Sample records for electrical stimulus parameters

  1. Systematic study of the effects of stimulus parameters and stimulus location on afterdischarges elicited by electrical stimulation in the rat.

    PubMed

    Shigeto, Hiroshi; Boongird, Atthaporn; Baker, Kenneth; Kellinghaus, Christoph; Najm, Imad; Lüders, Hans

    2013-03-01

    Electrical brain stimulation is used in a variety of clinical situations, including cortical mapping for epilepsy surgery, cortical stimulation therapy to terminate seizure activity in the cortex, and in deep brain stimulation therapy. However, the effects of stimulus parameters are not fully understood. In this study, we systematically tested the impact of various stimulation parameters on the generation of motor symptoms and afterdischarges (ADs). Focal electrical stimulation was delivered at subdural cortical, intracortical, and hippocampal sites in a rat model. The effects of stimulus parameter on the generation of motor symptoms and on the occurrence of ADs were examined. The effect of stimulus irregularity was tested using random or regular 50Hz stimulation through subdural electrodes. Hippocampal stimulation produced ADs at lower thresholds than neocortical stimulation. Hippocampal stimulation also produced significantly longer ADs. Both in hippocampal and cortical stimulation, when the total current was kept constant with changing pulse width, the threshold for motor symptom or AD was lowest between 50 and 100Hz and higher at both low and high frequencies. However, if the pulse width was fixed, the threshold did not increase above 100Hz and it apparently continued to decrease through 800Hz even if the difference did not reach statistical significance. There was no significant difference between random and regular stimulation. Overall, these results indicate that electrode location and several stimulus parameters including frequency, pulse width, and total electricity are important in electrical stimulation to produce motor symptoms and ADs. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Transcranial electric and magnetic stimulation: technique and paradigms.

    PubMed

    Paulus, Walter; Peterchev, Angel V; Ridding, Michael

    2013-01-01

    Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account. © 2013 Elsevier B.V. All rights reserved.

  3. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study.

    PubMed

    Chipchase, Lucy S; Schabrun, Siobhan M; Hodges, Paul W

    2011-09-01

    To evaluate the effect of 6 electric stimulation paradigms on corticospinal excitability. Using a same subject pre-post test design, transcranial magnetic stimulation (TMS) was used to measure the responsiveness of corticomotor pathway to biceps and triceps brachii muscles before and after 30 minutes of electric stimulation over the biceps brachii. Six different electric stimulation paradigms were applied in random order, at least 3 days apart. Motor control research laboratory. Healthy subjects (N=10; 5 women, 5 men; mean age ± SD, 26 ± 3.6y). Six different electric stimulation paradigms with varied stimulus amplitude, frequency, and ramp settings. Amplitudes of TMS-induced motor evoked potentials at biceps and triceps brachii normalized to maximal M-wave amplitudes. Electric stimulation delivered at stimulus amplitude sufficient to evoke a sensory response at both 10 Hz and 100 Hz, and stimulus amplitude to create a noxious response at 10 Hz decreased corticomotor responsiveness (all P<0.01). Stimulation sufficient to induce a motor contraction (30 Hz) applied in a ramped pattern to mimic a voluntary activation increased corticomotor responsiveness (P=0.002), whereas constant low- and high-intensity motor stimulation at 10 Hz did not. Corticomotor excitability changes were similar for both the stimulated muscle and its antagonist. Stimulus amplitude (intensity) and the nature (muscle flicker vs contraction) of motor stimulation have a significant impact on changes in corticospinal excitability induced by electric stimulation. Here, we demonstrate that peripheral electric stimulation at stimulus amplitude to create a sensory response reduces corticomotor responsiveness. Conversely, stimulus amplitude to create a motor response increases corticomotor responsiveness, but only the parameters that create a motor response that mimics a voluntary muscle contraction. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact

    PubMed Central

    Kent, A R; Grill, W M

    2012-01-01

    Deep brain stimulation (DBS) is an effective treatment for movement disorders, but the selection of stimulus parameters is a clinical burden and often yields sub-optimal outcomes for patients. Measurement of electrically evoked compound action potentials (ECAPs) during DBS could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulus parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1,000 to 5,000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 μs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters. PMID:22510375

  5. [Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].

    PubMed

    Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li

    2017-06-25

    Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.

  6. StimDuino: an Arduino-based electrophysiological stimulus isolator.

    PubMed

    Sheinin, Anton; Lavi, Ayal; Michaelevski, Izhak

    2015-03-30

    Electrical stimulus isolator is a widely used device in electrophysiology. The timing of the stimulus application is usually automated and controlled by the external device or acquisition software; however, the intensity of the stimulus is adjusted manually. Inaccuracy, lack of reproducibility and no automation of the experimental protocol are disadvantages of the manual adjustment. To overcome these shortcomings, we developed StimDuino, an inexpensive Arduino-controlled stimulus isolator allowing highly accurate, reproducible automated setting of the stimulation current. The intensity of the stimulation current delivered by StimDuino is controlled by Arduino, an open-source microcontroller development platform. The automatic stimulation patterns are software-controlled and the parameters are set from Matlab-coded simple, intuitive and user-friendly graphical user interface. The software also allows remote control of the device over the network. Electrical current measurements showed that StimDuino produces the requested current output with high accuracy. In both hippocampal slice and in vivo recordings, the fEPSP measurements obtained with StimDuino and the commercial stimulus isolators showed high correlation. Commercial stimulus isolators are manually managed, while StimDuino generates automatic stimulation patterns with increasing current intensity. The pattern is utilized for the input-output relationship analysis, necessary for assessment of excitability. In contrast to StimuDuino, not all commercial devices are capable for remote control of the parameters and stimulation process. StimDuino-generated automation of the input-output relationship assessment eliminates need for the current intensity manually adjusting, improves stimulation reproducibility, accuracy and allows on-site and remote control of the stimulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Aggregate Load Controllers and Associated Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.

    Aggregate load controllers and associated methods are described. According to one aspect, a method of operating an aggregate load controller includes using an aggregate load controller having an initial state, applying a stimulus to a plurality of thermostatic controllers which are configured to control a plurality of respective thermostatic loads which receive electrical energy from an electrical utility to operate in a plurality of different operational modes, accessing data regarding a response of the thermostatic loads as a result of the applied stimulus, using the data regarding the response, determining a value of at least one design parameter of themore » aggregate load controller, and using the determined value of the at least one design parameter, configuring the aggregate load controller to control amounts of the electrical energy which are utilized by the thermostatic loads.« less

  8. QT dispersion and rate-corrected QT dispersion during electroconvulsive therapy in elderly patients.

    PubMed

    Yamaguchi, Shigeki; Nagao, Masaru; Ikeda, Tomohisa; Fukagawa, Daigo; Kimura, Yoshiyuki; Kitajima, Toshimitsu; Minami, Junichi

    2011-09-01

    Electroconvulsive therapy (ECT) induces increase of QT dispersion (QTD) and the rate-corrected QTD (QTcD), which are associated with increased risk of ventricular arrhythmias and cardiovascular mortality. The effects of electrical stimulus during ECT on QTD and QTcD in elderly patients are of considerable interest. The purpose of this study was to clarify the differential effects of electrical stimulus caused by ECT on interbeat interval, QT interval, the rate-corrected QT (QTc) interval, QTD, and the QTcD under propofol anesthesia between younger and elderly patients with major depression. Twenty younger psychiatric patients (aged 30-40 years) and 20 elderly patients (aged 65-75 years) scheduled for ECT were studied under propofol anesthesia. A 12-lead electrocardiogram was monitored to measure parameters. Muscle paralysis was achieved by administering 1-mg/kg succinylcholine intravenously, and the efficacy of ECT was determined by the tourniquet technique. The mean arterial pressure in the elderly was significantly higher than that of the younger patients from immediately to 2 minutes after electrical stimulus. The interbeat interval in the elderly was significantly lower than that of the younger patients from immediately to 1 minute after electrical stimulus. There was no statistically significant difference in the QT interval between the groups. The baseline value of QTc interval was higher than the normal limits, and the QTc interval in the elderly was significantly lower than that of the younger patients from immediately to 1 minute after electrical stimulus. The baseline value of QTD was higher than the normal limits, and the QTD in the elderly was significantly higher than that of the younger patients from immediately to 7 minutes after electrical stimulus. The baseline value of QTcD was higher than the normal limits, and the QTcD in the elderly was significantly higher than that of the younger patients from immediately to 7 minutes after electrical stimulus. The QTc interval, QTD, and QTcD may be higher than the normal limits before anesthesia in patients with major depression. The QTD and QTcD in the elderly, which are associated with increased risks of ventricular arrhythmias, are higher than those of the younger patients after electrical stimulus during ECT. Electrical stimulus may induce further increased risks of cardiac events in elderly patients.

  9. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    PubMed Central

    Ponnath, Abhilash; Farris, Hamilton E.

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437

  10. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    PubMed

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  11. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact.

    PubMed

    Kent, A R; Grill, W M

    2012-06-01

    The clinical efficacy of deep brain stimulation (DBS) for the treatment of movement disorders depends on the identification of appropriate stimulation parameters. Since the mechanisms of action of DBS remain unclear, programming sessions can be time consuming, costly and result in sub-optimal outcomes. Measurement of electrically evoked compound action potentials (ECAPs) during DBS, generated by activated neurons in the vicinity of the stimulating electrode, could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulation parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1000 to 5000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 µs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters.

  12. Controlling stimulation strength and focality in electroconvulsive therapy via current amplitude and electrode size and spacing: comparison with magnetic seizure therapy.

    PubMed

    Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V

    2013-12-01

    Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk/benefit ratio. We aimed to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment. Electroconvulsive therapy and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2-5 cm), spacing (1-25 cm), and current amplitudes (0-900 mA) was explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences. By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 15%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability. The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability.

  13. Tooth pulp stimulation as an unconditioned stimulus in defensive instrumental conditioning.

    PubMed

    Jastreboff, P J; Keller, O; Zieliński, K

    1977-01-01

    In an experiment performed on five cats, stable escape and avoidance reflexes in a bar-pressing situation were established using tooth pulp electric stimulation as the unconditioned stimulus. The influence of changes in parameters of the unconditioned stimulus (current intensity, single pulse and train durations, frequency of pulses and rate of train presentations) on unconditioned and instrumental responses was analysed in three additional subjects. Among other relationships the dependence of the threshold of bar press responses on the amount of charge in a single pulse was determined.

  14. Modeling and simulation of deformation of hydrogels responding to electric stimulus.

    PubMed

    Li, Hua; Luo, Rongmo; Lam, K Y

    2007-01-01

    A model for simulation of pH-sensitive hydrogels is refined in this paper to extend its application to electric-sensitive hydrogels, termed the refined multi-effect-coupling electric-stimulus (rMECe) model. By reformulation of the fixed-charge density and consideration of finite deformation, the rMECe model is able to predict the responsive deformations of the hydrogels when they are immersed in a bath solution subject to externally applied electric field. The rMECe model consists of nonlinear partial differential governing equations with chemo-electro-mechanical coupling effects and the fixed-charge density with electric-field effect. By comparison between simulation and experiment extracted from literature, the model is verified to be accurate and stable. The rMECe model performs quantitatively for deformation analysis of the electric-sensitive hydrogels. The influences of several physical parameters, including the externally applied electric voltage, initial fixed-charge density, hydrogel strip thickness, ionic strength and valence of surrounding solution, are discussed in detail on the displacement and average curvature of the hydrogels.

  15. Double-blind optimization of subcallosal cingulate deep brain stimulation for treatment-resistant depression: a pilot study.

    PubMed

    Ramasubbu, Rajamannar; Anderson, Susan; Haffenden, Angela; Chavda, Swati; Kiss, Zelma H T

    2013-09-01

    Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is reported to be a safe and effective new treatment for treatment-resistant depression (TRD). However, the optimal electrical stimulation parameters are unknown and generally selected by trial and error. This pilot study investigated the relationship between stimulus parameters and clinical effects in SCC-DBS treatment for TRD. Four patients with TRD underwent SCC-DBS surgery. In a double-blind stimulus optimization phase, frequency and pulse widths were randomly altered weekly, and corresponding changes in mood and depression were evaluated using a visual analogue scale (VAS) and the 17-item Hamilton Rating Scale for Depression (HAM-D-17). In the open-label postoptimization phase, depressive symptoms were evaluated biweekly for 6 months to determine long-term clinical outcomes. Longer pulse widths (270-450 μs) were associated with reductions in HAM-D-17 scores in 3 patients and maximal happy mood VAS responses in all 4 patients. Only 1 patient showed acute clinical or mood effects from changing the stimulation frequency. After 6 months of open-label therapy, 2 patients responded and 1 patient partially responded. Limitations include small sample size, weekly changes in stimulus parameters, and fixed-order and carry-forward effects. Longer pulse width stimulation may have a role in stimulus optimization for SCC-DBS in TRD. Longer pulse durations produce larger apparent current spread, suggesting that we do not yet know the optimal target or stimulus parameters for this therapy. Investigations using different stimulus parameters are required before embarking on large-scale randomized sham-controlled trials.

  16. Place avoidance learning and memory in a jumping spider.

    PubMed

    Peckmezian, Tina; Taylor, Phillip W

    2017-03-01

    Using a conditioned passive place avoidance paradigm, we investigated the relative importance of three experimental parameters on learning and memory in a salticid, Servaea incana. Spiders encountered an aversive electric shock stimulus paired with one side of a two-sided arena. Our three parameters were the ecological relevance of the visual stimulus, the time interval between trials and the time interval before test. We paired electric shock with either a black or white visual stimulus, as prior studies in our laboratory have demonstrated that S. incana prefer dark 'safe' regions to light ones. We additionally evaluated the influence of two temporal features (time interval between trials and time interval before test) on learning and memory. Spiders exposed to the shock stimulus learned to associate shock with the visual background cue, but the extent to which they did so was dependent on which visual stimulus was present and the time interval between trials. Spiders trained with a long interval between trials (24 h) maintained performance throughout training, whereas spiders trained with a short interval (10 min) maintained performance only when the safe side was black. When the safe side was white, performance worsened steadily over time. There was no difference between spiders tested after a short (10 min) or long (24 h) interval before test. These results suggest that the ecological relevance of the stimuli used and the duration of the interval between trials can influence learning and memory in jumping spiders.

  17. Stopping mechanism for capsule endoscope using electrical stimulus.

    PubMed

    Woo, Sang Hyo; Kim, Tae Wan; Cho, Jin Ho

    2010-01-01

    An ingestible capsule, which has the ability to stop at certain locations in the small intestine, was designed and implemented to monitor intestinal diseases. The proposed capsule can contract the small intestine by using electrical stimuli; this contraction causes the capsule to stop when the maximum static frictional force (MSFF) is larger than the force of natural peristalsis. In vitro experiments were carried out to verify the feasibility of the capsule, and the results showed that the capsule was successfully stopped in the small intestine. Various electrodes and electrical stimulus parameters were determined on the basis of the MSFF. A moderate increment of the MSFF (12.7 +/- 4.6 gf at 5 V, 10 Hz, and 5 ms) and the maximum increment of the MSFF (56.5 +/- 9.77 gf at 20 V, 10 Hz, and 5 ms) were obtained, and it is sufficient force to stop the capsule.

  18. A Novel Stimulus Artifact Removal Technique for High-Rate Electrical Stimulation

    PubMed Central

    Heffer, Leon F; Fallon, James B

    2008-01-01

    Electrical stimulus artifact corrupting electrophysiological recordings often make the subsequent analysis of the underlying neural response difficult. This is particularly evident when investigating short-latency neural activity in response to high-rate electrical stimulation. We developed and evaluated an off-line technique for the removal of stimulus artifact from electrophysiological recordings. Pulsatile electrical stimulation was presented at rates of up to 5000 pulses/s during extracellular recordings of guinea pig auditory nerve fibers. Stimulus artifact was removed by replacing the sample points at each stimulus artifact event with values interpolated along a straight line, computed from neighbouring sample points. This technique required only that artifact events be identifiable and that the artifact duration remained less than both the inter-stimulus interval and the time course of the action potential. We have demonstrated that this computationally efficient sample-and-interpolate technique removes the stimulus artifact with minimal distortion of the action potential waveform. We suggest that this technique may have potential applications in a range of electrophysiological recording systems. PMID:18339428

  19. Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type

    NASA Astrophysics Data System (ADS)

    Im, Maesoon; Werginz, Paul; Fried, Shelley I.

    2018-06-01

    Objective. To improve the quality of artificial vision that arises from retinal prostheses, it is important to bring electrically-elicited neural activity more in line with the physiological signaling patterns that arise normally in the healthy retina. Our previous study reported that indirect activation produces a closer match to physiological responses in ON retinal ganglion cells (RGCs) than in OFF cells (Im and Fried 2015 J. Physiol. 593 3677-96). This suggests that a preferential activation of ON RGCs would shape the overall retinal response closer to natural signaling. Recently, we found that changes to the rate at which stimulation was delivered could bias responses towards a stronger ON component (Im and Fried 2016a J. Neural Eng. 13 025002), raising the possibility that changes to other stimulus parameters can similarly bias towards stronger ON responses. Here, we explore the effects of changing stimulus duration on the responses in ON and OFF types of brisk transient (BT) and brisk sustained (BS) RGCs. Approach. We used cell-attached patch clamp to record RGC spiking in the isolated rabbit retina. Targeted RGCs were first classified as ON or OFF type by their light responses, and further sub-classified as BT or BS types by their responses to both light and electric stimuli. Spiking in targeted RGCs was recorded in response to electric pulses with durations varying from 5 to100 ms. Stimulus amplitude was adjusted at each duration to hold total charge constant for all experiments. Main results. We found that varying stimulus durations modulated responses differentially for ON versus OFF cells: in ON cells, spike counts decreased significantly with increasing stimulus duration while in OFF cells the changes were more modest. The maximum ratio of ON versus OFF responses occurred at a duration of ~10 ms. The difference in response strength for BT versus BS cells was much larger in ON cells than in OFF cells. Significance. The stimulation rates preferred by subjects during clinical trials are similar to the rates that maximize the ON/OFF response ratio in in vitro testing (Im and Fried 2016a J. Neural Eng. 13 025002). Here, we determine the stimulus duration that produces the strongest bias towards ON responses and speculate that it will further enhance clinical effectiveness.

  20. Characteristics of retinal reflectance changes induced by transcorneal electrical stimulation in cat eyes.

    PubMed

    Morimoto, Takeshi; Kanda, Hiroyuki; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Kitaguchi, Yoshiyuki; Nishida, Kohji; Fujikado, Takashi

    2014-01-01

    Transcorneal electrical stimulation (TES) activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm) were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all). The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.

  1. Strategies to minimize cognitive side effects with ECT: aspects of ECT technique.

    PubMed

    Prudic, Joan

    2008-03-01

    The adverse cognitive effects of electroconvulsive therapy are important limitations in the use of this treatment that continues to be a significant therapeutic strategy after 7 decades of use. Among the approaches to mitigation of these side effects are considerations involving the prescription and manipulation of the electrical stimulus itself. The impact of the following electrical factors on the cognitive outcomes of electroconvulsive therapy are surveyed: efficiency of the stimulus as expressed in electrical waveform; targeting of the stimulus, the major concept underlying electrode placement; stimulus dosing; and frequency and number of treatments. The current state of development of knowledge in these areas is summarized, and methods to achieve the best cognitive outcomes without sacrificing clinical efficacy are discussed. Future trends in the further optimization of the electrical stimulus are briefly mentioned.

  2. [Analysis of electrically evoked response (EER) in relation to the central visual pathway of the cat (1). Wave shape of the cat EER].

    PubMed

    Fukatsu, Y; Miyake, Y; Sugita, S; Saito, A; Watanabe, S

    1990-11-01

    To analyze the Electrically evoked response (EER) in relation to the central visual pathway, the authors studied the properties of wave patterns and peak latencies of EER in 35 anesthetized adult cats. The cat EER showed two early positive waves on outward current (cornea cathode) stimulus and three or four early positive waves on inward current (cornea anode) stimulus. These waves were recorded within 50 ms after stimulus onset, and were the most consistent components in cat EER. The stimulus threshold for EER showed a less individual variation than amplitude. The difference of stimulus threshold between outward and inward current stimulus was also essentially negligible. The stimulus threshold was higher in early components than in late components. The peak latency of EER became shorter and the amplitude became higher, as the stimulus intensity was increased. However, this tendency was reversed and some wavelets started to appear when the stimulus was extremely strong. The recording using short stimulus duration and bipolar electrodes enabled us to reduce the electrical artifact of EER. These results obtained from cats were compared with those of humans and rabbits.

  3. Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation

    PubMed Central

    Kent, Alexander R.; Grill, Warren M.

    2012-01-01

    Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000x over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894

  4. Simultaneous masking between electric and acoustic stimulation in cochlear implant users with residual low-frequency hearing.

    PubMed

    Krüger, Benjamin; Büchner, Andreas; Nogueira, Waldo

    2017-09-01

    Ipsilateral electric-acoustic stimulation (EAS) is becoming increasingly important in cochlear implant (CI) treatment. Improvements in electrode designs and surgical techniques have contributed to improved hearing preservation during implantation. Consequently, CI implantation criteria have been expanded toward people with significant residual low-frequency hearing, who may benefit from the combined use of both the electric and acoustic stimulation in the same ear. However, only few studies have investigated the mutual interaction between electric and acoustic stimulation modalities. This work characterizes the interaction between both stimulation modalities using psychophysical masking experiments and cone beam computer tomography (CBCT). Two psychophysical experiments for electric and acoustic masking were performed to measure the hearing threshold elevation of a probe stimulus in the presence of a masker stimulus. For electric masking, the probe stimulus was an acoustic tone while the masker stimulus was an electric pulse train. For acoustic masking, the probe stimulus was an electric pulse train and the masker stimulus was an acoustic tone. Five EAS users, implanted with a CI and ipsilateral residual low-frequency hearing, participated in the study. Masking was determined at different electrodes and different acoustic frequencies. CBCT scans were used to determine the individual place-pitch frequencies of the intracochlear electrode contacts by using the Stakhovskaya place-to-frequency transformation. This allows the characterization of masking as a function of the difference between electric and acoustic stimulation sites, which we term the electric-acoustic frequency difference (EAFD). The results demonstrate a significant elevation of detection thresholds for both experiments. In electric masking, acoustic-tone thresholds increased exponentially with decreasing EAFD. In contrast, for the acoustic masking experiment, threshold elevations were present regardless of the tested EAFDs. Based on the present findings, we conclude that there is an asymmetry between the electric and the acoustic masker modalities. These observations have implications for the design and fitting of EAS sound-coding strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Numerical investigation into blood clotting at the bone-dental implant interface in the presence of an electrical stimulus.

    PubMed

    Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V

    2013-12-01

    The insertion of a dental implant activates a sequence of wound healing events ending with bone formation and implant osseointegration. This sequence starts with the blood coagulation process and the formation of a fibrin network that detains spilt blood. Fibrin formation can be simplified as the kinetic reaction between thrombin and fibrinogen preceding the conversion of fibrinogen into fibrin. Based on experimental observations of the electrical properties of these molecules, we present a hypothesis for the mechanism of a static electrical stimulus in controlling the formation of the blood clot. Specifically, the electrical stimulus increases the fibrin network formation in such a way that a preferential region of higher fibrin density is obtained. This hypothesis is validated by means of a numerical model for the blood clot formation at the bone-dental implant interface. Numerical results compare favorably to experimental observations for blood clotting with and without the static electrical stimulus. It is concluded that the density of the fibrin network depends on the strength of the static electrical stimulus, and that the blood clot formation has a preferential direction of formation in the presence of the electrical signal. © 2013 Published by Elsevier Ltd. All rights reserved.

  6. Relationship between inter-stimulus-intervals and intervals of autonomous activities in a neuronal network.

    PubMed

    Ito, Hidekatsu; Minoshima, Wataru; Kudoh, Suguru N

    2015-08-01

    To investigate relationships between neuronal network activity and electrical stimulus, we analyzed autonomous activity before and after electrical stimulus. Recordings of autonomous activity were performed using dissociated culture of rat hippocampal neurons on a multi-electrodes array (MEA) dish. Single stimulus and pared stimuli were applied to a cultured neuronal network. Single stimulus was applied every 1 min, and paired stimuli was performed by two sequential stimuli every 1 min. As a result, the patterns of synchronized activities of a neuronal network were changed after stimulus. Especially, long range synchronous activities were induced by paired stimuli. When 1 s inter-stimulus-intervals (ISI) and 1.5 s ISI paired stimuli are applied to a neuronal network, relatively long range synchronous activities expressed in case of 1.5 s ISI. Temporal synchronous activity of neuronal network is changed according to inter-stimulus-intervals (ISI) of electrical stimulus. In other words, dissociated neuronal network can maintain given information in temporal pattern and a certain type of an information maintenance mechanism was considered to be implemented in a semi-artificial dissociated neuronal network. The result is useful toward manipulation technology of neuronal activity in a brain system.

  7. Spectral entropy in monitoring anesthetic depth.

    PubMed

    Escontrela Rodríguez, B; Gago Martínez, A; Merino Julián, I; Martínez Ruiz, A

    2016-10-01

    Monitoring the brain response to hypnotics in general anesthesia, with the nociceptive and hemodynamic stimulus interaction, has been a subject of intense investigation for many years. Nowadays, monitors of depth of anesthesia are based in processed electroencephalogram by different algorithms, some of them unknown, to obtain a simplified numeric parameter approximate to brain activity state in each moment. In this review we evaluate if spectral entropy suitably reflects the brain electric behavior in response to hypnotics and the different intensity nociceptive stimulus effect during a surgical procedure. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Functional electrical stimulation to the abdominal wall muscles synchronized with the expiratory flow does not induce muscle fatigue.

    PubMed

    Okuno, Yukako; Takahashi, Ryoichi; Sewa, Yoko; Ohse, Hirotaka; Imura, Shigeyuki; Tomita, Kazuhide

    2017-03-01

    [Purpose] Continuous electrical stimulation of abdominal wall muscles is known to induce mild muscle fatigue. However, it is not clear whether this is also true for functional electrical stimulation delivered only during the expiratory phase of breathing. This study aimed to examine whether or not intermittent electrical stimulation delivered to abdominal wall muscles induces muscle fatigue. [Subjects and Methods] The subjects were nine healthy adults. Abdominal electrical stimulation was applied for 1.5 seconds from the start of expiration and then turned off during inspiration. The electrodes were attached to both sides of the abdomen at the lower margin of the 12th rib. Abdominal electrical stimulation was delivered for 15 minutes with the subject in a seated position. Expiratory flow was measured during stimulus. Trunk flexor torque and electromyography activity were measured to evaluate abdominal muscle fatigue. [Results] The mean stimulation on/off ratio was 1:2.3. The declining rate of abdominal muscle torque was 61.1 ± 19.1% before stimulus and 56.5 ± 20.9% after stimulus, not significantly different. The declining rate of mean power frequency was 47.8 ± 11.7% before stimulus and 47.9 ± 10.2% after stimulus, not significantly different. [Conclusion] It was found that intermittent electrical stimulation to abdominal muscles synchronized with the expiratory would not induce muscle fatigue.

  9. Electromagnetic radiation screening of microcircuits for long life applications

    NASA Technical Reports Server (NTRS)

    Brammer, W. G.; Erickson, J. J.; Levy, M. E.

    1974-01-01

    The utility of X-rays as a stimulus for screening high reliability semiconductor microcircuits was studied. The theory of the interaction of X-rays with semiconductor materials and devices was considered. Experimental measurements of photovoltages, photocurrents, and effects on specified parameters were made on discrete devices and on microcircuits. The test specimens included discrete devices with certain types of identified flaws and symptoms of flaws, and microcircuits exhibiting deviant electrical behavior. With a necessarily limited sample of test specimens, no useful correlation could be found between the X-ray-induced electrical response and the known or suspected presence of flaws.

  10. BiFeO3 Thin Films: A Playground for Exploring Electric-Field Control of Multifunctionalities

    NASA Astrophysics Data System (ADS)

    Yang, Jan-Chi; He, Qing; Yu, Pu; Chu, Ying-Hao

    2015-07-01

    A promising approach to the next generation of low-power, functional, and green nanoelectronics relies on advances in the electric-field control of lattice, charge, orbital, and spin degrees of freedom in novel materials. The possibility of electric-field control of these multiple materials functionalities offers interesting options across a range of modern technologies, including information communication, computing processes, data storage, active components, and functional electronics. This article reviews electric-field control and modulation of various degrees of freedom through the medium of multiferroic BiFeO3. Coexisting order parameters and inherent couplings in this materials system form a potent playground, enabling direct and indirect manipulation to obtain intriguing properties and functionalities with an electric stimulus. An in-depth understanding of those electrically controlled phenomena and breakthroughs is highlighted, paving a new route toward multifunctional nanoelectronics. This article concludes with a brief discussion on foreseeable challenges as well as future directions.

  11. Suppression of stimulus artifact contaminating electrically evoked electromyography.

    PubMed

    Liu, Jie; Li, Sheng; Li, Xiaoyan; Klein, Cliff; Rymer, William Z; Zhou, Ping

    2014-01-01

    Electrical stimulation of muscle or nerve is a very useful technique for understanding of muscle activity and its pathological changes for both diagnostic and therapeutic purposes. During electrical stimulation of a muscle, the recorded M wave is often contaminated by a stimulus artifact. The stimulus artifact must be removed for appropriate analysis and interpretation of M waves. The objective of this study was to develop a novel software based method to remove stimulus artifacts contaminating or superimposing with electrically evoked surface electromyography (EMG) or M wave signals. The multiple stage method uses a series of signal processing techniques, including highlighting and detection of stimulus artifacts using Savitzky-Golay filtering, estimation of the artifact contaminated region with Otsu thresholding, and reconstruction of such region using signal interpolation and smoothing. The developed method was tested using M wave signals recorded from biceps brachii muscles by a linear surface electrode array. To evaluate the performance, a series of semi-synthetic signals were constructed from clean M wave and stimulus artifact recordings with different degrees of overlap between them. The effectiveness of the developed method was quantified by a significant increase in correlation coefficient and a significant decrease in root mean square error between the clean M wave and the reconstructed M wave, compared with those between the clean M wave and the originally contaminated signal. The validity of the developed method was also demonstrated when tested on each channel's M wave recording using a linear electrode array. The developed method can suppress stimulus artifacts contaminating M wave recordings.

  12. PI3K Phosphorylation Is Linked to Improved Electrical Excitability in an In Vitro Engineered Heart Tissue Disease Model System.

    PubMed

    Kana, Kujaany; Song, Hannah; Laschinger, Carol; Zandstra, Peter W; Radisic, Milica

    2015-09-01

    Myocardial infarction, a prevalent cardiovascular disease, is associated with cardiomyocyte cell death, and eventually heart failure. Cardiac tissue engineering has provided hopes for alternative treatment options, and high-fidelity tissue models for drug discovery. The signal transduction mechanisms relayed in response to mechanoelectrical (physical) stimulation or biochemical stimulation (hormones, cytokines, or drugs) in engineered heart tissues (EHTs) are poorly understood. In this study, an EHT model was used to elucidate the signaling mechanisms involved when insulin was applied in the presence of electrical stimulation, a stimulus that mimics functional heart tissue environment in vitro. EHTs were insulin treated, electrically stimulated, or applied in combination (insulin and electrical stimulation). Electrical excitability parameters (excitation threshold and maximum capture rate) were measured. Protein kinase B (AKT) and phosphatidylinositol-3-kinase (PI3K) phosphorylation revealed that insulin and electrical stimulation relayed electrical excitability through two separate signaling cascades, while there was a negative crosstalk between sustained activation of AKT and PI3K.

  13. Suppression of Stimulus Artifact Contaminating Electrically Evoked Electromyography

    PubMed Central

    Liu, Jie; Li, Sheng; Li, Xiaoyan; Klein, Cliff; Rymer, William Z.; Zhou, Ping

    2013-01-01

    Background Electrical stimulation of muscle or nerve is a very useful technique for understanding of muscle activity and its pathological changes for both diagnostic and therapeutic purposes. During electrical stimulation of a muscle, the recorded M wave is often contaminated by a stimulus artifact. The stimulus artifact must be removed for appropriate analysis and interpretation of M waves. Objectives The objective of this study was to develop a novel software based method to remove stimulus artifacts contaminating or superimposing with electrically evoked surface electromyography (EMG) or M wave signals. Methods The multiple stage method uses a series of signal processing techniques, including highlighting and detection of stimulus artifacts using the Savitzky-Golay filtering, estimation of the artifact contaminated region with the Otsu thresholding, and reconstruction of such region using signal interpolation and smoothing. The developed method was tested using M wave signals recorded from biceps brachii muscles by a linear surface electrode array. To evaluate the performance, a series of semi-synthetic signals were constructed from clean M wave and stimulus artifact recordings with different degrees of overlap between them. Results The effectiveness of the developed method was quantified by a significant increase in correlation coefficient and a significant decrease in root mean square error between the clean M wave and the reconstructed M wave, compared with those between the clean M wave and the originally contaminated signal. The validity of the developed method was also demonstrated when tested on each channel’s M wave recording using the linear electrode array. Conclusions The developed method can suppress stimulus artifacts contaminating M wave recordings. PMID:24419021

  14. Spatiotemporal mapping of scalp potentials.

    PubMed

    Fender, D H; Santoro, T P

    1977-11-01

    Computerized analysis and display techniques are applied to the problem of identifying the origins of visually evoked scalped potentials (VESP's). A new stimulus for VESP work, white noise, is being incorporated in the solution of this problem. VESP's for white-noise stimulation exhibit time domain behavior similar to the classical response for flash stimuli but with certain significant differences. Contour mapping algorithms are used to display the time behavior of equipotential surfaces on the scalp during the VESP. The electrical and geometrical parameters of the head are modeled. Electrical fields closely matching those obtained experimentally are generated on the surface of the model head by optimally selecting the location and strength parameters of one or two dipole current sources contained within the model. Computer graphics are used to display as a movie the actual and model scalp potential field and the parameters of the dipole generators whithin the model head during the time course of the VESP. These techniques are currently used to study retinotopic mapping, fusion, and texture perception in the human.

  15. The effect of changes in stimulus level on electrically evoked cortical auditory potentials.

    PubMed

    Kim, Jae-Ryong; Brown, Carolyn J; Abbas, Paul J; Etler, Christine P; O'Brien, Sara

    2009-06-01

    The purpose of this study was to determine whether the electrically evoked acoustic change complex (EACC) could be used to assess sensitivity to changes in stimulus level in cochlear implant (CI) recipients and to investigate the relationship between EACC amplitude and rate of growth of the N1-P2 onset response with increases in stimulus level. Twelve postlingually deafened adults using Nucleus CI24 CIs participated in this study. Nucleus Implant Communicator (NIC) routines were used to bypass the speech processor and to control the stimulation of the implant directly. The stimulus consisted of an 800 msec burst of a 1000 pps biphasic pulse train. A change in the stimulus level was introduced 400 msec after stimulus onset. Band-pass filtering (1 to 100 Hz) was used to minimize stimulus artifact. Four to six recordings of 50 sweeps were obtained for each condition, and averaged responses were analyzed in the time domain using standard peak picking procedures. Cortical auditory change potentials were recorded from CI users in response to both increases and decreases in stimulation level. The amplitude of the EACC was found to be dependent on the magnitude of the stimulus change. Increases in stimulus level elicited more robust EACC responses than decreases in stimulus level. Also, EACC amplitudes were significantly correlated with the slope of the growth of the onset response. This work describes the effect of change in stimulus level on electrically evoked auditory change potentials in CI users. The amplitude of the EACC was found to be related both to the magnitude of the stimulus change introduced and to the rate of growth of the N1-P2 onset response. To the extent that the EACC reflects processing of stimulus change, it could potentially be a valuable tool for assessing neural processing of the kinds of stimulation patterns produced by a CI. Further studies are needed, however, to determine the relationships between the EACC and psychophysical measures of intensity discrimination in CI recipients.

  16. Classical Conditioning of Eyelid and Mystacial Vibrissae Responses in Conscious Mice

    ERIC Educational Resources Information Center

    Delgado-Garcia, Jose Maria; Troncoso, Julieta; Munera, Alejandro

    2004-01-01

    The murine vibrissae sensorimotor system has been scrutinized as a target of motor learning through trace classical conditioning. Conditioned eyelid responses were acquired by using weak electrical whisker-pad stimulation as conditioned stimulus (CS) and strong electrical periorbital stimulation as unconditioned stimulus (US). In addition,…

  17. Neural Network Analysis of Musculoskeletal Responses to Electrical AC-Stimulus

    DTIC Science & Technology

    2001-10-25

    FAM, SOM I. INTRODUCTION Various kinds of electrical measurements have been used to investigate the human body, including the mechanical or chemical...measurements were obtained from five points; namely, the patients’ wrists, ankles and back. The electrodes of an IF Electrotherapy unit [5] were attached...musculoskeletal responses to electrical AC-stimulus M. Hannula1, E. Alasaarela2 , J. Laitinen1 1Institute of Technology , Oulu Polytechnic, Oulu, Finland

  18. Vestibulo-ocular and vestibulospinal function before and after cochlear implant surgery

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Lilly, D. J.; Peterka, R. J.; Fowler, L. P.; Simmons, F. B.

    1987-01-01

    Vestibular function in cochlear implant candidates varies from normal to total absence of function. In patients with intact vestibular function preoperatively, invasion of the otic capsule places residual vestibular function at risk. Speech-processing strategies that result in large amplitude electrical transients or strategies that employ high amplitude broad frequency carrier signals have the potential for disrupting vestibular function. Five patients were tested with and without electrical stimulation via cochlear electrodes. Two patients experienced subjective vestibular effects that were quickly resolved. No long-term vestibular effects were noted for the two types of second generation cochlear implants evaluated. Histopathological findings from another patient, who had electrically generated vestibular reflex responses to intramodiolar electrodes, indicated that responses elicited were a function of several variables including electrode location, stimulus intensity, stimulus amplitude, and stimulus frequency. Differential auditory, vestibulocolic, and vestibulospinal reflexes were demonstrated from the same electrode as a function of stimulus amplitude, frequency, and duration.

  19. Investigation of the neurological correlates of information reception

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Animals trained to respond to a given pattern of electrical stimuli applied to pathways or centers of the auditory nervous system respond also to certain patterns of acoustic stimuli without additional training. Likewise, only certain electrical stimuli elicit responses after training to a given acoustic signal. In most instances, if a response has been learned to a given electrical stimulus applied to one center of the auditory nervous system, the same stimulus applied to another auditory center at either a higher or lower level will also elicit the response. This kind of transfer of response does not take place when a stimulus is applied through electrodes implanted in neural tissue outside of the auditory system.

  20. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    PubMed

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  1. Bidirectional Telemetry Controller for Neuroprosthetic Devices

    PubMed Central

    Sharma, Vishnu; McCreery, Douglas B.; Han, Martin; Pikov, Victor

    2010-01-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s, allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes ∼420 mW and operates without recharge for 8 h. It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 μs after the end of the stimulus pulse applied in the cochlear nucleus. PMID:19933010

  2. Electrical stimulation of mechanoreceptors

    NASA Astrophysics Data System (ADS)

    Echenique, A. M.; Graffigna, J. P.

    2011-12-01

    Within the field of Rehabilitation Engineering, this work is aimed at identifying the optimal parameters of electric current stimulus which activate the nervous axons of mecanoreceptors found in the fingertip, allowing, this way, to resemble tactile senses. These sensorial feelings can be used by aiding technological means, namely, the sensorial substitution technology, in an attempt to render information to blind people through the tactile sense. The physical pressure on sensorial areas (fingertips) used for reading activities through the Braille System is the main effect that is imitated and studied in this research work. An experimental aiding prototype for Braille reading research has been developed and tested with blinds and reduced vision people, with highly satisfactory results.

  3. American football and other sports injuries may cause migraine/persistent pain decades later and can be treated successfully with electrical twitch-obtaining intramuscular stimulation (ETOIMS).

    PubMed

    Chu, J; McNally, S; Bruyninckx, F; Neuhauser, D

    2017-04-01

    Autonomous twitch elicitation at myofascial trigger points from spondylotic radiculopathies-induced denervation supersensitivity can provide favourable pain relief using electrical twitch-obtaining intramuscular stimulation (ETOIMS). To provide objective evidence that ETOIMS is safe and efficacious in migraine and persistent pain management due to decades-old injuries to head and spine from paediatric American football. An 83-year-old mildly hypertensive patient with 25-year history of refractory migraine and persistent pain self-selected to regularly receive fee-for-service ETOIMS 2/week over 20 months. He had 180 sessions of ETOIMS. Pain levels, blood pressure (BP) and heart rate/pulse were recorded before and immediately after each treatment alongside highest level of clinically elicitable twitch forces/session, session duration and intervals between treatments. Twitch force grades recorded were from 1 to 5, grade 5 twitch force being strongest. Initially, there was hypersensitivity to electrical stimulation with low stimulus parameters (500 µs pulse-width, 30 mA stimulus intensity, frequency 1.3 Hz). This resolved with gradual stimulus increments as tolerated during successive treatments. By treatment 27, autonomous twitches were noted. Spearman's correlation coefficients showed that pain levels are negatively related to twitch force, number of treatments, treatment session duration and directly related to BP and heart rate/pulse. Treatment numbers and session durations directly influence twitch force. At end of study, headaches and quality of life improved, hypertension resolved and antihypertensive medication had been discontinued. Using statistical process control methodology in an individual patient, we showed long-term safety and effectiveness of ETOIMS in simultaneous diagnosis, treatment, prognosis and prevention of migraine and persistent pain in real time obviating necessity for randomised controlled studies.

  4. Electrical stimulation superimposed onto voluntary muscular contraction.

    PubMed

    Paillard, Thierry; Noé, Frédéric; Passelergue, Philippe; Dupui, Philippe

    2005-01-01

    Electrical stimulation (ES) reverses the order of recruitment of motor units (MU) observed with voluntary muscular contraction (VOL) since under ES, large MU are recruited before small MU. The superimposition of ES onto VOL (superimposed technique: application of an electrical stimulus during a voluntary muscle action) can theoretically activate more motor units than VOL performed alone, which can engender an increase of the contraction force. Two superimposed techniques can be used: (i) the twitch interpolation technique (ITT), which consists of interjecting an electrical stimulus onto the muscle nerve; and (ii) the percutaneous superimposed electrical stimulation technique (PST), where the stimulation is applied to the muscle belly. These two superimposed techniques can be used to evaluate the ability to fully activate a muscle. They can thus be employed to distinguish the central or peripheral nature of fatigue after exhausting exercise. In general, whatever the technique employed, the superimposition of ES onto volitional exercise does not recruit more MU than VOL, except with eccentric actions. Nevertheless, the neuromuscular response associated with the use of the superimposed technique (ITT and PST) depends on the parameter of the superimposed current. The sex and the training level of the subjects can also modify the physiological impact of the superimposed technique. Although the motor control differs drastically between training with ES and VOL, the integration of the superimposed technique in training programmes with healthy subjects does not reveal significant benefits compared with programmes performed only with voluntary exercises. Nevertheless, in a therapeutic context, training programmes using ES superimposition compensate volume and muscle strength deficit with more efficiency than programmes using VOL or ES separately.

  5. Effects of electrical stimulus composition on cardiac electrophysiology in a rodent model of electroconvulsive therapy.

    PubMed

    Singh, Nagendra Madan; Sathyaprabha, T N; Thirthalli, Jagadisha; Andrade, Chittaranjan

    2018-01-01

    No electroconvulsive therapy (ECT) study on humans or in animal models has so far examined whether differently composed electrical stimuli exert different cardiac electrophysiological effects at constant electrical dose. The subject is important because cardiac electrophysiological changes may provide indirect information about ECT seizure quality as modulated by stimulus composition. Adult female Wistar rats ( n = 20/group) received fixed, moderately suprathreshold (18 mC) electrical stimuli. This stimulus in each of eight groups was formed by varying pulse amplitude, pulse width, pulse frequency, and stimulus duration. The electrocardiogram was recorded, and time and frequency domain variables were examined in 30 s epochs in preictal (30 s before electroconvulsive shock [ECS]), early postictal (starting 15 s after stimulation), and late postictal (5 h after ECS) periods. Alpha for statistical significance was set at P < 0.01 to adjust for multiple hypothesis testing. Cardiac electrophysiological indices in the eight groups did not differ significantly at baseline. At both early and late postictal time points, almost no analysis yielded statistically significant differences between groups for four time domain variables, including heart rate and standard deviation of R-R intervals, and for six frequency domain variables, including low-frequency power, high-frequency power, and total power. Cardiac electrophysiological measures may not be helpful to identify differences in seizure quality that are driven by differences in the composition of electrical stimuli at constant, moderately suprathreshold electrical dose. The generalization of this conclusion to threshold electrical doses and to human contexts requires a study.

  6. Generalized alternating stimulation: a novel method to reduce stimulus artifact in electrically evoked compound action potentials.

