Sample records for electrical stimulation patterns

  1. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  2. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    NASA Astrophysics Data System (ADS)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications.

  3. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  4. Electrically induced contraction levels of the quadriceps femoris muscles in healthy men: the effects of three patterns of burst-modulated alternating current and volitional muscle fatigue.

    PubMed

    Parker, Michael G; Broughton, Alex J; Larsen, Ben R; Dinius, Josh W; Cimbura, Mac J; Davis, Matthew

    2011-12-01

    The purpose of this study was to compare electrically induced contraction levels produced by three patterns of alternating current in fatigued and nonfatigued skeletal muscles. Eighteen male volunteers without health conditions, with a mean (SD) age of 24.9 (3.4) yrs were randomly exposed to a fatiguing volitional isometric quadriceps contraction and one of three patterns of 2.5-KHz alternating current; two were modulated at 50 bursts per second (10% burst duty cycle with five cycles per burst and 90% burst duty cycle with 45 cycles per burst), and one pattern was modulated at 100 bursts per second (10% burst duty cycle with 2.5 cycles per burst). The electrically induced contraction levels produced by the three patterns of electrical stimulation were compared before and after the fatiguing contraction. The 10% burst duty cycles produced 42.9% (95% confidence interval, 29.1%-56.7%) and 32.1% (95% confidence interval, 18.2%-45.9%) more muscle force (P < 0.001) than did the 90% burst duty cycle pattern. There was no significant interaction effect (P = 0.392) of electrical stimulation patterns and fatigue on the electrically induced contraction levels. The lower burst duty cycle (10%) patterns of electrical stimulation produced stronger muscle contractions. Furthermore, the stimulation patterns had no influence on the difference in muscle force before and after the fatiguing quadriceps contraction. Consequently, for clinical applications in which high forces are desired, the patterns using the 10% burst duty cycle may be helpful.

  5. COMMUNICATION Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation

    NASA Astrophysics Data System (ADS)

    Heming, Ethan; Sanden, Andrew; Kiss, Zelma H. T.

    2010-12-01

    Although major advances have been made in the development of motor prostheses, fine motor control requires intuitive somatosensory feedback. Here we explored whether a thalamic site for a somatosensory neural prosthetic could provide natural somatic sensation to humans. Different patterns of electrical stimulation (obtained from thalamic spike trains) were applied in patients undergoing deep brain stimulation surgery. Changes in pattern produced different sensations, while preserving somatotopic representation. While most percepts were reported as 'unnatural', some stimulations produced more 'natural' sensations than others. However, the additional patterns did not elicit more 'natural' percepts than high-frequency (333 Hz) electrical stimulation. These features suggest that despite some limitations, the thalamus may be a feasible site for a somatosensory neural prosthesis and different stimulation patterns may be useful in its development.

  6. Influence of patterned electrical neuromuscular stimulation on quadriceps activation in individuals with knee joint injury.

    PubMed

    Glaviano, Neal R; Langston, William T; Hart, Joseph M; Saliba, Susan

    2014-12-01

    Neuromuscular Electrical Stimulation is a common intervention to address muscle weakness, however presents with many limitations such as fatigue, muscle damage, and patient discomfort that may influence its effectiveness. One novel form of electrical stimulation purported to improve neuromuscular re-education is Patterned Electrical Neuromuscular Stimulation (PENS), which is proposed to mimic muscle-firing patterns of healthy individuals. PENS provides patterned stimulating to the agonist muscle, antagonist muscle and then agonist muscle again in an effort to replicate firing patterns. The purpose of this study was to determine the effect of a single PENS treatment on knee extension torque and quadriceps activation in individuals with quadriceps inhibition. 18 subjects (10 males and 8 females: 24.2±3.4 years, 175.3±11.8cm, 81.8±12.4kg) with a history of knee injury/pain participated in this double-blinded randomized controlled laboratory trial. Participants demonstrated quadriceps inhibition with a central activation ratio of ≤90%. Maximal voluntary isometric contraction of the quadriceps and central activation ratio were measured before and after treatment. The treatment intervention was a 15-minute patterned electrical stimulation applied to the quadriceps and hamstring muscles with a strong motor contraction or a sham group, who received an identical set up as the PENS group, but received a 1mA subsensory stimulation. A 2×2 (group × time) ANCOVA was used to determine differences in maximal voluntary isometric contraction and central activation ratio between groups. The maximal voluntary isometric contraction was selected as a covariate due to baseline differences. There were no differences in change scores between pre- and post-intervention for maximal voluntary isometric contraction: (PENS: 0.09±0.32Nm/kg and Sham 0.15±0.18Nm/kg, p=0.713), or central activation ratio:(PENS: -1.22±6.06 and Sham: 1.48±3.7, p=0.270). A single Patterned Electrical Neuromuscular Stimulation treatment did not alter quadriceps central activation ratio or maximal voluntary isometric contraction. Unlike other types of muscle stimulation, PENS did not result in a reduction of quadriceps torque. Level III.

  7. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation

    NASA Astrophysics Data System (ADS)

    Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.

    2017-12-01

    Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.

  8. [EFFECTS OF ELECTRICAL STIMULATION OF NUCLEUS RETICULARIS PONTIS ORALIS ON THE SLEEP-WAKING STATES IN KRUSHINSKII-MOLODKINA STRAIN RATS].

    PubMed

    Vataev, S I; Malgina, N A; Oganesyan, G A

    2015-07-01

    The effects of electrical stimulation of nucleus reticularis pontis oralis on the behavior and brain electrical activity during all phases of the sleep-waking cycle was studied in Krushinskii-Molodkina strain rats, which have an inherited predisposition to audiogenic seizures. Electrical stimulation with 7 Hz frequency in the deep stage of slow-wave sleep cause appearance the fast-wave sleep. Similar stimulation during fast-wave sleep periods did not effects on the electrographic patterns and EEG spectral characteristics of hippocampus, visual, auditory and somatocnen nrnrenc nf the cnrtey ThPe sfimul1stinns did nnt break a fast-wave sleenhut increased almost twice due the duration of these sleep episodes. After electrical stimulation by same frequency during the wakeftlness and superficial slow-wave sleep states, the patterns and spectral characteristics of brain electrical activity in rats showed no significant changes as compared with controls. The results of this study indicate that the state of the animals sleep-waking cycle at the time of stimulation is a critical variable that influences the responses which are induced by electrical stimulation of the nucleus reticularis pontis oralis.

  9. Neural Responses to Electrical Stimulation on Patterned Silk Films

    PubMed Central

    Hronik-Tupaj, Marie; Raja, Waseem Khan; Tang-Schomer, Min; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Peripheral nerve injury is a critical issue for trauma patients. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 minutes each day for 7 days. Responses were compared to neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared to the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on day 5 and day 7 compared to the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 minutes daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment. PMID:23401351

  10. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  12. Electrical Cerebral Stimulation Modifies Inhibitory Systems

    NASA Astrophysics Data System (ADS)

    Cuéllar-Herrera, M.; Rocha, L.

    2003-09-01

    Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.

  13. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    PubMed

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  14. Effects of combined electrical stimulation of the dorsal column and dorsal roots on wide-dynamic range neuronal activity in nerve-injured rats

    PubMed Central

    Yang, Fei; Zhang, Tong; Tiwari, Vinod; Shu, Bin; Zhang, Chen; Wang, Yun; Vera-Portocarrero, Louis P.; Raja, Srinivasa N.; Guan, Yun

    2015-01-01

    Objectives Electrical stimulation at the dorsal column (DC) and dorsal root (DR) may inhibit spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. The objective of this study was to determine if applying electrical conditioning stimulation (CS) at both sites provides additive or synergistic benefits. Materials and Methods By conducting in vivo extracellular recordings of WDR neurons in rats that had undergone L5 spinal nerve ligation, we tested whether combining 50 Hz CS at the two sites in either a concurrent (2.5 minutes) or alternate (5 minutes) pattern inhibits WDR neuronal activity better than CS at DC alone (5 minutes). The intensities of CS were determined by recording antidromic compound action potentials to graded stimulation at the DC and DR. We measured the current thresholds that resulted in the first detectable Aα/β waveform (Ab0) and the peak Aα/β waveform (Ab1) to select CS intensity at each site. The same number of electrical pulses and amount of current were delivered in different patterns to allow comparison. Results At a moderate intensity of 50%(Ab0+Ab1), different patterns of CS all attenuated the C-component of WDR neurons in response to graded intracutaneous electrical stimuli (0.1-10 mA, 2 ms), and inhibited windup in response to repetitive noxious stimuli (0.5 Hz). However, the inhibitory effects did not differ significantly between different patterns. At the lower intensity (Ab0), no CS inhibited WDR neurons. Conclusions These findings suggest that combined stimulation of DC and DR may not be superior to DC stimulation alone for inhibition of WDR neurons. PMID:26307526

  15. Lateral geniculate body evoked potentials elicited by visual and electrical stimulation.

    PubMed

    Choi, Chang Wook; Kim, Pan Sang; Shin, Sun Ae; Yang, Ji Yeon; Yang, Yun Sik

    2014-08-01

    Blind individuals who have photoreceptor loss are known to perceive phosphenes with electrical stimulation of their remaining retinal ganglion cells. We proposed that implantable lateral geniculate body (LGB) stimulus electrode arrays could be used to generate phosphene vision. We attempted to refine the basic reference of the electrical evoked potentials (EEPs) elicited by microelectrical stimulations of the optic nerve, optic tract and LGB of a domestic pig, and then compared it to visual evoked potentials (VEPs) elicited by short-flash stimuli. For visual function measurement, VEPs in response to short-flash stimuli on the left eye of the domestic pig were assessed over the visual cortex at position Oz with the reference electrode at Fz. After anesthesia, linearly configured platinum wire electrodes were inserted into the optic nerve, optic track and LGB. To determine the optimal stimulus current, EEPs were recorded repeatedly with controlling the pulse and power. The threshold of current and charge density to elicit EEPs at 0.3 ms pulse duration was about ±10 µA. Our experimental results showed that visual cortex activity can be effectively evoked by stimulation of the optic nerve, optic tract and LGB using penetrating electrodes. The latency of P1 was more shortened as the electrical stimulation was closer to LGB. The EEPs of two-channel in the visual cortex demonstrated a similar pattern with stimulation of different spots of the stimulating electrodes. We found that the LGB-stimulated EEP pattern was very similar to the simultaneously generated VEP on the control side, although implicit time deferred. EEPs and VEPs derived from visual-system stimulation were compared. The LGB-stimulated EEP wave demonstrated a similar pattern to the VEP waveform except implicit time, indicating prosthetic-based electrical stimulation of the LGB could be utilized for the blind to perceive vision of phosphenes.

  16. Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges.

    PubMed

    Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison

    2015-10-01

    Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, noninvasive, direct current stimulation uses an active electrode in the ear canal, tympanic membrane, or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms.

  17. Tinnitus Treatment with Precise and Optimal Electric Stimulation: Opportunities and Challenges

    PubMed Central

    Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison

    2015-01-01

    Purpose of review Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent findings Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, non-invasive, direct-current stimulation uses an active electrode in the ear canal, tympanic membrane or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Summary Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms. PMID:26208122

  18. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices.

    PubMed

    Lopez-de la Fuente, M S; Moncada-Hernandez, H; Perez-Gonzalez, V H; Lapizco-Encinas, B H; Martinez-Chapa, S O

    2013-03-01

    Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.

  19. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Lopez-de la Fuente, M. S.; Moncada-Hernandez, H.; Perez-Gonzalez, V. H.; Lapizco-Encinas, B. H.; Martinez-Chapa, S. O.

    2013-03-01

    Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.

  20. Integrated Photonic Neural Probes for Patterned Brain Stimulation

    DTIC Science & Technology

    2017-08-14

    two -photon imaging Task 3.2: In vivo demonstration of remote optical stimulation using photonic probes and multi -site electrical recording...have patterned nine e-pixels. We can individually address each e-pixel by tuning the color of the input light to the AWG. Figure (8) shows two ...Report: Integrated Photonic Neural Probes for Patterned Brain Stimulation The views , opinions and/or findings contained in this report are those of the

  1. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces

    PubMed Central

    Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-01-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734

  2. MO-F-CAMPUS-I-01: EIT Imaging to Monitor Human Salivary Gland Functionality: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohli, K; Karvat, A; Liu, J

    Purpose: Clinically, there exists a need to develop a non-invasive technique for monitoring salivary activity. In this study, we investigate the feasibility of a using the electrical conductivity information from Electrical Impedance Tomography (EIT) to monitor salivary flow activity. Methods: To acquire EIT data, eight Ag/AgCl ECG electrodes were placed around the mandible of the subject. An EIT scan was obtained by injecting current at 50 KHz, 0.4 mA through each pair of electrodes and recording voltage across other electrode pairs. The functional conductivity image was obtained through reconstruction of the voltage data, using Electrical Impedance Tomography and Diffuse Opticalmore » Tomography Reconstruction Software (EIDORS) in Matlab. In using EIDORS, forward solution was obtained using a user-defined finite element model shape and inverse solution was obtained using one-step Gaussian solver. EIT scans of volunteer research team members were acquired for three different physiological states: pre-stimulation, stimulation and post-stimulation. For pre-stimulation phase, data were collected in intervals of 5 minutes for 15 minutes. The salivary glands were then stimulated in the subject using lemon and the data were collected immediately. Post-stimulation data were collected at 4 different timings after stimulation. Results: Variations were observed in the electrical conductivity patterns near parotid regions between the pre- and post-stimulation stages. The three images acquired during the 15 minute pre-stimulation phase showed no major changes in the conductivity. Immediately after stimulation, electrical conductivity increased near parotid regions and 15 minutes later slowly returned to pre-stimulation level. Conclusion: In the present study involving human subjects, the change in electrical conductivity pattern shown in the EIT images, acquired at different times with and without stimulation of salivary glands, appeared to be consistent with the change in salivary gland activity. The conductivity changes imaged through EIT are potentially useful for the purpose of salivary monitoring.« less

  3. Electrical stimulation of transplanted motoneurons improves motor unit formation

    PubMed Central

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  4. Mechanisms for pattern specificity of deep-brain stimulation in Parkinson’s disease

    PubMed Central

    Mato, Germán; Dellavale, Damián

    2017-01-01

    Deep brain stimulation (DBS) has become a widely used technique for treating advanced stages of neurological and psychiatric illness. In the case of motor disorders related to basal ganglia (BG) dysfunction, several mechanisms of action for the DBS therapy have been identified which might be involved simultaneously or in sequence. However, the identification of a common key mechanism underlying the clinical relevant DBS configurations has remained elusive due to the inherent complexity related to the interaction between the electrical stimulation and the neural tissue, and the intricate circuital structure of the BG-thalamocortical network. In this work, it is shown that the clinically relevant range for both, the frequency and intensity of the electrical stimulation pattern, is an emergent property of the BG anatomy at the system-level that can be addressed using mean-field descriptive models of the BG network. Moreover, it is shown that the activity resetting mechanism elicited by electrical stimulation provides a natural explanation to the ineffectiveness of irregular (i.e., aperiodic) stimulation patterns, which has been commonly observed in previously reported pathophysiology models of Parkinson’s disease. Using analytical and numerical techniques, these results have been reproduced in both cases: 1) a reduced mean-field model that can be thought as an elementary building block capable to capture the underlying fundamentals of the relevant loops constituting the BG-thalamocortical network, and 2) a detailed model constituted by the direct and hyperdirect loops including one-dimensional spatial structure of the BG nuclei. We found that the optimal ranges for the essential parameters of the stimulation patterns can be understood without taking into account biophysical details of the relevant structures. PMID:28813460

  5. Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy

    PubMed Central

    Savić, Andrej M.; Malešević, Nebojša M.; Popović, Mirjana B.

    2014-01-01

    We present a feasibility study of a novel hybrid brain-computer interface (BCI) system for advanced functional electrical therapy (FET) of grasp. FET procedure is improved with both automated stimulation pattern selection and stimulation triggering. The proposed hybrid BCI comprises the two BCI control signals: steady-state visual evoked potentials (SSVEP) and event-related desynchronization (ERD). The sequence of the two stages, SSVEP-BCI and ERD-BCI, runs in a closed-loop architecture. The first stage, SSVEP-BCI, acts as a selector of electrical stimulation pattern that corresponds to one of the three basic types of grasp: palmar, lateral, or precision. In the second stage, ERD-BCI operates as a brain switch which activates the stimulation pattern selected in the previous stage. The system was tested in 6 healthy subjects who were all able to control the device with accuracy in a range of 0.64–0.96. The results provided the reference data needed for the planned clinical study. This novel BCI may promote further restoration of the impaired motor function by closing the loop between the “will to move” and contingent temporally synchronized sensory feedback. PMID:24616644

  6. Short-Term Variations in Response Distribution to Cortical Stimulation

    ERIC Educational Resources Information Center

    Lesser, Ronald P.; Lee, Hyang Woon; Webber, W. R. S.; Prince, Barry; Crone, Nathan E.; Miglioretti, Diana L.

    2008-01-01

    Patterns of responses in the cerebral cortex can vary, and are influenced by pre-existing cortical function, but it is not known how rapidly these variations can occur in humans. We investigated how rapidly response patterns to electrical stimulation can vary in intact human brain. We also investigated whether the type of functional change…

  7. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study.

    PubMed

    Chipchase, Lucy S; Schabrun, Siobhan M; Hodges, Paul W

    2011-09-01

    To evaluate the effect of 6 electric stimulation paradigms on corticospinal excitability. Using a same subject pre-post test design, transcranial magnetic stimulation (TMS) was used to measure the responsiveness of corticomotor pathway to biceps and triceps brachii muscles before and after 30 minutes of electric stimulation over the biceps brachii. Six different electric stimulation paradigms were applied in random order, at least 3 days apart. Motor control research laboratory. Healthy subjects (N=10; 5 women, 5 men; mean age ± SD, 26 ± 3.6y). Six different electric stimulation paradigms with varied stimulus amplitude, frequency, and ramp settings. Amplitudes of TMS-induced motor evoked potentials at biceps and triceps brachii normalized to maximal M-wave amplitudes. Electric stimulation delivered at stimulus amplitude sufficient to evoke a sensory response at both 10 Hz and 100 Hz, and stimulus amplitude to create a noxious response at 10 Hz decreased corticomotor responsiveness (all P<0.01). Stimulation sufficient to induce a motor contraction (30 Hz) applied in a ramped pattern to mimic a voluntary activation increased corticomotor responsiveness (P=0.002), whereas constant low- and high-intensity motor stimulation at 10 Hz did not. Corticomotor excitability changes were similar for both the stimulated muscle and its antagonist. Stimulus amplitude (intensity) and the nature (muscle flicker vs contraction) of motor stimulation have a significant impact on changes in corticospinal excitability induced by electric stimulation. Here, we demonstrate that peripheral electric stimulation at stimulus amplitude to create a sensory response reduces corticomotor responsiveness. Conversely, stimulus amplitude to create a motor response increases corticomotor responsiveness, but only the parameters that create a motor response that mimics a voluntary muscle contraction. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Trigeminal activation using chemical, electrical, and mechanical stimuli.

    PubMed

    Iannilli, E; Del Gratta, C; Gerber, J C; Romani, G L; Hummel, T

    2008-10-15

    Tactile, proprioceptive, and nociceptive information, including also chemosensory functions are expressed in the trigeminal nerve sensory response. To study differences in the processing of different stimulus qualities, we performed a study based on functional magnetic resonance imaging. The first trigeminal branch (ophthalmic nerve) was activated by (a) intranasal chemical stimulation with gaseous CO2 which produces stinging and burning sensations, but is virtually odorless, (b) painful, but not nociceptive specific cutaneous electrical stimulation, and (c) cutaneous mechanical stimulation using air puffs. Eighteen healthy subjects participated (eight men, 10 women, mean age 31 years). Painful stimuli produced patterns of activation similar to what has been reported for other noxious stimuli, namely activation in the primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and thalamus. In addition, analyses indicated intensity-related activation in the prefrontal cortex which was specifically involved in the evaluation of stimulus intensity. Importantly, the results also indicated similarities between activation patterns after intranasal chemosensory trigeminal stimulation and patterns usually found following intranasal odorous stimulation, indicating the intimate connection between these two systems in the processing of sensory information.

  9. The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise.

    PubMed

    Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A

    2000-11-01

    Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.

  10. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice.

    PubMed

    Kolodziej, Angela; Lippert, Michael; Angenstein, Frank; Neubert, Jenni; Pethe, Annette; Grosser, Oliver S; Amthauer, Holger; Schroeder, Ulrich H; Reymann, Klaus G; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2014-12-01

    Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. A Suprachoroidal Electrical Retinal Stimulator Design for Long-Term Animal Experiments and In Vivo Assessment of Its Feasibility and Biocompatibility in Rabbits

    PubMed Central

    Zhou, J. A.; Woo, S. J.; Park, S. I.; Kim, E. T.; Seo, J. M.; Chung, H.; Kim, S. J.

    2008-01-01

    This article reports on a retinal stimulation system for long-term use in animal electrical stimulation experiments. The presented system consisted of an implantable stimulator which provided continuous electrical stimulation, and an external component which provided preset stimulation patterns and power to the implanted stimulator via a paired radio frequency (RF) coil. A rechargeable internal battery and a parameter memory component were introduced to the implanted retinal stimulator. As a result, the external component was not necessary during the stimulation mode. The inductive coil pair was used to pass the parameter data and to recharge the battery. A switch circuit was used to separate the stimulation mode from the battery recharging mode. The implantable stimulator was implemented with IC chips and the electronics, except for the stimulation electrodes, were hermetically packaged in a biocompatible metal case. A polyimide-based gold electrode array was used. Surgical implantation into rabbits was performed to verify the functionality and safety of this newly designed system. The electrodes were implanted in the suprachoroidal space. Evoked cortical potentials were recorded during electrical stimulation of the retina. Long-term follow-up using OCT showed no chorioretinal abnormality after implantation of the electrodes. PMID:18317521

  12. Differential effect of brief electrical stimulation on voltage-gated potassium channels

    PubMed Central

    Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.

    2017-01-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (NaV channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (KV channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different KV-channel subtypes. Computational modeling reveals substantial differences in the response of specific KV-channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different KV-channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that KV-channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (KV channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between KV channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or “fading,” may be attributed to KV-channel activation. PMID:28202576

  13. Unpredictable interference of new transcranial motor-evoked potential monitor against the implanted pacemaker.

    PubMed

    Hayashi, Kazuko

    2016-12-01

    Recently, NuVasive NV-M5 nerve monitoring system, a new transcranial motor-evoked potential (TcMEP) monitor, has been introduced with the spread of flank-approach spinal operations such as extreme lateral interbody fusion, to prevent nerve damage. Conventional TcMEP monitors use changes in MEP wave patterns, such as amplitude and/or latency, whereas the NV-M5 nerve monitor system first measures the MEP baseline waveform from the transcranial-evoked potential then measures the electric current necessary to obtain the standard of the previous baseline wave pattern at subsequent monitoring times. The NV-M5 monitor determines nerve damage according to the increase in necessary electric current threshold. The NV-M5 monitor also uses a local electrical stimulation mode to monitor the safety of setting screws into the lumbar vertebrae. In this way, various electrical stimulations with various durations and frequencies are used, and electrical noise may result in unpredictable interference with cardiac pacemakers. We performed anesthetic management of extreme lateral interbody fusion surgery using the NV-M5 in a patient with an implanted pacemaker, during which TcMEP stimulation caused interference with the implanted pacemaker. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Vomiting and gastric electrical dysrhythmia in dogs.

    PubMed

    Ueno, T; Chen, J D Z

    2004-04-01

    The correlation between gastric myoelectrical activity (GMA) and gastrointestinal symptoms such as nausea and vomiting is poorly understood. The aim of this study was to assess the association of GMA with vomiting induced by retrograde gastric electrical stimulation or duodenal balloon distention. Ten dogs were involved in this study. Vomiting was induced by retrograde gastric electrical stimulation in 6 dogs and by duodenal balloon distention in 4 dogs. Computerized spectral analysis and visual analysis were applied to detect the GMA change during various periods before and after vomiting. Gastric dysrhythmia preceded vomiting but was of brief duration. The major pattern of dysrhythmia immediately before vomiting was tachyarrhythmia and gastric slow wave was completely uncoupled before vomiting. Gastric dysrhythmia and slow wave uncoupling were also noticed immediately after vomiting but the dogs recovered quickly. The major pattern of dysrhythmia after vomiting was arrhythmia. GMA was normal during the periods other than 5 min before and during vomiting and 5 min after vomiting. Gastric dysrhythmia seems to be the cause of vomiting induced by retrograde gastric electrical stimulation or duodenal balloon distention. It is brief and characterized with tachyarrhythmia and uncoupling.

  15. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    PubMed

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  16. Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation

    PubMed Central

    Sim, S.L.; Szalewski, R.J.; Johnson, L.J.; Akah, L.E.; Shoemaker, L.E.; Thoreson, W.B.; Margalit, E.

    2015-01-01

    We compared response patterns and electrical receptive fields (ERF) of retinal ganglion cells (RGCs) during epiretinal and subretinal electrical stimulation of isolated mouse retina. Retinas were stimulated with an array of 3200 independently controllable electrodes. Four response patterns were observed: a burst of activity immediately after stimulation (Type I cells, Vision Research (2008), 48, 1562–1568), delayed bursts beginning >25 ms after stimulation (Type II), a combination of both (Type III), and inhibition of ongoing spike activity. Type I responses were produced more often by epiretinal than subretinal stimulation whereas delayed and inhibitory responses were evoked more frequently by subretinal stimulation. Response latencies were significantly shorter with epiretinal than subretinal stimulation. These data suggest that subretinal stimulation is more effective at activating intraretinal circuits than epiretinal stimulation. There was no significant difference in charge threshold between subretinal and epiretinal configurations. ERFs were defined by the stimulating array surface area that successfully stimulated spikes in an RGC. ERFs were complex in shape, similar to receptive fields mapped with light. ERF areas were significantly smaller with subretinal than epiretinal stimulation. This may reflect the greater distance between stimulating electrodes and RGCs in the subretinal configuration. ERFs for immediate and delayed responses mapped within the same Type III cells differed in shape and size, consistent with different sites and mechanisms for generating these two response types. PMID:24863584

  17. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  18. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Cyclic AMP Production in Chicken and Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    2000-01-01

    Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  19. Neuronal excitability level transition induced by electrical stimulation

    NASA Astrophysics Data System (ADS)

    Florence, G.; Kurths, J.; Machado, B. S.; Fonoff, E. T.; Cerdeira, H. A.; Teixeira, M. J.; Sameshima, K.

    2014-12-01

    In experimental studies, electrical stimulation (ES) has been applied to induce neuronal activity or to disrupt pathological patterns. Nevertheless, the underlying mechanisms of these activity pattern transitions are not clear. To study these phenomena, we simulated a model of the hippocampal region CA1. The computational simulations using different amplitude levels and duration of ES revealed three states of neuronal excitability: burst-firing mode, depolarization block and spreading depression wave. We used the bifurcation theory to analyse the interference of ES in the cellular excitability and the neuronal dynamics. Understanding this process would help to improve the ES techniques to control some neurological disorders.

  20. Pre-pyloric neural electrical stimulation produces cholinergically-mediated reverse peristalsis in the acute canine model of microprocessor-invoked gastric motility for the treatment of obesity.

    PubMed

    Neshev, Emil; Onen, Denis; Jalilian, Ehsan; Mintchev, Martin P

    2006-04-01

    Gastric Electrical Stimulation (GES) has been suggested as a new tool for the treatment of obesity. Among the known methods for GES, only Neural Gastric Electrical Stimulation (NGES) provides direct control of contractility without utilizing the spontaneously existing gastric electrical activity as an intermediary. However, only one of the established GES techniques, gastric pacing, has been described to produce retrograde peristalsis for delaying gastric emptying. The aim of this study was to explore the possibility of producing retrograde peristalsis using either single electrode set or dual electrode set NGES. 8 anesthetized dogs underwent laparotomy and implantation of 2 circumferential electrode sets approximately 3 cm and 7 cm proximal to the pylorus, respectively. Single-set and dual-set NGES sessions were repeatedly administered using a custom-designed implantable neurostimulator. Gastric motility patterns were captured using 3 force transducers implanted on the anterior gastric wall along the gastric axis. Motility indices and velocities were employed to quantify the produced contractile patterns. Both single-set and dual-set NGES produced circumferential lumen-occluding contractions in the vicinity of the electrode sets. The invoked contractions propagated proximally in a retrograde fashion. The propagation scope was different depending on the number of electrode sets used. Different velocities of the invoked retrograde contractions associated with single- and dual-set NGES were observed and quantified. Contractility patterns reflected by the normalized motility indices were very similar regardless of the electrode stimulation technique. Pre-pyloric NGES can produce controlled retrograde peristalsis and serve as another avenue for the treatment of obesity.

  1. Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability

    PubMed Central

    Dileone, Michele; Campolo, Michela; Carrasco-Lopez, Carmen; Moitinho-Ferreira, Fabricia; Gallego-Izquierdo, Tomas; Siebner, Hartwig R.; Valls-Solé, Josep; Aguilar, Juan

    2018-01-01

    Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS) of the median nerve has been shown to change spinal motoneuron excitability in the cervical spinal cord as indexed by a change in mean H-reflex amplitude in the flexor carpi radialis muscle. It is unknown whether continuous TBS of a peripheral nerve can also shift motoneuron excitability in the lower limb. In 26 healthy subjects, we examined the effects of electrical TBS given to the tibial nerve in the popliteal fossa on the excitability of lumbar spinal motoneurons as measured by H-reflex amplitude of the soleus muscle evoked by tibial nerve stimulation. Continuous TBS was given at 110% of H-reflex threshold intensity and compared to non-patterned regular electrical stimulation at 15 Hz. To disclose any pain-induced effects, we also tested the effects of TBS at individual sensory threshold. Moreover, in a subgroup of subjects we evaluated paired-pulse inhibition of H-reflex. Continuous TBS at 110% of H-reflex threshold intensity induced a short-term reduction of H-reflex amplitude. The other stimulation conditions produced no after effects. Paired-pulse H-reflex inhibition was not modulated by continuous TBS or non-patterned repetitive stimulation at 15 Hz. An effect of pain on the results obtained was discarded, since non-patterned 15 Hz stimulation at 110% HT led to pain scores similar to those induced by EcTBS at 110% HT, but was not able to induce any modulation of the H reflex amplitude. Together, the results provide first time evidence that peripheral continuous TBS induces a short-lasting change in the excitability of spinal motoneurons in lower limb circuitries. Future studies need to investigate how the TBS protocol can be optimized to produce a larger and longer effect on spinal cord physiology and whether this might be a useful intervention in patients with excessive excitability of the spinal motorneurons. PMID:29451889

  2. Differential effect of brief electrical stimulation on voltage-gated potassium channels.

    PubMed

    Cameron, Morven A; Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H; Morley, John W

    2017-05-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (Na V channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (K V channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different K V -channel subtypes. Computational modeling reveals substantial differences in the response of specific K V -channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different K V -channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that K V -channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (K V channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between K V channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or "fading," may be attributed to K V -channel activation. Copyright © 2017 the American Physiological Society.

  3. From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures

    PubMed Central

    Weiss, Tali; Shushan, Sagit; Ravia, Aharon; Hahamy, Avital; Secundo, Lavi; Weissbrod, Aharon; Ben-Yakov, Aya; Holtzman, Yael; Cohen-Atsmoni, Smadar; Roth, Yehudah; Sobel, Noam

    2016-01-01

    Rules linking patterns of olfactory receptor neuron activation in the nose to activity patterns in the brain and ensuing odor perception remain poorly understood. Artificially stimulating olfactory neurons with electrical currents and measuring ensuing perception may uncover these rules. We therefore inserted an electrode into the nose of 50 human volunteers and applied various currents for about an hour in each case. This induced assorted non-olfactory sensations but never once the perception of odor. To validate contact with the olfactory path, we used functional magnetic resonance imaging to measure resting-state brain activity in 18 subjects before and after un-sensed stimulation. We observed stimulation-induced neural decorrelation specifically in primary olfactory cortex, implying contact with the olfactory path. These results suggest that indiscriminate olfactory activation does not equate with odor perception. Moreover, this effort serendipitously uncovered a novel path for minimally invasive brain stimulation through the nose. PMID:27591145

  4. Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of the stomach in rabbits under conditions of hunger and satiation.

    PubMed

    Zenina, O Yu; Kromin, A A

    2012-10-01

    Stimulation of the lateral hypothalamus in preliminary fed animals in the presence of the food is associated with successful food-procuring behavior, accompanied by regular generation of high-amplitude slow electrical waves by muscles of the lesser curvature, body, and antrum of the stomach, which was reflected in the structure of temporal organization of slow electrical activity in the form of unimodal distribution of slow wave periods typical of satiation state. Despite increased level of food motivation caused by stimulation of the lateral hypothalamus, the additional food intake completely abolished the inhibitory effects of hunger motivation excitement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach of satiated rabbits. Changes in slow electrical activity of the stomach muscles in rabbits deprived of food over 24 h and offered food and associated food-procuring behavior during electrical stimulation of the lateral hypothalamus have a two-phase pattern. Despite food intake during phase I of electrical stimulation, the downstream inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature of stomach abolishes the stimulating effect of food reinforcement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach. During phase II of electrical stimulation, the food reinforcement decreases inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature that paces maximal rhythm of slow electrical waves for muscles activity in the lesser curvature, body, and antrum of the stomach, which is reflected by unimodal distribution of slow electrical wave periods. Our results indicated that the structure of temporal organization of slow electrical activity of the stomach muscles reflects convergent interactions of food motivation and reinforcement excitations on the dorsal vagal complex neurons in medulla oblongata.

  5. Electrical engram: how deep brain stimulation affects memory.

    PubMed

    Lee, Hweeling; Fell, Jürgen; Axmacher, Nikolai

    2013-11-01

    Deep brain stimulation (DBS) is a surgical procedure involving implantation of a pacemaker that sends electric impulses to specific brain regions. DBS has been applied in patients with Parkinson's disease, depression, and obsessive-compulsive disorder (among others), and more recently in patients with Alzheimer's disease to improve memory functions. Current DBS approaches are based on the concept that high-frequency stimulation inhibits or excites specific brain regions. However, because DBS entails the application of repetitive electrical stimuli, it primarily exerts an effect on extracellular field-potential oscillations similar to those recorded with electroencephalography. Here, we suggest a new perspective on how DBS may ameliorate memory dysfunction: it may enhance normal electrophysiological patterns underlying long-term memory processes within the medial temporal lobe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Electromyographic control of functional electrical stimulation in selected patients.

    PubMed

    Graupe, D; Kohn, K H; Basseas, S; Naccarato, E

    1984-07-01

    The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.

  7. A functional magnetic resonance imaging study of human brain in pain-related areas induced by electrical stimulation with different intensities.

    PubMed

    Yuan, Wang; Ming, Zhang; Rana, Netra; Hai, Liu; Chen-wang, Jin; Shao-hui, Ma

    2010-01-01

    Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI) is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII), insula, anterior cingulate cortex (ACC), thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.

  8. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration

    NASA Astrophysics Data System (ADS)

    Habib, Amgad G.; Cameron, Morven A.; Suaning, Gregg J.; Lovell, Nigel H.; Morley, John W.

    2013-06-01

    Objective. Visual prostheses currently in development aim to restore some form of vision to patients suffering from diseases such as age-related macular degeneration and retinitis pigmentosa. Most rely on electrically stimulating inner retinal cells via electrodes implanted on or near the retina, resulting in percepts of light termed ‘phosphenes’. Activation of spatially distinct populations of cells in the retina is key for pattern vision to be produced. To achieve this, the electrical stimulation must be localized, activating cells only in the direct vicinity of the stimulating electrode(s). With this goal in mind, a hexagonal return (hexapolar) configuration has been proposed as an alternative to the traditional monopolar or bipolar return configurations for electrically stimulating the retina. This study investigated the efficacy of the hexapolar configuration in localizing the activation of retinal ganglion cells (RGCs), compared to a monopolar configuration. Approach. Patch-clamp electrophysiology was used to measure the activation thresholds of RGCs in whole-mount rabbit retina to monopolar and hexapolar electrical stimulation, applied subretinally. Main results. Hexapolar activation thresholds for RGCs located outside the hex guard were found to be significantly (>2 fold) higher than those located inside the area of tissue bounded by the hex guard. The hexapolar configuration localized the activation of RGCs more effectively than its monopolar counterpart. Furthermore, no difference in hexapolar thresholds or localization was observed when using cathodic-first versus anodic-first stimulation. Significance. The hexapolar configuration may provide an improved method for electrically stimulating spatially distinct populations of cells in retinal tissue.

  9. Effect of normal-walking-pattern-based functional electrical stimulation on gait of the lower extremity in subjects with ischemic stroke: A self controlled study.

    PubMed

    Xu, Benlei; Yan, Tiebin; Yang, Yuanle; Ou, Ruiqing; Huang, Shuping

    2016-01-01

    Functional electrical stimulation is a widely used technique for rehabilitation. To assess the efficacy of walking-pattern-based four-channel functional electric stimulation and its influence on the gait features of stroke patients with hemiplegia. A total of 21 stroke patients with hemiplegia were enrolled into the study. The walking gaits of patients were investigated before, during and after walking-pattern-based FES treatment using the gait analysis system. The changes of gait indexes were comparatively analyzed. After walking-pattern-based FES therapy, the pace, stride rate, gait cycle, and step length of stroke patients with hemiplegia were 50.19 ± 14.45 cm/s, 36.85 ± 5.85 time/min, 1.6643 ± 0.2626 sec, 80.3333 ± 15.1438 cm, respectively. The motion range of hip and knee joint were 47.5238 ± 10.7453, 56.7619 ± 14.5255, respectively. We found these indexes were significantly improved compared with those before FES treatment (P <  0.05). The single swing rate (injured extremity/uninjured extremity) after FES treatment was 1.5589 ± 0.4550. The statistical results showed that the gait cycle, pace, stride rat, and single swing rate (injured extremity/uninjured extremity) were significantly improved after FES treatment (P <  0.05). Our results demonstrate that walking-paradigm based FES we developed is effective for treating stroke patients during rehabilitation.

  10. A Nonlinear Model for Hippocampal Cognitive Prosthesis: Memory Facilitation by Hippocampal Ensemble Stimulation

    PubMed Central

    Hampson, Robert E.; Song, Dong; Chan, Rosa H.M.; Sweatt, Andrew J.; Riley, Mitchell R.; Gerhardt, Gregory A.; Shin, Dae C.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Samuel A.

    2012-01-01

    Collaborative investigations have characterized how multineuron hippocampal ensembles encode memory necessary for subsequent successful performance by rodents in a delayed nonmatch to sample (DNMS) task and utilized that information to provide the basis for a memory prosthesis to enhance performance. By employing a unique nonlinear dynamic multi-input/multi-output (MIMO) model, developed and adapted to hippocampal neural ensemble firing patterns derived from simultaneous recorded CA1 and CA3 activity, it was possible to extract information encoded in the sample phase necessary for successful performance in the nonmatch phase of the task. The extension of this MIMO model to online delivery of electrical stimulation delivered to the same recording loci that mimicked successful CA1 firing patterns, provided the means to increase levels of performance on a trial-by-trial basis. Inclusion of several control procedures provides evidence for the specificity of effective MIMO model generated patterns of electrical stimulation. Increased utility of the MIMO model as a prosthesis device was exhibited by the demonstration of cumulative increases in DNMS task performance with repeated MIMO stimulation over many sessions on both stimulation and nonstimulation trials, suggesting overall system modification with continued exposure. Results reported here are compatible with and extend prior demonstrations and further support the candidacy of the MIMO model as an effective cortical prosthesis. PMID:22438334

  11. Orientation selective deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom

    2017-02-01

    Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.

  12. Differences in Salivary Alpha-Amylase and Cortisol Responsiveness following Exposure to Electrical Stimulation versus the Trier Social Stress Tests

    PubMed Central

    Maruyama, Yoshihiro; Kawano, Aimi; Okamoto, Shizuko; Ando, Tomoko; Ishitobi, Yoshinobu; Tanaka, Yoshihiro; Inoue, Ayako; Imanaga, Junko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Akiyoshi, Jotaro

    2012-01-01

    Background Cortisol is an essential hormone in the regulation of the stress response along the HPA axis, and salivary cortisol has been used as a measure of free circulating cortisol levels. Recently, salivary alpha-amylase (sAA) has also emerged as a novel biomarker for psychosocial stress responsiveness within the sympathetic adrenomedullary (SAM) system. Principal Findings We measured sAA and salivary cortisol in healthy volunteers after exposure to the Trier Social Stress Test (TSST) and electric stimulation stress. One hundred forty-nine healthy volunteers participated in this study. All subjects were exposed to both the TSST and electric stimulation stress on separate days. We measured sAA and salivary cortisol levels three times immediately before, immediately after, and 20 min after the stress challenge. The State (STAI-S) and Trait (STAI-T) versions of the Spielberger Anxiety Inventory test and the Profile of Mood State (POMS) tests were administered to participants before the electrical stimulation and TSST protocols. We also measured HF, LF and LF/HF Heart Rate Variability ratio immediately after electrical stimulation and TSST exposure. Following TSST exposure or electrical stimulation, sAA levels displayed a rapid increase and recovery, returning to baseline levels 20 min after the stress challenge. Salivary cortisol responses showed a delayed increase, which remained significantly elevated from baseline levels 20 min after the stress challenge. Analyses revealed no differences between men and women with regard to their sAA response to the challenges (TSST or electric stimulations), while we found significantly higher salivary cortisol responses to the TSST in females. We also found that younger subjects tended to display higher sAA activity. Salivary cortisol levels were significantly correlated with the strength of the applied electrical stimulation. Conclusions These preliminary results suggest that the HPA axis (but not the SAM system) may show differential response patterns to distinct kinds of stressors. PMID:22859941

  13. StimDuino: an Arduino-based electrophysiological stimulus isolator.

    PubMed

    Sheinin, Anton; Lavi, Ayal; Michaelevski, Izhak

    2015-03-30

    Electrical stimulus isolator is a widely used device in electrophysiology. The timing of the stimulus application is usually automated and controlled by the external device or acquisition software; however, the intensity of the stimulus is adjusted manually. Inaccuracy, lack of reproducibility and no automation of the experimental protocol are disadvantages of the manual adjustment. To overcome these shortcomings, we developed StimDuino, an inexpensive Arduino-controlled stimulus isolator allowing highly accurate, reproducible automated setting of the stimulation current. The intensity of the stimulation current delivered by StimDuino is controlled by Arduino, an open-source microcontroller development platform. The automatic stimulation patterns are software-controlled and the parameters are set from Matlab-coded simple, intuitive and user-friendly graphical user interface. The software also allows remote control of the device over the network. Electrical current measurements showed that StimDuino produces the requested current output with high accuracy. In both hippocampal slice and in vivo recordings, the fEPSP measurements obtained with StimDuino and the commercial stimulus isolators showed high correlation. Commercial stimulus isolators are manually managed, while StimDuino generates automatic stimulation patterns with increasing current intensity. The pattern is utilized for the input-output relationship analysis, necessary for assessment of excitability. In contrast to StimuDuino, not all commercial devices are capable for remote control of the parameters and stimulation process. StimDuino-generated automation of the input-output relationship assessment eliminates need for the current intensity manually adjusting, improves stimulation reproducibility, accuracy and allows on-site and remote control of the stimulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Vestibular stimulation leads to distinct hemodynamic patterning

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Emanuel, B. A.; Yates, B. J.

    2000-01-01

    Previous studies demonstrated that responses of a particular sympathetic nerve to vestibular stimulation depend on the type of tissue the nerve innervates as well as its anatomic location. In the present study, we sought to determine whether such precise patterning of vestibulosympathetic reflexes could lead to specific hemodynamic alterations in response to vestibular afferent activation. We simultaneously measured changes in systemic blood pressure and blood flow (with the use of Doppler flowmetry) to the hindlimb (femoral artery), forelimb (brachial artery), and kidney (renal artery) in chloralose-urethane-anesthetized, baroreceptor-denervated cats. Electrical vestibular stimulation led to depressor responses, 8 +/- 2 mmHg (mean +/- SE) in magnitude, that were accompanied by decreases in femoral vasoconstriction (23 +/- 4% decrease in vascular resistance or 36 +/- 7% increase in vascular conductance) and increases in brachial vascular tone (resistance increase of 10 +/- 6% and conductance decrease of 11 +/- 4%). Relatively small changes (<5%) in renal vascular tone were observed. In contrast, electrical stimulation of muscle and cutaneous afferents produced pressor responses (20 +/- 6 mmHg) that were accompanied by vasoconstriction in all three beds. These data suggest that vestibular inputs lead to a complex pattern of cardiovascular changes that is distinct from that which occurs in response to activation of other types of somatic afferents.

  15. Neuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric field.

    PubMed

    Ye, Hui; Steiger, Amanda

    2015-08-12

    In laboratory research and clinical practice, externally-applied electric fields have been widely used to control neuronal activity. It is generally accepted that neuronal excitability is controlled by electric current that depolarizes or hyperpolarizes the excitable cell membrane. What determines the amount of polarization? Research on the mechanisms of electric stimulation focus on the optimal control of the field properties (frequency, amplitude, and direction of the electric currents) to improve stimulation outcomes. Emerging evidence from modeling and experimental studies support the existence of interactions between the targeted neurons and the externally-applied electric fields. With cell-field interaction, we suggest a two-way process. When a neuron is positioned inside an electric field, the electric field will induce a change in the resting membrane potential by superimposing an electrically-induced transmembrane potential (ITP). At the same time, the electric field can be perturbed and re-distributed by the cell. This cell-field interaction may play a significant role in the overall effects of stimulation. The redistributed field can cause secondary effects to neighboring cells by altering their geometrical pattern and amount of membrane polarization. Neurons excited by the externally-applied electric field can also affect neighboring cells by ephaptic interaction. Both aspects of the cell-field interaction depend on the biophysical properties of the neuronal tissue, including geometric (i.e., size, shape, orientation to the field) and electric (i.e., conductivity and dielectricity) attributes of the cells. The biophysical basis of the cell-field interaction can be explained by the electromagnetism theory. Further experimental and simulation studies on electric stimulation of neuronal tissue should consider the prospect of a cell-field interaction, and a better understanding of tissue inhomogeneity and anisotropy is needed to fully appreciate the neural basis of cell-field interaction as well as the biological effects of electric stimulation.

  16. REPETETIVE HINDLIMB MOVEMENT USING INTERMITTENT ADAPTIVE NEUROMUSCULAR ELECTRICAL STIMULATION IN AN INCOMPLETE SPINAL CORD INJURY RODENT MODEL

    PubMed Central

    Fairchild, Mallika; Kim, Seung-Jae; Iarkov, Alex; Abbas, James J.; Jung, Ranu

    2010-01-01

    The long-term objective of this work is to understand the mechanisms by which electrical stimulation based movement therapies may harness neural plasticity to accelerate and enhance sensorimotor recovery after incomplete spinal cord injury (iSCI). An adaptive neuromuscular electrical stimulation (aNMES) paradigm was implemented in adult Long Evans rats with thoracic contusion injury (T8 vertebral level, 155±2 Kdyne). In lengthy sessions with lightly anesthetized animals, hip flexor and extensor muscles were stimulated using an aNMES control system in order to generate desired hip movements. The aNMES control system, which used a pattern generator/pattern shaper structure, adjusted pulse amplitude to modulate muscle force in order to control hip movement. An intermittent stimulation paradigm was used (5-cycles/set; 20-second rest between sets; 100 sets). In each cycle, hip rotation caused the foot plantar surface to contact a stationary brush for appropriately timed cutaneous input. Sessions were repeated over several days while the animals recovered from injury. Results indicated that aNMES automatically and reliably tracked the desired hip trajectory with low error and maintained range of motion with only gradual increase in stimulation during the long sessions. Intermittent aNMES thus accounted for the numerous factors that can influence the response to NMES: electrode stability, excitability of spinal neural circuitry, non-linear muscle recruitment, fatigue, spinal reflexes due to cutaneous input, and the endogenous recovery of the animals. This novel aNMES application in the iSCI rodent model can thus be used in chronic stimulation studies to investigate the mechanisms of neuroplasticity targeted by NMES-based repetitive movement therapy. PMID:20206164

  17. Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor

    PubMed Central

    Dideriksen, Jakob L.; Laine, Christopher M.; Dosen, Strahinja; Muceli, Silvia; Rocon, Eduardo; Pons, José L.; Benito-Leon, Julian; Farina, Dario

    2017-01-01

    Pathological tremors are involuntary oscillatory movements which cannot be fully attenuated using conventional treatments. For this reason, several studies have investigated the use of neuromuscular electrical stimulation for tremor suppression. In a recent study, however, we found that electrical stimulation below the motor threshold also suppressed tremor, indicating involvement of afferent pathways. In this study, we further explored this possibility by systematically investigating how tremor suppression by afferent stimulation depends on the stimulation settings. In this way, we aimed at identifying the optimal stimulation strategy, as well as to elucidate the underlying physiological mechanisms of tremor suppression. Stimulation strategies varying the stimulation intensity and pulse timing were tested in nine tremor patients using either intramuscular or surface stimulation. Significant tremor suppression was observed in six patients (tremor suppression > 75% was observed in three patients) and the average optimal suppression level observed across all subjects was 52%. The efficiency for each stimulation setting, however, varied substantially across patients and it was not possible to identify a single set of stimulation parameters that yielded positive results in all patients. For example, tremor suppression was achieved both with stimulation delivered in an out-of-phase pattern with respect to the tremor, and with random timing of the stimulation. Overall, these results indicate that low-current stimulation of afferent fibers is a promising approach for tremor suppression, but that further research is required to identify how the effect can be maximized in the individual patient. PMID:28420958

  18. Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons

    PubMed Central

    Apollo, Nicholas V.; Garrett, David J.

    2018-01-01

    Implantable retinal stimulators activate surviving neurons to restore a sense of vision in people who have lost their photoreceptors through degenerative diseases. Complex spatial and temporal interactions occur in the retina during multi-electrode stimulation. Due to these complexities, most existing implants activate only a few electrodes at a time, limiting the repertoire of available stimulation patterns. Measuring the spatiotemporal interactions between electrodes and retinal cells, and incorporating them into a model may lead to improved stimulation algorithms that exploit the interactions. Here, we present a computational model that accurately predicts both the spatial and temporal nonlinear interactions of multi-electrode stimulation of rat retinal ganglion cells (RGCs). The model was verified using in vitro recordings of ON, OFF, and ON-OFF RGCs in response to subretinal multi-electrode stimulation with biphasic pulses at three stimulation frequencies (10, 20, 30 Hz). The model gives an estimate of each cell’s spatiotemporal electrical receptive fields (ERFs); i.e., the pattern of stimulation leading to excitation or suppression in the neuron. All cells had excitatory ERFs and many also had suppressive sub-regions of their ERFs. We show that the nonlinearities in observed responses arise largely from activation of presynaptic interneurons. When synaptic transmission was blocked, the number of sub-regions of the ERF was reduced, usually to a single excitatory ERF. This suggests that direct cell activation can be modeled accurately by a one-dimensional model with linear interactions between electrodes, whereas indirect stimulation due to summated presynaptic responses is nonlinear. PMID:29432411

  19. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Coupling Efficiency in Chicken and Rat Skeleton Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    1999-01-01

    Expression of the beta-adrenergic receptor (bAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the bAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the bAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. Thus, in chicken muscle cells an enhanced level of contraction reduced the coupling efficiency of bAR for cyclic AMP production by approximately 55% compared to controls. In contrast, the bAR population in rat muscle cells was increased by approximately 25% by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was also increased by almost two-fold. Thus, in rat muscle cells an enhanced level of contraction increased the coupling efficiency of bAR for cyclic AMP production by approximately 50% compared to controls. The basal levels of intracellular cyclic AMP in both rat muscle cells and chicken muscle cells were not affected by electrical stimulation.

  20. Electrostimulation of rat callus cells and human lymphocytes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aro, H.; Eerola, E.; Aho, A.J.

