any of these sites. Microinfusion of atropine (10 microgram in 1.0 microliter saline) at these loci completely blocked the carbachol induced response. Both somatomotor and affective components were completely inhibited. However, the responses obtained on electrical stimulation were not totally blocked following atropine infusion and some of the somatomotor and affective components could be elicited with higher current strength. These studies indicate the involvement of cholinoceptive mechanisms in the elicitation of hypothalamically induced aggresive behaviour. Microinfustion of hexamethonium bromide, a nicotinic blocker in 50 micrograms doses did not affect the aggressive response.

  1. Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey.

    PubMed Central

    Edgley, S A; Eyre, J A; Lemon, R N; Miller, S

    1990-01-01

    1. The responses evoked by non-invasive electromagnetic and surface anodal electrical stimulation of the scalp (scalp stimulation) have been studied in the monkey. Conventional recording and stimulating electrodes, placed in the corticospinal pathway in the hand area of the left motor cortex, left medullary pyramid and the right spinal dorsolateral funiculus (DLF), allowed comparison of the actions of non-invasive stimuli and conventional electrical stimulation. 2. Responses to electromagnetic stimulation (with the coil tangential to the skull) were studied in four anaesthetized monkeys. In each case short-latency descending volleys were recorded in the contralateral DLF at threshold. In two animals later responses were also seen at higher stimulus intensities. Both early and late responses were of corticospinal origin since they could be completely collided by appropriately timed stimulation of the pyramidal tract. The latency of the early response in the DLF indicated that it resulted from direct activation of corticospinal neurones: its latency was the same as the latency of the antidromic action potentials evoked in the motor cortex from the recording site in the DLF. 3. Scalp stimulation, which was also investigated in three of the monkeys, evoked short-latency volleys at threshold and at higher stimulus intensities these were followed by later waves. The short-latency volleys could be collided from the pyramid and, at threshold, had latencies compatible with direct activation of corticospinal neurones. The longer latency volleys were also identified as corticospinal in origin. 4. The latency of the early volley evoked by electromagnetic stimulation remained constant with increasing stimulus intensities. In contrast, with scalp stimulation above threshold the latency of the early volleys decreased considerably, indicating remote activation of the corticospinal pathway below the level of the motor cortex. In two monkeys both collision and latency data suggest activation of the corticospinal pathway as far caudal as the medulla. 5. The majority of fast corticospinal fibres could be excited by scalp stimulation with intensities of 20% of maximum stimulator output. Electromagnetic stimulation at maximum stimulator output elicited a volley of between 70 and 90% of the size of the maximal volley evoked from the pyramidal electrodes. 6. Electromagnetic stimulation was also investigated in one awake monkey during the performance of a precision grip task. Short-latency EMG responses were evoked in hand and forearm muscles. The onsets of these responses were approximately 0.8 ms longer than the responses evoked by electrical stimulation of the pyramid.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 PMID:2213581

  2. Adding transcutaneous electrical nerve stimulation to visual scanning training does not enhance treatment effect on hemispatial neglect: a randomized, controlled, double-blind study.

    PubMed

    Seniów, Joanna; Polanowska, Katarzyna; Leśniak, Marcin; Członkowska, Anna

    2016-12-01

    Left-sided transcutaneous electrical nerve stimulation (TENS) increases right hemispheric activity, which may improve the rehabilitative outcome of hemispatial neglect. To examine the behavioral effect of electrical stimulation of the nerve afferents of the left hand during early neuropsychological rehabilitation of post-stroke patients with hemispatial neglect. This randomized, controlled, double-blind study included 29 patients (enrolled in the experimental or control group) with left hemispatial neglect after right hemispheric stroke. For 3 weeks, patients received 15 therapeutic sessions involving TENS (active or sham) with a mesh glove applied on the entire left hand during the first 30 minutes of a 45-minute conventional visual scanning training (VST). Signs of hemispatial neglect were assessed using a psychometric test before and after treatment. Univariate analysis of covariance revealed that differences between the control and experimental groups were not significant after treatment (F(1, 22) = 0.294, P = 0.593) when adjusted for pre-treatment scores and time since stroke onset. This suggested that electrical stimulation failed to mitigate the severity of hemispatial neglect symptoms. Our study did not provide evidence of the effectiveness of TENS when added to VST during early rehabilitation for patients with post-stroke hemispatial neglect. Other techniques (applied alone or together) should be sought to improve recovery in this population.

  3. T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure.

    PubMed

    Crocini, Claudia; Coppini, Raffaele; Ferrantini, Cecilia; Yan, Ping; Loew, Leslie M; Poggesi, Corrado; Cerbai, Elisabetta; Pavone, Francesco S; Sacconi, Leonardo

    2016-09-03

    Alterations of the β-adrenergic signalling, structural remodelling, and electrical failure of T-tubules are hallmarks of heart failure (HF). Here, we assess the effect of β-adrenoceptor activation on local Ca(2+) release in electrically coupled and uncoupled T-tubules in ventricular myocytes from HF rats. We employ an ultrafast random access multi-photon (RAMP) microscope to simultaneously record action potentials and Ca(2+) transients from multiple T-tubules in ventricular cardiomyocytes from a HF rat model of coronary ligation compared to sham-operated rats as a control. We confirmed that β-adrenergic stimulation increases the frequency of Ca(2+) sparks, reduces Ca(2+) transient variability, and hastens the decay of Ca(2+) transients: all these effects are similarly exerted by β-adrenergic stimulation in control and HF cardiomyocytes. Conversely, β-adrenergic stimulation in HF cells accelerates a Ca(2+) rise exclusively in the proximity of T-tubules that regularly conduct the action potential. The delayed Ca(2+) rise found at T-tubules that fail to conduct the action potential is instead not affected by β-adrenergic signalling. Taken together, these findings indicate that HF cells globally respond to β-adrenergic stimulation, except at T-tubules that fail to conduct action potentials, where the blunted effect of the β-adrenergic signalling may be directly caused by the lack of electrical activity.

  4. Electroacupuncture Reduces the Effects of Acute Noxious Stimulation on the Electrical Activity of Pain-Related Neurons in the Hippocampus of Control and Neuropathic Pain Rats

    PubMed Central

    Wang, Jun-Ying; Chen, Renbo; Feng, Xiu-Mei; Yan, Yaxia; Lippe, Irmgard Th.

    2016-01-01

    To study the effects of acupuncture analgesia on the hippocampus, we observed the effects of electroacupuncture (EA) and mitogen-activated protein kinase (MEK) inhibitor on pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal area CA1 of sham or chronic constrictive injury (CCI) rats. The animals were randomly divided into a control, a CCI, and a U0126 (MEK1/2 inhibitor) group. In all experiments, we briefly (10-second duration) stimulated the sciatic nerve electrically and recorded the firing rates of PENs and PINs. The results showed that in both sham and CCI rats brief sciatic nerve stimulation significantly increased the electrical activity of PENs and markedly decreased the electrical activity of PINs. These effects were significantly greater in CCI rats compared to sham rats. EA treatment reduced the effects of the noxious stimulus on PENs and PINs in both sham and CCI rats. The effects of EA treatment could be inhibited by U0126 in sham-operated rats. The results suggest that EA reduces effects of acute sciatic nerve stimulation on PENs and PINs in the CA1 region of the hippocampus of both sham and CCI rats and that the ERK (extracellular regulated kinase) signaling pathway is involved in the modulation of EA analgesia. PMID:27833763

  5. Pelvic floor muscle exercise by biofeedback and electrical stimulation to reinforce the pelvic floor muscle after normal delivery.

    PubMed

    Lee, In Sook; Choi, Euy Soon

    2006-12-01

    This study was conducted to investigate the effectiveness of pelvic floor muscle exercise using biofeedback and electrical stimulation after normal delivery. The subjects of this study were 49 (experimental group: 25, control group: 24) postpartum women who passed 6 weeks after normal delivery without complication of pregnancy, delivery and postpartum. The experimental group was applied to the pelvic muscle enforcement program by biofeedback and electrical stimulation for 30 minutes per session, twice a week for 6 weeks, after then self-exercise of pelvic floor muscle was done 50-60 repetition per session, 3 times a day for 6 weeks. Maximum pressure of pelvic floor muscle contraction (MPPFMC), average pressure of pelvic floor muscle contraction (APPFMC), duration time of pelvic floor muscle contraction (DTPFMC) and the subjective lower urinary symptoms were measured by digital perineometer and Bristol Female Urinary Symptom Questionnaire and compared between two groups prior to trial, at the end of treatment and 6 weeks after treatment. The results of this study indicated that MPPFMC, APPFMC, DTPFMC were significantly increased and subjective lower urinary symptoms were significantly decreased after treatment in the experimental group than in the control group. This study suggested that the pelvic floor muscle exercise using biofeedback and electrical stimulation might be a safer and more effective program for reinforcing pelvic floor muscle after normal delivery.

  6. A randomized controlled study of neuromuscular electrical stimulation in oropharyngeal dysphagia secondary to acquired brain injury.

    PubMed

    Terré, R; Mearin, F

    2015-04-01

    To evaluate the effectiveness of neuromuscular electrical stimulation (NMES) treatment in patients with oropharyngeal dysphagia secondary to acquired brain injury. Twenty patients with neurological oropharyngeal dysphagia (14 stroke and six severe traumatic brain injury) were enrolled in a prospective randomized study, with patients and assessors blinded (to group allocation): 10 patients underwent NMES and conventional swallowing therapy and 10 patients underwent sham electrical stimulation (SES) and conventional swallowing therapy. Both groups completed 20 sessions. At baseline, at the end of treatment (1 month) and at 3-month follow-up, clinical, videofluoroscopic and esophageal manometric analyses were done. Feeding swallowing capacity was evaluated using the functional oral intake scale (FOIS). Mean FOIS score before treatment was 1.9 for the NMES group and 2.1 for the SES group. After treatment, the NMES group increased by 2.6 points (4.5 points) compared with only 1 point (3.1 points) for the SES group (P = 0.005). At 3 months of follow-up, mean scores were 5.3 and 4.6 respectively; thus, both groups improved similarly. At that time point (3 months), tracheal aspiration persisted in six patients in each group. However, a significant improvement in relation to the bolus viscosity at which aspiration appeared was found in the NMES group versus the SES group (P = 0.015). Also, a significant increase (P = 0.04) in pharyngeal amplitude contraction was observed at the end of treatment (1 month) in the NMES group compared with the SES group. Neuromuscular electrical stimulation significantly accelerated swallowing function improvement in patients with oropharyngeal dysphagia secondary to acquired brain injury. © 2015 EAN.

  7. Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms.

    PubMed

    Chua, Tiffany Elise H; Bachman, Mark; Zeng, Fan-Gang

    2011-01-01

    Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were five Clarion cochlear implant users. For each subject, data from apical, middle, and basal electrode positions were collected when possible. Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen.

  8. Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle.

    PubMed

    Chilibeck, P D; Bell, G; Jeon, J; Weiss, C B; Murdoch, G; MacLean, I; Ryan, E; Burnham, R

    1999-11-01

    The study purpose was to determine the effect of functional electrical stimulation (FES)-leg cycle ergometer training (30 minutes on 3 d/wk for 8 weeks) on the GLUT-1 and GLUT-4 content of paralyzed skeletal muscle. Biopsy samples of vastus lateralis muscle were obtained pre- and post-training from five individuals with motor-complete spinal cord injury ([SCI] four men and one woman aged 31 to 50 years, 3 to 25 years postinjury involving C5-T8). Western blot analysis indicated that GLUT-1 increased by 52% and GLUT-4 increased by 72% with training (P < .05). This coincided with an increase in the muscle oxidative capacity as indicated by a 56% increase in citrate synthase (CS) activity (P < .05) and an improvement in the insulin sensitivity index as determined from oral glucose tolerance tests (P < .05). It is concluded that FES endurance training is effective to increase glucose transporter protein levels in paralyzed skeletal muscle of individuals with SCI.

  9. Airway smooth muscle responsiveness from dogs with airway hyperresponsiveness after O/sub 3/ inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.L.; O'Byrne, P.M.; Pashley, M.

    1988-07-01

    Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in allmore » dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.« less

  10. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus.

    PubMed

    Verma, Rohit U; Guex, Amélie A; Hancock, Kenneth E; Durakovic, Nedim; McKay, Colette M; Slama, Michaël C C; Brown, M Christian; Lee, Daniel J

    2014-04-01

    In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Auditory Responses to Electric and Infrared Neural Stimulation of the Rat Cochlear Nucleus

    PubMed Central

    Verma, Rohit; Guex, Amelie A.; Hancock, Kenneth E.; Durakovic, Nedim; McKay, Colette M.; Slama, Michaël C. C.; Brown, M. Christian; Lee, Daniel J.

    2014-01-01

    In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported “optophonic” effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. PMID:24508368

  12. A Suprachoroidal Electrical Retinal Stimulator Design for Long-Term Animal Experiments and In Vivo Assessment of Its Feasibility and Biocompatibility in Rabbits

    PubMed Central

    Zhou, J. A.; Woo, S. J.; Park, S. I.; Kim, E. T.; Seo, J. M.; Chung, H.; Kim, S. J.

    2008-01-01

    This article reports on a retinal stimulation system for long-term use in animal electrical stimulation experiments. The presented system consisted of an implantable stimulator which provided continuous electrical stimulation, and an external component which provided preset stimulation patterns and power to the implanted stimulator via a paired radio frequency (RF) coil. A rechargeable internal battery and a parameter memory component were introduced to the implanted retinal stimulator. As a result, the external component was not necessary during the stimulation mode. The inductive coil pair was used to pass the parameter data and to recharge the battery. A switch circuit was used to separate the stimulation mode from the battery recharging mode. The implantable stimulator was implemented with IC chips and the electronics, except for the stimulation electrodes, were hermetically packaged in a biocompatible metal case. A polyimide-based gold electrode array was used. Surgical implantation into rabbits was performed to verify the functionality and safety of this newly designed system. The electrodes were implanted in the suprachoroidal space. Evoked cortical potentials were recorded during electrical stimulation of the retina. Long-term follow-up using OCT showed no chorioretinal abnormality after implantation of the electrodes. PMID:18317521

  13. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... manual stimulation or before the carcass chain is started in an automatic system. (c) Operation—(1... personnel, the electricity supplied to the stimulating surfaces shall be locked-off when cleaning...

  14. Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat.

    PubMed

    Korim, Willian Seiji; Ferreira-Neto, Marcos L; Pedrino, Gustavo R; Pilowsky, Paul M; Cravo, Sergio L

    2012-12-01

    In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.