    PubMed

    Alvarez, Isaac; de la Torre, Angel; Sainz, Manuel; Roldan, Cristina; Schoesser, Hansjoerg; Spitzer, Philipp

    2007-09-15

    Stimulus artifact is one of the main limitations when considering electrically evoked compound action potential for clinical applications. Alternating stimulation (average of recordings obtained with anodic-cathodic and cathodic-anodic bipolar stimulation pulses) is an effective method to reduce stimulus artifact when evoked potentials are recorded. In this paper we extend the concept of alternating stimulation by combining anodic-cathodic and cathodic-anodic recordings with a weight in general different to 0.5. We also provide an automatic method to obtain an estimation of the optimal weights. Comparison with conventional alternating, triphasic stimulation and masker-probe paradigm shows that the generalized alternating method improves the quality of electrically evoked compound action potential responses.

  7. OSP Parameters and the Cognitive Component of Reaction Time to a Missing Stimulus: Linking Brain and Behavior

    ERIC Educational Resources Information Center

    Hernandez, Oscar H.; Vogel-Sprott, Muriel

    2009-01-01

    This within-subjects experiment tested the relationship between the premotor (cognitive) component of reaction time (RT) to a missing stimulus and parameters of the omitted stimulus potential (OSP) brain wave. Healthy young men (N = 28) completed trials with an auditory stimulus that recurred at 2 s intervals and ceased unpredictably. Premotor RT…

  8. Learning Effects in the Block Design Task: A Stimulus Parameter-Based Approach

    ERIC Educational Resources Information Center

    Miller, Joseph C.; Ruthig, Joelle C.; Bradley, April R.; Wise, Richard A.; Pedersen, Heather A.; Ellison, Jo M.

    2009-01-01

    Learning effects were assessed for the block design (BD) task, on the basis of variation in 2 stimulus parameters: perceptual cohesiveness (PC) and set size uncertainty (U). Thirty-one nonclinical undergraduate students (19 female) each completed 3 designs for each of 4 varied sets of the stimulus parameters (high-PC/high-U, high-PC/low-U,…

  9. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.

    PubMed

    Tillein, J; Hartmann, R; Kral, A

    2015-04-01

    The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Optical scanning tests of complex CMOS microcircuits

    NASA Technical Reports Server (NTRS)

    Levy, M. E.; Erickson, J. J.

    1977-01-01

    The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.

  11. Effects of electrical stimulus composition on cardiac electrophysiology in a rodent model of electroconvulsive therapy

    PubMed Central

    Singh, Nagendra Madan; Sathyaprabha, T. N.; Thirthalli, Jagadisha; Andrade, Chittaranjan

    2018-01-01

    Background: No electroconvulsive therapy (ECT) study on humans or in animal models has so far examined whether differently composed electrical stimuli exert different cardiac electrophysiological effects at constant electrical dose. The subject is important because cardiac electrophysiological changes may provide indirect information about ECT seizure quality as modulated by stimulus composition. Materials and Methods: Adult female Wistar rats (n = 20/group) received fixed, moderately suprathreshold (18 mC) electrical stimuli. This stimulus in each of eight groups was formed by varying pulse amplitude, pulse width, pulse frequency, and stimulus duration. The electrocardiogram was recorded, and time and frequency domain variables were examined in 30 s epochs in preictal (30 s before electroconvulsive shock [ECS]), early postictal (starting 15 s after stimulation), and late postictal (5 h after ECS) periods. Alpha for statistical significance was set at P < 0.01 to adjust for multiple hypothesis testing. Results: Cardiac electrophysiological indices in the eight groups did not differ significantly at baseline. At both early and late postictal time points, almost no analysis yielded statistically significant differences between groups for four time domain variables, including heart rate and standard deviation of R-R intervals, and for six frequency domain variables, including low-frequency power, high-frequency power, and total power. Conclusions: Cardiac electrophysiological measures may not be helpful to identify differences in seizure quality that are driven by differences in the composition of electrical stimuli at constant, moderately suprathreshold electrical dose. The generalization of this conclusion to threshold electrical doses and to human contexts requires a study. PMID:29736058

  12. The effect of stimulus strength on binocular rivalry rate in healthy individuals: Implications for genetic, clinical and individual differences studies.

    PubMed

    Law, Phillip C F; Miller, Steven M; Ngo, Trung T

    2017-11-01

    Binocular rivalry (BR) occurs when conflicting images concurrently presented to corresponding retinal locations of each eye stochastically alternate in perception. Anomalies of BR rate have been examined in a range of clinical psychiatric conditions. In particular, slow BR rate has been proposed as an endophenotype for bipolar disorder (BD) to improve power in large-scale genome-wide association studies. Examining the validity of BR rate as a BD endophenotype however requires large-scale datasets (n=1000s to 10,000s), a standardized testing protocol, and optimization of stimulus parameters to maximize separation between BD and healthy groups. Such requirements are indeed relevant to all clinical psychiatric BR studies. Here we address the issue of stimulus optimization by examining the effect of stimulus parameter variation on BR rate and mixed-percept duration (MPD) in healthy individuals. We aimed to identify the stimulus parameters that induced the fastest BR rates with the least MPD. Employing a repeated-measures within-subjects design, 40 healthy adults completed four BR tasks using orthogonally drifting grating stimuli that varied in drift speed and aperture size. Pairwise comparisons were performed to determine modulation of BR rate and MPD by these stimulus parameters, and individual variation of such modulation was also assessed. From amongst the stimulus parameters examined, we found that 8cycles/s drift speed in a 1.5° aperture induced the fastest BR rate without increasing MPD, but that BR rate with this stimulus configuration was not substantially different to BR rate with stimulus parameters we have used in previous studies (i.e., 4cycles/s drift speed in a 1.5° aperture). In addition to contributing to stimulus optimization issues, the findings have implications for Levelt's Proposition IV of binocular rivalry dynamics and individual differences in such dynamics. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model.

    PubMed

    Jang, Jongmoon; Lee, JangWoo; Woo, Seongyong; Sly, David J; Campbell, Luke J; Cho, Jin-Ho; O'Leary, Stephen J; Park, Min-Hyun; Han, Sungmin; Choi, Ji-Wong; Jang, Jeong Hun; Choi, Hongsoo

    2015-07-31

    We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92-12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs.

  14. Relationship between functional electrical stimulation duty cycle and fatigue in wrist extensor muscles of patients with hemiparesis.

    PubMed

    Packman-Braun, R

    1988-01-01

    The purpose of this study was to investigate, in a sample of patients with hemiparesis secondary to cerebrovascular accident, the relationship between the ratio of stimulus on time to off time and muscle fatigue using a commercial electrical stimulation unit. An experimental model was used to test the hypothesis that the smaller the stimulus off time relative to stimulus on time, the greater will be the muscle fatigue over time. The wrist extensor muscles of 18 patients with hemiparesis were stimulated electrically, and isometric force output was recorded continuously using an adapted strain gauge-recorder apparatus. For each testing session, peak on time of the electrical stimulus was set at 5 seconds, and off time was set at 5, 15, or 25 seconds. Six randomly assigned treatment groups participated in three separate treatment sessions in a different order at 48-hour intervals. Treatment sessions were continued either until wrist extensor muscle force output decreased to 50% of its initial value or for a maximum of 30 minutes. Data analysis revealed that significant differences in muscle tension developed among all duty cycles (p less than .01). Duty-cycle ratios of 1:1, 1:3, and 1:5 were shown to be progressively less fatiguing. Within the limits of this investigation, the 1:5 duty-cycle ratio was determined to be the best suited for initial use in programs of prolonged stimulation to the wrist extensor muscles of patients with hemiparesis. The hypothesis was accepted that the smaller the stimulus off time (rest interval) with respect to the stimulus on time, the greater will be the muscle fatigue over time.

  15. Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.

    PubMed

    Wee, A S; Jiles, K; Brennan, R

    2001-01-01

    Tripolar and bipolar electrical stimulation procedures were performed on the upper limbs of eight subjects. The mid-forearm was stimulated electrically (tripolar or bipolar) by surface electrodes, and the induced stimulus shock artifacts were recorded simultaneously from the wrist and elbow. During tripolar stimulation, two types of stimulating configurations were utilized: with the center electrode designated as the cathode and the two outermost electrodes connected to a common anode, and vice versa. During bipolar stimulation, the center electrode served as one pole of the stimulator, and one of the two outermost electrodes of the tripolar stimulator was disconnected. The stimulus intensity was kept constant in all stimulating procedures. Artifacts were reduced significantly during tripolar compared to bipolar stimulation, if the outermost electrodes of the tripolar stimulator (which were facing the recording electrodes) were also oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity. Artifacts were slightly reduced in amplitude from tripolar stimulation, if the center electrode were oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity as previously used during tripolar stimulation.

  16. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model

    PubMed Central

    Jang, Jongmoon; Lee, JangWoo; Woo, Seongyong; Sly, David J.; Campbell, Luke J.; Cho, Jin-Ho; O’Leary, Stephen J.; Park, Min-Hyun; Han, Sungmin; Choi, Ji-Wong; Hun Jang, Jeong; Choi, Hongsoo

    2015-01-01

    We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92–12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs. PMID:26227924

  17. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model

    NASA Astrophysics Data System (ADS)

    Jang, Jongmoon; Lee, Jangwoo; Woo, Seongyong; Sly, David J.; Campbell, Luke J.; Cho, Jin-Ho; O'Leary, Stephen J.; Park, Min-Hyun; Han, Sungmin; Choi, Ji-Wong; Hun Jang, Jeong; Choi, Hongsoo

    2015-07-01

    We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92-12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs.

  18. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation

    NASA Astrophysics Data System (ADS)

    Choi, John S.; Brockmeier, Austin J.; McNiel, David B.; von Kraus, Lee M.; Príncipe, José C.; Francis, Joseph T.

    2016-10-01

    Objective. Lost sensations, such as touch, could one day be restored by electrical stimulation along the sensory neural pathways. Such stimulation, when informed by electronic sensors, could provide naturalistic cutaneous and proprioceptive feedback to the user. Perceptually, microstimulation of somatosensory brain regions produces localized, modality-specific sensations, and several spatiotemporal parameters have been studied for their discernibility. However, systematic methods for encoding a wide array of naturally occurring stimuli into biomimetic percepts via multi-channel microstimulation are lacking. More specifically, generating spatiotemporal patterns for explicitly evoking naturalistic neural activation has not yet been explored. Approach. We address this problem by first modeling the dynamical input-output relationship between multichannel microstimulation and downstream neural responses, and then optimizing the input pattern to reproduce naturally occurring touch responses as closely as possible. Main results. Here we show that such optimization produces responses in the S1 cortex of the anesthetized rat that are highly similar to natural, tactile-stimulus-evoked counterparts. Furthermore, information on both pressure and location of the touch stimulus was found to be highly preserved. Significance. Our results suggest that the currently presented stimulus optimization approach holds great promise for restoring naturalistic levels of sensation.

  19. A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi

    2005-03-01

    In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.

  20. Electrocortical amplification for emotionally arousing natural scenes: The contribution of luminance and chromatic visual channels

    PubMed Central

    Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias M.; Petro, Nathan M.; Bradley, Margaret M.; Keil, Andreas

    2015-01-01

    Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene’s physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. PMID:25640949

  1. Electrocortical amplification for emotionally arousing natural scenes: the contribution of luminance and chromatic visual channels.

    PubMed

    Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias J; Petro, Nathan M; Bradley, Margaret M; Keil, Andreas

    2015-03-01

    Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene's physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A moisture and electric coupling stimulated ionic polymer-metal composite actuator with controllable deformation behavior

    NASA Astrophysics Data System (ADS)

    Ru, Jie; Zhu, Zicai; Wang, Yanjie; Chen, Hualing; Bian, Changsheng; Luo, Bin; Li, Dichen

    2018-02-01

    Ionic polymer-metal composite (IPMC) actuator can generate large and rapid deformation based on ion migration under a relatively low driving voltage. Under full hydrated conditions, the deformation is always prone to relaxation. At room humidity conditions, the deformation increases substantially at the early stage of actuation, and then decreases gradually. Generally, most researchers considered that the change of water content or relative humidity mainly leads to the deformation instabilities, which severely limits the practical applications of IPMC. In this Letter, a novel actuation mode is proposed to control the deformation behavior of IPMC by employing moisture as an independent or collaborative incentive source together with the electric field. The deformation response is continuously measured under electric field, electric field-moisture coupling stimulus and moisture stimulus. The result shows that moisture can be a favorable driving factor for IPMC actuation. Such an electric field-moisture coupling stimulus can avoid the occurrence of deformation instabilities and guarantee a superior controllable deformation in IPMC actuation. This research provides a new method to obtain stable and large deformation of IPMC, which is of great significance for the guidance of material design and application for IPMC and IPMC-type iEAP materials.

  3. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Sierros, Konstantinos A. (Inventor); Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Shafran, Matthew S. (Inventor)

    2017-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment including a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  4. Stimulus responsive nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darren Robert (Inventor); Shafran, Matthew S. (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor)

    2013-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  5. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2015-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  6. Inhibition of root elongation in microgravity by an applied electric field

    NASA Technical Reports Server (NTRS)

    Wolverton, C.; Mullen, J. L.; Aizawa, S.; Yoshizaki, I.; Kamigaichi, S.; Mukai, C.; Shimazu, T.; Fukui, K.; Evans, M. L.; Ishikawa, H.

    1999-01-01

    Roots grown in an applied electric field demonstrate a bidirectional curvature. To further understand the nature of this response and its implications for the regulation of differential growth, we applied an electric field to roots growing in microgravity. We found that growth rates of roots in microgravity were higher than growth rates of ground controls. Immediately upon application of the electric field, root elongation was inhibited. We interpret this result as an indication that, in the absence of a gravity stimulus, the sensitivity of the root to an applied electric stimulus is increased. Further space experiments are required to determine the extent to which this sensitivity is shifted. The implications of this result are discussed in relation to gravitropic signaling and the regulation of differential cell elongation in the root.

  7. Evoked potentials after painful cutaneous electrical stimulation depict pain relief during a conditioned pain modulation.

    PubMed

    Höffken, Oliver; Özgül, Özüm S; Enax-Krumova, Elena K; Tegenthoff, Martin; Maier, Christoph

    2017-08-29

    Conditioned pain modulation (CPM) evaluates the pain modulating effect of a noxious conditioning stimulus (CS) on another noxious test stimulus (TS), mostly based solely on subjective pain ratings. We used painful cutaneous electrical stimulation (PCES) to induce TS in a novel CPM-model. Additionally, to evaluate a more objective parameter, we recorded the corresponding changes of cortical evoked potentials (PCES-EP). We examined the CPM-effect in 17 healthy subjects in a randomized controlled cross-over design during immersion of the non-dominant hand into 10 °C or 24 °C cold water (CS). Using three custom-built concentric surface electrodes, electrical stimuli were applied on the dominant hand, inducing pain of 40-60 on NRS 0-100 (TS). At baseline, during and after CS we assessed the electrically induced pain intensity and electrically evoked potentials recorded over the central electrode (Cz). Only in the 10 °C-condition, both pain (52.6 ± 4.4 (baseline) vs. 30.3 ± 12.5 (during CS)) and amplitudes of PCES-EP (42.1 ± 13.4 μV (baseline) vs. 28.7 ± 10.5 μV (during CS)) attenuated during CS and recovered there after (all p < 0.001). In the 10 °C-condition changes of subjective pain ratings during electrical stimulation and amplitudes of PCES-EP correlated significantly with each other (r = 0.5) and with CS pain intensity (r = 0.5). PCES-EPs are a quantitative measure of pain relief, as changes in the electrophysiological response are paralleled by a consistent decrease in subjective pain ratings. This novel CPM paradigm is a feasible method, which could help to evaluate the function of the endogenous pain modulation processes. German Clinical Trials Register DRKS-ID: DRKS00012779 , retrospectively registered on 24 July 2017.

  8. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  9. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  10. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  11. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  12. 3D axon growth by exogenous electrical stimulus and soluble factors.

    PubMed

    Tang-Schomer, Min D

    2018-01-01

    Axon growth and alignment are fundamental processes during nervous system development and neural regeneration after injury. The present study investigates the effects of exogenous stimulus of electrical signals and soluble factors on axon 3D growth, using a silk protein material-based 3D brain tissue model. Electrical stimulus was delivered via embedded gold wires positioned at the interface of the scaffold region and the center matrix gel-filled region, spanning the axon growth area. This setup delivered applied electrical field directly to growing axons, and the effects were compared to micro-needle assisted local delivery of soluble factors of extracellular (ECM) components and neurotrophins. Dissociated rat cortical neurons were exposed to an alternating field of 80 mV/mm at 0.5 Hz to 2 kHz or soluble factors for up to 4 days, and evaluated by of β III-tubulin immunostaining, confocal imaging and 3D neurite tracing. 0.5-20 Hz were found to promote axon growth, with 2 Hz producing the biggest effect of ∼30% axon length increase compared to control cultures. Delivery of ECM components of laminin and fibronectin resulted significantly greater axon initial length increases compared to neurotrophic factors, such as BDNF, GDNF, NGF and NT3 (all at 1 μM). Though axon lengths under 2 Hz stimulation and LN or FN exposure were statistically similar, significant AC-induced axon alignment was found under all frequencies tested. The effects included perpendicular orientation of axons trespassing an electrode, large populations of aligned axon tracts in parallel to the field direction with a few perpendicularly aligned along the middle point of the EF. These findings are consistent with the hypothesis that an electrode in AC field could act as an alternating cathode that attracts the growing tip of the axon. These results demonstrate the use of alternating electric field stimulation to direct axon 3D length growth and orientation. Our study provides basis for further optimizing stimulation parameters, in conjunction of delivery of growth promoting soluble factors to direct axon growth in a brain mimetic 3D environment. This system provides a platform for studying the effects of exogenous signals on nervous system development and for testing neuromodulation approaches for neurological diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Modulation of spike coding by subthreshold extracellular electric fields and neuronal morphology

    NASA Astrophysics Data System (ADS)

    Wei, Xile; Li, Bingjie; Lu, Meili; Yi, Guosheng; Wang, Jiang

    2015-07-01

    We use a two-compartment model, which includes soma and dendrite, to explore how extracellular subthreshold sinusoidal electric fields (EFs) influence the spike coding of an active neuron. By changing the intensity and the frequency of subthreshold EFs, we find that subthreshold EFs indeed affect neuronal coding remarkably within several stimulus frequency windows where the field effects on spike timing are stronger than that on spiking rate. The field effects are maximized at several harmonics of the intrinsic spiking frequency of an active neuron. Our findings implicate the potential resonance mechanism underlying subthreshold field effects. We also discuss how neuronal morphologic properties constrain subthreshold EF effects on spike timing. The morphologic properties are represented by two parameters, gc and p, where gc is the internal conductance between soma and dendrite and geometric factor p characterizes the proportion of area occupied by soma. We find that the contribution to field effects from the variation of p is stronger than that from gc, which suggests that neuronal geometric features play a crucial role in subthreshold field effects. Theoretically, these insights into how subthreshold sinusoidal EFs modulate ongoing neuron behaviors could contribute to uncovering the relevant mechanism of subthreshold sinusoidal EFs effects on neuronal coding. Furthermore, they are useful in rationally designing noninvasive brain stimulation strategies and developing electromagnetic stimulus techniques.

  14. High-Temperature Tolerance of Photosynthesis Can Be Linked to Local Electrical Responses in Leaves of Pea

    PubMed Central

    Sukhov, Vladimir; Gaspirovich, Vladimir; Mysyagin, Sergey; Vodeneev, Vladimir

    2017-01-01

    It is known that numerous stimuli induce electrical signals which can increase a plant's tolerance to stressors, including high temperature. However, the physiological role of local electrical responses (LERs), i.e., responses in the zone of stimulus action, in the plant's tolerance has not been sufficiently investigated. The aim of a current work is to analyze the connection between parameters of LERs with the thermal tolerance of photosynthetic processes in pea. Electrical activity and photosynthetic parameters in pea leaves were registered during transitions of air temperature in a measurement head (from 23 to 30°C, from 30 to 40°C, from 40 to 45°C, and from 45 to 23°C). This stepped heating decreased a photosynthetic assimilation of CO2 and induced generation of LERs in the heated leaf. Amplitudes of LERs, quantity of responses during the heating and the number of temperature transition, which induced the first generation of LERs, varied among different pea plants. Parameters of LERs were weakly connected with the photosynthetic assimilation of CO2 during the heating; however, a residual photosynthetic activity after a treatment by high temperatures increased with the growth of amplitudes and quantity of LERs and with lowering of the number of the heating transition, inducing the first electrical response. The effect was not connected with a photosynthetic activity before heating; similar dependences were also observed for effective and maximal quantum yields of photosystem II after heating. We believe that the observed effect can reflect a positive influence of LERs on the thermal tolerance of photosynthesis. It is possible that the process can participate in a plant's adaptation to stressors. PMID:29033854

  15. Stimulus encoding and feature extraction by multiple sensory neurons.

    PubMed

    Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter

    2002-03-15

    Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly electric fish. These cells constitute the output neurons of the first central nervous stage of electrosensory processing. Using random amplitude modulations (RAMs) of a mimic of the fish's own electric field within behaviorally relevant frequency bands, we found that pyramidal cells with overlapping receptive fields exhibit strong stimulus-induced correlations. To quantify the encoding of the RAM time course, we estimated the stimuli from simultaneously recorded spike trains and found significant improvements over single spike trains. The quality of stimulus reconstruction, however, was still inferior to the one measured for single primary sensory afferents. In an analysis of feature extraction, we found that spikes of pyramidal cell pairs coinciding within a time window of a few milliseconds performed significantly better at detecting upstrokes and downstrokes of the stimulus compared with isolated spikes and even spike bursts of single cells. Coincident spikes can thus be considered "distributed bursts." Our results suggest that stimulus encoding by primary sensory afferents is transformed into feature extraction at the next processing stage. There, stimulus-induced coincident activity can improve the extraction of behaviorally relevant features from the stimulus.

  16. [Design of low-intermediate frequency electrotherapy and pain assessment system].

    PubMed

    Liang, Chunyan; Tian, Xuelong; Yu, Xuehong; Luo, Hongyan

    2014-06-01

    Aiming at the single treatment and the design separation between treatment and assessment in electrotherapy equipment, a kind of system including low-intermediate frequency treatment and efficacy evaluation was developed. With C8051F020 single-chip microcomputer as the core and the circuit design and software programming used, the system realized the random switch of therapeutic parameters, the collection, display and data storage of pressure pain threshold in the assessment. Experiment results showed that the stimulus waveform, current intensity, frequency, duty ratio of the system output were adjustable, accurate and reliable. The obtained pressure pain threshold had a higher accuracy (< 0.3 N) and better stability, guiding the parameter choice in the precise electrical stimulation. It, therefore, provides a reliable technical support for the treatment and curative effect assessment.

  17. Artifacts, assumptions, and ambiguity: Pitfalls in comparing experimental results to numerical simulations when studying electrical stimulation of the heart.

    PubMed

    Roth, Bradley J.

    2002-09-01

    Insidious experimental artifacts and invalid theoretical assumptions complicate the comparison of numerical predictions and observed data. Such difficulties are particularly troublesome when studying electrical stimulation of the heart. During unipolar stimulation of cardiac tissue, the artifacts include nonlinearity of membrane dyes, optical signals blocked by the stimulating electrode, averaging of optical signals with depth, lateral averaging of optical signals, limitations of the current source, and the use of excitation-contraction uncouplers. The assumptions involve electroporation, membrane models, electrode size, the perfusing bath, incorrect model parameters, the applicability of a continuum model, and tissue damage. Comparisons of theory and experiment during far-field stimulation are limited by many of these same factors, plus artifacts from plunge and epicardial recording electrodes and assumptions about the fiber angle at an insulating boundary. These pitfalls must be overcome in order to understand quantitatively how the heart responds to an electrical stimulus. (c) 2002 American Institute of Physics.

  18. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, A.N.; Soden, J.M.

    1998-12-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.

  19. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, Ann N.; Soden, Jerry M.

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  20. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface.

    PubMed

    Ng, Kian B; Bradley, Andrew P; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  1. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  2. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  3. Effects of Electrical and Mechanical Overstimulus on Spontaneous Oscillations in Hair Bundles

    NASA Astrophysics Data System (ADS)

    Kao, Albert; Strimbu, C. Elliott; Bozovic, Dolores

    2011-11-01

    Spontaneous oscillations constitute one of the manifestations of the active process operant in hair cells and provides a sensitive probe for their internal dynamics. The influx of ions into the stereocilia can be modulated by applying an electrical current across the epithelium and has been previously shown to strongly affect the oscillatory profiles. We applied strong transient stimuli and demonstrated that they can induce a transition from the oscillatory to the quiescent state, an effect that can last over several seconds post stimulus cessation. The dynamics of recovery to the oscillatory state was found to be dependent on the amplitude and the duration of the stimulus. Similar dynamics were observed after high-amplitude mechanical stimulus, which mimics the effects of loud sound on an individual bundle.

  4. A train of electrical pulses applied to the primary auditory cortex evokes a conditioned response in guinea pigs.

    PubMed

    Okuda, Yuji; Shikata, Hiroshi; Song, Wen-Jie

    2011-09-01

    As a step to develop auditory prosthesis by cortical stimulation, we tested whether a single train of pulses applied to the primary auditory cortex could elicit classically conditioned behavior in guinea pigs. Animals were trained using a tone as the conditioned stimulus and an electrical shock to the right eyelid as the unconditioned stimulus. After conditioning, a train of 11 pulses applied to the left AI induced the conditioned eye-blink response. Cortical stimulation induced no response after extinction. Our results support the feasibility of auditory prosthesis by electrical stimulation of the cortex. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  5. In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite

    PubMed Central

    Fassina, Lorenzo; Saino, Enrica; Sbarra, Maria Sonia; Visai, Livia; De Angelis, Maria Gabriella Cusella; Magenes, Giovanni; Benazzo, Francesco

    2009-01-01

    One of the key challenges in reconstructive bone surgery is to provide living constructs that possess the ability to integrate in the surrounding tissue. Bone graft substitutes, such as autografts, allografts, xenografts, and biomaterials have been widely used to heal critical-size long bone defects due to trauma, tumor resection, congenital deformity, and tissue degeneration. In particular, porous hydroxyapatite is widely used in reconstructive bone surgery owing to its biocompatibility. In addition, the in vitro modification of hydroxyapatite with osteogenic signals enhances the tissue regeneration in vivo, suggesting that the biomaterial modification could play an important role in tissue engineering. In this study we have followed a biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built their extracellular matrix inside a porous hydroxyapatite scaffold. The electromagnetic stimulus had the following parameters: intensity of the magnetic field equal to 2 mT, amplitude of the induced electric tension equal to 5 mV, frequency of 75 Hz, and pulse duration of 1.3 ms. In comparison with control conditions, the electromagnetic stimulus increased the cell proliferation and the surface coating with bone proteins (decorin, osteocalcin, osteopontin, type-I collagen, and type-III collagen). The physical stimulus aimed at obtaining a better modification of the biomaterial internal surface in terms of cell colonization and coating with bone matrix. PMID:19827111

  6. Wide bandgap matrix switcher, amplifier and oscillator

    DOEpatents

    Sampayan, Stephen

    2016-08-16

    An electronic device comprising an optical gate, an electrical input an electrical output and a wide bandgap material positioned between the electrical input and the electrical output to control an amount of current flowing between the electrical input and the electrical output in response to a stimulus received at the optical gate can be used in wideband telecommunication applications in transmission of multi-channel signals.

  7. Nanomaterial-Enabled Neural Stimulation

    PubMed Central

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  8. Evaluation of Motor Neuron Excitability by CMAP Scanning with Electric Modulated Current

    PubMed Central

    Araújo, Tiago; Candeias, Rui; Nunes, Neuza; Gamboa, Hugo

    2015-01-01

    Introduction. Compound Muscle Action Potential (CMAP) scan is a noninvasive promissory technique for neurodegenerative pathologies diagnosis. In this work new CMAP scan protocols were implemented to study the influence of electrical pulse waveform on peripheral nerve excitability. Methods. A total of 13 healthy subjects were tested. Stimulation was performed with an increasing intensities range from 4 to 30 mA. The procedure was repeated 4 times per subject, using a different single pulse stimulation waveform: monophasic square and triangular and quadratic and biphasic square. Results. Different waveforms elicit different intensity-response amplitude curves. The square pulse needs less current to generate the same response amplitude regarding the other waves and this effect is gradually decreasing for the triangular, quadratic, and biphasic pulse, respectively. Conclusion. The stimulation waveform has a direct influence on the stimulus-response slope and consequently on the motoneurons excitability. This can be a new prognostic parameter for neurodegenerative disorders. PMID:26413499

  9. Assessing and Programming Generalized Behavioral Reduction across Multiple Stimulus Parameters.

    ERIC Educational Resources Information Center

    Shore, Bridget A.; And Others

    1994-01-01

    Generalization across three stimulus parameters (therapist, setting, and demands) was examined for five men with severe/profound mental retardation whose self-injurious behavior was maintained by escape from task demands. Variables were held constant during the escape extinction treatment. Full or partial generalization to novel situations was…

  10. Noninvasive assessment of the facilitation of the nociceptive withdrawal reflex by repeated electrical stimulations in conscious dogs.

    PubMed

    Bergadano, Alessandra; Andersen, Ole K; Arendt-Nielsen, Lars; Spadavecchia, Claudia

    2007-08-01

    To investigate the facilitation of the nociceptive withdrawal reflex (NWR) by repeated electrical stimuli and the associated behavioral response scores in conscious, nonmedicated dogs as a measure of temporal summation and analyze the influence of stimulus intensity and frequency on temporal summation responses. 8 adult Beagles. Surface electromyographic responses evoked by transcutaneous constant-current electrical stimulation of ulnaris and digital plantar nerves were recorded from the deltoideus, cleidobrachialis, biceps femoris, and cranial tibial muscles. A repeated stimulus was given at 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.1 x I(t) (the individual NWR threshold intensity) at 2, 5, and 20 Hz. Threshold intensity and relative amplitude and latency of the reflex were analyzed for each stimulus configuration. Behavioral reactions were subjectively scored. Repeated sub-I(t) stimuli summated and facilitated the NWR. To elicit temporal summation, significantly lower intensities were needed for the hind limb, compared with the forelimb. Stimulus frequency did not influence temporal summation, whereas increasing intensity resulted in significantly stronger electromyographic responses and nociception (determined via behavioral response scoring) among the dogs. In dogs, it is possible to elicit nociceptive temporal summation that correlates with behavioral reactions. These data suggest that this experimental technique can be used to evaluate nociceptive system excitability and efficacy of analgesics in canids.

  11. Spatial and temporal variability in response to hybrid electro-optical stimulation

    NASA Astrophysics Data System (ADS)

    Duke, Austin R.; Lu, Hui; Jenkins, Michael W.; Chiel, Hillel J.; Jansen, E. Duco

    2012-06-01

    Hybrid electro-optical neural stimulation is a novel paradigm combining the advantages of optical and electrical stimulation techniques while reducing their respective limitations. However, in order to fulfill its promise, this technique requires reduced variability and improved reproducibility. Here we used a comparative physiological approach to aid the further development of this technique by identifying the spatial and temporal factors characteristic of hybrid stimulation that may contribute to experimental variability and/or a lack of reproducibility. Using transient pulses of infrared light delivered simultaneously with a bipolar electrical stimulus in either the marine mollusk Aplysia californica buccal nerve or the rat sciatic nerve, we determined the existence of a finite region of excitability with size altered by the strength of the optical stimulus and recruitment dictated by the polarity of the electrical stimulus. Hybrid stimulation radiant exposures yielding 50% probability of firing (RE50) were shown to be negatively correlated with the underlying changes in electrical stimulation threshold over time. In Aplysia, but not in the rat sciatic nerve, increasing optical radiant exposures (J cm-2) beyond the RE50 ultimately resulted in inhibition of evoked potentials. Accounting for the sources of variability identified in this study increased the reproducibility of stimulation from 35% to 93% in Aplysia and 23% to 76% in the rat with reduced variability.

  12. Effects of Flexible Dry Electrode Design on Electrodermal Activity Stimulus Response Detection.

    PubMed

    Haddad, Peter A; Servati, Amir; Soltanian, Saeid; Ko, Frank; Servati, Peyman

    2017-12-01

    The focus of this research is to evaluate the effects of design parameters including surface area, distance between and geometry of dry flexible electrodes on electrodermal activity (EDA) stimulus response detection. EDA is a result of the autonomic nervous system being stimulated, which causes sweat and changes the electrical characteristics of the skin. Standard silver/silver chloride (Ag/AgCl) EDA electrodes are rigid and lack conformability in contact with skin. In this study, flexible dry Ag/AgCl EDA electrodes were fabricated on a compliant substrate, used to monitor EDA stimulus responses and compared to results simultaneously collected by rigid dry Ag/AgCl electrodes. A repeatable fabrication process for flexible Ag/AgCl electrodes has been established. Surface area, distance between and geometry of electrodes are shown to affect the detectability of the EDA response and the minimum number of sweat glands to be covered by the electrodes has been estimated at 140, or more, in order to maintain functionality. The optimal flexible EDA electrode is a serpentine design with a 0.15 cm 2 surface area and a 0.20 cm distance with an average Pearson correlation coefficient of . Fabrication of flexible electrodes is described and an understanding of the effects of electrode designs on the EDA stimulus response detection has been established and is potentially related to the coverage of sweat glands. This work presents a novel systematic approach to understand the effects of electrode designs on monitoring EDA which is of importance for the design of wearable EDA monitoring devices.

  13. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Qing; Wang, Jiang; Yu, Haitao

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-spacemore » method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.« less

  14. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    NASA Astrophysics Data System (ADS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-06-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  15. An electroejaculator for the collection of semen from the domestic cat.

    PubMed

    Dooley, M P; Murase, K; Pineda, M H

    1983-09-01

    An electroejaculator for the collection of cat semen and for the evaluation of electroejaculation protocols is described. The electroejaculator contains an adjustable signal generator and allows for the precise control and monitoring of the electrical stimulus to the animal. The electroejaculator incorporates controls for the selection of the frequency, potential and waveform of the electrical stimulus and controls for either manual or automatic delivery of stimuli of specified characteristics to the rectal probe. In the automatic mode, the operator may also preset the rate and duration of stimulus application and the interval between successive stimuli. The electroejaculator output to the probe is controlled with an on-off foot-switch which allows for the collection of semen from an anesthetized cat by one operator. Diagrams of the functional block, the component circuits of the electroejaculator, and the accessories which facilitate the collection of cat semen are provided.

  16. Fully Implantable Deep Brain Stimulation System with Wireless Power Transmission for Long-term Use in Rodent Models of Parkinson's Disease.

    PubMed

    Heo, Man Seung; Moon, Hyun Seok; Kim, Hee Chan; Park, Hyung Woo; Lim, Young Hoon; Paek, Sun Ha

    2015-03-01

    The purpose of this study to develop new deep-brain stimulation system for long-term use in animals, in order to develop a variety of neural prostheses. Our system has two distinguished features, which are the fully implanted system having wearable wireless power transfer and ability to change the parameter of stimulus parameter. It is useful for obtaining a variety of data from a long-term experiment. To validate our system, we performed pre-clinical test in Parkinson's disease-rat models for 4 weeks. Through the in vivo test, we observed the possibility of not only long-term implantation and stability, but also free movement of animals. We confirmed that the electrical stimulation neither caused any side effect nor damaged the electrodes. We proved possibility of our system to conduct the long-term pre-clinical test in variety of parameter, which is available for development of neural prostheses.

  17. Microstimulation with Chronically Implanted Intracortical Electrodes

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas

    Stimulating microelectrodes that penetrate into the brain afford a means of accessing the basic functional units of the central nervous system. Microstimulation in the region of the cerebral cortex that subserve vision may be an alternative, or an adjunct, to a retinal prosthesis, and may be particularly attractive as a means of restoring a semblance of high-resolution central vision. There also is the intriguing possibility that such a prosthesis could convey higher order visual percepts, many of which are mediated by neural circuits in the secondary or "extra-striate" visual areas that surround the primary visual cortex. The technologies of intracortical stimulating microelectrodes and investigations of the effects of microstimulation on neural tissue have advanced to the point where a cortical-level prosthesis is at least feasible. The imperative of protecting neural tissue from stimulation-induced damage imposes constraints on the selection of stimulus parameters, as does the requirement that the stimulation not greatly affect the electrical excitability of the neurons that are to be activated. The latter is especially likely to occur when many adjacent microelectrodes are pulsed, as will be necessary in a visual prosthesis. However, data from animal studies indicates that these restrictions on stimulus parameter are compatible with those that can evoke visual percepts in humans and in experimental animals. These findings give cause to be optimistic about the prospects for realizing a visual prosthesis utilizing intracortical microstimulation.

  18. Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins

    PubMed Central

    Titushkin, Igor; Cho, Michael

    2009-01-01

    Abstract Cellular mechanics is known to play an important role in the cell homeostasis including proliferation, motility, and differentiation. Significant variation in the mechanical properties between different cell types suggests that control of the cell metabolism is feasible through manipulation of the cell mechanical parameters using external physical stimuli. We investigated the electrocoupling mechanisms of cellular biomechanics modulation by an electrical stimulation in two mechanically distinct cell types—human mesenchymal stem cells and osteoblasts. Application of a 2 V/cm direct current electric field resulted in approximately a twofold decrease in the cell elasticity and depleted intracellular ATP. Reduction in the ATP level led to inhibition of the linker proteins that are known to physically couple the cell membrane and cytoskeleton. The membrane separation from the cytoskeleton was confirmed by up to a twofold increase in the membrane tether length that was extracted from the cell membrane after an electrical stimulation. In comparison to human mesenchymal stem cells, the membrane-cytoskeleton attachment in osteoblasts was much stronger but, in response to the same electrical stimulation, the membrane detachment from the cytoskeleton was found to be more pronounced. The observed effects mediated by an electric field are cell type- and serum-dependent and can potentially be used for electrically assisted cell manipulation. An in-depth understanding and control of the mechanisms to regulate cell mechanics by external physical stimulus (e.g., electric field) may have great implications for stem cell-based tissue engineering and regenerative medicine. PMID:19167316

  19. A New Type of ECT Stimuli: Burst Stimulus ECT.

    PubMed

    Aksay, S S; Bumb, J M; Janke, C; Kranaster, L; Sartorius, A

    2015-11-01

    Pulse width in electroconvulsive therapy has significant influence on effectiveness and side effects. While shorter pulses are beneficial for cognitive performance, there is still a debate about a negative impact on ECT efficacy at least for ultra-brief pulse durations. We report a first patient treated with burst stimulus ECT, i. e., with 4 consecutive 250-µs pulses, separated by another 250 µs. Within the same patient we compared 6 classical vs. 6 burst stimulus ECT sessions. In all cases a typical tonic-clonic seizure was observed. Seizure parameters like concordance, coherence and mid-ictal amplitude increased numerically, but not significantly with burst ECT. The time needed to show a reorientation was significantly shortened with burst stimuli (30 min vs. 14 min, p=0.007). In conclusion we present the first case of ECT in a single patient comparing "classical" single stimulus pulses vs. burst stimulus ECT. The new burst stimulus was better tolerated regarding reorientation time after the treatment, while parameters of seizure quality remained basically unchanged. Whether burst stimulus ECT has the potential to improve ECT quality by reducing side effects without losing efficacy has to be investigated in clinical trials. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Caudate Microstimulation Increases Value of Specific Choices.

    PubMed

    Santacruz, Samantha R; Rich, Erin L; Wallis, Joni D; Carmena, Jose M

    2017-11-06

    Value-based decision-making involves an assessment of the value of items available and the actions required to obtain them. The basal ganglia are highly implicated in action selection and goal-directed behavior [1-4], and the striatum in particular plays a critical role in arbitrating between competing choices [5-9]. Previous work has demonstrated that neural activity in the caudate nucleus is modulated by task-relevant action values [6, 8]. Nonetheless, how value is represented and maintained in the striatum remains unclear since decision-making in these tasks relied on spatially lateralized responses, confounding the ability to generalize to a more abstract choice task [6, 8, 9]. Here, we investigate striatal value representations by applying caudate electrical stimulation in macaque monkeys (n = 3) to bias decision-making in a task that divorces the value of a stimulus from motor action. Electrical microstimulation is known to induce neural plasticity [10, 11], and caudate microstimulation in primates has been shown to accelerate associative learning [12, 13]. Our results indicate that stimulation paired with a particular stimulus increases selection of that stimulus, and this effect was stimulus dependent and action independent. The modulation of choice behavior using microstimulation was best modeled as resulting from changes in stimulus value. Caudate neural recordings (n = 1) show that changes in value-coding neuron activity are stimulus value dependent. We argue that caudate microstimulation can differentially increase stimulus values independent of action, and unilateral manipulations of value are sufficient to mediate choice behavior. These results support potential future applications of microstimulation to correct maladaptive plasticity underlying dysfunctional decision-making related to neuropsychiatric conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems.

    PubMed

    Cho, Ming-Yuan; Hoang, Thi Thom

    2017-01-01

    Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.

  2. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    PubMed

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  3. Separability of stimulus parameter encoding by on-off directionally selective rabbit retinal ganglion cells

    PubMed Central

    Nowak, Przemyslaw; Dobbins, Allan C.; Gawne, Timothy J.; Grzywacz, Norberto M.

    2011-01-01

    The ganglion cell output of the retina constitutes a bottleneck in sensory processing in that ganglion cells must encode multiple stimulus parameters in their responses. Here we investigate encoding strategies of On-Off directionally selective retinal ganglion cells (On-Off DS RGCs) in rabbits, a class of cells dedicated to representing motion. The exquisite axial discrimination of these cells to preferred vs. null direction motion is well documented: it is invariant with respect to speed, contrast, spatial configuration, spatial frequency, and motion extent. However, these cells have broad direction tuning curves and their responses also vary as a function of other parameters such as speed and contrast. In this study, we examined whether the variation in responses across multiple stimulus parameters is systematic, that is the same for all cells, and separable, such that the response to a stimulus is a product of the effects of each stimulus parameter alone. We extracellularly recorded single On-Off DS RGCs in a superfused eyecup preparation while stimulating them with moving bars. We found that spike count responses of these cells scaled as independent functions of direction, speed, and luminance. Moreover, the speed and luminance functions were common across the whole sample of cells. Based on these findings, we developed a model that accurately predicted responses of On-Off DS RGCs as products of separable functions of direction, speed, and luminance (r = 0.98; P < 0.0001). Such a multiplicatively separable encoding strategy may simplify the decoding of these cells' outputs by the higher visual centers. PMID:21325684

  4. Mechanical performance of PPy helix tube microactuator

    NASA Astrophysics Data System (ADS)

    Bahrami Samani, Mehrdad; Spinks, Geoffrey M.; Cook, Christopher

    2004-02-01

    Conducting polymer actuators with favourable properties such as linearity, high power density and compliance are of increasing demand in micro applications. These materials generate forces over two times larger than produced by mammalian skeletal muscles. They operate to convert electro chemical energy to mechanical stress and strain. On the other hand, the application of conducting polymers is limited by the lack of a full description of the relation between four essential parameters: stress, strain, voltage and current. In this paper, polypyrrole helix tube micro actuator mechanical characteristics are investigated. The electrolyte is propylene carbonate and the dopant is TBA. PF6. The experiments are both in isotonic and isometric conditions and the input parameters are both electrical and mechanical. A dual mode force and length control and potentiostat / galvanostat are utilized for this purpose. Ultimately, the viscoelastic behaviour of the actuator is presented in this paper by a standard stress relaxation test. The effect of electrical stimulus on mechanical parameters is also explored by cyclic voltametry at different scan rates to obtain the best understanding of the actuation mechanism. The results demonstrate that the linear viscoelastic model, which performed well on conducting polymer film actuators, has to be modified to explain the mechanical behaviour of PPy helix tube fibre micro actuators. Secondly, the changes in mechanical properties of PPy need to be considered when modelling electromechanical behaviour.

  5. A preliminary report of music-based training for adult cochlear implant users: Rationales and development.

    PubMed

    Gfeller, Kate; Guthe, Emily; Driscoll, Virginia; Brown, Carolyn J

    2015-09-01

    This paper provides a preliminary report of a music-based training program for adult cochlear implant (CI) recipients. Included in this report are descriptions of the rationale for music-based training, factors influencing program development, and the resulting program components. Prior studies describing experience-based plasticity in response to music training, auditory training for persons with hearing impairment, and music training for CI recipients were reviewed. These sources revealed rationales for using music to enhance speech, factors associated with successful auditory training, relevant aspects of electric hearing and music perception, and extant evidence regarding limitations and advantages associated with parameters for music training with CI users. This informed the development of a computer-based music training program designed specifically for adult CI users. Principles and parameters for perceptual training of music, such as stimulus choice, rehabilitation approach, and motivational concerns were developed in relation to the unique auditory characteristics of adults with electric hearing. An outline of the resulting program components and the outcome measures for evaluating program effectiveness are presented. Music training can enhance the perceptual accuracy of music, but is also hypothesized to enhance several features of speech with similar processing requirements as music (e.g., pitch and timbre). However, additional evaluation of specific training parameters and the impact of music-based training on speech perception of CI users is required.

  6. A preliminary report of music-based training for adult cochlear implant users: rationales and development

    PubMed Central

    Gfeller, Kate; Guthe, Emily; Driscoll, Virginia; Brown, Carolyn J.