    1984-01-01

    Asymmetrical pulsing low voltage current was supplied via electrodes to cultured rat fracture callus cells and human peripheral blood lymphocytes. The (/sup 3/H)thymidine incorporation of the callus cells and 5-(/sup 125/I)iodo-2'-deoxyuridine incorporation of the lymphocytes were determined. The growth pattern of callus cells (estimated by cellular density) did not respond to electrical stimulation. However, the uptake of (/sup 3/H)thymidine was increased at the early phase of cell proliferation and inhibited at later phases of proliferation. The (/sup 3/H)thymidine uptake of confluent callus cell cultures did not respond to electrical stimulation. Lymphocytes reacted in a similar way; stimulated cells took upmore » more DNA precursor than control cells at the early phase of stimulation. During cell division, induced by the mitogens phytohemagglutinin and Concanavalin-A, the uptake of DNA precursor by stimulated cells was constantly inhibited. The results suggest that electrical stimuli affect the uptake mechanisms of cell membranes. The duality of the effect seems to be dependent on the cell cycle.« less

  1. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    PubMed

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  2. Exploration of Hand Grasp Patterns Elicitable Through Non-Invasive Proximal Nerve Stimulation.

    PubMed

    Shin, Henry; Watkins, Zach; Hu, Xiaogang

    2017-11-29

    Various neurological conditions, such as stroke or spinal cord injury, result in an impaired control of the hand. One method of restoring this impairment is through functional electrical stimulation (FES). However, traditional FES techniques often lead to quick fatigue and unnatural ballistic movements. In this study, we sought to explore the capabilities of a non-invasive proximal nerve stimulation technique in eliciting various hand grasp patterns. The ulnar and median nerves proximal to the elbow joint were activated transcutanously using a programmable stimulator, and the resultant finger flexion joint angles were recorded using a motion capture system. The individual finger motions averaged across the three joints were analyzed using a cluster analysis, in order to classify the different hand grasp patterns. With low current intensity (<5 mA and 100 µs pulse width) stimulation, our results show that all of our subjects demonstrated a variety of consistent hand grasp patterns including single finger movement and coordinated multi-finger movements. This study provides initial evidence on the feasibility of a proximal nerve stimulation technique in controlling a variety of finger movements and grasp patterns. Our approach could also be developed into a rehabilitative/assistive tool that can result in flexible movements of the fingers.

  3. Intramuscular Electrical Stimulation for Muscle Activation of the Tibialis Anterior After Surgical Repair: A Case Report.

    PubMed

    Hollis, Sharon; McClure, Philip

    2017-12-01

    Background Loss of voluntary activation of musculature can result in muscle weakness. External neuromuscular stimulation can be utilized to improve voluntary activation but is often poorly tolerated because of pain associated with required stimulus level. Intramuscular electrical stimulation requires much lower voltage and may be better tolerated, and therefore more effective at restoring voluntary muscle activation. Case Description A 71-year-old man sustained a rupture of the distal attachment of the tibialis anterior tendon. Thirty-two weeks after surgical repair, there was no palpable or visible tension development in the muscle belly or tendon. Dorsiflexion was dependent on toe extensors. Electrical stimulation applied via a dry needling placement in the muscle belly was utilized to induce an isometric contraction. Outcomes Five sessions of intramuscular electrical stimulation were delivered. By day 4 (second visit), the patient was able to dorsiflex without prominent use of the extensor hallucis longus. By day 6 (third visit), active-range-of-motion dorsiflexion with toes flexed increased 20° (-10° to 10°). Eighteen days after the initial treatment, the patient walked without his previous high-step gait pattern, and the tibialis anterior muscle test improved to withstanding moderate resistance (manual muscle test score, 4/5). Discussion The rapid change in muscle function observed suggests that intramuscular electrical stimulation may facilitate voluntary muscle activation. Level of Evidence Therapy, level 5. J Orthop Sports Phys Ther 2017;47(12):965-969. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7368.

  4. Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation.

    PubMed

    Arabi, K; Sawan, M A

    1999-06-01

    An advanced stimulator for neuromuscular stimulation of spinal cord injured patients has been developed. The stimulator is externally controlled and powered by a single encoded radio frequency carrier and has four independently controlled bipolar stimulation channels. It offers a wide range of reprogrammability and flexibility, and can be used in many neuromuscular electrical stimulation applications. The implant system is adaptable to patient's needs and to future developments in stimulation algorithms by reprogramming the stimulator. The stimulator is capable of generating a wide range of stimulation waveforms and stimulation patterns and therefore is very suitable for selective nerve stimulation techniques. The reliability of the implant has been increased by using a forward error detection and correction communication protocol and by designing the chip for structural testability based on scan test approach. Implemented testability scheme makes it possible to verify the complete functionality of the implant before and after implantation. The stimulators architecture is designed to be modular and therefore its different blocks can be reused as standard building blocks in the design and implementation of other neuromuscular prostheses. Design for low-power techniques have also been employed to reduce power consumption of the electronic circuitry.

  5. Towards an ankle neuroprosthesis for hybrid robotics: Concepts and current sources for functional electrical stimulation.

    PubMed

    Casco, S; Fuster, I; Galeano, R; Moreno, J C; Pons, J L; Brunetti, F

    2017-07-01

    Hybrid rehabilitation robotics combine neuro-prosthetic devices (close-loop functional electrical stimulation systems) and traditional robotic structures and actuators to explore better therapies and promote a more efficient motor function recovery or compensation. Although hybrid robotics and ankle neuroprostheses (NPs) have been widely developed over the last years, there are just few studies on the use of NPs to electrically control both ankle flexion and extension to promote ankle recovery and improved gait patterns in paretic limbs. The aim of this work is to develop an ankle NP specifically designed to work in the field of hybrid robotics. This article presents early steps towards this goal and makes a brief review about motor NPs and Functional Electrical Stimulation (FES) principles and most common devices used to aid the ankle functioning during the gait cycle. It also shows a current sources analysis done in this framework, in order to choose the best one for this intended application.

  6. Referred pain and cutaneous responses from deep tissue electrical pain stimulation in the groin.

    PubMed

    Aasvang, E K; Werner, M U; Kehlet, H

    2015-08-01

    Persistent postherniotomy pain is located around the scar and external inguinal ring and is often described as deep rather than cutaneous, with frequent complaints of pain in adjacent areas. Whether this pain is due to local pathology or referred/projected pain is unknown, hindering mechanism-based treatment. Deep tissue electrical pain stimulation by needle electrodes in the right groin (rectus muscle, ilioinguinal/iliohypogastric nerve and perispermatic cord) was combined with assessment of referred/projected pain and the cutaneous heat pain threshold (HPT) at three prespecified areas (both groins and the lower right arm) in 19 healthy subjects. The assessment was repeated 10 days later to assess the reproducibility of individual responses. Deep electrical stimulation elicited pain at the stimulation site in all subjects, and in 15 subjects, pain from areas outside the stimulation area was reported, with 90-100% having the same response on both days, depending on the location. Deep pain stimulation significantly increased the cutaneous HPT (P<0.014). Individual HPT responses before and during deep electrical pain stimulation were significantly correlated (ρ>0.474, P≤0.040) at the two test days for the majority of test areas. Our results corroborate a systematic relationship between deep pain and changes in cutaneous nociception. The individual referred/projected pain patterns and cutaneous responses are variable, but reproducible, supporting individual differences in anatomy and sensory processing. Future studies investigating the responses to deep tissue electrical stimulation in persistent postherniotomy pain patients may advance our understanding of underlying pathophysiological mechanisms and strategies for treatment and prevention. ClinicalTrials.gov (NCT01701427). © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    PubMed

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  8. Audio aided electro-tactile perception training for finger posture biofeedback.

    PubMed

    Vargas, Jose Gonzalez; Yu, Wenwei

    2008-01-01

    Visual information is one of the prerequisites for most biofeedback studies. The aim of this study is to explore how the usage of an audio aided training helps in the learning process of dynamical electro-tactile perception without any visual feedback. In this research, the electrical simulation patterns associated with the experimenter's finger postures and motions were presented to the subjects. Along with the electrical stimulation patterns 2 different types of information, verbal and audio information on finger postures and motions, were presented to the verbal training subject group (group 1) and audio training subject group (group 2), respectively. The results showed an improvement in the ability to distinguish and memorize electrical stimulation patterns correspondent to finger postures and motions without visual feedback, and with audio tones aid, the learning was faster and the perception became more precise after training. Thus, this study clarified that, as a substitution to visual presentation, auditory information could help effectively in the formation of electro-tactile perception. Further research effort needed to make clear the difference between the visual guided and audio aided training in terms of information compilation, post-training effect and robustness of the perception.

  9. Utilising reinforcement learning to develop strategies for driving auditory neural implants.

    PubMed

    Lee, Geoffrey W; Zambetta, Fabio; Li, Xiaodong; Paolini, Antonio G

    2016-08-01

    In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model's function. We show the ability to effectively learn stimulation patterns which mimic the cochlea's ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.

  10. Optimization of return electrodes in neurostimulating arrays

    NASA Astrophysics Data System (ADS)

    Flores, Thomas; Goetz, Georges; Lei, Xin; Palanker, Daniel

    2016-06-01

    Objective. High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence. Approach. To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation. Main results. Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation. Significance. Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.

  11. Effect of electrical stimulation therapy on upper extremity functional recovery and cerebral cortical changes in patients with chronic hemiplegia.

    PubMed

    Sasaki, Kana; Matsunaga, Toshiki; Tomite, Takenori; Yoshikawa, Takayuki; Shimada, Yoichi

    2012-04-01

    Hemiplegia is a common sequel of stroke and assisted living care is needed in many cases. The purpose of this study was to evaluate the effect of using surface electrode stimulation device in rehabilitation, in terms of functional improvement in upper limb and the changes in brain activation related to central nervous system reconstruction. Five patients with chronic hemiplegia received electrical stimulation therapy using the orthosis-type surface electrode stimulation device for 12 weeks. Training time was 30 min/day for the first weeks, and increased 30 min/day in every 4 weeks. Upper limb outcome measures included Brunnstrom stage, range of motion, Fugl-Meyer assessment and manual function test. Brain activation was measured using functional MRI. After therapy with therapeutic electrical stimulation (TES) for 12 weeks upper limb function improved in all cases. The results of brain activation showed two patterns. In the first, the stimulation produced an activity in the bilateral somatosensory cortices (SMC), which was seen to continue over time. The second, activation was bilateral and extensive before stimulation, but localized to the SMC after intervention. Treatment with TES using an orthosis-type electrode stimulation device improves upper limb function in chronic hemiplegia patients. The present findings suggest that there are not only efferent but also afferent effects that may promote central nervous system remodeling.

  12. Hybrid assistive systems for rehabilitation: lessons learned from functional electrical therapy in hemiplegics.

    PubMed

    Popović, Dejan B; Popović, Mirjana B

    2006-01-01

    This paper suggests that the optimal method for promoting of the recovery of upper extremity function in hemiplegic individuals is the use of hybrid assistive systems (HAS). The suggested HAS is a combination of stimulation of paralyzed distal segments (hand) in synchrony with robot controlled movements of proximal segments (upper arm and forearm). The use of HAS is envisioned as part of voluntary activation of preserved sensory-motor systems during task related exercise. This HAS design follows our results from functional electrical therapy, constraint induced movement therapy, intensive exercise therapy, and use of robots for rehabilitation. The suggestion is also based on strong evidences that cortical plasticity is best promoted by task related exercise and patterned electrical stimulation.

  13. Electrical stimulation systems for cardiac tissue engineering

    PubMed Central

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures. PMID:19180087

  14. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    PubMed Central

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Fà, Mauro; Gessa, Gian Luigi

    2005-01-01

    Background Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled. PMID:15865626

  15. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP

    NASA Astrophysics Data System (ADS)

    Yi, Weibo; Qiu, Shuang; Wang, Kun; Qi, Hongzhi; Zhao, Xin; He, Feng; Zhou, Peng; Yang, Jiajia; Ming, Dong

    2017-04-01

    Objective. We proposed a novel simultaneous hybrid brain-computer interface (BCI) by incorporating electrical stimulation into a motor imagery (MI) based BCI system. The goal of this study was to enhance the overall performance of an MI-based BCI. In addition, the brain oscillatory pattern in the hybrid task was also investigated. Approach. 64-channel electroencephalographic (EEG) data were recorded during MI, selective attention (SA) and hybrid tasks in fourteen healthy subjects. In the hybrid task, subjects performed MI with electrical stimulation which was applied to bilateral median nerve on wrists simultaneously. Main results. The hybrid task clearly presented additional steady-state somatosensory evoked potential (SSSEP) induced by electrical stimulation with MI-induced event-related desynchronization (ERD). By combining ERD and SSSEP features, the performance in the hybrid task was significantly better than in both MI and SA tasks, achieving a ~14% improvement in total relative to the MI task alone and reaching ~89% in mean classification accuracy. On the contrary, there was no significant enhancement obtained in performance while separate ERD feature was utilized in the hybrid task. In terms of the hybrid task, the performance using combined feature was significantly better than using separate ERD or SSSEP feature. Significance. The results in this work validate the feasibility of our proposed approach to form a novel MI-SSSEP hybrid BCI outperforming a conventional MI-based BCI through combing MI with electrical stimulation.

  16. Implantation of a 16-channel functional electrical stimulation walking system.

    PubMed

    Sharma, M; Marsolais, E B; Polando, G; Triolo, R J; Davis, J A; Bhadra, N; Uhlir, J P

    1998-02-01

    A 16-channel electrical stimulation system was implanted in a 39-year-old patient with T10 paraplegia to restore sit to stand, walking, and exercise functions. System implantation required two surgical sessions. In the first session, the posterior muscle set consisting of bilateral semimembranosus, adductor magnus, and gluteus maximus muscles were exposed and epimysial electrodes sutured at the point of greatest muscle contraction. Closed double helix intramuscular electrodes were implanted in the erector spinae. Two weeks later, epimysial electrodes were attached to the eight anterior muscles consisting of the tibialis anterior, sartorius, tensor fasciae latae, and vastus lateralis with all 16 electrode leads passed to the anterior abdominal wall. The electrodes were connected to two eight-channel stimulators placed in the iliac fossae, and the system was checked by activating the individual muscles. The implanted stimulators received stimulation instructions and power via a radio frequency link to an external control. Stimulation patterns for standing, walking, sitting, and exercise functions were chosen from a preprogrammed menu via a finger key pad. After 3 weeks of restricted patient activity, all electrodes stimulated either the target muscle or had an acceptable spillover pattern. The patient is undergoing a 16-week rehabilitation course of stimulated exercises gradually increasing in intensity. At the conclusion, the goal is to discharge the patient with the system for spontaneous use. Although long term followup is required to determine system reliability, preliminary clinical results indicate that targeted, repeatable, functional muscle contractions in the lower extremity can be achieved with a system consisting of epimysial electrodes.

  17. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  18. [Functional electrical stimulation based on a working pattern influences function of lower extremity in subjects with early stroke and effects on diffusion tensor imaging: a randomized controlled trial].

    PubMed

    Chen, Danfeng; Yan, Tiebin; Li, Guandong; Li, Fangming; Liang, Qitang

    2014-10-14

    To explore the possible mechanisms for improving lower extremity motor function in patients with early stroke through combining magnetic resonance diffusion tensor imaging (DTI) technology and functional electrical stimulation (FES) based on human walking patterns. From August 2012 to September 2013, a total of 48 eligible patients were stratified according to age, gender, disease course, Brunnstrom staging and types of stroke. And the Minimize software was used to divided them randomly into four-channel FES group (n = 18), dual-channel FES group (n = 15) and comfort stimulation group (n = 15). For all three groups, general medication and standard rehabilitation were provided. Based on normal walking pattern design of FES treatment, four-channel FES groups received the stimulations of quadriceps, hamstring, anterior tibialis and medial gastrocnemius. For the dual-channel FES group, the stimulations of tibialis anterior, peroneus longus and peroneus brevis muscles were applied. In comfort electrical stimulation group, the electrode positions were identical to the stimulation group, but there was no current output during stimulation. Before and after 3-week treatment, three groups received weekly rehabilitation evaluations of Fugl-Meyer assessment (FMA), posture assessment of stroke scale (PASS), Brunel balance assessment (BBA), Berg balance scale (BBS) and modified Barthel index (MBI). Before and after treatment, DTI examination was performed for some patients. Among three groups, general patient profiles and pre-treatment evaluations showed no significant difference. For intra-group comparisons versus pre-treatment, at week 1, 2 and 3, the scores of PASS, BBA, BBS, FMA and MBI had statistically significant differences (P < 0.05); At week 3 post-treatment, when four-channel and double-channel FES groups were compared versus pre-treatment, the scores of ipsilateral FA had statistically significant differences (P < 0.05). At week 1 post-treatment, MBI had statistically significant difference among 3 groups (P = 0.037). As compared with placebo, four-channel group had statistically significant difference [(52 ± 12) vs (38 ± 18), P < 0.05]; At week 2 post-treatment, the scores of PASS and MBI were (29 ± 3, 73 ± 13) in four-channel FES group versus (24 ± 8, 60 ± 17) in dual-channel FES group. And the scores of PASS, BBA, BBS, FMA and MBI were (9 ± 3, 8.3 ± 2.4, 37 ± 7, 22 ± 5, 73 ± 13) in four-channel FES group versus (21 ± 7, 6.2 ± 3.1, 24 ± 16, 15 ± 8, 47 ± 20) in comfort electrical stimulation group. When dual-channel FES and comfort stimulation groups were compared, MBI had significant statistical difference [(60 ± 17) vs (47 ± 20), P < 0.05]. At week 3 post-treatment, four-channel and dual-channel FES groups were compared, there was also statistical significance in FMA [(25 ± 5) vs (20 ± 7), P = 0.055]. The scores of PASS, BBS, FMA and MBI were (31 ± 3, 43 ± 8, 25 ± 5, 81 ± 13) in four-channel FES group versus (25 ± 8, 29 ± 17, 17 ± 9, 54 ± 25) in comfort stimulation group respectively. When dual-channel FES and comfort stimulation groups were compared, the scores of MBI were (71 ± 15) and (54 ± 25) respectively. And the difference was statistically significant (P < 0.05). At week 3 post-treatment, the scores of FA significantly increased [four-channel FES group (0.321 ± 0.172) vs comfort stimulation group (0.217 ± 0.135) (P = 0.020)]. When dual-channel FES group (0.333 ± 0.164) and comfort stimulation group (0.217 ± 0.135) (P = 0.049) were compared, the differences were statistically significant. DTI showed that four-channel FES group increased significantly, but contralateral fiber bundle was not obvious. And the improvements of dual-channel FES and comfort stimulation groups were insignificant. Compared with traditional dual-channel FES, functional electrical stimulation based on human walking patterns is more efficacious. And it helps to restore brain structure and function and promote motor function recovery in patients with early stroke.

  19. Explaining how brain stimulation can evoke memories.

    PubMed

    Jacobs, Joshua; Lega, Bradley; Anderson, Christopher

    2012-03-01

    An unexplained phenomenon in neuroscience is the discovery that electrical stimulation in temporal neocortex can cause neurosurgical patients to spontaneously experience memory retrieval. Here we provide the first detailed examination of the neural basis of stimulation-induced memory retrieval by probing brain activity in a patient who reliably recalled memories of his high school (HS) after stimulation at a site in his left temporal lobe. After stimulation, this patient performed a customized memory task in which he was prompted to retrieve information from HS and non-HS topics. At the one site where stimulation evoked HS memories, remembering HS information caused a distinctive pattern of neural activity compared with retrieving non-HS information. Together, these findings suggest that the patient had a cluster of neurons in his temporal lobe that help represent the "high school-ness" of the current cognitive state. We believe that stimulation here evoked HS memories because it altered local neural activity in a way that partially mimicked the normal brain state for HS memories. More broadly, our findings suggest that brain stimulation can evoke memories by recreating neural patterns from normal cognition.

  20. Upward gaze and head deviation with frontal eye field stimulation.

    PubMed

    Kaiboriboon, Kitti; Lüders, Hans O; Miller, Jonathan P; Leigh, R John

    2012-03-01

    Using electrical stimulation to the deep, most caudal part of the right frontal eye field (FEF), we demonstrate a novel pattern of vertical (upward) eye movement that was previously only thought possible by stimulating both frontal eye fields simultaneously. If stimulation was started when the subject looked laterally, the initial eye movement was back to the midline, followed by upward deviation. Our finding challenges current view of topological organisation in the human FEF and may have general implications for concepts of topological organisation of the motor cortex, since sustained stimulation also induced upward head movements as a component of the vertical gaze shift. [Published with video sequences].

  1. Changes in the frequency of swallowing during electrical stimulation of superior laryngeal nerve in rats.

    PubMed

    Tsuji, Kojun; Tsujimura, Takanori; Magara, Jin; Sakai, Shogo; Nakamura, Yuki; Inoue, Makoto

    2015-02-01

    The aim of the present study was to investigate the adaptation of the swallowing reflex in terms of reduced swallowing reflex initiation following continuous superior laryngeal nerve stimulation. Forty-four male Sprague Dawley rats were anesthetized with urethane. To identify swallowing, electromyographic activity of the left mylohyoid and thyrohyoid muscles was recorded. To evoke the swallowing response, the superior laryngeal nerve (SLN), recurrent laryngeal nerve, or cortical swallowing area was electrically stimulated. Repetitive swallowing evoked by continuous SLN stimulation was gradually reduced, and this reduction was dependent on the resting time duration between stimulations. Prior SLN stimulation also suppressed subsequent swallowing initiation. The reduction in evoked swallows induced by recurrent laryngeal nerve or cortical swallowing area stimulation was less than that following superior laryngeal nerve stimulation. Decerebration had no effect on the reduction in evoked swallows. Prior subthreshold stimulation reduced subsequent initiation of swallowing, suggesting that there was no relationship between swallowing movement evoked by prior stimulation and the subsequent reduction in swallowing initiation. Overall, these data suggest that reduced sensory afferent nerve firing and/or trans-synaptic responses, as well as part of the brainstem central pattern generator, are involved in adaptation of the swallowing reflex following continuous stimulation of swallow-inducing peripheral nerves and cortical areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Failure of a vagus nerve stimulator following a nearby lightning strike.

    PubMed

    Terry, Garth E; Conry, Joan A; Taranto, Eleanor; Yaun, Amanda

    2011-01-01

    We recently reported our experience with implanted vagus nerve stimulators (VNS) in 62 children over a 7-year period. Here, we present a case of a VNS that successfully reduced the number and severity of seizures in a patient with an unusual seizure pattern, and failed to function shortly after a lightning storm. To our knowledge, the failure of VNS or any implantable electrical devices by lightning has not been reported in the literature. This mechanism of electrical interference, while unusual, may require more attention as these devices are expected to be used more frequently. Copyright © 2011 S. Karger AG, Basel.

  3. A neural interface provides long-term stable natural touch perception.

    PubMed

    Tan, Daniel W; Schiefer, Matthew A; Keith, Michael W; Anderson, James Robert; Tyler, Joyce; Tyler, Dustin J

    2014-10-08

    Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted peripheral nerve interfaces in two human subjects with upper limb amputation provided stable, natural touch sensation in their hands for more than 1 year. Electrical stimulation using implanted peripheral nerve cuff electrodes that did not penetrate the nerve produced touch perceptions at many locations on the phantom hand with repeatable, stable responses in the two subjects for 16 and 24 months. Patterned stimulation intensity produced a sensation that the subjects described as natural and without "tingling," or paresthesia. Different patterns produced different types of sensory perception at the same location on the phantom hand. The two subjects reported tactile perceptions they described as natural tapping, constant pressure, light moving touch, and vibration. Changing average stimulation intensity controlled the size of the percept area; changing stimulation frequency controlled sensation strength. Artificial touch sensation improved the subjects' ability to control grasping strength of the prosthesis and enabled them to better manipulate delicate objects. Thus, electrical stimulation through peripheral nerve electrodes produced long-term sensory restoration after limb loss. Copyright © 2014, American Association for the Advancement of Science.

  4. A neural interface provides long-term stable natural touch perception

    PubMed Central

    Tan, Daniel W.; Schiefer, Matthew A.; Keith, Michael W.; Anderson, James Robert; Tyler, Joyce; Tyler, Dustin J.

    2017-01-01

    Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted peripheral nerve interfaces in two human subjects with upper limb amputation provided stable, natural touch sensation in their hands for more than 1 year. Electrical stimulation using implanted peripheral nerve cuff electrodes that did not penetrate the nerve produced touch perceptions at many locations on the phantom hand with repeatable, stable responses in the two subjects for 16 and 24 months. Patterned stimulation intensity produced a sensation that the subjects described as natural and without “tingling,” or paresthesia. Different patterns produced different types of sensory perception at the same location on the phantom hand. The two subjects reported tactile perceptions they described as natural tapping, constant pressure, light moving touch, and vibration. Changing average stimulation intensity controlled the size of the percept area; changing stimulation frequency controlled sensation strength. Artificial touch sensation improved the subjects’ ability to control grasping strength of the prosthesis and enabled them to better manipulate delicate objects. Thus, electrical stimulation through peripheral nerve electrodes produced long-term sensory restoration after limb loss. PMID:25298320

  5. Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model

    NASA Astrophysics Data System (ADS)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-08-01

    Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.

  6. Effect of electrode impedance on spread of excitation and pitch perception using electrically coupled “dual-electrode” stimulation

    PubMed Central

    Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Goehring, Jenny L.

    2014-01-01

    Objective In newer-generation Cochlear Ltd. cochlear implants, two adjacent electrodes can be electrically coupled to produce a single contact or “dual electrode” (DE). The goal of the present study was to evaluate whether relatively large impedance differences (>3.0 kOhms) between coupled electrodes affect the excitation pattern and pitch percepts produced by the DE. Design Fifteen electrode pairs in six recipients were tested. Neural spread-of-excitation (SOE) patterns and pitch perception were measured for adjacent physical electrodes (PEs) and the resulting DE to determine if the lower-impedance PE in the pair dominates the DE response pattern. Results were compared to a “normative sample” (impedance differences <3.0 kOhms) from two earlier studies. Results In general, SOE patterns for DEs more closely approximated those of the lower-impedance PE in each pair. The DE was more easily distinguished in pitch from the higher-impedance PE than the lower-impedance PE. The ECAP and perceptual results generally differed from those of the normative group. Conclusions Impedance differences between adjacent PEs should be considered if DE stimulation is implemented in future research studies or clinical coding strategies. PMID:25250960

  7. Automatic Realistic Real Time Stimulation/Recording in Weakly Electric Fish: Long Time Behavior Characterization in Freely Swimming Fish and Stimuli Discrimination

    PubMed Central

    Forlim, Caroline G.; Pinto, Reynaldo D.

    2014-01-01

    Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish’s position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution. PMID:24400122

  8. Cortico-cortical and motor evoked potentials to single and paired-pulse stimuli: An exploratory transcranial magnetic and intracranial electric brain stimulation study.

    PubMed

    Boulogne, Sébastien; Andre-Obadia, Nathalie; Kimiskidis, Vasilios K; Ryvlin, Philippe; Rheims, Sylvain

    2016-11-01

    Paired-pulse (PP) paradigms are commonly employed to assess in vivo cortical excitability using transcranial magnetic stimulation (TMS) to stimulate the primary motor cortex and modulate the induced motor evoked potential (MEP). Single-pulse cortical direct electrical stimulation (DES) during intracerebral EEG monitoring allows the investigation of brain connectivity by eliciting cortico-cortical evoked potentials (CCEPs). However, PP paradigm using intracerebral DES has rarely been reported and has never been previously compared with TMS. The work was intended (i) to verify that the well-established modulations of MEPs following PP TMS remain similar using DES in the motor cortex, and (ii) to evaluate if a similar pattern could be observed in distant cortico-cortical connections through modulations of CCEP. Three patients undergoing intracerebral EEG monitoring with electrodes implanted in the central region were studied. Single-pulse DES (1-3 mA, 1 ms, 0.2 Hz) and PP DES using six interstimulus intervals (5, 15, 30, 50, 100, and 200 ms) in the motor cortex with concomitant recording of CCEPs and MEPs in contralateral muscles were performed. Finally, a navigated PP TMS session targeted the intracranial stimulation site to record TMS-induced MEPs in two patients. MEP modulations elicited by PP intracerebral DES proved similar among the three patients and to those obtained by PP TMS. CCEP modulations elicited by PP intracerebral DES usually showed a pattern comparable to that of MEP, although a different pattern could be observed occasionally. PP intracerebral DES seems to involve excitatory and inhibitory mechanisms similar to PP TMS and allows the recording of intracortical inhibition and facilitation modulation on cortico-cortical connections. Hum Brain Mapp 37:3767-3778, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Mapping of electrical muscle stimulation using MRI

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Harris, Robert T.; Woodard, Daniel; Dudley, Gary A.

    1993-01-01

    The pattern of muscle contractile activity elicited by electromyostimulation (EMS) was mapped and compared to the contractile-activity pattern produced by voluntary effort. This was done by examining the patterns and the extent of contrast shift, as indicated by T2 values, im magnetic resonance (MR) images after isometric activity of the left m. quadriceps of human subjects was elicited by EMS (1-sec train of 500-microsec sine wave pulses at 50 Hz) or voluntary effort. The results suggest that, whereas EMS stimulates the same fibers repeatedly, thereby increasing the metabolic demand and T2 values, the voluntary efforts are performed by more diffuse asynchronous activation of skeletal muscle even at forces up to 75 percent of maximal to maintain performance.

  10. Neuromodulation: Selected approaches and challenges

    PubMed Central

    Parpura, Vladimir; Silva, Gabriel A.; Tass, Peter A.; Bennet, Kevin E.; Meyyappan, Meyya; Koehne, Jessica; Lee, Kendall H.; Andrews, Russell J.

    2012-01-01

    The brain operates through complex interactions in the flow of information and signal processing within neural networks. The “wiring” of such networks, being neuronal or glial, can physically and/or functionally go rogue in various pathological states. Neuromodulation, as a multidisciplinary venture, attempts to correct such faulty nets. In this review, selected approaches and challenges in neuromoduation are discussed. The use of water-dispersible carbon nanotubes have proven effective in modulation of neurite outgrowth in culture as well as in aiding regeneration after spinal cord injury in vivo. Studying neural circuits using computational biology and analytical engineering approaches brings to light geometrical mapping of dynamics within neural networks, much needed information for stimulation interventions in medical practice. Indeed, sophisticated desynchronization approaches used for brain stimulation have been successful in coaxing “misfiring” neuronal circuits to resume productive firing patterns in various human disorders. Devices have been developed for the real time measurement of various neurotransmitters as well as electrical activity in the human brain during electrical deep brain stimulation. Such devices can establish the dynamics of electrochemical changes in the brain during stimulation. With increasing application of nanomaterials in devices for electrical and chemical recording and stimulating in the brain, the era of cellular, and even intracellular, precision neuromodulation will soon be upon us. PMID:23190025

  11. CHAPTER: In-Situ Characterization of Stimulating Microelectrode Arrays: Study of an Idealized Structure Based on Argus II Retinal implantsBOOK TITLE: Implantable Neural Prostheses 2: Techniques and Engineering Approaches, D.M. Zhou and E. Greenbaum, Eds., Springer, NY 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, Elias; Sanders, Charlene A; Kandagor, Vincent

    The development of a retinal prosthesis for artificial sight includes a study of the factors affecting the structural and functional stability of chronically implanted microelectrode arrays. Although neuron depolarization and propagation of electrical signals have been studied for nearly a century, the use of multielectrode stimulation as a proposed therapy to treat blindness is a frontier area of modern ophthalmology research. Mapping and characterizing the topographic information contained in the electric field potentials and understanding how this information is transmitted and interpreted in the visual cortex is still very much a work in progress. In order to characterize the electricalmore » field patterns generated by the device, an in vitro prototype that mimics several of the physical and chemical parameters of the in vivo visual implant device was fabricated. We carried out multiple electrical measurements in a model 'eye,' beginning with a single electrode, followed by a 9-electrode array structure, both idealized components based on the Argus II retinal implants. Correlating the information contained in the topographic features of the electric fields with psychophysical testing in patients may help reduce the time required for patients to convert the electrical patterns into graphic signals.« less

  12. Gap junctions between CA3 pyramidal cells contribute to network synchronization in neonatal hippocampus.

    PubMed

    Molchanova, Svetlana M; Huupponen, Johanna; Lauri, Sari E; Taira, Tomi

    2016-08-01

    Direct electrical coupling between neurons through gap junctions is prominent during development, when synaptic connectivity is scarce, providing the additional intercellular connectivity. However, functional studies of gap junctions are hampered by the unspecificity of pharmacological tools available. Here we have investigated gap-junctional coupling between CA3 pyramidal cells in neonatal hippocampus and its contribution to early network activity. Four different gap junction inhibitors, including the general blocker carbenoxolone, decreased the frequency of network activity bursts in CA3 area of hippocampus of P3-6 rats, suggesting the involvement of electrical connections in the generation of spontaneous network activity. In CA3 pyramidal cells, spikelets evoked by local stimulation of stratum oriens, were inhibited by carbenoxolone, but not by inhibitors of glutamatergic and GABAergic synaptic transmission, signifying the presence of electrical connectivity through axo-axonic gap junctions. Carbenoxolone also decreased the success rate of firing antidromic action potentials in response to stimulation, and changed the pattern of spontaneous action potential firing of CA3 pyramidal cells. Altogether, these data suggest that electrical coupling of CA3 pyramidal cells contribute to the generation of the early network events in neonatal hippocampus by modulating their firing pattern and synchronization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Electric radiation mapping of silver/zinc oxide nanoantennas by using electron holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, J. E.; Mendoza-Santoyo, F.; Cantu-Valle, J.

    2015-01-21

    In this work, we report the fabrication of self-assembled zinc oxide nanorods grown on pentagonal faces of silver nanowires by using microwaves irradiation. The nanostructures resemble a hierarchal nanoantenna and were used to study the far and near field electrical metal-semiconductor behavior from the electrical radiation pattern resulting from the phase map reconstruction obtained using off-axis electron holography. As a comparison, we use electric numerical approximations methods for a finite number of ZnO nanorods on the Ag nanowires and show that the electric radiation intensities maps match closely the experimental results obtained with electron holography. The time evolution of themore » radiation pattern as generated from the nanostructure was recorded under in-situ radio frequency signal stimulation, in which the generated electrical source amplitude and frequency were varied from 0 to 5 V and from 1 to 10 MHz, respectively. The phase maps obtained from electron holography show the change in the distribution of the electric radiation pattern for individual nanoantennas. The mapping of this electrical behavior is of the utmost importance to gain a complete understanding for the metal-semiconductor (Ag/ZnO) heterojunction that will help to show the mechanism through which these receiving/transmitting structures behave at nanoscale level.« less

  14. Strategy towards independent electrical stimulation from cochlear implants: Guided auditory neuron growth on topographically modified nanocrystalline diamond.

    PubMed

    Cai, Yixiao; Edin, Fredrik; Jin, Zhe; Alexsson, Andrei; Gudjonsson, Olafur; Liu, Wei; Rask-Andersen, Helge; Karlsson, Mikael; Li, Hao

    2016-02-01

    Cochlear implants (CI) have been used for several decades to treat patients with profound hearing loss. Nevertheless, results vary between individuals, and fine hearing is generally poor due to the lack of discrete neural stimulation from the individual receptor hair cells. A major problem is the deliverance of independent stimulation signals to individual auditory neurons. Fine hearing requires significantly more stimulation contacts with intimate neuron/electrode interphases from ordered axonal re-growth, something current CI technology cannot provide. Here, we demonstrate the potential application of micro-textured nanocrystalline diamond (NCD) surfaces on CI electrode arrays. Such textured NCD surfaces consist of micrometer-sized nail-head-shaped pillars (size 5×5μm(2)) made with sequences of micro/nano-fabrication processes, including sputtering, photolithography and plasma etching. The results show that human and murine inner-ear ganglion neurites and, potentially, neural progenitor cells can attach to patterned NCD surfaces without an extracellular matrix coating. Microscopic methods revealed adhesion and neural growth, specifically along the nail-head-shaped NCD pillars in an ordered manner, rather than in non-textured areas. This pattern was established when the inter-NCD pillar distance varied between 4 and 9μm. The findings demonstrate that regenerating auditory neurons show a strong affinity to the NCD pillars, and the technique could be used for neural guidance and the creation of new neural networks. Together with the NCD's unique anti-bacterial and electrical properties, patterned NCD surfaces could provide designed neural/electrode interfaces to create independent electrical stimulation signals in CI electrode arrays for the neural population. Cochlear implant is currently a successful way to treat sensorineural hearing loss and deafness especially in children. Although clinically successful, patients' fine hearing cannot be completely restored. One problem is the amount of the electrodes; 12-20 electrodes are used to replace the function of 3400 inner hair cells. Intense research is ongoing aiming to increase the number of electrodes. This study demonstrates the use of nanocrystalline diamond as a potential nerve-electrode interface. Micrometer-sized nanocrystalline diamond pillars showed high affinity to regenerated human neurons, which grew into a pre-defined network based on the pillar design. Our findings are of particular interest since they can be applied on any silicon-based implant to increase electrode count and to achieve individual neuron stimulation patterns. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tass, P. A.; Barnikol, U. B.; Department of Stereotaxic and Functional Neurosurgery, University of Cologne, D-50931 Cologne

    2009-07-15

    In computational models it has been shown that appropriate stimulation protocols may reshape the connectivity pattern of neural or oscillator networks with synaptic plasticity in a way that the network learns or unlearns strong synchronization. The underlying mechanism is that a network is shifted from one attractor to another, so that long-lasting stimulation effects are caused which persist after the cessation of stimulation. Here we study long-lasting effects of multisite electrical stimulation in a rat hippocampal slice rendered epileptic by magnesium withdrawal. We show that desynchronizing coordinated reset stimulation causes a long-lasting desynchronization between hippocampal neuronal populations together with amore » widespread decrease in the amplitude of the epileptiform activity. In contrast, periodic stimulation induces a long-lasting increase in both synchronization and amplitude.« less

  16. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields

    PubMed Central

    Ruffini, Giulio; Fox, Michael D.; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-01-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint of the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general stimulation protocols, such as alternating current tCS (tACS). PMID:24345389

  17. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.

    PubMed

    Park, Eunkyoung; Song, Inho; Jang, Dong Pyo; Kim, In Young

    2014-08-08

    The pedunculopontine nucleus (PPN) has recently been introduced as an alternative target to the subthalamic nucleus (STN) or globus pallidus internus (GPi) for the treatment of advanced Parkinson's disease with severe and medically intractable axial symptoms such as gait and postural impairment. However, it is little known about how electrical stimulation of the PPN affects control of neuronal activities between the PPN and basal ganglia. We examined how low frequency stimulation of the pedunculopontine tegmental nucleus (PPTg) affects control of neuronal activities between the PPN and basal ganglia in 6-OHDA lesioned rats. In order to identify the effect of low frequency stimulation on the PPTg, neuronal activity in both the STN and substantia nigra par reticulata (SNr) were recorded and subjected to quantitative analysis, including analysis of firing rates and firing patterns. In this study, we found that the firing rates of the STN and SNr were suppressed during low frequency stimulation of the PPTg. However, the firing pattern, in contrast to the firing rate, did not exhibit significant changes in either the STN or SNr of 6-OHDA lesioned rats during low frequency stimulation of the PPTg. In addition, we also found that the firing rate of STN and SNr neurons displaying burst and random pattern were decreased by low frequency stimulation of PPTg, while the neurons displaying regular pattern were not affected. These results indicate that low frequency stimulation of the PPTg affects neuronal activity in both the STN and SNr, and may represent electrophysiological efficacy of low frequency PPN stimulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation.

    PubMed

    Qu, Hongen; Xie, Yongji; Liu, Xiaoxuan; He, Xin; Hao, Manzhao; Bao, Yong; Xie, Qing; Lan, Ning

    2016-01-01

    Neuromuscular electrical stimulation (NMES) is a promising assistive technology for stroke rehabilitation. Here we present the design and development of a multimuscle stimulation system as an emerging therapy for people with paretic stroke. A network-based multichannel NMES system was integrated based on dual bus architecture of communication and an H-bridge current regulator with a power booster. The structure of the system was a body area network embedded with multiple stimulators and a communication protocol of controlled area network to transmit muscle stimulation parameter information to individual stimulators. A graphical user interface was designed to allow clinicians to specify temporal patterns and muscle stimulation parameters. We completed and tested a prototype of the hardware and communication software modules of the multichannel NMES system. The prototype system was first verified in nondisabled subjects for safety, and then tested in subjects with stroke for feasibility with assisting multijoint movements. Results showed that synergistic stimulation of multiple muscles in subjects with stroke improved performance of multijoint movements with more natural velocity profiles at elbow and shoulder and reduced acromion excursion due to compensatory trunk rotation. The network-based NMES system may provide an innovative solution that allows more physiological activation of multiple muscles in multijoint task training for patients with stroke.

  19. Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model

    PubMed Central

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-01-01

    Neural activity can be modulated by applying a polarizing low frequency (≪ 100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5–25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson’s harmonic F-test, with 45/132 stimulated seizures in 4 animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in 3 of 4 animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording. PMID:19602730

  20. Complementary and Alternative Therapies for Cerebral Palsy

    ERIC Educational Resources Information Center

    Liptak, Gregory S.

    2005-01-01

    The optimal practice of medicine includes integrating individual clinical expertise with the best available clinical evidence from systematic research. This article reviews nine treatment modalities used for children who have cerebral palsy (CP), including hyperbaric oxygen, the Adeli Suit, patterning, electrical stimulation, conductive education,…

  1. Theta-burst microstimulation in the human entorhinal area improves memory specificity.

    PubMed

    Titiz, Ali S; Hill, Michael R H; Mankin, Emily A; M Aghajan, Zahra; Eliashiv, Dawn; Tchemodanov, Natalia; Maoz, Uri; Stern, John; Tran, Michelle E; Schuette, Peter; Behnke, Eric; Suthana, Nanthia A; Fried, Itzhak

    2017-10-24

    The hippocampus is critical for episodic memory, and synaptic changes induced by long-term potentiation (LTP) are thought to underlie memory formation. In rodents, hippocampal LTP may be induced through electrical stimulation of the perforant path. To test whether similar techniques could improve episodic memory in humans, we implemented a microstimulation technique that allowed delivery of low-current electrical stimulation via 100 μm -diameter microelectrodes. As thirteen neurosurgical patients performed a person recognition task, microstimulation was applied in a theta-burst pattern, shown to optimally induce LTP. Microstimulation in the right entorhinal area during learning significantly improved subsequent memory specificity for novel portraits; participants were able both to recognize previously-viewed photos and reject similar lures. These results suggest that microstimulation with physiologic level currents-a radical departure from commonly used deep brain stimulation protocols-is sufficient to modulate human behavior and provides an avenue for refined interrogation of the circuits involved in human memory.

  2. Orderly recruitment of motor units under optical control in vivo.

    PubMed

    Llewellyn, Michael E; Thompson, Kimberly R; Deisseroth, Karl; Delp, Scott L

    2010-10-01

    A drawback of electrical stimulation for muscle control is that large, fatigable motor units are preferentially recruited before smaller motor units by the lowest-intensity electrical cuff stimulation. This phenomenon limits therapeutic applications because it is precisely the opposite of the normal physiological (orderly) recruitment pattern; therefore, a mechanism to achieve orderly recruitment has been a long-sought goal in physiology, medicine and engineering. Here we demonstrate a technology for reliable orderly recruitment in vivo. We find that under optical control with microbial opsins, recruitment of motor units proceeds in the physiological recruitment sequence, as indicated by multiple independent measures of motor unit recruitment including conduction latency, contraction and relaxation times, stimulation threshold and fatigue. As a result, we observed enhanced performance and reduced fatigue in vivo. These findings point to an unanticipated new modality of neural control with broad implications for nervous system and neuromuscular physiology, disease research and therapeutic innovation.

  3. Electric-field-stimulated protein mechanics

    PubMed Central

    Hekstra, Doeke R.; White, K. Ian; Socolich, Michael A.; Henning, Robert W.; Šrajer, Vukica; Ranganathan, Rama

    2017-01-01

    The internal mechanics of proteins—the coordinated motions of amino acids and the pattern of forces constraining these motions—connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2PDZ2) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function. PMID:27926732

  4. Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.

    PubMed

    Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L

    2018-06-01

    The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mechanisms and targets of deep brain stimulation in movement disorders.

    PubMed

    Johnson, Matthew D; Miocinovic, Svjetlana; McIntyre, Cameron C; Vitek, Jerrold L

    2008-04-01

    Chronic electrical stimulation of the brain, known as deep brain stimulation (DBS), has become a preferred surgical treatment for medication-refractory movement disorders. Despite its remarkable clinical success, the therapeutic mechanisms of DBS are still not completely understood, limiting opportunities to improve treatment efficacy and simplify selection of stimulation parameters. This review addresses three questions essential to understanding the mechanisms of DBS. 1) How does DBS affect neuronal tissue in the vicinity of the active electrode or electrodes? 2) How do these changes translate into therapeutic benefit on motor symptoms? 3) How do these effects depend on the particular site of stimulation? Early hypotheses proposed that stimulation inhibited neuronal activity at the site of stimulation, mimicking the outcome of ablative surgeries. Recent studies have challenged that view, suggesting that although somatic activity near the DBS electrode may exhibit substantial inhibition or complex modulation patterns, the output from the stimulated nucleus follows the DBS pulse train by direct axonal excitation. The intrinsic activity is thus replaced by high-frequency activity that is time-locked to the stimulus and more regular in pattern. These changes in firing pattern are thought to prevent transmission of pathologic bursting and oscillatory activity, resulting in the reduction of disease symptoms through compensatory processing of sensorimotor information. Although promising, this theory does not entirely explain why DBS improves motor symptoms at different latencies. Understanding these processes on a physiological level will be critically important if we are to reach the full potential of this powerful tool.

  6. Spatial channel interactions in cochlear implants

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-08-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal side. In contrast, the evoked compound action potential and perceptual channel interaction data showed much greater individual variability. It is likely that actual reduction in neural and higher level interactions, instead of simple sharpening of the electric current field, would be the key to predicting and hopefully improving the variable cochlear implant performance. The present results are obtained with auditory prostheses but can be applied to other neural prostheses, in which independent spatial channels, rather than a high stimulation rate, are critical to their performance.

  7. Optimal delineation of single C-tactile and C-nociceptive afferents in humans by latency slowing.

    PubMed

    Watkins, Roger H; Wessberg, Johan; Backlund Wasling, Helena; Dunham, James P; Olausson, Håkan; Johnson, Richard D; Ackerley, Rochelle

    2017-04-01

    C-mechanoreceptors in humans comprise a population of unmyelinated afferents exhibiting a wide range of mechanical sensitivities. C-mechanoreceptors are putatively divided into those signaling gentle touch (C-tactile afferents, CTs) and nociception (C-mechanosensitive nociceptors, CMs), giving rise to positive and negative affect, respectively. We sought to distinguish, compare, and contrast the properties of a population of human C-mechanoreceptors to see how fundamental the divisions between these putative subpopulations are. We used microneurography to record from individual afferents in humans and applied electrical and mechanical stimulation to their receptive fields. We show that C-mechanoreceptors can be distinguished unequivocally into two putative populations, comprising CTs and CMs, by electrically evoked spike latency changes (slowing). After both natural mechanical stimulation and repetitive electrical stimulation there was markedly less latency slowing in CTs compared with CMs. Electrical receptive field stimulation, which bypasses the receptor end organ, was most effective in classifying C-mechanoreceptors, as responses to mechanical receptive field stimulation overlapped somewhat, which may lead to misclassification. Furthermore, we report a subclass of low-threshold CM responding to gentle mechanical stimulation and a potential subclass of CT afferent displaying burst firing. We show that substantial differences exist in the mechanisms governing axonal conduction between CTs and CMs. We provide clear electrophysiological "signatures" (extent of latency slowing) that can be used in unequivocally identifying populations of C-mechanoreceptors in single-unit and multiunit microneurography studies and in translational animal research into affective touch. Additionally, these differential mechanisms may be pharmacologically targetable for separate modulation of positive and negative affective touch information. NEW & NOTEWORTHY Human skin encodes a plethora of touch interactions, and affective tactile information is primarily signaled by slowly conducting C-mechanoreceptive afferents. We show that electrical stimulation of low-threshold C-tactile afferents produces markedly different patterns of activity compared with high-threshold C-mechanoreceptive nociceptors, although the populations overlap in their responses to mechanical stimulation. This fundamental distinction demonstrates a divergence in affective touch signaling from the first stage of sensory processing, having implications for the processing of interpersonal touch. Copyright © 2017 the American Physiological Society.

  8. Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration

    PubMed Central

    Lorach, Henri; Goetz, Georges; Mandel, Yossi; Lei, Xin; Kamins, Theodore I.; Mathieson, Keith; Huie, Philip; Dalal, Roopa; Harris, James S.; Palanker, Daniel

    2014-01-01

    Summary Loss of photoreceptors during retinal degeneration leads to blindness, but information can be reintroduced into the visual system using electrical stimulation of the remaining retinal neurons. Subretinal photovoltaic arrays convert pulsed illumination into pulsed electric current to stimulate the inner retinal neurons. Since required irradiance exceeds the natural luminance levels, an invisible near-infrared (915nm) light is used to avoid photophobic effects. We characterized the thresholds and dynamic range of cortical responses to prosthetic stimulation with arrays of various pixel sizes and with different number of photodiodes. Stimulation thresholds for devices with 140µm pixels were approximately half those of 70µm pixels, and with both pixel sizes, thresholds were lower with 2 diodes than with 3 diodes per pixel. In all cases these thresholds were more than two orders of magnitude below the ocular safety limit. At high stimulation frequencies (>20Hz), the cortical response exhibited flicker fusion. Over one order of magnitude of dynamic range could be achieved by varying either pulse duration or irradiance. However, contrast sensitivity was very limited. Cortical responses could be detected even with only a few illuminated pixels. Finally, we demonstrate that recording of the corneal electric potential in response to patterned illumination of the subretinal arrays allows monitoring the current produced by each pixel, and thereby assessing the changes in the implant performance over time. PMID:25255990

  9. Cerebral somatic pain modulation during autogenic training in fMRI.

    PubMed

    Naglatzki, R P; Schlamann, M; Gasser, T; Ladd, M E; Sure, U; Forsting, M; Gizewski, E R

    2012-10-01

    Functional magnetic resonance imaging (fMRI) studies are increasingly employed in different conscious states. Autogenic training (AT) is a common clinically used relaxation method. The purpose of this study was to investigate the cerebral modulation of pain activity patterns due to AT and to correlate the effects to the degree of experience with AT and strength of stimuli. Thirteen volunteers familiar with AT were studied with fMRI during painful electrical stimulation in a block design alternating between resting state and electrical stimulation, both without AT and while employing the same paradigm when utilizing their AT abilities. The subjective rating of painful stimulation and success in modulation during AT was assessed. During painful electrical stimulation without AT, fMRI revealed activation of midcingulate, right secondary sensory, right supplementary motor, and insular cortices, the right thalamus and left caudate nucleus. In contrast, utilizing AT only activation of left insular and supplementary motor cortices was revealed. The paired t-test revealed pain-related activation in the midcingulate, posterior cingulate and left anterior insular cortices for the condition without AT, and activation in the left ventrolateral prefrontal cortex under AT. Activation of the posterior cingulate cortex and thalamus correlated with the amplitude of electrical stimulation. This study revealed an effect on cerebral pain processing while performing AT. This might represent the cerebral correlate of different painful stimulus processing by subjects who are trained in performing relaxation techniques. However, due to the absence of a control group, further studies are needed to confirm this theory. © 2012 European Federation of International Association for the Study of Pain Chapters.

  10. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  11. Recording and Modulation of Epileptiform Activity in Rodent Brain Slices Coupled to Microelectrode Arrays.

    PubMed

    Panuccio, Gabriella; Colombi, Ilaria; Chiappalone, Michela

    2018-05-15

    Temporal lobe epilepsy (TLE) is the most common partial complex epileptic syndrome and the least responsive to medications. Deep brain stimulation (DBS) is a promising approach when pharmacological treatment fails or neurosurgery is not recommended. Acute brain slices coupled to microelectrode arrays (MEAs) represent a valuable tool to study neuronal network interactions and their modulation by electrical stimulation. As compared to conventional extracellular recording techniques, they provide the added advantages of a greater number of observation points and a known inter-electrode distance, which allow studying the propagation path and speed of electrophysiological signals. However, tissue oxygenation may be greatly impaired during MEA recording, requiring a high perfusion rate, which comes at the cost of decreased signal-to-noise ratio and higher oscillations in the experimental temperature. Electrical stimulation further stresses the brain tissue, making it difficult to pursue prolonged recording/stimulation epochs. Moreover, electrical modulation of brain slice activity needs to target specific structures/pathways within the brain slice, requiring that electrode mapping be easily and quickly performed live during the experiment. Here, we illustrate how to perform the recording and electrical modulation of 4-aminopyridine (4AP)-induced epileptiform activity in rodent brain slices using planar MEAs. We show that the brain tissue obtained from mice outperforms rat brain tissue and is thus better suited for MEA experiments. This protocol guarantees the generation and maintenance of a stable epileptiform pattern that faithfully reproduces the electrophysiological features observed with conventional field potential recording, persists for several hours, and outlasts sustained electrical stimulation for prolonged epochs. Tissue viability throughout the experiment is achieved thanks to the use of a small-volume custom recording chamber allowing for laminar flow and quick solution exchange even at low (1 mL/min) perfusion rates. Quick MEA mapping for real-time monitoring and selection of stimulating electrodes is performed by a custom graphic user interface (GUI).