  15. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves

    PubMed Central

    Longhurst, John C.; Tjen-A-Looi, Stephanie C.; Fu, Liang-Wu

    2016-01-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P < 0.05). The majority of these elPBN neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P < 0.05) after blockade of glutamate receptors with iontophoresis of kynurenic acid (Kyn, 25 mM). In separate cats, microinjection of Kyn (1.25 nmol/50 nl) into the elPBN reduced rVLM activity evoked by both bradykinin and electrical stimulation (n = 5, P < 0.05). Excitation of the elPBN with microinjection of dl-homocysteic acid (2 nmol/50 nl) significantly increased basal and CSAN-evoked rVLM activity. However, the enhanced rVLM activity induced by dl-homocysteic acid injected into the elPBN was reversed following iontophoresis of Kyn into the rVLM (n = 7, P < 0.05). These data suggest that cardiac sympathetic afferent stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  16. Study of driving fatigue alleviation by transcutaneous acupoints electrical stimulations.

    PubMed

    Wang, Fuwang; Wang, Hong

    2014-01-01

    Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving.

  17. Direct recordings from the auditory cortex in a cochlear implant user.

    PubMed

    Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A

    2013-06-01

    Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.

  18. Acid sensitization of esophageal mucosal afferents: implication for symptom perception in patients across the gastroesophageal reflux disease spectrum.

    PubMed

    Szczesniak, Michal Marcin; Fuentealba, Sergio Enrique; Cook, Ian J

    2013-01-01

    Sensitization of esophageal chemoreceptors, either directly by intermittent acid exposure or indirectly through esophagitis-associated inflammatory mediators, is likely to be the mechanism underlying the perception of heartburn. To compare basal esophageal sensitivity with electrical stimulation and acid, and to compare the degree of acid-induced sensitization in controls and in patient groups across the entire spectrum of gastroesophageal reflux disease: erosive oesophagitis (EO), nonerosive reflux disease (NERD), and functional heartburn (FH). Esophageal sensory and pain thresholds to electrical stimulation were measured before, 30, and 60 minutes after an intraesophageal infusion of saline or HCl. Patients received a 30-minute infusion of 0.15 M HCl and controls were randomized to receive either HCl (n = 11) or saline (n = 10). After electrical sensory threshold testing, participants received another 30-minute infusion of HCl to determine whether sensitivity to acid is increased by prior acid exposure All patient groups had higher basal sensory thresholds than healthy controls (controls, 13 ± 1.4 mA; FH, 20 ± 5.1 mA; NERD, 21 ± 5.1 mA; EO, 23 ± 5.4 mA; P < 0.05). Acute esophageal acid exposure reduced sensory thresholds to electrical stimulation in FH and NERD patients (P < 0.05). The level of acid sensitivity during the first HCl infusion was comparable between all patient groups and controls. The secondary infusion caused increased discomfort in all participants (P < 0.01). This acid-induced sensitization to HCl was significantly elevated in the patient groups ( P < 0.05). (1) Esophageal acid infusion sensitizes it to subsequent electrical and chemical stimulation. (2) The acid-related sensitization is greater in gastroesophageal reflux disease than in controls and may influence in part symptom perception in this population. (3) Acid-related sensitization within the gastroesophageal reflux disease population is not dependant on mucosal inflammation.

  19. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    PubMed

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients.

    PubMed

    Hara, Yukihiro

    2008-02-01

    In recent years, our understanding of motor learning, neuroplasticity, and functional recovery after the occurrence of brain lesion has grown significantly. New findings in basic neuroscience have stimulated research in motor rehabilitation. Repeated motor practice and motor activity in a real-world environment have been identified in several prospective studies as favorable for motor recovery in stroke patients. Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. In this paper, an overview of current research into clinical and therapeutic applications of functional electrical stimulation (FES) is presented. In particular, electromyography (EMG)-initiated electrical muscle stimulation--but not electrical muscle stimulation alone--improves the motor function of the hemiparetic arm and hand. Triggered electrical stimulation is reported to be more effective than untriggered electrical stimulation in facilitating upper extremity motor recovery following stroke. Power-assisted FES induces greater muscle contraction by electrical stimulation in proportion to the voluntary integrated EMG signal picked up, which is regulated by a closed-loop control system. Power-assisted FES and motor point block for antagonist muscles have been applied with good results as a new hybrid FES therapy in an outpatient rehabilitation clinic for patients with stroke. Furthermore, a daily home program therapy with power-assisted FES using new equipment has been able to effectively improve wrist and finger extension and shoulder flexion. Proprioceptive sensory feedback might play an important role in power-assisted FES therapy. Although many physiotherapeutic modalities have been established, conclusive proof of their benefit and physiological models of their effects on neuronal structures and processes are still missing. A multichannel near-infrared spectroscopy study to noninvasively and dynamically measure hemoglobin levels in the brain during functional activity has shown that cerebral blood flow in the sensory-motor cortex on the injured side is higher during a power-assisted FES session than during simple active movement or simple electrical stimulation. Nevertheless, evidence-based strategies for motor rehabilitation are more easily available, particularly for patients with hemiparesis.

  1. Apparent isotropic electrical property for electrical brain stimulation (EBS) using magnetic resonance diffusion weighted imaging (MR-DWI)

    NASA Astrophysics Data System (ADS)

    Lee, Mun Bae; Kwon, Oh-In

    2018-04-01

    Electrical brain stimulation (EBS) is an invasive electrotherapy and technique used in brain neurological disorders through direct or indirect stimulation using a small electric current. EBS has relied on computational modeling to achieve optimal stimulation effects and investigate the internal activations. Magnetic resonance diffusion weighted imaging (DWI) is commonly useful for diagnosis and investigation of tissue functions in various organs. The apparent diffusion coefficient (ADC) measures the intensity of water diffusion within biological tissues using DWI. By measuring trace ADC and magnetic flux density induced by the EBS, we propose a method to extract electrical properties including the effective extracellular ion-concentration (EEIC) and the apparent isotropic conductivity without any auxiliary additional current injection. First, the internal current density due to EBS is recovered using the measured one component of magnetic flux density. We update the EEIC by introducing a repetitive scheme called the diffusion weighting J-substitution algorithm using the recovered current density and the trace ADC. To verify the proposed method, we study an anesthetized canine brain to visualize electrical properties including electrical current density, effective extracellular ion-concentration, and effective isotropic conductivity by applying electrical stimulation of the brain.

  2. Stimulation of the hydrolytic stage for biogas production from cattle manure in an electrochemical bioreactor.

    PubMed

    Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi

    Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.

  3. Monitoring Dopamine ex Vivo during Electrical Stimulation Using Liquid-Microjunction Surface Sampling.

    PubMed

    Gill, Emily L; Marks, Megan; Yost, Richard A; Vedam-Mai, Vinata; Garrett, Timothy J

    2017-12-19

    Liquid-microjunction surface sampling (LMJ-SS) is an ambient ionization technique based on the continuous flow of solvent using an in situ microextraction device in which solvent moves through the probe, drawing in the analytes in preparation for ionization using an electrospray ionization source. However, unlike traditional mass spectrometry (MS) techniques, it operates under ambient pressure and requires no sample preparation, thereby making it ideal for rapid sampling of thicker tissue sections for electrophysiological and other neuroscientific research studies. Studies interrogating neural synapses, or a specific neural circuit, typically employ thick, ex vivo tissue sections maintained under near-physiological conditions to preserve tissue viability and maintain the neural networks. Deep brain stimulation (DBS) is a surgical procedure used to treat the neurological symptoms that are associated with certain neurodegenerative and neuropsychiatric diseases. Parkinson's disease (PD) is a neurological disorder which is commonly treated with DBS therapy. PD is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta portion of the brain. Here, we demonstrate that the LMJ-SS methodology can provide a platform for ex vivo analysis of the brain during electrical stimulation, such as DBS. We employ LMJ-SS in the ex vivo analysis of mouse brain tissue for monitoring dopamine during electrical stimulation of the striatum region. The mouse brain tissue was sectioned fresh post sacrifice and maintained in artificial cerebrospinal fluid to create near-physiological conditions before direct sampling using LMJ-SS. A selection of metabolites, including time-sensitive metabolites involved in energy regulation in the brain, were identified using standards, and the mass spectral database mzCloud was used to assess the feasibility of the methodology. Thereafter, the intensity of m/z 154 corresponding to protonated dopamine was monitored before and after electrical stimulation of the striatum region, showing an increase in signal directly following a stimulation event. Dopamine is the key neurotransmitter implicated in PD, and although electrochemical detectors have shown such increases in dopamine post-DBS, this is the first study to do so using MS methodologies.

  4. Comparing the force ripple during asynchronous and conventional stimulation.

    PubMed

    Downey, Ryan J; Tate, Mark; Kawai, Hiroyuki; Dixon, Warren E

    2014-10-01

    Asynchronous stimulation has been shown to reduce fatigue during electrical stimulation; however, it may also exhibit a force ripple. We quantified the ripple during asynchronous and conventional single-channel transcutaneous stimulation across a range of stimulation frequencies. The ripple was measured during 5 asynchronous stimulation protocols, 2 conventional stimulation protocols, and 3 volitional contractions in 12 healthy individuals. Conventional 40 Hz and asynchronous 16 Hz stimulation were found to induce contractions that were as smooth as volitional contractions. Asynchronous 8, 10, and 12 Hz stimulation induced contractions with significant ripple. Lower stimulation frequencies can reduce fatigue; however, they may also lead to increased ripple. Future efforts should study the relationship between force ripple and the smoothness of the evoked movements in addition to the relationship between stimulation frequency and NMES-induced fatigue to elucidate an optimal stimulation frequency for asynchronous stimulation. © 2014 Wiley Periodicals, Inc.

  5. Baroreflex activation therapy lowers arterial pressure without apparent stimulation of the carotid bodies.

    PubMed

    Alnima, Teba; Goedhart, Emilie J B M; Seelen, Randy; van der Grinten, Chris P M; de Leeuw, Peter W; Kroon, Abraham A

    2015-06-01

    Carotid baroreflex activation therapy produces a sustained fall in blood pressure in patients with resistant hypertension. Because the activation electrodes are implanted at the level of the carotid sinus, it is conceivable that the nearby located carotid body chemoreceptors are stimulated as well. Physiological stimulation of the carotid chemoreceptors not only stimulates respiration but also increases sympathetic activity, which may counteract the effects of baroreflex activation. The aim of this exploratory study is to investigate whether there is concomitant carotid chemoreflex activation during baroreflex activation therapy. Fifteen participants with the Rheos system were included in this single-center study. At arrival at the clinic, the device was switched off for 2 hours while patients were at rest. Subsequently, the device was switched on at 6 electric settings of high and low frequencies and amplitudes. Respiration and blood pressure measurements were performed during all device activation settings. Multilevel statistical models were adjusted for age, sex, body mass index, antihypertensive therapeutic index, sleep apnea, coronary artery disease, systolic blood pressure, and heart rate. There was no change in end-tidal carbon dioxide, partial pressure of carbon dioxide, breath duration, and breathing frequency during any of the electric settings with the device. Nevertheless, mean arterial pressure showed a highly significant decrease during electric activation (P<0.001). Carotid baroreflex activation therapy using the Rheos system did not stimulate respiration at several electric device activation energies, which suggests that there is no appreciable coactivation of carotid body chemoreceptors during device therapy. © 2015 American Heart Association, Inc.

  6. Cerebral somatic pain modulation during autogenic training in fMRI.

    PubMed

    Naglatzki, R P; Schlamann, M; Gasser, T; Ladd, M E; Sure, U; Forsting, M; Gizewski, E R

    2012-10-01

    Functional magnetic resonance imaging (fMRI) studies are increasingly employed in different conscious states. Autogenic training (AT) is a common clinically used relaxation method. The purpose of this study was to investigate the cerebral modulation of pain activity patterns due to AT and to correlate the effects to the degree of experience with AT and strength of stimuli. Thirteen volunteers familiar with AT were studied with fMRI during painful electrical stimulation in a block design alternating between resting state and electrical stimulation, both without AT and while employing the same paradigm when utilizing their AT abilities. The subjective rating of painful stimulation and success in modulation during AT was assessed. During painful electrical stimulation without AT, fMRI revealed activation of midcingulate, right secondary sensory, right supplementary motor, and insular cortices, the right thalamus and left caudate nucleus. In contrast, utilizing AT only activation of left insular and supplementary motor cortices was revealed. The paired t-test revealed pain-related activation in the midcingulate, posterior cingulate and left anterior insular cortices for the condition without AT, and activation in the left ventrolateral prefrontal cortex under AT. Activation of the posterior cingulate cortex and thalamus correlated with the amplitude of electrical stimulation. This study revealed an effect on cerebral pain processing while performing AT. This might represent the cerebral correlate of different painful stimulus processing by subjects who are trained in performing relaxation techniques. However, due to the absence of a control group, further studies are needed to confirm this theory. © 2012 European Federation of International Association for the Study of Pain Chapters.

  7. A pioneer work on electric brain stimulation in psychotic patients. Rudolph Gottfried Arndt and his 1870s studies.

    PubMed

    Steinberg, Holger

    2013-07-01

    Today's brain stimulation methods are commonly traced back historically to surgical brain operations. With this one-sided historical approach it is easy to overlook the fact that non-surgical electrical brain-stimulating applications preceded present-day therapies. The first study on transcranial electrical brain stimulation for the treatment of severe mental diseases in a larger group of patients was carried out in the 1870s. Between 1870 and 1878 German psychiatrist Rudolph Gottfried Arndt published the results of his studies in three reports. These are contextualized with contemporary developments of the time, focusing in particular on the (neuro-) sciences. As was common practice at the time, Arndt basically reported individual cases in which electricity was applied to treat severe psychoses with depressive symptoms or even catatonia, hypochondriac delusion and melancholia. Despite their lengthiness, there is frequently a lack of precise physical data on the application of psychological-psychopathological details. Only his 1878 report includes general rules for electrical brain stimulation. Despite their methodological shortcomings and lack of precise treatment data impeding exact understanding, Arndt's studies are pioneering works in the field of electric brain stimulation with psychoses and its positive impacts. Today's transcranial direct current stimulation, and partly vagus nerve stimulation, can be compared with Arndt's methods. Although Arndt's only tangible results were indications for the application of faradic electricity (for inactivity, stupor, weakness and manic depressions) and galvanic current (for affective disorders and psychoses), a historiography of present-day brain stimulation therapies should no longer neglect studies on electrotherapy published in German and international psychiatric and neurological journals and monographs in the 1870s and 1880s. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Electromotile hearing: Acoustic tones mask psychophysical response to high-frequency electrical stimulation of intact guinea pig cochleaea)

    PubMed Central

    Le Prell, Colleen G.; Kawamoto, Kohei; Raphael, Yehoash; Dolan, David F.