    2015-01-01

    Objective This paper provides a preliminary report of a music-based training program for adult cochlear implant (CI) recipients. Included in this report are descriptions of the rationale for music-based training, factors influencing program development, and the resulting program components. Methods Prior studies describing experience-based plasticity in response to music training, auditory training for persons with hearing impairment, and music training for cochlear implant recipients were reviewed. These sources revealed rationales for using music to enhance speech, factors associated with successful auditory training, relevant aspects of electric hearing and music perception, and extant evidence regarding limitations and advantages associated with parameters for music training with CI users. This information formed the development of a computer-based music training program designed specifically for adult CI users. Results Principles and parameters for perceptual training of music, such as stimulus choice, rehabilitation approach, and motivational concerns were developed in relation to the unique auditory characteristics of adults with electric hearing. An outline of the resulting program components and the outcome measures for evaluating program effectiveness are presented. Conclusions Music training can enhance the perceptual accuracy of music, but is also hypothesized to enhance several features of speech with similar processing requirements as music (e.g., pitch and timbre). However, additional evaluation of specific training parameters and the impact of music-based training on speech perception of CI users are required. PMID:26561884

  7. Influence of transcutaneous electrical nerve stimulation conditions on disynaptic reciprocal Ia inhibition and presynaptic inhibition in healthy adults.

    PubMed

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Ushiroyama, Kosuke; Naoi, Yuki; Motoya, Ikuo; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2017-03-01

    This study investigated the influence of stimulus conditions of transcutaneous electrical nerve stimulation (TENS) on disynaptic reciprocal Ia inhibition (RI) and presynaptic inhibition (D1 inhibition) in healthy adults. Eight healthy participants received TENS (stimulus frequencies of 50, 100, and 200 Hz) over the deep peroneal nerve and tibialis anterior (TA) muscle in the resting condition for 30 min. At pre- and post-intervention, the RI from the TA to the soleus (SOL) and D1 inhibition of the SOL alpha motor neuron were assessed by evoked electromyography. The results showed that RI was not changed by TENS at any stimulus frequency condition. Conversely, D1 inhibition was significantly changed by TENS regardless of the stimulus frequency. The present results and previous studies pertaining to RI suggest that the resting condition might strongly influence the lack of pre- vs. post-intervention change in the RI. Regarding the D1 inhibition, the present results suggest that the effect of TENS might be caused by post-tetanic potentiation. The knowledge gained from the present study might contribute to a better understanding of fundamental studies of TENS in healthy adults and its clinical application for stroke survivors.

  8. An essential memory trace found.

    PubMed

    Thompson, Richard F

    2013-10-01

    I argue here that we have succeeded in localizing an essential memory trace for a basic form of associative learning and memory--classical conditioning of discrete responses learned with an aversive stimulus--to the anterior interpositus nucleus of the cerebellum. We first identified the entire essential circuit, using eyelid conditioning as the model system, and used reversible inactivation, during training, of critical structures and pathways to localize definitively the essential memory trace. In recognition of the 30th anniversary of Behavioral Neuroscience, I highlight 1 paper (Tracy, Thompson, Krupa, & Thompson, 1998) that was particularly significant for the progress of this research program. In this review, I present definitive evidence that the essential memory trace for eyelid conditioning is localized to the cerebellum and to no other part of the essential circuit, using electrical stimulation of the pontine nuclei-mossy fibers projecting to the cerebellum as the conditional stimulus (CS; it proved to be a supernormal stimulus resulting in much faster learning than with any peripheral CS) and using an electrical stimulus to the output of the cerebellum as a test, which did not change. Pontine patterns of projection to the cerebellum were confirmed with retrograde labeling techniques. 2013 APA, all rights reserved

  9. Locomotion control of hybrid cockroach robots

    PubMed Central

    Sanchez, Carlos J.; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong

    2015-01-01

    Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%. PMID:25740855

  10. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of ABIs may benefit from using pulse rates greater than those presently used in most ABIs, and by sound processing strategies that enhance the modulation depth of the electrical stimulus while preserving dynamic range.

  11. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography

    PubMed Central

    Johnson, Mark I.; Francis, Peter

    2018-01-01

    Context The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG) has not been published. Objective To investigate the; (1) reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm), (2) effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude) and contraction time (Tc), (3) the effect of changing inter-electrode distance on Dm and Tc. Design Within subject, repeated measures. Participants 10 participants for each objective. Main outcome measures Dm and Tc of the rectus femoris, measured using TMG. Results The coefficient of variance (CV) and the intra-class correlation (ICC) of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively. Conclusion Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles. PMID:29451885

  12. Electrical stimulation: a novel tool for tissue engineering.

    PubMed

    Balint, Richard; Cassidy, Nigel J; Cartmell, Sarah H

    2013-02-01

    New advances in tissue engineering are being made through the application of different types of electrical stimuli to influence cell proliferation and differentiation. Developments made in the last decade have allowed us to improve the structure and functionality of tissue-engineered products through the use of growth factors, hormones, drugs, physical stimuli, bioreactor use, and two-dimensional (2-D) and three-dimensional (3-D) artificial extracellular matrices (with various material properties and topography). Another potential type of stimulus is electricity, which is important in the physiology and development of the majority of all human tissues. Despite its great potential, its role in tissue regeneration and its ability to influence cell migration, orientation, proliferation, and differentiation has rarely been considered in tissue engineering. This review highlights the importance of endogenous electrical stimulation, gathering the current knowledge on its natural occurrence and role in vivo, discussing the novel methods of delivering this stimulus and examining its cellular and tissue level effects, while evaluating how the technique could benefit the tissue engineering discipline in the future.

  13. Reflexes in the shoulder muscles elicited from the human coracoacromial ligament.

    PubMed

    Diederichsen, Louise Pyndt; Nørregaard, Jesper; Krogsgaard, Michael; Fischer-Rasmussen, Torsten; Dyhre-Poulsen, Poul

    2004-09-01

    Morphological studies have demonstrated mechanoreceptors in the capsuloligamentous structures of the shoulder joint, however knowledge of the role these joint receptors play in the control of shoulder stability is limited. We therefore investigated the effect of electrically induced afferent activity from mechanoreceptors in the coracoacromial ligament (CAL) on the activity of voluntary activated shoulder muscles in healthy humans. In study I, wire electrodes, for electrical stimulation, were inserted into the CAL in eight normal shoulders. In study II, a needle electrode was inserted into the CAL in seven normal shoulders. Electric activity was recorded from eight shoulder muscles by surface and intramuscular electrodes. During isometric contractions, electrical stimulation was applied to the CAL at two different stimulus intensities, a weak stimulus (stim-1) and a stronger stimulus (stim-2). In both experiments, electrical stimulation of the CAL elicited a general inhibition in the voluntary activated shoulder muscles. In study I the average latencies (mean+/-SE) of the muscular inhibition were 66+/-4 ms (stim-1) and 62+/-4 ms (stim-2) during isometric flexion and 73+/-3 ms (stim-1) and 73+/-5 ms (stim-2) during isometric extension. In study II the average latency (mean+/-SE) of the response was 66+/-4 ms (stim-1) during isometric flexion. Our results demonstrated a response, probably of reflex origin, from mechanoreceptors in the CAL to the shoulder muscles. The existence of this synaptic connection between mechanoreceptors in CAL and the shoulder muscles suggest a role of these receptors in muscle coordination and in the functional joint stability.

  14. [Effects of electromagnetic fields emitted by cellular phone on auditory and vestibular labyrinth].

    PubMed

    Sievert, U; Eggert, S; Goltz, S; Pau, H W

    2007-04-01

    It is the subject of this study to investigate the biological effect of the HF radiation produced by the Global System for Mobile Communications-( GSM)-mobile phone on the inner ear with its sensors of the vestibular and auditive systems. Thermographic investigations made on various model materials and on the human temporal bone should show whether mobile phone does induce any increases of temperature which would lead to a relevant stimulus for the auditive and vestibular system or not. We carried out video-nystagmographic recordings of 13 subjects, brainstem electric response audiometry of 24 ears, and recordings of distorsion products of otoacoustic emissions of 20 ears. All tests were made with and without a mobile phone in use. The data was then analyzed for variation patterns in the functional parameters of the hearing and balance system that are subject to the (non)existence of electromagnetic radiation from the mobile phone. The thermographic investigations suggest that the mobile phone does not induce any increases of temperature which would lead to a relevant stimulus for the auditive and vestibular system. Video-nystagmographic recordings under field effect do not furnish any indication of vestibular reactions generated by field effects. Compared with the recording without field, the brainstem electric response audiometry under field effect did not reveal any changes of the parameters investigated, i. e. absolute latency of the peaks I, III, V and the interpeak latency between the peaks I and V. The distorsion products of otoacoustic emissions do not indicate, comparing the three measuring situations, i. e. before field effect, pulsed field and continuous field, any possible impacts of the HF field on the spectrum or levels of emissions for none of the probands. The investigations made show that the electromagnetic fields generated in using the mobile phone do not have an effect on the inner ear and auditive system to the colliculus inferior in the brainstem and on the vestibular receptors in the inner ear and the vestibular system.

  15. Assessing endothelial function and providing calibrated UFMD data using a blood pressure cuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Jonathan S.

    Methods and apparatus are provided for assessing endothelial function in a mammal. In certain embodiments the methods involve using a cuff to apply pressure to an artery in a subject to determine a plurality of baseline values for a parameter related to endothelial function as a function of applied pressure (P.sub.m); b) applying a stimulus to the subject; and applying external pressure P.sub.m to the artery to determine a plurality of stimulus-effected values for the parameter related to endothelial function as a function of applied pressure (P.sub.m); where the baseline values are determined from measurements made when said mammal ismore » not substantially effected by said stimulus and differences in said baseline values and said stimulus-effected values provide a measure of endothelial function in said mammal.« less

  16. Schedules of electric shock presentation in the behavioral control of imprinted ducklings.

    PubMed

    Barrett, J E

    1972-09-01

    The behavioral effects of various schedules of electric shock presentation were investigated during and after the imprinting of Peking ducklings to moving stimuli. The behavior of following a moving imprinted stimulus was differentially controlled by a multiple schedule of punishment and avoidance that respectively suppressed and maintained following behavior. Pole-pecking, reinforced by presentations of the imprinted stimulus, was suppressed by response-produced shock (punishment); various schedules of response-independent shock and delayed punishment had an overall minimal effect. The delivery of response-independent shock in the presence of one of two stimuli, both during and after imprinting, resulted in a marked reduction in choice of the stimulus paired with shock. The experiments provide no support for a differentiation of imprinting from learning on the basis of the behavioral effects of aversive stimuli. Instead, as is the case with other organisms, the schedule under which shock is delivered to imprinted ducklings appears to be an important determinant of the temporal patterning of subsequent behavior.

  17. Application of an object-oriented programming paradigm in three-dimensional computer modeling of mechanically active gastrointestinal tissues.

    PubMed

    Rashev, P Z; Mintchev, M P; Bowes, K L

    2000-09-01

    The aim of this study was to develop a novel three-dimensional (3-D) object-oriented modeling approach incorporating knowledge of the anatomy, electrophysiology, and mechanics of externally stimulated excitable gastrointestinal (GI) tissues and emphasizing the "stimulus-response" principle of extracting the modeling parameters. The modeling method used clusters of class hierarchies representing GI tissues from three perspectives: 1) anatomical; 2) electrophysiological; and 3) mechanical. We elaborated on the first four phases of the object-oriented system development life-cycle: 1) analysis; 2) design; 3) implementation; and 4) testing. Generalized cylinders were used for the implementation of 3-D tissue objects modeling the cecum, the descending colon, and the colonic circular smooth muscle tissue. The model was tested using external neural electrical tissue excitation of the descending colon with virtual implanted electrodes and the stimulating current density distributions over the modeled surfaces were calculated. Finally, the tissue deformations invoked by electrical stimulation were estimated and represented by a mesh-surface visualization technique.

  18. A Psychophysics experimental software to evaluate electrical pitch discrimination in Nucleus cochlear implanted patients

    NASA Astrophysics Data System (ADS)

    Pérez Zaballos, M. T.; Ramos de Miguel, A.; Killian, M.; Ramos Macías, A.

    2016-02-01

    Multichannel electrode array design in cochlear implants has evolved into two major categories: straight and perimodiolar electrodes. When implanted, the former lies along the outer wall of the scala tympani, while the later are located closer to the modiolus, where the neural ends are. Therefore, a perimodiolar position of the electrode array could be expected to result in reduced stimulus thresholds and stimulating currents, increased dynamic range, and more localized stimulation of the neural elements. However, their advantage for pitch discrimination has not been conclusively stated. Therefore, in order to study electrode independence, a psychophysical software has been developed, making use of Nucleus Implant Communicator tools provided by Cochlear company under a research agreement. The application comprises a graphical interface to facilitate its use, since previous software has always required some type of computer language skills. It allows for customization of electrical pulse parameters, measurement of threshold and comfort levels, loudness balancing and alternative forced choice experiments to determine electrode discrimination in Nucleus© users.

  19. Locomotion control of hybrid cockroach robots.

    PubMed

    Sanchez, Carlos J; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M; Vinson, S Bradleigh; Liang, Hong

    2015-04-06

    Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise.

    PubMed

    Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A

    2000-11-01

    Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.

  1. Parallel and orthogonal stimulus in ultradiluted neural networks

    NASA Astrophysics Data System (ADS)

    Sobral, G. A., Jr.; Vieira, V. M.; Lyra, M. L.; da Silva, C. R.

    2006-10-01

    Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0 .

  2. The adequate stimulus for avian short latency vestibular responses to linear translation

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.; Colbert, S.

    1998-01-01

    Transient linear acceleration stimuli have been shown to elicit eighth nerve vestibular compound action potentials in birds and mammals. The present study was undertaken to better define the nature of the adequate stimulus for neurons generating the response in the chicken (Gallus domesticus). In particular, the study evaluated the question of whether the neurons studied are most sensitive to the maximum level of linear acceleration achieved or to the rate of change in acceleration (da/dt, or jerk). To do this, vestibular response thresholds were measured as a function of stimulus onset slope. Traditional computer signal averaging was used to record responses to pulsed linear acceleration stimuli. Stimulus onset slope was systematically varied. Acceleration thresholds decreased with increasing stimulus onset slope (decreasing stimulus rise time). When stimuli were expressed in units of jerk (g/ms), thresholds were virtually constant for all stimulus rise times. Moreover, stimuli having identical jerk magnitudes but widely varying peak acceleration levels produced virtually identical responses. Vestibular response thresholds, latencies and amplitudes appear to be determined strictly by stimulus jerk magnitudes. Stimulus attributes such as peak acceleration or rise time alone do not provide sufficient information to predict response parameter quantities. Indeed, the major response parameters were shown to be virtually independent of peak acceleration levels or rise time when these stimulus features were isolated and considered separately. It is concluded that the neurons generating short latency vestibular evoked potentials do so as "jerk encoders" in the chicken. Primary afferents classified as "irregular", and which traditionally fall into the broad category of "dynamic" or "phasic" neurons, would seem to be the most likely candidates for the neural generators of short latency vestibular compound action potentials.

  3. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.

    PubMed

    Kawasaki, Masashi; Leonard, John

    2017-02-01

    An apteronotid weakly electric fish, Adontosternarchus, emits high-frequency electric organ discharges (700-1500 Hz) which are stable in frequency if no other fish or artificial signals are present. When encountered with an artificial signal of higher frequency than the fish's discharge, the fish raised its discharge frequency and eventually matched its own frequency to that of the artificial signal. At this moment, phase locking was observed, where the timing of the fish's discharge was precisely stabilized at a particular phase of the artificial signal over a long period of time (up to minutes) with microsecond precision. Analyses of the phase-locking behaviors revealed that the phase values of the artificial stimulus at which the fish stabilizes the phase of its own discharge (called lock-in phases) have three populations between -180° and +180°. During the frequency rise and the phase-locking behavior, the electrosensory system is exposed to the mixture of feedback signals from its electric organ discharges and the artificial signal. Since the signal mixture modulates in both amplitude and phase, we explored whether amplitude or phase information participated in driving the phase-locking behavior, using a numerical model. The model which incorporates only amplitude information well predicted the three populations of lock-in phases. When phase information was removed from the electrosensory stimulus, phase-locking behavior was still observed. These results suggest that phase-locking behavior of Adontosternarchus requires amplitude information but not phase information available in the electrosensory stimulus.

  4. Multiple serial picture presentation with millisecond resolution using a three-way LC-shutter-tachistoscope

    PubMed Central

    Fischmeister, Florian Ph.S.; Leodolter, Ulrich; Windischberger, Christian; Kasess, Christian H.; Schöpf, Veronika; Moser, Ewald; Bauer, Herbert

    2010-01-01

    Throughout recent years there has been an increasing interest in studying unconscious visual processes. Such conditions of unawareness are typically achieved by either a sufficient reduction of the stimulus presentation time or visual masking. However, there are growing concerns about the reliability of the presentation devices used. As all these devices show great variability in presentation parameters, the processing of visual stimuli becomes dependent on the display-device, e.g. minimal changes in the physical stimulus properties may have an enormous impact on stimulus processing by the sensory system and on the actual experience of the stimulus. Here we present a custom-built three-way LC-shutter-tachistoscope which allows experimental setups with both, precise and reliable stimulus delivery, and millisecond resolution. This tachistoscope consists of three LCD-projectors equipped with zoom lenses to enable stimulus presentation via a built-in mirror-system onto a back projection screen from an adjacent room. Two high-speed liquid crystal shutters are mounted serially in front of each projector to control the stimulus duration. To verify the intended properties empirically, different sequences of presentation times were performed while changes in optical power were measured using a photoreceiver. The obtained results demonstrate that interfering variabilities in stimulus parameters and stimulus rendering are markedly reduced. Together with the possibility to collect external signals and to send trigger-signals to other devices, this tachistoscope represents a highly flexible and easy to set up research tool not only for the study of unconscious processing in the brain but for vision research in general. PMID:20122963

  5. Transfer of classical eyeblink conditioning with electrical stimulation of mPFC or tone as conditioned stimulus in guinea pigs.

    PubMed

    Yao, Juan; Wu, Guang-Yan; Liu, Guo-Long; Liu, Shu-Lei; Yang, Yi; Wu, Bing; Li, Xuan; Feng, Hua; Sui, Jian-Feng

    2014-11-01

    Learning with a stimulus from one sensory modality can facilitate subsequent learning with a new stimulus from a different sensory modality. To date, the characteristics and mechanism of this phenomenon named transfer effect still remain ambiguous. Our previous work showed that electrical stimulation of medial prefrontal cortex (mPFC) as a conditioned stimulus (CS) could successfully establish classical eyeblink conditioning (EBC). The present study aimed to (1) observe whether transfer of EBC learning would occur when CSs shift between central (mPFC electrical stimulation as a CS, mPFC-CS) and peripheral (tone as a CS, tone CS); (2) compare the difference in transfer effect between the two paradigms, delay EBC (DEBC) and trace EBC (TEBC). A total of 8 groups of guinea pigs were tested in the study, including 4 experimental groups and 4 control groups. Firstly, the experimental groups accepted central (or peripheral) CS paired with corneal airpuff unconditioned stimulus (US); then, CS shifted to the peripheral (or central) and paired with US. The control groups accepted corresponding central (or peripheral) CS and pseudo-paired with US, and then shifted CS from central (or peripheral) to peripheral (or central) and paired with US. The results showed that the acquisition rates of EBC were higher in experimental groups than in control groups after CS switching from central to peripheral or vice versa, and the CR acquisition rate was remarkably higher in DEBC than in TEBC in both transfer ways. The results indicate that EBC transfer can occur between learning established with mPFC-CS and tone CS. Memory of CS-US association for delay paradigm was less disturbed by the sudden switch of CS than for trace paradigm. This study provides new insight into neural mechanisms underlying conditioned reflex as well as the role of mPFC. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Electronic enhancement of tear secretion

    NASA Astrophysics Data System (ADS)

    Brinton, Mark; Lim Chung, Jae; Kossler, Andrea; Kook, Koung Hoon; Loudin, Jim; Franke, Manfred; Palanker, Daniel

    2016-02-01

    Objective. To study electrical stimulation of the lacrimal gland and afferent nerves for enhanced tear secretion, as a potential treatment for dry eye disease. We investigate the response pathways and electrical parameters to safely maximize tear secretion. Approach. We evaluated the tear response to electrical stimulation of the lacrimal gland and afferent nerves in isofluorane-anesthetized rabbits. In acute studies, electrical stimulation was performed using bipolar platinum foil electrodes, implanted beneath the inferior lacrimal gland, and a monopolar electrode placed near the afferent ethmoid nerve. Wireless microstimulators with bipolar electrodes were implanted beneath the lacrimal gland for chronic studies. To identify the response pathways, we applied various pharmacological inhibitors. To optimize the stimulus, we measured tear secretion rate (Schirmer test) as a function of pulse amplitude (1.5-12 mA), duration (0.1-1 ms) and repetition rate (10-100 Hz). Main results. Stimulation of the lacrimal gland increased tear secretion by engaging efferent parasympathetic nerves. Tearing increased with stimulation amplitude, pulse duration and repetition rate, up to 70 Hz. Stimulation with 3 mA, 500 μs pulses at 70 Hz provided a 4.5 mm (125%) increase in Schirmer score. Modulating duty cycle further increased tearing up to 57%, compared to continuous stimulation in chronically implanted animals (36%). Ethmoid (afferent) nerve stimulation increased tearing similar to gland stimulation (3.6 mm) via a reflex pathway. In animals with chronically implanted stimulators, a nearly 6 mm increase (57%) was achieved with 12-fold less charge density per pulse (0.06-0.3 μC mm-2 with 170-680 μs pulses) than the damage threshold (3.5 μC mm-2 with 1 ms pulses). Significance. Electrical stimulation of the lacrimal gland or afferent nerves may be used as a treatment for dry eye disease. Clinical trials should validate this approach in patients with aqueous tear deficiency, and further optimize electrical parameters for maximum clinical efficacy.

  7. Statistics of Natural Communication Signals Observed in the Wild Identify Important Yet Neglected Stimulus Regimes in Weakly Electric Fish.

    PubMed

    Henninger, Jörg; Krahe, Rüdiger; Kirschbaum, Frank; Grewe, Jan; Benda, Jan

    2018-06-13

    Sensory systems evolve in the ecological niches that each species is occupying. Accordingly, encoding of natural stimuli by sensory neurons is expected to be adapted to the statistics of these stimuli. For a direct quantification of sensory scenes, we tracked natural communication behavior of male and female weakly electric fish, Apteronotus rostratus , in their Neotropical rainforest habitat with high spatiotemporal resolution over several days. In the context of courtship, we observed large quantities of electrocommunication signals. Echo responses, acknowledgment signals, and their synchronizing role in spawning demonstrated the behavioral relevance of these signals. In both courtship and aggressive contexts, we observed robust behavioral responses in stimulus regimes that have so far been neglected in electrophysiological studies of this well characterized sensory system and that are well beyond the range of known best frequency and amplitude tuning of the electroreceptor afferents' firing rate modulation. Our results emphasize the importance of quantifying sensory scenes derived from freely behaving animals in their natural habitats for understanding the function and evolution of neural systems. SIGNIFICANCE STATEMENT The processing mechanisms of sensory systems have evolved in the context of the natural lives of organisms. To understand the functioning of sensory systems therefore requires probing them in the stimulus regimes in which they evolved. We took advantage of the continuously generated electric fields of weakly electric fish to explore electrosensory stimulus statistics in their natural Neotropical habitat. Unexpectedly, many of the electrocommunication signals recorded during courtship, spawning, and aggression had much smaller amplitudes or higher frequencies than stimuli used so far in neurophysiological characterizations of the electrosensory system. Our results demonstrate that quantifying sensory scenes derived from freely behaving animals in their natural habitats is essential to avoid biases in the choice of stimuli used to probe brain function. Copyright © 2018 the authors 0270-6474/18/385456-11$15.00/0.

  8. Electrocutaneous stimulation system for Braille reading.

    PubMed

    Echenique, Ana Maria; Graffigna, Juan Pablo; Mut, Vicente

    2010-01-01

    This work is an assistive technology for people with visual disabilities and aims to facilitate access to written information in order to achieve better social inclusion and integration into work and educational activities. Two methods of electrical stimulation (by current and voltage) of the mechanoreceptors was tested to obtain tactile sensations on the fingertip. Current and voltage stimulation were tested in a Braille cell and line prototype, respectively. These prototypes are evaluated in 33 blind and visually impaired subjects. The result of experimentation with both methods showed that electrical stimulation causes sensations of touch defined in the fingertip. Better results in the Braille characters reading were obtained with current stimulation (85% accuracy). However this form of stimulation causes uncomfortable sensations. The latter feeling was minimized with the method of voltage stimulation, but with low efficiency (50% accuracy) in terms of identification of the characters. We concluded that electrical stimulation is a promising method for the development of a simple and unexpensive Braille reading system for blind people. We observed that voltage stimulation is preferred by the users. However, more experimental tests must be carry out in order to find the optimum values of the stimulus parameters and increase the accuracy the Braille characters reading.

  9. A preparation for studying electrical stimulation of the retina in vivo in rat

    NASA Astrophysics Data System (ADS)

    Baig-Silva, M. S.; Hathcock, C. D.; Hetling, J. R.

    2005-03-01

    A remaining challenge to the development of electronic prostheses for vision is improving the effectiveness of retinal stimulation. Electrode design and stimulus parameters need to be optimized such that the neural output from the retina conveys information to the mind's eye that aids the patient in interpreting his or her environment. This optimization will require a detailed understanding of the response of the retina to electrical stimulation. The identity and response characteristics of the cellular targets of stimulation need to be defined and evaluated. Described here is an in vivo preparation for studying electrical stimulation of the retina in rat at the cellular level. The use of rat makes available a number of well-described models of retinal disease that motivate prosthesis development. Artificial stimulation can be investigated by adapting techniques traditionally employed to study the response of the retina to photic stimuli, such as recording at the cornea, single-cell recording, and pharmacological dissection of the response. Pilot studies include amplitude-intensity response data for subretinal and transretinal stimulation paradigms recorded in wild-type rats and a transgenic rat model of autosomal dominant retinitis pigmentosa. The ability to record single-unit ganglion cell activity in vivo is also demonstrated.

  10. Increased energy expenditure and glucose oxidation during acute nontraumatic skin pain in humans.

    PubMed

    Holland-Fischer, Peter; Greisen, Jacob; Grøfte, Thorbjørn; Jensen, Troels S; Hansen, Peter O; Vilstrup, Hendrik

    2009-04-01

    Tissue injury is accompanied by pain and results in increased energy expenditure, which may promote catabolism. The extent to which pain contributes to this sequence of events is not known. In a cross-over design, 10 healthy volunteers were examined on three occasions; first, during self-controlled nontraumatic electrical painful stimulus to the abdominal skin, maintaining an intensity of 8 on the visual analogue scale (0-10). Next, the electrical stimulus was reproduced during local analgesia and, finally, there was a control session without stimulus. Indirect calorimetry and blood and urine sampling was done in order to calculate energy expenditure and substrate utilization. During pain stimulus, energy expenditure increased acutely and reversibly by 62% (95% confidence interval, 43-83), which was abolished by local analgesia. Energy expenditure paralleled both heart rate and blood catecholamine levels. The energy expenditure increase was fuelled by all energy sources, with the largest increase in glucose utilization. The pain-related increase in energy expenditure was possibly mediated by adrenergic activity and was probably to a large extent due to increased muscle tone. These effects may be enhanced by cortical events related to the pain. The increase in glucose consumption favours catabolism. Our findings emphasize the clinical importance of pain management.

  11. Evoking Blinks with Natural Stimulation and Detecting Them with a Noninvasive Optical Device: A Simple, Inexpensive Method for Use with Freely Moving Animals

    PubMed Central

    Weiss, Craig; Disterhoft, John F.

    2008-01-01

    Many laboratories studying eyeblinks in unanesthetized rodents use a periorbital shock to evoke the blink. The stimulus is typically delivered via a tether and usually obliterates detection of a full unconditioned response with electromyographic (EMG) recording. Here we describe the adapter we have used successfully for several years to deliver puffs of air to the cornea of freely moving rats during our studies of eyeblink conditioning. The stimulus evokes an unconditioned response that can be recorded without affecting the EMG signal. This allows a complete analysis of the unconditioned response which is important for studies examining reflex modification or the effect of drugs, genetic manipulations, or aging on the unconditioned blink reflex. We also describe an infrared reflective sensor that can be added to the tether to minimize the number of wires that need to be implanted around the eye, and which is relatively immune to electrical artifacts associated with a periorbital shock stimulus or other devices powered by alternating current. The responses recorded simultaneously by EMG wires and the optical sensor appear highly correlated and demonstrate that the optical sensor can measure responses that might otherwise be lost due to electrical interference from a shock stimulus. PMID:18598716

  12. A loud auditory stimulus overcomes voluntary movement limitation in cervical dystonia.

    PubMed

    Serranová, Tereza; Jech, Robert; Martí, Maria José; Modreanu, Raluca; Valldeoriola, Francesc; Sieger, Tomáš; Růžička, Evžen; Valls-Solé, Josep

    2012-01-01

    Patients with cervical dystonia (CD) present with an impaired performance of voluntary neck movements, which are usually slow and limited. We hypothesized that such abnormality could involve defective preparation for task execution. Therefore, we examined motor preparation in CD patients using the StartReact method. In this test, a startling auditory stimulus (SAS) is delivered unexpectedly at the time of the imperative signal (IS) in a reaction time task to cause a faster execution of the prepared motor programme. We expected that CD patients would show an abnormal StartReact phenomenon. Fifteen CD patients and 15 age matched control subjects (CS) were asked to perform a rotational movement (RM) to either side as quick as possible immediately after IS perception (a low intensity electrical stimulus to the II finger). In randomly interspersed test trials (25%) a 130 dB SAS was delivered simultaneously with the IS. We recorded RMs in the horizontal plane with a high speed video camera (2.38 ms per frame) in synchronization with the IS. The RM kinematic-parameters (latency, velocity, duration and amplitude) were analyzed using video-editing software and screen protractor. Patients were asked to rate the difficulty of their RMs in a numerical rating scale. In control trials, CD patients executed slower RMs (repeated measures ANOVA, p<0.10(-5)), and reached a smaller final head position angle relative to the midline (p<0.05), than CS. In test trials, SAS improved all RMs in both groups (p<0.10(-14)). In addition, patients were more likely to reach beyond their baseline RM than CS (χ(2), p<0.001) and rated their performance better than in control trials (t-test, p<0.01). We found improvement of kinematic parameters and subjective perception of motor performance in CD patients with StartReact testing. Our results suggest that CD patients reach an adequate level of motor preparation before task execution.

  13. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex

    NASA Astrophysics Data System (ADS)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2011-12-01

    Epidural electrical stimulation (ECS) of the motor cortex is a developing therapy for neurological disorders. Both placement and programming of ECS systems may affect the therapeutic outcome, but the treatment parameters that will maximize therapeutic outcomes and minimize side effects are not known. We delivered ECS to the motor cortex of anesthetized cats and investigated the effects of electrode placement and stimulation parameters on thresholds for evoking motor responses in the contralateral forelimb. Thresholds were inversely related to stimulation frequency and the number of pulses per stimulus train. Thresholds were lower over the forelimb representation in motor cortex (primary site) than surrounding sites (secondary sites), and thresholds at sites <4 mm away from the primary site were significantly lower than at sites >4 mm away. Electrode location and montage influenced the effects of polarity on thresholds: monopolar anodic and cathodic thresholds were not significantly different over the primary site, cathodic thresholds were significantly lower than anodic thresholds over secondary sites and bipolar thresholds were significantly lower with the anode over the primary site than with the cathode over the primary site. A majority of bipolar thresholds were either between or equal to the respective monopolar thresholds, but several bipolar thresholds were greater than or less than the monopolar thresholds of both the anode and cathode. During bipolar stimulation, thresholds were influenced by both electric field superposition and indirect, synaptically mediated interactions. These results demonstrate the influence of stimulation parameters and electrode location during cortical stimulation, and these effects should be considered during the programming of systems for therapeutic cortical stimulation.

  14. Pain and the defense response: structural equation modeling reveals a coordinated psychophysiological response to increasing painful stimulation.

    PubMed

    Donaldson, Gary W; Chapman, C Richard; Nakamura, Yoshi; Bradshaw, David H; Jacobson, Robert C; Chapman, Christopher N

    2003-03-01

    The defense response theory implies that individuals should respond to increasing levels of painful stimulation with correlated increases in affectively mediated psychophysiological responses. This paper employs structural equation modeling to infer the latent processes responsible for correlated growth in the pain report, evoked potential amplitudes, pupil dilation, and skin conductance of 92 normal volunteers who experienced 144 trials of three levels of increasingly painful electrical stimulation. The analysis assumed a two-level model of latent growth as a function of stimulus level. The first level of analysis formulated a nonlinear growth model for each response measure, and allowed intercorrelations among the parameters of these models across individuals. The second level of analysis posited latent process factors to account for these intercorrelations. The best-fitting parsimonious model suggests that two latent processes account for the correlations. One of these latent factors, the activation threshold, determines the initial threshold response, while the other, the response gradient, indicates the magnitude of the coherent increase in response with stimulus level. Collectively, these two second-order factors define the defense response, a broad construct comprising both subjective pain evaluation and physiological mechanisms.

  15. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Rowe, D. L.

    2002-04-01

    Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobral, G. A. Jr.; Vieira, V. M.; Lyra, M. L.

    Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonalmore » to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0.« less

  17. [The role of magnetic stimulation in diagnosis of the peripheral nervous system].

    PubMed

    Dressler, D; Benecke, R; Meyer, B U; Conrad, B

    1988-12-01

    Magnetic stimulation has recently been introduced as a new method for stimulation of neuronal tissues. Up to now most investigators were emphasized the advantages of this method for the investigation of the central nervous system. With this paper we want to show that magnetic stimulation may also be useful for the examination of the peripheral nervous system. Both, magnetic and electrical stimulation, seem to employ the same stimulation mechanisms in the nervous tissue. The results obtained with both methods should therefore be comparable. By measuring EMG-latencies after electrical and magnetic stimulation (Fig. 1) the exact site of magnetic stimulation can be determined. Magnetic stimulation offers major advantages over electrical stimulation: 1) Magnetic stimulation is a painless method even when high stimulus intensities are used. 2) Magnetic stimulation can reach deep neuronal structures that are not easily accessible using electrical stimulation (Fig. 2, Fig. 3). 3) Using a wide range of stimulus intensities (Fig. 4, Fig. 5) magnetic stimulation provides a much better descrimination of different components of the compound muscle action potential than electrical stimulation. Magnetic stimulation seems to be a promising new method for the electrodiagnostic examination of pain- sensitive patients, especially when deep-lying peripheral nerves have to be investigated.

  18. Pavlovian conditioning of shock-induced suppression of lymphocyte reactivity: acquisition, extinction, and preexposure effects.

    PubMed

    Lysle, D T; Cunnick, J E; Fowler, H; Rabin, B S

    1988-01-01

    Recent research has indicated that physical stressors, such as electric shock, can suppress immune function in rats. The present study investigated whether a nonaversive stimulus that had been associated with electric shock would also impair immune function. Presentation of that conditioned stimulus (CS) by itself produced a pronounced suppression of lymphocyte proliferation in response to the nonspecific mitogens, Concanavalin-A (ConA) and Phytohemagglutinin (PHA). In further evidence of a conditioning effect, the suppression was attenuated by extinction and preexposure manipulations that degraded the associative value of the CS. These results indicate that a psychological or learned stressor can suppress immune reactivity independently of the direct effect of physically aversive stimulation or of ancillary changes in dietary and health-related habits.

  19. 21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...

  20. Vomiting Center reanalyzed: An electrical stimulation study

    NASA Technical Reports Server (NTRS)

    Miller, A. D.; Wilson, V. J.

    1982-01-01

    Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained.

  1. 21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...

  2. 21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...

  3. 21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...

  4. 21 CFR 870.3680 - Cardiovascular permanent or temporary pacemaker electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... applied to the heart. The device is used to transmit a pacing electrical stimulus from the pulse generator to the heart and/or to transmit the electrical signal of the heart to the pulse generator. (2... end connected to an implantable pacemaker pulse generator and the other end applied to the heart. The...

  5. Exploring the tolerability of spatiotemporally complex electrical stimulation paradigms.

    PubMed

    Nelson, Timothy S; Suhr, Courtney L; Lai, Alan; Halliday, Amy J; Freestone, Dean R; McLean, Karen J; Burkitt, Anthony N; Cook, Mark J

    2011-10-01

    A modified cortical stimulation model was used to investigate the effects of varying the synchronicity and periodicity of electrical stimuli delivered to multiple pairs of electrodes on seizure initiation. In this model, electrical stimulation of the motor cortex of rats, along four pairs of a microwire electrode array, results in an observable seizure with quantifiable electrographic duration and behavioural severity. Periodic stimuli had a constant inter-stimulus intervals across the two-second stimulus duration, whilst synchronous stimuli consisted of singular biphasic, bipolar pulses delivered to the four pairs of electrodes at precisely the same time for the entire two second stimulation period. In this way four combinations of stimulation were possible; periodic/synchronous (P/S), periodic/asynchronous (P/As), aperiodic/synchronous (Ap/S) and aperiodic/asynchronous (Ap/As). All stimulation types were designed with equal pulse width, current intensity and mean frequency of stimulation (60 Hz), standardizing net charge transfer. It was expected that the periodicity of the stimulus would be the primary determinant of seizure initiation and therefore severity and electrographic duration. However, the results showed that significant differences in both severity and duration only occurred when the synchronicity was altered. For periodic stimuli, synchronous delivery increased median seizure duration from 5 s to 13 s and increased median Racine severity from 1 to 3. In the aperiodic case, synchronous stimulus delivery increased median duration from 5.5 s to 11s and resulted in seizures of median severity 3 vs. 0 in the asynchronous case. These findings may have implications for the design of future neurostimulation waveform designs as higher numbers of electrodes and stimulator output channels become available in next generation implants. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Synchronous high-frequency oscillations in inhibitory-dominant network motifs consisting of three dentate gyrus-CA3 systems

    NASA Astrophysics Data System (ADS)

    Zhang, Liyuan; Fan, Denggui; Wang, Qingyun

    2018-06-01

    Studies on the structural-functional connectomes of the human brain have demonstrated the existence of synchronous firings in a specific brain network motif. In particular, synchronization of high-frequency oscillations (HFOs) has been observed in the experimental data sets of temporal lobe epilepsy (TLE). In addition, both clinical and experimental evidences have accumulated to demonstrate the effect of electrical stimulation on TLE, which, however, remains largely unexplored. In this work, we first employ our previously proposed dentate gyrus (DG)-CA3 network model to investigate the influence of an external electrical stimulus on the HFO transitions. The results indicate that the reinforcing stimulus can induce the HFO transitions of the DG-CA3 system from the gamma band to the fast ripples band. Along with that, the consistent oscillations of neurons within DG-CA3 can also be enhanced with the increasing of stimulus. Then, we expand into a simple motif of three coupled DG-CA3 systems in both the feedforward inhibition and feedback inhibition connections, to investigate the synchronous evolutions of HFOs by regulating both the stimulation strength and inhibitory function. It is shown that the comprehensive effects, which lead to band transition, are independent of the motif configurations. The enhanced external electrical stimulus weakens the synchronism and correlation of connected motifs. In contrast, we demonstrate that the increased inhibitory coupling could facilitate correlation to some extent. Overall, our work highlights the possible origin of synchronous HFOs of hippocampal motifs governed by external inputs and inhibitory connection, which might contribute to a better understanding of the interplay between synchronization dynamics and epileptic structure in the human brain.

  7. On simulating sustained isometric muscle fatigue: a phenomenological model considering different fiber metabolisms.

    PubMed

    Grasa, J; Sierra, M; Muñoz, M J; Soteras, F; Osta, R; Calvo, B; Miana-Mena, F J

    2014-11-01

    The present study shows a new computational FEM technique to simulate the evolution of the mechanical response of 3D muscle models subjected to fatigue. In an attempt to obtain very realistic models, parameters needed to adjust the mathematical formulation were obtained from in vivo experimental tests. The fatigue contractile properties of three different rat muscles (Tibialis Anterior, Extensor Digitorium Longus and Soleus) subjected to sustained maximal isometric contraction were determined. Experiments were conducted on three groups [Formula: see text] of male Wistar rats [Formula: see text] using a protocol previously developed by the authors for short tetanic contractions. The muscles were subjected to an electrical stimulus to achieve tetanic contraction during 10 s. The parameters obtained for each muscle were incorporated into a finite strain formulation for simulating active and passive behavior of muscles with different fiber metabolisms. The results show the potential of the model to predict muscle fatigue under high-frequency stimulation and the 3D distribution of mechanical variables such as stresses and strains.

  8. High but not low ECS stimulus intensity augments apomorphine-stimulated dopamine postsynaptic receptor functioning in rats.

    PubMed

    Andrade, Chittaranjan; Srinivasamurthy, Gurunath M; Vishwasenani, A; Prakash, G Sai; Srihari, B S; Chandra, J Suresh

    2002-06-01

    Clinical research shows that the antidepressant and cognitive adverse effects of electroconvulsive therapy are both dependent on the administered electrical stimulus intensity (dose); however, dose-dependent neurotransmitter system changes in the brain, which might underlie the therapeutic or adverse effects, remain to be demonstrated. We used a behavioral model to examine dose-related effects of electroconvulsive shock (ECS) on dopamine postsynaptic receptor functioning in the rat brain. In a factorially designed study, rats (n = 100) were treated with five once-daily ECSs at three levels (sham ECS, 30 mC ECS, and 120 mC ECS), and with drug at two levels (saline, and 1 mg/kg s.c. apomorphine). Motility was assessed in the small open field. Apomorphine-elicited, dopamine postsynaptic receptor-mediated hypermotility was significantly increased by 120 mC ECS but not by 30 mC ECS. An additional but unrelated finding was that, while the ECS seizure duration expectedly decreased across time, no dose-dependent effects were observed. ECS-induced dopamine postsynaptic receptor up-regulation may depend on the intensity of the administered electrical stimulus.

  9. Minimum energy control for a two-compartment neuron to extracellular electric fields

    NASA Astrophysics Data System (ADS)

    Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin

    2016-11-01

    The energy optimization of extracellular electric field (EF) stimulus for a neuron is considered in this paper. We employ the optimal control theory to design a low energy EF input for a reduced two-compartment model. It works by driving the neuron to closely track a prescriptive spike train. A cost function is introduced to balance the contradictory objectives, i.e., tracking errors and EF stimulus energy. By using the calculus of variations, we transform the minimization of cost function to a six-dimensional two-point boundary value problem (BVP). Through solving the obtained BVP in the cases of three fundamental bifurcations, it is shown that the control method is able to provide an optimal EF stimulus of reduced energy for the neuron to effectively track a prescriptive spike train. Further, the feasibility of the adopted method is interpreted from the point of view of the biophysical basis of spike initiation. These investigations are conducive to designing stimulating dose for extracellular neural stimulation, which are also helpful to interpret the effects of extracellular field on neural activity.

  10. Heart rate changes during electroconvulsive therapy

    PubMed Central

    2013-01-01

    Background This observational study documented heart rate over the entire course of electrically induced seizures and aimed to evaluate the effects of stimulus electrode placement, patients' age, stimulus dose, and additional predictors. Method In 119 consecutive patients with 64 right unilateral (RUL) and 55 bifrontal (BF) electroconvulsive treatments, heart rate graphs based on beat-to-beat measurements were plotted up to durations of 130 s. Results In RUL stimulation, the initial drop in heart rate lasted for 12.5 ± 2.6 s (mean ± standard deviation). This depended on stimulus train duration, age, and baseline heart rate. In seizures induced with BF electrode placement, a sympathetic response was observed within the first few seconds of the stimulation phase (median 3.5 s). This was also the case with subconvulsive stimulations. The mean peak heart rate in all 119 treatments amounted to 135 ± 20 bpm and depended on baseline heart rate and seizure duration; electrode placement, charge dose, and age were insignificant in regression analysis. A marked decline in heart rate in connection with seizure cessation occurred in 71% of treatments. Conclusions A significant independent effect of stimulus electrode positioning on cardiac action was evident only in the initial phase of the seizures. Electrical stimulation rather than the seizure causes the initial heart rate increase in BF treatments. The data reveal no rationale for setting the stimulus doses as a function of intraictal peak heart rates (‘benchmark method’). The marked decline in heart rate at the end of most seizures is probably mediated by a baroreceptor reflex. PMID:23764036

  11. A comprehensive protocol to diagnose and treat pain of muscular origin may successfully and reliably decrease or eliminate pain in a chronic pain population.