  12. Matching initial torque with different stimulation parameters influences skeletal muscle fatigue.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Azuero, Andres

    2012-01-01

    A fundamental barrier to using electrical stimulation in the clinical setting is an inability to maintain torque production secondary to muscle fatigue. Electrical stimulation parameters are manipulated to influence muscle torque production, and they may also influence fatigability during repetitive stimulation. Our purpose was to determine the response of the quadriceps femoris to three different fatigue protocols using the same initial torque obtained by altering stimulator parameter settings. Participants underwent fatigue protocols in which either pulse frequency (lowHz), pulse duration (lowPD), or voltage (lowV) was manipulated to obtain an initial torque that equaled 25% of maximum voluntary isometric contraction. Muscle soreness was reported on a visual analog scale 48 h after each fatigue test. The lowHz protocol resulted in the least fatigue (25% +/- 14%); the lowPD (50% +/- 13%) and lowV (48% +/- 14%) protocols had similar levels of fatigue. The lowHz protocol resulted in significantly less muscle soreness than the higher frequency protocols. Stimulation protocols that use a lower frequency coupled with long pulse durations and high voltages result in lesser amounts of muscle fatigue and perceived soreness. The identification of optimal stimulation patterns to maximize muscle performance will reduce the effect of muscle fatigue and potentially improve clinical efficacy.

  13. Neuromuscular electrical stimulation induced brain patterns to decode motor imagery.

    PubMed

    Vidaurre, C; Pascual, J; Ramos-Murguialday, A; Lorenz, R; Blankertz, B; Birbaumer, N; Müller, K-R

    2013-09-01

    Regardless of the paradigm used to implement a brain-computer interface (BCI), all systems suffer from BCI-inefficiency. In the case of patients the inefficiency can be high. Some solutions have been proposed to overcome this problem, however they have not been completely successful yet. EEG from 10 healthy users was recorded during neuromuscular electrical stimulation (NMES) of hands and feet and during motor imagery (MI) of the same limbs. Features and classifiers were computed using part of these data to decode MI. Offline analyses showed that it was possible to decode MI using a classifier based on afferent patterns induced by NMES and even infer a better model than with MI data. Afferent NMES motor patterns can support the calibration of BCI systems and be used to decode MI. This finding might be a new way to train sensorimotor rhythm (SMR) based BCI systems for healthy users having difficulties to attain BCI control. It might also be an alternative to train MI-based BCIs for users who cannot perform real movements but have remaining afferents (ALS, stroke patients). Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Patterns of motor activity in the isolated nerve cord of the octopus arm.

    PubMed

    Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin

    2006-12-01

    The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension.

  15. Insects as unidentified flying objects.

    PubMed

    Callahan, P S; Mankin, R W

    1978-11-01

    Five species of insects were subjected to a large electric field. Each of the insects stimulated in this manner emitted visible glows of various colors and blacklight (uv). It is postulated that the Uintah Basin, Utah, nocturnal UFO display (1965-1968) was partially due to mass swarms of spruce budworms, Choristoneura fumiferana (Clemens), stimulated to emit this type of St. Elmo's fire by flying into high electric fields caused by thunderheads and high density particulate matter in the air. There was excellent time and spatial correlation between the 1965-1968 UFO nocturnal sightings and spruce budworm infestation. It is suggested that a correlation of nocturnal UFO sightings throughout the U.S. and Canada with spruce budworm infestations might give some insight into nocturnal insect flight patterns.

  16. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study.

    PubMed

    Kraus, Thomas; Kiess, Olga; Hösl, Katharina; Terekhin, Pavel; Kornhuber, Johannes; Forster, Clemens

    2013-09-01

    It has recently been shown that electrical stimulation of sensory afferents within the outer auditory canal may facilitate a transcutaneous form of central nervous system stimulation. Functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) effects in limbic and temporal structures have been detected in two independent studies. In the present study, we investigated BOLD fMRI effects in response to transcutaneous electrical stimulation of two different zones in the left outer auditory canal. It is hypothesized that different central nervous system (CNS) activation patterns might help to localize and specifically stimulate auricular cutaneous vagal afferents. 16 healthy subjects aged between 20 and 37 years were divided into two groups. 8 subjects were stimulated in the anterior wall, the other 8 persons received transcutaneous vagus nervous stimulation (tVNS) at the posterior side of their left outer auditory canal. For sham control, both groups were also stimulated in an alternating manner on their corresponding ear lobe, which is generally known to be free of cutaneous vagal innervation. Functional MR data from the cortex and brain stem level were collected and a group analysis was performed. In most cortical areas, BOLD changes were in the opposite direction when comparing anterior vs. posterior stimulation of the left auditory canal. The only exception was in the insular cortex, where both stimulation types evoked positive BOLD changes. Prominent decreases of the BOLD signals were detected in the parahippocampal gyrus, posterior cingulate cortex and right thalamus (pulvinar) following anterior stimulation. In subcortical areas at brain stem level, a stronger BOLD decrease as compared with sham stimulation was found in the locus coeruleus and the solitary tract only during stimulation of the anterior part of the auditory canal. The results of the study are in line with previous fMRI studies showing robust BOLD signal decreases in limbic structures and the brain stem during electrical stimulation of the left anterior auditory canal. BOLD signal decreases in the area of the nuclei of the vagus nerve may indicate an effective stimulation of vagal afferences. In contrast, stimulation at the posterior wall seems to lead to unspecific changes of the BOLD signal within the solitary tract, which is a key relay station of vagal neurotransmission. The results of the study show promise for a specific novel method of cranial nerve stimulation and provide a basis for further developments and applications of non-invasive transcutaneous vagus stimulation in psychiatric patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Patterning of sympathetic nerve activity in response to vestibular stimulation

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; McAllen, R. M.; Yates, B. J.

    2000-01-01

    Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.

  18. Gait training assisted by multi-channel functional electrical stimulation early after stroke: study protocol for a randomized controlled trial.

    PubMed

    van Bloemendaal, Maijke; Bus, Sicco A; de Boer, Charlotte E; Nollet, Frans; Geurts, Alexander C H; Beelen, Anita

    2016-10-01

    Many stroke survivors suffer from paresis of lower limb muscles, resulting in compensatory gait patterns characterised by asymmetries in spatial and temporal parameters and reduced walking capacity. Functional electrical stimulation has been used to improve walking capacity, but evidence is mostly limited to the orthotic effects of peroneal functional electrical stimulation in the chronic phase after stroke. The aim of this study is to investigate the therapeutic effects of up to 10 weeks of multi-channel functional electrical stimulation (MFES)-assisted gait training on the restoration of spatiotemporal gait symmetry and walking capacity in subacute stroke patients. In a proof-of-principle study with a randomised controlled design, 40 adult patients with walking deficits who are admitted for inpatient rehabilitation within 31 days since the onset of stroke are randomised to either MFES-assisted gait training or conventional gait training. Gait training is delivered in 30-minute sessions each workday for up to 10 weeks. The step length symmetry ratio is the primary outcome. Blinded assessors conduct outcome assessments at baseline, every 2 weeks during the intervention period, immediately post intervention and at 3-month follow-up. This study aims to provide preliminary evidence for the feasibility and effectiveness of MFES-assisted gait rehabilitation early after stroke. Results will inform the design of a larger multi-centre trial. This trial is registered at the Netherlands Trial Register (number NTR4762 , registered 28 August 2014).

  19. The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)

    NASA Astrophysics Data System (ADS)

    Azman, M. F.; Azman, A. W.

    2017-11-01

    Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.

  20. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton

    PubMed Central

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization. PMID:29311798

  1. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.

    PubMed

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  2. Brain-controlled muscle stimulation for the restoration of motor function

    PubMed Central

    Ethier, Christian; Miller, Lee E

    2014-01-01

    Loss of the ability to move, as a consequence of spinal cord injury or neuromuscular disorder, has devastating consequences for the paralyzed individual, and great economic consequences for society. Functional Electrical Stimulation (FES) offers one means to restore some mobility to these individuals, improving not only their autonomy, but potentially their general health and well-being as well. FES uses electrical stimulation to cause the paralyzed muscles to contract. Existing clinical systems require the stimulation to be preprogrammed, with the patient typically using residual voluntary movement of another body part to trigger and control the patterned stimulation. The rapid development of neural interfacing in the past decade offers the promise of dramatically improved control for these patients, potentially allowing continuous control of FES through signals recorded from motor cortex, as the patient attempts to control the paralyzed body part. While application of these ‘Brain Machine Interfaces’ (BMIs) has undergone dramatic development for control of computer cursors and even robotic limbs, their use as an interface for FES has been much more limited. In this review, we consider both FES and BMI technologies and discuss the prospect for combining the two to provide important new options for paralyzed individuals. PMID:25447224

  3. Effect of hindpaw electrical stimulation on capillary flow heterogeneity and oxygen delivery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Yuandong; Wei, Wei; Li, Chenxi; Wang, Ruikang K.

    2017-02-01

    We report a novel use of optical coherence tomography (OCT) based angiography to visualize and quantify dynamic response of cerebral capillary flow pattern in mice upon hindpaw electrical stimulation through the measurement of the capillary transit-time heterogeneity (CTH) and capillary mean transit time (MTT) in a wide dynamic range of a great number of vessels in vivo. The OCT system was developed to have a central wavelength of 1310 nm, a spatial resolution of 8 µm and a system dynamic range of 105 dB at an imaging rate of 92 kHz. The mapping of dynamic cerebral microcirculations was enabled by optical microangiography protocol. From the imaging results, the spatial homogenization of capillary velocity (decreased CTH) was observed in the region of interest (ROI) corresponding to the stimulation, along with an increase in the MTT in the ROI to maintain sufficient oxygen exchange within the brain tissue during functional activation. We validated the oxygen consumption due to an increase of the MTT through demonstrating an increase in the deoxygenated hemoglobin (HbR) during the stimulation by the use of laser speckle contrast imaging.

  4. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields.

    PubMed

    Ruffini, Giulio; Fox, Michael D; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-04-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint on the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general stimulation protocols, such as alternating current tCS (tACS). Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Enhanced insulin sensitivity and acute regulation of metabolic genes and signaling pathways after a single electrical or manual acupuncture session in female insulin-resistant rats.

    PubMed

    Benrick, Anna; Maliqueo, Manuel; Johansson, Julia; Sun, Miao; Wu, Xiaoke; Mannerås-Holm, Louise; Stener-Victorin, Elisabet

    2014-12-01

    To compare the effect of a single session of acupuncture with either low-frequency electrical or manual stimulation on insulin sensitivity and molecular pathways in the insulin-resistant dihydrotestosterone-induced rat polycystic ovary syndrome (PCOS) model. Both stimulations cause activation of afferent nerve fibers. In addition, electrical stimulation causes muscle contractions, enabling us to differentiate changes induced by activation of sensory afferents from contraction-induced changes. Control and PCOS rats were divided into no-stimulation, manual-, and electrical stimulation groups and insulin sensitivity was measured by euglycemic hyperinsulinemic clamp. Manually stimulated needles were rotated 180° ten times every 5 min, or low-frequency electrical stimulation was applied to evoke muscle twitches for 45 min. Gene and protein expression were analyzed by real-time PCR and Western blot. The glucose infusion rate (GIR) was lower in PCOS rats than in controls. Electrical stimulation was superior to manual stimulation during treatment but both methods increased GIR to the same extent in the post-stimulation period. Electrical stimulation decreased mRNA expression of Adipor2, Adrb1, Fndc5, Erk2, and Tfam in soleus muscle and increased ovarian Adrb2 and Pdf. Manual stimulation decreased ovarian mRNA expression of Erk2 and Sdnd. Electrical stimulation increased phosphorylated ERK levels in soleus muscle. One acupuncture session with electrical stimulation improves insulin sensitivity and modulates skeletal muscle gene and protein expression more than manual stimulation. Although electrical stimulation is superior to manual in enhancing insulin sensitivity during stimulation, they are equally effective after stimulation indicating that it is activation of sensory afferents rather than muscle contraction per se leading to the observed changes.

  6. Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.

    PubMed

    Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L

    2017-11-01

    Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.

  7. A new psychometric questionnaire for reporting of somatosensory percepts

    NASA Astrophysics Data System (ADS)

    Kim, L. H.; McLeod, R. S.; Kiss, Z. H. T.

    2018-02-01

    Objective. There have been remarkable advances over the past decade in neural prostheses to restore lost motor function. However, restoration of somatosensory feedback, which is essential for fine motor control and user acceptance, has lagged behind. With an increasing interest in using electrical stimulation to restore somatosensory sensations within the peripheral (PNS) and central nervous systems (CNS), it is critical to characterize the percepts evoked by electrical stimulation in a standardized manner with a validated psychometric questionnaire. This will allow comparison of results from applications at various nervous system levels in multiple settings. Approach. We compiled a summary of published reports of somatosensory percepts that were elicited by electrical stimulation in humans and used these to develop a new psychometric questionnaire. Results. This new questionnaire was able to characterize subjective evoked sensations with good test-retest reliability (Spearman’s correlation coefficients ranging 0.716  ⩽  ρ  ⩽  1.000, p  ⩽  0.005) in 13 subjects receiving stimulation through neural implants in both the CNS and PNS. Furthermore, the new questionnaire captured more descriptors (M  =  2.65, SD  =  0.91) that would have been missed by being categorized as ‘other sensations’, using a previous questionnaire (M  =  1.40, SD  =  0.77, t(12)  =  -10.24, p  <  0.001). Lastly, the new questionnaire was able to capture different descriptors within subjects using different patterns of electrical stimulation (Wilk’s Lambda  =  0.42, F(3, 10)  =  4.58, p  =  0.029). Significance. This new somatosensory psychometric questionnaire will aid in establishing consistency and standardization of reporting in future studies of somatosensory neural prostheses.

  8. One-shot percutaneous electrical nerve stimulation vs. transcutaneous electrical nerve stimulation for low back pain: comparison of therapeutic effects.

    PubMed

    Hsieh, Ru-Lan; Lee, Wen-Chung

    2002-11-01

    To investigate the therapeutic effects of one shot of low-frequency percutaneous electrical nerve stimulation one shot of transcutaneous electrical nerve stimulation in patients with low back pain. In total, 133 low back pain patients were recruited for this randomized, control study. Group 1 patients received medication only. Group 2 patients received medication plus one shot of percutaneous electrical nerve stimulation. Group 3 patients received medication plus one shot of transcutaneous electrical nerve stimulation. Therapeutic effects were measured using a visual analog scale, body surface score, pain pressure threshold, and the Quebec Back Pain Disability Scale. Immediately after one-shot treatment, the visual analog scale improved 1.53 units and the body surface score improved 3.06 units in the percutaneous electrical nerve stimulation group. In the transcutaneous electrical nerve stimulation group, the visual analog scale improved 1.50 units and the body surface score improved 3.98 units. The improvements did not differ between the two groups. There were no differences in improvement at 3 days or 1 wk after the treatment among the three groups. Simple one-shot treatment with percutaneous electrical nerve stimulation or transcutaneous electrical nerve stimulation provided immediate pain relief for low back pain patients. One-shot transcutaneous electrical nerve stimulation treatment is recommended due to the rarity of side effects and its convenient application.

  9. Circular and longitudinal muscles shortening indicates sliding patterns during peristalsis and transient lower esophageal sphincter relaxation

    PubMed Central

    Patel, Nirali; Jiang, Yanfen; Mittal, Ravinder K.; Kim, Tae Ho; Ledgerwood, Melissa

    2015-01-01

    Esophageal axial shortening is caused by longitudinal muscle (LM) contraction, but circular muscle (CM) may also contribute to axial shortening because of its spiral morphology. The goal of our study was to show patterns of contraction of CM and LM layers during peristalsis and transient lower esophageal sphincter (LES) relaxation (TLESR). In rats, esophageal and LES morphology was assessed by histology and immunohistochemistry, and function with the use of piezo-electric crystals and manometry. Electrical stimulation of the vagus nerve was used to induce esophageal contractions. In 18 healthy subjects, manometry and high frequency intraluminal ultrasound imaging during swallow-induced esophageal contractions and TLESR were evaluated. CM and LM thicknesses were measured (40 swallows and 30 TLESRs) as markers of axial shortening, before and at peak contraction, as well as during TLESRs. Animal studies revealed muscular connections between the LM and CM layers of the LES but not in the esophagus. During vagal stimulated esophageal contraction there was relative movement between the LM and CM. Human studies show that LM-to-CM (LM/CM) thickness ratio at baseline was 1. At the peak of swallow-induced contraction LM/CM ratio decreased significantly (<1), whereas the reverse was the case during TLESR (>2). The pattern of contraction of CM and LM suggests sliding of the two muscles. Furthermore, the sliding patterns are in the opposite direction during peristalsis and TLESR. PMID:26045610

  10. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  11. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  12. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  13. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  14. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transcutaneous electrical nerve stimulator for... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...

  15. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transcutaneous electrical nerve stimulator for...

  16. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transcutaneous electrical nerve stimulator for...

  17. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transcutaneous electrical nerve stimulator for...

  18. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transcutaneous electrical nerve stimulator for...

  19. An Arbitrary Waveform Wearable Neuro-stimulator System for Neurophysiology Research on Freely Behaving Animals.

    PubMed

    Samani, Mohsen Mosayebi; Mahnam, Amin; Hosseini, Nasrin

    2014-04-01

    Portable wireless neuro-stimulators have been developed to facilitate long-term cognitive and behavioral studies on the central nervous system in freely moving animals. These stimulators can provide precisely controllable input(s) to the nervous system, without distracting the animal attention with cables connected to its body. In this study, a low power backpack neuro-stimulator was developed for animal brain researches that can provides arbitrary stimulus waveforms for the stimulation, while it is small and light weight to be used for small animals including rats. The system consists of a controller that uses an RF link to program and activate a small and light microprocessor-based stimulator. A Howland current source was implemented to produce precise current controlled arbitrary waveform stimulations. The system was optimized for ultra-low power consumption and small size. The stimulator was first tested for its electrical specifications. Then its performance was evaluated in a rat experiment when electrical stimulation of medial longitudinal fasciculus induced circling behavior. The stimulator is capable of delivering programmed stimulations up to ± 2 mA with adjusting steps of 1 μA, accuracy of 0.7% and compliance of 6 V. The stimulator is 15 mm × 20 mm × 40 mm in size, weights 13.5 g without battery and consumes a total power of only 5.l mW. In the experiment, the rat could easily carry the stimulator and demonstrated the circling behavior for 0.1 ms current pulses of above 400 μA. The developed system has a competitive size and weight, whereas providing a wide range of operation and the flexibility of generating arbitrary stimulation patterns ideal for long-term experiments in the field of cognitive and neuroscience research.

  20. Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly.

    PubMed

    Yan, Kun; Liu, Yi; Zhang, Jitao; Correa, Santiago O; Shang, Wu; Tsai, Cheng-Chieh; Bentley, William E; Shen, Jana; Scarcelli, Giuliano; Raub, Christopher B; Shi, Xiao-Wen; Payne, Gregory F

    2018-02-12

    The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.

  1. A Systematic Review of Electric-Acoustic Stimulation

    PubMed Central

    Ching, Teresa Y. C.; Cowan, Robert

    2013-01-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259

  2. Laser patterning of platinum electrodes for safe neurostimulation

    NASA Astrophysics Data System (ADS)

    Green, R. A.; Matteucci, P. B.; Dodds, C. W. D.; Palmer, J.; Dueck, W. F.; Hassarati, R. T.; Byrnes-Preston, P. J.; Lovell, N. H.; Suaning, G. J.

    2014-10-01

    Objective. Laser surface modification of platinum (Pt) electrodes was investigated for use in neuroprosthetics. Surface modification was applied to increase the surface area of the electrode and improve its ability to transfer charge within safe electrochemical stimulation limits. Approach. Electrode arrays were laser micromachined to produce Pt electrodes with smooth surfaces, which were then modified with four laser patterning techniques to produce surface structures which were nanosecond patterned, square profile, triangular profile and roughened on the micron scale through structured laser interference patterning (SLIP). Improvements in charge transfer were shown through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and biphasic stimulation at clinically relevant levels. A new method was investigated and validated which enabled the assessment of in vivo electrochemically safe charge injection limits. Main results. All of the modified surfaces provided electrical advantage over the smooth Pt. The SLIP surface provided the greatest benefit both in vitro and in vivo, and this surface was the only type which had injection limits above the threshold for neural stimulation, at a level shown to produce a response in the feline visual cortex when using an electrode array implanted in the suprachoroidal space of the eye. This surface was found to be stable when stimulated with more than 150 million clinically relevant pulses in physiological saline. Significance. Critical to the assessment of implant devices is accurate determination of safe usage limits in an in vivo environment. Laser patterning, in particular SLIP, is a superior technique for improving the performance of implant electrodes without altering the interfacial electrode chemistry through coating. Future work will require chronic in vivo assessment of these electrode patterns.

  3. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.

    PubMed

    Tillein, J; Hartmann, R; Kral, A

    2015-04-01

    The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Event-Related Beta EEG Changes During Active, Passive Movement and Functional Electrical Stimulation of the Lower Limb.

    PubMed

    Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong

    2016-02-01

    A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement.

  5. VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE

    PubMed Central

    Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A.; Redl, Heinz; Tracey, Kevin J.

    2010-01-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre–electrical vagus nerve stimulation = 1033 ± 210 s versus post–electrical vagus nerve stimulation = 585 ± 111 s; P < 0.05) and total blood loss (pre–electrical vagus nerve stimulation = 48.4 ± 6.8 mL versus post–electrical vagus nerve stimulation = 26.3 ± 6.7 mL; P < 0.05). Reduced bleeding time after vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity. PMID:19953009

  6. Combined sub-threshold dosages of phenobarbital and low-frequency stimulation effectively reduce seizures in amygdala-kindled rats.

    PubMed

    Asgari, Azam; Semnanian, Saeed; Atapour, Nafiseh; Shojaei, Amir; Moradi, Homeira; Mirnajafi-Zadeh, Javad

    2014-08-01

    Low-frequency stimulation (LFS) is a potential therapy utilized in patients who do not achieve satisfactory control of seizures with pharmacological treatments. Here, we investigated the interaction between anticonvulsant effects of LFS and phenobarbital (a commonly used medicine) on amygdala-kindled seizures in rats. Animals were kindled by electrical stimulation of basolateral amygdala in a rapid manner (12 stimulations/day). Fully kindled animals randomly received one of the three treatment choices: phenobarbital (1, 2, 3, 4 and 8 mg/kg; i.p.; 30 min before kindling stimulation), LFS (one or 4 packages contained 100 or 200 monophasic square wave pulses, 0.1-ms pulse duration at 1 Hz, immediately before kindling stimulation) or a combination of both (phenobarbital at 3 mg/kg and LFS). Phenobarbital alone at the doses of 1, 2 and 3 mg/kg had no significant effect on the main seizure parameters. LFS application always produced anticonvulsant effects unless applied with the pattern of one package of 100 pulses, which is considered as non-effective. All the seizure parameters were significantly reduced when phenobarbital (3 mg/kg) was administered prior to the application of the non-effective pattern of LFS. Phenobarbital (3 mg/kg) also increased the anticonvulsant actions of the effective LFS pattern. Our results provide an evidence of a positive cumulative anticonvulsant effect of LFS and phenobarbital, suggesting a potential combination therapy at sub-threshold dosages of phenobarbital and LFS to achieve a satisfactory clinical effect.

  7. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  8. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  9. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  10. Restoration of Central Programmed Movement Pattern by Temporal Electrical Stimulation-Assisted Training in Patients with Spinal Cerebellar Atrophy.

    PubMed

    Huang, Ying-Zu; Chang, Yao-Shun; Hsu, Miao-Ju; Wong, Alice M K; Chang, Ya-Ju

    2015-01-01

    Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.).

  11. Daily Electrical Muscle Stimulation Enhances Functional Recovery Following Nerve Transection and Repair in Rats.

    PubMed

    Willand, Michael P; Chiang, Cameron D; Zhang, Jennifer J; Kemp, Stephen W P; Borschel, Gregory H; Gordon, Tessa

    2015-08-01

    Incomplete recovery following surgical reconstruction of damaged peripheral nerves is common. Electrical muscle stimulation (EMS) to improve functional outcomes has not been effective in previous studies. To evaluate the efficacy of a new, clinically translatable EMS paradigm over a 3-month period following nerve transection and immediate repair. Rats were divided into 6 groups based on treatment (EMS or no treatment) and duration (1, 2, or 3 months). A tibial nerve transection injury was immediately repaired with 2 epineurial sutures. The right gastrocnemius muscle in all rats was implanted with intramuscular electrodes. In the EMS group, the muscle was electrically stimulated with 600 contractions per day, 5 days a week. Terminal measurements were made after 1, 2, or 3 months. Rats in the 3-month group were assessed weekly using skilled and overground locomotion tests. Neuromuscular junction reinnervation patterns were also examined. Muscles that received daily EMS had significantly greater numbers of reinnervated motor units with smaller average motor unit sizes. The majority of muscle endplates were reinnervated by a single axon arising from a nerve trunk with significantly fewer numbers of terminal sprouts in the EMS group, the numbers being small. Muscle mass and force were unchanged but EMS improved behavioral outcomes. Our results demonstrated that EMS using a moderate stimulation paradigm immediately following nerve transection and repair enhances electrophysiological and behavioral recovery. © The Author(s) 2014.

  12. Studies of stimulus parameters for seizure disruption using neural network simulations.

    PubMed

    Anderson, William S; Kudela, Pawel; Cho, Jounhong; Bergey, Gregory K; Franaszczuk, Piotr J

    2007-08-01

    A large scale neural network simulation with realistic cortical architecture has been undertaken to investigate the effects of external electrical stimulation on the propagation and evolution of ongoing seizure activity. This is an effort to explore the parameter space of stimulation variables to uncover promising avenues of research for this therapeutic modality. The model consists of an approximately 800 mum x 800 mum region of simulated cortex, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. The cell dynamics are governed by a modified version of the Hodgkin-Huxley equations in single compartment format. Axonal connections are patterned after histological data and published models of local cortical wiring. Stimulation induced action potentials take place at the axon initial segments, according to threshold requirements on the applied electric field distribution. Stimulation induced action potentials in horizontal axonal branches are also separately simulated. The calculations are performed on a 16 node distributed 32-bit processor system. Clear differences in seizure evolution are presented for stimulated versus the undisturbed rhythmic activity. Data is provided for frequency dependent stimulation effects demonstrating a plateau effect of stimulation efficacy as the applied frequency is increased from 60 to 200 Hz. Timing of the stimulation with respect to the underlying rhythmic activity demonstrates a phase dependent sensitivity. Electrode height and position effects are also presented. Using a dipole stimulation electrode arrangement, clear orientation effects of the dipole with respect to the model connectivity is also demonstrated. A sensitivity analysis of these results as a function of the stimulation threshold is also provided.

  13. Effects of High-Rate Pulse Trains on Electrode Discrimination in Cochlear Implant Users

    PubMed Central

    Runge-Samuelson, Christina L.

    2009-01-01

    Overcoming issues related to abnormally high neural synchrony in response to electrical stimulation is one aspect in improving hearing with a cochlear implant. Desynchronization of electrical stimuli have shown benefits in neural encoding of electrical signals and improvements in psychophysical tasks. In the present study, 10 participants with either CII or HiRes 90k Advanced Bionics devices were tested for the effects of desynchronizing constant-amplitude high-rate (5,000 Hz) pulse trains on electrode discrimination of sinusoidal stimuli (1,000 Hz). When averaged across the sinusoidal dynamic range, overall improvements in electrode discrimination with high-rate pulses were found for 8 of 10 participants. This effect was significant for the group (p = .003). Nonmonotonic patterns of electrode discrimination as a function of sinusoidal stimulation level were observed. By providing additional spectral channels, it is possible that clinical implementation of constant-amplitude high-rate pulse trains in a signal processing strategy may improve performance with the device. PMID:19447763

  14. [A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens].

    PubMed

    Ni, D

    1992-12-01

    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.

  15. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty.

    PubMed

    Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre; Vaes, Peter

    2014-01-01

    To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.

  16. Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury.

    PubMed

    Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan

    2018-06-25

    High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and NGF in accordance with the in vivo results. Immediate or late transcutaneous high-frequency electrical stimulation exhibited the potential to stimulate the motor nerve regeneration. However, immediate electrical stimulation had a predilection to develop neuropathic pain. A delay in TENS initiation appears to be a reasonable approach for nerve repair and provides the appropriate time profile for its clinical application.

  17. Chronic muscle stimulation improves muscle function and reverts the abnormal surface EMG pattern in Myotonic Dystrophy: a pilot study

    PubMed Central

    2013-01-01

    Background To date, in Myotonic Dystrophy type 1 (DM1) the rehabilitative interventions have always been aimed at muscle strengthening, increasing of fatigue resistance and improving of aerobic metabolism efficiency whereas the electrical membrane fault has always been addressed pharmacologically. Neuromuscular electrical stimulation (NMES) is a useful therapeutic tool in sport medicine and in the rehabilitation of many clinical conditions characterized by motor impairment such as stroke, cerebral palsy and spinal cord injury. The aim of our pilot study was to evaluate the effects of chronic electrical stimulation both on functional and electrical properties of muscle in a small group of DM1 patients. Methods Five DM1 patients and one patient with Congenital Myotonia (CM) performed a home electrical stimulation of the tibialis anterior muscle lasting 15 days with a frequency of two daily sessions of 60 minutes each. Muscle strength was assessed according to the MRC scale (Medical Research Council) and functional tests (10 Meter Walking Test, 6 Minutes Walking Test and Timed Up and Go Test) were performed. We analyzed the average rectified value of sEMG signal amplitude (ARV) to characterize the sarcolemmal excitability. Results After the treatment an increase of muscle strength in those DM1 patients with a mild strength deficit was observed. In all subjects an improvement of 10MWT was recorded. Five patients improved their performance in the 6MWT. In TUG test 4 out of 6 patients showed a slight reduction in execution time. All patients reported a subjective improvement when walking. A complete recovery of the normal increasing ARV curve was observed in 4 out of 5 DM1 patients; the CM patient didn’t show modification of the ARV pattern. Conclusions NMES determined a clear-cut improvement of both the muscular weakness and the sarcolemmal excitability alteration in our small group of DM1 patients. Therefore this rehabilitative approach, if confirmed by further extensive studies, could be considered early in the management of muscular impairment in these patients. An attractive hypothesis to explain our encouraging result could be represented by a functional inhibition of SK3 channels expressed in muscle of DM1 subjects. PMID:23938156

  18. The Effects of Transcutaneous Electrical Stimulation on the Orthodontic Movement of Teeth.

    DTIC Science & Technology

    1985-05-01

    Transcutaneous electrical nerve stimulation is an alternating electrical current applied k., ’ to the skin or gingiva with surface electrodes. Many...AD-AI68 889 THE EFFECTS OF TRANSCUTANEOUS ELECTRICAL STIMULATION ON 1/i THE ORTHODONTIC MOVEMENT OF TEETH(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON...SPECIAL FIELD OF THE THESIS: of Transcutaneous Electrical Stimiu- Transcutaneous Electrical Stimulation lation on the Orthodontic Movement

  19. A Comparison of Two Electric Taste Stimulation Devices

    PubMed Central

    McClure, Scott T.; Lawless, Harry T.

    2016-01-01

    Electrical stimulation of the tongue, commonly used in clinical evaluations of taste dysfunction, can produce a variety of sensations including reports of metallic taste. Two studies compared responses to a fabricated electrical stimulator (a 1.6 V battery, anode side exposed) and a clinical electrogustometer (Rion TR-06). Batteries placed on the anterior dorsal tongue surface produced sensations similar in intensity and quality to those produced by the clinical electrogustometer, with equal intensity on the tongue tip for the 1.6 V battery in the range of 33 – 56 µA from the electrogustometer. A second study examined responses on three areas of the tongue on each side. Responses declined for areas lower in fungiform papillae for both devices, but at different rates. Higher current levels were required to match the battery in lower density areas, indicating spatial summation for the larger battery surface area. A consistent pattern of lateral differences was seen in only one subject. Quality descriptions were similar in frequency whether or not a word list was provided, with metallic, sour, pain and bitter being the most frequently mentioned words for both electric stimuli. Similarities in response to the battery device and electrogustometer were evident in intensity, qualities evoked, lack of a laterality effect and decreasing response in areas with lower fungiform papillae density. The battery device may provide an inexpensive portable alternative to an electrogustometer for use in clinical testing of taste. PMID:17573078

  20. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation

    PubMed Central

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the “electrical agonist-antagonist muscle ratio (EAA ratio)” and “electrical agonist-antagonist muscle activity (EAA activity)” in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model. PMID:24987326

  1. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation.

    PubMed

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the "electrical agonist-antagonist muscle ratio (EAA ratio)" and "electrical agonist-antagonist muscle activity (EAA activity)" in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  2. Cisplatin-induced gastric dysrhythmia and emesis in dogs and possible role of gastric electrical stimulation.

    PubMed

    Yu, Xiaoyun; Yang, Jie; Hou, Xiaohua; Zhang, Kan; Qian, Wei; Chen, J D Z

    2009-05-01

    The aim of this study was to investigate the effect of cisplatin on gastric myoelectrical activity and the role of gastric electrical stimulation in the treatment of cisplatin-induced emesis in dogs. Seven dogs implanted with electrodes on the gastric serosa were used in a two-session study. Cisplatin was infused in both the control session and the gastric electrical stimulation session, and gastric electrical stimulation was applied in the gastric electrical stimulation session. Gastric slow waves and emesis, as well as behaviors suggestive of nausea, were recorded during each session. The results were as follows: (1) cisplatin induced vomiting and other symptoms and induced gastric dysrhythmia. The percentage of normal slow waves decreased significantly during the 2.5 h before vomiting (P=0.01) and the period of vomiting (P<0.001). (2) Gastric electrical stimulation reduced emesis and the symptoms score. The total score in the control session was higher than that in the gastric electrical stimulation session (P=0.02). However, gastric electrical stimulation had no effects on gastric dysrhythmia. It is concluded that cisplatin induces emesis and gastric dysrhythmia. Gastric electrical stimulation may play a role in relieving chemotherapy-induced emetic responses and deserves further investigation.

  3. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    PubMed

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery more than hyoid muscles.

  4. 76 FR 48062 - Effective Date of Requirement for Premarket Approval for Cranial Electrotherapy Stimulator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... devices include headaches following treatment with electrical stimulation. Potential risk of seizure--electrical stimulation of the brain may result in seizures, particularly in patients with a history of... effects from electrical stimulation of the brain--The physiological effects associated with electrical...

  5. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  6. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  7. [Intracellular free calcium changes of mouse oocytes during activation induced by ethanol or electrical stimulations and parthenogenetic development].

    PubMed

    Deng, M Q; Fan, B Q

    1994-09-01

    Oocytes collected 18-19 h after HCG injection were stimulated with 7-8% ethanol or electrical pulses (1.7 KV/cm field strength, 80-100 microseconds duration, 3-4 times, 5-6 min interval). The parthenogenetic embryos derived from the above-mentioned methods developed to blastocyst stage just like those developed from fertilized eggs. Mouse oocytes were rather sensitive to ethanol stimulation. More than 95% of the treated oocytes were activated after stimulation of 7-8% ethanol for 5 min. Multiple electrical stimulations induced higher activation percentages of oocytes than only single electrical stimulation (71.5% vs. 63.6%). Intact oocytes were loaded with fluorescent Ca2+ indicator fura-2 and intracellular free calcium changes during artificial activation were measured by fluorescence detector. The results showed that ethanol could induce repetitive transient Ca2+ concentration increase in activated oocytes. Single electrical stimulation only induced single free calcium concentration elevation in oocyte while multiple electrical pulses could induce repetitive Ca2+ increase (each electrical pulse elicited the corresponding Ca2+ concentration peak). The pronuclei were not observed in the oocytes which had not exhibited calcium concentration rise during activation. Apart from electrical stimulation parameter, sufficient amount of Ca2+ in electric medium was crucial to mouse oocyte activation when stimulated with electrical pulses. The oocytes were hardly activated by electrical stimulations in a medium without Ca2+ even with longer pulse duration and the intracellular free calcium concentration in the oocytes showed no elevation. This indicates that the inflow of extracellular Ca2+ from tiny pores across the oocyte membrane caused by electrical stimulation is the main source of intracellular free calcium increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Evidence of plasticity in the pontocerebellar conditioned stimulus pathway during classical conditioning of the eyeblink response in the rabbit.

    PubMed

    Tracy, Jo Anne; Thompson, Judith K; Krupa, David J; Thompson, Richard F

    2013-10-01

    Electrical stimulation thresholds required to elicit eyeblinks with either pontine or cerebellar interpositus stimulation were measured before and after classical eyeblink conditioning with paired pontine stimulation (conditioned stimulus, CS) and corneal airpuff (unconditioned stimulus, US). Pontine stimulation thresholds dropped dramatically after training and returned to baseline levels following extinction, whereas interpositus thresholds and input-output functions remained stable across training sessions. Learning rate, magnitude of threshold change, and electrode placements were correlated. Pontine projection patterns to the cerebellum were confirmed with retrograde labeling techniques. These results add to the body of literature suggesting that the pons relays CS information to the cerebellum and provide further evidence of synaptic plasticity in the cerebellar network. 2013 APA, all rights reserved

  9. Effects of high-frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys

    PubMed Central

    Kammermeier, Stefan; Pittard, Damien; Hamada, Ikuma

    2016-01-01

    Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs. PMID:27683881

  10. Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats.

    PubMed

    López-González, M V; Díaz-Casares, A; Peinado-Aragonés, C A; Lara, J P; Barbancho, M A; Dawid-Milner, M S

    2013-08-01

    In order to assess the possible interactions between the pontine A5 region and the hypothalamic defence area (HDA), we have examined the pattern of double staining for c-Fos protein immunoreactivity (c-Fos-ir) and tyrosine hydroxylase, throughout the rostrocaudal extent of the A5 region in spontaneously breathing anaesthetized male Sprague-Dawley rats during electrical stimulation of the HDA. Activation of the HDA elicited a selective increase in c-Fos-ir with an ipsilateral predominance in catecholaminergic and non-catecholaminergic A5 somata (P < 0.001 in both cases). A second group of experiments was done to examine the importance of the A5 region in modulating the cardiorespiratory response evoked from the HDA. Cardiorespiratory changes were analysed in response to electrical stimulation of the HDA before and after ipsilateral microinjection of muscimol within the A5 region. Stimulation of the HDA evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (P < 0.001) due to a decrease in expiratory time (P < 0.01). The respiratory response was accompanied by a pressor response (P < 0.001) and tachycardia (P < 0.001). After muscimol microinjection within the A5 region, pressor and heart rate responses to HDA stimulation were reduced (P < 0.01 and P < 0.001, respectively). The respiratory response persisted unchanged. Finally, to confirm functional interactions between the HDA and the A5 region, extracellular recordings of putative A5 neurones were obtained during HDA stimulation. Seventy-five A5 cells were recorded, 35 of which were affected by the HDA (47%). These results indicate that neurones of the A5 region participate in the cardiovascular response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  11. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications.

    PubMed

    Ferrante, Simona; Pedrocchi, Alessandra; Iannò, Marco; De Momi, Elena; Ferrarin, Maurizio; Ferrigno, Giancarlo

    2004-01-01

    This study falls within the ambit of research on functional electrical stimulation for the design of rehabilitation training for spinal cord injured patients. In this context, a crucial issue is the control of the stimulation parameters in order to optimize the patterns of muscle activation and to increase the duration of the exercises. An adaptive control system (NEURADAPT) based on artificial neural networks (ANNs) was developed to control the knee joint in accordance with desired trajectories by stimulating quadriceps muscles. This strategy includes an inverse neural model of the stimulated limb in the feedforward line and a neural network trained on-line in the feedback loop. NEURADAPT was compared with a linear closed-loop proportional integrative derivative (PID) controller and with a model-based neural controller (NEUROPID). Experiments on two subjects (one healthy and one paraplegic) show the good performance of NEURADAPT, which is able to reduce the time lag introduced by the PID controller. In addition, control systems based on ANN techniques do not require complicated calibration procedures at the beginning of each experimental session. After the initial learning phase, the ANN, thanks to its generalization capacity, is able to cope with a certain range of variability of skeletal muscle properties.

  12. Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons

    PubMed Central

    Müller, Jan; Bakkum, Douglas J.; Hierlemann, Andreas

    2012-01-01

    We present a system to artificially correlate the spike timing between sets of arbitrary neurons that were interfaced to a complementary metal–oxide–semiconductor (CMOS) high-density microelectrode array (MEA). The system features a novel reprogrammable and flexible event engine unit to detect arbitrary spatio-temporal patterns of recorded action potentials and is capable of delivering sub-millisecond closed-loop feedback of electrical stimulation upon trigger events in real-time. The relative timing between action potentials of individual neurons as well as the temporal pattern among multiple neurons, or neuronal assemblies, is considered an important factor governing memory and learning in the brain. Artificially changing timings between arbitrary sets of spiking neurons with our system could provide a “knob” to tune information processing in the network. PMID:23335887

  13. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty

    PubMed Central

    Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre

    2014-01-01

    Objective: To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. Data Sources: PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Review Methods: Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. Results: A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. Conclusion: This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality. PMID:26770730

  14. Restoring mobility after stroke: first kinematic results from a pilot study with a hybrid drop foot stimulator.

    PubMed

    Yao, D; Jakubowitz, E; Tecante, K; Lahner, M; Ettinger, S; Claassen, L; Plaass, C; Stukenborg-Colsman, C; Daniilidis, K

    2016-12-01

    The objective was to obtain first insights into the kinematic and kinetic walking patterns resulting from an implanted functional electrical stimulation system in subjects with a drop foot caused by stroke. Four subjects who experienced a stroke were chosen due to a comparatively long/short time after surgery and young/old at the stroke event were examined retrospectively with gait analysis. Kinematics and kinetics of normal walking were assessed in comparison with and without activated drop foot stimulation. In general, an improvement regarding spatiotemporal parameters as a result of the stimulation could be observed. Walking speed was increased by 45 % and stride length by 22 % after a mean usage of 7 (2-14) months, whereas both younger subjects improved significantly more. Dorsiflexion increased in all subjects on average from 1.3° to 11.6° during initial contact as well as from 11.3° to 17.0° during mid-swing and therefore implies an advantage of around 5.5 inch foot clearance. Pathologic elements like knee hyperextension during loading response and mid-stance, leg circumduction during swing or the increased hip flexion of the contralateral leg during mid-stance could be in general adjusted with stimulation. An implantable functional electrical stimulation system seems to be a promising treatment of drop feet following strokes. Further clinical investigations are necessary to confirm these first insights.

  15. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.

  16. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  17. Weight Bearing Over-ground Stepping in an Exoskeleton with Non-invasive Spinal Cord Neuromodulation after Motor Complete Paraplegia.

    PubMed

    Gad, Parag; Gerasimenko, Yury; Zdunowski, Sharon; Turner, Amanda; Sayenko, Dimitry; Lu, Daniel C; Edgerton, V Reggie

    2017-01-01

    We asked whether coordinated voluntary movement of the lower limbs could be regained in an individual having been completely paralyzed (>4 year) and completely absent of vision (>15 year) using two novel strategies-transcutaneous electrical spinal cord stimulation at selected sites over the spine as well as pharmacological neuromodulation by buspirone. We also asked whether these neuromodulatory strategies could facilitate stepping assisted by an exoskeleton (EKSO, EKSO Bionics, CA) that is designed so that the subject can voluntarily complement the work being performed by the exoskeleton. We found that spinal cord stimulation and drug enhanced the level of effort that the subject could generate while stepping in the exoskeleton. In addition, stimulation improved the coordination patterns of the lower limb muscles resulting in a more continuous, smooth stepping motion in the exoskeleton along with changes in autonomic functions including cardiovascular and thermoregulation. Based on these data from this case study it appears that there is considerable potential for positive synergistic effects after complete paralysis by combining the over-ground step training in an exoskeleton, combined with transcutaneous electrical spinal cord stimulation either without or with pharmacological modulation.

  18. Emotional behavior and arrhythmias induced in cats by hypothalamic stimulation.

    PubMed

    Tashiro, N; Tanaka, T; Fukumoto, T; Hirata, K; Nakao, H

    1985-03-18

    As the relationship between emotional behavior and electrocardiographic (ECG) change induced by hypothalamic stimulation is poorly understood, eighty-four points in various areas within the hypothalamus in conscious cats were stimulated electrically through chronically implanted electrodes, the objective being to clarify the behavior accompanying ECG changes, in particular poststimulus arrhythmias. Forty-one of 84 points elicited behavioral patterns such as defense reaction, pseudo-rage and restlessness (classified as group A), and in twenty-one (51%) of these 41 points arrhythmias occurred after cessation of stimulation. Forty-three of 84 points elicited behavioral patterns including predatory, exploratory and other behavioral responses (classified as group B), and in three (7%) of 43 points, poststimulus arrhythmias followed. Under light anesthesia, stimulations of twofold current intensity were applied at these points, and the incidences of the arrhythmias did not change in either group. The arrhythmia-inducing area in the cases of group A was found to lie dorsal and caudal to the optic chiasma and to extend caudally in the fornix. Three points in the cases of group B were located in the outer area of the aforementioned area. These studies showed that arrhythmias and group A behavior were observed mainly from stimulation of the anterior hypothalamus, whereas stimulation of other areas of the hypothalamus, including the lateral and the posterolateral hypothalamus, produced group B behavior and no arrhythmias.

  19. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    PubMed

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.

    PubMed

    2017-01-01

    Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers reported that pressure injuries were burdensome and reduced their quality of life. Patients and caregivers also noted that electrical stimulation seemed to reduce the time it took the wounds to heal. While electrical stimulation is safe to use (GRADE quality of evidence: high) there is uncertainty about whether it improves wound healing (GRADE quality of evidence: low). In Ontario, publicly funding electrical stimulation for pressure injuries could result in extra costs of $0.77 to $3.85 million yearly for the next 5 years.

  1. Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field

    PubMed Central

    Grimaldi, Piercesare; Schweers, Nicole

    2013-01-01

    Recent studies have demonstrated that strong neural modulations can be evoked with optogenetic stimulation in macaque motor cortex without observing any evoked movements (Han et al., 2009, 2011; Diester et al., 2011). It remains unclear why such perturbations do not generate movements and if conditions exist under which they may evoke movements. In this study, we examine the effects of five optogenetic constructs in the macaque frontal eye field and use electrical microstimulation to assess whether optical perturbation of the local network leads to observable motor changes during optical, electrical, and combined stimulation. We report a significant increase in the probability of evoking saccadic eye movements when low current electrical stimulation is coupled to optical stimulation compared with when electrical stimulation is used alone. Experiments combining channelrhodopsin 2 (ChR2) and electrical stimulation with simultaneous fMRI revealed no discernible fMRI activity at the electrode tip with optical stimulation but strong activity with electrical stimulation. Our findings suggest that stimulation with current ChR2 optogenetic constructs generates subthreshold activity that contributes to the initiation of movements but, in most cases, is not sufficient to evoke a motor response. PMID:24133271

  2. Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant

    PubMed Central

    Ross, Deborah A.; Puñal, Vanessa M.; Agashe, Shruti; Dweck, Isaac; Mueller, Jerel; Grill, Warren M.; Wilson, Blake S.

    2016-01-01

    Understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5–80 μA, 100–300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts. SIGNIFICANCE STATEMENT Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in harnessing the sound frequency representation in the IC. Here, we tested the effects of IC stimulation in monkeys trained to report the sound frequencies they heard. Our results indicate that the IC can be used to introduce a range of frequency percepts and suggest that placement of a greater number of electrode contacts may improve the effectiveness of such implants. PMID:27147659

  3. A cortical neural prosthesis for restoring and enhancing memory

    NASA Astrophysics Data System (ADS)

    Berger, Theodore W.; Hampson, Robert E.; Song, Dong; Goonawardena, Anushka; Marmarelis, Vasilis Z.; Deadwyler, Sam A.

    2011-08-01

    A primary objective in developing a neural prosthesis is to replace neural circuitry in the brain that no longer functions appropriately. Such a goal requires artificial reconstruction of neuron-to-neuron connections in a way that can be recognized by the remaining normal circuitry, and that promotes appropriate interaction. In this study, the application of a specially designed neural prosthesis using a multi-input/multi-output (MIMO) nonlinear model is demonstrated by using trains of electrical stimulation pulses to substitute for MIMO model derived ensemble firing patterns. Ensembles of CA3 and CA1 hippocampal neurons, recorded from rats performing a delayed-nonmatch-to-sample (DNMS) memory task, exhibited successful encoding of trial-specific sample lever information in the form of different spatiotemporal firing patterns. MIMO patterns, identified online and in real-time, were employed within a closed-loop behavioral paradigm. Results showed that the model was able to predict successful performance on the same trial. Also, MIMO model-derived patterns, delivered as electrical stimulation to the same electrodes, improved performance under normal testing conditions and, more importantly, were capable of recovering performance when delivered to animals with ensemble hippocampal activity compromised by pharmacologic blockade of synaptic transmission. These integrated experimental-modeling studies show for the first time that, with sufficient information about the neural coding of memories, a neural prosthesis capable of real-time diagnosis and manipulation of the encoding process can restore and even enhance cognitive, mnemonic processes.

  4. Synaptic depression in the CA1 region of freely behaving mice is highly dependent on afferent stimulation parameters

    PubMed Central

    Goh, Jinzhong J.; Manahan-Vaughan, Denise

    2012-01-01

    Persistent synaptic plasticity has been subjected to intense study in the decades since it was first described. Occurring in the form of long-term potentiation (LTP) and long-term depression (LTD), it shares many cellular and molecular properties with hippocampus-dependent forms of persistent memory. Recent reports of both LTP and LTD occurring endogenously under specific learning conditions provide further support that these forms of synaptic plasticity may comprise the cellular correlates of memory. Most studies of synaptic plasticity are performed using in vitro or in vivo preparations where patterned electrical stimulation of afferent fibers is implemented to induce changes in synaptic strength. This strategy has proven very effective in inducing LTP, even under in vivo conditions. LTD in vivo has proven more elusive: although LTD occurs endogenously under specific learning conditions in both rats and mice, its induction has not been successfully demonstrated with afferent electrical stimulation alone. In this study we screened a large spectrum of protocols that are known to induce LTD either in hippocampal slices or in the intact rat hippocampus, to clarify if LTD can be induced by sole afferent stimulation in the mouse CA1 region in vivo. Low frequency stimulation at 1, 2, 3, 5, 7, or 10 Hz given in the range of 100 through 1800 pulses produced, at best, short-term depression (STD) that lasted for up to 60 min. Varying the administration pattern of the stimuli (e.g., 900 pulses given twice at 5 min intervals), or changing the stimulation intensity did not improve the persistency of synaptic depression. LTD that lasts for at least 24 h occurs under learning conditions in mice. We conclude that a coincidence of factors, such as afferent activity together with neuromodulatory inputs, play a decisive role in the enablement of LTD under more naturalistic (e.g., learning) conditions. PMID:23355815

  5. Effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy

    PubMed Central

    Choi, Jong-Bae

    2016-01-01

    [Purpose] The aim of this study was to investigate the effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. [Subjects and Methods] Nine subjects received the electrical stimulation and traditional dysphagia therapy. Electrical stimulation was applied to stimulate each subject’s facial muscles 30 minutes a day, 5 days a week, for 4 weeks. [Results] Subjects showed significant improvement in cheek and lip strength and oral function after the intervention. [Conclusion] This study demonstrates that electrical stimulation improves facial muscle strength and oral function in stroke patients with dysphagia. PMID:27799689

  6. An Investigation of the Effects of Different Pulse Patterns of Transcutaneous Electrical Nerve Stimulation (TENS) on Perceptual Embodiment of a Rubber Hand in Healthy Human Participants With Intact Limbs.