    2011-01-01

    When sinusoidal electric stimulation is applied to the intact cochlea, a frequency-specific acoustic emission can be recorded in the ear canal. Acoustic emissions are produced by basilar membrane motion, and have been used to suggest a corresponding acoustic sensation termed “electromotile hearing.” Electromotile hearing has been specifically attributed to electric stimulation of outer hair cells in the intact organ of Corti. To determine the nature of the auditory perception produced by electric stimulation of a cochlea with intact outer hair cells, we tested guinea pigs in a psychophysical task. First, subjects were trained to report detection of sinusoidal acoustic stimuli and dynamic range was assessed using response latency. Subjects were then implanted with a ball electrode placed into scala tympani. Following the surgical implant procedure, subjects were transferred to a task in which acoustic signals were replaced by sinusoidal electric stimulation, and dynamic range was assessed again. Finally, the ability of acoustic pure-tone stimuli to mask the detection of the electric signals was assessed. Based on the masking effects, we conclude that sinusoidal electric stimulation of the intact cochlea results in perception of a tonal (rather than a broad-band or noisy) sound at a frequency of 8 kHz or above. PMID:17225416

  9. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation.

    PubMed

    Lu, Mai; Ueno, Shoogo

    2017-01-01

    Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS) are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA) coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8) coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.

  10. Toward an implantable functional electrical stimulation device to correct strabismus

    PubMed Central

    Velez, Federico G.; Isobe, Jun; Zealear, David; Judy, Jack W.; Edgerton, V. Reggie; Patnode, Stephanie; Lee, Hyowon; Hahn, Brian T.

    2010-01-01

    PURPOSE To investigate the feasibility of electrically stimulating the lateral rectus muscle to recover its physiologic abduction ability in cases of complete sixth cranial (abducens) nerve palsy. METHODS In the feline lateral rectus muscle model, the effects of a charge-balanced, biphasic, current-controlled stimulus on the movement of the eye were investigated while stimulation frequency, amplitude, and pulse duration was varied. Eye deflection was measured with a force transducer. Denervated conditions were simulated by injection of botulinum toxin A. RESULTS Three chemically denervated and 4 control lateral rectus muscles were analyzed. In control lateral rectus muscles, the minimum fusion frequency was approximately 170 Hz, and the maximum evoked abduction was 27°. The minimum fusion frequency was unchanged after 4 weeks of chemical denervation. Stimulation of chemically denervated lateral rectus muscle resulted in 17° of abduction. For both innervated and chemically denervated lateral rectus muscle, frequencies greater than 175 Hz yielded very little increase in abduction. Modulating amplitude produced noticeable movement throughout the tested range (0.2 to 9 mA). CONCLUSIONS Results from the feline lateral rectus muscle showed that electrical stimulation is a feasible approach to evoke a contraction from a denervated lateral rectus muscle. The degree of denervation of the feline lateral rectus muscle was indeterminate. Varying the stimulation amplitude allowed greater eye movement. It is very likely that both frequency and amplitude must be modulated for finer control of static eye position. PMID:19375369

  11. Fundamentals of Transcranial Electric and Magnetic Stimulation Dose: Definition, Selection, and Reporting Practices

    PubMed Central

    Peterchev, Angel V.; Wagner, Timothy A.; Miranda, Pedro C.; Nitsche, Michael A.; Paulus, Walter; Lisanby, Sarah H.; Pascual-Leone, Alvaro; Bikson, Marom

    2011-01-01

    The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. The biological effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biological effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. This paper provides fundamental definition and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. PMID:22305345

  12. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices.

    PubMed

    Peterchev, Angel V; Wagner, Timothy A; Miranda, Pedro C; Nitsche, Michael A; Paulus, Walter; Lisanby, Sarah H; Pascual-Leone, Alvaro; Bikson, Marom

    2012-10-01

    The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. This paper provides fundamental definitions and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. The biologic effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biologic effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    PubMed

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  14. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    PubMed

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  15. Perifornical orexinergic neurons modulate REM sleep by influencing locus coeruleus neurons in rats.

    PubMed

    Choudhary, R C; Khanday, M A; Mitra, A; Mallick, B N

    2014-10-24

    Activation of the orexin (OX)-ergic neurons in the perifornical (PeF) area has been reported to induce waking and reduce rapid eye movement sleep (REMS). The activities of OX-ergic neurons are maximum during active waking and they progressively reduce during non-REMS (NREMS) and REMS. Apparently, the locus coeruleus (LC) neurons also behave in a comparable manner as that of the OX-ergic neurons particularly in relation to waking and REMS. Further, as PeF OX-ergic neurons send dense projections to LC, we argued that the former could drive the LC neurons to modulate waking and REMS. Studies in freely moving normally behaving animals where simultaneously neuro-chemo-anatomo-physio-behavioral information could be deciphered would significantly strengthen our understanding on the regulation of REMS. Therefore, in this study in freely behaving chronically prepared rats we stimulated the PeF neurons without or with simultaneous blocking of specific subtypes of OX-ergic receptors in the LC while electrophysiological recording characterizing sleep-waking was continued. Single dose of glutamate stimulation as well as sustained mild electrical stimulation of PeF (both bilateral) significantly increased waking and reduced REMS as compared to baseline. Simultaneous application of OX-receptor1 (OX1R) antagonist bilaterally into the LC prevented PeF stimulation-induced REMS suppression. Also, the effect of electrical stimulation of the PeF was long lasting as compared to that of the glutamate stimulation. Further, sustained electrical stimulation significantly decreased both REMS duration as well as REMS frequency, while glutamate stimulation decreased REMS duration only. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation.

    PubMed

    Chaloner, A; Rao, A; Al-Chaer, E D; Greenwood-Van Meerveld, B

    2010-02-01

    Previous studies have shown that early life trauma induced by maternal separation or colonic irritation leads to hypersensitivity to colorectal distension in adulthood. We tested the hypothesis that repetitive colorectal distension in neonates leads to abnormalities in colonic permeability and smooth muscle function in the adult rat. In neonatal rats, repetitive colorectal distension was performed on days 8, 10, and 12. As adults, stool consistency was graded from 0 (formed stool) to 3 (liquid stool). Colonic tissue was isolated for histology and myeloperoxidase levels. The colonic mucosa was placed in modified Ussing chambers for measurements of permeability and short-circuit current responses to forskolin, electrical field stimulation, and carbachol. Segments of colonic musculature were placed in organ baths and contractile response to potassium chloride, electrical field stimulation, and carbachol were determined. In adult rats that experienced neonatal colonic irritation, no significant changes in colonic histology or myeloperoxidase activity were observed; however, stool consistency scores were increased. Mucosal permeability, measured as an increase in basal conductance, was significantly increased but no changes in short-circuit current responses were observed. In adulthood, rats that underwent colorectal distension as neonates exhibited an elevated smooth muscle contractile response to potassium chloride, but no changes in response to electrical field stimulation or carbachol. In summary, neonatal colonic irritation, shown previously to produce colonic hypersensitivity, leads to significant alterations in colonic mucosal and smooth muscle function characterized by loose stools, increased mucosal permeability, and increased smooth muscle contractility in the absence of colon inflammation in adulthood. Published by Elsevier Ltd.

  17. Effects of Intramuscular Trunk Stimulation on Manual Wheelchair Propulsion Mechanics in Six Subjects with Spinal Cord Injury

    PubMed Central

    Triolo, Ronald J.; Bailey, Stephanie Nogan; Lombardo, Lisa M.; Miller, Michael E.; Foglyano, Kevin; Audu, Musa L.

    2014-01-01

    Objective To quantify the effects of stabilizing the paralyzed trunk and pelvis with electrical stimulation on manual wheelchair propulsion. Design Single-subject design case series with subjects acting as their own concurrent controls. Setting Hospital-based clinical biomechanics laboratory. Participants Six (4M, 2F age 46±10.8yrs) long-time users (6.1±3.9yrs) of implanted neuroprostheses for lower extremity function with chronic (8.6±2.8yrs) mid-cervical or thoracic level injuries (C6-T10). Interventions Continuous low level stimulation to the hip (gluteus maximus, posterior adductor or hamstrings) and trunk extensor (lumbar erector spinae and/or quadratus lumborum) muscles with implanted intramuscular electrodes. Main Outcome Measure(s) Pushrim kinetics (peak resultant force, fraction effective force), kinematics (cadence, stroke length and maximum forward lean), and peak shoulder moment at preferred speed over 10m level surface; speed, pushrim kinetics and subjective ratings of effort for level 100m sprints and up a 30.5m ramp of approximately 5% grade. Results Three out of five subjects demonstrated reduced peak resultant pushrim forces (p≤0.014) and improved efficiency, (p≤0.048) with stimulation during self-paced level propulsion. Peak sagittal shoulder moment remained unchanged in three subjects and increased in two others (p<0.001). Maximal forward trunk lean also increased by 19-26% (p<0.001) with stimulation in these three subjects. Stroke lengths were unchanged by stimulation in all subjects, and two showed extremely small (5%) but statistically significant increases in cadence (p≤0.021). Performance measures for sprints and inclines were generally unchanged with stimulation, however subjects consistently rated propulsion with stimulation to be easier for both surfaces. Conclusions Stabilizing the pelvis and trunk with low levels of continuous electrical stimulation to the lumbar trunk and hip extensors can positively impact the mechanics of manual wheelchair propulsion and reduce both perceived and physical measures of effort. PMID:23628377

  18. Combination of Foot Stimulation and Tramadol Treatment Reverses Irritation Induced Bladder Overactivity in Cats

    PubMed Central

    Mally, Abhijith D.; Zhang, Fan; Matsuta, Yosuke; Shen, Bing; Wang, Jicheng; Roppolo, James R.; de Groat, William C.; Tai, Changfeng

    2013-01-01

    Purpose We determined whether transcutaneous electrical foot stimulation combined with a low dose of tramadol (Sigma-Aldrich®) could completely suppress bladder overactivity. Materials and Methods Repeat cystometrograms were performed in 18 α-chloralose anesthetized cats by infusing the bladder with saline or 0.25% acetic acid. Transcutaneous electrical stimulation (5 Hz) of the cat hind foot at 2 to 4 times the threshold intensity needed to induce observable toe movement was applied to suppress acetic acid induced bladder overactivity. Tramadol (1 to 3 mg/kg intravenously) was administered to enhance foot inhibition. Results Acetic acid irritated the bladder, induced bladder overactivity and significantly decreased bladder capacity to a mean ± SE of 26% ± 5% of saline control capacity (p <0.01). Without tramadol, foot stimulation at 2 and 4 threshold intensity applied during acetic acid cystometrograms significantly increased bladder capacity to a mean of 47% ± 5% and 62% ± 6% of saline control capacity, respectively (p <0.05). Without foot stimulation, tramadol (1 mg/kg) only slightly changed bladder capacity to a mean of 39% ± 2% of saline control capacity (p >0.05), while 3 mg/kg significantly increased capacity to 85% ± 14% that of control (p <0.05). However, 1 mg/kg tramadol combined with foot stimulation increased bladder capacity to a mean of 71% ± 18% (2 threshold intensity) and 84% ± 14% (4 threshold intensity), respectively, which did not significantly differ from saline control capacity. In addition, long lasting (greater than 1.5 to 2 hours) post-stimulation inhibition was induced by foot stimulation combined with 3 mg/kg tramadol treatment. Conclusions This study suggests a new treatment strategy for overactive bladder by combining foot stimulation with a low dose of tramadol, which is noninvasive and has potentially high efficacy and fewer adverse effects. PMID:23088991

  19. The effect of surface electrical stimulation on swallowing in dysphagic Parkinson patients.

    PubMed

    Baijens, Laura W J; Speyer, Renée; Passos, Valeria Lima; Pilz, Walmari; Roodenburg, Nel; Clavé, Père

    2012-12-01

    Surface electrical stimulation has been applied on a large scale to treat oropharyngeal dysphagia. Patients suffering from oropharyngeal dysphagia in the presence of Parkinson's disease have been treated with surface electrical stimulation. Because of controversial reports on this treatment, a pilot study was set up. This study describes the effects of a single session of surface electrical stimulation using different electrode positions in ten patients with idiopathic Parkinson's disease (median Hoehn and Yahr score: II) and oropharyngeal dysphagia compared to ten age- and gender-matched healthy control subjects during videofluoroscopy of swallowing. Three different electrode positions were applied in random order per subject. For each electrode position, the electrical current was respectively turned "on" and "off" in random order. Temporal, spatial, and visuoperceptual variables were scored by experienced raters who were blinded to the group, electrode position, and status (on/off) of the electrical current. Interrater and interrater reliabilities were calculated. Only a few significant effects of a single session of surface electrical stimulation using different electrode positions in dysphagic Parkinson patients could be observed in this study. Furthermore, significant results for temporal and spatial variables were found regardless of the status of the electrical current in both groups suggesting placebo effects. Following adjustment for electrical current status as well as electrode positions (both not significant, P > 0.05) in the statistical model, significant group differences between Parkinson patients and healthy control subjects emerged. Further studies are necessary to evaluate the potential therapeutic effect and mechanism of electrical stimulation in dysphagic patients with Parkinson's disease.

  20. Pulsed laser versus electrical energy for peripheral nerve stimulation

    PubMed Central

    Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2010-01-01

    Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515

  1. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields.

    PubMed

    Ruffini, Giulio; Fox, Michael D; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-04-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint on the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general stimulation protocols, such as alternating current tCS (tACS). Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Endogenous angiotensin affects responses to stimulation of baroreceptor afferent nerves.

    PubMed

    DiBona, Gerald F; Jones, Susan Y

    2003-08-01

    To study effects of endogenous angiotensin II on responses to standardized stimulation of afferent neural input into the central portion of the arterial and cardiac baroreflexes. Different dietary sodium intakes were used to physiologically alter endogenous angiotensin II activity. Candesartan, an angiotensin II type 1 receptor antagonist, was used to assess dependency of observed effects on angiotensin II stimulation of angiotensin II type 1 receptors. Electrical stimulation of arterial and cardiac baroreflex afferent nerves was used to provide a standardized input to the central portion of the arterial and cardiac baroreflexes. In anesthetized rats in balance on low, normal and high dietary sodium intake, arterial pressure, heart rate and renal sympathetic nerve activity responses to electrical stimulation of vagus and aortic depressor nerves were determined. Compared with plasma renin activity values in normal dietary sodium intake rats, those from low dietary sodium intake rats were higher and those from high dietary sodium intake rats were lower. During vagus nerve stimulation, the heart rate, arterial pressure and renal sympathetic nerve activity responses were similar in all three dietary sodium intake groups. During aortic depressor nerve stimulation, the heart rate and arterial pressure responses were similar in all three dietary sodium intake groups. However, the renal sympathetic nerve activity response was significantly greater in the low sodium group than in the normal and high sodium group at 4, 8 and 16 Hz. Candesartan administered to low dietary sodium intake rats had no effect on the heart rate and arterial pressure responses to either vagus or aortic depressor nerve stimulation but increased the magnitude of the renal sympathoinhibitory responses. Increased endogenous angiotensin II in rats on a low dietary sodium intake attenuates the renal sympathoinhibitory response to activation of the cardiac and sinoaortic baroreflexes by standardized vagus and aortic depressor nerve stimulation, respectively.