    PubMed

    Marcus, Norman J; Gracely, Edward J; Keefe, Kelly O

    2010-01-01

    A comprehensive protocol is presented to identify muscular causes of regional pain syndromes utilizing an electrical stimulus in lieu of palpation, and combining elements of Prolotherapy with trigger point injections. One hundred seventy-six consecutive patients were evaluated for the presence of muscle pain by utilizing an electrical stimulus produced by the Muscle Pain Detection Device. The diagnosis of "Muscle Pain Amenable to Injection" (MPAI), rather than trigger points, was made if pain was produced for the duration of the stimulation. If MPAI was found, muscle tendon injections (MTI) were offered to patients along with post-MTI physical therapy, providing neuromuscular electrical stimulation followed by a validated exercise program [1]. A control group, evaluated 1 month prior to their actual consultation/evaluation when muscle pain was identified but not yet treated, was used for comparison. Forty-five patients who met criteria completed treatment. Patients' scores on the Brief Pain Inventory decreased an average of 62%; median 70% (P < 0.001) for pain severity and 68%; median 85% (P < 0.001) for pain interference one month following treatment. These changes were significantly greater (P < 0.001) than those observed in the untreated controls. A protocol incorporating an easily reproducible electrical stimulus to diagnose a muscle causing pain in a region of the body followed by an injection technique that involves the entirety of the muscle, and post injection restoration of muscle function, can successfully eliminate or significantly reduce regional pain present for years.

  12. [Objective accommodation parameters depending on accommodation task].

    PubMed

    Tarutta, E P; Tarasova, N A; Dolzhenko, O O

    2011-01-01

    62 myopic patients were examined to study objective accommodation parameters in different conditions of accommodation stimulus presenting (use of convex lenses). Objective accommodation response (OAR) was studied using binocular open-field autorefractometer in different conditions of stimulus presenting: complete myopia correction and adding of convex lenses with increasing power from +1.0 till +3.0 D. In 88,5% of children and adolescents showed significant decrease of OAR for 1,5-2,75D in 3.0D stimulus. Additional correction with convex lenses with increasing power leads to further reduce of accommodation response. As a result induced dynamic refraction in eye-lens system is lower than accommodation task. Only addition of +2,5D lense approximates it to required index of -3.0D.

  13. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    PubMed

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. © 2014 Wiley Periodicals, Inc.

  14. Estimation and Identifiability of Model Parameters in Human Nociceptive Processing Using Yes-No Detection Responses to Electrocutaneous Stimulation.

    PubMed

    Yang, Huan; Meijer, Hil G E; Buitenweg, Jan R; van Gils, Stephan A

    2016-01-01

    Healthy or pathological states of nociceptive subsystems determine different stimulus-response relations measured from quantitative sensory testing. In turn, stimulus-response measurements may be used to assess these states. In a recently developed computational model, six model parameters characterize activation of nerve endings and spinal neurons. However, both model nonlinearity and limited information in yes-no detection responses to electrocutaneous stimuli challenge to estimate model parameters. Here, we address the question whether and how one can overcome these difficulties for reliable parameter estimation. First, we fit the computational model to experimental stimulus-response pairs by maximizing the likelihood. To evaluate the balance between model fit and complexity, i.e., the number of model parameters, we evaluate the Bayesian Information Criterion. We find that the computational model is better than a conventional logistic model regarding the balance. Second, our theoretical analysis suggests to vary the pulse width among applied stimuli as a necessary condition to prevent structural non-identifiability. In addition, the numerically implemented profile likelihood approach reveals structural and practical non-identifiability. Our model-based approach with integration of psychophysical measurements can be useful for a reliable assessment of states of the nociceptive system.

  15. Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry1

    PubMed Central

    Salvador, R.; Silva, S.; Basser, P. J.; Miranda, P. C.

    2010-01-01

    Objective To determine which mechanisms lead to activation of neurons in the motor cortex during transcranial magnetic stimulation (TMS) with different current directions and pulse waveforms. Methods The total electric field induced in a simplified model of a cortical sulcus by a figure-eight coil was calculated using the finite element method (FEM). This electric field was then used as the input to determine the response of compartmental models of several types of neurons. Results The modeled neurons were stimulated at different sites: fiber bends for pyramidal tract neurons, axonal terminations for cortical interneurons and axon collaterals, and a combination of both for pyramidal association fibers. All neurons were more easily stimulated by a PA directed electric field, except association fibers. Additionally, the second phase of a biphasic pulse was found to be more efficient than the first phase of either monophasic or biphasic pulses. Conclusion The stimulation threshold for different types of neurons depends on the pulse waveform and current direction. The reported results might account for the range of responses obtained in TMS of the motor cortex when using different stimulation parameters. Significance Modeling studies combining electric field calculations and neuronal models may lead to a deeper understanding of the effect of the TMS-induced electric field on cortical tissue, and may be used to evaluate improvements in TMS coil and waveform design. PMID:21035390

  16. Electrical stimulation of microengineered skeletal muscle tissue: Effect of stimulus parameters on myotube contractility and maturation.

    PubMed

    Banan Sadeghian, Ramin; Ebrahimi, Majid; Salehi, Sahar

    2018-04-01

    Skeletal muscle tissues engineered in vitro are aneural, are short in the number of fibres required to function properly and degenerate rapidly. Electrical stimulation has been widely used to compensate for such a lack of neural activity, yet the relationship between the stimulation parameters and the tissue response is subject to debate. Here we studied the effect of overnight electrical stimulation (training) on the contractility and maturity of aligned C2C12 myotubes developed on micropatterned gelatin methacryloyl (GelMA) substrates. Bipolar rectangular pulse (BRP) trains with frequency, half-duration and applied pulse train amplitudes of f = 1 Hz, t on  = 0.5 ms and V app  = {3 V, 4 V, 4.5 V}, respectively, were applied for 12 h to the myotubes formed on the microgrooved substrates. Aligned myotubes were contracting throughout the training period for V app  ≥ 4 V. Immediately after training, the samples were subjected to series of BRPs with 2 ≤ V app  ≤ 5 V and 0.2 ≤ t on  ≤ 0.9 ms, during which myotube contraction dynamics were recorded. Analysis of post-training contraction revealed that only the myotubes trained at V app  = 4 V displayed consistent and repeatable contraction profiles, showing the dynamics of myotube contractility as a function of triggering pulse voltage and current amplitudes, duration and imposed electrical energy. In addition, myotubes trained at V app  = 4 V displayed amplified expression levels of genes pertinent to sarcomere development correlated with myotube maturation. Our findings are imperative for a better understanding of the influence of electrical pulses on the maturation of microengineered myotubes. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses

    PubMed Central

    Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.

    2014-01-01

    In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223

  18. Generalization of conditioned fear along a dimension of increasing fear intensity

    PubMed Central

    Dunsmoor, Joseph E.; Mitroff, Stephen R.; LaBar, Kevin S.

    2009-01-01

    The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two experimental groups underwent discriminative fear conditioning between a face stimulus of 55% fear intensity (conditioned stimulus, CS+), reinforced with an electric shock, and a second stimulus that was unreinforced (CS−). In Experiment 1 the CS− was a relatively neutral face stimulus, while in Experiment 2 the CS− was the most fear-intense stimulus. Before and following fear conditioning, skin conductance responses (SCR) were recorded to different morph values along the neutral-to-fear dimension. Both experimental groups showed gradients of generalization following fear conditioning that increased with the fear intensity of the stimulus. In Experiment 1 a peak shift in SCRs extended to the most fear-intense stimulus. In contrast, generalization to the most fear-intense stimulus was reduced in Experiment 2, suggesting that discriminative fear learning procedures can attenuate fear generalization. Together, the findings indicate that fear generalization is broadly tuned and sensitive to the amount of fear intensity in nonconditioned stimuli, but that fear generalization can come under stimulus control. These results reveal a novel form of fear generalization in humans that is not merely based on physical similarity to a conditioned exemplar, and may have implications for understanding generalization processes in anxiety disorders characterized by heightened sensitivity to nonthreatening stimuli. PMID:19553384

  19. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.

    PubMed

    Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan

    2010-12-01

    Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.

  20. Diagnostic Ability of Automated Pupillography in Glaucoma.

    PubMed

    Rao, Harsha L; Kadambi, Sujatha V; Mehta, Pooja; Dasari, Srilakshmi; Puttaiah, Narendra K; Pradhan, Zia S; Rao, Dhanraj A S; Shetty, Rohit

    2017-05-01

    To evaluate the diagnostic ability of automated pupillography measurements in glaucoma and study the effect of inter-eye asymmetry in glaucomatous damage on the diagnostic ability. In an observational, cross-sectional study, 47 glaucoma patients and 42 control subjects underwent automated pupillography using a commercially available device. Diagnostic abilities of the pupillary response measurements were evaluated using area under receiver operating characteristic (ROC) curves (AUC) and sensitivities at fixed specificities. Influence of inter-eye asymmetry in glaucoma [inter-eye mean deviation (MD) difference on visual fields (VF)] on the diagnostic ability of pupillography parameters was evaluated by ROC regression approach. The AUCs of automated pupillography parameters ranged from 0.60 (amplitude score with peripheral blue stimulus) to 0.82 (amplitude score with full field white stimulus, Amp-FF-W). Sensitivity at 95% specificity ranged between 5% (amplitude score with full field blue stimulus) and 45% (amplitude score with full field green stimulus). Inter-eye MD difference significantly affected the diagnostic performance of automated pupillography parameters (p < 0.05). AUCs of Amp-FF-W at inter-eye MD difference of 0 dB, 5 dB, 10 dB and 15 dB were 0.71, 0.80, 0.87 and 0.93, respectively, according to the regression model. The corresponding sensitivities at 95% specificity were 20%, 34%, 50% and 66%, respectively. The diagnostic abilities of even the best automated pupillography parameters were only moderate in glaucoma. The performance of these pupillography measurements in detecting glaucoma significantly increased with greater inter-eye asymmetry in the glaucomatous damage.

  1. Effect of noxious electrical stimulation of the peroneal nerve on stretch reflex activity of the hamstring muscle in rats: possible implications of neuronal mechanisms in the development of tight hamstrings in lumbar disc herniation.

    PubMed

    Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige

    2005-05-01

    The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.

  2. Stimulus Sensitivity of a Spiking Neural Network Model

    NASA Astrophysics Data System (ADS)

    Chevallier, Julien

    2018-02-01

    Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.

  3. Combined electric and pressure cuff pain stimuli for assessing conditioning pain modulation (CPM).

    PubMed

    Tsukamoto, M; Petersen, K K; Mørch, C D; Arendt-Nielsen, L

    2017-12-29

    Aims Traditionally, conditioning pain modulation (CPM) can be assessed by applying a test stimulus (TS) before and after application of a conditioning stimulus (CS), which is normally applied extra-segmental. Currently, no studies have attempted to apply the TS and CS to the same site using different stimuli modalities. The aim of this study was to evaluate electrical TS and cuff pressure CS applied to the same experimental site for studying CPM. Methods 20 male volunteers participated in this study, which consisted of stimulations applied by a cuff-algometer (NociTech and Aalborg University, Denmark) and current stimulator (Digitimer DS5, UK), through two Ag/AgCl electrodes (Ambu® Neuroline 700, Denmark). The cuff was wrapped around the lower leg and stimulation electrodes were placed under the cuff and to the same location on the contralateral leg. Electrical TS were applied to the non-dominant leg with or without cuff pressure CS on the dominant (CS1) or the same (non-dominant) leg (CS2, electrode under cuff). The subjects were instructed to rate the electrical evoked pain intensity on a 10-cm continuous visual analog scale (VAS, "0" represented "no pain", and "10" represented "maximal pain"). The pain detection threshold (PDT) was defined as "1" on the VAS scale. Results There was no significant deference in PDT for neither CS1 nor CS2. A median split subanalysis on CPM-responders versus CPM-nonresponders to the TS + CS1 combination. Using this grouping, there was significant increase in PDT when comparing TS to TS + CS1 or TS + CS2 (4.0 mA vs 5.6 mA; P < 0.05, 4.0 mA vs 5.1 mA; P < 0.05). Conclusions The study indicates that CPM can be evoked in a subgroup of subjects by applying the electrical test stimulus and cuff pressure conditioning stimuli to the same experimental site.

  4. Design and evaluation of wide-range and low-power analog front-end enabling body-implanted devices to monitor charge injection properties

    NASA Astrophysics Data System (ADS)

    Ito, Keita; Uno, Shoma; Goto, Tatsuya; Takezawa, Yoshiki; Harashima, Takuya; Morikawa, Takumi; Nishino, Satoru; Kino, Hisashi; Kiyoyama, Koji; Tanaka, Tetsu

    2017-04-01

    For safe electrical stimulation with body-implanted devices, the degradation of stimulus electrodes must be considered because it causes the unexpected electrolysis of water and the destruction of tissues. To monitor the charge injection property (CIP) of stimulus electrodes while these devices are implanted, we have proposed a charge injection monitoring system (CIMS). CIMS can safely read out voltages produced by a biphasic current pulse to a stimulus electrode and CIP is calculated from waveforms of the acquired voltages. In this paper, we describe a wide-range and low-power analog front-end (AFE) for CIMS that has variable gain-frequency characteristics and low-power analog-to-digital (A/D) conversion to adjust to the degradation of stimulus electrodes. The designed AFE was fabricated with 0.18 µm CMOS technology and achieved a valuable gain of 20-60 dB, an upper cutoff frequency of 0.2-10 kHz, and low-power interleaving A/D conversion. In addition, we successfully measured the CIP of stimulus electrodes for body-implanted devices using CIMS.

  5. Heart rate reactivity associated to positive and negative food and non-food visual stimuli.

    PubMed

    Kuoppa, Pekka; Tarvainen, Mika P; Karhunen, Leila; Narvainen, Johanna

    2016-08-01

    Using food as a stimuli is known to cause multiple psychophysiological reactions. Heart rate variability (HRV) is common tool for assessing physiological reactions in autonomic nervous system. However, the findings in HRV related to food stimuli have not been consistent. In this paper the quick changes in HRV related to positive and negative food and non-food visual stimuli are investigated. Electrocardiogram (ECG) was measured from 18 healthy females while being stimulated with the pictures. Subjects also filled Three-Factor Eating Questionnaire to determine their eating behavior. The inter-beat-interval time series and the HRV parameters were extracted from the ECG. The quick change in HRV parameters were studied by calculating the change from baseline value (10 s window before stimulus) to value after the onset of the stimulus (10 s window during stimulus). The paired t-test showed significant difference between positive and negative food pictures but not between positive and negative non-food pictures. All the HRV parameters decreased for positive food pictures while they stayed the same or increased a little for negative food pictures. The eating behavior characteristic cognitive restraint was negatively correlated with HRV parameters that describe decreasing of heart rate.

  6. Visual motion direction is represented in population-level neural response as measured by magnetoencephalography.

    PubMed

    Kaneoke, Y; Urakawa, T; Kakigi, R

    2009-05-19

    We investigated whether direction information is represented in the population-level neural response evoked by the visual motion stimulus, as measured by magnetoencephalography. Coherent motions with varied speed, varied direction, and different coherence level were presented using random dot kinematography. Peak latency of responses to motion onset was inversely related to speed in all directions, as previously reported, but no significant effect of direction on latency changes was identified. Mutual information entropy (IE) calculated using four-direction response data increased significantly (>2.14) after motion onset in 41.3% of response data and maximum IE was distributed at approximately 20 ms after peak response latency. When response waveforms showing significant differences (by multivariate discriminant analysis) in distribution of the three waveform parameters (peak amplitude, peak latency, and 75% waveform width) with stimulus directions were analyzed, 87 waveform stimulus directions (80.6%) were correctly estimated using these parameters. Correct estimation rate was unaffected by stimulus speed, but was affected by coherence level, even though both speed and coherence affected response amplitude similarly. Our results indicate that speed and direction of stimulus motion are represented in the distinct properties of a response waveform, suggesting that the human brain processes speed and direction separately, at least in part.

  7. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.

    PubMed

    Karimi, Mahdi; Ghasemi, Amir; Sahandi Zangabad, Parham; Rahighi, Reza; Moosavi Basri, S Masoud; Mirshekari, H; Amiri, M; Shafaei Pishabad, Z; Aslani, A; Bozorgomid, M; Ghosh, D; Beyzavi, A; Vaseghi, A; Aref, A R; Haghani, L; Bahrami, S; Hamblin, Michael R

    2016-03-07

    New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.

  8. Modeling Age Differences in Infant Category Learning

    ERIC Educational Resources Information Center

    Shultz, Thomas R.; Cohen, Leslie B.

    2004-01-01

    We used an encoder version of cascade correlation to simulate Younger and Cohen's (1983, 1986) finding that 10-month-olds recover attention on the basis of correlations among stimulus features, but 4- and 7-month-olds recover attention on the basis of stimulus features. We captured these effects by varying the score threshold parameter in cascade…

  9. Plantar blood flow response to accumulated pressure stimulus in diabetic people with different peak plantar pressure: a non-randomized clinical trial.

    PubMed

    Pu, Fang; Ren, Weiyan; Fu, Hongyuan; Zheng, Xuan; Yang, Min; Jan, Yih-Kuen; Fan, Yubo

    2018-05-11

    The aim of this study was to investigate the plantar blood flow response to the same accumulated pressure stimulus in diabetic patients with different peak plantar pressure (PPP), which is important for assessing the risk of diabetic foot ulcer. Eleven diabetic subjects with high PPP (PPP ≥ 207 kPa) and 8 diabetic subjects with low PPP (PPP < 207 kPa) were asked to walk naturally on a treadmill so as to induce an accumulated stimulus of 73,000 kPa·s on their first metatarsal head, which was monitored with a sensorized insole. Blood perfusion (BP) in the first metatarsal head was measured before and after walking. Results showed that blood flow after applying the same walking stimulus was significantly decreased in comparison to the basal BP before walking in both high PPP and low PPP groups (p < 0.05), but no significant differences were found between the two groups in terms of BP parameters and its percentage change (p > 0.05). Moreover, BP parameters were not significantly correlated to PPP and the pressure-time integral (PTI) of the subjects' gait (p > 0.05). This indicated that, besides PPP and PTI, the accumulated mechanical stimulus should be taken into consideration when assessing the risk of diabetic patients developing foot ulcers. Graphical abstract Plantar blood flow response to a walking stimulus.

  10. Spatial parameters at the basis of social transfer of learning.

    PubMed

    Lugli, Luisa; Iani, Cristina; Milanese, Nadia; Sebanz, Natalie; Rubichi, Sandro

    2015-06-01

    Recent research indicates that practicing on a joint spatial compatibility task with an incompatible stimulus-response mapping affects subsequent joint Simon task performance, eliminating the social Simon effect. It has been well established that in individual contexts, for transfer of learning to occur, participants need to practice an incompatible association between stimulus and response positions. The mechanisms underlying transfer of learning in joint task performance are, however, less well understood. The present study was aimed at assessing the relative contribution of 3 different spatial relations characterizing the joint practice context: stimulus-response, stimulus-participant, and participant-response relations. In 3 experiments, the authors manipulated the stimulus-response, stimulus-participant, and response-participant associations. We found that learning from the practice task did not transfer to the subsequent task when during practice stimulus-response associations were spatially incompatible and stimulus-participant associations were compatible (Experiment 1). However, a transfer of learning was evident when stimulus-participant associations were spatially incompatible. This occurred both when response-participant associations were incompatible (Experiment 2) and when they were compatible (Experiment 3). These results seem to support an agent corepresentation account of correspondence effects emerging in joint settings since they suggest that, in social contexts, critical to obtain transfer-of-learning effects is the spatial relation between stimulus and participant positions while the spatial relation between stimulus and response positions is irrelevant. (c) 2015 APA, all rights reserved).

  11. One for all: The effect of extinction stimulus typicality on return of fear.

    PubMed

    Scheveneels, Sara; Boddez, Yannick; Bennett, Marc Patrick; Hermans, Dirk

    2017-12-01

    During exposure therapy, patients are encouraged to approach the feared stimulus, so they can experience that this stimulus is not followed by the anticipated aversive outcome. However, patients might treat the absence of the aversive outcome as an 'exception to the rule'. This could hamper the generalization of fear reduction when the patient is confronted with similar stimuli not used in therapy. We examined the effect of providing information about the typicality of the extinction stimulus on the generalization of extinction to a new but similar stimulus. In a differential fear conditioning procedure, an animal-like figure was paired with a brief electric shock to the wrist. In a subsequent extinction phase, a different but perceptually similar animal-like figure was presented without the shock. Before testing the generalization of extinction with a third animal-like figure, participants were either instructed that the extinction stimulus was a typical or an atypical member of the animal family. The typicality instruction effectively impacted the generalization of extinction; the third animal-like figure elicited lower shock expectancies in the typical relative to the atypical group. Skin conductance data mirrored these results, but did not reach significance. These findings suggest that verbal information about stimulus typicality can be a promising adjunctive to standard exposure treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Compositos CNTs/bioceramico para a estimulacao eletrica ossea in situ

    NASA Astrophysics Data System (ADS)

    Mata, Diogo Miguel Rodrigues Marinho da

    The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of 500 mg/day. The deposition parameters were optimised to obtain high pure CNTs 99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the increase of the cell metabolic activity and DNA content by 130% and 60%, relatively to the non-stimulated condition, after only 3 days of daily stimulation of 15 μA for 15 min. Moreover, the osteoblastic gene expression for Runx2, osteocalcin (OC) and ALP was enhanced by 80%, 50% and 25%, after 5 days of stimulation. Instead, for dielectric materials, the stimulus delivering was less efficient, giving an equal or lower cellular response than the non-stimulated condition. The proposed electroconductive bone grafts offer exciting possibilities in bone regeneration strategies by delivering in situ electrical stimulus to cells and consequent control of the new bone tissue formation rate. It is expected that conductive smart biomaterials might turn the selective bone electrotherapy of clinical relevance by decreasing the postoperative healing times.

  13. Nonlinear oscillations in a muscle pacemaker cell model

    NASA Astrophysics Data System (ADS)

    González-Miranda, J. M.

    2017-02-01

    This article presents a numerical simulation study of the nonlinear oscillations displayed by the Morris-Lecar model [Biophys. J. 35 (1981) 193] for the oscillations experimentally observed in the transmembrane potential of a muscle fiber subject to an external electrical stimulus. We consider the model in the case when there is no external stimulation, aiming to establish the ability of the model to display biophysically reasonable pacemaker dynamics. We obtain 2D bifurcation diagrams showing that indeed the model presents oscillatory dynamics, displaying the two main types of action potentials that are observed in muscle fibers. The results obtained are shown to be structurally stable; that is, robust against changes in the values of system parameters. Moreover, it is demonstrated how the model is appropriate to analyze the action potentials observed in terms of the transmembrane currents creating them.

  14. Stimulus factors in motion perception and spatial orientation

    NASA Technical Reports Server (NTRS)

    Post, R. B.; Johnson, C. A.

    1984-01-01

    The Malcolm horizon utilizes a large projected light stimulus Peripheral Vision Horizon Device (PVHD) as an attitude indicator in order to achieve a more compelling sense of roll than is obtained with smaller devices. The basic principle is that the larger stimulus is more similar to visibility of a real horizon during roll, and does not require fixation and attention to the degree that smaller displays do. Successful implementation of such a device requires adjustment of the parameters of the visual stimulus so that its effects on motion perception and spatial orientation are optimized. With this purpose in mind, the effects of relevant image variables on the perception of object motion, self motion and spatial orientation are reviewed.

  15. Motor cortex stimulation: role of computer modeling.

    PubMed

    Manola, L; Holsheimer, J

    2007-01-01

    Motor cortex stimulation (MCS) is a promising clinical technique used to treat chronic, otherwise intractable pain. However, the mechanisms by which the neural elements that are stimulated during MCS induce pain relief are not understood. Neither is it known which of the main neural elements, i.e. cell bodies, dendrites or fibers are immediately excited by the electrical pulses in MCS. Moreover, it is not known what are the effects of MCS on fibers which are parallel or perpendicular to the cortical layers, below or away from the electrode. The therapy and its efficacy are less likely to be improved until it is better understood how it may work. In this chapter, we present our efforts to resolve this issue. Our computer model of MCS is introduced and some of its predictions are discussed. In particular, the influence of stimulus polarity and electrode position on the electrical field and excitation thresholds of different neural elements is addressed. Such predictions, supported with clinical evidence, should help to elucidate the immediate effects of an electrical stimulus applied over the motor cortex and may ultimately lead to optimizations of the therapy.

  16. The effect of direct heating and cooling of heat regulation centers on body temperature

    NASA Technical Reports Server (NTRS)

    Barbour, H. G.

    1978-01-01

    Experiments were done on 28 rabbits in which puncture instruments were left in the brain for 1-2 days until the calori-puncture hyperthermia had passed and the body temperature was again normal. The instrument remaining in the brain was then used as a galvanic electrode and a second fever was produced, this time due to the electrical stimulus. It was concluded that heat is a centrally acting antipyretic and that cold is a centrally acting stimulus which produces hyperpyrexia cold-induced fever.

  17. Stimulus control: Part II

    PubMed Central

    Dinsmoor, James A.

    1995-01-01

    The second part of my tutorial stresses the systematic importance of two parameters of discrimination training: (a) the magnitude of the physical difference between the positive and the negative stimulus (disparity) and (b) the magnitude of the difference between the positive stimulus, in particular, and the background stimulation (salience). It then examines the role these variables play in such complex phenomena as blocking and overshadowing, progressive discrimination training, and the transfer of control by fading. It concludes by considering concept formation and imitation, which are important forms of application, and recent work on equivalence relations. PMID:22478222

  18. Evidence of plasticity in the pontocerebellar conditioned stimulus pathway during classical conditioning of the eyeblink response in the rabbit.

    PubMed

    Tracy, Jo Anne; Thompson, Judith K; Krupa, David J; Thompson, Richard F

    2013-10-01

    Electrical stimulation thresholds required to elicit eyeblinks with either pontine or cerebellar interpositus stimulation were measured before and after classical eyeblink conditioning with paired pontine stimulation (conditioned stimulus, CS) and corneal airpuff (unconditioned stimulus, US). Pontine stimulation thresholds dropped dramatically after training and returned to baseline levels following extinction, whereas interpositus thresholds and input-output functions remained stable across training sessions. Learning rate, magnitude of threshold change, and electrode placements were correlated. Pontine projection patterns to the cerebellum were confirmed with retrograde labeling techniques. These results add to the body of literature suggesting that the pons relays CS information to the cerebellum and provide further evidence of synaptic plasticity in the cerebellar network. 2013 APA, all rights reserved

  19. [Effect of previous experience in reacting to a danger signal on "open field" behavior in the rat].

    PubMed

    Poltyreva, T E; Petrov, E S

    1983-01-01

    Modification of rats behaviour in an "hopen field" test was investigated, induced by an acoustic stimulus, previously subjected to conditioning in a shuttle chamber in experiments with possibility and impossibility of avoidance from electrical shock. It has been established that presentation of a stimulus having the meaning of a danger signal, in a new situation, significantly suppresses investigating behaviour of rats, whereas the stimulus which had not been subjected to conditioning exerts no marked effect on behaviour. The greatest suppression was observed in rats with "learned helplessness". This fact suggests that the degree of suppression of the behaviour in an open field in response to a danger signal, depends on the animal's previous experience in reacting to this signal.

  20. A system for the delivery of programmable, adaptive stimulation intensity envelopes for drop foot correction applications.

    PubMed

    Breen, P P; O'Keeffe, D T; Conway, R; Lyons, G M

    2006-03-01

    We describe the design of an intelligent drop foot stimulator unit for use in conjunction with a commercial neuromuscular electrical nerve stimulation (NMES) unit, the NT2000. The developed micro-controller unit interfaces to a personal computer (PC) and a graphical user interface (GUI) allows the clinician to graphically specify the shape of the stimulation intensity envelope required for a subject undergoing drop foot correction. The developed unit is based on the ADuC812S micro-controller evaluation board from Analog Devices and uses two force sensitive resistor (FSR) based foot-switches to control application of stimulus. The unit has the ability to display to the clinician how the stimulus intensity envelope is being delivered during walking using a data capture capability. The developed system has a built-in algorithm to dynamically adjust the delivery of stimulus to reflect changes both within the gait cycle and from cycle to cycle. Thus, adaptive control of stimulus intensity is achieved.

  1. Anodal sensory nerve action potentials: From physiological understanding to potential clinical applicability.

    PubMed

    Leote, Joao; Pereira, Pedro; Cabib, Christopher; Cipullo, Federica; Valls-Sole, Josep

    2016-06-01

    Low-intensity electrical stimuli of digital nerves may generate a double peak potential (DPp), composed of a cathodal (caAP) and an anodal (anAP) potential in orthodromic recordings. We studied the effects on caAP and anAP of stimuli of variable intensity, duration, and frequency. We also applied a conditioning stimulus to study potential differences in recovery time. The anAP was obtained in 33 of 40 healthy subjects (82.5%) and 4 of 20 patients with various types of sensory neuropathies (20%). Changes in stimulus duration and intensity had reciprocal effects on the amplitude of the anAP and the caAP. There were significant differences in recovery time between caAP and anAP after a conditioning stimulus. The caAP and anAP are 2 interdependent waveforms generated by different effects of the same stimulus over axons at the verge of depolarization. Muscle Nerve 53: 897-905, 2016. © 2015 Wiley Periodicals, Inc.

  2. Square or sine: finding a waveform with high success rate of eliciting SSVEP.

    PubMed

    Teng, Fei; Chen, Yixin; Choong, Aik Min; Gustafson, Scott; Reichley, Christopher; Lawhead, Pamela; Waddell, Dwight

    2011-01-01

    Steady state visual evoked potential (SSVEP) is the brain's natural electrical potential response for visual stimuli at specific frequencies. Using a visual stimulus flashing at some given frequency will entrain the SSVEP at the same frequency, thereby allowing determination of the subject's visual focus. The faster an SSVEP is identified, the higher information transmission rate the system achieves. Thus, an effective stimulus, defined as one with high success rate of eliciting SSVEP and high signal-noise ratio, is desired. Also, researchers observed that harmonic frequencies often appear in the SSVEP at a reduced magnitude. Are the harmonics in the SSVEP elicited by the fundamental stimulating frequency or by the artifacts of the stimuli? In this paper, we compare the SSVEP responses of three periodic stimuli: square wave (with different duty cycles), triangle wave, and sine wave to find an effective stimulus. We also demonstrate the connection between the strength of the harmonics in SSVEP and the type of stimulus.

  3. Safe Use of Acoustic Vestibular-Evoked Myogenic Potential Stimuli: Protocol and Patient-Specific Considerations.

    PubMed

    Portnuff, Cory D F; Kleindienst, Samantha; Bogle, Jamie M

    2017-09-01

    Vestibular-evoked myogenic potentials (VEMPs) are commonly used clinical assessments for patients with complaints of dizziness. However, relatively high air-conducted stimuli are required to elicit the VEMP, and ultimately may compromise safe noise exposure limits. Recently, research has reported the potential for noise-induced hearing loss (NIHL) from VEMP stimulus exposure through studies of reduced otoacoustic emission levels after VEMP testing, as well as a recent case study showing permanent sensorineural hearing loss associated with VEMP exposure. The purpose of this report is to review the potential for hazardous noise exposure from VEMP stimuli and to suggest clinical parameters for safe VEMP testing. Literature review with presentation of clinical guidelines and a clinical tool for estimating noise exposure. The literature surrounding VEMP stimulus-induced hearing loss is reviewed, including several cases of overexposure. The article then presents a clinical calculation tool for the estimation of a patient's safe noise exposure from VEMP stimuli, considering stimulus parameters, and includes a discussion of how varying stimulus parameters affect a patient's noise exposure. Finally, recommendations are provided for recognizing and managing specific patient populations who may be at higher risk for NIHL from VEMP stimulus exposure. A sample protocol is provided that allows for safe noise exposure. VEMP stimuli have the potential to cause NIHL due to high sound exposure levels. However, with proper safety protocols in place, clinicians may reduce or eliminate this risk to their patients. Use of the tools provided, including the noise exposure calculation tool and sample protocols, may help clinicians to understand and ensure safe use of VEMP stimuli. American Academy of Audiology

  4. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    PubMed Central

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  5. Rescuing Stimuli from Invisibility: Inducing a Momentary Release from Visual Masking with Pre-Target Entrainment

    ERIC Educational Resources Information Center

    Mathewson, Kyle E.; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M.; Lleras, Alejandro

    2010-01-01

    At near-threshold levels of stimulation, identical stimulus parameters can result in very different phenomenal experiences. Can we manipulate which stimuli reach consciousness? Here we show that consciousness of otherwise masked stimuli can be experimentally induced by sensory entrainment. We preceded a backward-masked stimulus with a series of…

  6. Easy Method to Examine Single Nerve Fiber Excitability and Conduction Parameters Using Intact Nonanesthetized Earthworms

    ERIC Educational Resources Information Center

    Bähring, Robert; Bauer, Christiane K.

    2014-01-01

    The generation and conduction of neuronal action potentials (APs) were the subjects of a cell physiology exercise for first-year medical students. In this activity, students demonstrated the all-or-none nature of AP generation, measured conduction velocity, and examined the dependence of the threshold stimulus amplitude on stimulus duration. For…

  7. Vocoders and Speech Perception: Uses of Computer-Based Speech Analysis-Synthesis in Stimulus Generation.

    ERIC Educational Resources Information Center

    Tierney, Joseph; Mack, Molly

    1987-01-01

    Stimuli used in research on the perception of the speech signal have often been obtained from simple filtering and distortion of the speech waveform, sometimes accompanied by noise. However, for more complex stimulus generation, the parameters of speech can be manipulated, after analysis and before synthesis, using various types of algorithms to…

  8. Neural correlations enable invariant coding and perception of natural stimuli in weakly electric fish

    PubMed Central

    Metzen, Michael G; Hofmann, Volker; Chacron, Maurice J

    2016-01-01

    Neural representations of behaviorally relevant stimulus features displaying invariance with respect to different contexts are essential for perception. However, the mechanisms mediating their emergence and subsequent refinement remain poorly understood in general. Here, we demonstrate that correlated neural activity allows for the emergence of an invariant representation of natural communication stimuli that is further refined across successive stages of processing in the weakly electric fish Apteronotus leptorhynchus. Importantly, different patterns of input resulting from the same natural communication stimulus occurring in different contexts all gave rise to similar behavioral responses. Our results thus reveal how a generic neural circuit performs an elegant computation that mediates the emergence and refinement of an invariant neural representation of natural stimuli that most likely constitutes a neural correlate of perception. DOI: http://dx.doi.org/10.7554/eLife.12993.001 PMID:27128376

  9. Adaptation without parameter change: Dynamic gain control in motion detection

    PubMed Central

    Borst, Alexander; Flanagin, Virginia L.; Sompolinsky, Haim

    2005-01-01

    Many sensory systems adapt their input-output relationship to changes in the statistics of the ambient stimulus. Such adaptive behavior has been measured in a motion detection sensitive neuron of the fly visual system, H1. The rapid adaptation of the velocity response gain has been interpreted as evidence of optimal matching of the H1 response to the dynamic range of the stimulus, thereby maximizing its information transmission. Here, we show that correlation-type motion detectors, which are commonly thought to underlie fly motion vision, intrinsically possess adaptive properties. Increasing the amplitude of the velocity fluctuations leads to a decrease of the effective gain and the time constant of the velocity response without any change in the parameters of these detectors. The seemingly complex property of this adaptation turns out to be a straightforward consequence of the multidimensionality of the stimulus and the nonlinear nature of the system. PMID:15833815

  10. Rhesus monkeys (Macaca mulatta), video tasks, and implications for stimulus-response spatial contiguity

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Duane M.; Richardson, W. Kirk; Washburn, David A.; Hopkins, William D.; Savage-Rumbaugh, E. Sue

    1989-01-01

    Recent reports support the argument that the efficiency of primate learning is compromised to the degree that there is spatial discontiguity between discriminands and the locus of response. Experiments are reported here in which two rhesus monkeys easily mastered precise control of a joystick to respond to a variety of computer-generated targets despite the fact that the joystick was located 9 to 18 cm from the video screen. It is argued that stimulus-response contiguity is a significant parameter of learning only to the degree that the monkey visually attends to the directional movements of its hand in order to displace discriminands. If attention is focused on the effects of the hand's movement rather than on the hand itself, stimulus-response contiguity is no longer a primary parameter of learning. The implications of these results for mirror-guided studies are discussed.

  11. In vivo stimulus presentation to the mouse vomeronasal system: Surgery, experiment, setup, and software.

    PubMed

    Yoles-Frenkel, Michal; Cohen, Oksana; Bansal, Rohini; Horesh, Noa; Ben-Shaul, Yoram

    2017-06-15

    Achieving controlled stimulus delivery is a major challenge in the physiological analysis of the vomeronasal system (VNS). We provide a comprehensive description of a setup allowing controlled stimulus delivery into the vomeronasal organ (VNO) of anesthetized mice. VNO suction is achieved via electrical stimulation of the sympathetic nerve trunk (SNT) using cuff electrodes, followed by flushing of the nasal cavity. Successful application of this methodology depends on several aspects including the surgical preparation, fabrication of cuff electrodes, experimental setup modifications, and the stimulus delivery and flushing. Here, we describe all these aspects in sufficient detail to allow other researchers to readily adopt it. We also present a custom written MATLAB based software with a graphical user interface that controls all aspects of the actual experiment, including trial sequencing, hardware control, and data logging. The method allows measurement of stimulus evoked sensory responses in brain regions that receive vomeronasal inputs. An experienced investigator can complete the entire surgical procedure within thirty minutes. This is the only approach that allows repeated and controlled stimulus delivery to the intact VNO, employing the natural mode of stimulus uptake. The approach is economical with respect to stimuli, requiring stimulus volumes as low as 1-2μl. This comprehensive description will allow other investigators to adapt this setup to their own experimental needs and can thus promote our physiological understanding of this fascinating chemosensory system. With minor changes it can also be adapted for other rodent species. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Stimulus waveform determines the characteristics of sensory nerve action potentials.

    PubMed

    Pereira, Pedro; Leote, João; Cabib, Christopher; Casanova-Molla, Jordi; Valls-Sole, Josep

    2016-03-01

    In routine nerve conduction studies supramaximal electrical stimuli generate sensory nerve action potentials by depolarization of nerve fibers under the cathode. However, stimuli of submaximal intensity may give rise to action potentials generated under the anode. We tested if this phenomenon depends on the characteristics of stimulus ending. We added a circuit to our stimulation device that allowed us to modify the end of the stimulus by increasing the time constant of the decay phase. Increasing the fall time caused a reduction of anode action potential (anAP) amplitude, and eventually abolished it, in all tested subjects. We subsequently examined the stimulus waveform in a series of available electromyographs stimulators and found that the anAP could only be obtained with stimulators that issued stimuli ending sharply. Our results prove that the anAP is generated at stimulus end, and depends on the sharpness of current shut down. Electromyographs produce stimuli of varying characteristics, which limits the reproducibility of anAP results by interested researchers. The study of anodal action potentials might be a useful tool to have a quick appraisal of distal human sensory nerve excitability. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. What a Difference a Parameter Makes: a Psychophysical Comparison of Random Dot Motion Algorithms

    PubMed Central

    Pilly, Praveen K.; Seitz, Aaron R.

    2009-01-01

    Random dot motion (RDM) displays have emerged as one of the standard stimulus types employed in psychophysical and physiological studies of motion processing. RDMs are convenient because it is straightforward to manipulate the relative motion energy for a given motion direction in addition to stimulus parameters such as the speed, contrast, duration, density, aperture, etc. However, as widely as RDMs are employed so do they vary in their details of implementation. As a result, it is often difficult to make direct comparisons across studies employing different RDM algorithms and parameters. Here, we systematically measure the ability of human subjects to estimate motion direction for four commonly used RDM algorithms under a range of parameters in order to understand how these different algorithms compare in their perceptibility. We find that parametric and algorithmic differences can produce dramatically different performances. These effects, while surprising, can be understood in relationship to pertinent neurophysiological data regarding spatiotemporal displacement tuning properties of cells in area MT and how the tuning function changes with stimulus contrast and retinal eccentricity. These data help give a baseline by which different RDM algorithms can be compared, demonstrate a need for clearly reporting RDM details in the methods of papers, and also pose new constraints and challenges to models of motion direction processing. PMID:19336240

  14. Tactile perception and working memory in rats and humans

    PubMed Central

    Fassihi, Arash; Akrami, Athena; Esmaeili, Vahid; Diamond, Mathew E.

    2014-01-01

    Primates can store sensory stimulus parameters in working memory for subsequent manipulation, but until now, there has been no demonstration of this capacity in rodents. Here we report tactile working memory in rats. Each stimulus is a vibration, generated as a series of velocity values sampled from a normal distribution. To perform the task, the rat positions its whiskers to receive two such stimuli, “base” and “comparison,” separated by a variable delay. It then judges which stimulus had greater velocity SD. In analogous experiments, humans compare two vibratory stimuli on the fingertip. We demonstrate that the ability of rats to hold base stimulus information (for up to 8 s) and their acuity in assessing stimulus differences overlap the performance demonstrated by humans. This experiment highlights the ability of rats to perceive the statistical structure of vibrations and reveals their previously unknown capacity to store sensory information in working memory. PMID:24449850

  15. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems

    PubMed Central

    Karimi, Mahdi; Ghasemi, Amir; Zangabad, Parham Sahandi; Rahighi, Reza; Moosavi Basri, S. Masoud; Mirshekari, H.; Amiri, M.; Pishabad, Z. Shafaei; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A. R.; Haghani, L.; Bahrami, S.; Hamblin, Michael R.

    2016-01-01

    New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive “smart” MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications. PMID:26776487

  16. Neuromuscular electrical stimulation of the hindlimb muscles for movement therapy in a rodent model.

    PubMed

    Ichihara, Kazuhiko; Venkatasubramanian, Ganapriya; Abbas, James J; Jung, Ranu

    2009-01-30

    Neuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES-induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations. We present a rodent model for NMES of the flexor and extensor muscles of the hip, knee, and ankle hindlimb muscles. Custom fabricated intramuscular stimulating electrodes for rodents were implanted near identified motor points of targeted muscles in ten adult, female Long Evans rats. The effects of altering NMES pulse stimulation parameters were characterized using strength duration curves, isometric joint torque recruitment curves and joint angle measures. The data indicate that short pulse widths have the advantage of producing graded torque recruitment curves when current is used as the control parameter. A stimulus frequency of 75 Hz or more produces fused contractions. The data demonstrate ability to accurately implant the electrodes and obtain selective, graded, repeatable, strong muscle contractions. Knee and ankle angular excursions comparable to those obtained in normal treadmill walking in the same rodent species can be obtained by stimulating the target muscles. Joint torques (normalized to body weight) obtained were larger than those reported in the literature for small tailed therian mammals and for peak isometric ankle plantarflexion in a different rodent species. This model system could be used for investigations of NMES assisted hindlimb movement therapy.

  17. Modulation of isochronous movements in a flexible environment: links between motion and auditory experience.

    PubMed

    Bravi, Riccardo; Del Tongo, Claudia; Cohen, Erez James; Dalle Mura, Gabriele; Tognetti, Alessandro; Minciacchi, Diego

    2014-06-01

    The ability to perform isochronous movements while listening to a rhythmic auditory stimulus requires a flexible process that integrates timing information with movement. Here, we explored how non-temporal and temporal characteristics of an auditory stimulus (presence, interval occupancy, and tempo) affect motor performance. These characteristics were chosen on the basis of their ability to modulate the precision and accuracy of synchronized movements. Subjects have participated in sessions in which they performed sets of repeated isochronous wrist's flexion-extensions under various conditions. The conditions were chosen on the basis of the defined characteristics. Kinematic parameters were evaluated during each session, and temporal parameters were analyzed. In order to study the effects of the auditory stimulus, we have minimized all other sensory information that could interfere with its perception or affect the performance of repeated isochronous movements. The present study shows that the distinct characteristics of an auditory stimulus significantly influence isochronous movements by altering their duration. Results provide evidence for an adaptable control of timing in the audio-motor coupling for isochronous movements. This flexibility would make plausible the use of different encoding strategies to adapt audio-motor coupling for specific tasks.

  18. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.

    PubMed

    Miocinovic, Svjetlana; Lempka, Scott F; Russo, Gary S; Maks, Christopher B; Butson, Christopher R; Sakaie, Ken E; Vitek, Jerrold L; McIntyre, Cameron C

    2009-03-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system.

  19. Steady-state pattern electroretinogram and short-duration transient visual evoked potentials in glaucomatous and healthy eyes.

    PubMed

    Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V

    2018-01-01

    This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P < 0.001) 64-bar-size steady-state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P < 0.001 and P = 0.010, respectively). Short-duration transient visual evoked potential amplitude and latency were not significantly different between the two groups. Steady-state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  20. The jamming avoidance response in the weakly electric fish Eigenmannia

    NASA Astrophysics Data System (ADS)

    Heiligenberg, Walter

    1980-10-01

    This study analyzes the algorithm by which the animal's nervous system evaluates spatially distributed temporal patterns of electroreceptive information. The outcome of this evaluation controls the jamming avoidance response, which is a shift in the animal's electric organ discharge frequency away from similar foreign frequencies. The encoding of “behaviorally relevant” stimulus variables by electroreceptors and the central computation of their messages are investigated by combined behavioral and neurophysiological strategies.

  1. Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model

    PubMed Central

    Lee, Won Hee; Lisanby, Sarah H.; Laine, Andrew F.; Peterchev, Angel V.