    PubMed

    Mulvey, Matthew R; Fawkner, Helen J; Johnson, Mark I

    2015-12-01

    The aim of this study was to investigate the strength of perceptual embodiment achieved during an adapted version of the rubber hand illusion (RHI) in response to a series of modified transcutaneous electrical nerve stimulation (TENS) pulse patterns with dynamic temporal and spatial characteristics which are more akin to the mechanical brush stroke in the original RHI. A repeated-measures counterbalanced experimental study was conducted where each participant was exposed to four TENS interventions: continuous pattern TENS; burst pattern TENS (fixed frequency of 2 bursts per second of 100 pulses per second); amplitude-modulated pattern TENS (intensity increasing from zero to a preset level, then back to zero again in a cyclical fashion); and sham (no current) TENS. Participants rated the intensity of the RHI using a three-item numerical rating scale (each item was ranked from 0 to 10). Friedman's analysis of ranks (one-factor repeated measure) was used to test the differences in perceptual embodiment between TENS innervations; alpha was set at p ≤ 0.05. There were statistically significant differences in the intensity of misattribution and perceptual embodiment between sham and active TENS interventions, but no significant differences between the three active TENS conditions (amplitude-modulated TENS, burst TENS, and continuous TENS). Amplitude-modulated and burst TENS produced significantly higher intensity scores for misattribution sensation and perceptual embodiment compared with sham (no current) TENS, whereas continuous TENS did not. The findings provide tentative, but not definitive, evidence that TENS parameters with dynamic spatial and temporal characteristics may produce more intense misattribution sensations and intense perceptual embodiment than parameters with static characteristics (e.g., continuous pulse patterns). © 2015 International Neuromodulation Society.

  7. An integrated multi-electrode-optrode array for in vitro optogenetics

    PubMed Central

    Welkenhuysen, Marleen; Hoffman, Luis; Luo, Zhengxiang; De Proft, Anabel; Van den Haute, Chris; Baekelandt, Veerle; Debyser, Zeger; Gielen, Georges; Puers, Robert; Braeken, Dries

    2016-01-01

    Modulation of a group of cells or tissue needs to be very precise in order to exercise effective control over the cell population under investigation. Optogenetic tools have already demonstrated to be of great value in the study of neuronal circuits and in neuromodulation. Ideally, they should permit very accurate resolution, preferably down to the single cell level. Further, to address a spatially distributed sample, independently addressable multiple optical outputs should be present. In current techniques, at least one of these requirements is not fulfilled. In addition to this, it is interesting to directly monitor feedback of the modulation by electrical registration of the activity of the stimulated cells. Here, we present the fabrication and characterization of a fully integrated silicon-based multi-electrode-optrode array (MEOA) for in vitro optogenetics. We demonstrate that this device allows for artifact-free electrical recording. Moreover, the MEOA was used to reliably elicit spiking activity from ChR2-transduced neurons. Thanks to the single cell resolution stimulation capability, we could determine spatial and temporal activation patterns and spike latencies of the neuronal network. This integrated approach to multi-site combined optical stimulation and electrical recording significantly advances today’s tool set for neuroscientists in their search to unravel neuronal network dynamics. PMID:26832455

  8. [The role of magnetic stimulation in diagnosis of the peripheral nervous system].

    PubMed

    Dressler, D; Benecke, R; Meyer, B U; Conrad, B

    1988-12-01

    Magnetic stimulation has recently been introduced as a new method for stimulation of neuronal tissues. Up to now most investigators were emphasized the advantages of this method for the investigation of the central nervous system. With this paper we want to show that magnetic stimulation may also be useful for the examination of the peripheral nervous system. Both, magnetic and electrical stimulation, seem to employ the same stimulation mechanisms in the nervous tissue. The results obtained with both methods should therefore be comparable. By measuring EMG-latencies after electrical and magnetic stimulation (Fig. 1) the exact site of magnetic stimulation can be determined. Magnetic stimulation offers major advantages over electrical stimulation: 1) Magnetic stimulation is a painless method even when high stimulus intensities are used. 2) Magnetic stimulation can reach deep neuronal structures that are not easily accessible using electrical stimulation (Fig. 2, Fig. 3). 3) Using a wide range of stimulus intensities (Fig. 4, Fig. 5) magnetic stimulation provides a much better descrimination of different components of the compound muscle action potential than electrical stimulation. Magnetic stimulation seems to be a promising new method for the electrodiagnostic examination of pain- sensitive patients, especially when deep-lying peripheral nerves have to be investigated.

  9. Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability.

    PubMed

    Inukai, Yasuto; Saito, Kei; Sasaki, Ryoki; Tsuiki, Shota; Miyaguchi, Shota; Kojima, Sho; Masaki, Mitsuhiro; Otsuru, Naofumi; Onishi, Hideaki

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a representative non-invasive brain stimulation method (NIBS). tDCS increases cortical excitability not only in healthy individuals, but also in stroke patients where it contributes to motor function improvement. Recently, two additional types of transcranial electrical stimulation (tES) methods have been introduced that may also prove beneficial for stimulating cortical excitability; these are transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS). However, comparison of tDCS with tRNS and tACS, in terms of efficacy in cortical excitability alteration, has not been reported thus far. We compared the efficacy of the three different tES methods for increasing cortical excitability using the same subject population and same current intensity. Fifteen healthy subjects participated in this study. Similar stimulation patterns (1.0 mA and 10 min) were used for the three conditions of stimulation (tDCS, tRNS, and tACS). Cortical excitability was explored via single-pulse TMS elicited motor evoked potentials (MEPs). Compared with pre-measurements, MEPs significantly increased with tDCS, tACS, and tRNS ( p < 0.05). Compared with sham measurements, significant increases in MEPs were also observed with tRNS and tACS ( p < 0.05), but not with tDCS. In addition, a significant correlation of the mean stimulation effect was observed between tRNS and tACS ( p = 0.019, r = 0.598). tRNS induced a significant increase in MEP compared with the Pre or Sham at all time points. tRNS resulted in the largest significant increase in MEPs. These findings suggest that tRNS is the most effective tES method and should be considered as part of a treatment plan for improving motor function in stroke patients.

  10. ["Crows' feet wrinkles" in high voltage electric accident--a sign of survival?].

    PubMed

    Grellner, W; Madea, B

    1994-01-01

    A "crowsfoot-like" pattern is considered as being a sign of vitality in fatalities due to the effects of smoke, fire or high voltage (active or reflex contraction of mimic muscles). Introducing the autopsy results of a high voltage accident (66,600 V) it is discussed, whether this phenomenon and the underlying contraction of the facial muscles could also be caused by electrical current in the agony or supravital period. It seems possible that this mechanism of direct muscle contraction anticipates a nerval indirect stimulation of muscle fibres by innervating motoneurones--active or on the basis of a polysynaptic extraneous reflex. If the electrophysiological course discussed should be right, a "crowsfoot-like" pattern in equivalent cases could be interpreted as a vital sign only with great reserve.

  11. [Effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage].

    PubMed

    Li, Xiao-Li; Jia, Tian-Ming; Luan, Bin; Liu, Tao; Yuan, Yan

    2011-04-01

    To study the effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible mechanism. One hundred and eighty 7-day-old neonatal Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group) and HIBD with and without electric stimulation (n=60 each). The HIBD model of neonatal rats was prepared by the Rice-Vennucci method. Electric stimulation at the cerebellar fastigial nucleus was given 24 hrs after the operation in the electric stimulation group once daily and lasted for 30 minutes each time. The other two groups were not subjected to electric stimulation but captured to fix in corresponding periods. Rats were sacrificed 3, 7, 14 and 21 days after stimulations to observe the glial fibrillary acidic protein (GFAP) expression by immunohistochemisty and the ultrastructural changes of astrocytes in the hippocampus under an electron microscope. Immunohistochemical analysis showed the expression of GFAP in the HIBD groups with and without electric stimulation increased significantly compared with the control group on day 3, reached the peak on day 7, and the increased expression remained till to day 21. The GFAP expression in the electric stimulation group was significantly lower than that in the untreated HIBD group at all time points. Under the electron microscope, the astrocytes in the untreated HIBD group were swollen and the amount of organelles was reduced, while the swelling of astrocytes was alleviated and the organelles remained in integrity in the electric stimulation group. The electric stimulation at the cerebellar fastigial nucleus can inhibit the excessive proliferation of astrocytes and relieve the structural damage of astrocytes in neonatal rats following HIBD.

  12. Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation of the motor cortex.

    PubMed Central

    Thompson, P D; Day, B L; Crockard, H A; Calder, I; Murray, N M; Rothwell, J C; Marsden, C D

    1991-01-01

    Activity in descending motor pathways after scalp electrical and magnetic brain stimulation of the motor cortex was recorded from the exposed cervico-medullary junction in six patients having trans-oral surgery of the upper cervical spine. Recordings during deep anaesthesia without muscle paralysis revealed an initial negative potential (D wave) at about 2 ms with electrical stimulation in five of the six patients. This was followed by a muscle potential which obscured any later waveforms. Magnetic stimulation produced clear potentials in only one patient. The earliest wave to magnetic stimulation during deep anaesthesia was 1-2 ms later than the earliest potential to electrical stimulation. Following lightening of the anaesthetic and the administration of muscle relaxants a series of later negative potentials (I waves) were more clearly seen to both electrical and magnetic stimulation. More I waves were recorded to magnetic stimulation during light anaesthesia than during deep anaesthesia. Increasing the intensity of electrical stimulation also produced an extra late I wave. At the highest intensity of magnetic stimulation the latency of the earliest potential was comparable to the D wave to electrical stimulation. The intervals between these various D and I waves corresponded to those previously described for the timing of single motor unit discharge after cortical stimulation. PMID:1654395

  13. Comparison of treatment effect of neuromuscular electrical stimulation and thermal-tactile stimulation on patients with sub-acute dysphagia caused by stroke.

    PubMed

    Byeon, Haewon; Koh, Hyeung Woo

    2016-06-01

    [Purpose] The effectiveness of neuromuscular electrical stimulation in the rehabilitation of swallowing remains controversial. This study compared the effectiveness of neuromuscular electrical stimulation and thermal tactile oral stimulation, a traditional swallowing recovery treatment, in patients with sub-acute dysphagia caused by stroke. [Subjects and Methods] Subjects of the present study were 55 patients diagnosed with dysphagia caused by stroke. This study had a nonequivalent control group pretest-posttest design. [Results] Analysis of pre-post values of videofluoroscopic studies of the neuromuscular electrical stimulation and thermal tactile oral stimulation groups using a paired t-test showed no significant difference between the two groups despite both having decreased mean values of the videofluoroscopic studies after treatment. [Conclusion] This study's findings show that both neuromuscular electrical stimulation and thermal tactile oral stimulation significantly enhanced the swallowing function of patients with sub-acute dysphagia.

  14. Comparison of treatment effect of neuromuscular electrical stimulation and thermal-tactile stimulation on patients with sub-acute dysphagia caused by stroke

    PubMed Central

    Byeon, Haewon; Koh, Hyeung Woo

    2016-01-01

    [Purpose] The effectiveness of neuromuscular electrical stimulation in the rehabilitation of swallowing remains controversial. This study compared the effectiveness of neuromuscular electrical stimulation and thermal tactile oral stimulation, a traditional swallowing recovery treatment, in patients with sub-acute dysphagia caused by stroke. [Subjects and Methods] Subjects of the present study were 55 patients diagnosed with dysphagia caused by stroke. This study had a nonequivalent control group pretest-posttest design. [Results] Analysis of pre-post values of videofluoroscopic studies of the neuromuscular electrical stimulation and thermal tactile oral stimulation groups using a paired t-test showed no significant difference between the two groups despite both having decreased mean values of the videofluoroscopic studies after treatment. [Conclusion] This study’s findings show that both neuromuscular electrical stimulation and thermal tactile oral stimulation significantly enhanced the swallowing function of patients with sub-acute dysphagia. PMID:27390421

  15. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    PubMed Central

    Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.

    2016-01-01

    Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064

  16. Synchronous electrical stimulation of laryngeal muscles: an alternative for enhancing recovery of unilateral recurrent laryngeal nerve paralysis.

    PubMed

    Garcia Perez, Alejandro; Hernández López, Xochiquetzal; Valadez Jiménez, Víctor Manuel; Minor Martínez, Arturo; Ysunza, Pablo Antonio

    2014-07-01

    Although electrical stimulation of the larynx has been widely studied for treating voice disorders, its effectiveness has not been assessed under safety and comfortable conditions. This article describes design, theoretical issues, and preliminary evaluation of an innovative system for transdermal electrical stimulation of the larynx. The proposed design includes synchronization of electrical stimuli with laryngeal neuromuscular activity. To study whether synchronous electrical stimulation of the larynx could be helpful for improving voice quality in patients with dysphonia due to unilateral recurrent laryngeal nerve paralysis (URLNP). A 3-year prospective study was carried out at the Instituto Nacional de Rehabilitacion in the Mexico City. Ten patients were subjected to transdermal current electrical stimulation synchronized with the fundamental frequency of the vibration of the vocal folds during phonation. The stimulation was triggered during the phase of maximum glottal occlusion. A complete acoustic voice analysis was performed before and after the period of electrical stimulation. Acoustic analysis revealed significant improvements in all parameters after the stimulation period. Transdermal synchronous electrical stimulation of vocal folds seems to be a safe and reliable procedure for enhancing voice quality in patients with (URLNP). Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  17. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    NASA Astrophysics Data System (ADS)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  18. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice.

    PubMed

    Park, Dong-Wook; Ness, Jared P; Brodnick, Sarah K; Esquibel, Corinne; Novello, Joseph; Atry, Farid; Baek, Dong-Hyun; Kim, Hyungsoo; Bong, Jihye; Swanson, Kyle I; Suminski, Aaron J; Otto, Kevin J; Pashaie, Ramin; Williams, Justin C; Ma, Zhenqiang

    2018-01-23

    Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 μC/cm 2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.

  19. Electrical and optical co-stimulation in the deaf white cat

    NASA Astrophysics Data System (ADS)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  20. Optimal Achievable Encoding for Brain Machine Interface

    DTIC Science & Technology

    2017-12-22

    dictionary-based encoding approach to translate a visual image into sequential patterns of electrical stimulation in real time , in a manner that...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...networks, and by applying linear decoding to complete recorded populations of retinal ganglion cells for the first time . Third, we developed a greedy

  1. [A comparison of time resolution among auditory, tactile and promontory electrical stimulation--superiority of cochlear implants as human communication aids].

    PubMed

    Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T

    1992-09-01

    Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.

  2. Nanostructured cavity devices for extracellular stimulation of HL-1 cells

    NASA Astrophysics Data System (ADS)

    Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard

    2015-05-01

    Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network. Electronic supplementary information (ESI) available: Comparison of non-filtered and Savitzky-Golay filtered action potential recordings, electrical signals and corresponding optical signals. See DOI: 10.1039/c5nr01690h

  3. Nanomaterial-Enabled Neural Stimulation

    PubMed Central

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  4. On the road to a neuroprosthetic hand: a novel hand grasp orthosis based on functional electrical stimulation.

    PubMed

    Leeb, Robert; Gubler, Miguel; Tavella, Michele; Miller, Heather; Del Millan, Jose R

    2010-01-01

    To patients who have lost the functionality of their hands as a result of a severe spinal cord injury or brain stroke, the development of new techniques for grasping is indispensable for reintegration and independency in daily life. Functional Electrical Stimulation (FES) of residual muscles can reproduce the most dominant grasping tasks and can be initialized by brain signals. However, due to the very complex hand anatomy and current limitations in FES-technology with surface electrodes, these grasp patterns cannot be smoothly executed. In this paper, we present an adaptable passive hand orthosis which is capable of producing natural and smooth movements when coupled with FES. It evenly synchronizes the grasping movements and applied forces on all fingers, allowing for naturalistic gestures and functional grasps of everyday objects. The orthosis is also equipped with a lock, which allows it to remain in the desired position without the need for long-term stimulation. Furthermore, we quantify improvements offered by the orthosis compare them with natural grasps on healthy subjects.

  5. A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.

    PubMed

    Chang, Gwo-Ching

    2013-01-01

    Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.

  6. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment

    PubMed Central

    Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years. Patients and caregivers reported that pressure injuries were burdensome and reduced their quality of life. Patients and caregivers also noted that electrical stimulation seemed to reduce the time it took the wounds to heal. Conclusions While electrical stimulation is safe to use (GRADE quality of evidence: high) there is uncertainty about whether it improves wound healing (GRADE quality of evidence: low). In Ontario, publicly funding electrical stimulation for pressure injuries could result in extra costs of $0.77 to $3.85 million yearly for the next 5 years. PMID:29201261

  7. Influence of electrolytes on growth, phototropism, nutation and surface potential in etiolated cucumber seedlings

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1993-01-01

    A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.

  8. Selective doping of silicon nanowires by means of electron beam stimulated oxide etching.

    PubMed

    Pennelli, G; Totaro, M; Piotto, M

    2012-02-08

    Direct patterning of silicon dioxide by means of electron beam stimulated etching is shown, and a full characterization of exposure dose is presented. For its high dose, this technique is unsuitable for large areas but can be usefully employed like a precision scalpel for removing silicon dioxide by well-localized points. In this work, this technique is applied to the definition of windows through the oxide surrounding top down fabricated n-doped silicon nanowires. These windows will be employed for a selective doping of the nanowire by boron diffusion. In this way, pn junctions can be fabricated in well-localized points in the longitudinal direction of the nanowire, and an electrical contact to the different junctions can be provided. Electrical I-V characteristics of a nanowire with pn longitudinal junctions are reported and discussed. © 2012 American Chemical Society

  9. [Transcutaneous electrical nervous stimulation in the prognosis of Bell's palsy].

    PubMed

    Sabag-Ruiz, Enrique; Osuna-Bernal, Janeth; Brito-Zurita, Olga Rosa; Gómez-Alcalá, Alejandro Vidal; Ornelas-Aguirre, José Manuel

    2009-01-01

    The peripheral face palsy (PFP) is the commonest acute cranial neuropathy. The PFP has a showy clinical pattern which contrasts with a favorable course. Our objective was to determine the sensitivity and specificity for the nervous excitability test (NET) with transcutaneous electrical nerve stimulation (TENS) and the time required to obtain face symmetry. An analytical cross-sectional study was made in 22 patients with PFP. The goal was the time (days) to obtain face symmetry. The sensitivity and specificity was carried out. A sensitivity and specificity of the NET was of 100 %. The correlation corrected by sex and age between both variables was 0.89. The average in days of recovery was smaller in those with a positive NET (p < 0.05) test. The test of nervous excitability for PFP with TENS is safe and simple to use in primary care and urgencies services.

  10. Recovery from forward masking in cochlear implant listeners depends on stimulation mode, level, and electrode location

    PubMed Central

    Chatterjee, Monita; Kulkarni, Aditya M.

    2017-01-01

    Psychophysical recovery from forward masking was measured in adult cochlear implant users of CochlearTM and Advanced BionicsTM devices, in monopolar and in focused (bipolar and tripolar) stimulation modes, at four electrode sites across the arrays, and at two levels (loudness balanced across modes and electrodes). Results indicated a steeper psychophysical recovery from forward masking in monopolar over bipolar and tripolar modes, modified by differential effects of electrode and level. The interactions between factors varied somewhat across devices. It is speculated that psychophysical recovery from forward masking may be driven by different populations of neurons in the different modes, with a broader stimulation pattern resulting in a greater likelihood of response by healthier and/or faster-recovering neurons within the stimulated population. If a more rapid recovery from prior stimulation reflects responses of neurons not necessarily close to the activating site, the spectral pattern of the incoming acoustic signal may be distorted. These results have implications for speech processor implementations using different degrees of focusing of the electric field. The primary differences in the shape of the recovery function were observed in the earlier portion (between 2 and 45 ms) of recovery, which is significant in terms of the speech envelope. PMID:28682084

  11. Cortical Development and Neuroplasticity in Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Sharma, Anu; Cardon, Garrett

    2015-01-01

    Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. PMID:26070426

  12. An experimental vestibular neural prosthesis: design and preliminary results with rhesus monkeys stimulated with modulated pulses.

    PubMed

    Nie, Kaibao; Ling, Leo; Bierer, Steven M; Kaneko, Chris R S; Fuchs, Albert F; Oxford, Trey; Rubinstein, Jay T; Phillips, James O

    2013-06-01

    A vestibular neural prosthesis was designed on the basis of a cochlear implant for treatment of Meniere's disease and other vestibular disorders. Computer control software was developed to generate patterned pulse stimuli for exploring optimal parameters to activate the vestibular nerve. Two rhesus monkeys were implanted with the prototype vestibular prosthesis and they were behaviorally evaluated post implantation surgery. Horizontal and vertical eye movement responses to patterned electrical pulse stimulations were collected on both monkeys. Pulse amplitude modulated (PAM) and pulse rate modulated (PRM) trains were applied to the lateral canal of each implanted animal. Robust slow-phase nystagmus responses following the PAM or PRM modulation pattern were observed in both implanted monkeys in the direction consistent with the activation of the implanted canal. Both PAM and PRM pulse trains can elicit a significant amount of in-phase modulated eye velocity changes and they could potentially be used for efficiently coding head rotational signals in future vestibular neural prostheses.

  13. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    NASA Technical Reports Server (NTRS)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  14. Effects of electrical stimulation on the histological properties of wounds in diabetic mice.

    PubMed

    Thawer, H A; Houghton, P E

    2001-01-01

    The purpose of this study was to identify mechanisms underlying electrically stimulated wound closure in diabetic mice. Adult male mice (n = 58) with full-thickness excisional wounds were treated five times using negative polarity over the wound site for 15 minutes each over a 16-day period with sham (0 Volts) or 5.0, 10.0, 12.5 Volts. In addition, animals (diabetic (n = 33) and nondiabetic (n = 22)) received treatments of electrical stimulation (12.5 V), or sham treatment (0 V) at wound sites which were then harvested and prepared for histological analysis at 2, 8, and 16 days postwounding. Using computerized image analysis of sections stained with a picro sirus red-fast green staining technique, we found that increasing doses of electrical stimulation reduced collagen/noncollagenous protein ratios measured in the superficial scar of nondiabetic animals, with no effect in diabetic animals. In the deep scar, lower doses of electrical stimulation (5.0 V) produced significantly (p < 0.01) increased collagen deposition in wounds of nondiabetic animals compared with sham controls. Higher doses of electrical stimulation (12.5 V) were required to produce changes in diabetic animals than were observed in nondiabetic animals. These results suggest that electrical stimulation altered collagen deposition in excisional wounds of diabetic and nondiabetic animals. Electrical stimulation had a differential effect on wound healing in diabetic compared with nondiabetic animals. These data speak to the need to study the effects of electrical stimulation on healing in disease-specific models.

  15. Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats.

    PubMed

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing

    2009-10-01

    Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.

  16. Microprocessor controlled movement of liquid gastric content using sequential neural electrical stimulation

    PubMed Central

    Mintchev, M; Sanmiguel, C; Otto, S; Bowes, K

    1998-01-01

    Background—Gastric electrical stimulation has been attempted for several years with little success. 
Aims—To determine whether movement of liquid gastric content could be achieved using microprocessor controlled sequential electrical stimulation. 
Methods—Eight anaesthetised dogs underwent laparotomy and implantation of four sets of bipolar stainless steel wire electrodes. Each set consisted of two to six electrodes (10×0.25 mm, 3 cm apart) implanted circumferentially. The stomach was filled with water and the process of gastric emptying was monitored. Artificial contractions were produced using microprocessor controlled phase locked bipolar four second trains of 50 Hz, 14 V (peak to peak) rectangular voltage. In four of the dogs four force transducers were implanted close to each circumferential electrode set. In one gastroparetic patient the effect of direct electrical stimulation was determined at laparotomy. 
Results—Using the above stimulating parameters circumferential gastric contractions were produced which were artificially propagated distally by phase locking the stimulating voltage. Averaged stimulated gastric emptying times were significantly shorter than spontaneus emptying times (t1/2 6.7 (3.0) versus 25.3 (12.9) minutes, p<0.01). Gastric electrical stimulation of the gastroparetic patient at operation produced circumferential contractions. 
Conclusions—Microprocessor controlled electrical stimulation produced artificial peristalsis and notably accelerated the movement of liquid gastric content. 

 Keywords: gastric electrical stimulation; gastric motility PMID:9824339

  17. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    PubMed

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Platinum nanowire microelectrode arrays for neurostimulation applications: Fabrication, characterization, and in-vitro retinal cell stimulation

    NASA Astrophysics Data System (ADS)

    Whalen, John J., III

    Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium hexachloroplatinate solution was characterized, and physical properties of electrodeposited thin films were correlated to deposition conditions used. Second, platinum nanowires were fabricated and their properties characterized, using similar deposition conditions. Third, the feasibility of fabricating platinum nanowire stimulating electrode arrays with a variety of surface structures was demonstrated. Fourth, the enhanced charge transfer characteristics of these structures were demonstrated using electrochemical techniques. Finally, retinal cell stimulation was demonstrated using electrodes from platinum nanowire arrays.

  19. Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients.

    PubMed

    Groehs, Raphaela V; Antunes-Correa, Ligia M; Nobre, Thais S; Alves, Maria-Janieire Nn; Rondon, Maria Urbana Pb; Barreto, Antônio Carlos Pereira; Negrão, Carlos E

    2016-10-01

    We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with decompensated chronic heart failure. © The European Society of Cardiology 2016.

  20. PI3K Phosphorylation Is Linked to Improved Electrical Excitability in an In Vitro Engineered Heart Tissue Disease Model System.

    PubMed

    Kana, Kujaany; Song, Hannah; Laschinger, Carol; Zandstra, Peter W; Radisic, Milica

    2015-09-01

    Myocardial infarction, a prevalent cardiovascular disease, is associated with cardiomyocyte cell death, and eventually heart failure. Cardiac tissue engineering has provided hopes for alternative treatment options, and high-fidelity tissue models for drug discovery. The signal transduction mechanisms relayed in response to mechanoelectrical (physical) stimulation or biochemical stimulation (hormones, cytokines, or drugs) in engineered heart tissues (EHTs) are poorly understood. In this study, an EHT model was used to elucidate the signaling mechanisms involved when insulin was applied in the presence of electrical stimulation, a stimulus that mimics functional heart tissue environment in vitro. EHTs were insulin treated, electrically stimulated, or applied in combination (insulin and electrical stimulation). Electrical excitability parameters (excitation threshold and maximum capture rate) were measured. Protein kinase B (AKT) and phosphatidylinositol-3-kinase (PI3K) phosphorylation revealed that insulin and electrical stimulation relayed electrical excitability through two separate signaling cascades, while there was a negative crosstalk between sustained activation of AKT and PI3K.

  1. Auditory Performance and Electrical Stimulation Measures in Cochlear Implant Recipients With Auditory Neuropathy Compared With Severe to Profound Sensorineural Hearing Loss.

    PubMed

    Attias, Joseph; Greenstein, Tally; Peled, Miriam; Ulanovski, David; Wohlgelernter, Jay; Raveh, Eyal

    The aim of the study was to compare auditory and speech outcomes and electrical parameters on average 8 years after cochlear implantation between children with isolated auditory neuropathy (AN) and children with sensorineural hearing loss (SNHL). The study was conducted at a tertiary, university-affiliated pediatric medical center. The cohort included 16 patients with isolated AN with current age of 5 to 12.2 years who had been using a cochlear implant for at least 3.4 years and 16 control patients with SNHL matched for duration of deafness, age at implantation, type of implant, and unilateral/bilateral implant placement. All participants had had extensive auditory rehabilitation before and after implantation, including the use of conventional hearing aids. Most patients received Cochlear Nucleus devices, and the remainder either Med-El or Advanced Bionics devices. Unaided pure-tone audiograms were evaluated before and after implantation. Implantation outcomes were assessed by auditory and speech recognition tests in quiet and in noise. Data were also collected on the educational setting at 1 year after implantation and at school age. The electrical stimulation measures were evaluated only in the Cochlear Nucleus implant recipients in the two groups. Similar mapping and electrical measurement techniques were used in the two groups. Electrical thresholds, comfortable level, dynamic range, and objective neural response telemetry threshold were measured across the 22-electrode array in each patient. Main outcome measures were between-group differences in the following parameters: (1) Auditory and speech tests. (2) Residual hearing. (3) Electrical stimulation parameters. (4) Correlations of residual hearing at low frequencies with electrical thresholds at the basal, middle, and apical electrodes. The children with isolated AN performed equally well to the children with SNHL on auditory and speech recognition tests in both quiet and noise. More children in the AN group than the SNHL group were attending mainstream educational settings at school age, but the difference was not statistically significant. Significant between-group differences were noted in electrical measurements: the AN group was characterized by a lower current charge to reach subjective electrical thresholds, lower comfortable level and dynamic range, and lower telemetric neural response threshold. Based on pure-tone audiograms, the children with AN also had more residual hearing before and after implantation. Highly positive coefficients were found on correlation analysis between T levels across the basal and midcochlear electrodes and low-frequency acoustic thresholds. Prelingual children with isolated AN who fail to show expected oral and auditory progress after extensive rehabilitation with conventional hearing aids should be considered for cochlear implantation. Children with isolated AN had similar pattern as children with SNHL on auditory performance tests after cochlear implantation. The lower current charge required to evoke subjective and objective electrical thresholds in children with AN compared with children with SNHL may be attributed to the contribution to electrophonic hearing from the remaining neurons and hair cells. In addition, it is also possible that mechanical stimulation of the basilar membrane, as in acoustic stimulation, is added to the electrical stimulation of the cochlear implant.

  2. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog

    NASA Astrophysics Data System (ADS)

    Yoo, Paul B.; Lubock, Nathan B.; Hincapie, Juan G.; Ruble, Stephen B.; Hamann, Jason J.; Grill, Warren M.

    2013-04-01

    Objective. Not fully understanding the type of axons activated during vagus nerve stimulation (VNS) is one of several factors that limit the clinical efficacy of VNS therapies. The main goal of this study was to characterize the electrical recruitment of both myelinated and unmyelinated fibers within the cervical vagus nerve. Approach. In anesthetized dogs, recording nerve cuff electrodes were implanted on the vagus nerve following surgical excision of the epineurium. Both the vagal electroneurogram (ENG) and laryngeal muscle activity were recorded in response to stimulation of the right vagus nerve. Main results. Desheathing the nerve significantly increased the signal-to-noise ratio of the ENG by 1.2 to 9.9 dB, depending on the nerve fiber type. Repeated VNS following nerve transection or neuromuscular block (1) enabled the characterization of A-fibers, two sub-types of B-fibers, and unmyelinated C-fibers, (2) confirmed the absence of stimulation-evoked reflex compound nerve action potentials in both the ipsilateral and contralateral vagus nerves, and (3) provided evidence of stimulus spillover into muscle tissue surrounding the stimulating electrode. Significance. Given the anatomical similarities between the canine and human vagus nerves, the results of this study provide a template for better understanding the nerve fiber recruitment patterns associated with VNS therapies.

  3. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds

    PubMed Central

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2011-01-01

    Background This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. Methods and results After electrical stimulation, the number of multinucleated myotubes on the electrospun polyurethane carbon nanotube scaffolds was significantly larger than that on nonconductive electrospun polyurethane scaffolds (5% and 10% w/v polyurethane). In the absence of electrical stimulation, myoblasts also differentiated on the electrospun polyurethane carbon nanotube scaffolds, as evidenced by expression of Myf-5 and myosin heavy chains. The myotube number and length were significantly greater on the electrospun carbon nanotubes with 10% w/v polyurethane than on those with 5% w/v polyurethane. The results suggest that, in the absence of electrical stimulation, skeletal myotube formation is dependent on the morphology of the electrospun scaffolds, while with electrical stimulation it is dependent on the electrical conductivity of the scaffolds. Conclusion This study indicates that electrospun polyurethane carbon nanotubes can be used to modulate skeletal myotube formation with or without application of electrical stimulation. PMID:22072883

  4. A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro

    PubMed Central

    Tateno, Takashi; Nishikawa, Jun

    2014-01-01

    In this report, we describe the system integration of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip, capable of both stimulation and recording of neurons or neural tissues, to investigate electrical signal propagation within cellular networks in vitro. The overall system consisted of three major subunits: a 5.0 × 5.0 mm CMOS IC chip, a reconfigurable logic device (field-programmable gate array, FPGA), and a PC. To test the system, microelectrode arrays (MEAs) were used to extracellularly measure the activity of cultured rat cortical neurons and mouse cortical slices. The MEA had 64 bidirectional (stimulation and recording) electrodes. In addition, the CMOS IC chip was equipped with dedicated analog filters, amplification stages, and a stimulation buffer. Signals from the electrodes were sampled at 15.6 kHz with 16-bit resolution. The measured input-referred circuitry noise was 10.1 μ V root mean square (10 Hz to 100 kHz), which allowed reliable detection of neural signals ranging from several millivolts down to approximately 33 μ Vpp. Experiments were performed involving the stimulation of neurons with several spatiotemporal patterns and the recording of the triggered activity. An advantage over current MEAs, as demonstrated by our experiments, includes the ability to stimulate (voltage stimulation, 5-bit resolution) spatiotemporal patterns in arbitrary subsets of electrodes. Furthermore, the fast stimulation reset mechanism allowed us to record neuronal signals from a stimulating electrode around 3 ms after stimulation. We demonstrate that the system can be directly applied to, for example, auditory neural prostheses in conjunction with an acoustic sensor and a sound processing system. PMID:25346683

  5. A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro.

    PubMed

    Tateno, Takashi; Nishikawa, Jun

    2014-01-01

    In this report, we describe the system integration of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip, capable of both stimulation and recording of neurons or neural tissues, to investigate electrical signal propagation within cellular networks in vitro. The overall system consisted of three major subunits: a 5.0 × 5.0 mm CMOS IC chip, a reconfigurable logic device (field-programmable gate array, FPGA), and a PC. To test the system, microelectrode arrays (MEAs) were used to extracellularly measure the activity of cultured rat cortical neurons and mouse cortical slices. The MEA had 64 bidirectional (stimulation and recording) electrodes. In addition, the CMOS IC chip was equipped with dedicated analog filters, amplification stages, and a stimulation buffer. Signals from the electrodes were sampled at 15.6 kHz with 16-bit resolution. The measured input-referred circuitry noise was 10.1 μ V root mean square (10 Hz to 100 kHz), which allowed reliable detection of neural signals ranging from several millivolts down to approximately 33 μ Vpp. Experiments were performed involving the stimulation of neurons with several spatiotemporal patterns and the recording of the triggered activity. An advantage over current MEAs, as demonstrated by our experiments, includes the ability to stimulate (voltage stimulation, 5-bit resolution) spatiotemporal patterns in arbitrary subsets of electrodes. Furthermore, the fast stimulation reset mechanism allowed us to record neuronal signals from a stimulating electrode around 3 ms after stimulation. We demonstrate that the system can be directly applied to, for example, auditory neural prostheses in conjunction with an acoustic sensor and a sound processing system.

  6. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle

    PubMed Central

    Fernández-Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don

    2016-01-01

    A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints. PMID:27303311

  7. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle.

    PubMed

    Fernández-Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don

    2016-01-01

    A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints.

  8. The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures.

    PubMed

    Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Zhao, Zhiqing; Long, Yuyang; Fang, Yuan; Wang, Meizhen; Yin, Jun; Shen, Dongsheng

    2015-05-01

    Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h(-1), which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8%, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1% more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.

  9. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation.

    PubMed

    Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki

    2017-01-01

    Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis.

  10. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    PubMed Central

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  11. Non-ultraviolet-based patterning of polymer structures by optically induced electrohydrodynamic instability

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Yu, Haibo; Liu, Na; Mai, John D.; Liu, Lianqing; Lee, Gwo-Bin; Jung Li, Wen

    2013-11-01

    We report here an approach to rapidly construct organized formations of micron-scale pillars from a thin polydimethylsiloxane (PDMS) film by optically induced electrohydrodynamic instability (OEHI). In OEHI, a heterogeneous electric field is induced across two thin fluidic layers by stimulating a photoconductive thin film in a parallel-plate capacitor configuration with visible light. We demonstrated that this OEHI method could control nucleation sites of pillars formed by electrohydrodynamic instability. To investigate this phenomenon, a tangential electric force component is assumed to have arisen from the surface polarization charge and is introduced into the traditional perfect dielectric model for PDMS films. Numerical simulation results showed that this tangential electric force played an important role in OEHI.

  12. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...Sept 2015 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury 5a...evaluate the restoration of bladder and bowel function using electrical stimulation and block after spinal cord injury in human subjects. All staff

  13. Effect of Fixed Versus Adjusted Transcutaneous Electrical Nerve Stimulation Amplitude on Chronic Mechanical Low Back Pain.

    PubMed

    Elserty, Noha; Kattabei, Omaima; Elhafez, Hytham

    2016-07-01

    This study aimed to investigate the effect of adjusting pulse amplitude of transcutaneous electrical nerve stimulation versus fixed pulse amplitude in treatment of chronic mechanical low back pain. Randomized clinical trial. El-sahel Teaching Hospital, Egypt. Forty-five patients with chronic low back pain assigned to three equal groups. Their ages ranged from 20 to 50 years. The three groups received the same exercise program. Group A received transcutaneous electrical nerve stimulation with fixed pulse amplitude for 40 minutes. Group B received transcutaneous electrical nerve stimulation with adjusted pulse amplitude for 40 minutes, with the pulse amplitude adjusted every 5 minutes. Group C received exercises only. Treatment sessions were applied three times per week for 4 weeks for the three groups. A visual analogue scale was used to assess pain severity, the Oswestry Disability Index was used to assess functional level, and a dual inclinometer was used to measure lumbar range of motion. Evaluations were performed before and after treatment. Visual analogue scale, Oswestry Disability Index, and back range of motion significantly differed between the two groups that received transcutaneous electrical nerve stimulation and the control group and did not significantly differ between fixed and adjusted pulse amplitude of transcutaneous electrical nerve stimulation. Adjusting pulse amplitude of transcutaneous electrical nerve stimulation does not produce a difference in the effect of transcutaneous electrical nerve stimulation used to treat chronic low back pain.

  14. An interval-possibilistic basic-flexible programming method for air quality management of municipal energy system through introducing electric vehicles.

    PubMed

    Yu, L; Li, Y P; Huang, G H; Shan, B G

    2017-09-01

    Contradictions of sustainable transportation development and environmental issues have been aggravated significantly and been one of the major concerns for energy systems planning and management. A heavy emphasis is placed on stimulation of electric vehicles (EVs) to handle these problems associated with various complexities and uncertainties in municipal energy system (MES). In this study, an interval-possibilistic basic-flexible programming (IPBFP) method is proposed for planning MES of Qingdao, where uncertainties expressed as interval-flexible variables and interval-possibilistic parameters can be effectively reflected. Support vector regression (SVR) is used for predicting electricity demand of the city under various scenarios. Solutions of EVs stimulation levels and satisfaction levels in association with flexible constraints and predetermined necessity degrees are analyzed, which can help identify the optimized energy-supply patterns that could plunk for improvement of air quality and hedge against violation of soft constraints. Results disclose that largely developing EVs can help facilitate the city's energy system with an environment-effective way. However, compared to the rapid growth of transportation, the EVs' contribution of improving the city's air quality is limited. It is desired that, to achieve an environmentally sustainable MES, more concerns should be focused on the integration of increasing renewable energy resources, stimulating EVs as well as improving energy transmission, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    PubMed

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  16. Electrical stimulation in exercise training

    NASA Technical Reports Server (NTRS)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve muscle strength for over a century. Bigelow reported in 1894, for example, the use of electrical stimulation on a young man for the purpose of increasing muscle strength. Employing a rapidly alternating sinusoidal induced current and a dynamometer for strength testing, Bigelow reported that the total lifting capacity of a patient increased from 4328 pounds to 4639 pounds after only 25 minutes of stimulation. In 1965, Massey et al. reported on the use of an Isotron electrical stimulator that emitted a high frequency current. Interestingly enough, the frequencies used by Massey et al. and the frequencies used by Bigelow in 1894 were in the same range of frequencies reported by Kots as being the most effective in strength development. It would seem the Russian secret of high frequency electrical stimulation for strength development, then, is not a modern development at all.

  17. Interaction between telencephalic signals and respiratory dynamics in songbirds

    PubMed Central

    Méndez, Jorge M.; Mindlin, Gabriel B.

    2012-01-01

    The mechanisms by which telencephalic areas affect motor activities are largely unknown. They could either take over motor control from downstream motor circuits or interact with the intrinsic dynamics of these circuits. Both models have been proposed for telencephalic control of respiration during learned vocal behavior in birds. The interactive model postulates that simple signals from the telencephalic song control areas are sufficient to drive the nonlinear respiratory network into producing complex temporal sequences. We tested this basic assumption by electrically stimulating telencephalic song control areas and analyzing the resulting respiratory patterns in zebra finches and in canaries. We found strong evidence for interaction between the rhythm of stimulation and the intrinsic respiratory rhythm, including naturally emerging subharmonic behavior and integration of lateralized telencephalic input. The evidence for clear interaction in our experimental paradigm suggests that telencephalic vocal control also uses a similar mechanism. Furthermore, species differences in the response of the respiratory system to stimulation show parallels to differences in the respiratory patterns of song, suggesting that the interactive production of respiratory rhythms is manifested in species-specific specialization of the involved circuitry. PMID:22402649

  18. The effect of subthreshold continuous electrical stimulation on the facial function of patients with Bell's palsy.

    PubMed

    Kim, Jin; Choi, Jae Young

    2016-01-01

    The drug regimen plus electrical stimulation was more effective in treating Bell's palsy than the conventional drug treatment alone. The effectiveness of such a sub-threshold, continuous, low frequency electrical stimulation suggests a new therapeutic approach to accelerate nerve regeneration and improve functional recovery after injury. The purpose of this study was to determine whether sub-threshold, continuous electrical stimulation at 20 Hz facilitates functional recovery of patients with Bell's palsy. The authors performed a prospective randomized study that included 60 patients with mild-to-moderate grade Bell's palsy (HB grade ≤4, SB grade ≥40), to evaluate the effect of developed electrical stimulation on the resolution of symptoms. Thirty patients were treated with prednisolone or/and acyclovir plus electrical stimulation within 7 days of the onset of symptoms. The other 30 patients were treated with only prednisolone or/and acyclovir as a control group. The overall rate of patient recovery among those treated with prednisolone or/and acyclovir plus electrical stimulation (96%) was significantly better (p < 0.05) than the rate among those treated with only prednisolone or/and acyclovir (88%).

  19. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    NASA Astrophysics Data System (ADS)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  20. [Electrical acupoint stimulation increases athletes' rapid strength].

    PubMed

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  1. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation

    PubMed Central

    Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki

    2017-01-01

    Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis. PMID:28883745

  2. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    PubMed

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.

  3. Modeling the Electrode-Neuron Interface of Cochlear Implants: Effects of Neural Survival, Electrode Placement, and the Partial Tripolar Configuration

    PubMed Central

    Goldwyn, Joshua H.; Bierer, Steven M.; Bierer, Julie A.

    2010-01-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategies that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. PMID:20580801

  4. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    PubMed

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  5. Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke.

    PubMed

    Hong, Il Ki; Choi, Jong Bae; Lee, Jong Ha

    2012-09-01

    Paresis of the upper extremity after stroke is not effectively solved by existing therapies. We investigated whether mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic upper extremity in patients with chronic stroke and induced cortical changes. Fourteen subjects with chronic stroke (≥12 months) were randomly allocated to receive mental imagery training combined with electromyogram-triggered electric stimulation (n=7) or generalized functional electric stimulation (n=7) on the forearm extensor muscles of the paretic extremity in 2 20-minute daily sessions 5 days a week for 4 weeks. The upper extremity component of the Fugl-Meyer Motor Assessment, the Motor Activity Log, the modified Barthel Index, and (18)F-fluorodeoxyglucose brain positron emission tomography were measured before and after the intervention. The group receiving mental imagery training combined with electromyogram-triggered electric stimulation exhibited significant improvements in the upper extremity component of the Fugl-Meyer Motor Assessment after intervention (median, 7; interquartile range, 5-8; P<0.05), but the group receiving functional electric stimulation did not (median, 0; interquartile range, 0-3). Differences in score changes between the 2 groups were significant. The mental imagery training combined with electromyogram-triggered electric stimulation group showed significantly increased metabolism in the contralesional supplementary motor, precentral, and postcentral gyri (P(uncorrected)<0.001) after the intervention, but the functional electric stimulation group showed no significant differences. Mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic extremity in patients with chronic stroke. The intervention increased metabolism in the contralesional motor-sensory cortex. Clinical Trial Registration- URL: https://e-irb.khmccri.or.kr/eirb/receipt/index.html?code=02&status=5. Unique identifier: KHUHMDIRB 1008-02.

  6. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.

    PubMed

    Zamaninezhad, Ladan; Hohmann, Volker; Büchner, Andreas; Schädler, Marc René; Jürgens, Tim

    2017-02-01

    This study introduces a speech intelligibility model for cochlear implant users with ipsilateral preserved acoustic hearing that aims at simulating the observed speech-in-noise intelligibility benefit when receiving simultaneous electric and acoustic stimulation (EA-benefit). The model simulates the auditory nerve spiking in response to electric and/or acoustic stimulation. The temporally and spatially integrated spiking patterns were used as the final internal representation of noisy speech. Speech reception thresholds (SRTs) in stationary noise were predicted for a sentence test using an automatic speech recognition framework. The model was employed to systematically investigate the effect of three physiologically relevant model factors on simulated SRTs: (1) the spatial spread of the electric field which co-varies with the number of electrically stimulated auditory nerves, (2) the "internal" noise simulating the deprivation of auditory system, and (3) the upper bound frequency limit of acoustic hearing. The model results show that the simulated SRTs increase monotonically with increasing spatial spread for fixed internal noise, and also increase with increasing the internal noise strength for a fixed spatial spread. The predicted EA-benefit does not follow such a systematic trend and depends on the specific combination of the model parameters. Beyond 300 Hz, the upper bound limit for preserved acoustic hearing is less influential on speech intelligibility of EA-listeners in stationary noise. The proposed model-predicted EA-benefits are within the range of EA-benefits shown by 18 out of 21 actual cochlear implant listeners with preserved acoustic hearing. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation

    PubMed Central

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-01-01

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.8 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.86) and depth (r = 0.88) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI: http://dx.doi.org/10.7554/eLife.18834.001 PMID:28169833

  8. Transcranial magnetic stimulation--may be useful as a preoperative screen of motor tract function.

    PubMed

    Galloway, Gloria M; Dias, Brennan R; Brown, Judy L; Henry, Christina M; Brooks, David A; Buggie, Ed W

    2013-08-01

    Transcranial motor stimulation with noninvasive cortical surface stimulation, using a high-intensity magnetic field referred to as transcranial magnetic stimulation generally, is considered a nonpainful technique. In contrast, transcranial electric stimulation of the motor tracts typically cannot be done in unanesthesized patients. Intraoperative monitoring of motor tract function with transcranial electric stimulation is considered a standard practice in many institutions for patients during surgical procedures in which there is potential risk of motor tract impairment so that the risk of paraplegia or paraparesis can be reduced. Because transcranial electric stimulation cannot be typically done in the outpatient setting, transcranial magnetic stimulation may be able to provide a well-tolerated method for evaluation of the corticospinal motor tracts before surgery. One hundred fifty-five patients aged 5 to 20 years were evaluated preoperatively with single-stimulation nonrepetitive transcranial magnetic stimulation for preoperative assessment. The presence of responses to transcranial magnetic stimulation reliably predicted the presence of responses to transcranial electric stimulation intraoperatively. No complications occurred during the testing, and findings were correlated to the clinical history and used in the setup of the surgical monitoring.

  9. Electrical stimulation of anal sphincter or pudendal nerve improves anal sphincter pressure.

    PubMed

    Damaser, Margot S; Salcedo, Levilester; Wang, Guangjian; Zaszczurynski, Paul; Cruz, Michelle A; Butler, Robert S; Jiang, Hai-Hong; Zutshi, Massarat

    2012-12-01

    Stimulation of the pudendal nerve or the anal sphincter could provide therapeutic options for fecal incontinence with little involvement of other organs. The goal of this project was to assess the effects of pudendal nerve and anal sphincter stimulation on bladder and anal pressures. Ten virgin female Sprague Dawley rats were randomly allocated to control (n = 2), perianal stimulation (n = 4), and pudendal nerve stimulation (n = 4) groups. A monopolar electrode was hooked to the pudendal nerve or placed on the anal sphincter. Aballoon catheter was inserted into the anus to measure anal pressure, and a catheter was inserted into the bladder via the urethra to measure bladder pressure. Bladder and anal pressures were measured with different electrical stimulation parameters and different timing of electrical stimulation relative to spontaneous anal sphincter contractions. Increasing stimulation current had the most dramatic effect on both anal and bladder pressures. An immediate increase in anal pressure was observed when stimulating either the anal sphincter or the pudendal nerve at stimulation values of 1 mA or 2 mA. No increase in anal pressure was observed for lower current values. Bladder pressure increased at high current during anal sphincter stimulation, but not as much as during pudendal nerve stimulation. Increased bladder pressure during anal sphincter stimulation was due to contraction of the abdominal muscles. Electrical stimulation caused an increase in anal pressures with bladder involvement only at high current. These initial results suggest that electrical stimulation can increase anal sphincter pressure, enhancing continence control.

  10. Different Movement of Hyolaryngeal Structures by Various Application of Electrical Stimulation in Normal Individuals

    PubMed Central

    Kim, Sae Hyun; Oh, Byung-Mo; Han, Tae Ryun; Jeong, Ho Joong

    2015-01-01

    Objective To identify the differences in the movement of the hyoid bone and the vocal cord with and without electrical stimulation in normal subjects. Methods Two-dimensional motion analysis using a videofluoroscopic swallowing study with and without electrical stimulation was performed. Surface electrical stimulation was applied during swallowing using electrodes placed at three different locations on each subject. All subjects were analyzed three times using the following electrode placements: with one pair of electrodes on the suprahyoid muscles and a second pair on the infrahyoid muscles (SI); with placement of the electrode pairs on only the infrahyoid muscles (IO); and with the electrode pairs placed vertically on the suprahyoid and infrahyoid muscles (SIV). Results The main outcomes of this study demonstrated an initial downward displacement as well as different movements of the hyoid bone with the three electrode placements used for electrical stimulation. The initial positions of the hyoid bone with the SI and IO placements resulted in an inferior and anterior displaced position. During swallowing, the hyoid bone moved in a more superior and less anterior direction, resulting in almost the same peak position compared with no electrical stimulation. Conclusion These results demonstrate that electrical stimulation caused an initial depression of the hyoid bone, which had nearly the same peak position during swallowing. Electrical stimulation during swallowing was not dependent on the position of the electrode on the neck, such as on the infrahyoid or on both the suprahyoid and infrahyoid muscles. PMID:26361589

  11. Neurobiology of aggressive behavior.

    PubMed

    Delgado, J M

    1976-10-30

    Causality, neurological mechanisms, and behavioral manifestations may be heterogeneous in different forms of aggressive behavior, but some elements are shared by all forms of violence, including the necessity of sensory inputs, the coding and decoding of information according to acquired frames of reference, and the activation of pre-established patterns of response. Understanding and prevention of violence requires a simultaneous study of its social, cultural, and economic aspects, at parity with an investigation of its neurological mechanisms. Part of the latter information may be obtained through animal experimentation, preferably in non-human primates. Feline predatory behavior has no equivalent in man, and therefore its hypothalamic representation probably does not exist in the human brain. Codes of information, frames of reference for sensory perception, axis to evaluate threats, and formulas for aggressive performance are not established genetically but must be learned individually. We are born with the capacity to learn aggressive behavior, but not with established patterns of violence. Mechanisms for fighting which are acquired by individual experience may be triggered in a similar way by sensory cues, volition, and by electrical stimulation of specific cerebral areas. In monkeys, aggressive responses may be modified by changing the hierarchical position of the stimulated animal, indicating the physiological quality of the neurological mechanisms electrically activated.

  12. Frequency dependence of behavioral modulation by hippocampal electrical stimulation

    PubMed Central

    La Corte, Giorgio; Wei, Yina; Chernyy, Nick; Gluckman, Bruce J.