  3. Electrical stimulation superimposed onto voluntary muscular contraction.

    PubMed

    Paillard, Thierry; Noé, Frédéric; Passelergue, Philippe; Dupui, Philippe

    2005-01-01

    Electrical stimulation (ES) reverses the order of recruitment of motor units (MU) observed with voluntary muscular contraction (VOL) since under ES, large MU are recruited before small MU. The superimposition of ES onto VOL (superimposed technique: application of an electrical stimulus during a voluntary muscle action) can theoretically activate more motor units than VOL performed alone, which can engender an increase of the contraction force. Two superimposed techniques can be used: (i) the twitch interpolation technique (ITT), which consists of interjecting an electrical stimulus onto the muscle nerve; and (ii) the percutaneous superimposed electrical stimulation technique (PST), where the stimulation is applied to the muscle belly. These two superimposed techniques can be used to evaluate the ability to fully activate a muscle. They can thus be employed to distinguish the central or peripheral nature of fatigue after exhausting exercise. In general, whatever the technique employed, the superimposition of ES onto volitional exercise does not recruit more MU than VOL, except with eccentric actions. Nevertheless, the neuromuscular response associated with the use of the superimposed technique (ITT and PST) depends on the parameter of the superimposed current. The sex and the training level of the subjects can also modify the physiological impact of the superimposed technique. Although the motor control differs drastically between training with ES and VOL, the integration of the superimposed technique in training programmes with healthy subjects does not reveal significant benefits compared with programmes performed only with voluntary exercises. Nevertheless, in a therapeutic context, training programmes using ES superimposition compensate volume and muscle strength deficit with more efficiency than programmes using VOL or ES separately.

  4. Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.

    PubMed

    Wee, A S; Jiles, K; Brennan, R

    2001-01-01

    Tripolar and bipolar electrical stimulation procedures were performed on the upper limbs of eight subjects. The mid-forearm was stimulated electrically (tripolar or bipolar) by surface electrodes, and the induced stimulus shock artifacts were recorded simultaneously from the wrist and elbow. During tripolar stimulation, two types of stimulating configurations were utilized: with the center electrode designated as the cathode and the two outermost electrodes connected to a common anode, and vice versa. During bipolar stimulation, the center electrode served as one pole of the stimulator, and one of the two outermost electrodes of the tripolar stimulator was disconnected. The stimulus intensity was kept constant in all stimulating procedures. Artifacts were reduced significantly during tripolar compared to bipolar stimulation, if the outermost electrodes of the tripolar stimulator (which were facing the recording electrodes) were also oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity. Artifacts were slightly reduced in amplitude from tripolar stimulation, if the center electrode were oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity as previously used during tripolar stimulation.

  5. Contralaterally Controlled Functional Electrical Stimulation for Stroke Rehabilitation

    PubMed Central

    Knutson, Jayme S.; Harley, Mary Y.; Hisel, Terri Z.; Makowski, Nathaniel S.; Fu, Michael J.; Chae, John

    2012-01-01

    Contralaterally controlled functional electrical stimulation (CCFES) is an innovative method of delivering neuromuscular electrical stimulation for rehabilitation of paretic limbs after stroke. It is being studied to evaluate its efficacy in improving recovery of arm and hand function and ankle dorsiflexion in chronic and subacute stroke patients. The initial studies provide preliminary evidence supporting the efficacy of CCFES. PMID:23365893

  6. Effect of mirror therapy and electrical stimulation on upper extremity function in stroke with hemiplegic patient: a pilot study.

    PubMed

    Paik, Young-Rim; Lee, Jeong-Hoon; Lee, Doo-Ho; Park, Hee-Su; Oh, Dong-Hwan

    2017-12-01

    [Purpose] This study investigated the effects of mirror therapy and neuromuscular electrical stimulation on upper extremity function in stroke patients. [Subjects and Methods] This study recruited 8 stroke patients. All patients were treated with mirror therapy and neuromuscular electrical stimulation five times per week for 4 weeks. Upper limb function evaluation was performed using upper extremity part of fugl meyer assessment. [Results] Before and after intervention, fugl meyer assessment showed significant improvement. [Conclusion] In this study, mirror therapy and neuromuscular electrical stimulation are effective methods for upper extremity function recovery in stroke patients.

  7. The effect of intra-operative transcutaneous electrical nerve stimulation on posterior neck pain following thyroidectomy.

    PubMed

    Park, C; Choi, J B; Lee, Y-S; Chang, H-S; Shin, C S; Kim, S; Han, D W

    2015-04-01

    Posterior neck pain following thyroidectomy is common because full neck extension is required during the procedure. We evaluated the effect of intra-operative transcutaneous electrical nerve stimulation on postoperative neck pain in patients undergoing total thyroidectomy under general anaesthesia. One hundred patients were randomly assigned to one of two groups; 50 patients received transcutaneous electrical nerve stimulation applied to the trapezius muscle and 50 patients acted as controls. Postoperative posterior neck pain and anterior wound pain were evaluated using an 11-point numerical rating scale at 30 min, 6 h, 24 h and 48 h following surgery. The numerical rating scale for posterior neck pain was significantly lower in the transcutaneous electrical nerve stimulation group compared with the control group at all time points (p < 0.05). There were no significant differences in the numerical rating scale for anterior wound pain at any time point. No adverse effects related to transcutaneous electrical nerve stimulation were observed. We conclude that intra-operative transcutaneous electrical nerve stimulation applied to the trapezius muscle reduced posterior neck pain following thyroidectomy. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  8. Does preoperative electrical stimulation of the skin alter the healing process?

    PubMed

    Borba, Graziela C; Hochman, Bernardo; Liebano, Richard E; Enokihara, Milvia M S S; Ferreira, Lydia M

    2011-04-01

    In vitro studies have demonstrated that electrical current may affect fibroblast proliferation and synthesis of collagen fibers. In humans, the application of electrical current by positioning the positive electrode on skin wounds resulted in thinner hypertrophic scars. The aim of this study was to evaluate the effects of preoperative electrical stimulation on cutaneous wound healing in rats. Forty rats were divided into two groups of 20 animals each. In the control group, an incision was made on the back of the animals. In the stimulation group, a preoperative electrical stimulation was applied using a rectangular pulse current at a frequency of 7.7 Hz, and intensity of 8 mA, for 30 min, with the positive electrode placed on the back of the animal, and the negative electrode placed on the abdominal wall. Following, an incision was made on their back. Biopsy was carried out on postoperative day 7 and 14, and histologic analysis was performed. The number of newly formed vessels, fibroblasts, and type III collagen fibers in the stimulation group on postoperative day 7 were greater than those in the control group. Preoperative positive-polarity electrical stimulation positively affects angiogenesis and fibroblast proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. A potential and novel therapy for obesity: "appendix" electrical stimulation in dogs.

    PubMed

    Lei, Yong; Chen, Jiande D Z

    2011-03-01

    Intestinal electrical stimulation (IES) has been introduced as a potential therapy for obesity. However, it is unknown whether the effects of IES on gastrointestinal motility and food intake are location-specific. The aim of this study was to assess the effects of "appendix" (cecum in dog) electrical stimulation (AES) on gastric tone, gastric emptying, and food intake in dogs. Twelve healthy dogs were used in three experiments. In experiments 1 and 2, gastric tone and food intake were studied in six dogs implanted with a gastric cannula and one pair of stimulation electrodes in the "appendix." Experiment 3 was performed to study gastric emptying in six dogs with a duodenal cannula and one pair of stimulation electrodes in the "appendix." (1) AES resulted in proximal gastric distention, with gastric volume increased from 114.9 ± 10.7 mL at baseline to 301.7 ± 37.1 mL during AES (p = 0.001), and the effect was completely blocked by a nitric oxide synthase inhibitor. (2) Gastric emptying was delayed at 90 min from 69.8 ± 9.5% in the control session to 15.2 ± 3.6% in the AES session (p = 0.002). 3) AES reduced food intake (average daily intake over a 1-week period) by 55.4% (550.4 ± 17.6 g at control vs. 245.7 ± 17.1 g with AES, p < 0.001). AES reduces gastric tone via the nitrergic pathway, delays gastric emptying, and inhibits food intake in healthy dogs. These data suggest the therapeutic potential of AES for obesity. Additionally, AES is technically more feasible than electrical stimulation of the stomach or duodenum because a stimulator with electrodes may be placed into the appendix via colonoscopy.

  10. Evidence of nonvagal neural stimulation of canine gastric acid secretion.

    PubMed

    Tansy, M F; Probst, S J; Martin, J S

    1975-06-01

    In this study, we confirmed our original findings that central vagus stimulation is significantly associated with a subsequent increase in gastric mucus secretion. Central vagus stimulation following phenoxybenzamine hydrochloride administration was associated significantly with protracted elevations in secretory volume and titratable acid. We were unable to conclude that phenoxybenzamine itself in several pharmacologic dosages was associated with an increase in titratable acid. The acid secretory responses could be abolished by transection of the splanchnic nerves. Electrical stimulation of the peripheral part of the splanchnic nerve following administration of phenoxybenzamine was also associated with significant increases in secretory volume and titrable acidity. These secretory responses were not blocked by atropine but were diminished by burimamide. It is concluded that, in the dog, a largely heretofore unsuspected second neural pathway exists which is capable of influencing gastric acid secretion.

  11. Enhancing Proprioceptive Input to Motoneurons Differentially Affects Expression of Neurotrophin 3 and Brain-Derived Neurotrophic Factor in Rat Hoffmann-Reflex Circuitry

    PubMed Central

    Gajewska-Woźniak, Olga; Skup, Małgorzata; Kasicki, Stefan; Ziemlińska, Ewelina; Czarkowska-Bauch, Julita

    2013-01-01

    The importance of neurotrophin 3 (NT-3) for motor control prompted us to ask the question whether direct electrical stimulation of low-threshold muscle afferents, strengthening the proprioceptive signaling, could effectively increase the endogenous pool of this neurotrophin and its receptor TrkC in the Hoffmann-reflex (H-reflex) circuitry. The effects were compared with those of brain-derived neurotrophic factor (BDNF) and its TrkB receptor. Continuous bursts of stimuli were delivered unilaterally for seven days, 80 min daily, by means of a cuff-electrode implanted over the tibial nerve in awake rats. The H-reflex was recorded in the soleus muscle to control the strength of stimulation. Stimulation aimed at activation of Ia fibers produced a strong increase of NT-3 protein, measured with ELISA, in the lumbar L3-6 segments of the spinal cord and in the soleus muscle. This stimulation exerted much weaker effect on BDNF protein level which slightly increased only in L3-6 segments of the spinal cord. Increased protein level of NT-3 and BDNF corresponded to the changes of NT-3 mRNA and BDNF mRNA expression in L3-6 segments but not in the soleus muscle. We disclosed tissue-specificity of TrkC mRNA and TrkB mRNA responses. In the spinal cord TrkC and TrkB transcripts tended to decrease, whereas in the soleus muscle TrkB mRNA decreased and TrkC mRNA expression strongly increased, suggesting that stimulation of Ia fibers leads to sensitization of the soleus muscle to NT-3 signaling. The possibility of increasing NT-3/TrkC signaling in the neuromuscular system, with minor effects on BDNF/TrkB signaling, by means of low-threshold electrical stimulation of peripheral nerves, which in humans might be applied in non-invasive way, offers an attractive therapeutic tool. PMID:23776573

  12. Enhancing proprioceptive input to motoneurons differentially affects expression of neurotrophin 3 and brain-derived neurotrophic factor in rat hoffmann-reflex circuitry.

    PubMed

    Gajewska-Woźniak, Olga; Skup, Małgorzata; Kasicki, Stefan; Ziemlińska, Ewelina; Czarkowska-Bauch, Julita

    2013-01-01

    The importance of neurotrophin 3 (NT-3) for motor control prompted us to ask the question whether direct electrical stimulation of low-threshold muscle afferents, strengthening the proprioceptive signaling, could effectively increase the endogenous pool of this neurotrophin and its receptor TrkC in the Hoffmann-reflex (H-reflex) circuitry. The effects were compared with those of brain-derived neurotrophic factor (BDNF) and its TrkB receptor. Continuous bursts of stimuli were delivered unilaterally for seven days, 80 min daily, by means of a cuff-electrode implanted over the tibial nerve in awake rats. The H-reflex was recorded in the soleus muscle to control the strength of stimulation. Stimulation aimed at activation of Ia fibers produced a strong increase of NT-3 protein, measured with ELISA, in the lumbar L3-6 segments of the spinal cord and in the soleus muscle. This stimulation exerted much weaker effect on BDNF protein level which slightly increased only in L3-6 segments of the spinal cord. Increased protein level of NT-3 and BDNF corresponded to the changes of NT-3 mRNA and BDNF mRNA expression in L3-6 segments but not in the soleus muscle. We disclosed tissue-specificity of TrkC mRNA and TrkB mRNA responses. In the spinal cord TrkC and TrkB transcripts tended to decrease, whereas in the soleus muscle TrkB mRNA decreased and TrkC mRNA expression strongly increased, suggesting that stimulation of Ia fibers leads to sensitization of the soleus muscle to NT-3 signaling. The possibility of increasing NT-3/TrkC signaling in the neuromuscular system, with minor effects on BDNF/TrkB signaling, by means of low-threshold electrical stimulation of peripheral nerves, which in humans might be applied in non-invasive way, offers an attractive therapeutic tool.

  13. A myosin II ATPase inhibitor reduces force production, glucose transport, and phosphorylation of AMPK and TBC1D1 in electrically stimulated rat skeletal muscle.