    2017-01-01

    Background This study examines the strength and spatial distribution of the electric field induced in the brain by electroconvulsive therapy (ECT) and magnetic seizure therapy (MST). Methods The electric field induced by standard (bilateral, right unilateral, and bifrontal) and experimental (focal electrically administered seizure therapy and frontomedial) ECT electrode configurations as well as a circular MST coil configuration was simulated in an anatomically realistic finite element model of the human head. Maps of the electric field strength relative to an estimated neural activation threshold were used to evaluate the stimulation strength and focality in specific brain regions of interest for these ECT and MST paradigms and various stimulus current amplitudes. Results The standard ECT configurations and current amplitude of 800–900 mA produced the strongest overall stimulation with median of 1.8–2.9 times neural activation threshold and more than 94% of the brain volume stimulated at suprathreshold level. All standard ECT electrode placements exposed the hippocampi to suprathreshold electric field, although there were differences across modalities with bilateral and right unilateral producing respectively the strongest and weakest hippocampal stimulation. MST stimulation is up to 9 times weaker compared to conventional ECT, resulting in direct activation of only 21% of the brain. Reducing the stimulus current amplitude can make ECT as focal as MST. Conclusions The relative differences in electric field strength may be a contributing factor for the cognitive sparing observed with right unilateral compared to bilateral ECT, and MST compared to right unilateral ECT. These simulations could help understand the mechanisms of seizure therapies and develop interventions with superior risk/benefit ratio. PMID:27318858

  2. Prestimulus Alpha Power Influences Tactile Temporal Perceptual Discrimination and Confidence in Decisions.

    PubMed

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2016-03-01

    Recent studies have demonstrated that prestimulus alpha-band activity substantially influences perception of near-threshold stimuli. Here, we studied the influence of prestimulus alpha power fluctuations on temporal perceptual discrimination of suprathreshold tactile stimuli and subjects' confidence regarding their perceptual decisions. We investigated how prestimulus alpha-band power influences poststimulus decision-making variables. We presented electrical stimuli with different stimulus onset asynchronies (SOAs) to human subjects, and determined the SOA for which temporal perceptual discrimination varied on a trial-by-trial basis between perceiving 1 or 2 stimuli, prior to recording brain activity with magnetoencephalography. We found that low prestimulus alpha power in contralateral somatosensory and occipital areas predicts the veridical temporal perceptual discrimination of 2 stimuli. Additionally, prestimulus alpha power was negatively correlated with confidence ratings in correctly perceived trials, but positively correlated for incorrectly perceived trials. Finally, poststimulus event-related fields (ERFs) were modulated by prestimulus alpha power and reflect the result of a decisional process rather than physical stimulus parameters around ∼150 ms. These findings provide new insights into the link between spontaneous prestimulus alpha power fluctuations, temporal perceptual discrimination, decision making, and decisional confidence. The results suggest that prestimulus alpha power modulates perception and decisions on a continuous scale, as reflected in confidence ratings. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Analyzing the relationships between reflection source DPOAEs and SFOAEs using a computational model

    NASA Astrophysics Data System (ADS)

    Wen, Haiqi; Bowling, Thomas; Meaud, Julien

    2018-05-01

    Distortion product otoacoustic emissions (DPOAEs) are sounds generated by the cochlea in response to a stimulus that consists of two primary tones. DPOAEs consist of a mixture of emissions arising from two different mechanisms: nonlinear distortion and coherent reflection. Stimulus Frequency Otoacoustic Emissions (SFOAEs) are sounds generated by the cochlea in response to a pure tone; SFOAEs are commonly hypothesized to be generated due to coherent reflection. Nonlinearity of the outer hair cells (OHCs) provides nonlinear amplification to the traveling wave while reflections occur due to pre-existing micromechanical impedance perturbations. In this work, DPOAEs are obtained from a time domain computational model coupling a lumped parameter middle ear model with a multiphysics mechanical-electrical-acoustical model of cochlea. Cochlear roughness is intro-duced by perturbing the value of the OHC electromechanical coupling coefficient to account for the putative inhomogeneities inside the cochlea. The DPOAEs emitted in the ear canal are decomposed into distortion source and reflection source components. The reflection source component of DPOAEs is compared to SFOAEs obtained using a frequency-domain implementation of the model, to help us understand how distortion source and reflection source contributes to total DPOAEs. Moreover, the group delays of reflection sources OAEs are compared to group delays in the basilar membrane velocity to clarify the relationship between basilar membrane and OAE group delays.

  4. TRANSFER OF AVERSIVE RESPONDENT ELICITATION IN ACCORDANCE WITH EQUIVALENCE RELATIONS

    PubMed Central

    Valverde, Miguel RodrÍguez; Luciano, Carmen; Barnes-Holmes, Dermot

    2009-01-01

    The present study investigates the transfer of aversively conditioned respondent elicitation through equivalence classes, using skin conductance as the measure of conditioning. The first experiment is an attempt to replicate Experiment 1 in Dougher, Augustson, Markham, Greenway, and Wulfert (1994), with different temporal parameters in the aversive conditioning procedure employed. Match-to-sample procedures were used to teach 17 participants two 4-member equivalence classes. Then, one member of one class was paired with electric shock and one member of the other class was presented without shock. The remaining stimuli from each class were presented in transfer tests. Unlike the findings in the original study, transfer of conditioning was not achieved. In Experiment 2, similar procedures were used with 30 participants, although several modifications were introduced (formation of five-member classes, direct conditioning with several elements of each class, random sequences of stimulus presentation in transfer tests, reversal in aversive conditioning contingencies). More than 80% of participants who had shown differential conditioning also showed the transfer of function effect. Moreover, this effect was replicated within subjects for 3 participants. This is the first demonstration of the transfer of aversive respondent elicitation through stimulus equivalence classes with the presentation of transfer test trials in random order. The latter prevents the possibility that transfer effects are an artefact of transfer test presentation order. PMID:20119523

  5. Dynamin phosphorylation controls optimization of endocytosis for brief action potential bursts

    PubMed Central

    Armbruster, Moritz; Messa, Mirko; Ferguson, Shawn M; De Camilli, Pietro; Ryan, Timothy A

    2013-01-01

    Modulation of synaptic vesicle retrieval is considered to be potentially important in steady-state synaptic performance. Here we show that at physiological temperature endocytosis kinetics at hippocampal and cortical nerve terminals show a bi-phasic dependence on electrical activity. Endocytosis accelerates for the first 15–25 APs during bursts of action potential firing, after which it slows with increasing burst length creating an optimum stimulus for this kinetic parameter. We show that activity-dependent acceleration is only prominent at physiological temperature and that the mechanism of this modulation is based on the dephosphorylation of dynamin 1. Nerve terminals in which dynamin 1 and 3 have been replaced with dynamin 1 harboring dephospho- or phospho-mimetic mutations in the proline-rich domain eliminate the acceleration phase by either setting endocytosis at an accelerated state or a decelerated state, respectively. DOI: http://dx.doi.org/10.7554/eLife.00845.001 PMID:23908769

  6. Neural Responses in Parietal and Occipital Areas in Response to Visual Events Are Modulated by Prior Multisensory Stimuli

    PubMed Central

    Innes-Brown, Hamish; Barutchu, Ayla; Crewther, David P.

    2013-01-01

    The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus. PMID:24391939

  7. Ground Reaction Forces and Gait Parameters during Motorized and Non-Motorized Treadmill Walking and Runing on the International Space Station Treadmill

    NASA Technical Reports Server (NTRS)

    Hagan, Ronald Donald; Norcross, Jason; DeWitt, John; Lee, Stuart M.; McCleary, Frank; Edwards, W. Brent

    2006-01-01

    Both motorized (T-M) and non-motorized (T-NM) treadmill locomotion are used on the International Space Station (ISS) as countermeasures to the deleterious effects of prolonged weightlessness. However, the ground reaction forces (GRF) and gait parameters of these exercise modes have not been examined. The purpose of this study was to determine if differences in GRF and gait parameters exist while walking (1.34 m/s) and running (3.13 m/s) on T-M and T-NM. Dissimilar GRF and gait parameters suggest that T-M and T-NM locomotion may elicit different physiologic effects. T-NM may result in a reduced stimulus to bone formation due to a lower LR, but an increased energy cost as a result of shorter, more frequent strides. Therefore, the usage of each mode should depend upon the desired training stimulus.

  8. An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt

    NASA Astrophysics Data System (ADS)

    Gong, Xiaobo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2016-03-01

    Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures.

  9. Role of benzodiazepine and serotonergic mechanisms in conditioned freezing and antinociception using electrical stimulation of the dorsal periaqueductal gray as unconditioned stimulus in rats.

    PubMed

    Castilho, V M; Macedo, C E; Brandão, M L

    2002-12-01

    The dorsal periaqueductal gray matter (dPAG) has been implicated in the modulation of defensive behavior. Electrical stimulation of this structure can be used as an unconditioned stimulus to produce a conditioned fear reaction expressed by freezing, antinociception, and autonomic responses. This study investigated the influence of benzodiazepine, serotonergic, and opioid mechanisms on these conditioned responses. Animals implanted with an electrode and a guide cannula into the dPAG were submitted to two conditioning sessions. Each session consisted of ten pairings of the light in a distinctive chamber (CS) with the electrical stimulation of this structure at the escape threshold. On the next day, each animal was exposed only to the CS (testing) and the duration of freezing, number of rearing and grooming episodes were recorded for 5 min. Before and after the testing session, animals were submitted to the tail-flick test. Fifteen minutes before the exposure to the CS, animals received injections into the dPAG of midazolam (a positive modulator of benzodiazepine sites), alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT; an agonist of 5-HT(2) receptors), naltrexone (an opioid antagonist), or vehicle. Conditioning with dPAG electrical stimulation caused significant increases in the time of freezing and conditioned antinociception. Injections of midazolam into the dPAG significantly inhibited freezing behavior and antinociception due to conditioning. Injections of alpha-Me-5-HT inhibited the effects of conditioning on freezing without affecting conditioned antinociception. Injections of naltrexone (13 nmol/0.2 micro l) did not change any of the conditioned responses studied. (1) Conditioned freezing and antinociception are modulated by benzodiazepine mechanisms into dPAG. (2) 5-HT(2) receptors seem to regulate conditioned freezing behavior. However, conditioned antinociception was not affected by 13 nmol naltrexone. (3) Opioid mechanisms do not seem to be involved in the conditioned responses using electrical stimulation of the dPAG as unconditioned stimulus. Further studies with other opioid and 5-HT(2) receptor antagonists are still needed to confirm the conclusions drawn from the present work.

  10. Effects of the concurrent use of a reduced dose of propofol with divided supplemental remifentanil and moderate hyperventilation on duration and morphology of electroconvulsive therapy-induced electroencephalographic seizure activity: A randomized controlled trial.

    PubMed

    Nishikawa, Kohki; Yamakage, Michiaki

    2017-02-01

    The clinical adequacy of electroconvulsive therapy (ECT) depends on not only seizure duration but also seizure amplitude and postictal suppression. The objective of this study was to evaluate the effects of combination of a reduced dose of propofol and moderate hyperventilation on seizure duration and electrical stimulus requirement for adequate ictal amplitude and postictal suppression. Prospective, randomized, controlled trial. Operating room at a municipal hospital. Sixty ASA physical status I or II patients scheduled to receive a total of >300 ECT treatments. Patients were randomly assigned to have the three interventions: the use of a standard dose (1mg/kg) of propofol and normoventilation (ETCO 2 of 40-45mmHg) (group P/N), the use of a reduced dose (0.5mg/kg) of propofol with divided remifentanil injections and normoventilation (group RP/N), and the use of a reduced dose of propofol with divided remifentanil injections and moderate hyperventilation (ETCO 2 of 30-35mmHg) (group RP/H). Patients in groups RP/N and RP/H received remifentanil 1μg/kg followed by propofol 0.5mg/kg for unconsciousness and thereafter remifentanil 1μg/kg immediately before the electrical stimulus. Patients in group RP/H had significantly longer durations of electroencephalographic (EEG) seizures in the early phase of the ECT course (P<0.05) and lower intensities of electrical stimulus in the late phase of the ECT course (P<0.05) than those in groups P/N and RP/N. A reduced dose of propofol combined with divided supplemental remifentanil under moderate hyperventilation during ECT may contribute to reduced electrical dosage due to the ability of its augmentation of seizure amplitude and postictal suppression in the late phase of the ECT course. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Stimulus uncertainty enhances long-term potentiation-like plasticity in human motor cortex.

    PubMed

    Sale, Martin V; Nydam, Abbey S; Mattingley, Jason B

    2017-03-01

    Plasticity can be induced in human cortex using paired associative stimulation (PAS), which repeatedly and predictably pairs a peripheral electrical stimulus with transcranial magnetic stimulation (TMS) to the contralateral motor region. Many studies have reported small or inconsistent effects of PAS. Given that uncertain stimuli can promote learning, the predictable nature of the stimulation in conventional PAS paradigms might serve to attenuate plasticity induction. Here, we introduced stimulus uncertainty into the PAS paradigm to investigate if it can boost plasticity induction. Across two experimental sessions, participants (n = 28) received a modified PAS paradigm consisting of a random combination of 90 paired stimuli and 90 unpaired (TMS-only) stimuli. Prior to each of these stimuli, participants also received an auditory cue which either reliably predicted whether the upcoming stimulus was paired or unpaired (no uncertainty condition) or did not predict the upcoming stimulus (maximum uncertainty condition). Motor evoked potentials (MEPs) evoked from abductor pollicis brevis (APB) muscle quantified cortical excitability before and after PAS. MEP amplitude increased significantly 15 min following PAS in the maximum uncertainty condition. There was no reliable change in MEP amplitude in the no uncertainty condition, nor between post-PAS MEP amplitudes across the two conditions. These results suggest that stimulus uncertainty may provide a novel means to enhance plasticity induction with the PAS paradigm in human motor cortex. To provide further support to the notion that stimulus uncertainty and prediction error promote plasticity, future studies should further explore the time course of these changes, and investigate what aspects of stimulus uncertainty are critical in boosting plasticity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Lethal effect of electric fields on isolated ventricular myocytes.

    PubMed

    de Oliveira, Pedro Xavier; Bassani, Rosana Almada; Bassani, José Wilson Magalhães

    2008-11-01

    Defibrillator-type shocks may cause electric and contractile dysfunction. In this study, we determined the relationship between probability of lethal injury and electric field intensity (E in isolated rat ventricular myocytes, with emphasis on field orientation and stimulus waveform. This relationship was sigmoidal with irreversible injury for E > 50 V/cm . During both threshold and lethal stimulation, cells were twofold more sensitive to the field when it was applied longitudinally (versus transversally) to the cell major axis. For a given E, the estimated maximum variation of transmembrane potential (Delta V(max)) was greater for longitudinal stimuli, which might account for the greater sensitivity to the field. Cell death, however, occurred at lower maximum Delta V(max) values for transversal shocks. This might be explained by a less steep spatial decay of transmembrane potential predicted for transversal stimulation, which would possibly result in occurrence of electroporation in a larger membrane area. For the same stimulus duration, cells were less sensitive to field-induced injury when shocks were biphasic (versus monophasic). Ours results indicate that, although significant myocyte death may occur in the E range expected during clinical defibrillation, biphasic shocks are less likely to produce irreversible cell injury.

  13. Protein-releasing conductive anodized alumina membranes for nerve-interface materials.

    PubMed

    Altuntas, Sevde; Buyukserin, Fatih; Haider, Ali; Altinok, Buket; Biyikli, Necmi; Aslim, Belma

    2016-10-01

    Nanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Lack of insula reactivity to aversive stimuli in schizophrenia.

    PubMed

    Linnman, Clas; Coombs, Garth; Goff, Donald C; Holt, Daphne J

    2013-01-01

    Patients with schizophrenia may have altered pain perception, as suggested by clinical reports of pain insensitivity, and recent neuroimaging findings. Here, we examined neural responses to an aversive electrical stimulus and the immediate anticipation of such a stimulus using fMRI and a classical conditioning paradigm, which involved pairing an electrical shock with a neutral photograph. Fifteen men with schizophrenia and 13 healthy men, matched for demographic characteristics, electrical stimulation level and scan movement, were studied. The shock induced robust responses in midbrain, thalamus, cingulate gyrus, insula and somatosensory cortex in both groups. However, compared to controls, the schizophrenic patients displayed significantly lower activation of the middle insula (p(FWE)=0.002, T=5.72, cluster size=24 voxels). Moreover, the lack of insula reactivity in the schizophrenia group was predicted by the magnitude of positive symptoms (r=-0.46, p=0.04). In contrast, there were no significant differences between the two groups in the magnitude of neural responses during anticipation of the shock. These findings provide support for the existence of a basic deficit in interoceptive perception in schizophrenia, which could play a role in the generation and/or maintenance of psychotic states. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Global motion perception in children with amblyopia as a function of spatial and temporal stimulus parameters.

    PubMed

    Meier, Kimberly; Sum, Brian; Giaschi, Deborah

    2016-10-01

    Global motion sensitivity in typically developing children depends on the spatial (Δx) and temporal (Δt) displacement parameters of the motion stimulus. Specifically, sensitivity for small Δx values matures at a later age, suggesting it may be the most vulnerable to damage by amblyopia. To explore this possibility, we compared motion coherence thresholds of children with amblyopia (7-14years old) to age-matched controls. Three Δx values were used with two Δt values, yielding six conditions covering a range of speeds (0.3-30deg/s). We predicted children with amblyopia would show normal coherence thresholds for the same parameters on which 5-year-olds previously demonstrated mature performance, and elevated coherence thresholds for parameters on which 5-year-olds demonstrated immaturities. Consistent with this, we found that children with amblyopia showed deficits with amblyopic eye viewing compared to controls for small and medium Δx values, regardless of Δt value. The fellow eye showed similar results at the smaller Δt. These results confirm that global motion perception in children with amblyopia is particularly deficient at the finer spatial scales that typically mature later in development. An additional implication is that carefully designed stimuli that are adequately sensitive must be used to assess global motion function in developmental disorders. Stimulus parameters for which performance matures early in life may not reveal global motion perception deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    PubMed Central

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Fà, Mauro; Gessa, Gian Luigi

    2005-01-01

    Background Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled. PMID:15865626

  17. [Effect of acoustic stimulus intensity on air-conducted sound elicited ocular vestibular-evoked myogenic potential and cervical vestibular-evoked myogenic potential].

    PubMed

    Zhang, Rui; Xu, Min; Zhang, Qing; Yang, Yin-Tong; Chen, Yanfei

    2014-06-01

    To observe the effect of acoustic stimulus intensity on air-conducted sound elicited ocular vestibular- evoked myogenic potential (oVEMP) and cervical vestibular-evoked myogenic potential (cVEMP) in normal young Chinese subjects. Thirty-five normal subjects aged 4-40 years (20.80∓8.89 years), including 16 males and 19 females, were recruited for conventional oVEMP and cVEMP examinations. The responses obtained from each side using 500 Hz tone bursts were divided into 6 groups according to different sound intensities (100, 95, 90, 85, 80 and 75dB nHL). The response rate and normal parameters of each stimulus intensity group were calculated. As the acoustic stimulus intensity decreased, the oVEMP response rate decreased from 100% in both 100 dB nHL and 95dB nHL groups to 97.14% (90 dB nHL), 54.29% (85 dB nHL), 14.29% (80 dB nHL), and 2.86% (75 dB nHL), and the response rate of cVEMP, 100% in both 100 dB nHL and 95dB nHL groups, was lowered to 97.14% (90 dB nHL), 84.29% (85 dB nHL), 38.57% (80 dB nHL) and 8.57% (75 dB nHL). The response rate and the parameters were comparable between 100 and 95 dB nHL groups. As the acoustic stimulus intensity decreases, both oVEMP and cVEMP show decreased response rate and amplitude. For Chinese subjects under 40 years of age, we recommend 95dB nHL as the maximum initial stimulus intensity in VEMPs test.

  18. Introducing the Event Related Fixed Interval Area (ERFIA) Multilevel Technique: a Method to Analyze the Complete Epoch of Event-Related Potentials at Single Trial Level

    PubMed Central

    Vossen, Catherine J.; Vossen, Helen G. M.; Marcus, Marco A. E.; van Os, Jim; Lousberg, Richel

    2013-01-01

    In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs). These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms). With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing. PMID:24224018

  19. Inhibitory effect of high-frequency greater occipital nerve electrical stimulation on trigeminovascular nociceptive processing in rats.

    PubMed

    Lyubashina, Olga A; Panteleev, Sergey S; Sokolov, Alexey Y

    2017-02-01

    Electrical stimulation of the greater occipital nerve (GON) has recently shown promise as an effective non-pharmacological prophylactic therapy for drug-resistant chronic primary headaches, but the neurobiological mechanisms underlying its anticephalgic action are not elucidated. Considering that the spinal trigeminal nucleus (STN) is a key segmental structure playing a prominent role in pathophysiology of headaches, in the present study we evaluated the effects of GON electrical stimulation on ongoing and evoked firing of the dura-sensitive STN neurons. The experiments were carried out on urethane/chloralose-anesthetized, paralyzed and artificially ventilated male Wistar rats. Extracellular recordings were made from 11 neurons within the caudal part of the STN that received convergent input from the ipsilateral facial cutaneous receptive fields, dura mater and GON. In each experiment, five various combinations of the GON stimulation frequency (50, 75, 100 Hz) and intensity (1, 3, 6 V) were tested successively in 10 min interval. At all parameter sets, preconditioning GON stimulation (250 ms train of pulses applied before each recording) produced suppression of both the ongoing activity of the STN neurons and their responses to electrical stimulation of the dura mater. The inhibitory effect depended mostly on the GON stimulation intensity, being maximally pronounced when a stimulus of 6 V was applied. Thus, the GON stimulation-induced inhibition of trigeminovascular nociceptive processing at the level of STN has been demonstrated for the first time. The data obtained can contribute to a deeper understanding of neurophysiological mechanisms underlying the therapeutic efficacy of GON stimulation in primary headaches.

  20. The effects of transcranial direct current stimulation on conscious perception of sensory inputs from hand palm and dorsum.

    PubMed

    Westgeest, Annette; Morales, Merche; Cabib, Christopher; Valls-Sole, Josep

    2014-12-01

    Conscious perception of sensory signals depends in part on stimulus salience, relevance and topography. Letting aside differences at skin receptor level and afferent fibres, it is the CNS that makes a contextual selection of relevant sensory inputs. We hypothesized that subjective awareness (AW) of the time at which a sensory stimulus is perceived, a cortical function, may be differently modified by cortical stimulation, according to site and type of the stimulus. In 24 healthy volunteers, we examined the effects of transcranial direct current stimulation (tDCS) on the assessment of AW to heat pain or weak electrical stimuli applied to either the hand palm or dorsum. We also recorded the vertex-evoked potentials to the same stimuli. The assessment was done before, during and after cathodal or anodal tDCS over the parietal cortex contralateral to the hand receiving the stimuli. At baseline, AW to thermal stimuli was significantly longer for palm than for dorsum (P < 0.01), while no differences between stimulation sites were observed for the electrical stimuli. Both cathodal and anodal tDCS caused a significant shortening of AW to thermal stimuli in the palm but not in the dorsum, and no effects on AW to electrical stimuli. Longer AW in the palm than in the dorsum may be attributable to differences in skin thickness. However, the selectivity of the effects of tDCS on AW to thermal stimulation of the glabrous skin reflects the specificity of CNS processing for site and type of sensory inputs. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. CFS MATLAB toolbox: An experiment builder for continuous flash suppression (CFS) task.

    PubMed

    Nuutinen, Mikko; Mustonen, Terhi; Häkkinen, Jukka

    2017-09-15

    CFS toolbox is an open-source collection of MATLAB functions that utilizes PsychToolbox-3 (PTB-3). It is designed to allow a researcher to create and run continuous flash suppression experiments using a variety of experimental parameters (i.e., stimulus types and locations, noise characteristics, and experiment window settings). In a CFS experiment, one of the eyes at a time is presented with a dynamically changing noise pattern, while the other eye is concurrently presented with a static target stimulus, such as a Gabor patch. Due to the strong interocular suppression created by the dominant noise pattern mask, the target stimulus is rendered invisible for an extended duration. Very little knowledge of MATLAB is required for using the toolbox; experiments are generated by modifying csv files with the required parameters, and result data are output to text files for further analysis. The open-source code is available on the project page under a Creative Commons License ( http://www.mikkonuutinen.arkku.net/CFS_toolbox/ and https://bitbucket.org/mikkonuutinen/cfs_toolbox ).

  2. Towards SSVEP-based, portable, responsive Brain-Computer Interface.

    PubMed

    Kaczmarek, Piotr; Salomon, Pawel

    2015-08-01

    A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.

  3. Assessing the Effectiveness of Increased FIO2for Enhancing Driver's Activation State Using Simulated Monotonous Driving.

    PubMed

    Yamakoshi, T; Yamakoshi, K; Nogawa, M; Sawada, Y; Rolfe, P; Kusakabe, M

    2005-01-01

    Lowering of what we term a driver's Activation State (AS) during monotonous driving conditions may increase the risk of an accident. To develop an in-car environment that allows active driving - "Biofee dforward System" - we have investigated the effects of applying a stimulus of increased inspired oxygen fraction (FIO2) supply on a driver's AS, using simulated monotonous driving. We used our previously substantiated index of As derived from beat-by-beat blood pressure (BP) response following an electrical stimulus. We have made physiological measurements including BP and found that the increased FIO2stimulus is effective in enhancing the AS. This finding was also confirmed in terms of the autonomic activity balance as well as the lengthening in time for active, safer, driving.

  4. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials

    PubMed Central

    Hu, L.; Zhang, Z.G.; Mouraux, A.; Iannetti, G.D.

    2015-01-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical oscillations, obtaining single-trial estimate of response latency, frequency, and magnitude. This permits within-subject statistical comparisons, correlation with pre-stimulus features, and integration of simultaneously-recorded EEG and fMRI. PMID:25665966

  5. Effects of Paradigm and Inter-Stimulus Interval on Age Differences in Eyeblink Classical Conditioning in Rabbits

    ERIC Educational Resources Information Center

    Woodruff-Pak, Diana S.; Seta, Susan E.; Roker, LaToya A.; Lehr, Melissa A.

    2007-01-01

    The aim of this study was to examine parameters affecting age differences in eyeblink classical conditioning in a large sample of young and middle-aged rabbits. A total of 122 rabbits of mean ages of 4 or 26 mo were tested at inter-stimulus intervals (ISIs) of 600 or 750 msec in the delay or trace paradigms. Paradigm affected both age groups…

  6. Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms

    PubMed Central

    Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.

    2011-01-01

    Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768

  7. Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics.

    PubMed

    Shannon, R V

    1983-08-01

    Basic psychophysical measurements were obtained from three patients implanted with multichannel cochlear implants. This paper presents measurements from stimulation of a single channel at a time (either monopolar or bipolar). The shape of the threshold vs. frequency curve can be partially related to the membrane biophysics of the remaining spiral ganglion and/or dendrites. Nerve survival in the region of the electrode may produce some increase in the dynamic range on that electrode. Loudness was related to the stimulus amplitude by a power law with exponents between 1.6 and 3.4, depending on frequency. Intensity discrimination was better than for normal auditory stimulation, but not enough to offset the small dynamic range for electrical stimulation. Measures of temporal integration were comparable to normals, indicating a central mechanism that is still intact in implant patients. No frequency analysis of the electrical signal was observed. Each electrode produced a unique pitch sensation, but they were not simply related to the tonotopic position of the stimulated electrode. Pitch increased over more than 4 octaves (for one patient) as the frequency was increased from 100 to 300 Hz, but above 300 Hz no pitch change was observed. Possibly the major limitation of single channel cochlear implants is the 1-2 ms integration time (probably due to the capacitative properties of the nerve membrane which acts as a low-pass filter at 100 Hz). Another limitation of electrical stimulation is that there is no spectral analysis of the electrical waveform so that temporal waveform alone determines the effective stimulus.

  8. Large Strain Transparent Magneto-Active Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra (Inventor); Meador, Michael A (Inventor)

    2016-01-01

    A large strain polymer nanocomposite actuator is provided that upon subjected to an external stimulus, such as a magnetic field (static or electromagnetic field), an electric field, thermal energy, light, etc., will deform to thereby enable mechanical manipulations of structural components in a remote and wireless manner.

  9. Studies of stimulus parameters for seizure disruption using neural network simulations.

    PubMed

    Anderson, William S; Kudela, Pawel; Cho, Jounhong; Bergey, Gregory K; Franaszczuk, Piotr J

    2007-08-01

    A large scale neural network simulation with realistic cortical architecture has been undertaken to investigate the effects of external electrical stimulation on the propagation and evolution of ongoing seizure activity. This is an effort to explore the parameter space of stimulation variables to uncover promising avenues of research for this therapeutic modality. The model consists of an approximately 800 mum x 800 mum region of simulated cortex, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. The cell dynamics are governed by a modified version of the Hodgkin-Huxley equations in single compartment format. Axonal connections are patterned after histological data and published models of local cortical wiring. Stimulation induced action potentials take place at the axon initial segments, according to threshold requirements on the applied electric field distribution. Stimulation induced action potentials in horizontal axonal branches are also separately simulated. The calculations are performed on a 16 node distributed 32-bit processor system. Clear differences in seizure evolution are presented for stimulated versus the undisturbed rhythmic activity. Data is provided for frequency dependent stimulation effects demonstrating a plateau effect of stimulation efficacy as the applied frequency is increased from 60 to 200 Hz. Timing of the stimulation with respect to the underlying rhythmic activity demonstrates a phase dependent sensitivity. Electrode height and position effects are also presented. Using a dipole stimulation electrode arrangement, clear orientation effects of the dipole with respect to the model connectivity is also demonstrated. A sensitivity analysis of these results as a function of the stimulation threshold is also provided.

  10. Habituation of the orienting reflex and the development of Preliminary Process Theory.

    PubMed

    Barry, Robert J

    2009-09-01

    The orienting reflex (OR), elicited by an innocuous stimulus, can be regarded as a model of the organism's interaction with its environment, and has been described as the unit of attentional processing. A major determinant of the OR is the novelty of the eliciting stimulus, generally operationalized in terms of its reduction with stimulus repetition, the effects of which are commonly described in habituation terms. This paper provides an overview of a research programme, spanning more than 30 years, investigating psychophysiological aspects of the OR in humans. The major complication in this research is that the numerous physiological measures used as dependent variables in the OR context fail to jointly covary with stimulus parameters. This has led to the development of the Preliminary Process Theory (PPT) of the OR to accommodate the complexity of the observed stimulus-response patterns. PPT is largely grounded in autonomic measures, and current work is attempting to integrate electroencephalographic measures, particularly components in the event-related brain potentials reflecting aspects of stimulus processing. The emphasis in the current presentation is on the use of the defining criteria of the habituation phenomenon, and Groves and Thompson's Dual-process Theory, in the development of PPT.

  11. The effect of loudness on the reverberance of music: reverberance prediction using loudness models.

    PubMed

    Lee, Doheon; Cabrera, Densil; Martens, William L

    2012-02-01

    This study examines the auditory attribute that describes the perceived amount of reverberation, known as "reverberance." Listening experiments were performed using two signals commonly heard in auditoria: excerpts of orchestral music and western classical singing. Listeners adjusted the decay rate of room impulse responses prior to convolution with these signals, so as to match the reverberance of each stimulus to that of a reference stimulus. The analysis examines the hypothesis that reverberance is related to the loudness decay rate of the underlying room impulse response. This hypothesis is tested using computational models of time varying or dynamic loudness, from which parameters analogous to conventional reverberation parameters (early decay time and reverberation time) are derived. The results show that listening level significantly affects reverberance, and that the loudness-based parameters outperform related conventional parameters. Results support the proposed relationship between reverberance and the computationally predicted loudness decay function of sound in rooms. © 2012 Acoustical Society of America

  12. Relationship of extinction to perceptual thresholds for single stimuli.

    PubMed

    Meador, K J; Ray, P G; Day, L J; Loring, D W

    2001-04-24

    To demonstrate the effects of target stimulus intensity on extinction to double simultaneous stimuli. Attentional deficits contribute to extinction in patients with brain lesions, but extinction (i.e., masking) can also be produced in healthy subjects. The relationship of extinction to perceptual thresholds for single stimuli remains uncertain. Brief electrical pulses were applied simultaneously to the left and right index fingers of 16 healthy volunteers (8 young and 8 elderly adults) and 4 patients with right brain stroke (RBS). The stimulus to be perceived (i.e., target stimulus) was given at the lowest perceptual threshold to perceive any single stimulus (i.e., Minimal) and at the threshold to perceive 100% of single stimuli. The mask stimulus (i.e., stimulus given to block the target) was applied to the contralateral hand at intensities just below discomfort. Extinction was less for target stimuli at 100% than Minimal threshold for healthy subjects. Extinction of left targets was greater in patients with RBS than elderly control subjects. Left targets were extinguished less than right in healthy subjects. In contrast, the majority of left targets were extinguished in patients with RBS even when right mask intensity was reduced below right 100% threshold for single stimuli. RBS patients had less extinction for right targets despite having greater left mask - threshold difference than control subjects. In patients with RBS, right "targets" at 100% threshold extinguished left "masks" (20%) almost as frequently as left masks extinguished right targets (32%). Subtle changes in target intensity affect extinction in healthy adults. Asymmetries in mask and target intensities (relative to single-stimulus perceptual thresholds) affect extinction in RBS patients less for left targets but more for right targets as compared with control subjects.

  13. Microprocessor controlled movement of solid colonic content using sequential neural electrical stimulation

    PubMed Central

    Amaris, M A; Rashev, P Z; Mintchev, M P; Bowes, K L

    2002-01-01

    Background and aims: Invoked peristaltic contractions and movement of solid content have not been attempted in normal canine colon. The purpose of this study was to determine if movement of solid content through the colon could be produced by microprocessor controlled sequential stimulation. Methods: The study was performed on six anaesthetised dogs. At laparotomy, a 15 cm segment of descending colon was selected, the proximal end closed with a purse string suture, and the distal end opened into a collecting container. Four sets of subserosal stimulating electrodes were implanted at 3 cm intervals. The segment of bowel was filled with a mixture of dog food and 50 plastic pellets before each of 2–5 random sessions of non-stimulated or stimulated emptying. Propagated contractions were generated using microprocessor controlled bipolar trains of 50 Hz rectangular voltage having 20 V (peak to peak) amplitude, 18 second stimulus duration, and a nine second phase lag between stimulation trains in sequential electrode sets. Results: Electrical stimulation using the above mentioned parameters resulted in powerful phasic contractions that closed the lumen. By phase locking the stimulation voltage between adjacent sets of electrodes, propagated contractions could be produced in an aboral or orad direction. The number of evacuated pellets during the stimulation sessions was significantly higher than during the non-stimulated sessions (p<0.01). Conclusions: Microprocessor controlled electrical stimulation accelerated movement of colonic content suggesting the possibility of future implantable colonic stimulators. PMID:11889065

  14. The effect of chromatic and luminance information on reaction times.

    PubMed

    O'Donell, Beatriz M; Barraza, Jose F; Colombo, Elisa M

    2010-07-01

    We present a series of experiments exploring the effect of chromaticity on reaction time (RT) for a variety of stimulus conditions, including chromatic and luminance contrast, luminance, and size. The chromaticity of these stimuli was varied along a series of vectors in color space that included the two chromatic-opponent-cone axes, a red-green (L-M) axis and a blue-yellow [S - (L + M)] axis, and intermediate noncardinal orientations, as well as the luminance axis (L + M). For Weber luminance contrasts above 10-20%, RTs tend to the same asymptote, irrespective of chromatic direction. At lower luminance contrast, the addition of chromatic information shortens the RT. RTs are strongly influenced by stimulus size when the chromatic stimulus is modulated along the [S - (L + M)] pathway and by stimulus size and adaptation luminance for the (L-M) pathway. RTs are independent of stimulus size for stimuli larger than 0.5 deg. Data are modeled with a modified version of Pieron's formula with an exponent close to 2, in which the stimulus intensity term is replaced by a factor that considers the relative effects of chromatic and achromatic information, as indexed by the RMS (square-root of the cone contrast) value at isoluminance and the Weber luminance contrast, respectively. The parameters of the model reveal how RT is linked to stimulus size, chromatic channels, and adaptation luminance and how they can be interpreted in terms of two chromatic mechanisms. This equation predicts that, for isoluminance, RTs for a stimulus lying on the S-cone pathway are higher than those for a stimulus lying on the L-M-cone pathway, for a given RMS cone contrast. The equation also predicts an asymptotic trend to the RT for an achromatic stimulus when the luminance contrast is sufficiently large.

  15. Cellular defibrillation: interaction of micro-scale electric fields with voltage-gated ion channels.

    PubMed

    Kargol, Armin; Malkinski, Leszek; Eskandari, Rahmatollah; Carter, Maya; Livingston, Daniel

    2015-09-01

    We study the effect of micro-scale electric fields on voltage-gated ion channels in mammalian cell membranes. Such micro- and nano-scale electric fields mimic the effects of multiferroic nanoparticles that were recently proposed [1] as a novel way of controlling the function of voltage-sensing biomolecules such as ion channels. This article describes experimental procedures and initial results that reveal the effect of the electric field, in close proximity of cells, on the ion transport through voltage-gated ion channels. We present two configurations of the whole-cell patch-clamping apparatus that were used to detect the effect of external stimulation on ionic currents and discuss preliminary results that indicate modulation of the ionic currents consistent with the applied stimulus.

  16. Testing resonating vector strength: Auditory system, electric fish, and noise

    NASA Astrophysics Data System (ADS)

    Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.

    2011-12-01

    Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.

  17. Development of a multiphysics model to characterize the responsive behavior of urea-sensitive hydrogel as biosensor.

    PubMed

    Goh, K B; Li, Hua; Lam, K Y

    2017-05-15

    A remarkable feature of biomaterials is their ability to deform in response to certain external bio-stimuli. Here, a novel biochemo-electro-mechanical model is developed for the numerical characterization of the urea-sensitive hydrogel in response to the external stimulus of urea. The urea sensitivity of the hydrogel is usually characterized by the states of ionization and denaturation of the immobilized urease, as such the model includes the effect of the fixed charge groups and temperature coupled with pH on the activity of the urease. Therefore, a novel rate of reaction equation is proposed to characterize the hydrolysis of urea that accounts for both the ionization and denaturation states of the urease subject to the environmental conditions. After examination with the published experimental data, it is thus confirmed that the model can characterize well the responsive behavior of the urea-sensitive hydrogel subject to the urea stimulus, including the distribution patterns of the electrical potential and pH of the hydrogel. The results point to an innovative means for generating electrical power via the enzyme-induced pH and electrical potential gradients, when the hydrogel comes in contact with the urea-rich solution, such as human urine. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The generalized Hill model: A kinematic approach towards active muscle contraction

    NASA Astrophysics Data System (ADS)

    Göktepe, Serdar; Menzel, Andreas; Kuhl, Ellen

    2014-12-01

    Excitation-contraction coupling is the physiological process of converting an electrical stimulus into a mechanical response. In muscle, the electrical stimulus is an action potential and the mechanical response is active contraction. The classical Hill model characterizes muscle contraction though one contractile element, activated by electrical excitation, and two non-linear springs, one in series and one in parallel. This rheology translates into an additive decomposition of the total stress into a passive and an active part. Here we supplement this additive decomposition of the stress by a multiplicative decomposition of the deformation gradient into a passive and an active part. We generalize the one-dimensional Hill model to the three-dimensional setting and constitutively define the passive stress as a function of the total deformation gradient and the active stress as a function of both the total deformation gradient and its active part. We show that this novel approach combines the features of both the classical stress-based Hill model and the recent active-strain models. While the notion of active stress is rather phenomenological in nature, active strain is micro-structurally motivated, physically measurable, and straightforward to calibrate. We demonstrate that our model is capable of simulating excitation-contraction coupling in cardiac muscle with its characteristic features of wall thickening, apical lift, and ventricular torsion.

  19. Connecting Model Species to Nature: Predator-Induced Long-Term Sensitization in "Aplysia Californica"

    ERIC Educational Resources Information Center

    Mason, Maria J.; Watkins, Amanda J.; Wakabayashi, Jordann; Buechler, Jennifer; Pepino, Christine; Brown, Michelle; Wright, William G.

    2014-01-01

    Previous research on sensitization in "Aplysia" was based entirely on unnatural noxious stimuli, usually electric shock, until our laboratory found that a natural noxious stimulus, a single sublethal lobster attack, causes short-term sensitization. We here extend that finding by demonstrating that multiple lobster attacks induce…

  20. Mimosa pudica: Electrical and mechanical stimulation of plant movements.

    PubMed

    Volkov, Alexander G; Foster, Justin C; Ashby, Talitha A; Walker, Ronald K; Johnson, Jon A; Markin, Vladislav S

    2010-02-01

    Thigmonastic movements in the sensitive plant Mimosa pudica L., associated with fast responses to environmental stimuli, appear to be regulated through electrical and chemical signal transductions. The thigmonastic responses of M. pudica can be considered in three stages: stimulus perception, electrical signal transmission and induction of mechanical, hydrodynamical and biochemical responses. We investigated the mechanical movements of the pinnae and petioles in M. pudica induced by the electrical stimulation of a pulvinus, petiole, secondary pulvinus or pinna by a low electrical voltage and charge. The threshold value was 1.3-1.5 V of applied voltage and 2 to 10 microC of charge for the closing of the pinnules. Both voltage and electrical charge are responsible for the electro-stimulated closing of a leaf. The mechanism behind closing the leaf in M. pudica is discussed. The hydroelastic curvature mechanism closely describes the kinetics of M. pudica leaf movements.

  1. Modeling the impact of common noise inputs on the network activity of retinal ganglion cells

    PubMed Central

    Ahmadian, Yashar; Shlens, Jonathon; Pillow, Jonathan W.; Kulkarni, Jayant; Litke, Alan M.; Chichilnisky, E. J.; Simoncelli, Eero; Paninski, Liam

    2013-01-01

    Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations. PMID:22203465

  2. Fitting of dynamic recurrent neural network models to sensory stimulus-response data.

    PubMed

    Doruk, R Ozgur; Zhang, Kechen

    2018-06-02

    We present a theoretical study aiming at model fitting for sensory neurons. Conventional neural network training approaches are not applicable to this problem due to lack of continuous data. Although the stimulus can be considered as a smooth time-dependent variable, the associated response will be a set of neural spike timings (roughly the instants of successive action potential peaks) that have no amplitude information. A recurrent neural network model can be fitted to such a stimulus-response data pair by using the maximum likelihood estimation method where the likelihood function is derived from Poisson statistics of neural spiking. The universal approximation feature of the recurrent dynamical neuron network models allows us to describe excitatory-inhibitory characteristics of an actual sensory neural network with any desired number of neurons. The stimulus data are generated by a phased cosine Fourier series having a fixed amplitude and frequency but a randomly shot phase. Various values of amplitude, stimulus component size, and sample size are applied in order to examine the effect of the stimulus to the identification process. Results are presented in tabular and graphical forms at the end of this text. In addition, to demonstrate the success of this research, a study involving the same model, nominal parameters and stimulus structure, and another study that works on different models are compared to that of this research.

  3. Response properties of ON-OFF retinal ganglion cells to high-order stimulus statistics.

    PubMed

    Xiao, Lei; Gong, Han-Yan; Gong, Hai-Qing; Liang, Pei-Ji; Zhang, Pu-Ming

    2014-10-17

    The visual stimulus statistics are the fundamental parameters to provide the reference for studying visual coding rules. In this study, the multi-electrode extracellular recording experiments were designed and implemented on bullfrog retinal ganglion cells to explore the neural response properties to the changes in stimulus statistics. The changes in low-order stimulus statistics, such as intensity and contrast, were clearly reflected in the neuronal firing rate. However, it was difficult to distinguish the changes in high-order statistics, such as skewness and kurtosis, only based on the neuronal firing rate. The neuronal temporal filtering and sensitivity characteristics were further analyzed. We observed that the peak-to-peak amplitude of the temporal filter and the neuronal sensitivity, which were obtained from either neuronal ON spikes or OFF spikes, could exhibit significant changes when the high-order stimulus statistics were changed. These results indicate that in the retina, the neuronal response properties may be reliable and powerful in carrying some complex and subtle visual information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. QUEST+: A general multidimensional Bayesian adaptive psychometric method.

    PubMed

    Watson, Andrew B

    2017-03-01

    QUEST+ is a Bayesian adaptive psychometric testing method that allows an arbitrary number of stimulus dimensions, psychometric function parameters, and trial outcomes. It is a generalization and extension of the original QUEST procedure and incorporates many subsequent developments in the area of parametric adaptive testing. With a single procedure, it is possible to implement a wide variety of experimental designs, including conventional threshold measurement; measurement of psychometric function parameters, such as slope and lapse; estimation of the contrast sensitivity function; measurement of increment threshold functions; measurement of noise-masking functions; Thurstone scale estimation using pair comparisons; and categorical ratings on linear and circular stimulus dimensions. QUEST+ provides a general method to accelerate data collection in many areas of cognitive and perceptual science.