    2013-01-01

    Electrical stimulation offers the potential to develop novel strategies for the treatment of refractory medial temporal lobe epilepsy. In particular, direct electrical stimulation of the hippocampus presents the opportunity to modulate pathological dynamics at the ictal focus, although the neuroanatomical substrate of this region renders it susceptible to altering cognition and affective processing as a side effect. We investigated the effects of three electrical stimulation paradigms on separate groups of freely moving rats (sham, 8-Hz and 40-Hz sine-wave stimulation of the ventral/intermediate hippocampus, where 8- and 40-Hz stimulation were chosen to mimic naturally occurring hippocampal oscillations). Animals exhibited attenuated locomotor and exploratory activity upon stimulation at 40 Hz, but not at sham or 8-Hz stimulation. Such behavioral modifications were characterized by a significant reduction in rearing frequency, together with increased freezing behavior. Logistic regression analysis linked the observed changes in animal locomotion to 40-Hz electrical stimulation independently of time-related variables occurring during testing. Spectral analysis, conducted to monitor the electrophysiological profile in the CA1 area of the dorsal hippocampus, showed a significant reduction in peak theta frequency, together with reduced theta power in the 40-Hz vs. the sham stimulation animal group, independent of locomotion speed (theta range: 4–12 Hz). These findings contribute to the development of novel and safe medical protocols by indicating a strategy to constrain or optimize parameters in direct hippocampal electrical stimulation. PMID:24198322

  13. Modelling the cost-utility of bio-electric stimulation therapy compared to standard care in the treatment of elderly patients with chronic non-healing wounds in the UK.

    PubMed

    Clegg, John P; Guest, Julian F

    2007-04-01

    To estimate the cost-utility of bio-electric stimulation therapy (Posifect) compared to standard care in elderly patients with chronic, non-healing wounds of > 6 months duration, from the perspective of the National Health Service (NHS) in the UK. Clinical and resource use data from a 16 week clinical evaluation of bio-electric stimulation therapy among patients who had recalcitrant wounds were combined with utility data obtained from a standard gamble analysis to construct a 16 week Markov model. The model considers the decision by a clinician to continue with a patient's previous care plan or treat with bio-electric stimulation therapy. Unit resource costs at 2005/2006 prices were applied to the resource utilisation estimates within the model, enabling the cost-utility of bio-electric stimulation therapy compared to standard care to be estimated. The acquisition cost of Posifect had not been decided at the time of performing this study. Hence, the base case analysis used a cost of 50 pounds per dressing. 33% of all wounds are expected to heal within 16 weeks after the start of bio-electric stimulation therapy. Consequently, using bio-electric stimulation therapy is expected to lead to a 51% decrease in the number of domiciliary clinician visits, from 4.7 to 2.3 per week. The model also showed that using bio-electric stimulation therapy instead of patients' standard care is expected to reduce the NHS cost of managing them by 16% from 2287 pounds (95% CI: 1838 pounds; 2735 pounds) to 1921 pounds (95% CI: 1609 pounds; 2233 pounds) and result in a health gain of 0.023 QALYs over 16 weeks. Hence, bio-electric stimulation therapy was found to be a dominant treatment. Sensitivity analyses demonstrated that the cost-utility of using bio-electric stimulation therapy relative to standard care is very sensitive to the acquisition cost of the therapy, the acquisition cost of patients' drugs and the number of clinician visits and less sensitive to utility values and the acquisition cost of other dressings. Within the limitations of the model, bio-electric stimulation therapy is expected to afford the NHS a cost-effective dressing compared to standard care in the management of chronic non-healing wounds of > 6 months duration. Bio-electric stimulation therapy's acquisition cost is expected to be offset by a reduction in the requirement for domiciliary clinician visits, leading to a release of NHS resources for use elsewhere in the system, thereby generating an increase in NHS efficiency.

  14. Toward rational design of electrical stimulation strategies for epilepsy control

    PubMed Central

    Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom

    2009-01-01

    Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525

  15. Functional electrical stimulation to the abdominal wall muscles synchronized with the expiratory flow does not induce muscle fatigue.

    PubMed

    Okuno, Yukako; Takahashi, Ryoichi; Sewa, Yoko; Ohse, Hirotaka; Imura, Shigeyuki; Tomita, Kazuhide

    2017-03-01

    [Purpose] Continuous electrical stimulation of abdominal wall muscles is known to induce mild muscle fatigue. However, it is not clear whether this is also true for functional electrical stimulation delivered only during the expiratory phase of breathing. This study aimed to examine whether or not intermittent electrical stimulation delivered to abdominal wall muscles induces muscle fatigue. [Subjects and Methods] The subjects were nine healthy adults. Abdominal electrical stimulation was applied for 1.5 seconds from the start of expiration and then turned off during inspiration. The electrodes were attached to both sides of the abdomen at the lower margin of the 12th rib. Abdominal electrical stimulation was delivered for 15 minutes with the subject in a seated position. Expiratory flow was measured during stimulus. Trunk flexor torque and electromyography activity were measured to evaluate abdominal muscle fatigue. [Results] The mean stimulation on/off ratio was 1:2.3. The declining rate of abdominal muscle torque was 61.1 ± 19.1% before stimulus and 56.5 ± 20.9% after stimulus, not significantly different. The declining rate of mean power frequency was 47.8 ± 11.7% before stimulus and 47.9 ± 10.2% after stimulus, not significantly different. [Conclusion] It was found that intermittent electrical stimulation to abdominal muscles synchronized with the expiratory would not induce muscle fatigue.

  16. Alternative right ventricular pacing sites.

    PubMed

    Łuciuk, Dariusz; Łuciuk, Marek; Gajek, Jacek

    2015-01-01

    The main adverse effect of chronic stimulation is stimulation-induced heart failure in case of ventricular contraction dyssynchrony. Because of this fact, new techniques of stimulation should be considered to optimize electrotherapy. One of these methods is pacing from alternative right ventricular sites. The purpose of this article is to review currently accumulated data about alternative sites of cardiac pacing. Medline and PubMed bases were used to search English and Polish reports published recently. Recent studies report a deleterious effect of long term apical pacing. It is suggested that permanent apical stimulation, by omitting physiological conduction pattern with His-Purkinie network, may lead to electrical and mechanical dyssynchrony of heart muscle contraction. In the long term this pathological situation can lead to severe heart failure and death. Because of this, scientists began to search for some alternative sites of cardiac pacing to reduce the deleterious effect of stimulation. Based on current accumulated data, it is suggested that the right ventricular outflow tract, right ventricular septum, direct His-bundle or biventricular pacing are better alternatives due to more physiological electrical impulse propagation within the heart and the reduction of the dyssynchrony effect. These methods should preserve a better left ventricular function and prevent the development of heart failure in permanent paced patients. As there is still not enough, long-term, randomized, prospective, cross-over and multicenter studies, further research is required to validate the benefits of using this kind of therapy. The article should pay attention to new sites of cardiac stimulation as a better and safer method of treatment.

  17. Electrical stimulation as a means for achieving recovery of function in stroke patients.

    PubMed

    Popović, Dejan B; Sinkaer, Thomas; Popović, Mirjana B

    2009-01-01

    This review presents technologies used in and assesses the main clinical outcomes of electrical therapies designed to speed up and increase functional recovery in stroke patients. The review describes methods which interface peripheral systems (e.g., cyclic neural stimulation, stimulation triggered by electrical activity of muscles, therapeutic functional electrical stimulation) and transcranial brain stimulation with surface and implantable electrodes. Our conclusion from reviewing these data is that integration of electrical therapy into exercise-active movement mediated by electrical activation of peripheral and central sensory-motor mechanisms enhances motor re-learning following damage to the central nervous system. Motor re-learning is considered here as a set of processes associated with practice or experience that leads to long-term changes in the capability for movement. An important suggestion is that therapeutic effects are likely to be much more effective when treatment is applied in the acute, rather than in the chronic, phase of stroke.

  18. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    PubMed

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.

  19. Effects from fine muscle and cutaneous afferents on spinal locomotion in cats

    PubMed Central

    Kniffki, K.-D.; Schomburg, E. D.; Steffens, H.

    1981-01-01

    1. The effects of chemically activated fine muscle afferents (groups III and IV) and electrically activated cutaneous afferents on motoneuronal discharges were studied before and during fictive locomotion induced pharmacologically by i.v. administration of nialamide and l-DOPA in high spinal cats. Efferent activity was recorded simultaneously from nerve filaments to ipsi- and contralateral extensor and flexor muscles. In addition, intracellular recordings were made from lumbar α-motoneurones. 2. After nialamide but before treatment with l-DOPA, in some cases, transient locomotor-like discharges were induced by an increased activity in fine muscle afferents. The response pattern in nerves to both hind limbs could be different showing e.g. only transient alternating activity between knee flexor and extensor of one limb but not of the other one. 3. Treatment with l-DOPA did not always cause fictive locomotion. Often not all motoneurone pools showed rhythmic activity. In these cases stimulation of group III and IV muscle afferents usually caused transient periodic activity. In cases with apparent rhythmic activity, algesic stimulation of the gastrocnemius—soleus muscle caused an accentuation of the rhythm by a more abrupt transition from the active phase to the non-active interval. Again, the response patterns on both sides were not uniform in all cases. 4. A second type of response to activation of fine muscle afferents had a quite different character: the rhythmic activity was more or less completely overridden by a strong transient tonic hyperactivity or the rhythm was transiently blocked. These phenomena did not occur in the same way in all nerves. 5. Electrical stimulation of cutaneous nerves of the hind limb generally induced the same response pattern as chemical stimulation of the group III and IV muscle afferents. The effects varied depending on the stimulus strength and the nerve. 6. The results revealed that cutaneous and fine muscle afferents not only have similar functions in the reflex control of a limb but also in evocation and modulation of locomotion. Therefore, it is assumed that both types of afferents may serve together as a peripheral feed-back to the spinal locomotor centre. PMID:7320927

  20. Limb-state information encoded by peripheral and central somatosensory neurons: Implications for an afferent interface

    PubMed Central

    Weber, Douglas J.; London, Brian M.; Hokanson, James A.; Ayers, Christopher A.; Gaunt, Robert A.; Torres, Ricardo R.; Zaaimi, Boubker; Miller, Lee E.

    2013-01-01

    A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of limb state in terms of neural discharge. This model can then be used to design stimuli that artificially activate the nervous system to convey information about limb state to the subject. Electrically activating DRG neurons using naturalistic stimulus patterns, modeled on recordings made during passive limb movement, evoked activity in S1 that was similar to that of the original movement. We also found that S1 neural populations could accurately discriminate different patterns of DRG stimulation across a wide range of stimulus pulse-rates. In studying the neural coding of limb-state in S1, we also decoded the kinematics of active limb movement using multi-electrode recordings in the monkey. Neurons having both proprioceptive and cutaneous receptive fields contributed equally to this decoding. Some neurons were most informative of limb state in the recent past, but many others appeared to signal upcoming movements suggesting that they also were modulated by an efference copy signal. Finally, we show that a monkey was able to detect stimulation through a large percentage of electrodes implanted in area 2. We discuss the design of appropriate stimulus paradigms for conveying time-varying limb state information, and the relative merits and limitations of central and peripheral approaches. PMID:21878419

  1. Posterior tibial nerve stimulation vs parasacral transcutaneous neuromodulation for overactive bladder in children.

    PubMed

    Barroso, Ubirajara; Viterbo, Walter; Bittencourt, Joana; Farias, Tiago; Lordêlo, Patrícia

    2013-08-01

    Parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation have emerged as effective methods to treat overactive bladder in children. However, to our knowledge no study has compared the 2 methods. We evaluated the results of parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation in children with overactive bladder. We prospectively studied children with overactive bladder without dysfunctional voiding. Success of treatment was evaluated by visual analogue scale and dysfunctional voiding symptom score, and by level of improvement of each specific symptom. Parasacral transcutaneous electrical nerve stimulation was performed 3 times weekly and posterior tibial nerve stimulation was performed once weekly. A total of 22 consecutive patients were treated with posterior tibial nerve stimulation and 37 with parasacral transcutaneous electrical nerve stimulation. There was no difference between the 2 groups regarding demographic characteristics or types of symptoms. Concerning the evaluation by visual analogue scale, complete resolution of symptoms was seen in 70% of the group undergoing parasacral transcutaneous electrical nerve stimulation and in 9% of the group undergoing posterior tibial nerve stimulation (p = 0.02). When the groups were compared, there was no statistically significant difference (p = 0.55). The frequency of persistence of urgency and diurnal urinary incontinence was nearly double in the group undergoing posterior tibial nerve stimulation. However, this difference was not statistically significant. We found that parasacral transcutaneous electrical nerve stimulation is more effective in resolving overactive bladder symptoms, which matches parental perception. However, there were no statistically significant differences in the evaluation by dysfunctional voiding symptom score, or in complete resolution of urgency or diurnal incontinence. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Electrical Stimulation Modulates High γ Activity and Human Memory Performance

    PubMed Central

    Berry, Brent M.; Miller, Laura R.; Khadjevand, Fatemeh; Ezzyat, Youssef; Wanda, Paul; Sperling, Michael R.; Lega, Bradley; Stead, S. Matt

    2018-01-01

    Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62–118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with “poor” memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation. PMID:29404403

  3. [Neural control of somatic muscle function in the earthworm, Allobophora longa, and in the leech, Hirudo medicinalis].

    PubMed

    David, O F

    1978-01-01

    Studies have been made on the electrical activity of the segmentary nerves and connectives of the abdominal nervous chain in the earthworm and leech. It was shown that the electrical activity of the isolated piece of the abdominal chain of the leech is manifested of periodic outbursts of impulsation. Presumably this central periodicity accounts for the discharge-like pattern of muscle rhythmic activity which was revealed in our earlier investigations. The electrical activity in the central nervous system of the earthworm depends on afferent influences which pass to the ganglia from the peripheral sensory nervous cells. Stimulation of the abdominal nervous chain did not result in extra discharges of muscle activity, but only affected some of the parameters of the latter.

  4. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    PubMed Central

    Ponnath, Abhilash; Farris, Hamilton E.

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437

  5. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    PubMed

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  6. The effect of cardiac electric anisotropy on epicardial potential fields during ventricular repolarization.

    PubMed

    Spaggiari, S; Baruffi, S; Macchi, E; Traversa, M; Arisi, G; Taccardi, B

    1986-11-01

    We tried to establish whether some of the manifestations of electrical anisotropy previously observed on the canine ventricular epicardium during the spread of excitation were also present during repolarization, with the appropriate polarity. To this end we determined the potential distribution on the ventricular surface of exposed dog hearts during ventricular excitation and repolarization. The ventricles were paced by means of epicardial or intramural electrodes. During the early stages of ventricular excitation following epicardial pacing we observed typical, previously described potential patterns, with negative, elliptical equipotential lines surrounding the pacing site, and two maxima aligned along the direction of subepicardial fibers. Intramural pacing gave rise to similar patterns. The axis joining the maxima, however, was oriented along the direction of intramural fibers. The repolarization potential pattern relating to epicardial excitation exhibited some features similar to those observed during the spread of excitation, namely the presence of families of elliptical equipotential lines around the pacing site, with pairs of potential extrema along the major or minor axes of the ellipses or both. The location of the extrema and the distribution of the epicardial potential gradients during repolarization suggested the presence of anisotropic current generators mainly oriented along the direction of deep myocardial fibers, with some contribution from more superficial sources which were oriented along the direction of subepicardial fibers. Deep stimulation elicited more complicated epicardial patterns whose interpretation is still obscure. We conclude that the electrical anisotropy of the heart affects the distribution of repolarization potentials and probably the strength of electrical generators during ventricular repolarization.

  7. Numerical simulation of electrically stimulated osteogenesis in dental implants.

    PubMed

    Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V

    2014-04-01

    Cell behavior and tissue formation are influenced by a static electric field (EF). Several protocols for EF exposure are aimed at increasing the rate of tissue recovery and reducing the healing times in wounds. However, the underlying mechanisms of the EF action on cells and tissues are still a matter of research. In this work we introduce a mathematical model for electrically stimulated osteogenesis at the bone-dental implant interface. The model describes the influence of the EF in the most critical biological processes leading to bone formation at the bone-dental implant interface. The numerical solution is able to reproduce the distribution of spatial-temporal patterns describing the influence of EF during blood clotting, osteogenic cell migration, granulation tissue formation, displacements of the fibrillar matrix, and formation of new bone. In addition, the model describes the EF-mediated cell behavior and tissue formation which lead to an increased osteogenesis in both smooth and rough implant surfaces. Since numerical results compare favorably with experimental evidence, the model can be used to predict the outcome of using electrostimulation in other types of wounds and tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. At the interface: convergence of neural regeneration and neural prostheses for restoration of function.

    PubMed

    Grill, W M; McDonald, J W; Peckham, P H; Heetderks, W; Kocsis, J; Weinrich, M

    2001-01-01

    The rapid pace of recent advances in development and application of electrical stimulation of the nervous system and in neural regeneration has created opportunities to combine these two approaches to restoration of function. This paper relates the discussion on this topic from a workshop at the International Functional Electrical Stimulation Society. The goals of this workshop were to discuss the current state of interaction between the fields of neural regeneration and neural prostheses and to identify potential areas of future research that would have the greatest impact on achieving the common goal of restoring function after neurological damage. Identified areas include enhancement of axonal regeneration with applied electric fields, development of hybrid neural interfaces combining synthetic silicon and biologically derived elements, and investigation of the role of patterned neural activity in regulating various neuronal processes and neurorehabilitation. Increased communication and cooperation between the two communities and recognition by each field that the other has something to contribute to their efforts are needed to take advantage of these opportunities. In addition, creative grants combining the two approaches and more flexible funding mechanisms to support the convergence of their perspectives are necessary to achieve common objectives.

  9. Transcutaneous Electrical Nerve Stimulation Combined with Oxybutynin is Superior to Monotherapy in Children with Urge Incontinence: A Randomized, Placebo Controlled Study.

    PubMed

    Borch, Luise; Hagstroem, Soeren; Kamperis, Konstantinos; Siggaard, C V; Rittig, Soeren

    2017-08-01

    We evaluated whether combination therapy with transcutaneous electrical nerve stimulation and oxybutynin results in a superior treatment response compared to either therapy alone in children with urge incontinence. In this placebo controlled study 66 children with a mean ± SD age of 7.3 ± 1.6 years who were diagnosed with urge incontinence were randomized to 3 treatment groups. Group 1 consisted of 22 children undergoing transcutaneous electrical nerve stimulation plus active oxybutynin administration. Group 2 included 21 children undergoing active transcutaneous electrical nerve stimulation plus placebo oxybutynin administration. Group 3 consisted of 23 children undergoing active oxybutynin administration plus placebo transcutaneous electrical nerve stimulation. The children received active or placebo transcutaneous electrical nerve stimulation over the sacral S2 to S3 outflow for 2 hours daily in combination with 5 mg active or placebo oxybutynin twice daily. The intervention period was 10 weeks. Primary outcome was number of wet days weekly. Secondary outcomes were severity of incontinence, frequency, maximum voided volume over expected bladder capacity for age, average voided volume over expected bladder capacity for age and visual analogue scale score. Combination therapy was superior to oxybutynin monotherapy, with an 83% greater chance of treatment response (p = 0.05). Combination therapy was also significantly more effective than transcutaneous electrical nerve stimulation monotherapy regarding reduced number of wet days weekly (mean difference -2.28, CI -4.06 to -0.49), severity of incontinence (-3.11, CI -5.98 to -0.23) and daily voiding frequency (-2.82, CI -4.48 to -1.17). Transcutaneous electrical nerve stimulation in combination with oxybutynin for childhood urge incontinence was superior to monotherapy consisting of transcutaneous electrical nerve stimulation or oxybutynin, although the latter only reached borderline statistical significance. Furthermore, transcutaneous electrical nerve stimulation was associated with a decreased risk of oxybutynin induced post-void residual urine greater than 20 ml. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Guiding the study of brain dynamics by using first-person data: Synchrony patterns correlate with ongoing conscious states during a simple visual task

    PubMed Central

    Lutz, Antoine; Lachaux, Jean-Philippe; Martinerie, Jacques; Varela, Francisco J.

    2002-01-01

    Even during well-calibrated cognitive tasks, successive brain responses to repeated identical stimulations are highly variable. The source of this variability is believed to reside mainly in fluctuations of the subject's cognitive “context” defined by his/her attentive state, spontaneous thought process, strategy to carry out the task, and so on … As these factors are hard to manipulate precisely, they are usually not controlled, and the variability is discarded by averaging techniques. We combined first-person data and the analysis of neural processes to reduce such noise. We presented the subjects with a three-dimensional illusion and recorded their electrical brain activity and their own report about their cognitive context. Trials were clustered according to these first-person data, and separate dynamical analyses were conducted for each cluster. We found that (i) characteristic patterns of endogenous synchrony appeared in frontal electrodes before stimulation. These patterns depended on the degree of preparation and the immediacy of perception as verbally reported. (ii) These patterns were stable for several recordings. (iii) Preparatory states modulate both the behavioral performance and the evoked and induced synchronous patterns that follow. (iv) These results indicated that first-person data can be used to detect and interpret neural processes. PMID:11805299

  11. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    PubMed

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  12. An experimental study of pain upon stimulation of the nasal and sinus cavities.

    PubMed

    Clerico, Dean M

    2014-01-01

    To map different areas of pain sensitivity and to determine the existence and/or pattern of referred pain from upon stimulating the sinonasal cavity. Experimental human study. Mechanical and electrical stimulations to various anatomical structures and areas of the nasal and sinus cavities were conducted on nine volunteers. Intensity, location and character of pain were recorded in all subjects. The postero-superior (cephalic) aspect of the nasal cavity, primarily the anterior face of the sphenoid sinus and the superior turbinate, were the most sensitive sites, and the antero-inferior (caudal) region was the least sensitive. Referred pain to the head and face was reported by several subjects. Topographical differences in pain sensitivity exist in the sinonasal cavity. The phenomenon of referred pain from the nasal cavity was demonstrated. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Focal activation of primary visual cortex following supra-choroidal electrical stimulation of the retina: Intrinsic signal imaging and linear model analysis.

    PubMed

    Cloherty, Shaun L; Hietanen, Markus A; Suaning, Gregg J; Ibbotson, Michael R

    2010-01-01

    We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.

  14. Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in Vitro.

    PubMed

    Thrivikraman, Greeshma; Lee, Poh S; Hess, Ricarda; Haenchen, Vanessa; Basu, Bikramjit; Scharnweber, Dieter

    2015-10-21

    The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)-10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells that are cultured in osteogenic medium. Taken together, our experimental results illustrate the interplay of multiple parameters such as substrate conductivity, electric field stimulation, and aECM coating on the modulation of hMSC proliferation and differentiation in vitro.

  15. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves

    PubMed Central

    Zhao, Feng; He, Wei; Zhang, Yingze; Tian, Dehu; Zhao, Hongfang; Yu, Kunlun; Bai, Jiangbo

    2013-01-01

    Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves. PMID:25206506

  16. Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury

    PubMed Central

    Frigon, Alain; Thibaudier, Yann; Johnson, Michael D.; Heckman, C.J.; Hurteau, Marie-France

    2012-01-01

    Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Windup of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans. PMID:22487200

  17. Spontaneous and electrically modulated spatiotemporal dynamics of the neocortical slow oscillation and associated local fast activity.

    PubMed

    Greenberg, Anastasia; Dickson, Clayton T

    2013-12-01

    The neocortical slow oscillation (SO; ~1Hz) of non-REM sleep and anesthesia reflects synchronized network activity composed of alternating active and silent (ON/OFF) phases at the local network and cellular level. The SO itself shows self-organized spatiotemporal dynamics as it appears to originate at unique foci on each cycle and then propagates across the cortical surface. During sleep, this rhythm is relevant for neuroplastic processes mediating memory consolidation especially since its enhancement by slow, rhythmic electrical fields improves subsequent recall. However, the neurobiological mechanism by which spontaneous or enhanced SO activity might operate on memory traces is unknown. Here we show a series of original results, using cycle to cycle tracking across multiple neocortical sites in urethane anesthetized rats: The spontaneous spatiotemporal dynamics of the SO are complex, showing interfering propagation patterns in the anterior-to-posterior plane. These patterns compete for expression and tend to alternate following phase resets that take place during the silent OFF phase of the SO. Applying sinusoidal electrical field stimulation to the anterior pole of the cerebral cortex progressively entrained local field, gamma, and multi-unit activity at all sites, while disrupting the coordination of endogenous SO activity. Field stimulation also biased propagation in the anterior-to-posterior direction and more notably, enhanced the long-range gamma synchrony between cortical regions. These results are the first to show that changes to slow wave dynamics cause enhancements in high frequency cortico-cortical communication and provide mechanistic clues into how the SO is relevant for sleep-dependent memory consolidation. © 2013.

  18. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training

    PubMed Central

    Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.

    2012-01-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI. PMID:16575026

  19. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

    PubMed

    Shields, Richard K; Dudley-Javoroski, Shauna; Littmann, Andrew E

    2006-08-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.

  20. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. I. Characteristics of evoked head movements.

    PubMed

    Quessy, Stephan; Freedman, Edward G

    2004-06-01

    The nucleus reticularis gigantocellularis (NRG) receives monosynaptic input from the superior colliculus (SC) and projects directly to neck motor neuron pools. Neurons in NRG are well situated to play a critical role in transforming SC signals into head movement commands. A previous study of movements evoked by NRG stimulation in the primate reported a variety of ipsilateral and contralateral head movements with horizontal, vertical and torsional components. In addition to head movements, it was reported that NRG stimulation could evoke movements of the pinnae, face, upper torso, and co-contraction of neck muscles. In this report, the role of the rhesus monkey NRG in head movement control was investigated using electrical stimulation of the rostral portion of the NRG. The goal was to characterize head movements evoked by NRG stimulation, describe the effects of altering stimulation parameters, and assess the relative movements of the eyes and head. Results indicate that electrical stimulation in the rostral portion of the NRG of the primate can consistently evoke ipsilateral head rotations in the horizontal plane. Head movement amplitude and peak velocity depend upon stimulation parameters (primarily frequency and duration of stimulation trains). During stimulation-induced head movements the eyes counter-rotate (presumably a result of the vestibulo-ocular reflex: VOR). At 46 stimulation sites from two subjects the average gain of this counter-rotation was -0.38 (+/-0.18). After the end of the stimulation train the head generally continued to move. During this epoch, after electrical stimulation ceased, VOR gain remained at this reduced level. In addition, VOR gain was similarly low when electrical stimulation was carried out during active fixation of a visual target. These data extend existing descriptions of head movements evoked by electrical stimulation of the NRG, and add to the understanding of the role of this structure in producing head movements.

  1. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu

    2016-09-01

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial.

  2. Neurite Outgrowth On Electrospun PLLA Fibers Is Enhanced By Exogenous Electrical Stimulation

    PubMed Central

    Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.

    2014-01-01

    Objective Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from DRG neurons than the presence of electrical stimulation or aligned topography alone. Approach To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide (PLLA) films or electrospun fibers (2 μm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Results Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurite, indicating topographical cues are responsible to guide neurite extension. Significance Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury. PMID:24891494

  3. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.

    PubMed

    Koppes, A N; Zaccor, N W; Rivet, C J; Williams, L A; Piselli, J M; Gilbert, R J; Thompson, D M

    2014-08-01

    Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.

  4. Psychophysics, flare, and neurosecretory function in human pain models: capsaicin versus electrically evoked pain.

    PubMed

    Geber, Christian; Fondel, Ricarda; Krämer, Heidrun H; Rolke, Roman; Treede, Rolfe-Detlef; Sommer, Claudia; Birklein, Frank

    2007-06-01

    Intradermal capsaicin injection (CAP) and electrical current stimulation (ES) are analyzed in respect to patterns and test-retest reliability of pain as well as sensory and neurosecretory changes. In 10 healthy subjects, 2x CAP (50 microg) and 2x ES (5 to 30 mA) were applied to the volar forearm. The time period between 2 identical stimulations was about 4 months. Pain ratings, areas of mechanical hyperalgesia, and allodynia were assessed. The intensity of sensory changes was quantified by using quantitative sensory testing. Neurogenic flare was assessed by using laser Doppler imaging. Calcitonin gene-related peptide (CGRP) release was quantified by dermal microdialysis in combination with an enzyme immunoassay. Time course and peak pain ratings were different between CAP and ES. Test-retest correlation was high (r > or = 0.73). Both models induced primary heat hyperalgesia and primary plus secondary pin-prick hyperalgesia. Allodynia occurred in about half of the subjects. Maximum flare sizes did not differ between CAP and ES, but flare intensities were higher for ES. Test-retest correlation was higher for flare sizes than for flare intensity. A significant CGRP release could only be measured after CAP. The different time courses of pain stimulation (CAP: rapidly decaying pain versus ES: pain plateau) led to different peripheral neurosecretory effects but induced similar central plasticity and hyperalgesia. The present study gives a detailed overview of psychophysical and neurosecretory characteristics induced by noxious stimulation with capsaicin and electrical current. We describe differences, similarities, and reproducibility of these human pain models. These data might help to interpret past and future results of human pain studies using experimental pain.

  5. SPASTICITY—Its Nature and Treatment

    PubMed Central

    Levine, Milton G.; Kabat, Herman

    1954-01-01

    There are a number of physiological means of relaxing spasticity, including active resistive exercise, cold hydrotherapy, heat, electrical stimulation of antagonistic muscles, passive stretch in diagonal movement patterns, and the Von Bechterew reflex. Although none of them will cure spasticity, temporary relaxation may permit a patient to achieve better functioning of an affected joint. The choice of procedure will depend on the nature of the lesion and the muscular distribution of the spasticity. PMID:13150200

  6. The application of direct current electrical stimulation of the ear and cervical spine kinesitherapy in tinnitus treatment.

    PubMed

    Mielczarek, Marzena; Konopka, Wieslaw; Olszewski, Jurek

    2013-02-01

    The aim of the study was to evaluate the effectiveness of electrical stimulations of the hearing organ in tinnitus treatment adapting the frequency of stimulation according to tinnitus frequency, to assess the influence of cervical spine kinesitherapy on tinnitus, as well as to evaluate hearing after electrical stimulations alone and together with cervical spine kinesitherapy. The study comprised 80 tinnitus, sensorineural hearing loss patients (119 tinnitus ears) divided into two groups. In group I (n - 58 tinnitus ears) electrical stimulation of the hearing organ was performed, in group II (n - 61 tinnitus ears) electrical stimulation together with cervical spine kinesitherapy. Hydrotransmissive, selective electrical stimulations were conducted using direct, rectangular current. The passive electrode was placed on the forehead, the active--a silver probe--was immersed in the external ear canal in 0.9% saline solution. The treatment involved fifteen applications of electrical stimulations (each lasted for 4 min) administered three or four times a week (whole treatment lasted approximately 30 days). The evaluation of the results considered a case history (change from permanent to temporary tinnitus), questionnaires (the increase/decrease of the total points) and the audiometric evaluation of hearing level. Before the treatment, group I comprised 51 ears (87.93%) with permanent, and 7 ears (12.07%) with temporary tinnitus; group II - 55 ears (90.17%) with permanent and 6 ears (9.83%) with temporary tinnitus. After the treatment, in both groups the number of ears with permanent tinnitus decreased considerably obtaining the pauses or disappearing of tinnitus. Directly after the treatment, group I comprised 25 ears (43.11%) with permanent, and 10 ears (17.24%) with temporary tinnitus, in 23 ears (39.65%) tinnitus disappeared; group II - 33 ears (54.1%) with permanent and 11 ears (18.03%) with temporary tinnitus, in 17 ears (27.87%) tinnitus disappeared. Regarding questionnaires, improvement was observed in group I - in 43.11% of ears, in group II - 32.8%. In both groups audiometric improvement of hearing was recognized. (1) Electrical stimulation of the hearing organ, with the application of current frequencies according to tinnitus frequencies (selective electrical stimulation), was an efficient method in severe tinnitus treatment. (2) Cervical spine kinesitherapy in the treatment of tinnitus, using electrical stimulation, did not have any supporting influence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed tomore » differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.« less

  8. Effects of transportation during the hot season, breed and electrical stimulation on histochemical and meat quality characteristics of goat longissimus muscle.

    PubMed

    Kadim, Isam T; Mahgoub, Osman; Al-Marzooqi, Waleed; Khalaf, Samera; Al-Sinawi, Shadia S H; Al-Amri, Issa

    2010-06-01

    The effects of transportation and electrical stimulation (90 V) on physiological, histochemical and meat quality characteristics of two breeds of Omani goats were assessed. Twenty 1-year-old male goats from each breed (Batina and Dhofari) were divided into two groups: 3 h transported during the hot season (42 degrees C day time temperature) and non-transported. Animals were blood-sampled before loading and prior to slaughter. Electrical stimulation was applied 20 min postmortem to 50% randomly selected carcasses of both breeds. Temperature and pH decline of the Longissimus was monitored. Ultimate pH, shear force, sarcomere length, myofibrillar fragmentation index, expressed juice, cooking loss and colour were measured from samples of Longissimus dorsi muscles. Electrical stimulation and transportation had a significant effect on most biochemical and meat quality characteristics of Longissimus dorsi. The transported goats had higher plasma cortisol (P < 0.01), adrenaline, nor-adrenaline and dopamine concentrations (P < 0.05) than non-transported goats. Electrical stimulation resulted in a significantly (P < 0.05) more rapid muscle pH fall during the first 12 h after slaughter. Muscles from electrically-stimulated carcasses had significantly (P < 0.05) longer sarcomeres, lower shear force value, a lighter colour (higher L* value), higher expressed juice and myofibrillar fragmentation index than those from non-stimulated ones. Meat from transported goats had significantly higher pH, expressed juice and shear force, but contained significantly lower sarcomere length and L* values than non-transported goats. The proportion of the myosin ATPase staining did not change as a function of stimulation, transportation or breed. These results indicated that subjecting goats to transportation for 3 h under high ambient temperatures can generate major physiological and muscle metabolism responses. Electrical stimulation improved quality characteristics of meat from both groups. This indicates that electrical stimulation may reduce detrimental effects of transportation on meat quality of Omani goats.

  9. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue

    NASA Astrophysics Data System (ADS)

    Jezernik, Sašo; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  10. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    PubMed

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  11. Neural hijacking: action of high-frequency electrical stimulation on cortical circuits.

    PubMed

    Cheney, P D; Griffin, D M; Van Acker, G M

    2013-10-01

    Electrical stimulation of the brain was one of the first experimental methods applied to understanding brain organization and function and it continues as a highly useful method both in research and clinical applications. Intracortical microstimulation (ICMS) involves applying electrical stimuli through a microelectrode suitable for recording the action potentials of single neurons. ICMS can be categorized into single-pulse stimulation; high-frequency, short-duration stimulation; and high-frequency, long-duration stimulation. For clinical and experimental reasons, considerable interest focuses on the mechanism of neural activation by electrical stimuli. In this article, we discuss recent results suggesting that action potentials evoked in cortical neurons by high-frequency electrical stimulation do not sum with the natural, behaviorally related background activity; rather, high-frequency stimulation eliminates and replaces natural activity. We refer to this as neural hijacking. We propose that a major component of the mechanism underlying neural hijacking is excitation of axons by ICMS and elimination of natural spikes by antidromic collision with stimulus-driven spikes evoked at high frequency. Evidence also supports neural hijacking as an important mechanism underlying the action of deep brain stimulation in the subthalamic nucleus and its therapeutic effect in treating Parkinson's disease.

  12. The effect of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease: randomised controlled trial.

    PubMed

    Öncü, Emine; Zincir, Handan

    2017-07-01

    The aim of the present study was to assess the efficacy of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease. In patients with stable chronic obstructive pulmonary disease, transcutaneous electrical nerve stimulation has been known to attain improvement in forced expiratory volume in 1 seconds, physical activity, and quality of life. However, information about the effects of transcutaneous electrical nerve stimulation on acute exacerbation of chronic obstructive pulmonary disease is quite limited. A single-blind, randomised controlled trial. Data were collected between August 2013-May 2014. Eighty-two patients who were hospitalised with a diagnosis of acute exacerbation of chronic obstructive pulmonary disease were randomly assigned to a transcutaneous electrical nerve stimulation group receiving transcutaneous electrical nerve stimulation treatment for 20 seance over the acupuncture points with pharmacotherapy or placebo group receiving the same treatment without electrical current output from the transcutaneous electrical nerve stimulation device. Pulmonary functional test, six-minute walking distance, dyspnoea and fatigue scale, and St. George's Respiratory Questionnaire scores were assessed pre- and postprogram. The program started at the hospital by the researcher was sustained in the patient's home by the caregiver. All patients were able to complete the program, despite the exacerbation. The 20 seance transcutaneous electrical nerve stimulation program provided clinically significant improvement in forced expiratory volume in 1 seconds 21 ml, 19·51% but when compared with the placebo group, the difference was insignificant (p > 0·05). The six-minute walking distance increased by 48·10 m more in the placebo group (p < 0·05). There were no significant differences between the two groups' St. George's Respiratory Questionnaire, dyspnoea and fatigue score (p > 0·05). Adding transcutaneous electrical nerve stimulation therapy to pharmacotherapy in patients with acute exacerbation of chronic obstructive pulmonary disease provided clinical improvement in forced expiratory volume in 1 seconds and add benefit in exercise capacity, but no significant effect on the other outcomes measured. Transcutaneous electrical nerve stimulation can be used as a non-invasive complementary therapy due to its beneficial effects on forced expiratory volume in 1 seconds and exercise capacity in patients with acute exacerbation of chronic obstructive pulmonary disease. © 2016 John Wiley & Sons Ltd.

  13. The Effect of Surface Electrical Stimulation on Hyo-Laryngeal Movement in Normal Individuals at Rest and During Swallowing

    PubMed Central

    Humbert, Ianessa A.; Poletto, Christopher J.; Saxon, Keith G.; Kearney, Pamela R.; Crujido, Lisa; Wright-Harp, Wilhelmina; Payne, Joan; Jeffries, Neal; Sonies, Barbara C.; Ludlow, Christy L.

    2006-01-01

    Surface electrical stimulation is currently used in therapy for swallowing problems, although little is known about its physiological effects on neck muscles or swallowing. Previously, when one surface electrode placement was used in dysphagic patients at rest, it lowered the hyo-laryngeal complex. Here we examined the effects of nine other placements in normal volunteers to determine: 1) if movements induced by surface stimulation using other placements differ, and 2) if lowering the hyo-laryngeal complex by surface electrical stimulation interfered with swallowing in healthy adults. Ten bipolar surface electrode placements overlying the submental and laryngeal regions were tested. Maximum tolerated stimulation levels were applied at rest while participants held their mouths closed. Videofluoroscopic recordings were used to measure hyoid bone and subglottic air column (laryngeal) movements from resting position and while swallowing 5ml of liquid barium with and without stimulation. Videofluoroscopic recordings of swallows were rated blind to condition using the NIH-Swallowing Safety Scale (NIH-SSS). Significant (p<0.0001) laryngeal and hyoid descent occurred with stimulation at rest. During swallowing, significant (p≤0.01) reductions in both the larynx and hyoid bone peak elevation occurred during stimulated swallows. The stimulated swallows were also judged less safe than non-stimulated swallows using the NIH-SSS (p=0.0275). Because surface electrical stimulation reduced hyo-laryngeal elevation during swallowing in normal volunteers, our findings suggest that surface electrical stimulation will reduce elevation during swallowing therapy for dysphagia. PMID:16873602

  14. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus.

    PubMed

    Verma, Rohit U; Guex, Amélie A; Hancock, Kenneth E; Durakovic, Nedim; McKay, Colette M; Slama, Michaël C C; Brown, M Christian; Lee, Daniel J

    2014-04-01

    In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Auditory Responses to Electric and Infrared Neural Stimulation of the Rat Cochlear Nucleus

    PubMed Central

    Verma, Rohit; Guex, Amelie A.; Hancock, Kenneth E.; Durakovic, Nedim; McKay, Colette M.; Slama, Michaël C. C.; Brown, M. Christian; Lee, Daniel J.

    2014-01-01

    In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported “optophonic” effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. PMID:24508368

  16. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... manual stimulation or before the carcass chain is started in an automatic system. (c) Operation—(1... personnel, the electricity supplied to the stimulating surfaces shall be locked-off when cleaning...

  17. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.

    PubMed

    Vaca-González, Juan J; Guevara, Johana M; Moncayo, Miguel A; Castro-Abril, Hector; Hata, Yoshie; Garzón-Alvarado, Diego A

    2017-09-01

    Objective Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. Design Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. Results It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. Conclusion The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.

  18. Study of driving fatigue alleviation by transcutaneous acupoints electrical stimulations.

    PubMed

    Wang, Fuwang; Wang, Hong

    2014-01-01

    Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving.

  19. Systematic study of the effects of stimulus parameters and stimulus location on afterdischarges elicited by electrical stimulation in the rat.

    PubMed

    Shigeto, Hiroshi; Boongird, Atthaporn; Baker, Kenneth; Kellinghaus, Christoph; Najm, Imad; Lüders, Hans

    2013-03-01

    Electrical brain stimulation is used in a variety of clinical situations, including cortical mapping for epilepsy surgery, cortical stimulation therapy to terminate seizure activity in the cortex, and in deep brain stimulation therapy. However, the effects of stimulus parameters are not fully understood. In this study, we systematically tested the impact of various stimulation parameters on the generation of motor symptoms and afterdischarges (ADs). Focal electrical stimulation was delivered at subdural cortical, intracortical, and hippocampal sites in a rat model. The effects of stimulus parameter on the generation of motor symptoms and on the occurrence of ADs were examined. The effect of stimulus irregularity was tested using random or regular 50Hz stimulation through subdural electrodes. Hippocampal stimulation produced ADs at lower thresholds than neocortical stimulation. Hippocampal stimulation also produced significantly longer ADs. Both in hippocampal and cortical stimulation, when the total current was kept constant with changing pulse width, the threshold for motor symptom or AD was lowest between 50 and 100Hz and higher at both low and high frequencies. However, if the pulse width was fixed, the threshold did not increase above 100Hz and it apparently continued to decrease through 800Hz even if the difference did not reach statistical significance. There was no significant difference between random and regular stimulation. Overall, these results indicate that electrode location and several stimulus parameters including frequency, pulse width, and total electricity are important in electrical stimulation to produce motor symptoms and ADs. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients.

    PubMed

    Hara, Yukihiro

    2008-02-01

    In recent years, our understanding of motor learning, neuroplasticity, and functional recovery after the occurrence of brain lesion has grown significantly. New findings in basic neuroscience have stimulated research in motor rehabilitation. Repeated motor practice and motor activity in a real-world environment have been identified in several prospective studies as favorable for motor recovery in stroke patients. Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. In this paper, an overview of current research into clinical and therapeutic applications of functional electrical stimulation (FES) is presented. In particular, electromyography (EMG)-initiated electrical muscle stimulation--but not electrical muscle stimulation alone--improves the motor function of the hemiparetic arm and hand. Triggered electrical stimulation is reported to be more effective than untriggered electrical stimulation in facilitating upper extremity motor recovery following stroke. Power-assisted FES induces greater muscle contraction by electrical stimulation in proportion to the voluntary integrated EMG signal picked up, which is regulated by a closed-loop control system. Power-assisted FES and motor point block for antagonist muscles have been applied with good results as a new hybrid FES therapy in an outpatient rehabilitation clinic for patients with stroke. Furthermore, a daily home program therapy with power-assisted FES using new equipment has been able to effectively improve wrist and finger extension and shoulder flexion. Proprioceptive sensory feedback might play an important role in power-assisted FES therapy. Although many physiotherapeutic modalities have been established, conclusive proof of their benefit and physiological models of their effects on neuronal structures and processes are still missing. A multichannel near-infrared spectroscopy study to noninvasively and dynamically measure hemoglobin levels in the brain during functional activity has shown that cerebral blood flow in the sensory-motor cortex on the injured side is higher during a power-assisted FES session than during simple active movement or simple electrical stimulation. Nevertheless, evidence-based strategies for motor rehabilitation are more easily available, particularly for patients with hemiparesis.

  1. Apparent isotropic electrical property for electrical brain stimulation (EBS) using magnetic resonance diffusion weighted imaging (MR-DWI)

    NASA Astrophysics Data System (ADS)

    Lee, Mun Bae; Kwon, Oh-In

    2018-04-01

    Electrical brain stimulation (EBS) is an invasive electrotherapy and technique used in brain neurological disorders through direct or indirect stimulation using a small electric current. EBS has relied on computational modeling to achieve optimal stimulation effects and investigate the internal activations. Magnetic resonance diffusion weighted imaging (DWI) is commonly useful for diagnosis and investigation of tissue functions in various organs. The apparent diffusion coefficient (ADC) measures the intensity of water diffusion within biological tissues using DWI. By measuring trace ADC and magnetic flux density induced by the EBS, we propose a method to extract electrical properties including the effective extracellular ion-concentration (EEIC) and the apparent isotropic conductivity without any auxiliary additional current injection. First, the internal current density due to EBS is recovered using the measured one component of magnetic flux density. We update the EEIC by introducing a repetitive scheme called the diffusion weighting J-substitution algorithm using the recovered current density and the trace ADC. To verify the proposed method, we study an anesthetized canine brain to visualize electrical properties including electrical current density, effective extracellular ion-concentration, and effective isotropic conductivity by applying electrical stimulation of the brain.

  2. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.

    PubMed

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-11-10

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.

  3. A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates

    PubMed Central

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-01-01

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury. PMID:27830790

  4. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  5. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy

    PubMed Central

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.

    2015-01-01

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719

  6. A pioneer work on electric brain stimulation in psychotic patients. Rudolph Gottfried Arndt and his 1870s studies.

    PubMed

    Steinberg, Holger

    2013-07-01

    Today's brain stimulation methods are commonly traced back historically to surgical brain operations. With this one-sided historical approach it is easy to overlook the fact that non-surgical electrical brain-stimulating applications preceded present-day therapies. The first study on transcranial electrical brain stimulation for the treatment of severe mental diseases in a larger group of patients was carried out in the 1870s. Between 1870 and 1878 German psychiatrist Rudolph Gottfried Arndt published the results of his studies in three reports. These are contextualized with contemporary developments of the time, focusing in particular on the (neuro-) sciences. As was common practice at the time, Arndt basically reported individual cases in which electricity was applied to treat severe psychoses with depressive symptoms or even catatonia, hypochondriac delusion and melancholia. Despite their lengthiness, there is frequently a lack of precise physical data on the application of psychological-psychopathological details. Only his 1878 report includes general rules for electrical brain stimulation. Despite their methodological shortcomings and lack of precise treatment data impeding exact understanding, Arndt's studies are pioneering works in the field of electric brain stimulation with psychoses and its positive impacts. Today's transcranial direct current stimulation, and partly vagus nerve stimulation, can be compared with Arndt's methods. Although Arndt's only tangible results were indications for the application of faradic electricity (for inactivity, stupor, weakness and manic depressions) and galvanic current (for affective disorders and psychoses), a historiography of present-day brain stimulation therapies should no longer neglect studies on electrotherapy published in German and international psychiatric and neurological journals and monographs in the 1870s and 1880s. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration.

    PubMed

    Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg

    2010-09-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Electromotile hearing: Acoustic tones mask psychophysical response to high-frequency electrical stimulation of intact guinea pig cochleaea)

    PubMed Central

    Le Prell, Colleen G.; Kawamoto, Kohei; Raphael, Yehoash; Dolan, David F.

    2011-01-01

    When sinusoidal electric stimulation is applied to the intact cochlea, a frequency-specific acoustic emission can be recorded in the ear canal. Acoustic emissions are produced by basilar membrane motion, and have been used to suggest a corresponding acoustic sensation termed “electromotile hearing.” Electromotile hearing has been specifically attributed to electric stimulation of outer hair cells in the intact organ of Corti. To determine the nature of the auditory perception produced by electric stimulation of a cochlea with intact outer hair cells, we tested guinea pigs in a psychophysical task. First, subjects were trained to report detection of sinusoidal acoustic stimuli and dynamic range was assessed using response latency. Subjects were then implanted with a ball electrode placed into scala tympani. Following the surgical implant procedure, subjects were transferred to a task in which acoustic signals were replaced by sinusoidal electric stimulation, and dynamic range was assessed again. Finally, the ability of acoustic pure-tone stimuli to mask the detection of the electric signals was assessed. Based on the masking effects, we conclude that sinusoidal electric stimulation of the intact cochlea results in perception of a tonal (rather than a broad-band or noisy) sound at a frequency of 8 kHz or above. PMID:17225416

  9. Insights into cortical mechanisms of behavior from microstimulation experiments

    PubMed Central

    Histed, Mark H.; Ni, Amy M.; Maunsell, John H.R.

    2012-01-01

    Even the simplest behaviors depend on a large number of neurons that are distributed across many brain regions. Because electrical microstimulation can change the activity of localized subsets of neurons, it has provided valuable evidence that specific neurons contribute to particular behaviors. Here we review what has been learned about cortical function from behavioral studies using microstimulation in animals and humans. Experiments that examine how microstimulation affects the perception of stimuli have shown that the effects of microstimulation are usually highly specific and can be related to the stimuli preferred by neurons at the stimulated site. Experiments that ask subjects to detect cortical microstimulation in the absence of other stimuli have provided further insights. Although subjects typically can detect microstimulation of primary sensory or motor cortex, they are generally unable to detect stimulation of most of cortex without extensive practice. With practice, however, stimulation of any part of cortex can become detected. These training effects suggest that some patterns of cortical activity cannot be readily accessed to guide behavior, but that the adult brain retains enough plasticity to learn to process novel patterns of neuronal activity arising anywhere in cortex. PMID:22307059

  10. An analysis of current source density profiles activated by local stimulation in the mouse auditory cortex in vitro.

    PubMed

    Yamamura, Daiki; Sano, Ayaka; Tateno, Takashi

    2017-03-15

    To examine local network properties of the mouse auditory cortex in vitro, we recorded extracellular spatiotemporal laminar profiles driven by short electric local stimulation on a planar multielectrode array substrate. The recorded local field potentials were subsequently evaluated using current source density (CSD) analysis to identify sources and sinks. Current sinks are thought to be an indicator of net synaptic current in the small volume of cortex surrounding the recording site. Thus, CSD analysis combined with multielectrode arrays enabled us to compare mean synaptic activity in response to small current stimuli on a layer-by-layer basis. We also used senescence-accelerated mice (SAM), some strains of which show earlier onset of age-related hearing loss, to examine the characteristic spatiotemporal CSD profiles stimulated by electrodes in specific cortical layers. Thus, the CSD patterns were classified into several clusters based on stimulation sites in the cortical layers. We also found some differences in CSD patterns between the two SAM strains in terms of aging according to principle component analysis with dimension reduction. For simultaneous two-site stimulation, we modeled the obtained CSD profiles as a linear superposition of the CSD profiles to individual single-site stimulation. The model analysis indicated the nonlinearity of spatiotemporal integration over stimulus-driven activity in a layer-specific manner. Finally, on the basis of these results, we discuss the auditory cortex local network properties and the effects of aging on these mouse strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fundamentals of Transcranial Electric and Magnetic Stimulation Dose: Definition, Selection, and Reporting Practices

    PubMed Central

    Peterchev, Angel V.; Wagner, Timothy A.; Miranda, Pedro C.; Nitsche, Michael A.; Paulus, Walter; Lisanby, Sarah H.; Pascual-Leone, Alvaro; Bikson, Marom

    2011-01-01

    The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. The biological effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biological effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. This paper provides fundamental definition and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. PMID:22305345

  12. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices.

    PubMed

    Peterchev, Angel V; Wagner, Timothy A; Miranda, Pedro C; Nitsche, Michael A; Paulus, Walter; Lisanby, Sarah H; Pascual-Leone, Alvaro; Bikson, Marom

    2012-10-01

    The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. This paper provides fundamental definitions and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. The biologic effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biologic effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.

    PubMed

    Howell, Bryan; McIntyre, Cameron C

    2016-06-01

    Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  14. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  15. The effect of surface electrical stimulation on swallowing in dysphagic Parkinson patients.

    PubMed

    Baijens, Laura W J; Speyer, Renée; Passos, Valeria Lima; Pilz, Walmari; Roodenburg, Nel; Clavé, Père

    2012-12-01

    Surface electrical stimulation has been applied on a large scale to treat oropharyngeal dysphagia. Patients suffering from oropharyngeal dysphagia in the presence of Parkinson's disease have been treated with surface electrical stimulation. Because of controversial reports on this treatment, a pilot study was set up. This study describes the effects of a single session of surface electrical stimulation using different electrode positions in ten patients with idiopathic Parkinson's disease (median Hoehn and Yahr score: II) and oropharyngeal dysphagia compared to ten age- and gender-matched healthy control subjects during videofluoroscopy of swallowing. Three different electrode positions were applied in random order per subject. For each electrode position, the electrical current was respectively turned "on" and "off" in random order. Temporal, spatial, and visuoperceptual variables were scored by experienced raters who were blinded to the group, electrode position, and status (on/off) of the electrical current. Interrater and interrater reliabilities were calculated. Only a few significant effects of a single session of surface electrical stimulation using different electrode positions in dysphagic Parkinson patients could be observed in this study. Furthermore, significant results for temporal and spatial variables were found regardless of the status of the electrical current in both groups suggesting placebo effects. Following adjustment for electrical current status as well as electrode positions (both not significant, P > 0.05) in the statistical model, significant group differences between Parkinson patients and healthy control subjects emerged. Further studies are necessary to evaluate the potential therapeutic effect and mechanism of electrical stimulation in dysphagic patients with Parkinson's disease.