    PubMed

    Blair, David R; Funai, Katsuhiko; Schweitzer, George G; Cartee, Gregory D

    2009-05-01

    Contraction-stimulated glucose transport by skeletal muscle appears to be caused by the cumulative effects of multiple inputs [potentially including AMP-activated protein kinase (AMPK), Ca(2+) flux, and force production], making it challenging to isolate the roles of these putative regulatory factors. To distinguish the effects of force production from the direct consequences of Ca(2+) flux, the predominantly type II rat epitrochlearis muscle was incubated without (vehicle) or with N-benzyl-p-toluenesulfonamide (BTS), a highly specific myosin II ATPase inhibitor that prevents force production by electrically stimulated (ES) type II fibers without altering cytosolic Ca(2+). In ES muscles, BTS vs. vehicle had an 84% reduction in force production and a 57% decrement in contraction-stimulated 3-O-methylglucose transport (3MGT). BTS did not alter the ES increase in phosphorylation of CaMKII (indicative of cytosolic Ca(2+)) or the amount of glycogen depletion. ES caused significant reductions in ATP (48%) and phosphocreatine (67%) concentrations for vehicle-treated muscles. For BTS-treated muscles, ES did not reduce ATP and caused only a 42% decrease in phosphocreatine. There was an ES increase in phosphorylation of AMPK, acetyl-CoA carboxylase (an AMPK substrate), and TBC1D1 for vehicle-treated muscles but not for BTS-treated muscles. These results point toward an essential role for tension-related events, including AMPK activation, in the 57% contraction-stimulated increase in 3MGT that was inhibited by BTS and further suggest a possible role for TBC1D1 phosphorylation. Non-tension-related events (e.g., increased cytosolic Ca(2+) rather than increased AMPK and TBC1D1 phosphorylation) are implicated in the contraction-stimulated increase in 3MGT that persisted in the presence of BTS.

  14. Electrical Stimulation Followed by Mesenchymal Stem Cells Improves Anal Sphincter Anatomy and Function in a Rat Model at a Time Remote From Injury.

    PubMed

    Sun, Li; Yeh, Judy; Xie, Zhuojun; Kuang, Mei; Damaser, Margot S; Zutshi, Massarat

    2016-05-01

    We have explored cell-based therapy to aid anal sphincter repair, but a conditioning injury is required to direct stem cells to the site of injury because symptoms usually manifest at a time remote from injury. We aimed to investigate the effect of local electrical stimulation followed by mesenchymal stem cell delivery on anal sphincter regeneration at a time remote from injury. With the use of a rat model, electrical stimulation parameters and cell delivery route were selected based on in vivo cytokine expression and luciferase-labeled cell imaging of the anal sphincter complex. Three weeks after a partial anal sphincter excision, rats were randomly allocated to 4 groups based on different local interventions: no treatment, daily electrical stimulation for 3 days, daily stimulation for 3 days followed by stem cell injection on the third day, and daily electrical stimulation followed by stem cell injection on the first and third days. Histology-assessed anatomy and anal manometry evaluated physiology 4 weeks after intervention. The electrical stimulation parameters that significantly upregulated gene expression of homing cytokines also achieved mesenchymal stem cell retention when injected directly in the anal sphincter complex in comparison with intravascular and intraperitoneal injections. Four weeks after intervention, there was significantly more new muscle in the area of injury and significantly improved anal resting pressure in the group that received daily electrical stimulation for 3 days followed by a single injection of 1 million stem cells on the third day at the site of injury. This was a pilot study and therefore was not powered for functional outcome. In this rat injury model with optimized parameters, electrical stimulation with a single local mesenchymal stem cell injection administered 3 weeks after injury significantly improved both new muscle formation in the area of injury and anal sphincter pressures.

  15. Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2010-01-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379

  16. Study of Driving Fatigue Alleviation by Transcutaneous Acupoints Electrical Stimulations

    PubMed Central

    Wang, Fuwang; Wang, Hong

    2014-01-01

    Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (劳宫PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (劳宫PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving. PMID:25254242

  17. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F., III

    2011-06-01

    An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.

  18. Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.

    PubMed

    Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry

    2007-01-01

    We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.

  19. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    PubMed

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  20. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    PubMed

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

  1. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation

    PubMed Central

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron–glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron–glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation. PMID:29520220

  2. Pedunculopontine nucleus electric stimulation alleviates akinesia independently of dopaminergic mechanisms.

    PubMed

    Jenkinson, Ned; Nandi, Dipankar; Oram, Rebecca; Stein, John F; Aziz, Tipu Z

    2006-04-24

    The symptom of Parkinson's disease that is most disabling and difficult to treat is akinesia. We have previously shown that low-frequency stimulation of the pedunculopontine nucleus can alleviate such akinesia in a macaque rendered Parkinsonian using 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine. Here, we have extended that study to show that adding stimulation of the pedunculopontine nucleus to levodopa treatment in this Parkinsonian monkey increased its motor activity significantly more than levodopa alone. This additivity suggests that pedunculopontine nucleus stimulation may improve movement by acting at a site downstream from where levodopa therapy affects the basal ganglia.

  3. Transcutaneous Electrical Nerve Stimulation in Children with Monosymptomatic Nocturnal Enuresis: A Randomized, Double-Blind, Placebo Controlled Study.

    PubMed

    Jørgensen, Cecilie Siggaard; Kamperis, Konstantinos; Borch, Luise; Borg, Britt; Rittig, Søren

    2017-09-01

    In a third of all children with monosymptomatic nocturnal enuresis their condition is refractory to first line treatments. Transcutaneous electrical nerve stimulation has been documented to be efficacious in children with daytime incontinence. We investigated the effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Children with monosymptomatic nocturnal enuresis (3 or more wet nights per week) and no nocturnal polyuria were randomized to treatment with active or sham transcutaneous electrical nerve stimulation involving 1-hour sessions twice daily for 10 weeks in a double-blind design. Of the 52 children with monosymptomatic nocturnal enuresis included in the study 47 completed treatment (mean age 9.5 ± 2.1 years, 38 males). None of the children experienced a full response with complete remission of enuresis. Treatment with transcutaneous electrical nerve stimulation did not lead to significant changes in number of wet nights, nocturnal urine production on wet or dry nights, maximum voided volume with and without first morning voided volume, or voiding frequency when comparing parameters before and after treatment. The present study demonstrates no anti-enuretic effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Nocturnal urine production and bladder capacity remained unchanged during and after treatment with transcutaneous electrical nerve stimulation. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. The effects of electrical stimulation and exercise therapy in patients with limb girdle muscular dystrophy

    PubMed Central

    Kılınç, Muhammed; Yıldırım, Sibel A.; Tan, Ersin

    2015-01-01

    Objective: To evaluate and compare the effects of exercise therapy and electrical stimulation on muscle strength and functional activities in patients with limb-girdle muscular dystrophy (LGMD). Methods: This controlled clinical trial included 24 subjects who were diagnosed with LGMD by the Neurology Department of the Hacettepe University Hospital, Ankara, Turkey and were referred to the Physical Therapy Department between May 2013 and December 2014. Subjects were enrolled into an electrical stimulation (11 patients) group, or an exercise therapy (13 patients) group. Results: The mean age of patients was 31.62 years in the electrical stimulation group, and 30.14 years in the exercise therapy group. The most important results in this controlled clinical study were that the muscle strength in both groups was significantly decreased and post-treatment evaluation results indicated that muscle strength of the Deltoideus was higher in the electrical stimulation group, and the difference between the groups was maintained in the follow-up period (p<0.05). However, the muscle strength of quadriceps was similar in both groups, according to the post-treatment and follow-up evaluation results (p>0.05). Additionally, the electrical stimulation group presented more obvious overall improvements than the exercise therapy group according to muscle strength, endurance, and timed performance tests. Conclusions: Since no definitive treatments currently exist for patients with LGMD, these results provide important information on the role of exercise therapy and electrical stimulation for clinicians working in rehabilitation. PMID:26166595

  5. Electrical management of neurogenic lower urinary tract disorders.

    PubMed

    Joussain, C; Denys, P

    2015-09-01

    Management of lower urinary tract dysfunction (LUTD) in neurological diseases remains a priority because it leads to many complications such as incontinence, renal failure and decreased quality of life. A pharmacological approach remains the first-line treatment for patients with neurogenic LUTD, but electrical stimulation is a well-validated and recommended second-line treatment. However, clinicians must be aware of the indications, advantages and side effects of the therapy. This report provides an update on the 2 main electrical stimulation therapies for neurogenic LUTD - inducing direct bladder contraction with the Brindley procedure and modulating LUT physiology (sacral neuromodulation, tibial posterior nerve stimulation or pudendal nerve stimulation). We also describe the indications of these therapies for neurogenic LUTD, following international guidelines, as illustrated by their efficacy in patients with neurologic disorders. Electrical stimulation could be proposed for neurogenic LUTD as second-line treatment after failure of oral pharmacologic approaches. Nevertheless, further investigations are needed for a better understanding of the mechanisms of action of these techniques and to confirm their efficacy. Other electrical investigations, such as deep-brain stimulation and repetitive transcranial magnetic stimulation, or improved sacral anterior root stimulation, which could be associated with non-invasive and highly specific deafferentation of posterior roots, may open new fields in the management of neurogenic LUTD. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of the mylohyoid muscle in rabbits under conditions of hunger and satiety.

    PubMed

    Ignatova, Ju P; Kromin, A A

    2011-03-01

    Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of mylohyoid muscle were studied in chronic experiments under conditions of hunger and satiety. Threshold stimulation of the lateral hypothalamus in starving and satiated rabbits in the absence of food induced searching behavior associated with burst-like impulse activity with a bimodal distribution of interpulse intervals. Regular spike burst in the mylohyoid muscle during stimulation of the lateral hypothalamus in the absence of food serves as an example of the anticipatory type reaction. Increased food motivation during threshold stimulation of the lateral hypothalamus in starving and satiated rabbits with food offered led to successful food-procuring behavior, during which the frequency of spike bursts in the mylohyoid muscle became comparable with that under conditions of natural foraging behavior stimulated by the need in nutrients. Our results suggest that temporal structure of mylohyoid muscle impulse activity reflects convergent interactions of food-motivation excitation with reinforcement excitation on neurons of the masticatory and deglutitive centers.

  7. Shared Neural Mechanisms for the Evaluation of Intense Sensory Stimulation and Economic Reward, Dependent on Stimulation-Seeking Behavior

    PubMed Central

    Valton, Vincent; Rees, Geraint; Roiser, Jonathan P.; Husain, Masud

    2016-01-01

    Why are some people strongly motivated by intense sensory experiences? Here we investigated how people encode the value of an intense sensory experience compared with economic reward, and how this varies according to stimulation-seeking preference. Specifically, we used a novel behavioral task in combination with computational modeling to derive the value individuals assigned to the opportunity to experience an intense tactile stimulus (mild electric shock). We then examined functional imaging data recorded during task performance to see how the opportunity to experience the sensory stimulus was encoded in stimulation-seekers versus stimulation-avoiders. We found that for individuals who positively sought out this kind of sensory stimulation, there was common encoding of anticipated economic and sensory rewards in the ventromedial prefrontal cortex. Conversely, there was robust encoding of the modeled probability of receiving such stimulation in the insula only in stimulation-avoidant individuals. Finally, we found preliminary evidence that sensory prediction error signals may be positively signed for stimulation-seekers, but negatively signed for stimulation-avoiders, in the posterior cingulate cortex. These findings may help explain why high intensity sensory experiences are appetitive for some individuals, but not for others, and may have relevance for the increased vulnerability for some psychopathologies, but perhaps increased resilience for others, in high sensation-seeking individuals. SIGNIFICANCE STATEMENT People vary in their preference for intense sensory experiences. Here, we investigated how different individuals evaluate the prospect of an unusual sensory experience (electric shock), compared with the opportunity to gain a more traditional reward (money). We found that in a subset of individuals who sought out such unusual sensory stimulation, anticipation of the sensory outcome was encoded in the same way as that of monetary gain, in the ventromedial prefrontal cortex. Further understanding of stimulation-seeking behavior may shed light on the etiology of psychopathologies such as addiction, for which high or low sensation-seeking personality has been identified as a risk factor. PMID:27683900

  8. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...

  9. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...

  10. Electrical high-frequency stimulation of the human thoracolumbar fascia evokes long-term potentiation-like pain amplification.

    PubMed

    Schilder, Andreas; Magerl, Walter; Hoheisel, Ulrich; Klein, Thomas; Treede, Rolf-Detlef

    2016-10-01

    Nociceptive long-term potentiation, a use dependent increase in synaptic efficacy in the dorsal horn of the spinal cord is thought to contribute to the development of persistent pain states. So far, no study has analyzed the effects of high-frequency stimulation (HFS) of afferents from deep tissues (muscle and fascia) on pain perception in the back in humans. In 16 healthy volunteers, the multifidus muscle and the overlying thoracolumbar fascia were stimulated with electrical high-frequency pulses (5 × 100 pulses at 100 Hz) through bipolar concentric needle electrodes placed at lumbar level (L3/L4). Electrical pain thresholds were lower (P < 0.001) and pain ratings were higher for fascia compared with muscle stimulation (P < 0.05). For both tissues, pain ratings increased significantly across the five 100 Hz trains (from 15 to 22 numerical rating scale for fascia, from 8 to 12 numerical rating scale for muscle; both P < 0.01). Fascia HFS increased fascia pain ratings 2.17 times compared with the unconditioned control site (P < 0.001), but had no significant effect on pain sensitivity of the muscle. The HFS in muscle had no significant effect on muscle pain, but decreased pain sensitivity of the overlying fascia by 20% (P < 0.05). In additional experiments using the same electrodes and followed over >60 minutes post-HFS, potentiation by fascia HFS was similar to that of skin HFS. These findings show that the spinal input from the fascia can induce long-term changes in pain sensitivity for at least 60 minutes making it a candidate potentially contributing to nonspecific low back pain.

  11. Colour stability of bovine Longissimus and Psoas major muscle as affected by electrical stimulation and hot boning.

    PubMed

    van Laack, R L; Smulders, F J

    1990-01-01

    From eight electrically stimulated and eight non-stimulated cows the righthand-side longissimus and psoas major muscles were hot boned within 1 1 2 h post mortem, vacuum packaged and chilled and storred at 1±1°C. Immediately after slaughter, the lefthand carcass-sides were blast-chilled for 1 1 2 h and subsequently chilled at 1±1°C until the following day. After cold boning, the longissimus and psoas major muscle were packaged, chilled and stored as the hot boned muscles. After 12 days of storage, steaks, cut from the primals, were displayed at 1±1°C under continuous illumination (300-400 lx). Colour measurements after 0, 2 and 4 days of display revealed a significant (p<0·10) effect of time of boning on non-stimulated psoas major muscle (lower values for a (∗), b (∗) values, chroma and %R630-%R580). Significant effects of electrical stimulation were not observed. Changes in hue tended to be more pronounced when the meat had been stimulated. Changes in chroma were largest (p<0·10) is non-stimulated, hot boned psoas muscle. Analysis of variances showed that in the longissimus muscle significant effects (p<0·10) of time boning and electrical stimulation were present. The effect of time of boning was often influenced by the use of electrical stimulation. Changes in hue and chroma indicated that hot boned samples had a higher colour stability than cold boned controls, especially when the carcasses had not been stimulated electrically. The observed differences in colour stability were rather small in all treatment groups and are not expected to present any practical merchandising problem. Copyright © 1990. Published by Elsevier Ltd.