  5. Uncertainty during pain anticipation: the adaptive value of preparatory processes.

    PubMed

    Seidel, Eva-Maria; Pfabigan, Daniela M; Hahn, Andreas; Sladky, Ronald; Grahl, Arvina; Paul, Katharina; Kraus, Christoph; Küblböck, Martin; Kranz, Georg S; Hummer, Allan; Lanzenberger, Rupert; Windischberger, Christian; Lamm, Claus

    2015-02-01

    Anticipatory processes prepare the organism for upcoming experiences. The aim of this study was to investigate neural responses related to anticipation and processing of painful stimuli occurring with different levels of uncertainty. Twenty-five participants (13 females) took part in an electroencephalography and functional magnetic resonance imaging (fMRI) experiment at separate times. A visual cue announced the occurrence of an electrical painful or nonpainful stimulus, delivered with certainty or uncertainty (50% chance), at some point during the following 15 s. During the first 2 s of the anticipation phase, a strong effect of uncertainty was reflected in a pronounced frontal stimulus-preceding negativity (SPN) and increased fMRI activation in higher visual processing areas. In the last 2 s before stimulus delivery, we observed stimulus-specific preparatory processes indicated by a centroparietal SPN and posterior insula activation that was most pronounced for the certain pain condition. Uncertain anticipation was associated with attentional control processes. During stimulation, the results revealed that unexpected painful stimuli produced the strongest activation in the affective pain processing network and a more pronounced offset-P2. Our results reflect that during early anticipation uncertainty is strongly associated with affective mechanisms and seems to be a more salient event compared to certain anticipation. During the last 2 s before stimulation, attentional control mechanisms are initiated related to the increased salience of uncertainty. Furthermore, stimulus-specific preparatory mechanisms during certain anticipation also shaped the response to stimulation, underlining the adaptive value of stimulus-targeted preparatory activity which is less likely when facing an uncertain event. © 2014 Wiley Periodicals, Inc.

  6. Electrotactile stimulation on the tongue: intensity perception, discrimination and cross-modality estimation

    PubMed Central

    Lozano, Cecil A.; Kaczmarek, Kurt A.; Santello, Marco

    2010-01-01

    Due to its high sensitivity and conductivity, electrotactile stimulation (ETS) on the tongue has proven to be a useful and technically convenient tool to substitute and/or augment sensory capabilities. However, most of its applications have only provided spatial attributes and little is known about (a) the ability of the tongue's sensory system to process electrical stimuli of varying magnitudes and (b) how modulation of ETS intensity affects subjects' ability to decode stimulus intensity. We addressed these questions by quantifying: (1) the magnitude of the dynamic range (DR; maximal comfortable intensity/perception threshold) and its sensitivity to prolonged exposure; (2) subjects' ability to perceive intensity changes; and (3) subjects' ability to associate intensity with angular excursions of a protractor's handle. We found that the average DR (17 dB) was generally large in comparison with other tactile loci and of a relatively constant magnitude among subjects, even after prolonged exposure, despite a slight but significant upward drift (P < 0.001). Additionally, our results showed that as stimulus intensity increased, subjects' ability to discriminate ETS stimuli of different intensities improved (P < 0.05) while estimation accuracy, in general, slightly decreased (increasing underestimation). These results suggest that higher ETS intensity may increase recruitment of rapidly adapting mechanoreceptor fibers, as these are specialized for coding stimulus differences rather than absolute intensities. Furthermore, our study revealed that the tongue's sensory system can effectively convey electrical stimuli despite minimal practice and when information transfer is limited by memory and DR drift. PMID:19697262

  7. Optimal voltage stimulation parameters for network-mediated responses in wild type and rd10 mouse retinal ganglion cells

    NASA Astrophysics Data System (ADS)

    Jalligampala, Archana; Sekhar, Sudarshan; Zrenner, Eberhart; Rathbun, Daniel L.

    2017-04-01

    To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa—using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4-5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (-2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations of retinal electrostimulation by establishing standard stimuli for each unique experimental condition.

  8. P300 Latency and the Development of Memory Span.

    ERIC Educational Resources Information Center

    Howard, Lawrence

    The way cognitive, event-related brain potentials (ERPs) can aid in further understanding of memory span change in children is discussed. ERPs are time-dependent changes in electrical activity of the brain (as recorded by scalp electrodes) following the presentation of a physical stimulus through auditory, visual, or somatosensory modalities. The…

  9. Conditioned suppression, punishment, and aversion

    NASA Technical Reports Server (NTRS)

    Orme-Johnson, D. W.; Yarczower, M.

    1974-01-01

    The aversive action of visual stimuli was studied in two groups of pigeons which received response-contingent or noncontingent electric shocks in cages with translucent response keys. Presentation of grain for 3 sec, contingent on key pecking, was the visual stimulus associated with conditioned punishment or suppression. The responses of the pigeons in three different experiments are compared.

  10. Trigeminal activation using chemical, electrical, and mechanical stimuli.

    PubMed

    Iannilli, E; Del Gratta, C; Gerber, J C; Romani, G L; Hummel, T

    2008-10-15

    Tactile, proprioceptive, and nociceptive information, including also chemosensory functions are expressed in the trigeminal nerve sensory response. To study differences in the processing of different stimulus qualities, we performed a study based on functional magnetic resonance imaging. The first trigeminal branch (ophthalmic nerve) was activated by (a) intranasal chemical stimulation with gaseous CO2 which produces stinging and burning sensations, but is virtually odorless, (b) painful, but not nociceptive specific cutaneous electrical stimulation, and (c) cutaneous mechanical stimulation using air puffs. Eighteen healthy subjects participated (eight men, 10 women, mean age 31 years). Painful stimuli produced patterns of activation similar to what has been reported for other noxious stimuli, namely activation in the primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and thalamus. In addition, analyses indicated intensity-related activation in the prefrontal cortex which was specifically involved in the evaluation of stimulus intensity. Importantly, the results also indicated similarities between activation patterns after intranasal chemosensory trigeminal stimulation and patterns usually found following intranasal odorous stimulation, indicating the intimate connection between these two systems in the processing of sensory information.

  11. [Functional significance of high-frequency components of brain electrical activity in the processes of gestalt formation].

    PubMed

    Dumenko, V N

    2002-01-01

    A review. Current views of the so-called binding problem, which considers hypothetical mechanisms of perception of sensory stimuli and formation of their corresponding Gestalts (internal images) are discussed. The mechanism of intensification of synchronized reactions of cortical electrical activity in the gamma band frequency (30-80 Hz) is the basis of the most popular point of view of "binding". The article considers the evidence for the functional significance of the high-frequency components exceeding the gamma-range (to 200 Hz) obtained by the author, the origin of these oscillations, and conditions of their focal derivation. The problem of "binding" and stages of instrumental conditioning (a stimulus, perception of the stimulus, and its transformation into a signal) as well as significance of the context in learning and formation of tonic states ensuring the realization of phasic reactions is discussed. Forms of "binding" at the final stage of conditioning (selective attention) are considered. The question is posed as to whether "binding" is exhausted only by the mechanisms of synchronization of activities of large neuronal populations and only in the frequencies of the gamma range.

  12. Neural control and modulation of swimming speed in the larval zebrafish

    PubMed Central

    Marques, João C.; O'Malley, Donald M.; Orger, Michael B.; Engert, Florian

    2014-01-01

    Summary Vertebrate locomotion at different speeds is driven by descending excitatory connections to central pattern generators in the spinal cord. To investigate how these inputs determine locomotor kinematics, we used whole-field visual motion to drive zebrafish to swim at different speeds. Larvae match the stimulus speed by utilizing more locomotor events, or modifying kinematic parameters such as the duration and speed of swimming bouts, the tail-beat frequency, and choice of gait. We used laser ablations, electrical stimulation, and activity recordings in descending neurons of the nucleus of the medial longitudinal fasciculus (nMLF) to dissect their contribution to controlling forward movement. We found that the activity of single identified neurons within the nMLF is correlated with locomotor kinematics, and modulates both the duration and oscillation frequency of tail movements. By identifying the contribution of individual supraspinal circuit elements to locomotion kinematics we build a better understanding of how the brain controls movement. PMID:25066084

  13. Neural control and modulation of swimming speed in the larval zebrafish.

    PubMed

    Severi, Kristen E; Portugues, Ruben; Marques, João C; O'Malley, Donald M; Orger, Michael B; Engert, Florian

    2014-08-06

    Vertebrate locomotion at different speeds is driven by descending excitatory connections to central pattern generators in the spinal cord. To investigate how these inputs determine locomotor kinematics, we used whole-field visual motion to drive zebrafish to swim at different speeds. Larvae match the stimulus speed by utilizing more locomotor events, or modifying kinematic parameters such as the duration and speed of swimming bouts, the tail-beat frequency, and the choice of gait. We used laser ablations, electrical stimulation, and activity recordings in descending neurons of the nucleus of the medial longitudinal fasciculus (nMLF) to dissect their contribution to controlling forward movement. We found that the activity of single identified neurons within the nMLF is correlated with locomotor kinematics, and modulates both the duration and oscillation frequency of tail movements. By identifying the contribution of individual supraspinal circuit elements to locomotion kinematics, we build a better understanding of how the brain controls movement. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Changes in stimulus and response AC/A ratio with vision therapy in Convergence Insufficiency.

    PubMed

    Singh, Neeraj Kumar; Mani, Revathy; Hussaindeen, Jameel Rizwana

    To evaluate the changes in the stimulus and response Accommodative Convergence to Accommodation (AC/A) ratio following vision therapy (VT) in Convergence Insufficiency (CI). Stimulus and response AC/A ratio were measured on twenty five CI participants, pre and post 10 sessions of VT. Stimulus AC/A ratio was measured using the gradient method and response AC/A ratio was calculated using modified Thorington technique with accommodative responses measured using WAM-5500 open-field autorefractor. The gradient stimulus and response AC/A cross-link ratios were compared with thirty age matched controls. Mean age of the CI and control participants were 23.3±5.2 years and 22.7±4.2 years, respectively. The mean stimulus and response AC/A ratio for CI pre therapy was 2.2±0.72 and 6.3±2.0 PD/D that changed to 4.2±0.9 and 8.28±3.31 PD/D respectively post vision therapy and these changes were statistically significant (paired t-test; p<0.001). The mean stimulus and response AC/A ratio for controls was 3.1±0.81 and 8.95±2.5 PD/D respectively. Stimulus and response AC/A ratio increased following VT, accompanied by clinically significant changes in vergence and accommodation parameters in subjects with convergence insufficiency. This represents the plasticity of the AC/A crosslink ratios that could be achieved with vision therapy in CI. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  15. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays

    NASA Astrophysics Data System (ADS)

    Dowden, B. R.; Frankel, M. A.; Normann, R. A.; Clark, G. A.

    2012-02-01

    High-channel-count intrafascicular electrode arrays provide comprehensive and selective access to the peripheral nervous system. One practical difficulty in using several electrode arrays to evoke coordinated movements in paralyzed limbs is the identification of the appropriate stimulation channels and stimulus parameters to evoke desired movements. Here we present the use of a six degree-of-freedom load cell placed under the foot of a feline to characterize the muscle activation produced by three 100-electrode Utah Slanted Electrode Arrays (USEAs) implanted into the femoral nerves, sciatic nerves, and muscular branches of the sciatic nerves of three cats. Intramuscular stimulation was used to identify the endpoint force directions produced by 15 muscles of the hind limb, and these directions were used to classify the forces produced by each intrafascicular USEA electrode as flexion or extension. For 451 USEA electrodes, stimulus intensities for threshold and saturation muscle forces were identified, and the 3D direction and linearity of the force recruitment curves were determined. Further, motor unit excitation independence for 198 electrode pairs was measured using the refractory technique. This study demonstrates the utility of 3D endpoint force monitoring as a simple and non-invasive metric for characterizing the muscle-activation properties of hundreds of implanted peripheral nerve electrodes, allowing for electrode and parameter selection for neuroprosthetic applications.

  16. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays.

    PubMed

    Dowden, B R; Frankel, M A; Normann, R A; Clark, G A

    2012-02-01

    High-channel-count intrafascicular electrode arrays provide comprehensive and selective access to the peripheral nervous system. One practical difficulty in using several electrode arrays to evoke coordinated movements in paralyzed limbs is the identification of the appropriate stimulation channels and stimulus parameters to evoke desired movements. Here we present the use of a six degree-of-freedom load cell placed under the foot of a feline to characterize the muscle activation produced by three 100-electrode Utah Slanted Electrode Arrays (USEAs) implanted into the femoral nerves, sciatic nerves, and muscular branches of the sciatic nerves of three cats. Intramuscular stimulation was used to identify the endpoint force directions produced by 15 muscles of the hind limb, and these directions were used to classify the forces produced by each intrafascicular USEA electrode as flexion or extension. For 451 USEA electrodes, stimulus intensities for threshold and saturation muscle forces were identified, and the 3D direction and linearity of the force recruitment curves were determined. Further, motor unit excitation independence for 198 electrode pairs was measured using the refractory technique. This study demonstrates the utility of 3D endpoint force monitoring as a simple and non-invasive metric for characterizing the muscle-activation properties of hundreds of implanted peripheral nerve electrodes, allowing for electrode and parameter selection for neuroprosthetic applications.

  17. System and method for motor parameter estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values formore » motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.« less

  18. Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis.

    PubMed

    Dissanayaka, Thusharika; Zoghi, Maryam; Farrell, Michael; Egan, Gary F; Jaberzadeh, Shapour

    2017-08-01

    Numerous studies have explored the effects of transcranial electrical stimulation (tES) - including anodal transcranial direct current stimulation (a-tDCS), cathodal transcranial direct current stimulation (c-tDCS), transcranial alternative current stimulation (tACS), transcranial random noise stimulation (tRNS) and transcranial pulsed current stimulation (tPCS) - on corticospinal excitability (CSE) in healthy populations. However, the efficacy of these techniques and their optimal parameters for producing robust results has not been studied. Thus, the aim of this systematic review was to consolidate current knowledge about the effects of various parameters of a-tDCS, c-tDCS, tACS, tRNS and tPCS on the CSE of the primary motor cortex (M1) in healthy people. Leading electronic databases were searched for relevant studies published between January 1990 and February 2017; 126 articles were identified, and their results were extracted and analysed using RevMan software. The meta-analysis showed that a-tDCS application on the dominant side significantly increases CSE (P < 0.01) and that the efficacy of a-tDCS is dependent on current density and duration of application. Similar results were obtained for stimulation of M1 on the non-dominant side (P = 0.003). The effects of a-tDCS reduce significantly after 24 h (P = 0.006). Meta-analysis also revealed significant reduction in CSE following c-tDCS (P < 0.001) and significant increases after tRNS (P = 0.03) and tPCS (P = 0.01). However, tACS effects on CSE were only significant when the stimulation frequency was ≥140 Hz. This review provides evidence that tES has substantial effects on CSE in healthy individuals for a range of stimulus parameters. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. An Electrically Switchable Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, CA; Martin, PC; Schaef, T

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in amore » reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.« less

  20. An Electrically Switchable Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Martin, Paul F.; Schaef, Herbert T.

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ 5 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in amore » reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.« less

  1. An Electrically Switchable Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Fernandez, Carlos A.; Martin, Paul C.; Schaef, Todd; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-01

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  2. Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation

    PubMed Central

    Li, Luozheng; Mi, Yuanyuan; Zhang, Wenhao; Wang, Da-Hui; Wu, Si

    2018-01-01

    Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural encoding. We believe that our study shed lights on the mechanism underlying the efficient neural information processing via adaptation. PMID:29636675

  3. Brief Report: Coherent Motion Processing in Autism: Is Dot Lifetime an Important Parameter?

    ERIC Educational Resources Information Center

    Manning, Catherine; Charman, Tony; Pellicano, Elizabeth

    2015-01-01

    Contrasting reports of "reduced" and "intact" sensitivity to coherent motion in autistic individuals may be attributable to stimulus parameters. Here, we investigated whether dot lifetime contributes to elevated thresholds in children with autism. We presented a standard motion coherence task to 31 children with autism and 31…

  4. Stimulus electrodiagnosis and motor and functional evaluations during ulnar nerve recovery

    PubMed Central

    Fernandes, Luciane F. R. M.; Oliveira, Nuno M. L.; Pelet, Danyelle C. S.; Cunha, Agnes F. S.; Grecco, Marco A. S.; Souza, Luciane A. P. S.

    2016-01-01

    BACKGROUND: Distal ulnar nerve injury leads to impairment of hand function due to motor and sensorial changes. Stimulus electrodiagnosis (SE) is a method of assessing and monitoring the development of this type of injury. OBJECTIVE: To identify the most sensitive electrodiagnostic parameters to evaluate ulnar nerve recovery and to correlate these parameters (Rheobase, Chronaxie, and Accommodation) with motor function evaluations. METHOD: A prospective cohort study of ten patients submitted to ulnar neurorrhaphy and evaluated using electrodiagnosis and motor assessment at two moments of neural recovery. A functional evaluation using the DASH questionnaire (Disability of the Arm, Shoulder, and Hand) was conducted at the end to establish the functional status of the upper limb. RESULTS: There was significant reduction only in the Chronaxie values in relation to time of injury and side (with and without lesion), as well as significant correlation of Chronaxie with the motor domain score. CONCLUSION: Chronaxie was the most sensitive SE parameter for detecting differences in neuromuscular responses during the ulnar nerve recovery process and it was the only parameter correlated with the motor assessment. PMID:26786072

  5. Analysis of retinal function using chromatic pupillography in retinitis pigmentosa and the relationship to electrically evoked phosphene thresholds.

    PubMed

    Kelbsch, Carina; Maeda, Fumiatsu; Lisowska, Jolanta; Lisowski, Lukasz; Strasser, Torsten; Stingl, Krunoslav; Wilhelm, Barbara; Wilhelm, Helmut; Peters, Tobias

    2017-06-01

    To analyse pupil responses to specific chromatic stimuli in patients with advanced retinitis pigmentosa (RP) to ascertain whether chromatic pupillography can be used as an objective marker for residual retinal function. To examine correlations between parameters of the pupil response and the perception threshold of electrically evoked phosphenes. Chromatic pupillography was performed in 40 patients with advanced RP (visual acuity < 0.02 or visual field ≤5°, non-recordable ERGs) and 40 age-matched healthy subjects. Pupil responses to full-field red (605 nm) and blue (420 nm) stimuli of 28 lx corneal illumination were recorded and analysed for two stimulus durations (1 and 4 seconds). The perception threshold of phosphenes to transcorneal electrostimulation was ascertained and correlated to the pupil responses and visual acuity. Patients with RP showed significantly reduced pupil responses to red and blue stimuli compared with the controls. With red stimuli, pupillary escape could be observed; blue stimuli resulted in a well-preserved postillumination pupil response. Phosphene thresholds were significantly increased in patients with RP and correlated with the parameters of the pupil response if all subjects were considered. Within the RP group alone, this relationship was less pronounced and statistically not significant. Chromatic pupillography demonstrated a significant decrease in outer retinal photoreceptor responses but a persisting and disinhibited intrinsic photosensitive retinal ganglion cell function in advanced RP. These phenomena may be useful as an objective marker for the efficacy of any interventional treatment for hereditary retinal diseases as well as for the selection of suitable patients for an electronic retinal implant. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. Worrying affects associative fear learning: a startle fear conditioning study.

    PubMed

    Gazendam, Femke J; Kindt, Merel

    2012-01-01

    A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS) and an anticipated disaster (Unconditioned Stimulus, UCS). Most anxiety disorders, however, do not evolve from a traumatic experience. Insights from neuroscience show that memory can be modified post-learning, which may elucidate how pathological fear can develop after relatively mild aversive events. Worrying--a process frequently observed in anxiety disorders--is a potential candidate to strengthen the formation of fear memory after learning. Here we tested in a discriminative fear conditioning procedure whether worry strengthens associative fear memory. Participants were randomly assigned to either a Worry (n = 23) or Control condition (n = 25). After fear acquisition, the participants in the Worry condition processed six worrisome questions regarding the personal aversive consequences of an electric stimulus (UCS), whereas the Control condition received difficult but neutral questions. Subsequently, extinction, reinstatement and re-extinction of fear were tested. Conditioned responding was measured by fear-potentiated startle (FPS), skin conductance (SCR) and UCS expectancy ratings. Our main results demonstrate that worrying resulted in increased fear responses (FPS) to both the feared stimulus (CS(+)) and the originally safe stimulus (CS(-)), whereas FPS remained unchanged in the Control condition. In addition, worrying impaired both extinction and re-extinction learning of UCS expectancy. The implication of our findings is that they show how worry may contribute to the development of anxiety disorders by affecting associative fear learning.

  7. Chronic naltrindole administration does not modify the inhibitory effect of morphine on vocalization responses in the tail electric stimulation test in rats.

    PubMed

    Fernández, B; Alberti, I; Kitchen, I; Paz Viveros, M

    1999-01-29

    To address the existence of possible functional interactions between delta- and mu- receptors in relation to the affective component of pain, we have studied the effects of functional blockade of delta-receptors by a chronic treatment with naltrindole (1 mg/kg, 8 consecutive days) on antinociceptive responses to morphine (2 and 5 mg/kg) in the tail electric stimulation test, in adult male rats. The thresholds for the motor response (tail withdrawal), vocalization during stimulus and vocalization afterdischarge were assessed. These responses are considered to be integrated at spinal, medulla oblongata and diencephalon-rhinencephalon levels, respectively. The results show that the vocalization during stimulus and the vocalization afterdischarge were significantly affected by morphine in a dose dependent manner, the latter response being the most sensitive to the effects of the mu-opioid agonist. However, no significant effect was observed on motor responses at the doses used in this study. Chronic naltrindole treatment did not modify the inhibitory effect of morphine on the vocalization responses. Since the vocalization afterdischarge is related to the affective component of pain, the data suggest that the delta-opioid receptor is not involved in the supraspinal mechanisms at which these responses are organized and that there is not a mu-delta interaction in the modulation of the affective responses to noxious electrical stimulation.

  8. Electric Stimulus Opens Intercellular Spaces in Skin*

    PubMed Central

    Hama, Susumu; Kimura, Yuki; Mikami, Aya; Shiota, Kanako; Toyoda, Mao; Tamura, Atsushi; Nagasaki, Yukio; Kanamura, Kiyoshi; Kajimoto, Kazuaki; Kogure, Kentaro

    2014-01-01

    Iontophoresis is a technology for transdermal delivery of ionic small medicines by faint electricity. Since iontophoresis can noninvasively deliver charged molecules into the skin, this technology could be a useful administration method that may enhance patient comfort. Previously, we succeeded in the transdermal penetration of positively charged liposomes (diameters: 200–400 nm) encapsulating insulin by iontophoresis (Kajimoto, K., Yamamoto, M., Watanabe, M., Kigasawa, K., Kanamura, K., Harashima, H., and Kogure, K. (2011) Int. J. Pharm. 403, 57–65). However, the mechanism by which these liposomes penetrated the skin was difficult to define based on general knowledge of principles such as electro-repulsion and electro-osmosis. In the present study, we confirmed that rigid nanoparticles could penetrate into the epidermis by iontophoresis. We further found that levels of the gap junction protein connexin 43 protein significantly decreased after faint electric stimulus (ES) treatment, although occludin, CLD-4, and ZO-1 levels were unchanged. Moreover, connexin 43 phosphorylation and filamentous actin depolymerization in vivo and in vitro were observed when permeation of charged liposomes through intercellular spaces was induced by ES. Ca2+ inflow into cells was promoted by ES with charged liposomes, while a protein kinase C inhibitor prevented ES-induced permeation of macromolecules. Consequently, we demonstrate that ES treatment with charged liposomes induced dissociation of intercellular junctions via cell signaling pathways. These findings suggest that ES could be used to regulate skin physiology. PMID:24318878

  9. Do intensity ratings and skin conductance responses reliably discriminate between different stimulus intensities in experimentally induced pain?

    PubMed

    Breimhorst, Markus; Sandrock, Stephan; Fechir, Marcel; Hausenblas, Nadine; Geber, Christian; Birklein, Frank

    2011-01-01

    The present study addresses the question whether pain-intensity ratings and skin conductance responses (SCRs) are able to detect different intensities of phasic painful stimuli and to determine the reliability of this discrimination. For this purpose, 42 healthy participants of both genders were assigned to either electrical, mechanical, or laser heat-pain stimulation (each n = 14). A whole range of single brief painful stimuli were delivered on the right volar forearm of the dominant hand in a randomized order. Pain-intensity ratings and SCRs were analyzed. Using generalizability theory, individual and gender differences were the main contributors to the variability of both intensity ratings and SCRs. Most importantly, we showed that pain-intensity ratings are a reliable measure for the discrimination of different pain stimulus intensities in the applied modalities. The reliability of SCR was adequate when mechanical and heat stimuli were tested but failed for the discrimination of electrical stimuli. Further studies are needed to reveal the reason for this lack of accuracy for SCRs when applying electrical pain stimuli. Our study could help researchers to better understand the relationship between pain and activation of the sympathetic nervous system. Pain researchers are furthermore encouraged to consider individual and gender differences when measuring pain intensity and the concomitant SCRs in experimental settings. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  10. The effects of click and tone-burst stimulus parameters on the vestibular evoked myogenic potential (VEMP).

    PubMed

    Akin, Faith Wurm; Murnane, Owen D; Proffitt, Tina M

    2003-11-01

    Vestibular evoked myogenic potentials (VEMP) are short latency electromyograms (EMG) evoked by high-level acoustic stimuli and recorded from surface electrodes over the tonically contracted sternocleidomastoid (SCM) muscle and are presumed to originate in the saccule. The present experiments examined the effects of click and tone-burst level and stimulus frequency on the latency, amplitude, and threshold of the VEMP in subjects with normal hearing sensitivity and no history of vestibular disease. VEMPs were recorded in all subjects using 100 dB nHL click stimuli. Most subjects had VEMPs present at 500, 750, and 1000 Hz, and few subjects had VEMPs present at 2000 Hz. The response amplitude of the VEMP increased with click and tone-burst level, whereas VEMP latency was not influenced by the stimulus level. The largest tone-burst-evoked VEMPs and lowest thresholds were obtained at 500 and 750 Hz. VEMP latency was independent of stimulus frequency when tone-burst duration was held constant.

  11. Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.

    PubMed

    Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen

    2014-08-06

    Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.

  12. Parameter Optimization Analysis of Prolonged Analgesia Effect of tDCS on Neuropathic Pain Rats

    PubMed Central

    Wen, Hui-Zhong; Gao, Shi-Hao; Zhao, Yan-Dong; He, Wen-Juan; Tian, Xue-Long; Ruan, Huai-Zhen

    2017-01-01

    Background: Transcranial direct current stimulation (tDCS) is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters. Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1) on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia. Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI), we measured pain thresholds before and after anodal-tDCS (A-tDCS) using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models). Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS) and contralateral-tDCS (con-tDCS) produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats. Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical applications. PMID:28659772

  13. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.

    PubMed

    van den Berg, Berry; Krebs, Ruth M; Lorist, Monicque M; Woldorff, Marty G

    2014-06-01

    The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information.

  14. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict

    PubMed Central

    van den Berg, Berry; Krebs, Ruth M.; Lorist, Monicque M.; Woldorff, Marty G.

    2015-01-01

    The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus-conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive-task performance. In this task the cue indicated whether or not the subject needed to prepare for an upcoming Stroop stimulus, and if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued-attention and cued-reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (CNV) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted faster versus slower response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across-subjects with the degree to which reward-prospect both facilitated overall task performance (faster RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information. PMID:24820263

  15. PV cells electrical parameters measurement

    NASA Astrophysics Data System (ADS)

    Cibira, Gabriel

    2017-12-01

    When measuring optical parameters of a photovoltaic silicon cell, precise results bring good electrical parameters estimation, applying well-known physical-mathematical models. Nevertheless, considerable re-combination phenomena might occur in both surface and intrinsic thin layers within novel materials. Moreover, rear contact surface parameters may influence close-area re-combination phenomena, too. Therefore, the only precise electrical measurement approach is to prove assumed cell electrical parameters. Based on theoretical approach with respect to experiments, this paper analyses problems within measurement procedures and equipment used for electrical parameters acquisition within a photovoltaic silicon cell, as a case study. Statistical appraisal quality is contributed.

  16. Computational Evaluation of Cochlear Implant Surgery Outcomes Accounting for Uncertainty and Parameter Variability.

    PubMed

    Mangado, Nerea; Pons-Prats, Jordi; Coma, Martí; Mistrík, Pavel; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel Á

    2018-01-01

    Cochlear implantation (CI) is a complex surgical procedure that restores hearing in patients with severe deafness. The successful outcome of the implanted device relies on a group of factors, some of them unpredictable or difficult to control. Uncertainties on the electrode array position and the electrical properties of the bone make it difficult to accurately compute the current propagation delivered by the implant and the resulting neural activation. In this context, we use uncertainty quantification methods to explore how these uncertainties propagate through all the stages of CI computational simulations. To this end, we employ an automatic framework, encompassing from the finite element generation of CI models to the assessment of the neural response induced by the implant stimulation. To estimate the confidence intervals of the simulated neural response, we propose two approaches. First, we encode the variability of the cochlear morphology among the population through a statistical shape model. This allows us to generate a population of virtual patients using Monte Carlo sampling and to assign to each of them a set of parameter values according to a statistical distribution. The framework is implemented and parallelized in a High Throughput Computing environment that enables to maximize the available computing resources. Secondly, we perform a patient-specific study to evaluate the computed neural response to seek the optimal post-implantation stimulus levels. Considering a single cochlear morphology, the uncertainty in tissue electrical resistivity and surgical insertion parameters is propagated using the Probabilistic Collocation method, which reduces the number of samples to evaluate. Results show that bone resistivity has the highest influence on CI outcomes. In conjunction with the variability of the cochlear length, worst outcomes are obtained for small cochleae with high resistivity values. However, the effect of the surgical insertion length on the CI outcomes could not be clearly observed, since its impact may be concealed by the other considered parameters. Whereas the Monte Carlo approach implies a high computational cost, Probabilistic Collocation presents a suitable trade-off between precision and computational time. Results suggest that the proposed framework has a great potential to help in both surgical planning decisions and in the audiological setting process.

  17. Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions

    PubMed Central

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967

  18. Mismatch and conflict: neurophysiological and behavioral evidence for conflict priming.

    PubMed

    Mager, Ralph; Meuth, Sven G; Kräuchi, Kurt; Schmidlin, Maria; Müller-Spahn, Franz; Falkenstein, Michael

    2009-11-01

    Conflict-related cognitive processes are critical for adapting to sudden environmental changes that confront the individual with inconsistent or ambiguous information. Thus, these processes play a crucial role to cope with daily life. Generally, conflicts tend to accumulate especially in complex and threatening situations. Therefore, the question arises how conflict-related cognitive processes are modulated by the close succession of conflicts. In the present study, we investigated the effect of interactions between different types of conflict on performance as well as on electrophysiological parameters. A task-irrelevant auditory stimulus and a task-relevant visual stimulus were presented successively. The auditory stimulus consisted of a standard or deviant tone, followed by a congruent or incongruent Stroop stimulus. After standard prestimuli, performance deteriorated for incongruent compared to congruent Stroop stimuli, which were accompanied by a widespread negativity for incongruent versus congruent stimuli in the event-related potentials (ERPs). However, after deviant prestimuli, performance was better for incongruent than for congruent Stroop stimuli and an additional early negativity in the ERP emerged with a fronto-central maximum. Our data show that deviant auditory prestimuli facilitate specifically the processing of stimulus-related conflict, providing evidence for a conflict-priming effect.

  19. Spatiotemporal integration for tactile localization during arm movements: a probabilistic approach.

    PubMed

    Maij, Femke; Wing, Alan M; Medendorp, W Pieter

    2013-12-01

    It has been shown that people make systematic errors in the localization of a brief tactile stimulus that is delivered to the index finger while they are making an arm movement. Here we modeled these spatial errors with a probabilistic approach, assuming that they follow from temporal uncertainty about the occurrence of the stimulus. In the model, this temporal uncertainty converts into a spatial likelihood about the external stimulus location, depending on arm velocity. We tested the prediction of the model that the localization errors depend on arm velocity. Participants (n = 8) were instructed to localize a tactile stimulus that was presented to their index finger while they were making either slow- or fast-targeted arm movements. Our results confirm the model's prediction that participants make larger localization errors when making faster arm movements. The model, which was used to fit the errors for both slow and fast arm movements simultaneously, accounted very well for all the characteristics of these data with temporal uncertainty in stimulus processing as the only free parameter. We conclude that spatial errors in dynamic tactile perception stem from the temporal precision with which tactile inputs are processed.

  20. Roles of cyclic AMP and Ca in epithelial ion transport across corneal epithelium: a review.

    PubMed

    Reinach, P S

    1985-04-01

    The messenger roles of cyclic AMP and the calcium ion in stimulus-secretion coupling are considered in the frog and bovine corneal epithelium, respectively. In the frog cornea, epinephrine stimulates net C1 transport by increasing cyclic AMP content. This stimulation is associated with a larger apical membrane C1 conductance and basolateral membrane ionic conductance. The response of the apical membrane conductance is thought to result from an increase in cyclic AMP content whereas the basolateral membrane ionic conductance increase is unrelated based on measurements of the effects of the calcium channel antagonist, diltiazem, and the beta agonist, isoproterenol, on the electrical parameters and cyclic AMP content. The basolateral membrane is essentially K permselective since the K channel blocker, Ba, depolarized the intracellular potential difference and increased the basolateral membrane resistance. Diltiazem had even larger effects on these parameters suggesting that this compound is a more effective inhibitor of K channel activity than barium. In broken cell preparations of bovine corneal epithelium, a high affinity form of Ca + Mg activated ATPase is present (Km = .06 microM for Ca) and is essentially of plasma membrane origin. This ATPase activation is at a Ca activity similar to the expected intracellular value and suggests that this activity is the enzymatic basis for net Ca transport.

  1. Novel non-contact control system of electric bed for medical healthcare.

    PubMed

    Lo, Chi-Chun; Tsai, Shang-Ho; Lin, Bor-Shyh

    2017-03-01

    A novel non-contact controller of the electric bed for medical healthcare was proposed in this study. Nowadays, the electric beds are widely used for hospitals and home-care, and the conventional control method of the electric beds usually involves in the manual operation. However, it is more difficult for the disabled and bedridden patients, who might totally depend on others, to operate the conventional electric beds by themselves. Different from the current controlling method, the proposed system provides a new concept of controlling the electric bed via visual stimuli, without manual operation. The disabled patients could operate the electric bed by focusing on the control icons of a visual stimulus tablet in the proposed system. Besides, a wearable and wireless EEG acquisition module was also implemented to monitor the EEG signals of patients. The experimental results showed that the proposed system successfully measured and extracted the EEG features related to visual stimuli, and the disabled patients could operate the adjustable function of the electric bed by themselves to effectively reduce the long-term care burden.

  2. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells*

    PubMed Central

    Arredouani, Abdelilah; Ruas, Margarida; Collins, Stephan C.; Parkesh, Raman; Clough, Frederick; Pillinger, Toby; Coltart, George; Rietdorf, Katja; Royle, Andrew; Johnson, Paul; Braun, Matthias; Zhang, Quan; Sones, William; Shimomura, Kenju; Morgan, Anthony J.; Lewis, Alexander M.; Chuang, Kai-Ting; Tunn, Ruth; Gadea, Joaquin; Teboul, Lydia; Heister, Paula M.; Tynan, Patricia W.; Bellomo, Elisa A.; Rutter, Guy A.; Rorsman, Patrik; Churchill, Grant C.; Parrington, John; Galione, Antony

    2015-01-01

    Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells. PMID:26152717

  3. Assessment of Murine Retinal Function by Electroretinography

    PubMed Central

    Benchorin, Gillie; Calton, Melissa A.; Beaulieu, Marielle O.; Vollrath, Douglas

    2017-01-01

    The electroretinogram (ERG) is a sensitive and noninvasive method for testing retinal function. In this protocol, we describe a method for performing ERGs in mice. Contact lenses on the mouse cornea measure the electrical response to a light stimulus of photoreceptors and downstream retinal cells, and the collected data are analyzed to evaluate retinal function. PMID:29177186

  4. The Treatment of Self-Injurious Behavior in Profoundly Retarded Autistic Children.

    ERIC Educational Resources Information Center

    Holden, E. Wayne; And Others

    Three aversive conditioning programs were conducted to deal with self-injurious behavior at a residential facility for autistic, brain damaged and retarded children and adolescents. In study 1, mild electric shock paired with a neutral stimulus was moderately effective in decreasing lip biting and head striking in an autistic 15-year-old. Case 2…

  5. Electroconvulsive Therapy. Consensus Development Conference Statement, Vol. 5, No. 11.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHHS), Bethesda, MD.

    Electroconvulsive therapy (ECT), a treatment for severe mental illness in which a brief application of electric stimulus is used to produce a generalized seizure, has been in use for over 45 years. Controversies still exist today concerning the use of ECT. In 1985, the National Institutes of Health and the National Institute of Mental Health held…

  6. The Parallel Episodic Processing (PEP) model 2.0: A single computational model of stimulus-response binding, contingency learning, power curves, and mixing costs.

    PubMed

    Schmidt, James R; De Houwer, Jan; Rothermund, Klaus

    2016-12-01

    The current paper presents an extension of the Parallel Episodic Processing model. The model is developed for simulating behaviour in performance (i.e., speeded response time) tasks and learns to anticipate both how and when to respond based on retrieval of memories of previous trials. With one fixed parameter set, the model is shown to successfully simulate a wide range of different findings. These include: practice curves in the Stroop paradigm, contingency learning effects, learning acquisition curves, stimulus-response binding effects, mixing costs, and various findings from the attentional control domain. The results demonstrate several important points. First, the same retrieval mechanism parsimoniously explains stimulus-response binding, contingency learning, and practice effects. Second, as performance improves with practice, any effects will shrink with it. Third, a model of simple learning processes is sufficient to explain phenomena that are typically (but perhaps incorrectly) interpreted in terms of higher-order control processes. More generally, we argue that computational models with a fixed parameter set and wider breadth should be preferred over those that are restricted to a narrow set of phenomena. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Limb-state information encoded by peripheral and central somatosensory neurons: Implications for an afferent interface

    PubMed Central

    Weber, Douglas J.; London, Brian M.; Hokanson, James A.; Ayers, Christopher A.; Gaunt, Robert A.; Torres, Ricardo R.; Zaaimi, Boubker; Miller, Lee E.

    2013-01-01

    A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of limb state in terms of neural discharge. This model can then be used to design stimuli that artificially activate the nervous system to convey information about limb state to the subject. Electrically activating DRG neurons using naturalistic stimulus patterns, modeled on recordings made during passive limb movement, evoked activity in S1 that was similar to that of the original movement. We also found that S1 neural populations could accurately discriminate different patterns of DRG stimulation across a wide range of stimulus pulse-rates. In studying the neural coding of limb-state in S1, we also decoded the kinematics of active limb movement using multi-electrode recordings in the monkey. Neurons having both proprioceptive and cutaneous receptive fields contributed equally to this decoding. Some neurons were most informative of limb state in the recent past, but many others appeared to signal upcoming movements suggesting that they also were modulated by an efference copy signal. Finally, we show that a monkey was able to detect stimulation through a large percentage of electrodes implanted in area 2. We discuss the design of appropriate stimulus paradigms for conveying time-varying limb state information, and the relative merits and limitations of central and peripheral approaches. PMID:21878419

  8. Optimization of parameters of special asynchronous electric drives

    NASA Astrophysics Data System (ADS)

    Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.

    2018-03-01

    The article considers the solution of the problem of parameters optimization of special asynchronous electric drives. The solution of the problem will allow one to project and create special asynchronous electric drives for various industries. The created types of electric drives will have optimum mass-dimensional and power parameters. It will allow one to realize and fulfill the set characteristics of management of technological processes with optimum level of expenses of electric energy, time of completing the process or other set parameters. The received decision allows one not only to solve a certain optimizing problem, but also to construct dependences between the optimized parameters of special asynchronous electric drives, for example, with the change of power, current in a winding of the stator or rotor, induction in a gap or steel of magnetic conductors and other parameters. On the constructed dependences, it is possible to choose necessary optimum values of parameters of special asynchronous electric drives and their components without carrying out repeated calculations.

  9. APIS—a novel approach for conditioning honey bees

    PubMed Central

    Kirkerud, Nicholas H.; Wehmann, Henja-Niniane; Galizia, C. Giovanni; Gustav, David

    2013-01-01

    Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior. PMID:23616753

  10. APIS-a novel approach for conditioning honey bees.

    PubMed

    Kirkerud, Nicholas H; Wehmann, Henja-Niniane; Galizia, C Giovanni; Gustav, David

    2013-01-01

    Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior.

  11. Autonomic nervous system responses to sweet taste: evidence for habituation rather than pleasure.

    PubMed

    Leterme, A; Brun, L; Dittmar, A; Robin, O

    2008-03-18

    Previous recordings of the variations of autonomic nervous system (ANS) parameters associated with each primary taste (sweet, salty, sour and bitter) showed that sweet taste induced very weak ANS responses, in the same range or weaker than responses evoked by mineral water. The purpose of this study was then to determine whether this weak ANS activation reflects the pleasant hedonic valence of sweet or the habituation of the organism to this innate-accepted taste. Twenty healthy volunteer subjects (8 males and 12 females, mean age=22.85 years) participated in the experiment. Taste stimuli were a solution of 0.3 M sucrose and three sweet flavours (orange juice, coke, lemonade) as "pleasant" sweet stimuli, and a solution of 0.15 M NaCl as an "unpleasant" stimulus. "Evian" mineral water served as the diluent and as a neutral stimulus. Throughout the test, five ANS parameters (skin potential and skin resistance, skin blood flow and skin temperature, instantaneous heart rate) were simultaneously and continuously recorded. After they had tasted each solution, subjects filled out a questionnaire in which they had to evaluate the hedonic dimension and the sweet intensity of each gustative stimulus. The lack of correlation between the mean hedonic scores associated with the four sweet stimuli and the mean values of the autonomic parameter variations tends to indicate that the weak ANS responses induced by the sweet gustative stimuli rather reflect the habituation of the organism to sweet taste than a gradation in sensory pleasure.

  12. Neural theory for the perception of causal actions.

    PubMed

    Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A

    2012-07-01

    The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.

  13. Actigraphy-based sleep parameters during the reinstatement of methamphetamine self-administration in rhesus monkeys.

    PubMed

    Berro, Laís F; Andersen, Monica L; Tufik, Sergio; Howell, Leonard L

    2016-04-01

    The objective of this study was to investigate nighttime activity of nonhuman primates during extinction and cue- and drug-primed reinstatement of methamphetamine self-administration. Adult rhesus monkeys (Macaca mulatta; n = 5) self-administered methamphetamine (0.01 mg/kg/injection, i.v.) under a fixed-ratio 20 schedule of reinforcement. Saline infusions were then substituted for methamphetamine and stimulus light (drug-conditioned stimulus presented during drug self-administration) withheld until subjects reached extinction criteria. Drug- and cue-induced reinstatement effects were evaluated after i.v. noncontingent priming injections of methamphetamine (0.03, 0.1, or 0.3 mg/kg). Activity-based sleep measures were evaluated with Actiwatch monitors a week before (baseline nighttime activity parameters) and throughout the protocol. Although methamphetamine self-administration did not significantly affect nighttime activity compared to baseline, sleeplike parameters were improved during extinction compared to self-administration maintenance. Priming injection of 0.1 mg/kg methamphetamine, but not 0.03 or 0.3 mg/kg, induced significant reinstatement effects. These behavioral responses were accompanied by nighttime outcomes, with increased sleep fragmentation and decreased sleep efficiency in the night following 0.1 mg/kg methamphetamine-induced reinstatement. In the absence of both drug and drug-paired cues (extinction conditions), nighttime activity decreased compared to self-administration maintenance. Additionally, effective reinstatement conditions impaired sleeplike measures. Our data indicate that the reintroduction of the stimulus light as a drug-paired cue increased nighttime activity. (c) 2016 APA, all rights reserved).

  14. Beauty at a glance: The feeling of beauty and the amplitude of pleasure are independent of stimulus duration.

    PubMed

    Brielmann, Aenne A; Vale, Lauren; Pelli, Denis G

    2017-12-01

    Over time, how does beauty develop and decay? Common sense suggests that beauty is intensely felt only after prolonged experience of the object. Here, we present one of various stimuli for a variable duration (1-30 s), measure the observers' pleasure over time, and, finally, ask whether they felt beauty. On each trial, participants (N = 21) either see an image that they had chosen as "movingly beautiful," see an image with prerated valence, or suck a candy. During the stimulus and a further 60 s, participants rate pleasure continuously using a custom touchscreen web app, EmotionTracker.com. After each trial, participants judge whether they felt beauty. Across all stimulus kinds, durations, and beauty responses, the dynamic pleasure rating has a stereotypical time course that is well fit by a one-parameter model with a brief exponential onset (roughly 2.5 s), a sustained plateau during stimulus presentation, and a long exponential decay (roughly 70 s). Across conditions, only the plateau amplitude varies. Beauty and pleasure amplitude are nearly independent of stimulus duration. The final beauty rating is positively correlated with pleasure amplitude (r = 0.60), and nearly independent of duration (r = 0.10). Beauty's independence from duration is unlike Bentham's 18th-century notion of value (utility), which he supposed to depend on the product of pleasure amplitude and duration. Participants report having felt pleasure as strongly after a mere 1 s stimulus as after longer durations, up to 30 s. Thus, we find that amplitude of pleasure is independent of stimulus duration.