  16. Pulsed laser versus electrical energy for peripheral nerve stimulation

    PubMed Central

    Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2010-01-01

    Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515

  17. Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.

    PubMed

    Wee, A S; Jiles, K; Brennan, R

    2001-01-01

    Tripolar and bipolar electrical stimulation procedures were performed on the upper limbs of eight subjects. The mid-forearm was stimulated electrically (tripolar or bipolar) by surface electrodes, and the induced stimulus shock artifacts were recorded simultaneously from the wrist and elbow. During tripolar stimulation, two types of stimulating configurations were utilized: with the center electrode designated as the cathode and the two outermost electrodes connected to a common anode, and vice versa. During bipolar stimulation, the center electrode served as one pole of the stimulator, and one of the two outermost electrodes of the tripolar stimulator was disconnected. The stimulus intensity was kept constant in all stimulating procedures. Artifacts were reduced significantly during tripolar compared to bipolar stimulation, if the outermost electrodes of the tripolar stimulator (which were facing the recording electrodes) were also oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity. Artifacts were slightly reduced in amplitude from tripolar stimulation, if the center electrode were oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity as previously used during tripolar stimulation.

  18. Contralaterally Controlled Functional Electrical Stimulation for Stroke Rehabilitation

    PubMed Central

    Knutson, Jayme S.; Harley, Mary Y.; Hisel, Terri Z.; Makowski, Nathaniel S.; Fu, Michael J.; Chae, John

    2012-01-01

    Contralaterally controlled functional electrical stimulation (CCFES) is an innovative method of delivering neuromuscular electrical stimulation for rehabilitation of paretic limbs after stroke. It is being studied to evaluate its efficacy in improving recovery of arm and hand function and ankle dorsiflexion in chronic and subacute stroke patients. The initial studies provide preliminary evidence supporting the efficacy of CCFES. PMID:23365893

  19. Effect of mirror therapy and electrical stimulation on upper extremity function in stroke with hemiplegic patient: a pilot study.

    PubMed

    Paik, Young-Rim; Lee, Jeong-Hoon; Lee, Doo-Ho; Park, Hee-Su; Oh, Dong-Hwan

    2017-12-01

    [Purpose] This study investigated the effects of mirror therapy and neuromuscular electrical stimulation on upper extremity function in stroke patients. [Subjects and Methods] This study recruited 8 stroke patients. All patients were treated with mirror therapy and neuromuscular electrical stimulation five times per week for 4 weeks. Upper limb function evaluation was performed using upper extremity part of fugl meyer assessment. [Results] Before and after intervention, fugl meyer assessment showed significant improvement. [Conclusion] In this study, mirror therapy and neuromuscular electrical stimulation are effective methods for upper extremity function recovery in stroke patients.

  20. The effect of intra-operative transcutaneous electrical nerve stimulation on posterior neck pain following thyroidectomy.

    PubMed

    Park, C; Choi, J B; Lee, Y-S; Chang, H-S; Shin, C S; Kim, S; Han, D W

    2015-04-01

    Posterior neck pain following thyroidectomy is common because full neck extension is required during the procedure. We evaluated the effect of intra-operative transcutaneous electrical nerve stimulation on postoperative neck pain in patients undergoing total thyroidectomy under general anaesthesia. One hundred patients were randomly assigned to one of two groups; 50 patients received transcutaneous electrical nerve stimulation applied to the trapezius muscle and 50 patients acted as controls. Postoperative posterior neck pain and anterior wound pain were evaluated using an 11-point numerical rating scale at 30 min, 6 h, 24 h and 48 h following surgery. The numerical rating scale for posterior neck pain was significantly lower in the transcutaneous electrical nerve stimulation group compared with the control group at all time points (p < 0.05). There were no significant differences in the numerical rating scale for anterior wound pain at any time point. No adverse effects related to transcutaneous electrical nerve stimulation were observed. We conclude that intra-operative transcutaneous electrical nerve stimulation applied to the trapezius muscle reduced posterior neck pain following thyroidectomy. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  1. Does preoperative electrical stimulation of the skin alter the healing process?

    PubMed

    Borba, Graziela C; Hochman, Bernardo; Liebano, Richard E; Enokihara, Milvia M S S; Ferreira, Lydia M

    2011-04-01

    In vitro studies have demonstrated that electrical current may affect fibroblast proliferation and synthesis of collagen fibers. In humans, the application of electrical current by positioning the positive electrode on skin wounds resulted in thinner hypertrophic scars. The aim of this study was to evaluate the effects of preoperative electrical stimulation on cutaneous wound healing in rats. Forty rats were divided into two groups of 20 animals each. In the control group, an incision was made on the back of the animals. In the stimulation group, a preoperative electrical stimulation was applied using a rectangular pulse current at a frequency of 7.7 Hz, and intensity of 8 mA, for 30 min, with the positive electrode placed on the back of the animal, and the negative electrode placed on the abdominal wall. Following, an incision was made on their back. Biopsy was carried out on postoperative day 7 and 14, and histologic analysis was performed. The number of newly formed vessels, fibroblasts, and type III collagen fibers in the stimulation group on postoperative day 7 were greater than those in the control group. Preoperative positive-polarity electrical stimulation positively affects angiogenesis and fibroblast proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Cutaneous stimulation of discrete regions of the sole during locomotion produces “sensory steering” of the foot

    PubMed Central

    2014-01-01

    Background While the neural and mechanical effects of whole nerve cutaneous stimulation on human locomotion have been previously studied, there is less information about effects evoked by activation of discrete skin regions on the sole of the foot. Electrical stimulation of discrete foot regions evokes position-modulated patterns of cutaneous reflexes in muscles acting at the ankle during standing but data during walking are lacking. Here, non-noxious electrical stimulation was delivered to five discrete locations on the sole of the foot (heel, and medial and lateral sites on the midfoot and forefoot) during treadmill walking. EMG activity from muscles acting at the hip, knee and ankle were recorded along with movement at these three joints. Additionally, 3 force sensing resistors measuring continuous force changes were placed at the heel, and the medial and lateral aspects of the right foot sole. All data were sorted based on stimulus occurrence in twelve step-cycle phases, before being averaged together within a phase for subsequent analysis. Methods Non-noxious electrical stimulation was delivered to five discrete locations on the sole of the foot (heel, and medial and lateral sites on the midfoot and forefoot) during treadmill walking. EMG activity from muscles acting at the hip, knee and ankle were recorded along with movement at these three joints. Additionally, 3 force sensing resistors measuring continuous force changes were placed at the heel, and the medial and lateral aspects of the right foot sole. All data were sorted based on stimulus occurrence in twelve step-cycle phases, before being averaged together within a phase for subsequent analysis. Results The results demonstrate statistically significant dynamic changes in reflex amplitudes, kinematics and foot sole pressures that are site-specific and phase-dependent. The general trends demonstrate responses producing decreased underfoot pressure at the site of stimulation. Conclusions The responses to stimulation of discrete locations on the foot sole evoke a kind of “sensory steering” that may promote balance and maintenance of locomotion through the modulation of limb loading and foot placement. These results have implications for using sensory stimulation as a therapeutic modality during gait retraining (e.g. after stroke) as well as for footwear design and implementation of foot sole contact surfaces during gait. PMID:25202452

  3. Electrical Stimulation Followed by Mesenchymal Stem Cells Improves Anal Sphincter Anatomy and Function in a Rat Model at a Time Remote From Injury.

    PubMed

    Sun, Li; Yeh, Judy; Xie, Zhuojun; Kuang, Mei; Damaser, Margot S; Zutshi, Massarat

    2016-05-01

    We have explored cell-based therapy to aid anal sphincter repair, but a conditioning injury is required to direct stem cells to the site of injury because symptoms usually manifest at a time remote from injury. We aimed to investigate the effect of local electrical stimulation followed by mesenchymal stem cell delivery on anal sphincter regeneration at a time remote from injury. With the use of a rat model, electrical stimulation parameters and cell delivery route were selected based on in vivo cytokine expression and luciferase-labeled cell imaging of the anal sphincter complex. Three weeks after a partial anal sphincter excision, rats were randomly allocated to 4 groups based on different local interventions: no treatment, daily electrical stimulation for 3 days, daily stimulation for 3 days followed by stem cell injection on the third day, and daily electrical stimulation followed by stem cell injection on the first and third days. Histology-assessed anatomy and anal manometry evaluated physiology 4 weeks after intervention. The electrical stimulation parameters that significantly upregulated gene expression of homing cytokines also achieved mesenchymal stem cell retention when injected directly in the anal sphincter complex in comparison with intravascular and intraperitoneal injections. Four weeks after intervention, there was significantly more new muscle in the area of injury and significantly improved anal resting pressure in the group that received daily electrical stimulation for 3 days followed by a single injection of 1 million stem cells on the third day at the site of injury. This was a pilot study and therefore was not powered for functional outcome. In this rat injury model with optimized parameters, electrical stimulation with a single local mesenchymal stem cell injection administered 3 weeks after injury significantly improved both new muscle formation in the area of injury and anal sphincter pressures.

  4. Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2010-01-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379

  5. Study of Driving Fatigue Alleviation by Transcutaneous Acupoints Electrical Stimulations

    PubMed Central

    Wang, Fuwang; Wang, Hong

    2014-01-01

    Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (劳宫PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (劳宫PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving. PMID:25254242

  6. Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.

    PubMed

    Richardson, Andrew G; Fetz, Eberhard E

    2012-11-01

    Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.

  7. Flexible inorganic light emitting diodes and transparent PEDOT:PSS/Parylene C for simultaneous optogenetics and electrocorticography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Keundong; Ganji, Mehran; Hossain, Lorraine; Ro, Yun Goo; Lee, Sang Heon; Park, Jong-woo; Yoo, Dongha; Yoon, Jiyoung; Yi, Gyu-Chul; Dayeh, Shadi A.

    2017-02-01

    Electrocorticography (ECoG) is a powerful tool for direct mapping of local field potentials from the brain surface. Progress in development of high-fidelity materials such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on thin conformal substrates such as parylene C enabled intimate contact with cortical surfaces and higher quality recordings from small volumes of neurons. Meanwhile, stimulation of neuronal activity is conventionally accomplished with electrical microstimulation and transcranial magnetic stimulation that can be combined with ECoG to form the basis of bidirectional neural interface. However, these stimulation mechanisms are less controlled and primitively understood on the local and cellular levels. With the advent of optogenetics, the localization and specificity of neuronal stimulation and inhibition is possible. Therefore, the development of integrated devices that can merge the sensitivity of ECoG or depth recording with optogenetic tools can lead to newer frontiers in understanding the neuronal activity. Herein, we introduce a hybrid device comprising flexible inorganic LED arrays integrated PEDOT:PSS/parylene C microelectrode arrays for high resolution bidirectional neuronal interfaces. The flexible inorganic LEDs have been developed by the metal-organic vapor phase epitaxy of position-controlled GaN microLEDs on ZnO nanostructured templates pre-grown at precise locations on a graphene layer. By transferring it onto the microelectrode arrays, it can provides the individual electrical addressability by light stimulation patterns. We will present experimental and simulation results on the optoelectronic characteristics and light activation capability of flexible microLEDs and their evaluation in vivo.

  8. Mouse current vocalization threshold measured with a neurospecific nociception assay: The effect of sex, morphine, and isoflurane

    PubMed Central

    Spornick, Nicholas; Guptill, Virginia; Koziol, Deloris; Wesley, Robert; Finkel, Julia; Quezado, Zenaide M.N.

    2012-01-01

    Sine-wave electrical stimulation at frequencies 2000, 250, and 5 Hz to respectively evaluate Aβ, Aδ, and C sensory neurons has recently been added to the armamentarium used to evaluate sensory neurons. We developed an automated nociception assay using sine-wave stimulation methodology to determine current vocalization threshold in response to 2000, 250, and 5 Hz and examine the effects of sex, analgesics, and anesthetics in mice. At baseline, males had significantly higher mean current vocalization thresholds compared with female mice at 2000, 250, and 5 Hz (p ≤ 0.019). By 1 h after intrathecal injections of morphine there were significant increases in current vocalization threshold percent changes from baseline that varied with doses (p = 0.0001) and frequency used (p < 0.0001). Specifically, with increasing doses of morphine, there were significantly greater increases in current vocalization threshold percent changes from baseline in response to 5 Hz compared with 250 and 2000 Hz stimulation in a significantly ordered pattern: 5 Hz > 250 Hz (p < 0.0001) and 250 Hz > 2000 Hz (p = 0.0002). Forty-five minutes after exposure, there were no effects of isoflurane on current vocalization thresholds at any frequency. Therefore, our findings suggest that this automated nociception assay using sine-wave stimulation in mice, can be valuable for measurements of the effects of sex, opioids, and anesthetics on the response to electrical stimuli that preferentially stimulate Aβ, Aδ, and C-sensory fibers in vivo. This investigation suggests the validation of this assay and supports its use to examine mechanisms of nociception in mice. PMID:21864576

  9. Transcutaneous Electrical Nerve Stimulation in Children with Monosymptomatic Nocturnal Enuresis: A Randomized, Double-Blind, Placebo Controlled Study.

    PubMed

    Jørgensen, Cecilie Siggaard; Kamperis, Konstantinos; Borch, Luise; Borg, Britt; Rittig, Søren

    2017-09-01

    In a third of all children with monosymptomatic nocturnal enuresis their condition is refractory to first line treatments. Transcutaneous electrical nerve stimulation has been documented to be efficacious in children with daytime incontinence. We investigated the effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Children with monosymptomatic nocturnal enuresis (3 or more wet nights per week) and no nocturnal polyuria were randomized to treatment with active or sham transcutaneous electrical nerve stimulation involving 1-hour sessions twice daily for 10 weeks in a double-blind design. Of the 52 children with monosymptomatic nocturnal enuresis included in the study 47 completed treatment (mean age 9.5 ± 2.1 years, 38 males). None of the children experienced a full response with complete remission of enuresis. Treatment with transcutaneous electrical nerve stimulation did not lead to significant changes in number of wet nights, nocturnal urine production on wet or dry nights, maximum voided volume with and without first morning voided volume, or voiding frequency when comparing parameters before and after treatment. The present study demonstrates no anti-enuretic effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Nocturnal urine production and bladder capacity remained unchanged during and after treatment with transcutaneous electrical nerve stimulation. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. The effects of electrical stimulation and exercise therapy in patients with limb girdle muscular dystrophy

    PubMed Central

    Kılınç, Muhammed; Yıldırım, Sibel A.; Tan, Ersin

    2015-01-01

    Objective: To evaluate and compare the effects of exercise therapy and electrical stimulation on muscle strength and functional activities in patients with limb-girdle muscular dystrophy (LGMD). Methods: This controlled clinical trial included 24 subjects who were diagnosed with LGMD by the Neurology Department of the Hacettepe University Hospital, Ankara, Turkey and were referred to the Physical Therapy Department between May 2013 and December 2014. Subjects were enrolled into an electrical stimulation (11 patients) group, or an exercise therapy (13 patients) group. Results: The mean age of patients was 31.62 years in the electrical stimulation group, and 30.14 years in the exercise therapy group. The most important results in this controlled clinical study were that the muscle strength in both groups was significantly decreased and post-treatment evaluation results indicated that muscle strength of the Deltoideus was higher in the electrical stimulation group, and the difference between the groups was maintained in the follow-up period (p<0.05). However, the muscle strength of quadriceps was similar in both groups, according to the post-treatment and follow-up evaluation results (p>0.05). Additionally, the electrical stimulation group presented more obvious overall improvements than the exercise therapy group according to muscle strength, endurance, and timed performance tests. Conclusions: Since no definitive treatments currently exist for patients with LGMD, these results provide important information on the role of exercise therapy and electrical stimulation for clinicians working in rehabilitation. PMID:26166595

  11. Electrical management of neurogenic lower urinary tract disorders.

    PubMed

    Joussain, C; Denys, P

    2015-09-01

    Management of lower urinary tract dysfunction (LUTD) in neurological diseases remains a priority because it leads to many complications such as incontinence, renal failure and decreased quality of life. A pharmacological approach remains the first-line treatment for patients with neurogenic LUTD, but electrical stimulation is a well-validated and recommended second-line treatment. However, clinicians must be aware of the indications, advantages and side effects of the therapy. This report provides an update on the 2 main electrical stimulation therapies for neurogenic LUTD - inducing direct bladder contraction with the Brindley procedure and modulating LUT physiology (sacral neuromodulation, tibial posterior nerve stimulation or pudendal nerve stimulation). We also describe the indications of these therapies for neurogenic LUTD, following international guidelines, as illustrated by their efficacy in patients with neurologic disorders. Electrical stimulation could be proposed for neurogenic LUTD as second-line treatment after failure of oral pharmacologic approaches. Nevertheless, further investigations are needed for a better understanding of the mechanisms of action of these techniques and to confirm their efficacy. Other electrical investigations, such as deep-brain stimulation and repetitive transcranial magnetic stimulation, or improved sacral anterior root stimulation, which could be associated with non-invasive and highly specific deafferentation of posterior roots, may open new fields in the management of neurogenic LUTD. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Dysregulation of the Descending Pain System in Temporomandibular Disorders Revealed by Low-Frequency Sensory Transcutaneous Electrical Nerve Stimulation: A Pupillometric Study

    PubMed Central

    Monaco, Annalisa; Cattaneo, Ruggero; Mesin, Luca; Ortu, Eleonora; Giannoni, Mario; Pietropaoli, Davide

    2015-01-01

    Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the descending pain system may be involved in TMD. PMID:25905862

  13. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans.

    PubMed

    Oddo, Calogero Maria; Raspopovic, Stanisa; Artoni, Fiorenzo; Mazzoni, Alberto; Spigler, Giacomo; Petrini, Francesco; Giambattistelli, Federica; Vecchio, Fabrizio; Miraglia, Francesca; Zollo, Loredana; Di Pino, Giovanni; Camboni, Domenico; Carrozza, Maria Chiara; Guglielmelli, Eugenio; Rossini, Paolo Maria; Faraguna, Ugo; Micera, Silvestro

    2016-03-08

    Restoration of touch after hand amputation is a desirable feature of ideal prostheses. Here, we show that texture discrimination can be artificially provided in human subjects by implementing a neuromorphic real-time mechano-neuro-transduction (MNT), which emulates to some extent the firing dynamics of SA1 cutaneous afferents. The MNT process was used to modulate the temporal pattern of electrical spikes delivered to the human median nerve via percutaneous microstimulation in four intact subjects and via implanted intrafascicular stimulation in one transradial amputee. Both approaches allowed the subjects to reliably discriminate spatial coarseness of surfaces as confirmed also by a hybrid neural model of the median nerve. Moreover, MNT-evoked EEG activity showed physiologically plausible responses that were superimposable in time and topography to the ones elicited by a natural mechanical tactile stimulation. These findings can open up novel opportunities for sensory restoration in the next generation of neuro-prosthetic hands.

  14. Electrical stimulation therapy for dysphagia: a follow-up survey of USA dysphagia practitioners.

    PubMed

    Barikroo, Ali; Carnaby, Giselle; Crary, Michael

    2017-12-01

    The aim of this study was to compare current application, practice patterns, clinical outcomes, and professional attitudes of dysphagia practitioners regarding electrical stimulation (e-stim) therapy with similar data obtained in 2005. A web-based survey was posted on the American Speech-Language-Hearing Association Special Interest Group 13 webpage for 1 month. A total of 271 survey responses were analyzed and descriptively compared with the archived responses from the 2005 survey. Results suggested that e-stim application increased by 47% among dysphagia practitioners over the last 10 years. The frequency of weekly e-stim therapy sessions decreased while the reported total number of treatment sessions increased between the two surveys. Advancement in oral diet was the most commonly reported improvement in both surveys. Overall, reported satisfaction levels of clinicians and patients regarding e-stim therapy decreased. Still, the majority of e-stim practitioners continue to recommend this treatment modality to other dysphagia practitioners. Results from the novel items in the current survey suggested that motor level e-stim (e.g. higher amplitude) is most commonly used during dysphagia therapy with no preferred electrode placement. Furthermore, the majority of clinicians reported high levels of self-confidence regarding their ability to perform e-stim. The results of this survey highlight ongoing changes in application, practice patterns, clinical outcomes, and professional attitudes associated with e-stim therapy among dysphagia practitioners.

  15. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    PubMed Central

    Miura, Naoto; Watanabe, Takashi

    2016-01-01

    Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556

  16. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...

  17. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...

  18. Colour stability of bovine Longissimus and Psoas major muscle as affected by electrical stimulation and hot boning.

    PubMed

    van Laack, R L; Smulders, F J

    1990-01-01

    From eight electrically stimulated and eight non-stimulated cows the righthand-side longissimus and psoas major muscles were hot boned within 1 1 2 h post mortem, vacuum packaged and chilled and storred at 1±1°C. Immediately after slaughter, the lefthand carcass-sides were blast-chilled for 1 1 2 h and subsequently chilled at 1±1°C until the following day. After cold boning, the longissimus and psoas major muscle were packaged, chilled and stored as the hot boned muscles. After 12 days of storage, steaks, cut from the primals, were displayed at 1±1°C under continuous illumination (300-400 lx). Colour measurements after 0, 2 and 4 days of display revealed a significant (p<0·10) effect of time of boning on non-stimulated psoas major muscle (lower values for a (∗), b (∗) values, chroma and %R630-%R580). Significant effects of electrical stimulation were not observed. Changes in hue tended to be more pronounced when the meat had been stimulated. Changes in chroma were largest (p<0·10) is non-stimulated, hot boned psoas muscle. Analysis of variances showed that in the longissimus muscle significant effects (p<0·10) of time boning and electrical stimulation were present. The effect of time of boning was often influenced by the use of electrical stimulation. Changes in hue and chroma indicated that hot boned samples had a higher colour stability than cold boned controls, especially when the carcasses had not been stimulated electrically. The observed differences in colour stability were rather small in all treatment groups and are not expected to present any practical merchandising problem. Copyright © 1990. Published by Elsevier Ltd.

  19. Vomiting Center reanalyzed: An electrical stimulation study

    NASA Technical Reports Server (NTRS)

    Miller, A. D.; Wilson, V. J.

    1982-01-01

    Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained.

  20. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and almost completely restored iBCI decoding performance (>90% recovery for surface stimulation and full recovery for intramuscular stimulation). The results demonstrate that FES-induced artifacts can be easily mitigated in FES  +  iBCI systems by using LRR for artifact reduction, and suggest that the LRR method may also be useful in other noise reduction applications.

  1. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  2. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage PRINCIPAL...DATES COVERED 30 Sep 2014 – 29 Sep 2015 4. TITLE AND SUBTITLE Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage...instability, among other traumatic affections of joints, and occupations or sports that subject joints to high levels of impact and torsional loading

  3. Patterns in the collaboration of practitioners and researchers in the use of electrical stimulation to treat stroke patients: a literature review.

    PubMed

    Fujimoto, Shuhei; Kon, Noriko; Takashi, Naoki; Otaka, Yohei; Nakayama, Takeo

    2015-09-01

    [Purpose] The purpose of this study was to investigate the degree of collaboration between practitioners and researchers through research papers related to the implementation of electrical stimulation (ES) for stroke patients. [Methods] A systematic review of the literature was conducted to collect data from ES studies published before January 7, 2015. Five databases were searched for search terms related to stroke and ES. Inclusion criteria were original papers that reported on ES of the upper or lower limbs following stroke, after the exclusion of case reports, brain stimulation studies, and papers written in any languages other than English or Japanese. The outcome was the prevalence of research papers that included a practitioner as an author, that included a practitioner as an author or in the acknowledgements, and in which the practitioner was the first author. [Results] Based on the selection criteria, 165 papers were included in the final analysis. The prevalence of papers in which a practitioner was included as an author was 39%. The prevalence of papers in which a practitioner was included as an author or in the acknowledgements was 50%. A practitioner was the first author of 34% of the papers. [Conclusion] Collaboration on research papers related to ES for stroke patients is limited.

  4. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.

    PubMed

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram

    2011-04-01

    Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation.

    PubMed

    Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing

    2017-11-08

    Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.

  6. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    PubMed

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  7. Transcranial Magnetic Stimulation-coil design with improved focality

    NASA Astrophysics Data System (ADS)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  8. An investigation into the induced electric fields from transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  9. Effects of electric stimulation of the hunger center in the lateral hypothalamus on slow electric activity and spike activity of fundal and antral stomach muscles in rabbits under conditions of hunger and satiation.

    PubMed

    Kromin, A A; Zenina, O Yu

    2013-09-01

    In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.

  10. Design of electrical stimulation bioreactors for cardiac tissue engineering.

    PubMed

    Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G

    2008-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.

  11. History of Resuscitation :4. Development of Resuscitation in the Mid-18 Century-4 : External Stimulation to the Body.

    PubMed

    Asai, Takashi

    2017-05-01

    From the mid-18th century, several different stimulations were used to attempt to resuscitate apparently dead people. These include sound, smell, and light stimulation to the ear, nose and eyes, rubbing the body surface and spirit given to the oral cavity. The most notable stimulation was use of electricity, which was initiated by better understanding of its power by Benjamin Franklin and Luigi A. Galvani. Charles Kite developed the first electrical machine to stimulate the heart, and by 1800, it was found that the most effective site for applying electricity was over the heart.

  12. Assessment of deep tissue hyperalgesia in the groin - a method comparison of electrical vs. pressure stimulation.

    PubMed

    Aasvang, E K; Werner, M U; Kehlet, H

    2014-09-01

    Deep pain complaints are more frequent than cutaneous in post-surgical patients, and a prevalent finding in quantitative sensory testing studies. However, the preferred assessment method - pressure algometry - is indirect and tissue unspecific, hindering advances in treatment and preventive strategies. Thus, there is a need for development of methods with direct stimulation of suspected hyperalgesic tissues to identify the peripheral origin of nociceptive input. We compared the reliability of an ultrasound-guided needle stimulation protocol of electrical detection and pain thresholds to pressure algometry, by performing identical test-retest sequences 10 days apart, in deep tissues in the groin region. Electrical stimulation was performed by five up-and-down staircase series of single impulses of 0.04 ms duration, starting from 0 mA in increments of 0.2 mA until a threshold was reached and descending until sensation was lost. Method reliability was assessed by Bland-Altman plots, descriptive statistics, coefficients of variance and intraclass correlation coefficients. The electrical stimulation method was comparable to pressure algometry regarding 10 days test-retest repeatability, but with superior same-day reliability for electrical stimulation (P < 0.05). Between-subject variance rather than within-subject variance was the main source for test variation. There were no systematic differences in electrical thresholds across tissues and locations (P > 0.05). The presented tissue-specific direct deep tissue electrical stimulation technique has equal or superior reliability compared with the indirect tissue-unspecific stimulation by pressure algometry. This method may facilitate advances in mechanism based preventive and treatment strategies in acute and chronic post-surgical pain states. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.

    PubMed

    Pavesi, A; Soncini, M; Zamperone, A; Pietronave, S; Medico, E; Redaelli, A; Prat, M; Fiore, G B

    2014-07-01

    In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration. © 2014 Wiley Periodicals, Inc.

  14. Reproduction of overall spontaneous pain pattern by manual stimulation of active myofascial trigger points in fibromyalgia patients

    PubMed Central

    2011-01-01

    Introduction It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern. The current study investigated whether the overall spontaneous FM pain pattern can be reproduced by local and referred pain from active MTPs located in different muscles. Methods A spontaneous pain pattern in FM was recorded in 30 FM patients and 30 healthy subjects served as controls. Local and referred pain patterns induced from active (patients) and latent (controls) MTPs were recorded following manual stimulation. The existence of MTPs was confirmed by intramuscular electromyographical registration of spontaneous electrical activity. Results Local and referred pain areas induced from key active MTPs in FM were larger than pain areas from latent MTPs in healthy controls (P < 0.001), but were similar to the overall spontaneous FM pain area in FM (P > 0.05). The induced pain area was positively associated with current spontaneous pain intensity in FM (P < 0.01). The locations of key active MTPs in FM patients were found to have latent MTPs in healthy subjects. The muscles containing key active MTPs in FM are often observed in the muscles of extensor digitorum, trapezius, infraspinatus in the upper part of the body and of quadratus lumborum, gluteus medius in the lower part of the body. Conclusions The overall spontaneous FM pain pattern can be reproduced by mechanical stimulation of active MTPs located in different muscles, suggesting that fibromyalgia pain is largely composed of pain arising from muscle pain and spasm. Targeting active MTPs and related perpetuating factors may be an important strategy in FM pain control. Trial registration ISRCTN ISRCTN43167547. PMID:21426569

  15. Emotions induced by intracerebral electrical stimulation of the temporal lobe.

    PubMed

    Meletti, Stefano; Tassi, Laura; Mai, Roberto; Fini, Nicola; Tassinari, Carlo Alberto; Russo, Giorgio Lo

    2006-01-01

    To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe. Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed. Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses. These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.

  16. Cooperative role of electrical stimulation on microbial metabolism and selection of thermophilic communities for p-fluoronitrobenzene treatment.

    PubMed

    Zhang, Xueqin; Shen, Dongsheng; Feng, Huajun; Wang, Yanfeng; Li, Na; Han, Jingyi; Long, Yuyang

    2015-01-01

    A novel thermophilic bioelectrochemical system (TBES) based on electrical stimulation was established for the enhanced treatment of p-fluoronitrobenzene (p-FNB) wastewater. p-FNB removal rate constant in the TBES was 78.6% higher than that of the mesophilic BES (MBES), the elevation of which owing to high-temperature overtook the rate improvement of 50.8% in the electrocatalytic system (ECS). Additionally, an overwhelming mineralization efficiency of 91.96% ± 5.70% was obtained in the TBES. The superiority of TBES was attributed to the integrated role of electrical stimulation and high-temperature. Electrical stimulation provided an alternative for the microbial growth independent energy requirements, compensating insufficient energy support from p-FNB metabolism under the high-temperature stress. Besides, electrical stimulation facilitated microbial community evolution to form specific thermophilic biocatalysis. The uniquely selected thermophilic microorganisms including Coprothermobacter sp. and other ones cooperated to enhance p-FNB mineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of the Masako maneuver and neuromuscular electrical stimulation on the improvement of swallowing function in patients with dysphagia caused by stroke

    PubMed Central

    Byeon, Haewon

    2016-01-01

    [Purpose] The aim of this study was to compare improvements in swallowing function by the intervention of the Masako maneuver and neuromuscular electrical stimulation in patients with dysphagia caused by stroke. [Subjects and Methods] The Masako maneuver (n=23) and neuromuscular electrical stimulation (n=24) were conducted in 47 patients with dysphagia caused by stroke over a period of 4 weeks. Swallowing recovery was recorded using the functional dysphagia scale based on videofluoroscopic studies. [Results] Mean functional dysphagia scale values for the Masako maneuver and neuromuscular electrical stimulation groups decreased after the treatments. However, the pre-post functional dysphagia scale values showed no statistically significant differences between the groups. [Conclusion] The Masako maneuver and neuromuscular electrical stimulation each showed significant effects on the improvement of swallowing function for the patients with dysphagia caused by stroke, but no significant difference was observed between the two treatment methods. PMID:27512266

  18. FES in Europe and Beyond: Current Translational Research

    PubMed Central

    Coste, Christine Azevedo; Mayr, Winfried; Bijak, Manfred; Musarò, Antonio; Carraro, Ugo

    2016-01-01

    Capacity of adult neural and muscle tissues to respond to external Electrical Stimulation (ES) is the biological basis for the development and implementation of mobility impairment physiotherapy protocols and of related assistive technologies, e.g, Functional Electrical Stimulation (FES). All body tissues, however, respond to electrical stimulation and, indeed, the most successful application of FES is electrical stimulation of the heart to revert or limit effects of arrhythmias (Pace-makers and Defibrillators). Here, we list and discuss results of FES current research activities, in particular those presented at 2016 Meetings: the PaduaMuscleDays, the Italian Institute of Myology Meeting, the 20th International Functional Electrical Stimulation Society (IFESS) conference held in Montpellier and the Vienna Workshop on FES. Several papers were recently e-published in the European Journal of Translational Myology as reports of meeting presentations. All the events and publications clearly show that FES research in Europe and beyond is alive and promisses translation of results into clinical management of a very large population of persons with deficiencies. PMID:28078074

  19. Ventilator waveforms on anesthesia machine: a simple tool for intraoperative mapping of phrenic nerve and mid-cervical roots.

    PubMed

    Georgoulis, George; Papagrigoriou, Eirini; Sindou, Marc

    2015-12-01

    A crucial aspect of surgery on the supraclavicular region, lateral neck, and mid-cervical vertebral region is the identification and sparing of the phrenic nerve and cervical (C4) root that are responsible for diaphragmatic innervation. Therefore intraoperative mapping of these nerve structures can be useful for difficult cases. Electrical stimulation with simultaneous observation of the ventilator waveforms of the anesthesia machine provides an effective method for the precise intraoperative mapping of these structures. In the literature, there is only one publication reporting the use of one of the waveforms (capnography) for this purpose. Capnography and pressure-time waveforms, two mandatory curves in anesthesiological monitoring, were studied under electrical stimulation of the phrenic nerve (one patient) and the C4 root (eight patients). The aim was to detect changes that would verify diaphragmatic contraction. No modifications in anesthesia or surgery and no additional maneuvers were required. In all patients, stimulation was followed by identifiable changes in the two waveforms, compatible with diaphragmatic contraction: acute reduction in amplitude on capnography and repetitive saw-like elevations on pressure-time curve. Frequency of patterns on pressure-time curve coincided with the frequency of stimulation; therefore the two recordings were complementary. This simple method proved effective in identifying the neural structures responsible for diaphragmatic function. We therefore suggest that it should be employed in the various types of surgery where these structures are at risk.

  20. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    PubMed

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  1. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    DTIC Science & Technology

    2017-10-01

    expected. Statistics: Comparisons were analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...2016 – 29 Sep 2017 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic

  2. Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0190 TITLE: Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone PRINCIPAL...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...2015 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

  3. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I: A Pilot Controlled Study.

    PubMed

    Cudia, Paola; Weis, Luca; Baba, Alfonc; Kiper, Pawel; Marcante, Andrea; Rossi, Simonetta; Angelini, Corrado; Piccione, Francesco

    2016-11-01

    Functional electrical stimulation (FES) is a new rehabilitative approach that combines electrical stimulation with a functional task. This pilot study evaluated the safety and effectiveness of FES lower extremity training in myotonic dystrophy type 1. This is a controlled pilot study that enrolled 20 patients with myotonic dystrophy type 1 over 2 years. Eight patients (age, 39-67 years) fulfilled the inclusion criteria. Four participants performed FES cycling training for 15 days (one daily session of 30 minutes for 5 days a week). A control group, matched for clinical and genetic variables, who had contraindications to electrical stimulation, performed 6 weeks of conventional resistance and aerobic training. The modified Medical Research Council Scale and functional assessments were performed before and after treatment. Cohen d effect size was used for statistical analysis. Functional electrical stimulation induced lower extremity training was well tolerated and resulted in a greater improvement of tibialis anterior muscle strength (d = 1,583), overall muscle strength (d = 1,723), and endurance (d = 0,626) than conventional training. Functional electrical stimulation might be considered a safe and valid tool to improve muscle function, also in muscles severely compromised in which no other restorative options are available. Confirmation of FES efficacy through further clinical trials is strongly advised.

  4. Simultaneous masking between electric and acoustic stimulation in cochlear implant users with residual low-frequency hearing.

    PubMed

    Krüger, Benjamin; Büchner, Andreas; Nogueira, Waldo

    2017-09-01

    Ipsilateral electric-acoustic stimulation (EAS) is becoming increasingly important in cochlear implant (CI) treatment. Improvements in electrode designs and surgical techniques have contributed to improved hearing preservation during implantation. Consequently, CI implantation criteria have been expanded toward people with significant residual low-frequency hearing, who may benefit from the combined use of both the electric and acoustic stimulation in the same ear. However, only few studies have investigated the mutual interaction between electric and acoustic stimulation modalities. This work characterizes the interaction between both stimulation modalities using psychophysical masking experiments and cone beam computer tomography (CBCT). Two psychophysical experiments for electric and acoustic masking were performed to measure the hearing threshold elevation of a probe stimulus in the presence of a masker stimulus. For electric masking, the probe stimulus was an acoustic tone while the masker stimulus was an electric pulse train. For acoustic masking, the probe stimulus was an electric pulse train and the masker stimulus was an acoustic tone. Five EAS users, implanted with a CI and ipsilateral residual low-frequency hearing, participated in the study. Masking was determined at different electrodes and different acoustic frequencies. CBCT scans were used to determine the individual place-pitch frequencies of the intracochlear electrode contacts by using the Stakhovskaya place-to-frequency transformation. This allows the characterization of masking as a function of the difference between electric and acoustic stimulation sites, which we term the electric-acoustic frequency difference (EAFD). The results demonstrate a significant elevation of detection thresholds for both experiments. In electric masking, acoustic-tone thresholds increased exponentially with decreasing EAFD. In contrast, for the acoustic masking experiment, threshold elevations were present regardless of the tested EAFDs. Based on the present findings, we conclude that there is an asymmetry between the electric and the acoustic masker modalities. These observations have implications for the design and fitting of EAS sound-coding strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: A systematic review and meta-analysis.

    PubMed

    Lin, Shuqin; Sun, Qi; Wang, Haifeng; Xie, Guomin

    2018-01-10

    To evaluate the influence of transcutaneous electrical nerve stimulation in patients with stroke through a systematic review and meta-analysis. PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation vs placebo transcutaneous electrical nerve stimulation on stroke were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was modified Ashworth scale (MAS). Meta-analysis was performed using the random-effect model. Seven randomized controlled trials were included in the meta-analysis. Compared with placebo transcutaneous electrical nerve stimulation, transcutaneous electrical nerve stimulation supplementation significantly reduced MAS (standard mean difference (SMD) = -0.71; 95% confidence interval (95% CI) = -1.11 to -0.30; p = 0.0006), improved static balance with open eyes (SMD = -1.26; 95% CI = -1.83 to -0.69; p<0.0001) and closed eyes (SMD = -1.74; 95% CI = -2.36 to -1.12; p < 0.00001), and increased walking speed (SMD = 0.44; 95% CI = 0.05 to 0.84; p = 0.03), but did not improve results on the Timed Up and Go Test (SMD = -0.60; 95% CI=-1.22 to 0.03; p = 0.06). Transcutaneous electrical nerve stimulation is associated with significantly reduced spasticity, increased static balance and walking speed, but has no influence on dynamic balance.

  6. A phenomenological model that predicts forces generated when electrical stimulation is superimposed on submaximal volitional contractions

    PubMed Central

    Perumal, Ramu; Wexler, Anthony S.; Kesar, Trisha M.; Jancosko, Angela; Laufer, Yocheved

    2010-01-01

    Superimposition of electrical stimulation during voluntary contractions is used to produce functional movements in individuals with central nervous system impairment, to evaluate the ability to activate a muscle, to characterize the nature of fatigue, and to improve muscle strength during postsurgical rehabilitation. Currently, the manner in which voluntary contractions and electrically elicited forces summate is not well understood. The objective of the present study is to develop a model that predicts the forces obtained when electrical stimulation is superimposed on a volitional contraction. Quadriceps femoris muscles of 12 able-bodied subjects were tested. Our results showed that the total force produced when electrical stimulation was superimposed during a volitional contraction could be modeled by the equation T = V + S[(MaxForce − V)/MaxForce]N, where T is the total force produced, V is the force in response to volitional contraction alone, S is the force response to the electrical stimulation alone, MaxForce is the maximum force-generating ability of the muscle, and N is a parameter that we posit depends on the differences in the motor unit recruitment order and firing rates between volitional and electrically elicited contractions. In addition, our results showed that the model predicted accurately (intraclass correlation coefficient ≥0.97) the total force in response to a wide range of stimulation intensities and frequencies superimposed on a wide range of volitional contraction levels. Thus the model will be helpful to clinicians and scientists to predict the amount of stimulation needed to produce the targeted force levels in individuals with partial paralysis. PMID:20299613

  7. Stimulating Music: The Pleasures and Dangers of “Electric Music,” 1750–1900

    PubMed Central

    Kennaway, James

    2014-01-01

    Far from being a purely modern idea, the notion of “electric music” was already common in the eighteenth and nineteenth centuries. The shift in thinking about music from cosmic harmony to nervous stimulation made metaphors and speculative theories relating music and electricity irresistible. This essay considers the development of the idea of electric music, looking at its associations with a sexual “body electric.” It will then examine how this conception of music went from being the subject of sympathy to becoming part of a medical critique of music as a dangerous stimulant, with echoes in music criticism and beyond. PMID:24587689

  8. Reversing Age Related Changes of the Laryngeal Muscles by Chronic Electrostimulation of the Recurrent Laryngeal Nerve

    PubMed Central

    Karbiener, Michael; Jarvis, Jonathan C.; Perkins, Justin D.; Lanmüller, Hermann; Schmoll, Martin; Rode, Hanna S.; Gerstenberger, Claus; Gugatschka, Markus

    2016-01-01

    Age related atrophy of the laryngeal muscles -mainly the thyroarytenoid muscle (TAM)- leads to a glottal gap and consequently to a hoarse and dysphonic voice that significantly affects quality of life. The aim of our study was to reverse this atrophy by inducing muscular hypertrophy by unilateral functional electrical stimulation (FES) of the recurrent laryngeal nerve (RLN) in a large animal model using aged sheep (n = 5). Suitable stimulation parameters were determined by fatiguing experiments of the thyroarytenoid muscle in an acute trial. For the chronic trial an electrode was placed around the right RLN and stimulation was delivered once daily for 29 days. We chose a very conservative stimulation pattern, total stimulation time was two minutes per day, or 0.14% of total time. Overall, the mean muscle fiber diameter of the stimulated right TAM was significantly larger than the non-stimulated left TAM (30μm±1.1μm vs. 28μm±1.1 μm, p<0.001). There was no significant shift in fiber type distribution as judged by immunohistochemistry. The changes of fiber diameter could not be observed in the posterior cricoarytenoid muscle (PCAM). FES is a possible new treatment option for reversing the effects of age related laryngeal muscle atrophy. PMID:27893858

  9. Reversing Age Related Changes of the Laryngeal Muscles by Chronic Electrostimulation of the Recurrent Laryngeal Nerve.

    PubMed

    Karbiener, Michael; Jarvis, Jonathan C; Perkins, Justin D; Lanmüller, Hermann; Schmoll, Martin; Rode, Hanna S; Gerstenberger, Claus; Gugatschka, Markus

    2016-01-01

    Age related atrophy of the laryngeal muscles -mainly the thyroarytenoid muscle (TAM)- leads to a glottal gap and consequently to a hoarse and dysphonic voice that significantly affects quality of life. The aim of our study was to reverse this atrophy by inducing muscular hypertrophy by unilateral functional electrical stimulation (FES) of the recurrent laryngeal nerve (RLN) in a large animal model using aged sheep (n = 5). Suitable stimulation parameters were determined by fatiguing experiments of the thyroarytenoid muscle in an acute trial. For the chronic trial an electrode was placed around the right RLN and stimulation was delivered once daily for 29 days. We chose a very conservative stimulation pattern, total stimulation time was two minutes per day, or 0.14% of total time. Overall, the mean muscle fiber diameter of the stimulated right TAM was significantly larger than the non-stimulated left TAM (30μm±1.1μm vs. 28μm±1.1 μm, p<0.001). There was no significant shift in fiber type distribution as judged by immunohistochemistry. The changes of fiber diameter could not be observed in the posterior cricoarytenoid muscle (PCAM). FES is a possible new treatment option for reversing the effects of age related laryngeal muscle atrophy.

  10. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  11. Electronic enhancement of tear secretion

    NASA Astrophysics Data System (ADS)

    Brinton, Mark; Lim Chung, Jae; Kossler, Andrea; Kook, Koung Hoon; Loudin, Jim; Franke, Manfred; Palanker, Daniel

    2016-02-01

    Objective. To study electrical stimulation of the lacrimal gland and afferent nerves for enhanced tear secretion, as a potential treatment for dry eye disease. We investigate the response pathways and electrical parameters to safely maximize tear secretion. Approach. We evaluated the tear response to electrical stimulation of the lacrimal gland and afferent nerves in isofluorane-anesthetized rabbits. In acute studies, electrical stimulation was performed using bipolar platinum foil electrodes, implanted beneath the inferior lacrimal gland, and a monopolar electrode placed near the afferent ethmoid nerve. Wireless microstimulators with bipolar electrodes were implanted beneath the lacrimal gland for chronic studies. To identify the response pathways, we applied various pharmacological inhibitors. To optimize the stimulus, we measured tear secretion rate (Schirmer test) as a function of pulse amplitude (1.5-12 mA), duration (0.1-1 ms) and repetition rate (10-100 Hz). Main results. Stimulation of the lacrimal gland increased tear secretion by engaging efferent parasympathetic nerves. Tearing increased with stimulation amplitude, pulse duration and repetition rate, up to 70 Hz. Stimulation with 3 mA, 500 μs pulses at 70 Hz provided a 4.5 mm (125%) increase in Schirmer score. Modulating duty cycle further increased tearing up to 57%, compared to continuous stimulation in chronically implanted animals (36%). Ethmoid (afferent) nerve stimulation increased tearing similar to gland stimulation (3.6 mm) via a reflex pathway. In animals with chronically implanted stimulators, a nearly 6 mm increase (57%) was achieved with 12-fold less charge density per pulse (0.06-0.3 μC mm-2 with 170-680 μs pulses) than the damage threshold (3.5 μC mm-2 with 1 ms pulses). Significance. Electrical stimulation of the lacrimal gland or afferent nerves may be used as a treatment for dry eye disease. Clinical trials should validate this approach in patients with aqueous tear deficiency, and further optimize electrical parameters for maximum clinical efficacy.

  12. The impact of neuromuscular electrical stimulation on recovery after intensive, muscle damaging, maximal speed training in professional team sports players.

    PubMed

    Taylor, Tom; West, Daniel J; Howatson, Glyn; Jones, Chris; Bracken, Richard M; Love, Thomas D; Cook, Christian J; Swift, Eamon; Baker, Julien S; Kilduff, Liam P

    2015-05-01

    During congested fixture periods in team sports, limited recovery time and increased travel hinder the implementation of many recovery strategies; thus alternative methods are required. We examined the impact of a neuromuscular electrical stimulation device on 24-h recovery from an intensive training session in professional players. Twenty-eight professional rugby and football academy players completed this randomised and counter-balanced study, on 2 occasions, separated by 7 days. After baseline perceived soreness, blood (lactate and creatine kinase) and saliva (testosterone and cortisol) samples were collected, players completed a standardised warm-up and baseline countermovement jumps (jump height). Players then completed 60 m × 50 m maximal sprints, with 5 min recovery between efforts. After completing the sprint session, players wore a neuromuscular electrical stimulation device or remained in normal attire (CON) for 8 h. All measures were repeated immediately, 2 and 24-h post-sprint. Player jump height was reduced from baseline at all time points under both conditions; however, at 24-h neuromuscular electrical stimulation was significantly more recovered (mean±SD; neuromuscular electrical stimulation -3.2±3.2 vs. CON -7.2±3.7%; P<0.001). Creatine kinase concentrations increased at all time points under both conditions, but at 24-h was lower under neuromuscular electrical stimulation (P<0.001). At 24-h, perceived soreness was significantly lower under neuromuscular electrical stimulation, when compared to CON (P=0.02). There was no effect of condition on blood lactate, or saliva testosterone and cortisol responses (P>0.05). Neuromuscular electrical stimulation improves recovery from intensive training in professional team sports players. This strategy offers an easily applied recovery strategy which may have particular application during sleep and travel. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Diagnostic relevance of transcranial magnetic and electric stimulation of the facial nerve in the management of facial palsy.

    PubMed

    Nowak, Dennis A; Linder, Stefan; Topka, Helge

    2005-09-01

    Earlier investigations have suggested that isolated conduction block of the facial nerve to transcranial magnetic stimulation early in the disorder represents a very sensitive and potentially specific finding in Bell's palsy differentiating the disease from other etiologies. Stimulation of the facial nerve was performed electrically at the stylomastoid foramen and magnetically at the labyrinthine segment of the Fallopian channel within 3 days from symptom onset in 65 patients with Bell's palsy, five patients with Zoster oticus, one patient with neuroborreliosis and one patient with nuclear facial nerve palsy due to multiple sclerosis. Absence or decreased amplitudes of muscle responses to early transcranial magnetic stimulation was not specific for Bell's palsy, but also evident in all cases of Zoster oticus and in the case of neuroborreliosis. Amplitudes of electrically evoked muscle responses were more markedly reduced in Zoster oticus as compared to Bell's palsy, most likely due to a more severe degree of axonal degeneration. The degree of amplitude reduction of the muscle response to electrical stimulation reliably correlated with the severity of facial palsy. Transcranial magnetic stimulation in the early diagnosis of Bell's palsy is less specific than previously thought. While not specific with respect to the etiology of facial palsy, transcranial magnetic stimulation seems capable of localizing the site of lesion within the Fallopian channel. Combined with transcranial magnetic stimulation, early electrical stimulation of the facial nerve at the stylomastoid foramen may help to establish correct diagnosis and prognosis.

  14. Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation

    PubMed Central

    Gittens, Rolando A.; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J.; Alamgir, Faisal M.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. PMID:23996899

  15. Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex.

    PubMed

    Blanquie, Oriane; Yang, Jenq-Wei; Kilb, Werner; Sharopov, Salim; Sinning, Anne; Luhmann, Heiko J

    2017-08-21

    Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region-dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptosis and sensory deprivation leads to exacerbated amounts of apoptotic neurons in the corresponding functional area of the neocortex. Thus, our data demonstrate that spontaneous and periphery-driven activity patterns are important for the structural and functional maturation of the neocortex by refining the final number of cortical neurons in a region-dependent manner.

  16. The hippocampus participates in the control of locomotion speed.

    PubMed

    López Ruiz, J R; Osuna Carrasco, L P; López Valenzuela, C L; Franco Rodríguez, N E; de la Torre Valdovinos, B; Jiménez Estrada, I; Dueñas Jiménez, J M; Dueñas Jiménez, S H

    2015-12-17

    The hippocampus role in sensory-motor integration remains unclear. In these experiments we study its function in the locomotor control. To establish the connection between the hippocampus and the locomotor system, electrical stimulation in the CA1 region was applied and EMG recordings were obtained. We also evaluated the hindlimbs and forelimbs kinematic patterns in rats with a penetrating injury (PI) in the hippocampus as well as in a cortex-injured group (CI), which served as control. After the PI, tamoxifen a selective estrogen receptor modulator (SERM) that has been described as a neuroprotector and antiinflammatory drug, or vehicle was administered. Electrical stimulation in the hippocampus produces muscle contractions in the contralateral triceps, when 6 Hz or 8 Hz pulse trains were applied. The penetrating injury in the hippocampus reduced the EMG amplitude after the electrical stimulation. At 7 DPI (days post-injury) we observed an increase in the strides speed in all four limbs of the non-treated group, decreasing the correlation percentage of the studied joints. After 15 DPI the strides speed in the non-treated returned to normal. These changes did not occur in the tamoxifen group nor in cortex-injured group. After 30 days, the nontreated group presented a reduction in the number of pyramidal cell layer neurons at the injury site, in comparison to the tam-treated group. The loss of neurons, may cause the interruption of the trisynaptic circuit and changes in the locomotion speed. Tamoxifen preserves the pyramidal neurons after the injury, probably resulting in the strides speed recovery. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.