  12. Vomiting Center reanalyzed: An electrical stimulation study

    NASA Technical Reports Server (NTRS)

    Miller, A. D.; Wilson, V. J.

    1982-01-01

    Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained.

  13. Percutaneous tibial nerve stimulation versus electrical stimulation with pelvic floor muscle training for overactive bladder syndrome in women: results of a randomized controlled study.

    PubMed

    Scaldazza, Carlo Vecchioli; Morosetti, Carolina; Giampieretti, Rosita; Lorenzetti, Rossana; Baroni, Marinella

    2017-01-01

    This study compared percutaneous tibial nerve stimulation (PTNS) versus electrical stimulation with pelvic floor muscle training (ES + PFMT) in women with overactive bladder syndrome (OAB). 60 women with OAB were enrolled. Patients were randomized into two groups. In group A, women underwent ES with PFMT, in group B women underwent PTNS. A statistically significant reduction in the number of daily micturitions, episodes of nocturia and urge incontinence was found in the two groups but the difference was more substantial in women treated with PTNS; voided volume increased in both groups. Quality of life improved in both groups, whereas patient perception of urgency improved only in women treated with PTNS. Global impression of improvement revealed a greater satisfaction in patients treated with PTNS. This study demonstrates the effectiveness of PTNS and ES with PFMT in women with OAB, but greater improvements were found with PTNS. Copyright® by the International Brazilian Journal of Urology.

  14. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.

    PubMed

    Hart, D J; Taylor, P N; Chappell, P H; Wood, D E

    2006-06-01

    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.

  15. Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES.

    PubMed

    Truong, Dennis Q; Hüber, Mathias; Xie, Xihe; Datta, Abhishek; Rahman, Asif; Parra, Lucas C; Dmochowski, Jacek P; Bikson, Marom

    2014-01-01

    Computational models of brain current flow during transcranial electrical stimulation (tES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), are increasingly used to understand and optimize clinical trials. We propose that broad dissemination requires a simple graphical user interface (GUI) software that allows users to explore and design montages in real-time, based on their own clinical/experimental experience and objectives. We introduce two complimentary open-source platforms for this purpose: BONSAI and SPHERES. BONSAI is a web (cloud) based application (available at neuralengr.com/bonsai) that can be accessed through any flash-supported browser interface. SPHERES (available at neuralengr.com/spheres) is a stand-alone GUI application that allow consideration of arbitrary montages on a concentric sphere model by leveraging an analytical solution. These open-source tES modeling platforms are designed go be upgraded and enhanced. Trade-offs between open-access approaches that balance ease of access, speed, and flexibility are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and almost completely restored iBCI decoding performance (>90% recovery for surface stimulation and full recovery for intramuscular stimulation). The results demonstrate that FES-induced artifacts can be easily mitigated in FES  +  iBCI systems by using LRR for artifact reduction, and suggest that the LRR method may also be useful in other noise reduction applications.

  17. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  18. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage PRINCIPAL...DATES COVERED 30 Sep 2014 – 29 Sep 2015 4. TITLE AND SUBTITLE Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage...instability, among other traumatic affections of joints, and occupations or sports that subject joints to high levels of impact and torsional loading

  19. Electrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner

    PubMed Central

    2017-01-01

    The pulvinar complex is interconnected extensively with brain regions involved in spatial processing and eye movement control. Recent inactivation studies have shown that the dorsal pulvinar (dPul) plays a role in saccade target selection; however, it remains unknown whether it exerts effects on visual processing or at planning/execution stages. We used electrical microstimulation of the dPul while monkeys performed saccade tasks toward instructed and freely chosen targets. Timing of stimulation was varied, starting before, at, or after onset of target(s). Stimulation affected saccade properties and target selection in a time-dependent manner. Stimulation starting before but overlapping with target onset shortened saccadic reaction times (RTs) for ipsiversive (to the stimulation site) target locations, whereas stimulation starting at and after target onset caused systematic delays for both ipsiversive and contraversive locations. Similarly, stimulation starting before the onset of bilateral targets increased ipsiversive target choices, whereas stimulation after target onset increased contraversive choices. Properties of dPul neurons and stimulation effects were consistent with an overall contraversive drive, with varying outcomes contingent upon behavioral demands. RT and choice effects were largely congruent in the visually-guided task, but stimulation during memory-guided saccades, while influencing RTs and errors, did not affect choice behavior. Together, these results show that the dPul plays a primary role in action planning as opposed to visual processing, that it exerts its strongest influence on spatial choices when decision and action are temporally close, and that this choice effect can be dissociated from motor effects on saccade initiation and execution. SIGNIFICANCE STATEMENT Despite a recent surge of interest, the core function of the pulvinar, the largest thalamic complex in primates, remains elusive. This understanding is crucial given the central role of the pulvinar in current theories of integrative brain functions supporting cognition and goal-directed behaviors, but electrophysiological and causal interference studies of dorsal pulvinar (dPul) are rare. Building on our previous studies that pharmacologically suppressed dPul activity for several hours, here we used transient electrical microstimulation at different periods while monkeys performed instructed and choice eye movement tasks, to determine time-specific contributions of pulvinar to saccade generation and decision making. We show that stimulation effects depend on timing and behavioral state and that effects on choices can be dissociated from motor effects. PMID:28119401

  20. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.

    PubMed

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram

    2011-04-01

    Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    PubMed

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  2. Transcranial Magnetic Stimulation-coil design with improved focality

    NASA Astrophysics Data System (ADS)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  3. An investigation into the induced electric fields from transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  4. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices.

    PubMed

    Lopez-de la Fuente, M S; Moncada-Hernandez, H; Perez-Gonzalez, V H; Lapizco-Encinas, B H; Martinez-Chapa, S O

    2013-03-01

    Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.

  5. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Lopez-de la Fuente, M. S.; Moncada-Hernandez, H.; Perez-Gonzalez, V. H.; Lapizco-Encinas, B. H.; Martinez-Chapa, S. O.

    2013-03-01

    Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.

  6. Potentiation by choline of basal and electrically evoked acetylcholine release, as studied using a novel device which both stimulates and perfuses rat corpus striatum

    NASA Technical Reports Server (NTRS)

    Farber, S. A.; Kischka, U.; Marshall, D. L.; Wurtman, R. J.

    1993-01-01

    We examined the release of acetylcholine (ACh) and dopamine (DA) using a novel probe through which striatal neurons could be both superfused and stimulated electrically in both anesthetized and freely moving awake animals. Optimal stimulation parameters for eliciting ACh release from cholinergic neurons differed from those required for eliciting DA release from dopaminergic terminals: at 0.6 ms pulse duration, 20 Hz and 200 microA, ACh release increased to 357 +/- 30% (P < 0.01) of baseline and was blocked by the addition of tetrodotoxin (TTX). Pulse durations of 2.0 ms or greater were required to increase DA release. Unlike ACh release, DA release showed no frequency dependence above 5 Hz. The maximal evoked releases of ACh and DA were 556 +/- 94% (P < 0.01) and 254 +/- 38% (P < 0.05) of baseline, respectively. Peripheral administration of choline (Ch) chloride (30-120 mg/kg) to anesthetized animals caused dose-related (r = 0.994, P < 0.01) increases in ACh release; basal release rose from 117 +/- 7% to 141 +/- 5% of initial baseline levels (P < 0.05) and electrically evoked ACh release rose from 386 +/- 38% to 600 +/- 34% (P < 0.01) in rats given 120 mg/kg. However, Ch failed to affect basal or evoked DA release although neostigmine (10 microM) significantly elevated basal DA release (from 36.7 fmol/10 min to 71.5 fmol/10 min; P < 0.05). In awake animals, Ch (120 mg/kg) also elevated both basal (from 106 +/- 7% to 154 +/- 17%; P < 0.05) and electrically evoked (from 146 +/- 13 to 262 +/- 16%; P < 0.01) ACh release.(ABSTRACT TRUNCATED AT 250 WORDS).

  7. Design of electrical stimulation bioreactors for cardiac tissue engineering.

    PubMed

    Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G

    2008-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.

  8. History of Resuscitation :4. Development of Resuscitation in the Mid-18 Century-4 : External Stimulation to the Body.

    PubMed

    Asai, Takashi

    2017-05-01

    From the mid-18th century, several different stimulations were used to attempt to resuscitate apparently dead people. These include sound, smell, and light stimulation to the ear, nose and eyes, rubbing the body surface and spirit given to the oral cavity. The most notable stimulation was use of electricity, which was initiated by better understanding of its power by Benjamin Franklin and Luigi A. Galvani. Charles Kite developed the first electrical machine to stimulate the heart, and by 1800, it was found that the most effective site for applying electricity was over the heart.

  9. Assessment of deep tissue hyperalgesia in the groin - a method comparison of electrical vs. pressure stimulation.

    PubMed

    Aasvang, E K; Werner, M U; Kehlet, H

    2014-09-01

    Deep pain complaints are more frequent than cutaneous in post-surgical patients, and a prevalent finding in quantitative sensory testing studies. However, the preferred assessment method - pressure algometry - is indirect and tissue unspecific, hindering advances in treatment and preventive strategies. Thus, there is a need for development of methods with direct stimulation of suspected hyperalgesic tissues to identify the peripheral origin of nociceptive input. We compared the reliability of an ultrasound-guided needle stimulation protocol of electrical detection and pain thresholds to pressure algometry, by performing identical test-retest sequences 10 days apart, in deep tissues in the groin region. Electrical stimulation was performed by five up-and-down staircase series of single impulses of 0.04 ms duration, starting from 0 mA in increments of 0.2 mA until a threshold was reached and descending until sensation was lost. Method reliability was assessed by Bland-Altman plots, descriptive statistics, coefficients of variance and intraclass correlation coefficients. The electrical stimulation method was comparable to pressure algometry regarding 10 days test-retest repeatability, but with superior same-day reliability for electrical stimulation (P < 0.05). Between-subject variance rather than within-subject variance was the main source for test variation. There were no systematic differences in electrical thresholds across tissues and locations (P > 0.05). The presented tissue-specific direct deep tissue electrical stimulation technique has equal or superior reliability compared with the indirect tissue-unspecific stimulation by pressure algometry. This method may facilitate advances in mechanism based preventive and treatment strategies in acute and chronic post-surgical pain states. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Efficacy of electroacupuncture compared with transcutaneous electric nerve stimulation for functional constipation

    PubMed Central

    Zeng, Yuxiao; Zhang, Xuecheng; Zhou, Jing; Wang, Xinwei; Jiao, Ruimin; Liu, Zhishun

    2018-01-01

    Abstract Background: To treat functional constipation, both electroacupuncture (EA) therapy and transcutaneous electric nerve stimulation (TENS) are safe and effective. However, no head-to-head comparison trial has been conducted. This trial compares the efficacy of electroacupuncture relative to transcutaneous electric nerve stimulation for functional constipation. Methods: Individuals with functional constipation will be randomly allocated to receive either EA or TENS (n = 51, each), 3 times per week for 8 weeks. The primary outcome is the percentage of participants with an average increase from baseline of 1 or more complete spontaneous bowel movements at week 8. The secondary outcome measures are the following: at the time of visits, changes in the number of complete spontaneous bowel movements, number of spontaneous bowel movements, stool character, difficulty in defecation, patients’ assessment of quality of life regarding constipation (self-report questionnaire), and use of auxiliary defecation methods. Discussion: The results of this trial should verify whether EA is more efficacious than TENS for relieving symptoms of functional constipation. The major limitation of the study is the lack of blinding of the participants and acupuncturist. PMID:29742718

  11. Efficacy of electroacupuncture compared with transcutaneous electric nerve stimulation for functional constipation: Study protocol for a randomized, controlled trial.

    PubMed

    Zeng, Yuxiao; Zhang, Xuecheng; Zhou, Jing; Wang, Xinwei; Jiao, Ruimin; Liu, Zhishun

    2018-05-01

    To treat functional constipation, both electroacupuncture (EA) therapy and transcutaneous electric nerve stimulation (TENS) are safe and effective. However, no head-to-head comparison trial has been conducted. This trial compares the efficacy of electroacupuncture relative to transcutaneous electric nerve stimulation for functional constipation. Individuals with functional constipation will be randomly allocated to receive either EA or TENS (n = 51, each), 3 times per week for 8 weeks. The primary outcome is the percentage of participants with an average increase from baseline of 1 or more complete spontaneous bowel movements at week 8. The secondary outcome measures are the following: at the time of visits, changes in the number of complete spontaneous bowel movements, number of spontaneous bowel movements, stool character, difficulty in defecation, patients' assessment of quality of life regarding constipation (self-report questionnaire), and use of auxiliary defecation methods. The results of this trial should verify whether EA is more efficacious than TENS for relieving symptoms of functional constipation. The major limitation of the study is the lack of blinding of the participants and acupuncturist.

  12. Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.

    PubMed

    Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L

    2018-06-01

    The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Muscular urinary sphincter: electrically stimulated myoplasty for functional sphincter reconstruction.

    PubMed

    Palacio, M M; Van Aalst, V C; Perez Abadia, G A; Stremel, R W; Werker, P M; Ren, X; Petty, G D; Heilman, S J; Van Savage, J G; Garcia Fernandez, A; Kon, M; Tobin, G R; Barker, J H

    1998-11-01

    To reconstruct an electrically stimulated muscular urinary sphincter (MUS) using a tailored gracilis muscle free flap with intact nerve. Unilateral surgically tailored gracilis muscle free flaps were transferred into the pelvis in eight dogs, leaving the obturator nerve intact. The muscle's pedicle vessels were anastomosed to the inferior epigastric artery and vein in the pelvis and the muscle was wrapped around the bladder neck. Electrodes were inserted into the MUS and connected to a programmable pulse generator. After 8 weeks of training the MUS, the pulse generator was programmed to be "on" for 4 hours and "off' for 15 minutes in a continuous cycle. Urodynamic studies were performed periodically, and at the end of the experiment the MUS and proximal urethra were harvested for histology. Three control dogs had sham operations. All MUS's functioned well following the procedure. Histology of the MUS/urethra complex showed no evidence of stricture. Except for one dog, all urethras were easily catheterized. This electrically stimulated innervated free-flap MUS technique effectively increases bladder outlet resistance without producing urethral obstruction.

  14. Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.