  15. Reinforcement in an in Vitro Analog of Appetitive Classical Conditioning of Feeding Behavior in "Aplysia": Blockade by a Dopamine Antagonist

    ERIC Educational Resources Information Center

    Reyes, Fredy D.; Mozzachiodi, Riccardo; Baxter, Douglas A.; Byrne, John H.

    2005-01-01

    In a recently developed in vitro analog of appetitive classical conditioning of feeding in "Aplysia," the unconditioned stimulus (US) was electrical stimulation of the esophageal nerve (En). This nerve is rich in dopamine (DA)-containing processes, which suggests that DA mediates reinforcement during appetitive conditioning. To test this…

  16. Expectancy bias in a selective conditioning procedure: trait anxiety increases the threat value of a blocked stimulus.

    PubMed

    Boddez, Yannick; Vervliet, Bram; Baeyens, Frank; Lauwers, Stephanie; Hermans, Dirk; Beckers, Tom

    2012-06-01

    In a blocking procedure, a single conditioned stimulus (CS) is paired with an unconditioned stimulus (US), such as electric shock, in the first stage. During the subsequent stage, the CS is presented together with a second CS and this compound is followed by the same US. Fear conditioning studies in non-human animals have demonstrated that fear responding to the added second CS typically remains low, despite its being paired with the US. Accordingly, the blocking procedure is well suited as a laboratory model for studying (deficits in) selective threat appraisal. The present study tested the relation between trait anxiety and blocking in human aversive conditioning. Healthy participants filled in a trait anxiety questionnaire and underwent blocking treatment in the human aversive conditioning paradigm. Threat appraisal was measured through shock expectancy ratings and skin conductance. As hypothesized, trait anxiety was positively associated with shock expectancy ratings to the blocked stimulus. In skin conductance responding, no significant effects of stimulus type could be detected during blocking training or testing. The current study does not allow strong claims to be made regarding the theoretical process underlying the expectancy bias we observed. The observed shock expectancy bias might be one of the mechanisms leading to non-specific fear in individuals at risk for developing anxiety disorders. A deficit in blocking, or a deficit in selective threat appraisal at the more general level, indeed results in fear becoming non-specific and disconnected from the most likely causes or predictors of danger. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    PubMed

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  18. Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions

    PubMed Central

    He, W.; Ren, T.

    2013-01-01

    To understand how the inner ear-generated sound, i.e., otoacoustic emission, exits the cochlea, we created a sound source electrically in the second turn and measured basilar membrane vibrations at two longitudinal locations in the first turn in living gerbil cochleae using a laser interferometer. For a given longitudinal location, electrically evoked basilar membrane vibrations showed the same tuning and phase lag as those induced by sounds. For a given frequency, the phase measured at a basal location led that at a more apical location, indicating that either an electrical or an acoustical stimulus evoked a forward travelling wave. Under postmortem conditions, the electrically evoked emissions showed no significant change while the basilar membrane vibration nearly disappeared. The current data indicate that basilar membrane vibration was not involved in the backward propagation of otoacoustic emissions and that sounds exit the cochlea probably through alternative media, such as cochlear fluids. PMID:23695199

  19. Evaluative conditioning increases with temporal contiguity. The influence of stimulus order and stimulus interval on evaluative conditioning.

    PubMed

    Gast, Anne; Langer, Sebastian; Sengewald, Marie-Ann

    2016-10-01

    Evaluative conditioning (EC) is a change in valence that is due to pairing a conditioned stimulus (CS) with another, typically valent, unconditioned stimulus (US). This paper investigates how basic presentation parameters moderate EC effects. In two studies we tested the effectiveness of different temporal relations of the CS and the US, that is, the order in which the stimuli were presented and the temporal distance between them. Both studies showed that the size of EC effects was independent of the presentation order of CS and US within a stimulus pair. Contrary to classical conditioning effects, EC effects are thus not most pronounced after CS-first presentations. Furthermore, as shown in Experiment 2, EC effects increased in magnitude as the temporal interval between CS and US presentations decreased. Experiment 1 showed largest EC effects in the condition with simultaneous presentations - which can be seen as the condition with the temporally closest presentation. In this Experiment stimuli were presented in two different modalities, which might have facilitated simultaneous processing. In Experiment 2, in which all stimuli were presented visually, this advantage of simultaneous presentation was not found. We discuss practical and theoretical implications of our findings. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Dynamic Alignment Models for Neural Coding

    PubMed Central

    Kollmorgen, Sepp; Hahnloser, Richard H. R.

    2014-01-01

    Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448

  1. Prey Localization in Aquatic Surroundings: The Paddlefish

    NASA Astrophysics Data System (ADS)

    Russell, David F.

    2000-03-01

    Paddlefish locate aquatic prey by electrosense, using arrays of 50,000 passive electroreceptors to sense the microvolt-scale oscillatory electrical signals emitted by small planktonic prey such as Daphnia. Many electroreceptors cover a special flattened appendage projecting in front of the head, the rostrum, which acts as an electrosensory antenna and "early warning system" for approaching plankton, as a paddlefish swims forward. To unravel how this electrosensory nervous system works, we use infrared video to observe fish feeding behavior in a recirculating stream of water, complemented by microelectrode and staining experiments on the electroreceptors and brain. Fish appear to use simple search algorithms based on stimulus intensity to locate plankton, divisible into early-phase ballistic motions, followed by finer late-phase tracking to align the mouth, before the final lunge and prey engulfment. An example of how physical principles from nonlinear dynamics can be applied is our observation of stochastic resonance (SR) at the level of paddlefish feeding behavior (Nature 402: 291-294, 1999). We presented electrical noise, at different rms amplitudes, in the water where a fish was feeding on plankton. A certain optimal amplitude of noise (0.5 x 10-6 V/cm) increased the spatial range of prey localization by 60along the vertical axis (above or below the fish). The noisy electrical stimulus apparently increases the sensitivity of the electrosensory nervous system, by SR. As confirmation, we have also demonstrated SR in the response properties of individual electroreceptors. Additional information is available at the

  2. Long-term stimulation by active epiretinal implants in normal and RCD1 dogs

    NASA Astrophysics Data System (ADS)

    Güven, Dilek; Weiland, James D.; Fujii, Gildo; Mech, Brian V.; Mahadevappa, Manjunatha; Greenberg, Robert; Roizenblatt, Roberto; Qiu, Guanting; La Bree, Laurie; Wang, Xiaopeng; Hinton, David; Humayun, Mark S.

    2005-03-01

    An epiretinal prosthesis, consisting of an extraocular microelectronic stimulator and an intraocular electrode array, was implanted in one eye of three blind and three sighted dogs. Three dogs (2 blind, 1 normal) were stimulated for 120 days, and two dogs (both normal) for 60 and 103 days respectively for 8-10 h/day at levels of 0.1 mC cm-2 and 0.05 mC cm-2, with each stimulus level presented to half of the array. One blind dog was kept as an inactive implant control. During the study period, electroretinograms (ERG) and fundus photographs were recorded. At the end of the study period, the dogs were sacrificed and histological and morphometric evaluation was made of the retina. No inflammatory reaction, neovascularization or hemorrhage was observed during the follow-up examinations. ERGs were unchanged. Stimulus levels used were of sufficient amplitude to elicit cortical evoked potentials. Histological evaluation showed no inflammatory infiltrates or changes in retina morphometry related to electrical stimulation when compared to the unstimulated control eye. Morphometric analysis revealed no consistent differences relating to electrical stimulation. In summary, chronic electrical stimulation of the dog retina at up to 0.1 mC cm-2 with an epiretinal prosthesis does not appear to adversely affect the retina. This study is supported by The Fletcher Jones Foundation, National Eye Institute Grants 1R24EY12893 and EY03040, the Whitaker Foundation and Second Sight Medical Products, Inc.

  3. Detection of Optogenetic Stimulation in Somatosensory Cortex by Non-Human Primates - Towards Artificial Tactile Sensation

    PubMed Central

    Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L.; Nurmikko, Arto V.

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest. PMID:25541938

  4. McGurk stimuli for the investigation of multisensory integration in cochlear implant users: The Oldenburg Audio Visual Speech Stimuli (OLAVS).

    PubMed

    Stropahl, Maren; Schellhardt, Sebastian; Debener, Stefan

    2017-06-01

    The concurrent presentation of different auditory and visual syllables may result in the perception of a third syllable, reflecting an illusory fusion of visual and auditory information. This well-known McGurk effect is frequently used for the study of audio-visual integration. Recently, it was shown that the McGurk effect is strongly stimulus-dependent, which complicates comparisons across perceivers and inferences across studies. To overcome this limitation, we developed the freely available Oldenburg audio-visual speech stimuli (OLAVS), consisting of 8 different talkers and 12 different syllable combinations. The quality of the OLAVS set was evaluated with 24 normal-hearing subjects. All 96 stimuli were characterized based on their stimulus disparity, which was obtained from a probabilistic model (cf. Magnotti & Beauchamp, 2015). Moreover, the McGurk effect was studied in eight adult cochlear implant (CI) users. By applying the individual, stimulus-independent parameters of the probabilistic model, the predicted effect of stronger audio-visual integration in CI users could be confirmed, demonstrating the validity of the new stimulus material.

  5. Intelligent electrical outlet for collective load control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Ford, Justin R.; Spires, Shannon V.

    Various technologies described herein pertain to an electrical outlet that autonomously manages loads in a microgrid. The electrical outlet can provide autonomous load control in response to variations in electrical power generation supply in the microgrid. The electrical outlet includes a receptacle, a sensor operably coupled to the receptacle, and an actuator configured to selectively actuate the receptacle. The sensor measures electrical parameters at the receptacle. Further, a processor autonomously controls the actuator based at least in part on the electrical parameters measured at the receptacle, electrical parameters from one or more disparate electrical outlets in the microgrid, and amore » supply of generated electric power in the microgrid at a given time.« less

  6. Preattentive binding of auditory and visual stimulus features.

    PubMed

    Winkler, István; Czigler, István; Sussman, Elyse; Horváth, János; Balázs, Lászlo

    2005-02-01

    We investigated the role of attention in feature binding in the auditory and the visual modality. One auditory and one visual experiment used the mismatch negativity (MMN and vMMN, respectively) event-related potential to index the memory representations created from stimulus sequences, which were either task-relevant and, therefore, attended or task-irrelevant and ignored. In the latter case, the primary task was a continuous demanding within-modality task. The test sequences were composed of two frequently occurring stimuli, which differed from each other in two stimulus features (standard stimuli) and two infrequently occurring stimuli (deviants), which combined one feature from one standard stimulus with the other feature of the other standard stimulus. Deviant stimuli elicited MMN responses of similar parameters across the different attentional conditions. These results suggest that the memory representations involved in the MMN deviance detection response encoded the frequently occurring feature combinations whether or not the test sequences were attended. A possible alternative to the memory-based interpretation of the visual results, the elicitation of the McCollough color-contingent aftereffect, was ruled out by the results of our third experiment. The current results are compared with those supporting the attentive feature integration theory. We conclude that (1) with comparable stimulus paradigms, similar results have been obtained in the two modalities, (2) there exist preattentive processes of feature binding, however, (3) conjoining features within rich arrays of objects under time pressure and/or longterm retention of the feature-conjoined memory representations may require attentive processes.

  7. Lateral geniculate body evoked potentials elicited by visual and electrical stimulation.

    PubMed

    Choi, Chang Wook; Kim, Pan Sang; Shin, Sun Ae; Yang, Ji Yeon; Yang, Yun Sik

    2014-08-01

    Blind individuals who have photoreceptor loss are known to perceive phosphenes with electrical stimulation of their remaining retinal ganglion cells. We proposed that implantable lateral geniculate body (LGB) stimulus electrode arrays could be used to generate phosphene vision. We attempted to refine the basic reference of the electrical evoked potentials (EEPs) elicited by microelectrical stimulations of the optic nerve, optic tract and LGB of a domestic pig, and then compared it to visual evoked potentials (VEPs) elicited by short-flash stimuli. For visual function measurement, VEPs in response to short-flash stimuli on the left eye of the domestic pig were assessed over the visual cortex at position Oz with the reference electrode at Fz. After anesthesia, linearly configured platinum wire electrodes were inserted into the optic nerve, optic track and LGB. To determine the optimal stimulus current, EEPs were recorded repeatedly with controlling the pulse and power. The threshold of current and charge density to elicit EEPs at 0.3 ms pulse duration was about ±10 µA. Our experimental results showed that visual cortex activity can be effectively evoked by stimulation of the optic nerve, optic tract and LGB using penetrating electrodes. The latency of P1 was more shortened as the electrical stimulation was closer to LGB. The EEPs of two-channel in the visual cortex demonstrated a similar pattern with stimulation of different spots of the stimulating electrodes. We found that the LGB-stimulated EEP pattern was very similar to the simultaneously generated VEP on the control side, although implicit time deferred. EEPs and VEPs derived from visual-system stimulation were compared. The LGB-stimulated EEP wave demonstrated a similar pattern to the VEP waveform except implicit time, indicating prosthetic-based electrical stimulation of the LGB could be utilized for the blind to perceive vision of phosphenes.

  8. Modeling Unipolar and Bipolar Stimulation of Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Galappaththige, Suran Kokila

    Out of all non-communicable diseases, heart diseases have become the leading cause of death and disease burden worldwide. Heart diseases describe a variety of circumstances that affect your heart. One common condition is the heart rhythm problem often called an arrhythmia. The rhythmic beating of the human heart can be altered due to various reasons. This inconsistency in beating can lead to a lethal form of arrhythmia that we call ventricular fibrillation. We treat fibrillation by applying an electrical shock to the heart using a unipolar electrode or bipolar electrodes. To build better pace makers and defibrillators, we must understand how the heart responds to an electrical shock. One way to study cardiac arrhythmias is using a mathematical model. The computational biology of the heart is one of the most important recent applications of mathematical modeling in biology. By using mathematical models, we can understand the mechanisms responsible of the heart's electrical behavior. We investigate if the time-independent, inwardly rectifying potassium current through the cell membrane inhibits the hyperpolarization after a stimulus electrical pulse is applied to the resting heart tissue. The inhibition of hyperpolarization is due to long duration stimulus pulses, but not short duration pulses. We also investigate the minimum conditions required for the dip in strength-interval curves using a simple but not so simple parsimonious ionic current model coupled with the bidomain model. Unipolar anodal stimulations still results in the dip in the strength-interval curves and this explains the minimum conditions for this phenomenon to occur. Bipolar stimulation of cardiac tissue using the parsimonious ionic current model revels that the strength-interval curves are sensitive to the separation between electrodes and the electrode orientation relative to the fiber direction. One of the ionic currents in the parsimonious ionic current model mimics the time-independent inwardly rectifying potassium current and this study examines the importance of this current in mathematical models that describe cardiac electrical behavior.

  9. Myoelectric stimulation on peroneal muscles resists simulated ankle sprain motion.

    PubMed

    Fong, Daniel Tik-Pui; Chu, Vikki Wing-Shan; Chan, Kai-Ming

    2012-07-26

    The inadequate reaction time of the peroneal muscles in response to an incorrect foot contact event has been proposed as one of the etiological factors contributing to ankle joint inversion injury. Thus, the current study aimed to investigate the efficacy of a myoelectric stimulation applied to the peroneal muscles in the prevention of a simulated ankle inversion trauma. Ten healthy male subjects performed simulated inversion and supination tests on a pair of mechanical sprain simulators. An electrical signal was delivered to the peroneal muscles of the subjects through a pair of electrode pads. The start of the stimulus was synchronized with the drop of the sprain simulator's platform. In order to determine the maximum delay time which the stimulus could still resist the simulated ankle sprain motion, different delay time were test (0, 5, 10, and 15ms). Together with the control trial (no stimulus), there were 5 testing conditions for both simulated inversion and supination test. The effect was quantified by the drop in maximum ankle tilting angle and angular velocity, as determined by a motion analysis system with a standard laboratory procedure. Results showed that the myoelectric stimulation was effective in all conditions except the one with myoelectric stimulus delayed for 15ms in simulated supination test. It is concluded that myoelectric stimulation on peroneal muscles could resist an ankle spraining motion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Disturbances of stem circumnutations evoked by wound-induced variation potentials in Helianthus annuus L.

    PubMed

    Stolarz, Maria; Dziubińska, Halina; Krupa, Maciej; Buda, Agnieszka; Trebacz, Kazimierz; Zawadzki, Tadeusz

    2003-01-01

    The relationship between evoked electrical activity and stem movements in three-week old sunflowers was demonstrated. Electrical potential changes (recorded by Ag/AgCl extracellular electrodes) and time-lapse images (from a top view camera) were recorded and analyzed. A heat stimulus applied to the tip of one of the second pair of leaves evoked a variation potential, transmitted basipetally along one side of the stem. After stimulation, disturbances of circumnutations occurred. They included: changes in the period, disorders in the elliptical shape, and, in some cases, reversion of direction (of movement). We suggest that asymmetrically propagated variation potential induces asymmetric stem shrinking and bending, which strongly disturbs circumnutations. Our results confirm the involvement of electrical potential changes in the mechanism of stem nutations.

  11. Evidence for the Involvement of Electrical, Calcium and ROS Signaling in the Systemic Regulation of Non-Photochemical Quenching and Photosynthesis

    PubMed Central

    Białasek, Maciej; Górecka, Magdalena; Mittler, Ron

    2017-01-01

    In contrast to the function of reactive oxygen species, calcium, hormones and small RNAs in systemic signaling, systemic electrical signaling in plants is poorly studied and understood. Pulse amplitude-modulated Chl fluorescence imaging and surface electrical potential measurements accompanied by pharmacological treatments were employed to study stimuli-induced electrical signals in leaves from a broad range of plant species and in Arabidopsis thaliana mutants. Here we report that rapid electrical signals in response to a local heat stimulus regulate systemic changes in non-photochemical quenching (NPQ) and PSII quantum efficiency. Both stimuli-induced systemic changes in NPQ and photosynthetic capacity as well as electrical signaling depended on calcium channel activity. Use of an Arabidopsis respiratory burst oxidase homolog D (RBOHD) mutant (rbohD) as well as an RBOH inhibitor further suggested a cross-talk between ROS and electrical signaling. Our results suggest that higher plants evolved a complex rapid long-distance calcium-dependent electrical systemic signaling in response to local stimuli that regulates and optimizes the balance between PSII quantum efficiency and excess energy dissipation in the form of heat by means of NPQ. PMID:28184891

  12. Effect of process parameters on microstructure and electrical conductivity during FSW of Al-6101 and Pure Copper

    NASA Astrophysics Data System (ADS)

    Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd

    2018-04-01

    Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.

  13. High-order statistics of weber local descriptors for image representation.

    PubMed

    Han, Xian-Hua; Chen, Yen-Wei; Xu, Gang

    2015-06-01

    Highly discriminant visual features play a key role in different image classification applications. This study aims to realize a method for extracting highly-discriminant features from images by exploring a robust local descriptor inspired by Weber's law. The investigated local descriptor is based on the fact that human perception for distinguishing a pattern depends not only on the absolute intensity of the stimulus but also on the relative variance of the stimulus. Therefore, we firstly transform the original stimulus (the images in our study) into a differential excitation-domain according to Weber's law, and then explore a local patch, called micro-Texton, in the transformed domain as Weber local descriptor (WLD). Furthermore, we propose to employ a parametric probability process to model the Weber local descriptors, and extract the higher-order statistics to the model parameters for image representation. The proposed strategy can adaptively characterize the WLD space using generative probability model, and then learn the parameters for better fitting the training space, which would lead to more discriminant representation for images. In order to validate the efficiency of the proposed strategy, we apply three different image classification applications including texture, food images and HEp-2 cell pattern recognition, which validates that our proposed strategy has advantages over the state-of-the-art approaches.

  14. Modeling depth from motion parallax with the motion/pursuit ratio

    PubMed Central

    Nawrot, Mark; Ratzlaff, Michael; Leonard, Zachary; Stroyan, Keith

    2014-01-01

    The perception of unambiguous scaled depth from motion parallax relies on both retinal image motion and an extra-retinal pursuit eye movement signal. The motion/pursuit ratio represents a dynamic geometric model linking these two proximal cues to the ratio of depth to viewing distance. An important step in understanding the visual mechanisms serving the perception of depth from motion parallax is to determine the relationship between these stimulus parameters and empirically determined perceived depth magnitude. Observers compared perceived depth magnitude of dynamic motion parallax stimuli to static binocular disparity comparison stimuli at three different viewing distances, in both head-moving and head-stationary conditions. A stereo-viewing system provided ocular separation for stereo stimuli and monocular viewing of parallax stimuli. For each motion parallax stimulus, a point of subjective equality (PSE) was estimated for the amount of binocular disparity that generates the equivalent magnitude of perceived depth from motion parallax. Similar to previous results, perceived depth from motion parallax had significant foreshortening. Head-moving conditions produced even greater foreshortening due to the differences in the compensatory eye movement signal. An empirical version of the motion/pursuit law, termed the empirical motion/pursuit ratio, which models perceived depth magnitude from these stimulus parameters, is proposed. PMID:25339926

  15. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2004-04-01

    The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.

  16. Evoking prescribed spike times in stochastic neurons

    NASA Astrophysics Data System (ADS)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  17. Heat engine generator control system

    DOEpatents

    Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

    1998-05-12

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

  18. Heat engine generator control system

    DOEpatents

    Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph

    1998-01-01

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

  19. Physiological investigation of automobile driver's activation index using simulated monotonous driving.

    PubMed

    Yamakoshi, T; Yamakoshi, K; Tanaka, S; Nogawa, M; Kusakabe, M; Kusumi, M; Tanida, K

    2004-01-01

    Monotonous automobile operation in our daily life may cause the lowering of what might be termed an activation state of the human body, resulting in an increased risk of an accident. We therefore propose to create a more suitable environment in-car so as to allow active operation of the vehicle, hopefully thus avoiding potentially dangerous situations during driving. In order to develop such an activation method as a final goal, we have firstly focused on the acquisition of physiological variables, including cardiovascular parameters, during presentation to the driver of a monotonous screen image, simulating autonomous travel of constant-speed on a motorway. Subsequently, we investigated the derivation of a driver's activation index. During the screen image presentation, a momentary electrical stimulation of about 1 second duration was involuntarily applied to a subject's shoulder to obtain a physiological response. We have successfully monitored various physiological variables during the image presentation, and results suggest that a peculiar pattern in the beat-by-beat change of blood pressure in response to the involuntary stimulus may be an appropriate, and feasible, index relevant to activation state.

  20. Real-time multi-channel stimulus artifact suppression by local curve fitting.

    PubMed

    Wagenaar, Daniel A; Potter, Steve M

    2002-10-30

    We describe an algorithm for suppression of stimulation artifacts in extracellular micro-electrode array (MEA) recordings. A model of the artifact based on locally fitted cubic polynomials is subtracted from the recording, yielding a flat baseline amenable to spike detection by voltage thresholding. The algorithm, SALPA, reduces the period after stimulation during which action potentials cannot be detected by an order of magnitude, to less than 2 ms. Our implementation is fast enough to process 60-channel data sampled at 25 kHz in real-time on an inexpensive desktop PC. It performs well on a wide range of artifact shapes without re-tuning any parameters, because it accounts for amplifier saturation explicitly and uses a statistic to verify successful artifact suppression immediately after the amplifiers become operational. We demonstrate the algorithm's effectiveness on recordings from dense monolayer cultures of cortical neurons obtained from rat embryos. SALPA opens up a previously inaccessible window for studying transient neural oscillations and precisely timed dynamics in short-latency responses to electric stimulation. Copyright 2002 Elsevier Science B.V.

  1. Non-extensive entropy and properties of polaron in RbCl delta quantum dot under an applied electric field and Coulombic impurity

    NASA Astrophysics Data System (ADS)

    Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.

    2017-08-01

    Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence

  2. Method of boundary testing of the electric circuits and its application for calculating electric tolerances. [electric equipment tests

    NASA Technical Reports Server (NTRS)

    Redkina, N. P.

    1974-01-01

    Boundary testing of electric circuits includes preliminary and limiting tests. Preliminary tests permit determination of the critical parameters causing the greatest deviation of the output parameter of the system. The boundary tests offer the possibility of determining the limits of the fitness of the system with simultaneous variation of its critical parameters.

  3. Neural Basis of Stimulus-Angle-Dependent Motor Control of Wind-Elicited Walking Behavior in the Cricket Gryllus bimaculatus

    PubMed Central

    Oe, Momoko; Ogawa, Hiroto

    2013-01-01

    Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking. PMID:24244644

  4. Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo

    2018-07-01

    Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.

  5. Factors affecting the retrieval of famous names.

    PubMed

    Martins, Isabel Pavão; Loureiro, Clara; Rodrigues, Susana; Dias, Beatriz; Slade, Peter

    2010-06-01

    Tests of famous faces are used to study language and memory. Yet, the effect of stimulus properties on performance has not been fully investigated. To identify factors influencing proper name retrieval and to probe stimulus-specific parameters within proper name lexicon, we analysed the results obtained by 300 healthy participants on a test of famous faces that includes 74 personalities. A factor analysis yielded five main factors that were characterized by language (national or foreign names), epoch of peak popularity (current, recent or past) and occupation (politicians, entertainment and sports) of the personalities. Multiple regression analysis showed that participants' education, age and gender accounted for 10-32% of the variance in factor scores. These results indicate that there are variables of the stimulus and participants' that must be taken into account in proper name testing and in designing tests aimed to differentiate age-associated difficulties from cognitive decline.

  6. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS)

    NASA Astrophysics Data System (ADS)

    Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.

    2016-06-01

    Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives insight into the relationship between different objective criteria and optimized stimulus patterns. In addition, the analysis of the interaction between optimized stimulus patterns and safety constraint bounds suggests that more precise current localization in the ROI, with improved safety criterion, may be achieved by careful selection of the constraint bounds.

  7. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    PubMed

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.

  8. [Universal electrogustometer EG-1].

    PubMed

    Pleskacz, Witold A; Wałkanis, Andrzej; Rapiejko, Piotr; Jurkiewicz, Dariusz

    2009-01-01

    Electrogustometry has been used as a clinical tool for diagnosis and assessment of a variety of conditions. Since the lack of versatile electrogustometer for research and diagnosis, the new electrogustometer EG-1 was developed in 2006. It was done in cooperation between Warsaw University of Technology and Military Institute of Medicine in Warsaw. EG-1 allows quantitative estimation of taste perception threshold using both static and impulse electrogustometry with bipolar electrode. It is a fully autonomous, battery powered and portable instrument. Because of small size and weight, it can be easily placed in any environment. Microprocessor controlled measurement system and user-friendly interface (LCD display with simple keyboard) make EG-1 electrogustometer very handy and flexible in operation. Data obtained during measurements is stored in the internal device memory. After taste examinations measurement data can be transferred to a personal computer via inbuilt USB port for further analysis and storage. EG-1 can generate three predefined variously shaped current impulses: sinus-, saw- and rectangle-shaped. There is an optional possibility of creating own shapes of stimulus puls by the user. The electrical parameters of generated pulses are as follow: current amplitude 1-2000 microA regulated with 1 microA step, stimulus frequency 0(DC)-500 Hz regulated with 5 Hz step, controlable fulfillment factor and signal rise time (optional for automatic measurements). The operator can trigger the stimuli via a hand switch on the bipolar electrode (with gold-plated endings), via keyboard or via additional independent hand switch. Three years of experience collected during EG-1 exploitation allowed to design a new version of electrogustometer EG-2 with a touch panel and color graphical display.

  9. Conditioned pain modulation is affected by occlusion cuff conditioning stimulus intensity, but not duration.

    PubMed

    Smith, A; Pedler, A

    2018-01-01

    Various conditioned pain modulation (CPM) methodologies have been used to investigate diffuse noxious inhibitory control pain mechanisms in healthy and clinical populations. Occlusion cuff parameters have been poorly studied. We aimed to investigate whether occlusion cuff intensity and/or duration influenced CPM magnitudes. We also investigated the role of physical activity levels on CPM magnitude. Two studies were performed to investigate the role of intensity and duration of occlusion cuff conditioning stimulus on test stimulus (tibialis anterior pressure pain thresholds). In Study 1, conditioning stimulus intensity of 2/10 or 5/10 (duration <20 s) was evaluated using a paired-samples t-test. In Study 2, duration of 2/10 conditioning stimulus was 3 min. One-way repeated-measures ANOVA was used to investigate the effect of time (0, 1, 2 and 3 min) on CPM magnitude. In Study 1, 27 healthy volunteers (mean ± SD: 24.9 years (±4.5); eight female) demonstrated that an occlusion cuff applied to the upper arm eliciting 5/10 local pain resulted in a significant (mean ± SD: 17% ± 46%) increase in CPM magnitude, when compared to 2/10 intensity (-3% ± 38%, p = 0.026), whereas in Study 2, 25 healthy volunteers (22.5 years (±2.7); 13 female) demonstrated that 3 min of 2/10 CS intensity did not result in a significant change in CPM (p = 0.21). There was no significant relationship between physical activity levels and CPM in either study (p > 0.22). This study demonstrated that an occlusion cuff of 5/10 conditioning stimulus intensity, when compared to 2/10, significantly increased CPM magnitude. Maintaining 2/10 conditioning stimulus for 3 min did not increase CPM magnitude. Dysfunctional conditioned pain modulation (CPM) has been associated with poor health outcomes. Various factors can influence CPM outcomes. The role of occlusion cuff conditioning stimulus intensity and duration has not been previously investigated. Intensity (5/10), but not duration of lower intensity (2/10) conditioning stimulus, affects CPM magnitude. © 2017 European Pain Federation - EFIC®.

  10. In vitro exposure to 0.57-MHz electric currents exerts cytostatic effects in HepG2 human hepatocarcinoma cells.

    PubMed

    Hernández-Bule, María Luisa; Trillo, María Angeles; Cid, María Antonia; Leal, Jocelyne; Ubeda, Alejandro

    2007-03-01

    Capacitive-resistive electric transfer (CRET) therapy is a non-invasive technique currently applied to the treatment of skin, muscle and tendon injuries that uses 0.45-0.6 MHz electric currents to transdermically and focally increase the internal temperature of targeted tissues. Because CRET electrothermal treatment has been reported to be more effective than other thermal therapies, it has been proposed that the electric stimulus could induce responses in exposed tissues that are cooperative or synergic with the thermal effects of the treatment. Previous studies by our group, investigating the nature of the alleged electric response, have shown that short, repeated stimuli with 0.57-MHz currents at subthermal levels could provoke partial, cytotoxic effects on human neuroblastoma cells in vitro. The aim of the present study was to investigate the response from another human cell type, the human hepatocarcinoma HepG2 line, during and after the exposure to 0.57-MHz CRET currents at subthermal densities. The electric stimuli provoked a decrease in the proliferation rate of the cultures, possibly due to an electrically-induced blocking of the cell cycle in a fraction of the cellular population.

  11. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    PubMed

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  12. Accommodation and age-dependent eye model based on in vivo measurements.

    PubMed

    Zapata-Díaz, Juan F; Radhakrishnan, Hema; Charman, W Neil; López-Gil, Norberto

    2018-03-21

    To develop a flexible model of the average eye that incorporates changes with age and accommodation in all optical parameters, including entrance pupil diameter, under photopic, natural, environmental conditions. We collated retrospective in vivo measurements of all optical parameters, including entrance pupil diameter. Ray-tracing was used to calculate the wavefront aberrations of the eye model as a function of age, stimulus vergence and pupil diameter. These aberrations were used to calculate objective refraction using paraxial curvature matching. This was also done for several stimulus positions to calculate the accommodation response/stimulus curve. The model predicts a hyperopic change in distance refraction as the eye ages (+0.22D every 10 years) between 20 and 65 years. The slope of the accommodation response/stimulus curve was 0.72 for a 25 years-old subject, with little change between 20 and 45 years. A trend to a more negative value of primary spherical aberration as the eye accommodates is predicted for all ages (20-50 years). When accommodation is relaxed, a slight increase in primary spherical aberration (0.008μm every 10 years) between 20 and 65 years is predicted, for an age-dependent entrance pupil diameter ranging between 3.58mm (20 years) and 3.05mm (65 years). Results match reasonably well with studies performed in real eyes, except that spherical aberration is systematically slightly negative as compared with the practical data. The proposed eye model is able to predict changes in objective refraction and accommodation response. It has the potential to be a useful design and testing tool for devices (e.g. intraocular lenses or contact lenses) designed to correct the eye's optical errors. Copyright © 2018 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  13. Effectiveness of Self-Hypnosis on the Relief of Experimental Dental Pain: A Randomized Trial.

    PubMed

    Wolf, Thomas Gerhard; Wolf, Dominik; Below, Dagna; d'Hoedt, Bernd; Willershausen, Brita; Daubländer, Monika

    2016-01-01

    This randomized, controlled clinical trial evaluates the effectiveness of self-hypnosis on pain perception. Pain thresholds were measured, and a targeted, standardized pain stimulus was created by electrical stimulation of the dental pulp of an upper anterior tooth. Pain stimulus was rated by a visual analogue scale (VAS). The pain threshold under self-hypnosis was higher (57.1 ± 17.1) than without hypnotic intervention (39.5 ± 11.8) (p < .001). Pain was rated lower on the VAS with self-hypnosis (4.0 ± 3.8) than in the basal condition without self-hypnosis (7.1 ± 2.7) (p < .001). Self-hypnosis can be used in clinical practice as an adjunct to the gold standard of local anesthesia for pain management, as well as an alternative in individual cases.

  14. Integrator or Coincidence Detector: A Novel Measure Based on the Discrete Reverse Correlation to Determine a Neuron's Operational Mode.

    PubMed

    Kanev, Jacob; Koutsou, Achilleas; Christodoulou, Chris; Obermayer, Klaus

    2016-10-01

    In this letter, we propose a definition of the operational mode of a neuron, that is, whether a neuron integrates over its input or detects coincidences. We complete the range of possible operational modes by a new mode we call gap detection, which means that a neuron responds to gaps in its stimulus. We propose a measure consisting of two scalar values, both ranging from -1 to +1: the neural drive, which indicates whether its stimulus excites the neuron, serves as background noise, or inhibits it; the neural mode, which indicates whether the neuron's response is the result of integration over its input, of coincidence detection, or of gap detection; with all three modes possible for all neural drive values. This is a pure spike-based measure and can be applied to measure the influence of either all or subset of a neuron's stimulus. We derive the measure by decomposing the reverse correlation, test it in several artificial and biological settings, and compare it to other measures, finding little or no correlation between them. We relate the results of the measure to neural parameters and investigate the effect of time delay during spike generation. Our results suggest that a neuron can use several different modes simultaneously on different subsets of its stimulus to enable it to respond to its stimulus in a complex manner.

  15. Coding stimulus amplitude by correlated neural activity

    NASA Astrophysics Data System (ADS)

    Metzen, Michael G.; Ávila-Åkerberg, Oscar; Chacron, Maurice J.

    2015-04-01

    While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.

  16. New methods for the assessment of accommodative convergence.

    PubMed

    Asakawa, Ken; Ishikawa, Hitoshi; Shoji, Nobuyuki

    2009-01-01

    The authors introduced a new objective method for measuring horizontal eye movements based on the first Purkinje image with the use of infrared charge-coupled device (CCD) cameras and compared stimulus accommodative convergence to accommodation (AC/A) ratios as determined by a standard gradient method. The study included 20 patients, 5 to 9 years old, who had intermittent exotropia (10 eyes) and accommodative esotropia (10 eyes). Measurement of horizontal eye movements in millimeters (mm), based on the first Purkinje image, was obtained with a TriIRIS C9000 instrument (Hamamatsu Photonics K.K., Hamamatsu, Japan). The stimulus AC/A ratio was determined with the far gradient method. The average values of horizontal eye movements (mm) and eye deviation (Delta) (a) before and (b) after an accommodative stimulus of 3.00 diopters (D) were calculated with the following formula: horizontal eye movements (mm/D) and stimulus AC/A ratio (Delta/D) = (b - a)/3. The average values of the horizontal eye movements and the stimulus AC/A ratio were 0.5 mm/D and 3.8 Delta/D, respectively. Correlation analysis showed a strong positive correlation between these two parameters (r = 0.92). Moreover, horizontal eye movements are directly proportional to the AC/A ratio measured with the gradient method. The methods used in this study allow objective recordings of accommodative convergence to be obtained in many clinical situations. Copyright 2009, SLACK Incorporated.

  17. Surface Electrical Stimulation for Treating Swallowing Disorders after Stroke: A Review of the Stimulation Intensity Levels and the Electrode Placements

    PubMed Central

    Poorjavad, Marziyeh; Talebian Moghadam, Saeed; Daemi, Mostafa

    2014-01-01

    Neuromuscular electrical stimulation (NMES) for treating dysphagia is a relatively new therapeutic method. There is a paucity of evidence about the use of NMES in patients with dysphagia caused by stroke. The present review aimed to introduce and discuss studies that have evaluated the efficacy of this method amongst dysphagic patients following stroke with emphasis on the intensity of stimulation (sensory or motor level) and the method of electrode placement on the neck. The majority of the reviewed studies describe some positive effects of the NMES on the neck musculature in the swallowing performance of poststroke dysphagic patients, especially when the intensity of the stimulus is adjusted at the sensory level or when the motor electrical stimulation is applied on the infrahyoid muscles during swallowing. PMID:24804147

  18. Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.

    PubMed

    Richardson, Andrew G; Fetz, Eberhard E

    2012-11-01

    Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.

  19. Photosensory transduction in unicellular eukaryotes: a comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms.

    PubMed

    Sobierajska, Katarzyna; Fabczak, Hanna; Fabczak, Stanisław

    2006-06-01

    Blepharisma japonicum and Stentor coeruleus are related ciliates, conspicuous by their photosensitivity. They are capable of avoiding illuminated areas in the surrounding medium, gathering exclusively in most shaded places (photodispersal). Such behaviour results mainly from motile photophobic response occurring in ciliates. This light-avoiding response is observed during a relatively rapid increase in illumination intensity (light stimulus) and consists of cessation of cell movement, a period of backward movement (ciliary reversal), followed by a forward swimming, usually in a new direction. The photosensitivity of ciliates is ascribed to their photoreceptor system, composed of pigment granules, containing the endogenous photoreceptor -- blepharismin in Blepharisma japonicum, and stentorin in Stentor coeruleus. A light stimulus, applied to both ciliates activates specific stimulus transduction processes leading to the electrical changes at the plasma membrane, correlated with a ciliary reversal during photophobic response. These data indicate that both ciliates Blepharisma japonicum and Stentor coeruleus, the lower eukaryotes, are capable of transducing the perceived light stimuli in a manner taking place in some photoreceptor cells of higher eukaryotes. Similarities and differences concerning particular stages of light transduction in eukaryotes at different evolutional levels are discussed in this article.

  20. That's my hand! Therefore, that's my willed action: How body ownership acts upon conscious awareness of willed actions.

    PubMed

    Burin, Dalila; Pyasik, Maria; Salatino, Adriana; Pia, Lorenzo

    2017-09-01

    Whether and how body ownership ("this body is mine") contributes to human conscious experience of voluntary action is still unclear. In order to answer this question, here we incorporated two signatures (i.e., an ad hoc questionnaire and the sensory attenuation paradigm) of human's sense of agency ("this action is due to my own will") within a well-known experimental manipulation of body ownership (i.e., the rubber hand illusion paradigm). In two different experiments, we showed that the illusory ownership over a fake hand (induced by the rubber hand illusion) triggered also an illusory agency over its movements at both explicit and implicit level. Specifically, when the fake (embodied) hand pressed a button delivering an electrical stimulus to the participant's body, the movement was misattributed to participant's will (explicit level) and the stimulus intensity was attenuated (implicit level) exactly as it happened when the own hand actually delivered the stimulus. Our findings suggest that body ownership per se entails also motor representations of one's own movements. Whenever required by the context, this information would act upon agency attribution even prospectively (i.e., prior to action execution). Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    PubMed

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  2. Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults.

    PubMed

    Behringer, M; Moser, M; Montag, J; McCourt, M; Tenner, D; Mester, J

    2015-06-01

    Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.

  3. Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults

    PubMed Central

    Behringer, M.; Moser, M.; Montag, J.; McCourt, M.; Tenner, D.; Mester, J.

    2015-01-01

    Objectives: Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. Methods: 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). Results: After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). Conclusion: The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus. PMID:26032216

  4. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, S.; Cole, D. M.; Hancock, B. R.; Smith, R. M.

    2008-01-01

    Electronic coupling effects such as Inter-Pixel Capacitance (IPC) affect the quantitative interpretation of image data from CMOS, hybrid visible and infrared imagers alike. Existing methods of characterizing IPC do not provide a map of the spatial variation of IPC over all pixels. We demonstrate a deterministic method that provides a direct quantitative map of the crosstalk across an imager. The approach requires only the ability to reset single pixels to an arbitrary voltage, different from the rest of the imager. No illumination source is required. Mapping IPC independently for each pixel is also made practical by the greater S/N ratio achievable for an electrical stimulus than for an optical stimulus, which is subject to both Poisson statistics and diffusion effects of photo-generated charge. The data we present illustrates a more complex picture of IPC in Teledyne HgCdTe and HyViSi focal plane arrays than is presently understood, including the presence of a newly discovered, long range IPC in the HyViSi FPA that extends tens of pixels in distance, likely stemming from extended field effects in the fully depleted substrate. The sensitivity of the measurement approach has been shown to be good enough to distinguish spatial structure in IPC of the order of 0.1%.

  5. Poly(lactic acid) composites based on graphene oxide particles with antibacterial behavior enhanced by electrical stimulus and biocompatibility.

    PubMed

    Arriagada, Paulo; Palza, Humberto; Palma, Patricia; Flores, Marcos; Caviedes, Pablo

    2018-04-01

    Poly(lactic acid) (PLA) is a biodegradable and biocompatible polyester widely used in biomedical applications. Unfortunately, this biomaterial suffers from some shortcomings related with the absence of both bioactivity and antibacterial capacity. In this work, composites of PLA with either graphene oxide (GO) or thermally reduced graphene oxide (TrGO) were prepared by melt mixing to overcome these limitations. PLA composites with both GO and TrGO inhibited the attachment and proliferation of Escherichia coli and Staphylococcus aureus bacteria depending on the kind and amount of filler. Noteworthy, it is shown that by applying an electrical stimulus to the percolated PLA/TrGO, the antibacterial behavior can be dramatically increased. MTT analysis showed that while all the PLA/GO composites were more cytocompatible to osteoblast-like cells (SaOS-2) than pure PLA, only low content of TrGO was able to increase this property. These tendencies were related with changes in the surface properties of the resulting polymer composites, such as polarity and roughness. In this way, the addition of GO and TrGO into a PLA matrix allows the development of multifunctional composites for potential applications in biomedicine. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1051-1060, 2018. © 2017 Wiley Periodicals, Inc.

  6. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    PubMed

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  7. Variance adaptation in navigational decision making

    NASA Astrophysics Data System (ADS)

    Gershow, Marc; Gepner, Ruben; Wolk, Jason; Wadekar, Digvijay

    Drosophila larvae navigate their environments using a biased random walk strategy. A key component of this strategy is the decision to initiate a turn (change direction) in response to declining conditions. We modeled this decision as the output of a Linear-Nonlinear-Poisson cascade and used reverse correlation with visual and fictive olfactory stimuli to find the parameters of this model. Because the larva responds to changes in stimulus intensity, we used stimuli with uncorrelated normally distributed intensity derivatives, i.e. Brownian processes, and took the stimulus derivative as the input to our LNP cascade. In this way, we were able to present stimuli with 0 mean and controlled variance. We found that the nonlinear rate function depended on the variance in the stimulus input, allowing larvae to respond more strongly to small changes in low-noise compared to high-noise environments. We measured the rate at which the larva adapted its behavior following changes in stimulus variance, and found that larvae adapted more quickly to increases in variance than to decreases, consistent with the behavior of an optimal Bayes estimator. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  8. Intraocular retinal prosthesis.