    PubMed

    Wagenaar, Justin; Adler, Andy

    2016-06-01

    Electrical impedance tomography (EIT) uses body surface electrical stimulation and measurements to create conductivity images; it shows promise as a non-invasive technology to monitor the distribution of lung ventilation. Most applications of EIT have placed electrodes in a 2D ring around the thorax, and thus produced 2D cross-sectional images. These images are unable to distinguish out-of-plane contributions, or to image volumetric effects. Volumetric EIT can be calculated using multiple electrode planes and a 3D reconstruction algorithm. However, while 3D reconstruction algorithms are available, little has been done to understand the performance of 3D EIT in terms of the measurement configurations available. The goal of this paper is to characterize the phantom and in vivo performance of 3D EIT with two electrode planes. First, phantom measurements are used to measure the reconstruction characteristics of seven stimulation and measurement configurations. Measurements were then performed on eight healthy volunteers as a function of body posture, postures, and with various electrode configurations. Phantom results indicate that 3D EIT using two rings of electrodes provides reasonable resolution in the electrode plane but low vertical resolution. For volunteers, functional EIT images are created from inhalation curve features to analyze the effect of posture (standing, sitting, supine and decline) on regional lung behaviour. An ability to detect vertical changes in lung volume distribution was shown for two electrode configurations. Based on tank and volunteer results, we recommend the use of the 'square' stimulation and measurement pattern for two electrode plane EIT.

  18. Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration

    PubMed Central

    Lorach, Henri; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Dalal, Roopa; Huie, Philip; Harris, James; Palanker, Daniel

    2015-01-01

    Purpose Prosthetic restoration of partial sensory loss leads to interactions between artificial and natural inputs. Ideally, the rehabilitation should allow perceptual fusion of the two modalities. Here we studied the interactions between normal and prosthetic vision in a rodent model of local retinal degeneration. Methods Implantation of a photovoltaic array in the subretinal space of normally sighted rats induced local degeneration of the photoreceptors above the chip, and the inner retinal neurons in this area were electrically stimulated by the photovoltaic implant powered by near-infrared (NIR) light. We studied prosthetic and natural visually evoked potentials (VEP) in response to simultaneous stimulation by NIR and visible light patterns. Results We demonstrate that electrical and natural VEPs summed linearly in the visual cortex, and both responses decreased under brighter ambient light. Responses to visible light flashes increased over 3 orders of magnitude of contrast (flash/background), while for electrical stimulation the contrast range was limited to 1 order of magnitude. The maximum amplitude of the prosthetic VEP was three times lower than the maximum response to a visible flash over the same area on the retina. Conclusions Ambient light affects prosthetic responses, albeit much less than responses to visible stimuli. Prosthetic representation of contrast in the visual scene can be encoded, to a limited extent, by the appropriately calibrated stimulus intensity, which also depends on the ambient light conditions. Such calibration will be important for patients combining central prosthetic vision with natural peripheral sight, such as in age-related macular degeneration. PMID:26618643

  19. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations.

    PubMed

    Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom

    2013-10-15

    Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of transcranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Classification of methods in transcranial Electrical Stimulation (tES) and evolving strategy from historical approaches to contemporary innovations

    PubMed Central

    Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom

    2013-01-01

    Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of trans-cranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES. PMID:23954780

  1. Analgesic efficacy of cerebral and peripheral electrical stimulation in chronic nonspecific low back pain: a randomized, double-blind, factorial clinical trial.

    PubMed

    Hazime, Fuad Ahmad; de Freitas, Diego Galace; Monteiro, Renan Lima; Maretto, Rafaela Lasso; Carvalho, Nilza Aparecida de Almeida; Hasue, Renata Hydee; João, Silvia Maria Amado

    2015-01-31

    Chronic non-specific low back pain is a major socioeconomic public health issue worldwide and, despite the volume of research in the area, it is still a difficult-to-treat condition. The conservative analgesic therapy usually comprises a variety of pharmacological and non-pharmacological strategies, such as transcutaneous electrical nerve stimulation. The neuromatrix pain model and the new findings on the process of chronicity of pain point to a higher effectiveness of treatments that address central rather than peripheral structures. The transcranial direct current stimulation is a noninvasive technique of neuromodulation that has made recent advances in the treatment of chronic pain. The simultaneous combination of these two electrostimulation techniques (cerebral and peripheral) can provide an analgesic effect superior to isolated interventions. However, all the evidence on the analgesic efficacy of these techniques, alone or combined, is still fragmented. This is a protocol for a randomized clinical trial to investigate whether cerebral electrical stimulation combined with peripheral electrical stimulation is more effective in relieving pain than the isolated application of electrical stimulations in patients with chronic nonspecific low back pain. Ninety-two patients will be randomized into four groups to receive transcranial direct current stimulation (real/sham) + transcutaneous electrical nerve stimulation (real/sham) for 12 sessions over a period of four weeks. The primary clinical outcome (pain intensity) and the secondary ones (sensory and affective aspects of pain, physical functioning and global perceived effect) will be recorded before treatment, after four weeks, in Month 3 and in Month 6 after randomization. Confounding factors such as anxiety and depression, the patient's satisfaction with treatment and adverse effects will also be listed. Data will be collected by an examiner unaware of (blind to) the treatment allocation. The results of this study may assist in clinical decision-making about the combined use of cerebral and peripheral electrical stimulation for pain relief in patients with chronic low back pain. NCT01896453.

  2. A partial hearing animal model for chronic electro-acoustic stimulation

    NASA Astrophysics Data System (ADS)

    Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.

    2014-08-01

    Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual hearing following cochlear implantation. The ability to record CAPs via the CI has clinical direct relevance for obtaining objective measures of residual hearing.

  3. Electrical stimulation in the treatment of pain.

    PubMed

    Rushton, David N

    2002-05-20

    To review the published literature concerning the treatment of painful conditions using devices that deliver electrical stimulation to nervous structures. The review briefly surveys the results obtained using surface electrodes ("TENS") as well as implanted devices. The method used is a critical review of the important published literature up to mid-1999. References were obtained using Medline and the keywords "pain", together with "electrical", "stimulation", "neurostimulation" or "TENS". Electrical stimulation has been found to be of potential benefit in the management of a range of painful conditions. Adequately controlled trials of electrical stimulation are often difficult to achieve. Implanted devices tend to be used in the more severe intractable pain conditions. It is likely that there is more than one mechanism of action. The mechanisms of action are however still often poorly understood, even though historically theoretical and experimental advances in the understanding of pain mechanisms prompted the development of clinical systems and the institution of clinical studies. TENS has proved to be remarkably safe, and provides significant analgesia in about half of patients experiencing moderate predictable pain. Implanted devices can be more effective, but they carry a risk of device failure, implant infection or surgical complication, and are reserved for the more severe intractable chronic pains. The main implanted devices used clinically are the spinal cord stimulator and the deep brain stimulator.

  4. The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke.

    PubMed

    Gandolla, Marta; Ward, Nick S; Molteni, Franco; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership-the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place.

  5. Application of constant current, low voltage electrical stimulation systems to pig carcasses and its effects on pork quality.

    PubMed

    Channon, H A; Walker, P J; Kerr, M G; Baud, S R

    2003-12-01

    This study examined the effectiveness of a constant current, low voltage electrical stimulation system on improving pork quality when applied to pigs at 2 min post-exsanguination. A total of 48 female Duroc×Large White/Landrace pigs of 85-90 kg liveweight were randomly allocated immediately prior to slaughter to one of four constant current electrical stimulation treatments: control (no electrical stimulation), 50, 200 and 400 mA. Stimulation was applied to pig carcasses at 2 min post-exsanguination for 30 s. No differences (P>0.05) in WB shear force values, muscle lightness or PSE incidence of pork M. longissimus lumborum (LL) was found due to electrical stimulation treatment. Muscle pH of the LL muscle was lower (P<0.001) in carcasses in the 200 and 400 mA treatments compared to those from carcasses in both the 50 mA and control treatment groups, when measured at the various time points from 40 min to 8 h post-slaughter. Although carcasses stimulated with 200 and 400 mA had higher percentage drip loss (P<0.05) and purge (P<0.001), this was not found to impact WB shear force values, muscle lightness or PSE incidence.

  6. Matching native electrical stimulation by graded chemical stimulation in isolated mouse adrenal chromaffin cells.

    PubMed

    Fulop, Tiberiu; Smith, Corey

    2007-11-30

    Adrenal chromaffin cells release multiple transmitters in response to sympathetic stimulation. Modest cell firing, matching sympathetic tone, releases small freely soluble catecholamines. Elevated electrical firing rates matching input under sympathetic stress results in release of catecholamines as well as semi-soluble vaso- and neuro-active peptides packaged within the dense core of the secretory granule. This activity-dependent differential transmitter release has been shown to rely on a mechanistic shift in the mode of exocytosis through the regulated dilation of the secretory fusion pore between granule and cell surface membranes. However, biochemical description of the mechanism regulating fusion pore dilation remains elusive. In the experimental setting, electrical stimulation designed to mimic sympathetic input, is achieved through single-cell voltage-clamp. While precise, this approach is incompatible with biochemical and proteomic analysis, both of which require large sample sizes. We address this limitation in the current study. We describe a bulk chemical stimulation paradigm calibrated to match defined electrical activity. We utilize calcium and single-cell amperometric measurements to match extracellular potassium concentrations to physiological electrical stimulation under sympathetic tone as well as acute stress conditions. This approach provides larger samples of uniformly stimulated cells for determining molecular players in activity-dependent differential transmitter release from adrenal chromaffin cells.

  7. Propofol, more than halothane, depresses electroencephalographic activation resulting from electrical stimulation in reticular formation.

    PubMed

    Antognini, J F; Bravo, E; Atherley, R; Carstens, E

    2006-09-01

    Halothane and propofol depress the central nervous system, and this is partly manifested by a decrease in electroencephalographic (EEG) activity. Little work has been performed to determine the differences between these anesthetics with regard to their effects on evoked EEG activity. We examined the effects of halothane and propofol on EEG responses to electrical stimulation of the reticular formation. Rats (n= 12) were anesthetized with either halothane or propofol, and EEG responses were recorded before and after electrical stimulation of the reticular formation. Two anesthetic concentrations were used (0.8 and 1.2 times the amount needed to prevent gross, purposeful movement in response to supramaximal noxious stimulation), and both anesthetics were studied in each rat using a cross-over design. Electrical stimulation in the reticular formation increased the spectral edge (SEF) and median edge (MEF) frequencies by approximately 1-2 Hz during halothane anesthesia at low and high concentrations. During propofol anesthesia, MEF increased at the low propofol infusion rate, but SEF was unaffected. At the high propofol infusion rate, SEF and MEF decreased following electrical stimulation in the reticular formation. At immobilizing concentrations, propofol produces a larger decrease than halothane in EEG responses to reticular formation stimulation, consistent with propofol having a more profound depressant effect on cortical and subcortical structures.

  8. Transient finite element modeling of functional electrical stimulation.

    PubMed

    Filipovic, Nenad D; Peulic, Aleksandar S; Zdravkovic, Nebojsa D; Grbovic-Markovic, Vesna M; Jurisic-Skevin, Aleksandra J

    2011-03-01

    Transcutaneous functional electrical stimulation is commonly used for strengthening muscle. However, transient effects during stimulation are not yet well explored. The effect of an amplitude change of the stimulation can be described by static model, but there is no differency for different pulse duration. The aim of this study is to present the finite element (FE) model of a transient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square method and trial and error analysis from experimental measurement. This study showed that FE modeling of electrical stimulation can give the spatial-temporal distribution of applied current in the forearm. Three different cases were modeled with the same geometry but with different input of the current pulse, in order to fit the tissue properties by using transient FE analysis. All three cases were compared with experimental measurements of intramuscular voltage on one volunteer.

  9. Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.

    PubMed

    Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo

    2003-02-13

    Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.

  10. Electrical and chemical stimulation of the same hypothalamic loci in relation to agressive behaviour in cats: a comparison study.

    PubMed

    Bhatia, S C; Manchanda, S K; Kapoor, B K; Aneja, I S

    1995-10-01

    Chemitrodes which permit electrical and chemical stimulation of the same hypothalamic loci were implanted in anterior hypothalamic and preoptic regions. These sites were stimulated electrically using biphasic square wave pulse (1 ms, 60 Hz) at a current strength ranging from 150-800 microA to evoke an aggressive response. At lower current strength of 150-200 micro A, defence response, a sort of non-specific response can be elicited from these regions. Increasing the current strength to 400 microA led to the recruitment of affective and somatic components and changed the response pattern either to affective attack or flight. The loci producing affective attack response were localized more laterally and ventrally while the loci producing flight response were located in the dorsomedial regions of the hypothalamus. In this response the animal made a goal-directed attempt to escape through an escape route. Increasing the current strength to 500 microA in the dorsomedial regions changed the flight response to violent flight, which involved vigorous running with unsheathed claws and attacking objects if obstructed. Similar increase in current strength at loci producing affective attack only led to a decrease in the latency of response and made the attack more vigorous. Microinfusion of carbachol in graded doses of 2-15 microgram at all these loci produced a profound affective display. At lower doses of 2 and 5 microgram, only some components of affective display like alertness, pupillary dilation and ear flatness were exhibited. Increasing the dose to 10 micrograms and 15 micrograms led to the recruitment of other affective components like piloerection, salivation, hissing and baring of teeth. Microinfusion of carbachol at all loci producing affective attack on electrical stimulation produced a prononced affective display while microinfusion of carbachol at loci producing flight response led to the development of defence posture. At six loci a typical flight response was obtained while violent flight was never exhibited at any of these sites. Microinfusion of atropine (10 microgram in 1.0 microliter saline) at these loci completely blocked the carbachol induced response. Both somatomotor and affective components were completely inhibited. However, the responses obtained on electrical stimulation were not totally blocked following atropine infusion and some of the somatomotor and affective components could be elicited with higher current strength. These studies indicate the involvement of cholinoceptive mechanisms in the elicitation of hypothalamically induced aggresive behaviour. Microinfustion of hexamethonium bromide, a nicotinic blocker in 50 micrograms doses did not affect the aggressive response.

  11. Bio-inspired Hybrid Carbon Nanotube Muscles

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  12. Optimization and evaluation of a proportional derivative controller for planar arm movement.

    PubMed

    Jagodnik, Kathleen M; van den Bogert, Antonie J

    2010-04-19

    In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Optimization and evaluation of a proportional derivative controller for planar arm movement

    PubMed Central

    Jagodnik, Kathleen M.; van den Bogert, Antonie J.

    2013-01-01

    In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. PMID:20097345

  14. Extracellular potassium changes in the rat neurohypophysis during activation of the magnocellular neurosecretory system.

    PubMed Central

    Leng, G; Shibuki, K

    1987-01-01

    1. Potassium-sensitive microelectrodes were used to measure extracellular [K+] in the isolated rat neurohypophysis maintained in vitro. Electrical stimulation of the neurohypophysial stalk (20 Hz 5 s) increased the inferred extracellular [K+] by 9.2 +/- 0.4 mM (mean +/- S.E. of mean; n = 21). 2. Veratridine (10 microM) enhanced the response to stalk stimulation, and at a higher concentration (50 microM) increased extracellular [K+] in the absence of stimulation. By contrast, tetrodotoxin (1 microM) blocked the [K+] increase completely and reversibly in each of five experiments, indicating that the increase was a consequence of action potential generation. 3. At the end of brief periods of stimulation, the raised extracellular [K+] returned to pre-stimulation levels within 30 s. In the presence of ouabain (100 microM), the recovery was slower: the half-decay time was extended by 150-300% in each of three experiments. 4. Replacement of calcium in the medium with cobalt, cadmium or magnesium reduced the amplitude of the [K+] increase by 26-30%, indicating that the [K+] increase was largely independent of events subsequent to evoked release of hormone and/or transmitters. 5. Potassium-sensitive microelectrodes were placed in the neurohypophysis of rats anaesthetized with urethane. Electrical stimulation of the pituitary stalk (50 Hz, 5 s) produced transient voltage increases of 7.6 +/- 0.9 mV (mean +/- S.E. of mean of seven experiments). These voltage increases were similar in magnitude to the response of the electrodes to the addition of 7.6 +/- 1.0 mM-K+ to rat plasma. 6. In seven lactating rats, the suckling of a litter of hungry pups evoked periodic reflex milk ejections, as detected by increases in intramammary pressure. Potassium-sensitive microelectrodes in the neurohypophysis recorded transient voltage increases prior to each milk ejection (0.4-5.5 mV). Each increase preceded an increase in intramammary pressure by 12-30 s. 7. Thus synchronized high-frequency activation of magnocellular neurones can produce large changes in extracellular [K+]. The implications of these findings for stimulus-secretion coupling in the neurohypophysis are discussed in the light of previous reports that hormone release from the neurohypophysis is highly dependent on the frequency and pattern of electrical stimulation. PMID:2451734

  15. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    NASA Astrophysics Data System (ADS)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  16. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2017-08-01

    Objective. Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). Main results. Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off visual pathways.

  17. Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering

    PubMed Central

    Tandon, N.; Marsano, A.; Cannizzaro, C.; Voldman, J.; Vunjak-Novakovic, G.

    2009-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering. PMID:19163486

  18. The efficacy of electrical stimulation in lower extremity cutaneous wound healing: A systematic review.

    PubMed

    Ashrafi, Mohammed; Alonso-Rasgado, Teresa; Baguneid, Mohamed; Bayat, Ardeshir

    2017-02-01

    Current gold standard lower extremity cutaneous wound management is not always effective. Cutaneous wounds generate a "current of injury" which is directly involved in wound healing processes. Application of exogenous electrical stimulation has been hypothesised to imitate the natural electric current that occurs in cutaneous wounds. The aim of this extensive review was to provide a detailed update on the variety of electrical stimulation modalities used in the management of lower extremity wounds. Several different waveforms and delivery methods of electrical stimulation have been used. Pulsed current appears superior to other electrical modalities available. The majority of studies support the beneficial effects of pulsed current over conservative management of lower extremity cutaneous wounds. Although it appears to have no benefit over causal surgical intervention, it is a treatment option which could be utilised in those patients unsuitable for surgery. Other waveforms and modalities appear promising; however, they still lack large trial data to recommend a firm conclusion with regards to their use. Current studies also vary in quantity, quality and protocol across the different modalities. The ideal electrical stimulation device needs to be non-invasive, portable and cost-effective and provides minimal interference with patients' daily life. Further studies are necessary to establish the ideal electrical stimulation modality, parameters, method of delivery and duration of treatment. The development and implementation of newer devices in the management of acute and chronic wounds provides an exciting direction in the field of electrotherapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. The Effects of Electroacupuncture on Cyclophosphamide-Induced Emesis in Ferrets.

    DTIC Science & Technology

    1996-07-01

    Other studies conducted by Dundee’s group showed that acupressure and transcutaneous electrical stimulation ( TENS ) of the same acupoints also benefited...typically left in place for 20-30 minutes. The effects of acupuncture may be augmented with electrical stimulation (EA) and/or heat (e.g. moxibustion). Side...electrodes (Grass) were attached to the end of the needles and electrical stimulation was applied (the EA parameters will be described in detail later

  20. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...COVERED 29 Sep 2015 - 28 Sep 2016 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal

  1. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    DTIC Science & Technology

    2016-10-01

    analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial fibroblasts migrated to a maximum depth of ~250...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...COVERED 30 Sep 2015 – 29 Sep 2016 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic

  2. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    PubMed

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  3. Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex.

    PubMed

    Overstreet, C K; Klein, J D; Helms Tillery, S I

    2013-12-01

    Electrical stimulation of cortical tissue could be used to deliver sensory information as part of a neuroprosthetic device, but current control of the location, resolution, quality, and intensity of sensations elicited by intracortical microstimulation (ICMS) remains inadequate for this purpose. One major obstacle to resolving this problem is the poor understanding of the neural activity induced by ICMS. Even with new imaging methods, quantifying the activity of many individual neurons within cortex is difficult. We used computational modeling to examine the response of somatosensory cortex to ICMS. We modeled the axonal arbors of eight distinct morphologies of interneurons and seven types of pyramidal neurons found in somatosensory cortex and identified their responses to extracellular stimulation. We then combined these axonal elements to form a multi-layered slab of simulated cortex and investigated the patterns of neural activity directly induced by ICMS. Specifically we estimated the number, location, and variety of neurons directly recruited by stimulation on a single penetrating microelectrode. The population of neurons activated by ICMS was dependent on both stimulation strength and the depth of the electrode within cortex. Strikingly, stimulation recruited interneurons and pyramidal neurons in very different patterns. Interneurons are primarily recruited within a dense, continuous region around the electrode, while pyramidal neurons were recruited in a sparse fashion both near the electrode and up to several millimeters away. Thus ICMS can lead to an unexpectedly complex spatial distribution of firing neurons. These results lend new insights to the complexity and range of neural activity that can be induced by ICMS. This work also suggests mechanisms potentially responsible for the inconsistency and unnatural quality of sensations initiated by ICMS. Understanding these mechanisms will aid in the design of stimulation that can be used to generate effective sensory feedback for neuroprosthetic devices.

  4. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context

    PubMed Central

    Ajijola, Olujimi A.; Yagishita, Daigo; Patel, Krishan J.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; So, Eileen; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms2, P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. PMID:23893167

  5. Oscillatory Reinstatement Enhances Declarative Memory.

    PubMed

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval supports successful memory retrieval. Copyright © 2017 Javadi et al.

  6. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction

    PubMed Central

    Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan

    2014-01-01

    Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808

  7. The effect of tinnitus specific intracochlear stimulation on speech perception in patients with unilateral or asymmetric hearing loss accompanied with tinnitus and the effect of formal auditory training.

    PubMed

    Arts, Remo A G J; George, Erwin L J; Janssen, Miranda A M L; Griessner, Andreas; Zierhofer, Clemens; Stokroos, Robert J

    2018-06-01

    Previous studies show that intracochlear electrical stimulation independent of environmental sounds appears to suppress tinnitus, even long-term. In order to assess the viability of this potential treatment option it is essential to study the effects of this tinnitus specific electrical stimulation on speech perception. A randomised, prospective crossover design. Ten patients with unilateral or asymmetric hearing loss and severe tinnitus complaints. The audiological effects of standard clinical CI, formal auditory training and tinnitus specific electrical stimulation were investigated. Results show that standard clinical CI in unilateral or asymmetric hearing loss is shown to be beneficial for speech perception in quiet, speech perception in noise and subjective hearing ability. Formal auditory training does not appear to improve speech perception performance. However, CI-related discomfort reduces significantly more rapidly during CI rehabilitation in subjects receiving formal auditory training. Furthermore, tinnitus specific electrical stimulation has neither positive nor negative effects on speech perception. In combination with the findings from previous studies on tinnitus suppression using intracochlear electrical stimulation independent of environmental sounds, the results of this study contribute to the viability of cochlear implantation based on tinnitus complaints.

  8. A pilot study of contralateral homonymous muscle activity simulated electrical stimulation in chronic hemiplegia.

    PubMed

    Osu, Rieko; Otaka, Yohei; Ushiba, Junichi; Sakata, Sachiko; Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Kondo, Kunitsugu; Liu, Meigen

    2012-01-01

    For the recovery of hemiparetic hand function, a therapy was developed called contralateral homonymous muscle activity stimulated electrical stimulation (CHASE), which combines electrical stimulation and bilateral movements, and its feasibility was studied in three chronic stroke patients with severe hand hemiparesis. Patients with a subcortical lesion were asked to extend their wrist and fingers bilaterally while an electromyogram (EMG) was recorded from the extensor carpi radialis (ECR) muscle in the unaffected hand. Electric stimulation was applied to the homonymous wrist and finger extensors of the affected side. The intensity of the electrical stimulation was computed based on the EMG and scaled so that the movements of the paretic hand looked similar to those of the unaffected side. The patients received 30-minutes of therapy per day for 2 weeks. Improvement in the active range of motion of wrist extension was observed for all patients. There was a decrease in the scores of modified Ashworth scale in the flexors. Fugl-Meyer assessment scores of motor function of the upper extremities improved in two of the patients. The results suggest a positive outcome can be obtained using the CHASE system for upper extremity rehabilitation of patients with severe hemiplegia.

  9. Ipsilateral masking between acoustic and electric stimulations.

    PubMed

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  10. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  11. Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity

    PubMed Central

    Zeitler, Magteld; Tass, Peter A.

    2016-01-01

    Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike timing–dependent plasticity CR stimulation causes a decrease of synaptic weights and finally anti-kindling, i.e., unlearning of abnormally strong synaptic connectivity and abnormal neuronal synchrony. Long-lasting desynchronizing aftereffects of CR stimulation have been verified in pre-clinical and clinical proof of concept studies. In general, for different neuromodulation approaches, both invasive and non-invasive, it is desirable to enable effective stimulation at reduced stimulation intensities, thereby avoiding side effects. For the first time, we here present a two-stage CR stimulation protocol, where two qualitatively different types of CR stimulation are delivered one after another, and the first stage comes at a particularly weak stimulation intensity. Numerical simulations show that a two-stage CR stimulation can induce the same degree of anti-kindling as a single-stage CR stimulation with intermediate stimulation intensity. This stimulation approach might be clinically beneficial in patients suffering from brain diseases characterized by abnormal neuronal synchrony where a first treatment stage should be performed at particularly weak stimulation intensities in order to avoid side effects. This might, e.g., be relevant in the context of acoustic CR stimulation in tinnitus patients with hyperacusis or in the case of electrical deep brain CR stimulation with sub-optimally positioned leads or side effects caused by stimulation of the target itself. We discuss how to apply our method in first in man and proof of concept studies. PMID:27242500

  12. Electrical stimulation reduces smokers' craving by modulating the coupling between dorsal lateral prefrontal cortex and parahippocampal gyrus.

    PubMed

    Yang, Li-Zhuang; Shi, Bin; Li, Hai; Zhang, Wei; Liu, Ying; Wang, Hongzhi; Zhou, Yanfei; Wang, Ying; Lv, Wanwan; Ji, Xuebing; Hudak, Justin; Zhou, Yifeng; Fallgatter, Andreas J; Zhang, Xiaochu

    2017-08-01

    Applying electrical stimulation over the prefrontal cortex can help nicotine dependents reduce cigarette craving. However, the underlying mechanism remains ambiguous. This study investigates this issue with functional magnetic resonance imaging. Thirty-two male chronic smokers received real and sham stimulation over dorsal lateral prefrontal cortex (DLPFC) separated by 1 week. The neuroimaging data of the resting state, the smoking cue-reactivity task and the emotion task after stimulation were collected. The craving across the cue-reactivity task was diminished during real stimulation as compared with sham stimulation. The whole-brain analysis on the cue-reactivity task revealed a significant interaction between the stimulation condition (real vs sham) and the cue type (smoking vs neutral) in the left superior frontal gyrus and the left middle frontal gyrus. The functional connectivity between the left DLPFC and the right parahippocampal gyrus, as revealed by both psychophysical interaction analysis and the resting state functional connectivity, is altered by electrical stimulation. Moreover, the craving change across the real and sham condition is predicted by alteration of functional connectivity revealed by psychophysical interaction analysis. The local and long-distance coupling, altered by the electrical stimulation, might be the underlying neural mechanism of craving regulation. © The Author (2017). Published by Oxford University Press.

  13. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    NASA Astrophysics Data System (ADS)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  14. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less

  15. Electrical Heart Defibrillation with Ion Channel Blockers

    NASA Astrophysics Data System (ADS)

    Feeney, Erin; Clark, Courtney; Puwal, Steffan

    Heart disease is the leading cause of mortality in the United States. Rotary electrical waves within heart muscle underlie electrical disorders of the heart termed fibrillation; their propagation and breakup leads to a complex distribution of electrical activation of the tissue (and of the ensuing mechanical contraction that comes from electrical activation). Successful heart defibrillation has, thus far, been limited to delivering large electrical shocks to activate the entire heart and reset its electrical activity. In theory, defibrillation of a system this nonlinear should be possible with small electrical perturbations (stimulations). A successful algorithm for such a low-energy defibrillator continues to elude researchers. We propose to examine in silica whether low-energy electrical stimulations can be combined with antiarrhythmic, ion channel-blocking drugs to achieve a higher rate of defibrillation and whether the antiarrhythmic drugs should be delivered before or after electrical stimulation has commenced. Progress toward a more successful, low-energy defibrillator will greatly minimize the adverse effects noted in defibrillation and will assist in the development of pediatric defibrillators.

  16. Integrated nanoscale tools for interrogating living cells

    NASA Astrophysics Data System (ADS)

    Jorgolli, Marsela

    The development of next-generation, nanoscale technologies that interface biological systems will pave the way towards new understanding of such complex systems. Nanowires -- one-dimensional nanoscale structures -- have shown unique potential as an ideal physical interface to biological systems. Herein, we focus on the development of nanowire-based devices that can enable a wide variety of biological studies. First, we built upon standard nanofabrication techniques to optimize nanowire devices, resulting in perfectly ordered arrays of both opaque (Silicon) and transparent (Silicon dioxide) nanowires with user defined structural profile, densities, and overall patterns, as well as high sample consistency and large scale production. The high-precision and well-controlled fabrication method in conjunction with additional technologies laid the foundation for the generation of highly specialized platforms for imaging, electrochemical interrogation, and molecular biology. Next, we utilized nanowires as the fundamental structure in the development of integrated nanoelectronic platforms to directly interrogate the electrical activity of biological systems. Initially, we generated a scalable intracellular electrode platform based on vertical nanowires that allows for parallel electrical interfacing to multiple mammalian neurons. Our prototype device consisted of 16 individually addressable stimulation/recording sites, each containing an array of 9 electrically active silicon nanowires. We showed that these vertical nanowire electrode arrays could intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons similar to patch clamp electrodes. In addition, we used our intracellular electrode platform to measure multiple individual synaptic connections, which enables the reconstruction of the functional connectivity maps of neuronal circuits. In order to expand and improve the capability of this functional prototype device we designed and fabricated a new hybrid chip that combines a front-side nanowire-based interface for neuronal recording with backside complementary metal oxide semiconductor (CMOS) circuits for on-chip multiplexing, voltage control for stimulation, signal amplification, and signal processing. Individual chips contain 1024 stimulation/recording sites enabling large-scale interfacing of neuronal networks with single cell resolution. Through electrical and electrochemical characterization of the devices, we demonstrated their enhanced functionality at a massively parallel scale. In our initial cell experiments, we achieved intracellular stimulations and recordings of changes in the membrane potential in a variety of cells including: HEK293T, cardiomyocytes, and rat cortical neurons. This demonstrated the device capability for single-cell-resolution recording/stimulation which when extended to a large number of neurons in a massively parallel fashion will enable the functional mapping of a complex neuronal network.

  17. Electric fields in hippocampus due to transcranial focal electrical stimulation via concentric ring electrodes.

    PubMed

    Besio, Walter G; Hadidi, Ruba; Makeyev, Oleksandr; Luna-Munguía, Hiram; Rocha, Luisa

    2011-01-01

    As epilepsy affects approximately one percent of the world population, electrical stimulation of brain has recently shown potential as an additive seizure control therapy. In this study we applied focal transcranial electrical stimulation (TFS) on the surface of the skull of rats via concentric ring electrodes. We recorded electric potentials with a bipolar electrode consisting of two stainless steel wires implanted into the left ventral hippocampus. TFS current was gradually increased by 20% starting at 103 μA allowing us to assess the relationship between TFS current and both potentials recorded from the bipolar electrode and the resulting electric field. Generally, increases in TFS current resulted in increases in the electric field. This allows us to estimate what extra-cranial TFS current would be sufficient to cause the activation of neurons in the hippocampus.

  18. Effects of coil characteristics for femoral nerve magnetic stimulation.

    PubMed

    Tomazin, Katja; Verges, Samuel; Decorte, Nicolas; Oulerich, Alain; Millet, Guillaume Y

    2010-03-01

    The aim of this study was to compare the efficiency of two coils used for femoral nerve magnetic stimulation and to compare them with electrical stimulation in inducing maximal response of the quadriceps. The mechanical and electromyographic (EMG) responses were dependent on the coil used. The 45-mm double coil showed greater efficiency to elicit a maximal quadriceps response, which was similar to electrical stimulation.

  19. An Electrical Muscle Stimulation Suit for Increasing Blood Pressure

    DTIC Science & Technology

    2008-09-01

    an exploratory way in about 100 trials. Maximal indi- vidual stimulation intensity was selected to give a solid, tetanic muscle contraction without...therapy and in muscle strength training in athletes. However, if the electrical stimulation is too intense, the result will be muscle contraction pain...Each subject was instructed to have the investigator lower the intensity or stop the stimulation if muscle contraction pain was experienced

  20. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... beam sensors form the enclosure, the stimulating equipment shall be automatically shut off when the sensor signals are broken. (3) Mandatory Warning Devices and Signals. The following warning devices or.... (ii) An ANSI Z53.1-Color Code sign reading (a) “Danger Electrical Hazard” for stimulating voltage...

  1. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... beam sensors form the enclosure, the stimulating equipment shall be automatically shut off when the sensor signals are broken. (3) Mandatory Warning Devices and Signals. The following warning devices or.... (ii) An ANSI Z53.1-Color Code sign reading (a) “Danger Electrical Hazard” for stimulating voltage...

  2. Preliminary results of sacral transcutaneous electrical nerve stimulation for fecal incontinence.

    PubMed

    Leung, Edmund; Francombe, James

    2013-03-01

    Fecal incontinence is a common debilitating condition. The aim of this study is to investigate the feasibility of sacral transcutaneous electrical nerve stimulation as an alternative treatment modality for fecal incontinence. All consecutive patients who presented with fecal incontinence to the senior author's clinic were prospectively recruited between June 2009 and September 2010. The severity of their fecal incontinence was assessed by the Wexner and Vaizey scores and anal physiology. Any improvement following a period of sacral transcutaneous electrical nerve stimulation treatment was determined by repeating the scores. In addition, patient satisfaction with the procedure was assessed by using a patient impression score. Twenty female patients with a median age of 57.5 years (range, 30-86) were evaluated. The median follow-up was 10 months (range, 5-12 months). Two patients did not record a change in their Vaizey score. The overall mean Wexner score was 7.9 ± 4.2 before in comparison with 4.0 ± 3.1 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 2.2-5.7, SE = 0.832). The overall mean Vaizey score was 12.7 ± 5.7 before in comparison with 5.8 ± 5.6 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 4.5-9.4, SE = 1.162). The pretreatment patient impression score was set at a mean of 1 ± 0 in comparison with 2.8 ± 1.1 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 1.2-2.3, SE = 0.25). The preliminary results suggest sacral transcutaneous electrical nerve stimulation is a promising noninvasive alternative to existing modalities in the treatment of idiopathic fecal incontinence.

  3. Randomized clinical trial of transcutaneous electrical posterior tibial nerve stimulation versus lateral internal sphincterotomy for treatment of chronic anal fissure.

    PubMed

    Youssef, Tamer; Youssef, Mohamed; Thabet, Waleed; Lotfy, Ahmed; Shaat, Reham; Abd-Elrazek, Eman; Farid, Mohamed

    2015-10-01

    The objective of this study was to evaluate the efficacy of transcutaneous electrical posterior tibial nerve stimulation in treatment of patients with chronic anal fissure and to compare it with the conventional lateral internal sphincterotomy. Consecutive patients with chronic anal fissure were randomly allocated into two treatment groups: transcutaneous electrical posterior tibial nerve stimulation group and lateral internal sphincterotomy group. The primary outcome measures were number of patients with clinical improvement and healed fissure. Secondary outcome measures were complications, VAS pain scores, Wexner's constipation and Peascatori anal incontinence scores, anorectal manometry, and quality of life index. Seventy-three patients were randomized into two groups of 36 patients who were subjected to transcutaneous electrical nerve stimulation and 37 patients who underwent lateral internal sphincterotomy. All (100%) patients in lateral internal sphincterotomy group had clinical improvement at one month following the procedure in contrast to 27 (75%) patients in transcutaneous electrical nerve stimulation group. Recurrence of anal fissure after one year was reported in one (2.7%) and 11 (40.7%) patients in lateral internal sphincterotomy and transcutaneous electrical nerve stimulation groups respectively. Resting anal pressure and functional anal canal length were significantly reduced after lateral internal sphincterotomy. Transcutaneous electrical posterior tibial nerve stimulation for treatment of chronic anal fissure is a novel, non-invasive procedure and has no complications. However, given the higher rate of clinical improvement and fissure healing and the lower rate of fissure recurrence, lateral internal sphincterotomy remains the gold standard for treating chronic anal fissure. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  4. Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: a randomized controlled study.

    PubMed

    Wang, Yong-Hui; Meng, Fei; Zhang, Yang; Xu, Mao-Yu; Yue, Shou-Wei

    2016-06-01

    To investigate whether full-movement neuromuscular electrical stimulation, which can generate full range of movement, reduces spasticity and/or improves motor function more effectively than control, sensory threshold-neuromuscular electrical stimulation, and motor threshold-neuromuscular electrical stimulation in sub-acute stroke patients. A randomized, single-blind, controlled study. Physical therapy room and functional assessment room. A total of 72 adult patients with sub-acute post-stroke hemiplegia and plantar flexor spasticity. Patients received 30-minute sessions of neuromuscular electrical stimulation on the motor points of the extensor hallucis and digitorum longus twice a day, five days per week for four weeks. Composite Spasticity Scale, Ankle Active Dorsiflexion Score, and walking time in the Timed Up and Go Test were assessed at pretreatment, posttreatment, and at two-week follow-up. After four weeks of treatment, when comparing interclass pretreatment and posttreatment, only the full-movement neuromuscular electrical stimulation group had a significant reduction in the Composite Spasticity Scale (mean % reduction = 19.91(4.96)%, F = 3.878, p < 0.05) and improvement in the Ankle Active Dorsiflexion Score (mean scores = 3.29(0.91), F = 3.140, p < 0.05). Furthermore, these improvements were maintained two weeks after the treatment ended. However, there were no significant differences in the walking time after four weeks of treatment among the four groups (F = 1.861, p > 0.05). Full-movement neuromuscular electrical stimulation with a stimulus intensity capable of generating full movement can significantly reduce plantar flexor spasticity and improve ankle active dorsiflexion, but cannot decrease walking time in the Timed Up and Go Test in sub-acute stroke patients. © The Author(s) 2015.

  5. Electrotonic and action potentials in the Venus flytrap.

    PubMed

    Volkov, Alexander G; Vilfranc, Chrystelle L; Murphy, Veronica A; Mitchell, Colee M; Volkova, Maia I; O'Neal, Lawrence; Markin, Vladislav S

    2013-06-15

    The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina

    PubMed Central

    Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish

    2016-01-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  7. Role of amino acids in salivation and the localization of their receptors in the rat salivary gland.

    PubMed

    Shida, T; Kondo, E; Ueda, Y; Takai, N; Yoshida, Y; Araki, T; Kiyama, H; Tohyama, M

    1995-11-01

    The distribution of gamma-aminobutyric acid (GABA) receptor subunits such as GABAAR-gamma 1 and GABAAR-gamma 2, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type receptor subunits such as GluR-1, GluR-2/3 and GluR-4, and N-methyl-D-aspartic acid (NMDA) type subunits such as NR1 were investigated by immunocytochemistry. Furthermore, the roles of these amino acids, GABA and glutamate, on salivation were analyzed in the rat submandibular and sublingual glands. Some similarities were observed in the distribution patterns of GABAA type receptors and AMPA receptors. In the submandibular ganglion cells, collecting ducts and striated ducts, these subunits were expressed strongly; however, there were some differences in their expression patterns between the submandibular and sublingual gland acinar cells. Since these receptor subunits were expressed in the acinar cell bodies of the submandibular gland, they were not expressed in the acinar cells but were expressed in the myoepithelial cells in the sublingual gland. On the other hand, no NR1 expression was observed. To examine the roles of GABA and glutamate in salivation, the submandibular and sublingual glands were perfused partially with Ringer's solution via a facial artery to avoid systemic influence, and substrates were infused into the perfusion solution. No salivary secretion was evoked by GABA or glutamate infusion in the absence of electrical stimulation (2-3 V, 5 ms, 20 Hz). Salivary flow evoked by electrical stimulation of the chorda-lingual nerve caused significant inhibition by GABA (10(-6), 10(-5), 10(-4) and 10(-3) M) and the GABAAR agonist muscimol 10(-3) and 10(-6) M) (n = 6, P < 0.05). Such GABA-induced inhibition was antagonized by the GABAAR antagonists bicuculline (BCC; 10(-6) and 10(-3) M) and picrotoxin (PTX; 10(-6) and 10(-3) M). On the other hand, salivary flow evoked by electrical stimulation (8-10 V, 5 ms, 20 Hz) of the superior cervical ganglion (SCG) was not affected by GABA. While high doses of glutamate (10(-1) M) and NMDA (10(-1) M) showed no effects on salivary flow despite application of electrical stimulation, AMPA at a high concentration (10(-1) M) significantly inhibited salivary secretion (n = 6, P < 0.05). These studies revealed that inhibitory and excitatory amino acid receptors such as GABAA and AMPA type receptors are coexpressed in the rat salivary glands, and that GABA inhibits salivary secretion via GABAA receptors which may act with acetylcholine. However, the role of glutamate in salivation remains unclear despite the presence of AMPA type receptors. The present findings suggest that glutamate does not act alone but with other substances such as peptides and/or other amino acids.

  8. Optimized temporal pattern of brain stimulation designed by computational evolution

    PubMed Central

    Brocker, David T.; Swan, Brandon D.; So, Rosa Q.; Turner, Dennis A.; Gross, Robert E.; Grill, Warren M.

    2017-01-01

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson’s disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We used the temporal pattern of stimulation as a novel parameter of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson’s disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in the parkinsonian rat and in patients. Both optimized and standard stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution to design temporal pattern of stimulation to increase the efficiency of brain stimulation in Parkinson’s disease, thereby requiring substantially less energy than traditional brain stimulation. PMID:28053151

  9. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    PubMed

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  10. A functional electrical stimulation system for human walking inspired by reflexive control principles.

    PubMed

    Meng, Lin; Porr, Bernd; Macleod, Catherine A; Gollee, Henrik

    2017-04-01

    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation-assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking.

  11. Quadruple Cone Coil with improved focality than Figure-8 coil in Transcranial Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    Transcranial Magnetic Stimulation (TMS) is a non-invasive therapy which uses a time varying magnetic field to induce an electric field in the brain and to cause neuron depolarization. Magnetic coils play an important role in the TMS therapy since their coil geometry determines the focality and penetration's depth of the induced electric field in the brain. Quadruple Cone Coil (QCC) is a novel coil with an improved focality when compared to commercial Figure-8 coil. The results of this newly designed QCC coil are compared with the Figure-8 coil at two different positions of the head - vertex and dorsolateral prefrontal cortex, over the 50 anatomically realistic MRI derived head models. Parameters such as volume of stimulation, maximum electric, area of stimulation and location of maximum electric field are determined with the help of computer modelling of both coils. There is a decrease in volume of brain stimulated by 11.6 % and a modest improvement of 8 % in the location of maximum electric field due to QCC in comparison to the Figure-8 coil. The Carver Charitable Trust and The Galloway Foundation.

  12. Electrical stimulation of acupoint combinations against deep venous thrombosis in elderly bedridden patients after major surgery.

    PubMed

    Hou, Lili; Chen, Cuiping; Xu, Lei; Yin, Peihao; Peng, Wen

    2013-04-01

    To compare the effects of electrical stimulation of different acupoint combinations among postoperative bedridden elderly patients on hemorheology and deep venous blood flow velocity and investigate the.role of electrical stimulation against deep vein thrombosis (DVT). From November 2010 to October 2011, a total of 160 elderly bedridden patients after major surgery were divided into the conventional care group, invigorating and promoting Qi group, blood-activating and damp-eliminating group, and acupoint-combination stimulation group. Whole blood viscosity, plasma viscosity, D-dimer levels, lower limb skin temperature, lower limb circumference, and flow velocities of the external iliac vein, femoral vein, popliteal vein, and deep calf veins in all patients were documented and compared among the four groups. Whole blood viscosity, plasma viscosity, D-dimer levels, and lower limb circumference were significantly reduced in the blood-activating and damp-eliminating group compared with the conventional care group (P < 0.05) and were almost equal to those in the acupoint-combination stimulation group (P > 0.05). Lower limb venous flow velocities were accelerated in the invigorating and promoting Qi group compared with the other groups, excluding the acupoint-combination stimulation group (P < 0.05). Hemorheological indices in postoperative bedridden elderly patients were improved after combined electrical stimulation at Yinlingquan (SP 9) and Sanyinjiao (SP 6). Combined electrical stimulation at Zusanli (ST 36) and Taichong (LR 3), on the other hand, accelerated lower limb venous flow.

  13. Electrical foot stimulation and implications for the prevention of venous thromboembolic disease.

    PubMed

    Kaplan, Robert E; Czyrny, James J; Fung, Tat S; Unsworth, John D; Hirsh, Jack

    2002-08-01

    Venous stasis caused by immobility is an important risk factor for deep vein thrombosis following surgery and lower limb trauma, in bed-ridden medical patients, and in high-risk long distance air travelers. A safe and convenient method for reducing venous stasis would be useful in patients while in hospital and after discharge during their rehabilitation. 49 healthy subjects aged 51-76 were seated for 4 hours during which they received mild electrical stimulation of the calf, or sole of the foot (plantar muscles). Popliteal and femoral venous blood flow velocities were measured via doppler ultrasound. The non-stimulated lower extremity served as the simultaneous control. Subjects completed a questionnaire regarding their acceptance and tolerance of the electrical stimulation. There was a significant increase in venous femoral and popliteal blood flow for both calf (p < 0.035, p < 0.003), and plantar muscles (p < 0.0001, p < 0.009) on the stimulated side compared to the unstimulated side. The magnitude of the effect was similar for calf and plantar muscle stimulation. Subjects did not find the experience uncomfortable, and would use an electrical stimulator if told by their physician that they were at risk for developing blood clots. Mild electrical stimulation of the feet, as well as the calf, is a safe effective and convenient method for counteracting venous stasis and therefore has the potential to reduce the risk of deep vein thrombosis and pulmonary embolism for subjects who are immobilized.

  14. Therapeutic high-frequency stimulation of the subthalamic nucleus in Parkinson's disease produces global increases in cerebral blood flow.

    PubMed

    Sidtis, John J; Tagliati, Michele; Alterman, Ron; Sidtis, Diana; Dhawan, Vijay; Eidelberg, David

    2012-01-01

    Chronic, high-frequency electrical stimulation of the subthalamic nuclei (STNs) has become an effective and widely used therapy in Parkinson's disease (PD), but the therapeutic mechanism is not understood. Stimulation of the STN is believed to reorganize neurophysiological activity patterns within the basal ganglia, whereas local field effects extending to tracts adjacent to the STN are viewed as sources of nontherapeutic side effects. This study is part of a larger project investigating the effects of STN stimulation on speech and regional cerebral blood flow (CBF) in human subjects with PD. While generating measures of global CBF (gCBF) to normalize regional CBF values for a subsequent combined analysis of regional CBF and speech data, we observed a third effect of this therapy: a gCBF increase. This effect was present across three estimates of gCBF ranging from values based on the highest activity voxels to those based on all voxels. The magnitude of the gCBF increase was related to the subject's duration of PD. It is not clear whether this CBF effect has a therapeutic role, but the impact of deep brain stimulation on cerebrovascular control warrants study from neuroscience, pathophysiological, and therapeutic perspectives.

  15. Communication calls produced by electrical stimulation of four structures in the guinea pig brain

    PubMed Central

    Green, David B.; Shackleton, Trevor M.; Grimsley, Jasmine M. S.; Zobay, Oliver; Palmer, Alan R.

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation. PMID:29584746

  16. Communication calls produced by electrical stimulation of four structures in the guinea pig brain.

    PubMed

    Green, David B; Shackleton, Trevor M; Grimsley, Jasmine M S; Zobay, Oliver; Palmer, Alan R; Wallace, Mark N

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.

  17. A wireless wearable surface functional electrical stimulator

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  18. Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.

    PubMed

    Hogan, D L; Yao, B; Isenberg, J I

    1998-01-01

    Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).

  19. Multi-channel orbicularis oculi stimulation to restore eye-blink function in facial paralysis.

    PubMed

    Somia, N N; Zonnevijlle, E D; Stremel, R W; Maldonado, C; Gossman, M D; Barker, J H

    2001-01-01

    Facial paralysis due to facial nerve injury results in the loss of function of the muscles of the hemiface. The most serious complication in extreme cases is the loss of vision. In this study, we compared the effectiveness of single- and multiple-channel electrical stimulation to restore a complete and cosmetically acceptable eye blink. We established bilateral orbicularis oculi muscle (OOM) paralysis in eight dogs; the OOM of one side was directly stimulated using single-channel electrical stimulation and the opposite side was stimulated using multi-channel electrical stimulation. The changes in the palpebral fissure and complete palpebral closure were measured. The difference in current intensities between the multi-channel and single-channel simulation groups was significant, while only multi-channel stimulation produced complete eyelid closure. The latest electronic stimulation circuitry with high-quality implantable electrodes will make it possible to regulate precisely OOM contractions and thus generate complete and cosmetically acceptable eye-blink motion in patients with facial paralysis. Copyright 2001 Wiley-Liss, Inc.

  20. [Functional electric stimulation (FES) in cerebral palsy].

    PubMed

    Miyazaki, M H; Lourenção, M I; Ribeiro Sobrinho, J B; Battistella, L R

    1992-01-01

    Our study concerns a patient with cerebral palsy, submitted to conventional occupational therapy and functional electrical stimulation. The results as to manual ability, spasticity, sensibility and synkinesis were satisfactory.

  1. Generalized alternating stimulation: a novel method to reduce stimulus artifact in electrically evoked compound action potentials.

    PubMed

    Alvarez, Isaac; de la Torre, Angel; Sainz, Manuel; Roldan, Cristina; Schoesser, Hansjoerg; Spitzer, Philipp

    2007-09-15

    Stimulus artifact is one of the main limitations when considering electrically evoked compound action potential for clinical applications. Alternating stimulation (average of recordings obtained with anodic-cathodic and cathodic-anodic bipolar stimulation pulses) is an effective method to reduce stimulus artifact when evoked potentials are recorded. In this paper we extend the concept of alternating stimulation by combining anodic-cathodic and cathodic-anodic recordings with a weight in general different to 0.5. We also provide an automatic method to obtain an estimation of the optimal weights. Comparison with conventional alternating, triphasic stimulation and masker-probe paradigm shows that the generalized alternating method improves the quality of electrically evoked compound action potential responses.

  2. Gender effect on discrimination of location and frequency in surface electrical stimulation.

    PubMed

    Geng, Bo; Paramanathan, Senthoopiya A; Pedersen, Karina F; Lauridsen, Mette V; Gade, Julie; Lontis, Romulus; Jensen, Winnie

    2015-01-01

    This work investigated the gender effect on discrimination of surface electrical stimulation applied on the human forearm. Three experiments were conducted to examine the abilty of discriminating stimulation frequency, location, or both parameters in 14 healthy subjects. The results indicated a statistically significant impact of gender on the discrimination performance in all the three experiments (p <; 0.01, p <; 0.01, and p <; 0.001, respectively). The female group performed noticeably better than the male group (i.e., mean difference 15.4%, 11.9%, and 16.7% in repective experiment). The findings may provide evidence of gender difference in perceiving and interpreting electrical stimulation. Considering the gender difference may improve the efficacy of electrically evoked sensory feedback in applications such as prosthetic use and pain relief.

  3. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing

    PubMed Central

    Reid, Brian; Zhao, Min

    2014-01-01

    Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358

  4. Differential contribution of electrically evoked dorsal root reflexes to peripheral vasodilatation and plasma extravasation

    PubMed Central

    2011-01-01

    Background Dorsal root reflexes (DRRs) are antidromic activities traveling along the primary afferent fibers, which can be generated by peripheral stimulation or central stimulation. DRRs are thought to be involved in the generation of neurogenic inflammation, as indicated by plasma extravasation and vasodilatation. The hypothesis of this study was that electrical stimulation of the central stump of a cut dorsal root would lead to generation of DRRs, resulting in plasma extravasation and vasodilatation. Methods Sprague-Dawley rats were prepared to expose spinal cord and L4-L6 dorsal roots under pentobarbital general anesthesia. Electrical stimulation of either intact, proximal or distal, cut dorsal roots was applied while plasma extravasation or blood perfusion of the hindpaw was recorded. Results While stimulation of the peripheral stump of a dorsal root elicited plasma extravasation, electrical stimulation of the central stump of a cut dorsal root generated significant DRRs, but failed to induce plasma extravasation. However, stimulation of the central stump induced a significant increase in blood perfusion. Conclusions It is suggested that DRRs are involved in vasodilatation but not plasma extravasation in neurogenic inflammation in normal animals. PMID:21356101

  5. Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation.

    PubMed

    Wang, Xing; Chaudhry, Sharjeel A; Hou, Wensheng; Jia, Xiaofeng

    2017-02-05

    Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats' unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.