    PubMed

    Pavesi, A; Soncini, M; Zamperone, A; Pietronave, S; Medico, E; Redaelli, A; Prat, M; Fiore, G B

    2014-07-01

    In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration. © 2014 Wiley Periodicals, Inc.

  15. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.

    PubMed

    Walckiers, Grégoire; Fuchs, Benjamin; Thiran, Jean-Philippe; Mosig, Juan R; Pollo, Claudio

    2010-01-30

    Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%). (c) 2009 Elsevier B.V. All rights reserved.

  16. Does electrical stimulation reduce spasticity after stroke? A randomized controlled study.

    PubMed

    Bakhtiary, Amir H; Fatemy, Elham

    2008-05-01

    To investigate the therapeutic effect of electrical stimulation on plantarflexor spasticity in stroke patients. A randomized controlled clinical trial study. Rehabilitation clinic of Semnan University of Medical Sciences. Forty stroke patients (aged from 42 to 65 years) with ankle plantarflexor spasticity. Fifteen minutes of inhibitory Bobath techniques were applied to one experimental group and a combination of 9 minutes of electrical stimulation on the dorsiflexor muscles and inhibitory Bobath techniques was applied to another group for 20 sessions daily. Passive ankle joint dorsiflexion range of motion, dorsiflexion strength test, plantarflexor muscle tone by Modified Ashworth Scale and soleus muscle H-reflex. The mean change of passive ankle joint dorsiflexion in the combination therapy group was 11.4 (SD 4.79) degrees versus 6.1 (SD 3.09) degrees, which was significantly higher (P = 0.001). The mean change of plantarflexor muscle tonicity measured by the Modified Ashworth Scale in the combination therapy group was -1.6 (SD 0.5) versus -1.1 (SD 0.31) in the Bobath group (P = 0.001). Dorsiflexor muscle strength was also increased significantly (P = 0.04) in the combination therapy group (0.7 +/- 0.37) compared with the Bobath group (0.4 +/- 0.23). However, no significant change in the amplitude of H-reflex was found between combination therapy (-0.41 +/- 0.29) and Bobath (-0.3 +/- 0.28) groups. Therapy combining Bobath inhibitory technique and electrical stimulation may help to reduce spasticity effectively in stroke patients.

  17. Emotions induced by intracerebral electrical stimulation of the temporal lobe.

    PubMed

    Meletti, Stefano; Tassi, Laura; Mai, Roberto; Fini, Nicola; Tassinari, Carlo Alberto; Russo, Giorgio Lo

    2006-01-01

    To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe. Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed. Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses. These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.

  18. Intensity coding in electric hearing: Effects of electrode configurations and stimulation waveforms

    PubMed Central

    Chua, Tiffany Elise H.; Bachman, Mark; Zeng, Fan-Gang

    2011-01-01

    Objectives Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception, but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. Design The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were 5 Clarion cochlear implant users. For each subject, data from apical, middle and basal electrode positions were collected when possible. Results Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. Conclusions The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings, nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen. PMID:21610498

  19. Cooperative role of electrical stimulation on microbial metabolism and selection of thermophilic communities for p-fluoronitrobenzene treatment.

    PubMed

    Zhang, Xueqin; Shen, Dongsheng; Feng, Huajun; Wang, Yanfeng; Li, Na; Han, Jingyi; Long, Yuyang

    2015-01-01

    A novel thermophilic bioelectrochemical system (TBES) based on electrical stimulation was established for the enhanced treatment of p-fluoronitrobenzene (p-FNB) wastewater. p-FNB removal rate constant in the TBES was 78.6% higher than that of the mesophilic BES (MBES), the elevation of which owing to high-temperature overtook the rate improvement of 50.8% in the electrocatalytic system (ECS). Additionally, an overwhelming mineralization efficiency of 91.96% ± 5.70% was obtained in the TBES. The superiority of TBES was attributed to the integrated role of electrical stimulation and high-temperature. Electrical stimulation provided an alternative for the microbial growth independent energy requirements, compensating insufficient energy support from p-FNB metabolism under the high-temperature stress. Besides, electrical stimulation facilitated microbial community evolution to form specific thermophilic biocatalysis. The uniquely selected thermophilic microorganisms including Coprothermobacter sp. and other ones cooperated to enhance p-FNB mineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of the Masako maneuver and neuromuscular electrical stimulation on the improvement of swallowing function in patients with dysphagia caused by stroke

    PubMed Central

    Byeon, Haewon

    2016-01-01

    [Purpose] The aim of this study was to compare improvements in swallowing function by the intervention of the Masako maneuver and neuromuscular electrical stimulation in patients with dysphagia caused by stroke. [Subjects and Methods] The Masako maneuver (n=23) and neuromuscular electrical stimulation (n=24) were conducted in 47 patients with dysphagia caused by stroke over a period of 4 weeks. Swallowing recovery was recorded using the functional dysphagia scale based on videofluoroscopic studies. [Results] Mean functional dysphagia scale values for the Masako maneuver and neuromuscular electrical stimulation groups decreased after the treatments. However, the pre-post functional dysphagia scale values showed no statistically significant differences between the groups. [Conclusion] The Masako maneuver and neuromuscular electrical stimulation each showed significant effects on the improvement of swallowing function for the patients with dysphagia caused by stroke, but no significant difference was observed between the two treatment methods. PMID:27512266

  1. FES in Europe and Beyond: Current Translational Research

    PubMed Central

    Coste, Christine Azevedo; Mayr, Winfried; Bijak, Manfred; Musarò, Antonio; Carraro, Ugo

    2016-01-01

    Capacity of adult neural and muscle tissues to respond to external Electrical Stimulation (ES) is the biological basis for the development and implementation of mobility impairment physiotherapy protocols and of related assistive technologies, e.g, Functional Electrical Stimulation (FES). All body tissues, however, respond to electrical stimulation and, indeed, the most successful application of FES is electrical stimulation of the heart to revert or limit effects of arrhythmias (Pace-makers and Defibrillators). Here, we list and discuss results of FES current research activities, in particular those presented at 2016 Meetings: the PaduaMuscleDays, the Italian Institute of Myology Meeting, the 20th International Functional Electrical Stimulation Society (IFESS) conference held in Montpellier and the Vienna Workshop on FES. Several papers were recently e-published in the European Journal of Translational Myology as reports of meeting presentations. All the events and publications clearly show that FES research in Europe and beyond is alive and promisses translation of results into clinical management of a very large population of persons with deficiencies. PMID:28078074

  2. Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tass, P. A.; Barnikol, U. B.; Department of Stereotaxic and Functional Neurosurgery, University of Cologne, D-50931 Cologne

    2009-07-15

    In computational models it has been shown that appropriate stimulation protocols may reshape the connectivity pattern of neural or oscillator networks with synaptic plasticity in a way that the network learns or unlearns strong synchronization. The underlying mechanism is that a network is shifted from one attractor to another, so that long-lasting stimulation effects are caused which persist after the cessation of stimulation. Here we study long-lasting effects of multisite electrical stimulation in a rat hippocampal slice rendered epileptic by magnesium withdrawal. We show that desynchronizing coordinated reset stimulation causes a long-lasting desynchronization between hippocampal neuronal populations together with amore » widespread decrease in the amplitude of the epileptiform activity. In contrast, periodic stimulation induces a long-lasting increase in both synchronization and amplitude.« less

  3. Induction of human airway hyperresponsiveness by tumour necrosis factor-alpha.

    PubMed

    Anticevich, S Z; Hughes, J M; Black, J L; Armour, C L

    1995-09-15

    Tumour necrosis factor-alpha (TNF alpha) is implicated in the pathogenesis of asthma; however, little is known of its direct effect on smooth muscle reactivity. We investigated the effect of TNF alpha on the responsiveness of human bronchial tissue to electrical field stimulation in vitro. Incubation of non-sensitized tissue with 1 nM, 3 nM and 10 nM TNF alpha significantly increased responsiveness to electrical field stimulation (113 +/- 8, 110 +/- 4 and 112 +/- 2% respectively) compared to control (99 +/- 2%) (P < 0.05, n = 6). Responses were not increased in sensitized tissue (101 +/- 3% versus 105 +/- 5%, n = 3, P > 0.05) nor were responses to exogenous acetylcholine (93 +/- 4% versus 73 +/- 7%, n = 3, P = 0.38). These results show that TNF alpha causes an increase in responsiveness of human bronchial tissue and that this occurs prejunctionally on the parasympathetic nerve pathway. This is the first report of a cytokine increasing human airway tissue responsiveness.

  4. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.

    PubMed

    Lautner, Silke; Stummer, Michaela; Matyssek, Rainer; Fromm, Jörg; Grams, Thorsten E E

    2014-01-01

    Leaf photosynthesis of the sensitive plant Mimosa pudica displays a transient knockout in response to electrical signals induced by heat stimulation. This study aims at clarifying the underlying mechanisms, in particular, the involvement of respiration. To this end, leaf gas exchange and light reactions of photosynthesis were assessed under atmospheric conditions largely eliminating photorespiration by either elevated atmospheric CO2 or lowered O2 concentration (i.e. 2000 μmol mol(-1) or 1%, respectively). In addition, leaf gas exchange was studied in the absence of light. Under darkness, heat stimulation caused a transient increase of respiratory CO2 release simultaneously with stomatal opening, hence reflecting direct involvement of respiratory stimulation in the drop of the net CO2 uptake rate. However, persistence of the transient decline in net CO2 uptake rate under illumination and elevated CO2 or 1% O2 makes it unlikely that photorespiration is the metabolic origin of the respiratory CO2 release. In conclusion, the transient knockout of net CO2 uptake is at least partially attributed to an increased CO2 release through mitochondrial respiration as stimulated by electrical signals. Putative CO2 limitation of Rubisco due to decreased activity of carbonic anhydrase was ruled out as the photosynthesis effect was not prevented by elevated CO2 . © 2013 John Wiley & Sons Ltd.

  5. Contractile properties of early human embryonic stem cell-derived cardiomyocytes: beta-adrenergic stimulation induces positive chronotropy and lusitropy but not inotropy.

    PubMed

    Pillekamp, Frank; Haustein, Moritz; Khalil, Markus; Emmelheinz, Markus; Nazzal, Rewa; Adelmann, Roland; Nguemo, Filomain; Rubenchyk, Olga; Pfannkuche, Kurt; Matzkies, Matthias; Reppel, Michael; Bloch, Wilhelm; Brockmeier, Konrad; Hescheler, Juergen

    2012-08-10

    Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide the unique opportunity to study the very early development of the human heart. The aim of this study was to investigate the effect of calcium and beta-adrenergic stimulation on the contractile properties of early hESC-CMs. Beating clusters containing hESC-CMs were co-cultured in vitro with noncontractile slices of neonatal murine ventricles. After 5-7 days, when beating clusters had integrated morphologically into the damaged tissue, isometric force measurements were performed during spontaneous beating as well as during electrical field stimulation. Spontaneous beating stopped when extracellular calcium ([Ca²⁺](ec)) was removed or after administration of the Ca²⁺ channel blocker nifedipine. During field stimulation at a constant rate, the developed force increased with incremental concentrations of [Ca²⁺](ec). During spontaneous beating, rising [Ca²⁺](ec) increased beating rate and developed force up to a [Ca²⁺](ec) of 2.5 mM. When [Ca²⁺](ec) was increased further, spontaneous beating rate decreased, whereas the developed force continued to increase. The beta-adrenergic agonist isoproterenol induced a dose-dependent increase of the frequency of spontaneous beating; however, it did not significantly change the developed force during spontaneous contractions or during electrical stimulation at a constant rate. Force developed by early hESC-CMs depends on [Ca²⁺](ec) and on the L-type Ca²⁺ channel. The lack of an inotropic reaction despite a pronounced chronotropic response after beta-adrenergic stimulation most likely indicates immaturity of the sarcoplasmic reticulum. For cell-replacement strategies, further maturation of cardiac cells has to be achieved either in vitro before or in vivo after transplantation.

  6. Alcohol impairs skeletal muscle protein synthesis and mTOR signaling in a time-dependent manner following electrically stimulated muscle contraction

    PubMed Central

    Lang, Charles H.

    2014-01-01

    Alcohol (EtOH) decreases protein synthesis and mammalian target of rapamycin (mTOR)-mediated signaling and blunts the anabolic response to growth factors in skeletal muscle. The purpose of the current investigation was to determine whether acute EtOH intoxication antagonizes the contraction-induced increase in protein synthesis and mTOR signaling in skeletal muscle. Fasted male mice were injected intraperitoneally with 3 g/kg EtOH or saline (control), and the right hindlimb was electrically stimulated (10 sets of 6 contractions). The gastrocnemius muscle complex was collected 30 min, 4 h, or 12 h after stimulation. EtOH decreased in vivo basal protein synthesis (PS) in the nonstimulated muscle compared with time-matched Controls at 30 min, 4 h, and 12 h. In Control, but not EtOH, PS was decreased 15% after 30 min. In contrast, PS was increased in Control 4 h poststimulation but remained unchanged in EtOH. Last, stimulation increased PS 10% in Control and EtOH at 12 h, even though the absolute rate remained reduced by EtOH. The stimulation-induced increase in the phosphorylation of S6K1 Thr421/Ser424 (20–52%), S6K1 Thr389 (45–57%), and its substrate rpS6 Ser240/244 (37–72%) was blunted by EtOH at 30 min, 4 h, and 12 h. Phosphorylation of 4E-BP1 Ser65 was also attenuated by EtOH (61%) at 4 h. Conversely, phosphorylation of extracellular signal-regulated kinase Thr202/Tyr204 was increased by stimulation in Control and EtOH mice at 30 min but only in Control at 4 h. Our data indicate that acute EtOH intoxication suppresses muscle protein synthesis for at least 12 h and greatly impairs contraction-induced changes in synthesis and mTOR signaling. PMID:25257868

  7. A technical guide to tDCS, and related non-invasive brain stimulation tools

    PubMed Central

    Woods, AJ; Antal, A; Bikson, M; Boggio, PS; Brunoni, AR; Celnik, P; Cohen, LG; Fregni, F; Herrmann, CS; Kappenman, ES; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, PC; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, MA

    2015-01-01

    Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. PMID:26652115

  8. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    DTIC Science & Technology

    2017-10-01

    expected. Statistics: Comparisons were analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...2016 – 29 Sep 2017 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic

  9. Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0190 TITLE: Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone PRINCIPAL...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...2015 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

  10. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I: A Pilot Controlled Study.

    PubMed

    Cudia, Paola; Weis, Luca; Baba, Alfonc; Kiper, Pawel; Marcante, Andrea; Rossi, Simonetta; Angelini, Corrado; Piccione, Francesco

    2016-11-01

    Functional electrical stimulation (FES) is a new rehabilitative approach that combines electrical stimulation with a functional task. This pilot study evaluated the safety and effectiveness of FES lower extremity training in myotonic dystrophy type 1. This is a controlled pilot study that enrolled 20 patients with myotonic dystrophy type 1 over 2 years. Eight patients (age, 39-67 years) fulfilled the inclusion criteria. Four participants performed FES cycling training for 15 days (one daily session of 30 minutes for 5 days a week). A control group, matched for clinical and genetic variables, who had contraindications to electrical stimulation, performed 6 weeks of conventional resistance and aerobic training. The modified Medical Research Council Scale and functional assessments were performed before and after treatment. Cohen d effect size was used for statistical analysis. Functional electrical stimulation induced lower extremity training was well tolerated and resulted in a greater improvement of tibialis anterior muscle strength (d = 1,583), overall muscle strength (d = 1,723), and endurance (d = 0,626) than conventional training. Functional electrical stimulation might be considered a safe and valid tool to improve muscle function, also in muscles severely compromised in which no other restorative options are available. Confirmation of FES efficacy through further clinical trials is strongly advised.

  11. Acute mental stress but not enforced muscle activity transiently increases natural cytotoxicity in spontaneously hypertensive rats.

    PubMed

    Jonsdottir, I H; Johansson, C; Asea, A; Hellstrand, K; Hoffmann, P

    1996-08-01

    The influence of acute mental stress and the effect of electrically induced skeletal muscle contractions on natural cytotoxicity in vivo was investigated in spontaneously hypertensive rats Natural cytotoxicity in vivo was measured as the clearance of injected 51Cr-labelled YAC-1 lymphoma cells from the lungs, which are specifically lysed by natural killer cells. The mental stress consisted of an air jet directed towards the animals in their cage for 25 min. During the mental stress there was a significant increase in natural cytotoxicity. Thus, retained radioactivity in the lungs was decreased to 74 +/- 6% of the control levels which was set to 100% (P < 0.01). This augmentation of YAC-1-cell clearance could be blocked with the beta-adrenergic receptor antagonist Timolol. Two hours after termination of the air stress, in vivo cytotoxicity had returned to control levels. In contrast, acute physical stress, consisting of electrically induced muscle contractions for 60 min, had no significant effects on in vivo cytotoxicity, either during the stimulation or 1, 2 or 24 h after the stimulation. Further, significantly increased plasma levels of adrenaline were seen after the air jet stress, but not after muscle stimulation. There were no significant changes in plasma noradrenaline levels either after air stress or muscle stimulation. These results indicate that changes in in vivo cytotoxicity after mild mental stress are dependent on increased plasma catecholamine levels while acute physical stress without changes in catecholamine levels, does not influence in vivo cytotoxicity.

  12. A phenomenological model that predicts forces generated when electrical stimulation is superimposed on submaximal volitional contractions

    PubMed Central

    Perumal, Ramu; Wexler, Anthony S.; Kesar, Trisha M.; Jancosko, Angela; Laufer, Yocheved

    2010-01-01

    Superimposition of electrical stimulation during voluntary contractions is used to produce functional movements in individuals with central nervous system impairment, to evaluate the ability to activate a muscle, to characterize the nature of fatigue, and to improve muscle strength during postsurgical rehabilitation. Currently, the manner in which voluntary contractions and electrically elicited forces summate is not well understood. The objective of the present study is to develop a model that predicts the forces obtained when electrical stimulation is superimposed on a volitional contraction. Quadriceps femoris muscles of 12 able-bodied subjects were tested. Our results showed that the total force produced when electrical stimulation was superimposed during a volitional contraction could be modeled by the equation T = V + S[(MaxForce − V)/MaxForce]N, where T is the total force produced, V is the force in response to volitional contraction alone, S is the force response to the electrical stimulation alone, MaxForce is the maximum force-generating ability of the muscle, and N is a parameter that we posit depends on the differences in the motor unit recruitment order and firing rates between volitional and electrically elicited contractions. In addition, our results showed that the model predicted accurately (intraclass correlation coefficient ≥0.97) the total force in response to a wide range of stimulation intensities and frequencies superimposed on a wide range of volitional contraction levels. Thus the model will be helpful to clinicians and scientists to predict the amount of stimulation needed to produce the targeted force levels in individuals with partial paralysis. PMID:20299613

  13. A new psychometric questionnaire for reporting of somatosensory percepts

    NASA Astrophysics Data System (ADS)

    Kim, L. H.; McLeod, R. S.; Kiss, Z. H. T.

    2018-02-01

    Objective. There have been remarkable advances over the past decade in neural prostheses to restore lost motor function. However, restoration of somatosensory feedback, which is essential for fine motor control and user acceptance, has lagged behind. With an increasing interest in using electrical stimulation to restore somatosensory sensations within the peripheral (PNS) and central nervous systems (CNS), it is critical to characterize the percepts evoked by electrical stimulation in a standardized manner with a validated psychometric questionnaire. This will allow comparison of results from applications at various nervous system levels in multiple settings. Approach. We compiled a summary of published reports of somatosensory percepts that were elicited by electrical stimulation in humans and used these to develop a new psychometric questionnaire. Results. This new questionnaire was able to characterize subjective evoked sensations with good test-retest reliability (Spearman’s correlation coefficients ranging 0.716  ⩽  ρ  ⩽  1.000, p  ⩽  0.005) in 13 subjects receiving stimulation through neural implants in both the CNS and PNS. Furthermore, the new questionnaire captured more descriptors (M  =  2.65, SD  =  0.91) that would have been missed by being categorized as ‘other sensations’, using a previous questionnaire (M  =  1.40, SD  =  0.77, t(12)  =  -10.24, p  <  0.001). Lastly, the new questionnaire was able to capture different descriptors within subjects using different patterns of electrical stimulation (Wilk’s Lambda  =  0.42, F(3, 10)  =  4.58, p  =  0.029). Significance. This new somatosensory psychometric questionnaire will aid in establishing consistency and standardization of reporting in future studies of somatosensory neural prostheses.

  14. Electrical stimulation at the dorsal root ganglion preserves trabecular bone mass and microarchitecture of the tibia in hindlimb-unloaded rats.

    PubMed

    Lau, Y-C; Qian, X; Po, K-T; Li, L-M; Guo, X

    2015-02-01

    This study seeks to investigate the effect of electrical stimulation (ES) at dorsal root ganglion (DRG) on disuse bone loss in a rat model. Hindlimb unloading for 14 days resulted in significant bone loss in rat tibia while rats with ES at DRG showed a significant reduced bone loss Mechanical unloading induces osteoporosis in both human and animals. Previous studies demonstrated that electrical stimulation (ES) to dorsal root ganglion (DRG) could trigger secretion of calcitonin gene-related peptide (CGRP) which plays an important role in bone modeling and remodeling. This study seeks to investigate the effect of ES to DRG on disuse bone loss in a rat model. Twenty-four rats were randomly assigned in three experimental groups: cage control (CC), hindlimb unloading (HU), and hindlimb unloading with ES (HUES). ES was applied via implantable micro-electrical stimulators (IMES) to right DRGs at vertebral levels L4-L6 in HUES group. Hindlimb unloading for 14 days resulted in 25.9% decrease in total bone mineral content (BMC), 29.2% decrease in trabecular BMD and trabecular microarchitecture and connectivity were significantly deteriorated in the proximal tibia metaphysis in HU group, while rats with ES at DRG showed significant reduced bone loss that there was 3.8% increase in total BMC, 2.3% decrease in trabecular BMD, and significant improvement in trabecular microarchitecture. There was a concurrent enhancement of expression of CGRP in stimulated DRGs. The results confirm the effect of ES at DRG on enhancing CGRP expression and suggest potential applications of IMES for the prevention and treatment of disuse bone loss.

  15. Effect of low frequency electrical stimulation on seizure-induced short- and long-term impairments in learning and memory in rats.

    PubMed

    Esmaeilpour, Khadijeh; Sheibani, Vahid; Shabani, Mohammad; Mirnajafi-Zadeh, Javad

    2017-01-01

    Kindled seizures can impair learning and memory. In the present study the effect of low-frequency electrical stimulation (LFS) on kindled seizure-induced impairment in spatial learning and memory was investigated and followed up to one month. Animals were kindled by electrical stimulation of hippocampal CA1 area in a semi-rapid manner (12 stimulations per day). One group of animals received four trials of LFS at 30s, 6h, 24h, and 30h following the last kindling stimulation. Each LFS trial was consisted of 4 packages at 5min intervals. Each package contained 200 monophasic square wave pulses of 0.1ms duration at 1Hz. The Open field, Morris water maze, and novel object recognition tests were done 48h, 1week, 2weeks, and one month after the last kindling stimulation respectively. Kindled animals showed a significant impairment in learning and memory compared to control rats. LFS decreased the kindling-induced learning and memory impairments at 24h and one week following its application, but not at 2week or 1month after kindling. In the group of animals that received the same 4 trials of LFS again one week following the last kindling stimulation, the improving effect of LFS was observed even after one month. Obtained results showed that application of LFS in fully kindled animals has a long-term improving effect on spatial learning and memory. This effect can remain for a long duration (one month in this study) by increasing the number of applied LFS. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Electrical stimulation during skill training with a therapeutic glove enhances the induction of cortical plasticity and has a positive effect on motor memory.

    PubMed

    Christova, Monica; Rafolt, Dietmar; Golaszewski, Stefan; Nardone, Raffaele; Gallasch, Eugen

    2014-08-15

    To examine whether afferent stimulation of hand muscles has a facilitating effect on motor performance, learning and cortical excitability, healthy subjects were trained on the grooved pegboard test (GTP) while wearing a mesh glove (MG) with incorporated electrical stimulation. Three study groups (n=12) were compared in a between subjects design, the bare handed (BH), gloved (MG) and gloved with electrical stimulation (MGS) groups. Motor performance was assessed by the GPT completion time across 4 training blocks, and further one block was retested 7 days later to determine the off-line effects. On-line learning was obtained by normalizing the completion time values to the first training block, and off-line learning was obtained by normalizing the retest values to the last training block. Cortical excitability was assessed via single and paired-pulse transcranial magnetic stimulation (TMS) at pre-training, post-training and 30 min post-training. Motor evoked potential recruitment curve, short-latency intracortical inhibition and intracortical facilitation were estimated from the TMS assessments. Motor performance across all 4 training blocks was poor in the MG and MGS groups, while on-line learning was not affected by wearing the glove or by afferent stimulation. However, off-line learning, tested 7 days after training, was improved in the MGS group compared to the MG group. In addition, post-training corticospinal excitability was increased in the MGS group. It can be concluded that afferent stimulation improves off-line learning and thus has a positive effect on motor memory, likely due to LTP-like cortical plasticity in the consolidation phase. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop.

    PubMed

    Bikson, Marom; Brunoni, Andre R; Charvet, Leigh E; Clark, Vincent P; Cohen, Leonardo G; Deng, Zhi-De; Dmochowski, Jacek; Edwards, Dylan J; Frohlich, Flavio; Kappenman, Emily S; Lim, Kelvin O; Loo, Colleen; Mantovani, Antonio; McMullen, David P; Parra, Lucas C; Pearson, Michele; Richardson, Jessica D; Rumsey, Judith M; Sehatpour, Pejman; Sommers, David; Unal, Gozde; Wassermann, Eric M; Woods, Adam J; Lisanby, Sarah H

    Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders. Published by Elsevier Inc.

  18. REPETETIVE HINDLIMB MOVEMENT USING INTERMITTENT ADAPTIVE NEUROMUSCULAR ELECTRICAL STIMULATION IN AN INCOMPLETE SPINAL CORD INJURY RODENT MODEL

    PubMed Central

    Fairchild, Mallika; Kim, Seung-Jae; Iarkov, Alex; Abbas, James J.; Jung, Ranu

    2010-01-01

    The long-term objective of this work is to understand the mechanisms by which electrical stimulation based movement therapies may harness neural plasticity to accelerate and enhance sensorimotor recovery after incomplete spinal cord injury (iSCI). An adaptive neuromuscular electrical stimulation (aNMES) paradigm was implemented in adult Long Evans rats with thoracic contusion injury (T8 vertebral level, 155±2 Kdyne). In lengthy sessions with lightly anesthetized animals, hip flexor and extensor muscles were stimulated using an aNMES control system in order to generate desired hip movements. The aNMES control system, which used a pattern generator/pattern shaper structure, adjusted pulse amplitude to modulate muscle force in order to control hip movement. An intermittent stimulation paradigm was used (5-cycles/set; 20-second rest between sets; 100 sets). In each cycle, hip rotation caused the foot plantar surface to contact a stationary brush for appropriately timed cutaneous input. Sessions were repeated over several days while the animals recovered from injury. Results indicated that aNMES automatically and reliably tracked the desired hip trajectory with low error and maintained range of motion with only gradual increase in stimulation during the long sessions. Intermittent aNMES thus accounted for the numerous factors that can influence the response to NMES: electrode stability, excitability of spinal neural circuitry, non-linear muscle recruitment, fatigue, spinal reflexes due to cutaneous input, and the endogenous recovery of the animals. This novel aNMES application in the iSCI rodent model can thus be used in chronic stimulation studies to investigate the mechanisms of neuroplasticity targeted by NMES-based repetitive movement therapy. PMID:20206164

  19. Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop

    PubMed Central

    Bikson, Marom; Brunoni, Andre R.; Charvet, Leigh E.; Clark, Vincent P.; Cohen, Leonardo G.; Deng, Zhi-De; Dmochowski, Jacek; Edwards, Dylan J.; Frohlich, Flavio; Kappenman, Emily S.; Lim, Kelvin O.; Loo, Colleen; Mantovani, Antonio; McMullen, David P.; Parra, Lucas C.; Pearson, Michele; Richardson, Jessica D.; Rumsey, Judith M.; Sehatpour, Pejman; Sommers, David; Unal, Gozde; Wassermann, Eric M.; Woods, Adam J.; Lisanby, Sarah H.

    2018-01-01

    Background Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. Objective This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. Methods The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. Results Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. Conclusions These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders. PMID:29398575

  20. Stimulating Music: The Pleasures and Dangers of “Electric Music,” 1750–1900

    PubMed Central

    Kennaway, James

    2014-01-01

    Far from being a purely modern idea, the notion of “electric music” was already common in the eighteenth and nineteenth centuries. The shift in thinking about music from cosmic harmony to nervous stimulation made metaphors and speculative theories relating music and electricity irresistible. This essay considers the development of the idea of electric music, looking at its associations with a sexual “body electric.” It will then examine how this conception of music went from being the subject of sympathy to becoming part of a medical critique of music as a dangerous stimulant, with echoes in music criticism and beyond. PMID:24587689

Top