  6. A novel speech-processing strategy incorporating tonal information for cochlear implants.

    PubMed

    Lan, N; Nie, K B; Gao, S K; Zeng, F G

    2004-05-01

    Good performance in cochlear implant users depends in large part on the ability of a speech processor to effectively decompose speech signals into multiple channels of narrow-band electrical pulses for stimulation of the auditory nerve. Speech processors that extract only envelopes of the narrow-band signals (e.g., the continuous interleaved sampling (CIS) processor) may not provide sufficient information to encode the tonal cues in languages such as Chinese. To improve the performance in cochlear implant users who speak tonal language, we proposed and developed a novel speech-processing strategy, which extracted both the envelopes of the narrow-band signals and the fundamental frequency (F0) of the speech signal, and used them to modulate both the amplitude and the frequency of the electrical pulses delivered to stimulation electrodes. We developed an algorithm to extract the fundatmental frequency and identified the general patterns of pitch variations of four typical tones in Chinese speech. The effectiveness of the extraction algorithm was verified with an artificial neural network that recognized the tonal patterns from the extracted F0 information. We then compared the novel strategy with the envelope-extraction CIS strategy in human subjects with normal hearing. The novel strategy produced significant improvement in perception of Chinese tones, phrases, and sentences. This novel processor with dynamic modulation of both frequency and amplitude is encouraging for the design of a cochlear implant device for sensorineurally deaf patients who speak tonal languages.

  7. Influence of transcutaneous electrical stimulation on heterotopic ossification: an experimental study in Wistar rats

    PubMed Central

    Zotz, T.G.G.; de Paula, J.B.

    2015-01-01

    Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues, resulting in joint mobility deficit and pain. Different treatment modalities have been tried to prevent HO development, but there is no consensus on a therapeutic approach. Since electrical stimulation is a widely used resource in physiotherapy practice to stimulate joint mobility, with analgesic and anti-inflammatory effects, its usefulness for HO treatment was investigated. We aimed to identify the influence of electrical stimulation on induced HO in Wistar rats. Thirty-six male rats (350-390 g) were used, and all animals were anesthetized for blood sampling before HO induction, to quantify the serum alkaline phosphatase. HO induction was performed by bone marrow implantation in both quadriceps of the animals, which were then divided into 3 groups: control (CG), transcutaneous electrical nerve stimulation (TENS) group (TG), and functional electrical stimulation (FES) group (FG) with 12 rats each. All animals were anesthetized and electrically stimulated twice per week, for 35 days from induction day. After this period, another blood sample was collected and quadriceps muscles were bilaterally removed for histological and calcium analysis and the rats were killed. Calcium levels in muscles showed significantly lower results when comparing TG and FG (P<0.001) and between TG and CG (P<0.001). Qualitative histological analyses confirmed 100% HO in FG and CG, while in TG the HO was detected in 54.5% of the animals. The effects of the muscle contractions caused by FES increased HO, while anti-inflammatory effects of TENS reduced HO. PMID:26292223

  8. The effect of temperature on basal tension and thyroarytenoid muscle contraction in an isolated rat glottis model.

    PubMed

    Wang, Hsing-Won; Chu, Yueng-Hsiang; Chao, Pin-Zhir; Lee, Fei-Peng

    2014-10-01

    The pitch of voice is closely related to the vocal fold tension, which is the end result of coordinated movement of the intralaryngeal muscles, and especially the thyroarytenoid muscle. It is known that vocal quality may be affected by surrounding temperature; however, the effect of temperature on vocal fold tension is mostly unknown. Thus, the aim of this study was to evaluate the effect of temperature on isolated rat glottis and thyroarytenoid muscle contraction induced by electrical field stimulation. In vitro isometric tension of the glottis ring from 30 Sprague-Dawley rats was continuously recorded by the tissue bath method. Electrical field stimulation was applied to the glottis ring with two wire electrodes placed parallel to the glottis and connected to a direct-current stimulator. The tension changes of the rat glottis rings that were either untreated or treated with electrical field stimulation were recorded continuously at temperatures from 37 to 7 °C or from 7 to 37 °C. Warming from 7 to 37 °C increased the basal tension of the glottis rings and decreased the electrical field stimulation-induced glottis ring contraction, which was chiefly due to thyroarytenoid muscle contraction. In comparison, cooling from 37 to 7 °C decreased the basal tension and enhanced glottis ring contraction by electrical field stimulation. We concluded that warming increased the basal tension of the glottis in vitro and decreased the amplitude of electrical field stimulation-induced thyroarytenoid muscle contraction. Thus, vocal pitch and the fine tuning of vocal fold tension might be affected by temperature in vivo.

  9. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.

    PubMed

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-04-21

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.

  10. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat

    PubMed Central

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  11. New approach to neurorehabilitation: cranial nerve noninvasive neuromodulation (CN-NINM) technology

    NASA Astrophysics Data System (ADS)

    Danilov, Yuri P.; Tyler, Mitchel E.; Kaczmarek, Kurt A.; Skinner, Kimberley L.

    2014-06-01

    Cranial Nerve NonInvasive NeuroModulation (CN-NINM) is a primary and complementary multi-targeted rehabilitation therapy that appears to initiate the recovery of multiple damaged or suppressed brain functions affected by neurological disorders. It is deployable as a simple, home-based device (portable neuromodulation stimulator, or PoNSTM) and training regimen following initial patient training in an outpatient clinic. It may be easily combined with many existing rehabilitation therapies, and may reduce or eliminate the need for more aggressive invasive procedures or possibly decrease total medication intake. CN-NINM uses sequenced patterns of electrical stimulation on the tongue. Our hypothesis is that CN-NINM induces neuroplasticity by noninvasive stimulation of two major cranial nerves: trigeminal (CN-V), and facial (CN-VII). This stimulation excites a natural flow of neural impulses to the brainstem (pons varolli and medulla), and cerebellum, to effect changes in the function of these targeted brain structures, extending to corresponding nuclei of the brainstem. CN-NINM represents a synthesis of a new noninvasive brain stimulation technique with applications in physical medicine, cognitive, and affective neurosciences. Our new stimulation method appears promising for treatment of a full spectrum of movement disorders, and for both attention and memory dysfunction associated with traumatic brain injury.

  12. High-density stretchable microelectrode arrays: An integrated technology platform for neural and muscular surface interfacing

    NASA Astrophysics Data System (ADS)

    Guo, Liang

    2011-12-01

    Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 mum in diameter; (2) we have patterned high-resolution (feature as small as 10 mum), high-density (pitch as small as 20 mum) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability, and surface recording/stimulation capabilities, with a focus on epimysial (i.e. on the surface of muscle) applications. Finally, as an example medical application, we investigate a prosthesis for unilateral vocal cord paralysis (UVCP) based on simultaneous multichannel epimysial recording and stimulation.

  13. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis with...

  14. Investigation of shape, position, and permeability of shielding material in quadruple butterfly coil for focused transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Zhang, Bowen; Tang, Yalun; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    2018-05-01

    Transcranial magnetic stimulation has been gaining popularity in the therapy for several neurological disorders. A time-varying magnetic field is used to generate electric field in the brain. As the development of TMS methods takes place, emphasis on the coil design increases in order to improve focal stimulation. Ideally reduction of stimulation of neighboring regions of the target area is desired. This study, focused on the improvement of the focality of the Quadruple Butterfly Coil (QBC) with supplemental use of different passive shields. Parameters such as shape, position and permeability of the shields have been explored to improve the focus of stimulation. Results have been obtained with the help of computer modelling of a MRI derived heterogeneous head model over the vertex position and the dorsolateral prefrontal cortex position using a finite element tool. Variables such as maximum electric field induced on the grey matter and scalp, volume and area of stimulation above half of the maximum value of electric field on the grey matter, and ratio of the maximum electric field in the brain versus the scalp have been investigated.

  15. A Dual Mode Pulsed Electro-Magnetic Cell Stimulator Produces Acceleration of Myogenic Differentiation

    PubMed Central

    Leon-Salas, Walter D.; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-01-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/−40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models. PMID:23445453

  16. A dual mode pulsed electro-magnetic cell stimulator produces acceleration of myogenic differentiation.

    PubMed

    Leon-Salas, Walter D; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-04-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/- 40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models.

  17. Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation

    NASA Astrophysics Data System (ADS)

    Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.

    1997-05-01

    We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.

  18. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom

    2013-06-01

    Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.

  19. Electrical stimulation modulates injury potentials in rats after spinal cord injury

    PubMed Central

    Zhang, Guanghao; Huo, Xiaolin; Wang, Aihua; Wu, Changzhe; Zhang, Cheng; Bai, Jinzhu

    2013-01-01

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as well as injury current, can be modulated by direct current field stimulation; however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around –70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon illustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cell membrane and the reduction of cation influx. PMID:25206563

  20. Human spinal locomotor control is based on flexibly organized burst generators.

    PubMed

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Human spinal locomotor control is based on flexibly organized burst generators

    PubMed Central

    Danner, Simon M.; Hofstoetter, Ursula S.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank

    2015-01-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. PMID:25582580

  2. Benefits and Risks of Cochlear Implants

    MedlinePlus

    ... The cochlear implant stimulates the nerves directly with electrical currents. Although this stimulation appears to be safe, the long term effect of these electrical currents on the nerves is unknown. May not ...

  3. The influence of postmortem electrical stimulation on rigor mortis development, calpastatin activity, and tenderness in broiler and duck pectoralis.

    PubMed

    Alvarado, C Z; Sams, A R

    2000-09-01

    This study was conducted to evaluate the effects of electrical stimulation (ES) on rigor mortis development, calpastatin activity, and tenderness in anatomically similar avian muscles composed primarily of either red or white muscle fibers. A total of 72 broilers and 72 White Pekin ducks were either treated with postmortem (PM) ES (450 mA) at the neck in a 1% NaCl solution for 2 s on and 1 s off for a total of 15 s or were used as nonstimulated controls. Both pectoralis muscles were harvested from the carcasses after 0.25, 1.25, and 24 h PM and analyzed for pH, inosine:adenosine ratio (R-value), sarcomere length, gravimetric fragmentation index, calpastatin activity, shear value, and cook loss. All data were analyzed within species for the effects of ES. Electrically stimulated ducks had a lower muscle pH at 0.25 and 1.25 h PM and higher R-values at 0.25 h PM compared with controls. Electrically stimulated broilers had a lower muscle pH at 1.25 h and higher R-values at 0.25 and 1.25 h PM compared with controls. Muscles of electrically stimulated broilers exhibited increased myofibrillar fragmentation at 0.25 and 1.25 h PM, whereas there was no such difference over PM time in the duck muscle. Electrical stimulation did not affect calpastatin activity in either broilers or ducks; however, the calpastatin activity of the broilers did decrease over the aging time period, whereas that of the ducks did not. Electrical stimulation decreased shear values in broilers at 1.25 h PM compared with controls; however, there was no difference in shear values of duck muscle due to ES at any sampling time. Cook loss was lower for electrically stimulated broilers at 0.25 and 1.25 h PM compared with the controls, but had no effect in the ducks. These results suggest that the red fibers of the duck pectoralis have less potential for rigor mortis acceleration and tenderization due to ES than do the white fibers of the broiler pectoralis.

  4. Effect of Dorsal and Ventral Hippocampal Lesions on Contextual Fear Conditioning and Unconditioned Defensive Behavior Induced by Electrical Stimulation of the Dorsal Periaqueductal Gray

    PubMed Central

    Ballesteros, Carolina Irurita; de Oliveira Galvão, Bruno; Maisonette, Silvia; Landeira-Fernandez, J.

    2014-01-01

    The dorsal (DH) and ventral (VH) subregions of the hippocampus are involved in contextual fear conditioning. However, it is still unknown whether these two brain areas also play a role in defensive behavior induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into the dPAG to determine freezing and escape response thresholds after sham or bilateral electrolytic lesions of the DH or VH. The duration of freezing behavior that outlasted electrical stimulation of the dPAG was also measured. The next day, these animals were subjected to contextual fear conditioning using footshock as an unconditioned stimulus. Electrolytic lesions of the DH and VH impaired contextual fear conditioning. Only VH lesions disrupted conditioned freezing immediately after footshock and increased the thresholds of aversive freezing and escape responses to dPAG electrical stimulation. Neither DH nor VH lesions disrupted post-dPAG stimulation freezing. These results indicate that the VH but not DH plays an important role in aversively defensive behavior induced by dPAG electrical stimulation. Interpretations of these findings should be made with caution because of the fact that a non-fiber-sparing lesion method was employed. PMID:24404134

  5. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  6. Influence of different frequencies of transcutaneous electrical nerve stimulation on the threshold and pain intensity in young subjects

    PubMed Central

    Gomes, Adriana de Oliveira; Silvestre, Ana Caroline; da Silva, Cristina Ferreira; Gomes, Mariany Ribeiro; Bonfleur, Maria Lúcia; Bertolini, Gladson Ricardo Flor

    2014-01-01

    Objective To investigate the effects of different transcutaneous electrical nerve stimulation frequencies in nociception front of a pressure pain threshold and cold in healthy individuals. Methods Twenty healthy subjects were divided into four groups, all of which have gone through all forms of electrical stimulation at different weeks. Assessments were pre and post-therapy, 20 and 60 minutes after stimulation. To evaluate the pressure pain threshold, an algometer was used with one tapered tip, pressing the hypothenar region until voluntary report the word “pain”. Cold pain intensity was assessed by immersion in water at 5°C for 30 seconds; at the end, the subject was asked to quantify the pain intensity on a Visual Analog Scale for Pain. For electrical stimulation, two electrodes were used near the elbow, for 20 minutes, with an intensity strong, but not painful. The frequency was in accordance with the group: 0Hz (placebo); 7Hz; 100Hz; and 255Hz. Results Both for the assessment of pressure pain threshold as the cold pain intensity, there was no significant difference (p>0.05). Conclusion We conclude that the use of transcutaneous electrical nerve stimulation on dermatomes C6 to C8 produced no significant change in pressure pain threshold or cold discomfort. PMID:25295453

  7. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  8. Effects of Surface Electrical Stimulation Both at Rest and During Swallowing in Chronic Pharyngeal Dysphagia§

    PubMed Central

    Ludlow, Christy L.; Humbert, Ianessa; Saxon, Keith; Poletto, Christopher; Sonies, Barbara; Crujido, Lisa

    2006-01-01

    We tested two hypotheses using surface electrical stimulation in chronic pharyngeal dysphagia: that stimulation 1) lowered the hyoid bone and/or larynx when applied at rest, and 2) increased aspiration, penetration or pharyngeal pooling during swallowing. Bipolar surface electrodes were placed on the skin overlying the submandibular and laryngeal regions. Maximum tolerated levels of stimulation were applied while patients held their mouth closed at rest. Videofluoroscopic recordings were used to measure hyoid movements in the superior-inferior (s-i) and anterior-posterior (a-p) dimensions and the subglottic air column (s-i) position while stimulation was on and off. Patients swallowed 5 ml liquid when stimulation was off, at low sensory stimulation levels, and at maximum tolerated levels (motor). Speech pathologists blinded to condition, tallied the frequency of aspiration, penetration, pooling and esophageal entry from videofluorographic recordings of swallows. Only significant (p=0.0175) hyoid depression occurred during stimulation at rest. Aspiration and pooling were significantly reduced only with low sensory threshold levels of stimulation (p=0.025) and not during maximum levels of surface electrical stimulation. Those patients who had reduced aspiration and penetration during swallowing with stimulation had greater hyoid depression during stimulation at rest (p= 0.006). Stimulation may have acted to resist patients’ hyoid elevation during swallowing. PMID:16718620

  9. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex

    PubMed Central

    Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.

    2016-01-01

    In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594

  10. Closed-Loop Efficient Searching of Optimal Electrical Stimulation Parameters for Preferential Excitation of Retinal Ganglion Cells

    PubMed Central

    Guo, Tianruo; Yang, Chih Yu; Tsai, David; Muralidharan, Madhuvanthi; Suaning, Gregg J.; Morley, John W.; Dokos, Socrates; Lovell, Nigel H.

    2018-01-01

    The ability for visual prostheses to preferentially activate functionally-distinct retinal ganglion cells (RGCs) is important for improving visual perception. This study investigates the use of high frequency stimulation (HFS) to elicit RGC activation, using a closed-loop algorithm to search for optimal stimulation parameters for preferential ON and OFF RGC activation, resembling natural physiological neural encoding in response to visual stimuli. We evaluated the performance of a wide range of electrical stimulation amplitudes and frequencies on RGC responses in vitro using murine retinal preparations. It was possible to preferentially excite either ON or OFF RGCs by adjusting amplitudes and frequencies in HFS. ON RGCs can be preferentially activated at relatively higher stimulation amplitudes (>150 μA) and frequencies (2–6.25 kHz) while OFF RGCs are activated by lower stimulation amplitudes (40–90 μA) across all tested frequencies (1–6.25 kHz). These stimuli also showed great promise in eliciting RGC responses that parallel natural RGC encoding: ON RGCs exhibited an increase in spiking activity during electrical stimulation while OFF RGCs exhibited decreased spiking activity, given the same stimulation amplitude. In conjunction with the in vitro studies, in silico simulations indicated that optimal HFS parameters could be rapidly identified in practice, whilst sampling spiking activity of relevant neuronal subtypes. This closed-loop approach represents a step forward in modulating stimulation parameters to achieve appropriate neural encoding in retinal prostheses, advancing control over RGC subtypes activated by electrical stimulation. PMID:29615857

  11. Brain plasticity after implanted peroneal nerve electrical stimulation to improve gait in chronic stroke patients: Two case reports.

    PubMed

    Thibaut, Aurore; Moissenet, Florent; Di Perri, Carol; Schreiber, Céline; Remacle, Angélique; Kolanowski, Elisabeth; Chantraine, Frédéric; Bernard, Claire; Hustinx, Roland; Tshibanda, Jean-Flory; Filipetti, Paul; Laureys, Steven; Gosseries, Olivia

    2017-01-01

    Recent studies have shown that stimulation of the peroneal nerve using an implantable 4-channel peroneal nerve stimulator could improve gait in stroke patients. To assess structural cortical and regional cerebral metabolism changes associated with an implanted peroneal nerve electrical stimulator to correct foot drop related to a central nervous system lesion. Two stroke patients presenting a foot drop related to a central nervous system lesion were implanted with an implanted peroneal nerve electrical stimulator. Both patients underwent clinical evaluations before implantation and one year after the activation of the stimulator. Structural magnetic resonance imaging (MRI) and [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) were acquired before and one year after the activation of the stimulator. Foot drop was corrected for both patients after the implantation of the stimulator. After one year of treatment, patient 1 improved in three major clinical tests, while patient 2 only improved in one test. Prior to treatment, FDG-PET showed a significant hypometabolism in premotor, primary and supplementary motor areas in both patients as compared to controls, with patient 2 presenting more widespread hypometabolism. One year after the activation of the stimulator, both patients showed significantly less hypometabolism in the damaged motor cortex. No difference was observed on the structural MRI. Clinical improvement of gait under peroneal nerve electrical stimulation in chronic stroke patients presenting foot drop was paralleled to metabolic changes in the damaged motor cortex.

  12. An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography.

    PubMed

    Glover, Paul M; Watkins, Roger H; O'Neill, George C; Ackerley, Rochelle; Sanchez-Panchuelo, Rosa; McGlone, Francis; Brookes, Matthew J; Wessberg, Johan; Francis, Susan T

    2017-10-01

    Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution. INMS systems suitable for use within electrophysiology laboratories have been available for many years. We describe an INMS system specifically designed to provide compatibility with both ultra-high field (7T) fMRI and MEG. Numerous technical and safety issues are addressed. The system is fully analogue, allowing for arbitrary frequency and amplitude INMS stimulation. Unitary recordings obtained within both the MRI and MEG screened-room environments are comparable with those obtained in 'clean' electrophysiology recording environments. Single unit INMS (current <7μA, 200μs pulses) of individual mechanoreceptive afferents produces appropriate and robust responses during fMRI and MEG. This custom-built MRI- and MEG-compatible stimulator overcomes issues with existing INMS approaches; it allows well-controlled switching between recording and stimulus mode, prevents electrical shocks because of long cable lengths, permits unlimited patterns of stimulation, and provides a system with improved work-flow and participant comfort. We demonstrate that the requirements for an INMS-integrated system, which can be used with both fMRI and MEG imaging systems, have been fully met. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Site(s) and ionic basis of α-autoinhibition and facilitation of [3H]noradrenaline secretion in guinea-pig vas deferens

    PubMed Central

    Alberts, P.; Bartfai, T.; Stjärne, L.

    1981-01-01

    1. Mechanisms controlling the secretion of [3H]noradrenaline from the noradrenergic nerves of guinea-pig isolated vas deferens, prelabelled by incubation with [3H]noradrenaline, were studied using (a) different modes of (extramural or transmural) electrical nerve stimulation (a total of 300 shocks of varying strength, and a duration of 2 msec) at 1-30 Hz, or (b) depolarizing concentrations of K+ (60-110 mm). 2. The fractional rise in efflux of 3H-labelled material (Δt) was used to measure the secretion of [3H]noradrenaline. 3. The dependence of [3H]noradrenaline secretion on the external Ca2+ concentration (1-8 mm) was essentially hyperbolic. Double reciprocal plot analysis (1/Δt vs. 1/Ca2+) of the data yields that blockade of α-autoinhibition (phentolamine 1 μm) does not increase the maximal secretory velocity, but does enhance the apparent affinity of the secretory mechanism for external Ca2+. Exogenous noradrenaline has (qualitatively) opposite effects. The interaction between α-autoinhibition and external Ca2+ thus shows a `competitive' pattern, indicating that restriction of the utilization of external Ca2+ is a major mechanism in α-autoinhibition of noradrenaline secretion, in this system. 4. Phenoxybenzamine (10 μm) and phentolamine (1 μm) increased the secretion of [3H]noradrenaline evoked by depolarization with K+ much less than that caused by electrical nerve stimulation (frequencies up to 10 Hz). Exogenous noradrenaline (1-5 μm) depressed the secretion evoked by both modes of stimulation. The results indicate that α-autoinhibition of [3H]noradrenaline secretion is mainly operative when the secretory stimulus requires conduction of nerve impulses between varicosities. 5. The frequency dependence of [3H]noradrenaline secretion was hyperbolic, both in the presence and in the absence of α-autoinhibition; at each frequency the secretion (Δt per shock) increased with the Ca2+ concentration in the medium (0·6-8 mm). Double reciprocal plot analysis (1/Δt vs. 1/frequency) of the data yields that the pattern of interaction between external Ca2+ and facilitation depends on the presence or absence of α-autoinhibition (phentolamine 1 μm); in the former case it is `non-competitive', in the latter `competitive'. Similar analysis of the effect of facilitation by increasing the length of stimulus trains (from 5 to 300 pulses) at a constant frequency (5 Hz), on the Ca2+ dependence of Δt (1/Δt vs. 1/Ca2+) in the absence of α-autoinhibition also yields that facilitation promotes utilization of external Ca2+. These results apparently imply that a rise in external Ca2+, in the presence of α-autoinhibition, augments the secretory response to electrical nerve stimulation mainly by promoting recruitment of active units (varicosities?), without markedly altering their `affinity' for facilitation. In the absence of autoinhibition (when all units are already recruited?), the results seem to imply that facilitation promotes depolarization-secretion coupling in each, by more efficient utilization of external Ca2+. 6. The pattern of interaction between α-autoinhibition and facilitation depends on the Ca2+ concentration in the medium. At or below the physiological level of Ca2+ in extracellular fluid (1·2 mm) it is `non-competitive', indicating that α-autoinhibition and facilitation act, at least in part, at separate targets under these conditions. At high (5·4 mm) external Ca2+ the pattern becomes almost purely `competitive', indicating that facilitation can, under suitable conditions, overcome all manifestations of α-autoinhibition. 7. The secretion evoked by electrical nerve stimulation (Δt per shock, at 1 or 10 Hz) increased with the strength of applied shocks, both when applied extra- or transmurally, in the presence or absence of α-autoinhibition. In the former case the rise in (Δt per shock) vs. (current strength) was hyperbolic, in the latter it followed a biphasic pattern. Double reciprocal plot analysis (1/Δt vs. 1/current) of the data yields a `non-competitive' pattern of interaction between facilitation or α-autoinhibition, and exogenous current, when stimulation was extramural. When it was transmural the pattern is `competitive'. The results seem to imply that hyperpolarization, or depolarization, of nerve terminals are major mechanisms whereby α-autoinhibition and facilitation, respectively, exert their effects on the secretory response to electrical nerve stimulation. 8. Neither activation of Na+, K+-ATPase, nor promotion of GCl appear to be critically involved in α-autoinhibition. Experiments with known blockers of GK (tetraethylammonium, 4-aminopyridine and Rb+) did not give support to the notion that promotion of K+ efflux is a mechanism whereby prejunctional α-adrenoceptors cause (hyperpolarization of nerve terminals and) autoinhibition of secretion. If α-autoinhibition does involve K+ channels in the nerve terminal membrane, then these must be different from the (voltage-sensitive) K+ channels blocked by the above mentioned inhibitors of K+ efflux. 9. The results are discussed in the context of a model that assumes that local control of noradrenaline secretion from noradrenergic nerves may be exerted both by control of invasion of terminals, and by control of depolarization—secretion coupling in each invaded varicosity. Under suitable conditions facilitation and α-autoinhibition may interact at both levels. It proposed that utilization of external Ca2+ plays a pivotal role for both, and that restriction of invasion of nerve terminal varicosities is the main effect of α-autoinhibition, while promotion of depolarization—secretion coupling is the main effect of facilitation, at physiological concentrations of Ca2+ in the medium. For the nerve the role of this dual control system is proposed to be to ensure `rotational' activation of varicosities, and for the effector cell of noradrenergic junctions, to increase the signal/noise ratio. PMID:6267264

  14. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    PubMed

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  15. Electrical Stimulation of the Ventral Tegmental Area Induces Reanimation from General Anesthesia

    PubMed Central

    Solt, Ken; Van Dort, Christa J.; Chemali, Jessica J.; Taylor, Norman E.; Kenny, Jonathan D.; Brown, Emery N.

    2014-01-01

    BACKGROUND Methylphenidate or a D1 dopamine receptor agonist induce reanimation (active emergence) from general anesthesia. We tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (SN, n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120μA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. RESULTS To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 μg/ml ± 1.1 μg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from δ (<4 Hz) to θ (4–8 Hz). In all rats with SN electrodes, stimulation did not elicit an arousal response or significant electroencephalogram changes. CONCLUSIONS Electrical stimulation of the VTA, but not the SN, induces reanimation during general anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA, but not SN, neurons induces reanimation from general anesthesia. PMID:24398816

  16. Development of less invasive neuromuscular electrical stimulation model for motor therapy in rodents

    PubMed Central

    Kanchiku, Tsukasa; Kato, Yoshihiko; Suzuki, Hidenori; Imajo, Yasuaki; Yoshida, Yuichiro; Moriya, Atsushi; Taguchi, Toshihiko; Jung, Ranu

    2012-01-01

    Background Combination therapy is essential for functional repairs of the spinal cord. Rehabilitative therapy can be considered as the key for reorganizing the nervous system after spinal cord regeneration therapy. Functional electrical stimulation has been used as a neuroprosthesis in quadriplegia and can be used for providing rehabilitative therapy to tap the capability for central nervous system reorganization after spinal cord regeneration therapy. Objective To develop a less invasive muscular electrical stimulation model capable of being combined with spinal cord regeneration therapy especially for motor therapy in the acute stage after spinal cord injury. Methods The tibialis anterior and gastrocnemius motor points were identified in intact anesthetized adult female Fischer rats, and stimulation needle electrodes were percutaneously inserted into these points. Threshold currents for visual twitches were obtained upon stimulation using pulses of 75 or 8 kHz for 200 ms. Biphasic pulse widths of 20, 40, 80, 100, 300, and 500 µs per phase were used to determine strength–duration curves. Using these parameters and previously obtained locomotor electromyogram data, stimulations were performed on bilateral joint muscle pairs to produce reciprocal flexion/extension movements of the ankle for 15 minutes while three-dimensional joint kinematics were assessed. Results Rhythmic muscular electrical stimulation with needle electrodes was successfully done, but decreased range of motion (ROM) over time. High-frequency and high-amplitude stimulation was also shown to be effective in alleviating decreases in ROM due to muscle fatigue. Conclusions This model will be useful for investigating the ability of rhythmic muscular electrical stimulation therapy to promote motor recovery, in addition to the efficacy of combining treatments with spinal cord regeneration therapy after spinal cord injuries. PMID:22507026

  17. Cardiac cycle-synchronized electrical muscle stimulator for lower limb training with the potential to reduce the heart's pumping workload

    PubMed Central

    Matsuse, Hiroo; Akimoto, Ryuji; Kamiya, Shiro; Moritani, Toshio; Sasaki, Motoki; Ishizaki, Yuta; Ohtsuka, Masanori; Nakayoshi, Takaharu; Ueno, Takafumi; Shiba, Naoto; Fukumoto, Yoshihiro

    2017-01-01

    Background The lower limb muscle may play an important role in decreasing the heart’s pumping workload. Aging and inactivity cause atrophy and weakness of the muscle, leading to a loss of the heart-assisting role. An electrical lower limb muscle stimulator can prevent atrophy and weakness more effectively than conventional resistance training; however, it has been reported to increase the heart’s pumping workload in some situations. Therefore, more effective tools should be developed. Methods We newly developed a cardiac cycle-synchronized electrical lower limb muscle stimulator by combining a commercially available electrocardiogram monitor and belt electrode skeletal muscle electrical stimulator, making it possible to achieve strong and wide but not painful muscle contractions. Then, we tested the stimulator in 11 healthy volunteers to determine whether the special equipment enabled lower limb muscle training without harming the hemodynamics using plethysmography and a percutaneous cardiac output analyzer. Results In 9 of 11 subjects, the stimulator generated diastolic augmentation waves on the dicrotic notches and end-diastolic pressure reduction waves on the plethysmogram waveforms of the brachial artery, showing analogous waveforms in the intra-aortic balloon pumping heart-assisting therapy. The heart rate, stroke volume, and cardiac output significantly increased during the stimulation. There was no change in the systolic or diastolic blood pressure during the stimulation. Conclusion Cardiac cycle-synchronized electrical muscle stimulation for the lower limbs may enable muscle training without harmfully influencing the hemodynamics and with a potential to reduce the heart’s pumping workload, suggesting a promising tool for effectively treating both locomotor and cardiovascular disorders. PMID:29117189

  18. Economic substitutability of electrical brain stimulation, food, and water.

    PubMed Central

    Green, L; Rachlin, H

    1991-01-01

    Concurrent variable-ratio schedules of electrical brain stimulation, food, and water were paired in various combinations as reinforcement of rats' lever presses. Relative prices of the concurrent reinforcers were varied by changing the ratio of the response requirements on the two levers. Economic substitutability, measured by the sensitivity of response ratio to changes in relative price, was highest with brain stimulation reinforcement of presses on both levers and lowest with food reinforcement of presses on one lever and water reinforcement of presses on the other. Substitutability with brain stimulation reinforcement of presses on one lever and either food or water reinforcement for presses on the other was about as high as with brain stimulation for presses on both levers. Electrical brain stimulation for rats may thus serve as an economic substitute for two reinforcers, neither of which is substitutable for the other. PMID:2037823

  19. Electrical stimulation treatment for facial palsy after revision pleomorphic adenoma surgery

    PubMed Central

    Goldie, Simon; Sandeman, Jack; Cole, Richard; Dennis, Simon; Swain, Ian

    2016-01-01

    Surgery for pleomorphic adenoma recurrence presents a significant risk of facial nerve damage that can result in facial weakness effecting patients’ ability to communicate, mental health and self-image. We report two case studies that had marked facial weakness after resection of recurrent pleomorphic adenoma and their progress with electrical stimulation. Subjects received electrical stimulation twice daily for 24 weeks during which photographs of expressions, facial measurements and Sunnybrook scores were recorded. Both subjects recovered good facial function demonstrating Sunnybrook scores of 54 and 64 that improved to 88 and 96, respectively. Neither subjects demonstrated adverse effects of treatment. We conclude that electrical stimulation is a safe treatment and may improve facial palsy in patients after resection of recurrent pleomorphic adenoma. Larger studies would be difficult to pursue due to the low incidence of cases. PMID:27106613

  20. A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients

    PubMed Central

    Huang, Zonghao; Wang, Zhigong; Lv, Xiaoying; Zhou, Yuxuan; Wang, Haipeng; Zong, Sihao

    2014-01-01

    Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. PMID:25657728

  1. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings

    NASA Astrophysics Data System (ADS)

    O'Shea, Daniel J.; Shenoy, Krishna V.

    2018-04-01

    Objective. Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. Approach. We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. Main results. The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. Significance. We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.

  2. Recovery of facial expressions using functional electrical stimulation after full-face transplantation.

    PubMed

    Topçu, Çağdaş; Uysal, Hilmi; Özkan, Ömer; Özkan, Özlenen; Polat, Övünç; Bedeloğlu, Merve; Akgül, Arzu; Döğer, Ela Naz; Sever, Refik; Çolak, Ömer Halil

    2018-03-06

    We assessed the recovery of 2 face transplantation patients with measures of complexity during neuromuscular rehabilitation. Cognitive rehabilitation methods and functional electrical stimulation were used to improve facial emotional expressions of full-face transplantation patients for 5 months. Rehabilitation and analyses were conducted at approximately 3 years after full facial transplantation in the patient group. We report complexity analysis of surface electromyography signals of these two patients in comparison to the results of 10 healthy individuals. Facial surface electromyography data were collected during 6 basic emotional expressions and 4 primary facial movements from 2 full-face transplantation patients and 10 healthy individuals to determine a strategy of functional electrical stimulation and understand the mechanisms of rehabilitation. A new personalized rehabilitation technique was developed using the wavelet packet method. Rehabilitation sessions were applied twice a month for 5 months. Subsequently, motor and functional progress was assessed by comparing the fuzzy entropy of surface electromyography data against the results obtained from patients before rehabilitation and the mean results obtained from 10 healthy subjects. At the end of personalized rehabilitation, the patient group showed improvements in their facial symmetry and their ability to perform basic facial expressions and primary facial movements. Similarity in the pattern of fuzzy entropy for facial expressions between the patient group and healthy individuals increased. Synkinesis was detected during primary facial movements in the patient group, and one patient showed synkinesis during the happiness expression. Synkinesis in the lower face region of one of the patients was eliminated for the lid tightening movement. The recovery of emotional expressions after personalized rehabilitation was satisfactory to the patients. The assessment with complexity analysis of sEMG data can be used for developing new neurorehabilitation techniques and detecting synkinesis after full-face transplantation.

  3. Timing in the Absence of Supraspinal Input I: Variable, but not Fixed, Spaced Stimulation of the Sciatic Nerve Undermines Spinally-Mediated Instrumental Learning

    PubMed Central

    Baumbauer, Kyle M.; Hoy, Kevin C.; Huie, John R.; Hughes, Abbey J.; Woller, Sarah A.; Puga, Denise A.; Setlow, Barry; Grau, James W.

    2008-01-01

    Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hindlimb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 hrs. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g., wind-up, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 hr (Experiments 1–2) and was dependent on C-fiber activation (Experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (Experiments 3–6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (Experiments 9–10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect. PMID:18674601

  4. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

    PubMed

    Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-04-24

    Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.

  5. Right median nerve electrical stimulation for acute traumatic coma (the Asia Coma Electrical Stimulation trial): study protocol for a randomised controlled trial.

    PubMed

    Wu, Xiang; Zhang, Chao; Feng, Junfeng; Mao, Qing; Gao, Guoyi; Jiang, Jiyao

    2017-07-10

    Traumatic brain injury (TBI) has become the most common cause of death and disability in persons between 15 and 30 years of age, and about 10-15% of patients affected by TBI will end up in a coma. Coma caused by TBI presents a significant challenge to neuroscientists. Right median nerve electrical stimulation has been reported as a simple, inexpensive, non-invasive technique to speed recovery and improve outcomes for traumatic comatose patients. This multicentre, prospective, randomised (1:1) controlled trial aims to demonstrate the efficacy and safety of electrical right median nerve stimulation (RMNS) in both accelerating emergence from coma and promoting long-term outcomes. This trial aims to enrol 380 TBI comatose patients to partake in either an electrical stimulation group or a non-stimulation group. Patients assigned to the stimulation group will receive RMNS in addition to standard treatment at an amplitude of 15-20 mA with a pulse width of 300 μs at 40 Hz ON for 20 s and OFF for 40 s. The electrical treatment will last for 8 h per day for 2 weeks. The primary endpoint will be the percentage of patients regaining consciousness 6 months after injury. The secondary endpoints will be Extended Glasgow Outcome Scale, Coma Recovery Scale-Revised and Disability Rating Scale scores at 28 days, 3 months and 6 months after injury; Glasgow Coma Scale, Glasgow Coma Scale Motor Part and Full Outline of Unresponsiveness scale scores on day 1 and day 7 after enrolment and 28 days, 3 months and 6 months after injury; duration of unconsciousness and mechanical ventilation; length of intensive care unit and hospital stays; and incidence of adverse events. Right median nerve electrical stimulation has been used as a safe, inexpensive, non-invasive therapy for neuroresuscitation of coma patients for more than two decades, yet no trial has robustly proven the efficacy and safety of this treatment. The Asia Coma Electrical Stimulation (ACES) trial has the following novel features compared with other major RMNS trials: (1) the ACES trial is an Asian multicentre randomised controlled trial; (2) RMNS therapy starts at an early stage 7-14 days after the injury; and (3) various assessment scales are used to evaluate the condition of patients. We hope the ACES trial will lead to optimal use of right median nerve electrical treatment. ClinicalTrials.gov, NCT02645578 . Registered on 23 December 2015.

  6. Intracellular recordings of subnucleus reticularis dorsalis neurones revealed novel electrophysiological properties and windup mechanisms

    PubMed Central

    Soto, Cristina; Canedo, Antonio

    2011-01-01

    Abstract Aδ- and/or C-fibre nociceptive inputs drive subnucleus reticularis dorsalis (SRD) neurones projecting to a variety of regions including the spinal cord and the nucleus reticularis gigantocellularis (NRGc), but their electrophysiological properties are largely unknown. Here we intracellularly recorded the SRD neuronal responses to injection of polarising current pulses as well as to electrical stimulation of the cervical spinal posterior quadrant (PQ) and the NRGc. Three different classes of neurones with distinct electrophysiological properties were found: type I were characterised by the absence of a fast postspike hyperpolarisation, type II by the presence of a postspike hyperpolarisation followed by a depolarisation resembling low threshold calcium spikes (LTSs), and type III (lacking LTSs) had a fast postspike hyperpolarisation deinactivating A-like potassium channels leading to enlarged interspike intervals. All three classes generated depolarising sags to hyperpolarising current pulses and showed 3–4.5 Hz subthreshold oscillatory activity leading to windup when intracellularly injecting low-frequency repetitive depolarising pulses as well as in response to 0.5–2 Hz NRGc and PQ electrical stimulation. About half of the 132 sampled neurones responded antidromically to NRGc stimulation with more than 65% of the NRGc-antidromic cells, pertaining to all three types, also responding antidromically to PQ stimulation. NRGc stimulation induced exclusively excitatory first-synaptic-responses whilst PQ stimulation induced first-response excitation in most cases, but inhibitory postsynaptic potentials in a few type II and type III neurones not projecting to the spinal cord that also displayed cumulative inhibitory effects (inverse windup). The results show that SRD cells (i) can actively regulate different temporal firing patterns due to their intrinsic electrophysiological properties, (ii) generate windup upon gradual membrane depolarisation produced by low-frequency intracellular current injection and by C-fibre tonic input, both processes leading subthreshold oscillations to threshold, and (iii) collateralise to the NRGc and the spinal cord, potentially providing simultaneous regulation of ascending noxious information and motor reactions to pain. PMID:21746779

  7. Intracellular recordings of subnucleus reticularis dorsalis neurones revealed novel electrophysiological properties and windup mechanisms.

    PubMed

    Soto, Cristina; Canedo, Antonio

    2011-09-01

    Aδ- and/or C-fibre nociceptive inputs drive subnucleus reticularis dorsalis (SRD) neurones projecting to a variety of regions including the spinal cord and the nucleus reticularis gigantocellularis (NRGc), but their electrophysiological properties are largely unknown. Here we intracellularly recorded the SRD neuronal responses to injection of polarising current pulses as well as to electrical stimulation of the cervical spinal posterior quadrant (PQ) and the NRGc. Three different classes of neurones with distinct electrophysiological properties were found: type I were characterised by the absence of a fast postspike hyperpolarisation, type II by the presence of a postspike hyperpolarisation followed by a depolarisation resembling low threshold calcium spikes (LTSs), and type III (lacking LTSs) had a fast postspike hyperpolarisation deinactivating A-like potassium channels leading to enlarged interspike intervals. All three classes generated depolarising sags to hyperpolarising current pulses and showed 3-4.5 Hz subthreshold oscillatory activity leading to windup when intracellularly injecting low-frequency repetitive depolarising pulses as well as in response to 0.5-2 Hz NRGc and PQ electrical stimulation. About half of the 132 sampled neurones responded antidromically to NRGc stimulation with more than 65% of the NRGc-antidromic cells, pertaining to all three types, also responding antidromically to PQ stimulation. NRGc stimulation induced exclusively excitatory first-synaptic-responses whilst PQ stimulation induced first-response excitation in most cases, but inhibitory postsynaptic potentials in a few type II and type III neurones not projecting to the spinal cord that also displayed cumulative inhibitory effects (inverse windup). The results show that SRD cells (i) can actively regulate different temporal firing patterns due to their intrinsic electrophysiological properties, (ii) generate windup upon gradual membrane depolarisation produced by low-frequency intracellular current injection and by C-fibre tonic input, both processes leading subthreshold oscillations to threshold, and (iii) collateralise to the NRGc and the spinal cord, potentially providing simultaneous regulation of ascending noxious information and motor reactions to pain.

  8. Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex.

    PubMed

    Tucker, Thomas R; Katz, Lawrence C

    2003-01-01

    To investigate how neurons in cortical layer 2/3 integrate horizontal inputs arising from widely distributed sites, we combined intracellular recording and voltage-sensitive dye imaging to visualize the spatiotemporal dynamics of neuronal activity evoked by electrical stimulation of multiple sites in visual cortex. Individual stimuli evoked characteristic patterns of optical activity, while delivering stimuli at multiple sites generated interacting patterns in the regions of overlap. We observed that neurons in overlapping regions received convergent horizontal activation that generated nonlinear responses due to the emergence of large inhibitory potentials. The results indicate that co-activation of multiple sets of horizontal connections recruit strong inhibition from local inhibitory networks, causing marked deviations from simple linear integration.

  9. Effect of peptidase inhibition on the pattern of intraspinally released immunoreactive substance P detected with antibody microprobes.

    PubMed

    Duggan, A W; Schaible, H G; Hope, P J; Lang, C W

    1992-05-08

    Antibody microprobes bearing antibodies to the C-terminus of substance P (SP) were used to measure release of immunoreactive (ir) SP in the dorsal horn of barbiturate anaesthetized spinal cats. Electrical stimulation of unmyelinated primary afferents of the ipsilateral tibial nerve produced a relatively localised release of ir SP in the superficial dorsal horn. Prior microinjection of the peptidase inhibitors kelatorphan and enalaprilat in the dorsal horn resulted in ir SP being detected over the whole of the dorsal horn and the overlying dorsal column. This pattern had previously been observed with evoked release of ir neurokinin A and supports the proposal that a slow degradation results in a neuropeptide accessing many sites remote from sites of release.

  10. Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro

    PubMed Central

    Aulí, M; Martínez, E; Gallego, D; Opazo, A; Espín, F; Martí-Gallostra, M; Jiménez, M; Clavé, P

    2008-01-01

    Background and purpose: To characterize the in vitro motor patterns and the neurotransmitters released by enteric motor neurons (EMNs) in the human sigmoid colon. Experimental approach: Sigmoid circular strips were studied in organ baths. EMNs were stimulated by electrical field stimulation (EFS) and through nicotinic ACh receptors. Key results: Strips developed weak spontaneous rhythmic contractions (3.67±0.49 g, 2.54±0.15 min) unaffected by the neurotoxin tetrodotoxin (TTX; 1 μM). EFS induced strong contractions during (on, 56%) or after electrical stimulus (off, 44%), both abolished by TTX. Nicotine (1–100 μM) inhibited spontaneous contractions. Latency of off-contractions and nicotine responses were reduced by NG-nitro-L-arginine (1 mM) and blocked after further addition of apamin (1 μM) or the P2Y1 receptor antagonist MRS 2179 (10 μM) and were unaffected by the P2X antagonist NF279 (10 μM) or α-chymotrypsin (10 U mL−1). Amplitude of on- and off-contractions was reduced by atropine (1 μM) and the selective NK2 receptor antagonist Bz-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH2 (1 μM). MRS 2179 reduced the amplitude of EFS on- and off-contractions without altering direct muscular contractions induced by ACh (1 nM–1 mM) or substance P (1 nM–10 μM). Conclusions and implications: Latency of EFS-induced off-contractions and inhibition of spontaneous motility by nicotine are caused by stimulation of inhibitory EMNs coreleasing NO and a purine acting at muscular P2Y1 receptors through apamin-sensitive K+ channels. EFS-induced on- and off-contractions are caused by stimulation of excitatory EMNs coreleasing ACh and tachykinins acting on muscular muscarinic and NK2 receptors. Prejunctional P2Y1 receptors might modulate the activity of excitatory EMNs. P2Y1 and NK2 receptors might be therapeutic targets for colonic motor disorders. PMID:18846038

  11. Literature Review and Meta-Analysis of Transcutaneous Electrical Nerve Stimulation in Treating Chronic Back Pain

    PubMed Central

    Wu, Lien-Chen; Weng, Pei-Wei; Chen, Chia-Hsien; Huang, Yi-You; Tsuang, Yang-Hwei; Chiang, Chang-Jung

    2018-01-01

    Background and Objectives This study is a meta-analysis of randomized controlled trials comparing the efficacy of transcutaneous electrical nerve stimulation (TENS) to a control and to other nerve stimulation therapies (NSTs) for the treatment of chronic back pain. Methods Citations were identified in MEDLINE, the Cochrane Library, Google Scholar, and ClinicalTrials.gov through June 2014 using the following keywords: nerve stimulation therapy, transcutaneous electrical nerve stimulation, back pain, chronic pain. Control treatments included sham, placebo, or medication only. Other NSTs included electroacupuncture, percutaneous electrical nerve stimulation, and percutaneous neuromodulation therapy. Results Twelve randomized controlled trials including 700 patients were included in the analysis. The efficacy of TENS was similar to that of control treatment for providing pain relief (standardized difference in means [SDM] = −0.20; 95% confidence interval [CI], −0.58 to 0.18; P = 0.293). Other types of NSTs were more effective than TENS in providing pain relief (SDM = 0.86; 95% CI, 0.15–1.57; P = 0.017). Transcutaneous electrical nerve stimulation was more effective than control treatment in improving functional disability only in patients with follow-up of less than 6 weeks (SDM = −1.24; 95% CI, −1.83 to −0.65; P < 0.001). There was no difference in functional disability outcomes between TENS and other NSTs. Conclusions These results suggest that TENS does not improve symptoms of lower back pain, but may offer short-term improvement of functional disability. PMID:29394211

  12. Optical imaging of the retina in response to the electrical stimulation

    NASA Astrophysics Data System (ADS)

    Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo

    2008-02-01

    Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.

  13. Acetylation mediates Cx43 reduction caused by electrical stimulation

    PubMed Central

    Meraviglia, Viviana; Azzimato, Valerio; Colussi, Claudia; Florio, Maria Cristina; Binda, Anna; Panariti, Alice; Qanud, Khaled; Suffredini, Silvia; Gennaccaro, Laura; Miragoli, Michele; Barbuti, Andrea; Lampe, Paul D.; Gaetano, Carlo; Pramstaller, Peter P.; Capogrossi, Maurizio C.; Recchia, Fabio A.; Pompilio, Giulio; Rivolta, Ilaria; Rossini, Alessandra

    2015-01-01

    Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. PMID:26264759

  14. Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.

    PubMed

    Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka

    2017-05-01

    Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  15. [Finite element analysis of temperature field of retina by electrical stimulation with microelectrode array].

    PubMed

    Wang, Wei; Qiao, Qingli; Gao, Weiping; Wu, Jun

    2014-12-01

    We studied the influence of electrode array parameters on temperature distribution to the retina during the use of retinal prosthesis in order to avoid thermal damage to retina caused by long-term electrical stimulation. Based on real epiretinal prosthesis, a three-dimensional model of electrical stimulation for retina with 4 X 4 microelectrode array had been established using the finite element software (COMSOL Multiphysics). The steady-state temperature field of electrical stimulation of the retina was calculated, and the effects of the electrode parameters such as the distance between the electrode contacts, the materials and area of the electrode contact on temperature field were considered. The maximum increase in the retina steady temperature was about 0. 004 degrees C with practical stimulation current. When the distance between the electrode contacts was changed from 130 microm to 520 microm, the temperature was reduced by about 0.006 microC. When the contact radius was doubled from 130 microm to 260 microm, the temperature decrease was about 0.005 degrees C. It was shown that there were little temperature changes in the retina with a 4 x 4 epiretinal microelectrode array, reflecting the safety of electrical stimulation. It was also shown that the maximum temperature in the retina decreased with increasing the distance between the electrode contacts, as well as increasing the area of electrode contact. However, the change of the maximum temperature was very small when the distance became larger than the diameter of electrode contact. There was no significant difference in the effects of temperature increase among the different electrode materials. Rational selection of the distance between the electrode contacts and their area in electrode design can reduce the temperature rise induced by electrical stimulation.

  16. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling

    PubMed Central

    Pearcey, Gregory E. P.; Noble, Steven A.; Munro, Bridget; Zehr, E. Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation (CONTROL + STIM), sprints with sensory stimulation (SPRINT + STIM) and sprints without stimulation (SPRINT). Seven participants also performed a fourth session (CONTROL), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM, participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM, participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints. PMID:29326570

  17. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling.

    PubMed

    Pearcey, Gregory E P; Noble, Steven A; Munro, Bridget; Zehr, E Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation ( CONTROL + STIM ), sprints with sensory stimulation ( SPRINT + STIM ) and sprints without stimulation ( SPRINT ). Seven participants also performed a fourth session ( CONTROL ), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM , participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM , participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints.

  18. Effect of electrical stimulation and cooking temperature on the within-sample variation of cooking loss and shear force of lamb.

    PubMed

    Lewis, P K; Babiker, S A

    1983-01-01

    Electrical stimulation decreased the shear force and increased the cooking loss in seven paired lamb Longissimus dorsi (LD) muscles. This treatment did not have any effect on the within-sample variation. Cooking in 55°, 65° and 75°C water baths for 90 min caused a linear increase in the cooking loss and shear force. There was no stimulation-cooking temperature interaction observed. Cooking temperature also had no effect on the within-sample variation. A possible explanation as to why electrical stimulation did not affect the within-sample variation is given. Copyright © 1983. Published by Elsevier Ltd.

  19. Restoration of gait by functional electrical stimulation in paraplegic patients: a modified programme of treatment.

    PubMed

    Malezic, M; Hesse, S

    1995-03-01

    Restoration of standing and of gait by functional electrical stimulation in clinically complete paraplegic patients was modified in the course of treatment and in the stimulation parameters. By substituting an initial cyclic muscle strengthening with an active stimulated standing, four patients with T3-11 lesions started walking with electrical stimulation in 10-17 days. They walked without ankle-foot orthoses. With a satisfactory stride length of 0.75-0.97 m, their gait velocity ranged from very slow to that of a leisurely healthy gait. Already established stimulation of the quadriceps muscles for standing and of the peroneal nerves for lower limb flexion during the swing phase of gait was applied. Diminished limb flexion after several weeks was restored by an increase of the stimulation frequency of the peroneal nerve from 20 to 60 Hz. EMG and kinesiological measurements displayed an improved direct response of the ankle as well as of the reflex mediated hip, knee and ankle flexion response. At the same time stimulation frequency was reduced to 16 Hz for the quadriceps muscles in order to reduce fatigue.

  20. Robust Neurite Extension Following Exogenous Electrical Stimulation within Single Walled Carbon Nanotube-Composite Hydrogels

    PubMed Central

    Koppes, A. N.; Keating, K. W.; McGregor, A. L.; Koppes, R. A.; Kearns, K. R.; Ziemba, A. M.; McKay, C. A.; Zuidema, J. M.; Rivet, C. J.; Gilbert, R. J.; Thompson, D. M.

    2016-01-01

    The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: 1) nanofillers influence neurite extension and 2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10–100-μg/ml) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. PMID:27167609

Top