    PubMed Central

    Humayun, M S

    2001-01-01

    PURPOSE: An electronic implant that can bypass the damaged photoreceptors and electrically stimulate the remaining retinal neurons to restore useful vision has been proposed. A number of key questions remain to make this approach feasible. The goal of this thesis is to address the following 2 specific null hypotheses: (1) Stimulus parameters make no difference in the electrically elicited retinal responses. (2) Just as we have millions of photoreceptors, so it will take a device that can generate millions of pixels/light points to create useful vision. METHODS: For electrophysiologic experiments, 2 different setups were used. In the first setup, charge-balanced pulses were delivered to the retinal surface via electrodes inserted through an open sky approach in normal or blind retinal degenerate (rd) mice. In the second setup, the rabbit retina was removed under red light conditions from an enucleated eye and then maintained in a chamber while being superfused with oxygenated, heated Ames media. In both setups, stimulating electrodes and recording electrodes were positioned on the retinal surface to evaluate the effect of varying stimulation parameters on the orthodromic retinal responses (i.e., recording electrode placed between stimulating electrodes and optic nerve head). For psychophysical experiments, visual images were divided into pixels of light that could be projected in a pattern on the retina in up to 8 sighted volunteers. Subjects were asked to perform various tasks ranging from reading and face recognition to various activities of daily living. RESULTS: Electrophysiologic experiments: In a normal mouse, a single cycle of a 1-kHz sine wave was significantly more efficient than a 1-kHz square wave (P < .05), but no such difference was noted in either of the 8- or 16-week-old rd mouse groups (8-week-old, P = .426; 16-week-old, P = .078). Charge threshold was significantly higher in 16-week-old rd mouse versus both 8-week-old rd and normal mouse for every stimulus duration (P < .05). In all groups, short duration pulses (40, 80, and 120 microseconds) were more efficient in terms of total charge (the product of pulse amplitude and pulse duration) than longer (500 and 1,000 microseconds) pulses (P < .05). In all groups, applying a pulse train did not lead to more efficient charge usage (P < .05). Psychophysical experiments: In high-contrast tests, facial recognition rates of over 75% were achieved for all subjects with dot sizes of up to 31.5 minutes of arc when using a 25 x 25 grid with 4.5 arc minute gaps, a 30% dropout rate, and 6 gray levels. Even with a 4 x 4 array of pixels, some subjects were able to accurately describe 2 of the objects. Subjects who were able to read the 4-pixel letter height sentences (on the 6 x 10 and 16 x 16 array) seemed to have a good scanning technique. Scanning at the proper velocity tends to bring out more contrast in the lettering. The reading speed for the 72-point font is a bit slower than for the next smaller font. This may be due to the limited number of letters (3) visible in the window with this large font. CONCLUSIONS: Specific parameters needed to stimulate the retina were identified. Delineating the optimum parameters will decrease the current requirements. Psychophysical tests show that with limited pixels and image processing, useful vision is possible. Both these findings should greatly simplify the engineering of an electronic retinal prosthesis. PMID:11797315

  9. Electrical stimulation of the rostral medial prefrontal cortex in rabbits inhibits the expression of conditioned eyelid responses but not their acquisition

    PubMed Central

    Leal-Campanario, Rocío; Fairén, Alfonso; Delgado-García, José M.; Gruart, Agnès

    2007-01-01

    We have studied the role of rostral medial prefrontal cortex (mPFC) on reflexively evoked blinks and on classically conditioned eyelid responses in alert-behaving rabbits. The rostral mPFC was identified by its afferent projections from the medial half of the thalamic mediodorsal nuclear complex. Classical conditioning consisted of a delay paradigm using a 370-ms tone as the conditioned stimulus (CS) and a 100-ms air puff directed at the left cornea as the unconditioned stimulus (US). The CS coterminated with the US. Electrical train stimulation of the contralateral rostral mPFC produced a significant inhibition of air-puff-evoked blinks. The same train stimulation of the rostral mPFC presented during the CS–US interval for 10 successive conditioning sessions significantly reduced the generation of conditioned responses (CRs) as compared with values reached by control animals. Interestingly, the percentage of CRs almost reached control values when train stimulation of the rostral mPFC was removed from the fifth conditioning session on. The electrical stimulation of the rostral mPFC in well conditioned animals produced a significant decrease in the percentage of CRs. Moreover, the stimulation of the rostral mPFC was also able to modify the kinematics (latency, amplitude, and velocity) of evoked CRs. These results suggest that the rostral mPFC is a potent inhibitor of reflexively evoked and classically conditioned eyeblinks but that activation prevents only the expression of CRs, not their latent acquisition. Functional and behavioral implications of this inhibitory role of the rostral mPFC are discussed. PMID:17592148

  10. Disruption of human fear reconsolidation using imaginal and in vivo extinction.

    PubMed

    Agren, Thomas; Björkstrand, Johannes; Fredrikson, Mats

    2017-02-15

    Memories are not set forever, but can be altered following reactivation, which renders memories malleable, before they are again stabilized through reconsolidation. Fear memories can be attenuated by using extinction during the malleable period. The present study adopts a novel form of extinction, using verbal instructions, in order to examine whether fear memory reconsolidation can be affected by an imaginal exposure. The extinction using verbal instructions, called imaginal extinction, consists of a recorded voice encouraging participants to imagine the scene in which fear was acquired, and to envision the stimuli before their inner eye. The voice signals stimuli appearance, and identical to standard (in vivo) extinction, participants discover that the conditioned stimulus no longer is followed by unconditioned stimulus (UCS). In this way, imaginal extinction translates clinically used imaginal exposure into the standard experimental fear conditioning paradigm. Fear was acquired by pairing pictorial stimuli with an electric shock UCS. Then, both standard and imaginal extinction were given following fear memory reactivation, either after 10min, within the reconsolidation interval, or after 6h, outside of the reconsolidation interval. In vivo and imaginal extinction produced comparable reductions in conditioned responses during extinction and importantly, both disrupted reconsolidation of conditioned fear and abolished stimulus discrimination between reinforced and non-reinforced cues. Thus, disrupted reconsolidation of fear conditioning can be achieved without in vivo stimulus presentation, through purely cognitive means, suggesting possible therapeutic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Analysis of the dynamics of renal vascular resistance and urine flow rate in the cat following electrical stimulation of the renal nerves.

    PubMed

    Celler, B G; Stella, A; Golin, R; Zanchetti, A

    1996-08-01

    In ten sino aortic denervated, vagotomized and aneasthetized cats, renal efferent nerves were stimulated for 30 s with trains of constant current pulses at frequencies in the range 5-30 Hz. The arterial pressure, heart rate, urine flow rate (electronic drop counter) and renal blood flow (electromagnetic technique) were recorded. Subsequent computer processing gave the true means of renal artery pressure (MRAP) and renal blood flow (MRBF) and hence the renal vascular resistance (MRVR), over each cardiac cycle. Recovery of MRVR after the end of stimulation exhibited two distinct time constants. The fast component had a time constant of 2.03 +/- 0.26 s and represented 60.2 +/- 1.71% of the recovery. The time constant of the slower component was 14.1 +/- 1.9 s and represented 36.0 +/- 1.6% of the recovery. The relationship between MRVR and stimulus frequency was sigmoidal with maximum sensitivity at stimulus frequencies of 12.6 +/- 0.76 Hz. Changes in urine flow rate, in contrast, followed a hyperbolic function with maximum response sensitivity occurring at very low stimulus frequencies. Changes in urine flow rate were 50% complete at stimulus frequencies of 5 Hz. Identification of two distinct components in the relaxation phase of renal vascular resistance leads to a reasonable hypothesis that 60% of total renal vascular resistance may lie proximal to the glomerulus, whereas 36% may be accounted for by the efferent arterioles.

  12. Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey.

    PubMed Central

    Edgley, S A; Eyre, J A; Lemon, R N; Miller, S

    1990-01-01

    1. The responses evoked by non-invasive electromagnetic and surface anodal electrical stimulation of the scalp (scalp stimulation) have been studied in the monkey. Conventional recording and stimulating electrodes, placed in the corticospinal pathway in the hand area of the left motor cortex, left medullary pyramid and the right spinal dorsolateral funiculus (DLF), allowed comparison of the actions of non-invasive stimuli and conventional electrical stimulation. 2. Responses to electromagnetic stimulation (with the coil tangential to the skull) were studied in four anaesthetized monkeys. In each case short-latency descending volleys were recorded in the contralateral DLF at threshold. In two animals later responses were also seen at higher stimulus intensities. Both early and late responses were of corticospinal origin since they could be completely collided by appropriately timed stimulation of the pyramidal tract. The latency of the early response in the DLF indicated that it resulted from direct activation of corticospinal neurones: its latency was the same as the latency of the antidromic action potentials evoked in the motor cortex from the recording site in the DLF. 3. Scalp stimulation, which was also investigated in three of the monkeys, evoked short-latency volleys at threshold and at higher stimulus intensities these were followed by later waves. The short-latency volleys could be collided from the pyramid and, at threshold, had latencies compatible with direct activation of corticospinal neurones. The longer latency volleys were also identified as corticospinal in origin. 4. The latency of the early volley evoked by electromagnetic stimulation remained constant with increasing stimulus intensities. In contrast, with scalp stimulation above threshold the latency of the early volleys decreased considerably, indicating remote activation of the corticospinal pathway below the level of the motor cortex. In two monkeys both collision and latency data suggest activation of the corticospinal pathway as far caudal as the medulla. 5. The majority of fast corticospinal fibres could be excited by scalp stimulation with intensities of 20% of maximum stimulator output. Electromagnetic stimulation at maximum stimulator output elicited a volley of between 70 and 90% of the size of the maximal volley evoked from the pyramidal electrodes. 6. Electromagnetic stimulation was also investigated in one awake monkey during the performance of a precision grip task. Short-latency EMG responses were evoked in hand and forearm muscles. The onsets of these responses were approximately 0.8 ms longer than the responses evoked by electrical stimulation of the pyramid.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 PMID:2213581

  13. Correlation of Electric Field and Critical Design Parameters for Ferroelectric Tunable Microwave Filters

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred W.; Miranda, Felix A.; Canedy, Chadwick L.; Aggarwal, Sanjeev; Venkatesan, Thirumalai; Ramesh, Ramamoorthy

    2000-01-01

    The correlation of electric field and critical design parameters such as the insertion loss, frequency ability return loss, and bandwidth of conductor/ferroelectric/dielectric microstrip tunable K-band microwave filters is discussed in this work. This work is based primarily on barium strontium titanate (BSTO) ferroelectric thin film based tunable microstrip filters for room temperature applications. Two new parameters which we believe will simplify the evaluation of ferroelectric thin films for tunable microwave filters, are defined. The first of these, called the sensitivity parameter, is defined as the incremental change in center frequency with incremental change in maximum applied electric field (EPEAK) in the filter. The other, the loss parameter, is defined as the incremental or decremental change in insertion loss of the filter with incremental change in maximum applied electric field. At room temperature, the Au/BSTO/LAO microstrip filters exhibited a sensitivity parameter value between 15 and 5 MHz/cm/kV. The loss parameter varied for different bias configurations used for electrically tuning the filter. The loss parameter varied from 0.05 to 0.01 dB/cm/kV at room temperature.

  14. A measurement theory of illusory conjunctions.

    PubMed

    Prinzmetal, William; Ivry, Richard B; Beck, Diane; Shimizu, Naomi

    2002-04-01

    Illusory conjunctions refer to the incorrect perceptual combination of correctly perceived features, such as color and shape. Research on the phenomenon has been hampered by the lack of a measurement theory that accounts for guessing features, as well as the incorrect combination of correctly perceived features. Recently, several investigators have suggested using multinomial models as a tool for measuring feature integration. The authors examined the adequacy of these models in 2 experiments by testing whether model parameters reflect changes in stimulus factors. In a third experiment, confidence ratings were used as a tool for testing the model. Multinomial models accurately reflected both variations in stimulus factors and observers' trial-by-trial confidence ratings.

  15. It’s The Information!

    PubMed Central

    Ward, Ryan D.; Gallistel, C.R.; Balsam, Peter D

    2013-01-01

    Learning in conditioning protocols has long been thought to depend on temporal contiguity between the conditioned stimulus and the unconditioned stimulus. This conceptualization has led to a preponderance of associative models of conditioning. We suggest that trial-based associative models that posit contiguity as the primary principle underlying learning are flawed, and provide a brief review of an alternative, information theoretic approach to conditioning. The information that a CS conveys about the timing of the next US can be derived from the temporal parameters of a conditioning protocol. According to this view, a CS will support conditioned responding if, and only if, it reduces uncertainty about the timing of the next US. PMID:23384660

  16. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    NASA Astrophysics Data System (ADS)

    Oby, Emily R.; Perel, Sagi; Sadtler, Patrick T.; Ruff, Douglas A.; Mischel, Jessica L.; Montez, David F.; Cohen, Marlene R.; Batista, Aaron P.; Chase, Steven M.

    2016-06-01

    Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach. We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.

  17. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    PubMed Central

    Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M

    2018-01-01

    Objective A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain–computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue. PMID:27097901

  18. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters.

    PubMed

    Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M

    2016-06-01

    A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.

  19. Chronic and acute intranasal oxytocin produce divergent social effects in mice.

    PubMed

    Huang, Huiping; Michetti, Caterina; Busnelli, Marta; Managò, Francesca; Sannino, Sara; Scheggia, Diego; Giancardo, Luca; Sona, Diego; Murino, Vittorio; Chini, Bice; Scattoni, Maria Luisa; Papaleo, Francesco

    2014-04-01

    Intranasal administration of oxytocin (OXT) might be a promising new adjunctive therapy for mental disorders characterized by social behavioral alterations such as autism and schizophrenia. Despite promising initial studies in humans, it is not yet clear the specificity of the behavioral effects induced by chronic intranasal OXT and if chronic intranasal OXT could have different effects compared with single administration. This is critical for the aforementioned chronic mental disorders that might potentially involve life-long treatments. As a first step to address these issues, here we report that chronic intranasal OXT treatment in wild-type C57BL/6J adult mice produced a selective reduction of social behaviors concomitant to a reduction of the OXT receptors throughout the brain. Conversely, acute intranasal OXT treatment produced partial increases in social behaviors towards opposite-sex novel-stimulus female mice, while on the other hand, it decreased social exploration of same-sex novel stimulus male mice, without affecting social behavior towards familiar stimulus male mice. Finally, prolonged exposure to intranasal OXT treatments did not alter, in wild-type animals, parameters of general health such as body weight, locomotor activity, olfactory and auditory functions, nor parameters of memory and sensorimotor gating abilities. These results indicate that a prolonged over-stimulation of a 'healthy' oxytocinergic brain system, with no inherent deficits in social interaction and normal endogenous levels of OXT, results in specific detrimental effects in social behaviors.

  20. Injectable microstimulator for functional electrical stimulation.

    PubMed

    Loeb, G E; Zamin, C J; Schulman, J H; Troyk, P R

    1991-11-01

    A family of digitally controlled devices is constructed for functional electrical stimulation in which each module is an hermetically sealed glass capsule that is small enough to be injected through the lumen of a hypodermic needle. The overall design and component characteristics of microstimulators that receive power and command signals by inductive coupling from a single, externally worn coil are described. Each device stores power between stimulus pulses by charging an electrolytic capacitor formed by its two electrodes, made of sintered, anodised tantalum and electrochemically activated iridium, respectively. Externally, a highly efficient class E amplifier provides power and digitally encoded command signals to control the amplitude, duration and timing of pulses from up to 256 such microstimulators.

  1. Effects of coil orientation and magnetic field shield on transcranial magnetic stimulation in cats.

    PubMed

    Nakatoh, S; Kitagawa, H; Kawaguchi, Y; Nakamura, H; Takano, H; Tsuji, H

    1998-09-01

    To obtain suitable stimulus conditions for transcranial magnetic stimulation, the evoked compound muscle action potential (ECMAP), evoked spinal cord potential (ESCP), and magnetic and electric fields were analyzed in cats with and without the use of a magnetic field shield. Cats were stimulated using a figure 8 magnetic coil placed on the cranium above the motor cortex. The maximum ECMAP amplitude was recorded when the electric current in the coil was in the mediolateral direction, regardless of whether a magnetic shield with a 5 x 5 cm window was used. ECMAP and ESCP thresholds were reduced when magnetic shielding was in place. Due to the edge effect, the strengths of the magnetic and electric fields were highest in the brainstem area, which is an inhomogeneous volume conductor of the cat's cranium. A large induced electric field directed caudally elicited ECMAP and ESCP responses effectively when a magnetic shield with a 5 x 5 cm window was in place.

  2. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue

    NASA Astrophysics Data System (ADS)

    Jezernik, Sašo; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  3. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    PubMed

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  4. Electric foot shock stress adaptation: Does it exist or not?

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-06-01

    Stress adaptation is a protective phenomenon against repeated stress exposure and is characterized by a decreased responsiveness to a repeated stress stimulus. The adaptation is associated with a complex cascade of events, including the changes in behavior, neurotransmitter and gene expression levels. The non-adaptation or maladaptation to stress may underlie the affective disorders, such as anxiety, depression and post-traumatic stress disorder (PTSD). Electric foot shock is a complex stressor, which includes both physical and emotional components. Unlike immobilization, restraint and cold immersion stress, the phenomenon of stress adaptation is not very well defined in response to electric foot shock. A number of preclinical studies have reported the development of adaptation to electric foot shock stress. However, evidence also reveals the non-adaptive behavior in response to foot shocks. The distinct adaptive/non-adaptive responses may be possibly influenced by the type, intensity, and duration of the stress. The present review discusses the existence or non-existence of adaptation to electric foot shock stress along with possible mechanism. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials.

    PubMed

    Jiang, Chenchen; Lu, Haojian; Zhang, Hongti; Shen, Yajing; Lu, Yang

    2017-01-01

    In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  6. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials

    PubMed Central

    Jiang, Chenchen; Lu, Haojian; Zhang, Hongti

    2017-01-01

    In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications. PMID:29209445

  7. Advances in Cochlear Implant Telemetry: Evoked Neural Responses, Electrical Field Imaging, and Technical Integrity

    PubMed Central

    Mens, Lucas H. M.

    2007-01-01

    During the last decade, cochlear implantation has evolved into a well-established treatment of deafness, predominantly because of many improvements in speech processing and the controlled excitation of the auditory nerve. Cochlear implants now also feature telemetry, which is highly useful to monitor the proper functioning of the implanted electronics and electrode contacts. Telemetry can also support the clinical management in young children and difficult cases where neural unresponsiveness is suspected. This article will review recent advances in the telemetry of the electrically evoked compound action potential that have made these measurements simple and routine procedures in most cases. The distribution of the electrical stimulus itself sampled by “electrical field imaging” reveals general patterns of current flow in the normal cochlea and gross abnormalities in individual patients; models have been developed to derive more subtle insights from an individual electrical field imaging. Finally, some thoughts are given to the extended application of telemetry, for example, in monitoring the neural responses or in combination with other treatments of the deaf ear. PMID:17709572

  8. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  9. Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study.

    PubMed

    Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V

    2013-01-01

    This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.

  10. Diversity of coding profiles of mechanoreceptors in glabrous skin of kittens.

    PubMed

    Gibson, J M; Beitel, R E; Welker, W

    1975-03-21

    We examined stimulul-response (S-R) profiles of 35 single mechanoreceptive afferent units having small receptive fields in glabrous forepaw skin of 24 anesthetized domestic kittens. Single unit activity was recorded with tungsten microelectrodes from cervical dorsal root ganglia. The study was designed to be as quantitatively descriptive as possible. We indented each unit's receptive field with a broad battery of simple, carefully controlled stimuli whose major parameters, including amplitude, velocity, acceleration, duration, and interstimulus interval were systematically varied. Stimuli were delivered by a small probe driven by a feedback-controlled axial displacement generator. Single unit discharge data were analyzed by a variety of direct and derived measures including dot patterns, peristimulus histograms, instantaneous and mean instantaneous firing rates, tuning curves, thresholds for amplitude and velocity, adaptation rates, dynamic and static sensitivities, and others. We found that with respect to any of the S-R transactions examined, the properties of our sample of units were continuously and broadly distributed. Any one unit might exhibit either a slow or rapid rate of adaptation, or might superficially appear to preferentially code a single stimulus parameter such as amplitude or velocity. But when the entire range of responsiveness of units to the entire stimulus battery was surveyed by a variety of analytic techniques, we were unable to find any justifiable basis for designation of discrete categories of S-R profiles. Intermediate response types were always found, and in general, all units were both broadly tuned and capable of responding to integrals of several stimulus parameters, our data argue against the usefulness of evaluating a unit's S-R coding capabilities by means of a limited ste of stimulation of response analysis procedures.

  11. Effects of aging and text-stimulus quality on the word-frequency effect during Chinese reading.

    PubMed

    Wang, Jingxin; Li, Lin; Li, Sha; Xie, Fang; Liversedge, Simon P; Paterson, Kevin B

    2018-06-01

    Age-related reading difficulty is well established for alphabetic languages. Compared to young adults (18-30 years), older adults (65+ years) read more slowly, make more and longer fixations, make more regressions, and produce larger word-frequency effects. However, whether similar effects are observed for nonalphabetic languages like Chinese remains to be determined. In particular, recent research has suggested Chinese readers experience age-related reading difficulty but do not produce age differences in the word-frequency effect. This might represent an important qualitative difference in aging effects, so we investigated this further by presenting young and older adult Chinese readers with sentences that included high- or low-frequency target words. Additionally, to test theories that suggest reductions in text-stimulus quality differentially affect lexical processing by adult age groups, we presented either the target words (Experiment 1) or all characters in sentences (Experiment 2) normally or with stimulus quality reduced. Analyses based on mean eye-movement parameters and distributional analyses of fixation times for target words showed typical age-related reading difficulty. We also observed age differences in the word-frequency effect, predominantly in the tails of fixation-time distributions, consistent with an aging effect on the processing of high- and low-frequency words. Reducing stimulus quality disrupted eye movements more for the older readers, but the influence of stimulus quality on the word-frequency effect did not differ across age groups. This suggests Chinese older readers' lexical processing is resilient to reductions in stimulus quality, perhaps due to greater experience recognizing words from impoverished visual input. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Stimulus train duration but not attention moderates γ-band entrainment abnormalities in schizophrenia

    PubMed Central

    Hamm, Jordan P.; Bobilev, Anastasia M.; Hayrynen, Lauren K.; Hudgens-Haney, Matthew E.; Oliver, William T.; Parker, David A.; McDowell, Jennifer E.; Buckley, Peter A.; Clementz, Brett A.

    2017-01-01

    Electroencephalographic (EEG) studies of auditory steady-state responses (aSSRs) non-invasively probe gamma-band (40-Hz) oscillatory capacity in sensory cortex with high signal-to-noise ratio. Consistent reports of reduced 40-Hz aSSRs in persons with schizophrenia (SZ) indicate its potential as an efficient biomarker for the disease, but studies have been limited to passive or indirect listening contexts with stereotypically short (500ms) stimulus trains. An inability to modulate sensorineural processing in accord with behavioral goals or within the sensory environmental context may represent a fundamental deficit in SZ, but whether and how this deficit relates to reduced aSSRs is unknown. We systematically varied stimulus duration and attentional contexts to further mature the 40-Hz aSSR as biomarker for future translational or mechanistic studies. Eighteen SZ and 18 healthy subjects (H) were presented binaural pure-tones with or without sinusoidal amplitude modulation at 40-Hz. Stimulus duration (500-ms or 1500-ms) and attention (via a button press task) were varied across 4 separate blocks. Evoked potentials recorded with dense-array EEGs were analyzed in the time-frequency domain. SZ displayed reduced 40-Hz aSSRs to typical stimulation parameters, replicating previous findings. In H, aSSRs were reduced when stimuli were presented in longer trains and were slightly enhanced by attention. Only the former modulation was impaired in SZ and correlated with sensory discrimination performance. Thus, gamma-band aSSRs are modulated by both attentional and stimulus duration contexts, but only modulations related to physical stimulus properties are abnormal in SZ, supporting its status as a biomarker of psychotic perceptual disturbance involving non-attentional sensori-cortical circuits. PMID:25868936

  13. Effects of lesions of the dorsal noradrenergic bundle on conditioned suppression to a CS and to a contextual background stimulus.

    PubMed

    Tsaltas, E; Schugens, M M; Gray, J A

    1989-01-01

    The aim of the experiment was to determine whether the dorsal noradrenergic bundle (DB) plays a role in conditioning to context. Rats received either bilateral lesions of the DB by local injection of 6-hydroxydopamine, vehicle injections only, or sham operations. All animals were then trained to barpress for food on a variable interval (VI) schedule. Two 5-min intrusion periods were superimposed on the VI baseline during each session. An 'envelope' stimulus (flashing light) was on throughout each intrusion period. In addition, embedded in the two intrusion periods of each session, there occurred 8 presentations of a 'punctate' conditioned stimulus (CS) (a 15-s clicker), and 8 presentations of a 0.5-s footshock. Within each surgical condition rats were randomly allocated to one of three conditioning groups, receiving 100%, 50% or 0% temporal association between CS and shock. Conditioning to the punctate CS and to the context provided by the envelope stimulus was assessed by the degree of suppression of the barpress response relative to the VI baseline. Responding was most suppressed in the punctate CS in the 100 and 50% conditions, and most suppressed in the envelope stimulus in the 0% condition. DB lesions released response suppression to the punctate CS, had no effect on suppression to the envelope stimulus, and reduced sensitivity to CS-shock probability as measured by response suppression during the punctate CS. These results confirm previous reports that DB lesions alleviate response suppression to shock-associated cues, identify some of the parameters that affect this phenomenon, but fail to support a role for the DB in contextual conditioning.

  14. Initial dynamics of the EKG during an electrical defibrillation of the heart

    NASA Technical Reports Server (NTRS)

    Bikov, I. I.; Chebotarov, Y. P.; Nikolaev, V. G.

    1980-01-01

    In tests on 11 mature dogs, immobilized by means of an automatic blocking and synchronization system, artefact free EKG were obtained, beginning 0.04-0.06 sec after passage of a defibrillating current. Different versions of the start of fibrillation were noted, in application of the defibrillating stimulus in the early phase of the cardiac cycle. A swinging phenomenon, increasing amplitude, of fibrillation was noted for 0.4-1.5 sec after delivery of a subthreshold stimulus. Conditions for a positive outcome of repeated defibrillation were found, and a relationship was noted between the configuration of the exciting process with respect to the lines of force of the defibrillating current and the defibrillation threshold. It was shown that the initial EKG dynamics after defibrillation is based on a gradual shift of the pacemaker from the myocardium of the ventricles to the sinus node, through phases of atrioventricular and atrial automatism.

  15. Neuronal Mechanisms of Intelligence

    DTIC Science & Technology

    1987-11-01

    1984). Calcium-dependent protein kinases and neuronal function. Trends in PharmacologicaL Sciences, 5, 188-192. Schwartzkroin , P . A . (1981). To...arding electrical stimulus. Animals with nucleus •’• a ~CCumbens electrodes were wtraied in one-hour daily sesions to nose-poke for C p ! L. Stein & J.D...D O FILE. COR a AFOSR Grant #84-0325 Final Technical Report November 1987 AFOSR.T- 88-02. Cn’ NEURONAL MECHANISMS OF INTELLIGENCE DEPARTMENT OF

  16. Gold nanoparticle-mediated laser stimulation causes a complex stress signal in neuronal cells

    NASA Astrophysics Data System (ADS)

    Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Kalies, Stefan; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag

    2017-07-01

    Gold nanoparticle mediated laser stimulation of neuronal cells allows for cell activation on a single-cell level. It could therefore be considered an alternative to classical electric neurostimulation. The physiological impact of this new approach has not been intensively studied so far. Here, we investigate the targeted cell's reaction to a laser stimulus based on its calcium response. A complex cellular reaction involving multiple sources has been revealed.

  17. Color Discrimination Is Affected by Modulation of Luminance Noise in Pseudoisochromatic Stimuli

    PubMed Central

    Cormenzana Méndez, Iñaki; Martín, Andrés; Charmichael, Teaire L.; Jacob, Mellina M.; Lacerda, Eliza M. C. B.; Gomes, Bruno D.; Fitzgerald, Malinda E. C.; Ventura, Dora F.; Silveira, Luiz C. L.; O'Donell, Beatriz M.; Souza, Givago S.

    2016-01-01

    Pseudoisochromatic stimuli have been widely used to evaluate color discrimination and to identify color vision deficits. Luminance noise is one of the stimulus parameters used to ensure that subject's response is due to their ability to discriminate target stimulus from the background based solely on the hue between the colors that compose such stimuli. We studied the influence of contrast modulation of the stimulus luminance noise on threshold and reaction time color discrimination. We evaluated color discrimination thresholds using the Cambridge Color Test (CCT) at six different stimulus mean luminances. Each mean luminance condition was tested using two protocols: constant absolute difference between maximum and minimum luminance of the luminance noise (constant delta protocol, CDP), and constant contrast modulation of the luminance noise (constant contrast protocol, CCP). MacAdam ellipses were fitted to the color discrimination thresholds in the CIE 1976 color space to quantify the color discrimination ellipses at threshold level. The same CDP and CCP protocols were applied in the experiment measuring RTs at three levels of stimulus mean luminance. The color threshold measurements show that for the CDP, ellipse areas decreased as a function of the mean luminance and they were significantly larger at the two lowest mean luminances, 10 cd/m2 and 13 cd/m2, compared to the highest one, 25 cd/m2. For the CCP, the ellipses areas also decreased as a function of the mean luminance, but there was no significant difference between ellipses areas estimated at six stimulus mean luminances. The exponent of the decrease of ellipse areas as a function of stimulus mean luminance was steeper in the CDP than CCP. Further, reaction time increased linearly with the reciprocal of the length of the chromatic vectors varying along the four chromatic half-axes. It decreased as a function of stimulus mean luminance in the CDP but not in the CCP. The findings indicated that visual performance using pseudoisochromatic stimuli was dependent on the Weber's contrast of the luminance noise. Low Weber's contrast in the luminance noise is suggested to have a reduced effect on chromatic information and, hence, facilitate desegregation of the hue-defined target from the background. PMID:27458404

  18. A stimulus-control account of regulated drug intake in rats.

    PubMed

    Panlilio, Leigh V; Thorndike, Eric B; Schindler, Charles W

    2008-02-01

    Patterns of drug self-administration are often highly regular, with a consistent pause after each self-injection. This pausing might occur because the animal has learned that additional injections are not reinforcing once the drug effect has reached a certain level, possibly due to the reinforcement system reaching full capacity. Thus, interoceptive effects of the drug might function as a discriminative stimulus, signaling when additional drug will be reinforcing and when it will not. This hypothetical stimulus control aspect of drug self-administration was emulated using a schedule of food reinforcement. Rats' nose-poke responses produced food only when a cue light was present. No drug was administered at any time. However, the state of the light stimulus was determined by calculating what the whole-body drug level would have been if each response in the session had produced a drug injection. The light was only presented while this virtual drug level was below a specific threshold. A range of doses of cocaine and remifentanil were emulated using parameters based on previous self-administration experiments. Response patterns were highly regular, dose-dependent, and remarkably similar to actual drug self-administration. This similarity suggests that the emulation schedule may provide a reasonable model of the contingencies inherent in drug reinforcement. Thus, these results support a stimulus control account of regulated drug intake in which rats learn to discriminate when the level of drug effect has fallen to a point where another self-injection will be reinforcing.

  19. Decoding and reconstructing color from responses in human visual cortex.

    PubMed

    Brouwer, Gijs Joost; Heeger, David J

    2009-11-04

    How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.

  20. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering.

    PubMed

    Pires, Filipa; Ferreira, Quirina; Rodrigues, Carlos A V; Morgado, Jorge; Ferreira, Frederico Castelo

    2015-06-01

    The use of conjugated polymers allows versatile interactions between cells and flexible processable materials, while providing a platform for electrical stimulation, which is particularly relevant when targeting differentiation of neural stem cells and further application for therapy or drug screening. Materials were tested for cytotoxicity following the ISO10993-5. PSS was cross-linked. ReNcellVM neural stem cells (NSC) were seeded in laminin coated surfaces, cultured for 4 days in the presence of EGF (20 ng/mL), FGF-2 (20 ng/mL) and B27 (20 μg/mL) and differentiated over eight additional days in the absence of those factors under 100Hz pulsed DC electrical stimulation, 1V with 10 ms pulses. NSC and neuron elongation aspect ratio as well as neurite length were assessed using ImageJ. Cells were immune-stained for Tuj1 and GFAP. F8T2, MEH-PPV, P3HT and cross-linked PSS (x PSS) were assessed as non-cytotoxic. L929 fibroblast population was 1.3 higher for x PSS than for glass control, while F8T2 presents moderate proliferation. The population of neurons (Tuj1) was 1.6 times higher with longer neurites (73 vs 108 μm) for cells cultured under electrical stimulus, with cultured NSC. Such stimulus led also to longer neurons. x PSS was, for the first time, used to elongate human NSC through the application of pulsed current, impacting on their differentiation towards neurons and contributing to longer neurites. The range of conductive conjugated polymers known as non-cytotoxic was expanded. x PSS was introduced as a stable material, easily processed from solution, to interface with biological systems, in particular NSC, without the need of in-situ polymerization. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Social priming of hemispatial neglect affects spatial coding: Evidence from the Simon task.

    PubMed

    Arend, Isabel; Aisenberg, Daniela; Henik, Avishai

    2016-10-01

    In the Simon effect (SE), choice reactions are fast if the location of the stimulus and the response correspond when stimulus location is task-irrelevant; therefore, the SE reflects the automatic processing of space. Priming of social concepts was found to affect automatic processing in the Stroop effect. We investigated whether spatial coding measured by the SE can be affected by the observer's mental state. We used two social priming manipulations of impairments: one involving spatial processing - hemispatial neglect (HN) and another involving color perception - achromatopsia (ACHM). In two experiments the SE was reduced in the "neglected" visual field (VF) under the HN, but not under the ACHM manipulation. Our results show that spatial coding is sensitive to spatial representations that are not derived from task-relevant parameters, but from the observer's cognitive state. These findings dispute stimulus-response interference models grounded on the idea of the automaticity of spatial processing. Copyright © 2016. Published by Elsevier Inc.

  2. Modeling lateral geniculate nucleus response with contrast gain control. Part 2: Analysis

    PubMed Central

    Cope, Davis; Blakeslee, Barbara; McCourt, Mark E.

    2014-01-01

    Cope, Blakeslee and McCourt (2013) proposed a class of models for LGN ON-cell behavior consisting of a linear response with divisive normalization by local stimulus contrast. Here we analyze a specific model with the linear response defined by a difference-of-Gaussians filter and a circular Gaussian for the gain pool weighting function. For sinusoidal grating stimuli, the parameter region for band-pass behavior of the linear response is determined, the gain control response is shown to act as a switch (changing from “off” to “on” with increasing spatial frequency), and it is shown that large gain pools stabilize the optimal spatial frequency of the total nonlinear response at a fixed value independent of contrast and stimulus magnitude. Under- and super-saturation as well as contrast saturation occur as typical effects of stimulus magnitude. For circular spot stimuli, it is shown that large gain pools stabilize the spot size that yields the maximum response. PMID:24562034

  3. Psychophysical estimation of speed discrimination. II. Aging effects

    NASA Astrophysics Data System (ADS)

    Raghuram, Aparna; Lakshminarayanan, Vasudevan; Khanna, Ritu

    2005-10-01

    We studied the effects of aging on a speed discrimination task using a pair of first-order drifting luminance gratings. Two reference speeds of 2 and 8 deg/s were presented at stimulus durations of 500 ms and 1000 ms. The choice of stimulus parameters, etc., was determined in preliminary experiments and described in Part I. Thresholds were estimated using a two-alternative-forced-choice staircase methodology. Data were collected from 16 younger subjects (mean age 24 years) and 17 older subjects (mean age 71 years). Results showed that thresholds for speed discrimination were higher for the older age group. This was especially true at stimulus duration of 500 ms for both slower and faster speeds. This could be attributed to differences in temporal integration of speed with age. Visual acuity and contrast sensitivity were not statistically observed to mediate age differences in the speed discrimination thresholds. Gender differences were observed in the older age group, with older women having higher thresholds.

  4. Investigation of the Relationship Between Electrical Stimulation Frequency and Muscle Frequency Response Under Submaximal Contractions.

    PubMed

    Papcke, Caluê; Krueger, Eddy; Olandoski, Marcia; Nogueira-Neto, Guilherme Nunes; Nohama, Percy; Scheeren, Eduardo Mendonça

    2018-03-25

    Neuromuscular electrical stimulation (NMES) is a common tool that is used in clinical and laboratory experiments and can be combined with mechanomyography (MMG) for biofeedback in neuroprostheses. However, it is not clear if the electrical current applied to neuromuscular tissues influences the MMG signal in submaximal contractions. The objective of this study is to investigate whether the electrical stimulation frequency influences the mechanomyographic frequency response of the rectus femoris muscle during submaximal contractions. Thirteen male participants performed three maximal voluntary isometric contractions (MVIC) recorded in isometric conditions to determine the maximal force of knee extensors. This was followed by the application of nine modulated NMES frequencies (20, 25, 30, 35, 40, 45, 50, 75, and 100 Hz) to evoke 5% MVIC. Muscle behavior was monitored by the analysis of MMG signals, which were decomposed into frequency bands by using a Cauchy wavelet transform. For each applied electrical stimulus frequency, the mean MMG spectral/frequency response was estimated for each axis (X, Y, and Z axes) of the MMG sensor with the values of the frequency bands used as weights (weighted mean). Only with respect to the Z (perpendicular) axis of the MMG signal, the stimulus frequency of 20 Hz did not exhibit any difference with the weighted mean (P = 0.666). For the frequencies of 20 and 25 Hz, the MMG signal displayed the bands between 12 and 16 Hz in the three axes (P < 0.050). In the frequencies from 30 to 100 Hz, the muscle presented a higher concentration of the MMG signal between the 22 and 29 Hz bands for the X and Z axes, and between 16 and 34 Hz bands for the Y axis (P < 0.050 for all cases). We observed that MMG signals are not dependent on the applied NMES frequency, because their frequency contents tend to mainly remain between the 20- and 25-Hz bands. Hence, NMES does not interfere with the use of MMG in neuroprosthesis. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Material parameter determination from scattering measurements

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.; Peters, L., Jr.

    1988-01-01

    The electrical, macroscopic performance of isotropic material can generally be described through their constitutive scalar parameters, permittivity and permeability which are symbolically represented by epsilon and mu, respectively. These parameters relate the electric and magnetic flux densities to the electric and magnetic fields through the following relationships: (1) D=epsilonE; and (2) B=muH. It is through these parameters that the interaction of electromagnetic waves with material can be quantized in terms of reflection and transmission coefficients, and propagation and attenuation factors.

  6. Stimulation of the substantia nigra influences the specification of memory-guided saccades

    PubMed Central

    Mahamed, Safraaz; Garrison, Tiffany J.; Shires, Joel

    2013-01-01

    In the absence of sensory information, we rely on past experience or memories to guide our actions. Because previous experimental and clinical reports implicate basal ganglia nuclei in the generation of movement in the absence of sensory stimuli, we ask here whether one output nucleus of the basal ganglia, the substantia nigra pars reticulata (nigra), influences the specification of an eye movement in the absence of sensory information to guide the movement. We manipulated the level of activity of neurons in the nigra by introducing electrical stimulation to the nigra at different time intervals while monkeys made saccades to different locations in two conditions: one in which the target location remained visible and a second in which the target location appeared only briefly, requiring information stored in memory to specify the movement. Electrical manipulation of the nigra occurring during the delay period of the task, when information about the target was maintained in memory, altered the direction and the occurrence of subsequent saccades. Stimulation during other intervals of the memory task or during the delay period of the visually guided saccade task had less effect on eye movements. On stimulated trials, and only when the visual stimulus was absent, monkeys occasionally (∼20% of the time) failed to make saccades. When monkeys made saccades in the absence of a visual stimulus, stimulation of the nigra resulted in a rotation of the endpoints ipsilaterally (∼2°) and increased the reaction time of contralaterally directed saccades. When the visual stimulus was present, stimulation of the nigra resulted in no significant rotation and decreased the reaction time of contralaterally directed saccades slightly. Based on these measurements, stimulation during the delay period of the memory-guided saccade task influenced the metrics of saccades much more than did stimulation during the same period of the visually guided saccade task. Because these effects occurred with manipulation of nigral activity well before the initiation of saccades and in trials in which the visual stimulus was absent, we conclude that information from the basal ganglia influences the specification of an action as it is evolving primarily during performance of memory-guided saccades. When visual information is available to guide the specification of the saccade, as occurs during visually guided saccades, basal ganglia information is less influential. PMID:24259551

  7. It's the information!

    PubMed

    Ward, Ryan D; Gallistel, C R; Balsam, Peter D

    2013-05-01

    Learning in conditioning protocols has long been thought to depend on temporal contiguity between the conditioned stimulus and the unconditioned stimulus. This conceptualization has led to a preponderance of associative models of conditioning. We suggest that trial-based associative models that posit contiguity as the primary principle underlying learning are flawed, and provide a brief review of an alternative, information theoretic approach to conditioning. The information that a CS conveys about the timing of the next US can be derived from the temporal parameters of a conditioning protocol. According to this view, a CS will support conditioned responding if, and only if, it reduces uncertainty about the timing of the next US. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Sensorimotor integration in human postural control

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an increase in stiffness should be accompanied by a corresponding increase in damping. Increased damping was achieved primarily by decreasing the apparent time delay of feedback control rather than by changing the damping coefficient (i.e., corrective torque related to body-sway velocity). In normal subjects, stiffness and damping were highly correlated with body mass and moment of inertia, with stiffness always about 1/3 larger than necessary to resist the destabilizing torque due to gravity. The stiffness parameter in some VL subjects was larger compared with normal subjects, suggesting that they may use increased stiffness to help compensate for their loss. Overall results show that the simple act of standing quietly depends on a remarkably complex sensorimotor control system.

  9. Stimulus-specific variability in color working memory with delayed estimation.

    PubMed

    Bae, Gi-Yeul; Olkkonen, Maria; Allred, Sarah R; Wilson, Colin; Flombaum, Jonathan I

    2014-04-08

    Working memory for color has been the central focus in an ongoing debate concerning the structure and limits of visual working memory. Within this area, the delayed estimation task has played a key role. An implicit assumption in color working memory research generally, and delayed estimation in particular, is that the fidelity of memory does not depend on color value (and, relatedly, that experimental colors have been sampled homogeneously with respect to discriminability). This assumption is reflected in the common practice of collapsing across trials with different target colors when estimating memory precision and other model parameters. Here we investigated whether or not this assumption is secure. To do so, we conducted delayed estimation experiments following standard practice with a memory load of one. We discovered that different target colors evoked response distributions that differed widely in dispersion and that these stimulus-specific response properties were correlated across observers. Subsequent experiments demonstrated that stimulus-specific responses persist under higher memory loads and that at least part of the specificity arises in perception and is eventually propagated to working memory. Posthoc stimulus measurement revealed that rendered stimuli differed from nominal stimuli in both chromaticity and luminance. We discuss the implications of these deviations for both our results and those from other working memory studies.

  10. Interactive Light Stimulus Generation with High Performance Real-Time Image Processing and Simple Scripting.

    PubMed

    Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter

    2017-01-01

    Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations.

  11. Assessment of temporal state-dependent interactions between auditory fMRI responses to desired and undesired acoustic sources.

    PubMed

    Olulade, O; Hu, S; Gonzalez-Castillo, J; Tamer, G G; Luh, W-M; Ulmer, J L; Talavage, T M

    2011-07-01

    A confounding factor in auditory functional magnetic resonance imaging (fMRI) experiments is the presence of the acoustic noise inherently associated with the echo planar imaging acquisition technique. Previous studies have demonstrated that this noise can induce unwanted neuronal responses that can mask stimulus-induced responses. Similarly, activation accumulated over multiple stimuli has been demonstrated to elevate the baseline, thus reducing the dynamic range available for subsequent responses. To best evaluate responses to auditory stimuli, it is necessary to account for the presence of all recent acoustic stimulation, beginning with an understanding of the attenuating effects brought about by interaction between and among induced unwanted neuronal responses, and responses to desired auditory stimuli. This study focuses on the characterization of the duration of this temporal memory and qualitative assessment of the associated response attenuation. Two experimental parameters--inter-stimulus interval (ISI) and repetition time (TR)--were varied during an fMRI experiment in which participants were asked to passively attend to an auditory stimulus. Results present evidence of a state-dependent interaction between induced responses. As expected, attenuating effects of these interactions become less significant as TR and ISI increase and in contrast to previous work, persist up to 18s after a stimulus presentation. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Preserving information in neural transmission.

    PubMed

    Sincich, Lawrence C; Horton, Jonathan C; Sharpee, Tatyana O

    2009-05-13

    Along most neural pathways, the spike trains transmitted from one neuron to the next are altered. In the process, neurons can either achieve a more efficient stimulus representation, or extract some biologically important stimulus parameter, or succeed at both. We recorded the inputs from single retinal ganglion cells and the outputs from connected lateral geniculate neurons in the macaque to examine how visual signals are relayed from retina to cortex. We found that geniculate neurons re-encoded multiple temporal stimulus features to yield output spikes that carried more information about stimuli than was available in each input spike. The coding transformation of some relay neurons occurred with no decrement in information rate, despite output spike rates that averaged half the input spike rates. This preservation of transmitted information was achieved by the short-term summation of inputs that geniculate neurons require to spike. A reduced model of the retinal and geniculate visual responses, based on two stimulus features and their associated nonlinearities, could account for >85% of the total information available in the spike trains and the preserved information transmission. These results apply to neurons operating on a single time-varying input, suggesting that synaptic temporal integration can alter the temporal receptive field properties to create a more efficient representation of visual signals in the thalamus than the retina.

  13. The Equivalence of Information-Theoretic and Likelihood-Based Methods for Neural Dimensionality Reduction

    PubMed Central

    Williamson, Ross S.; Sahani, Maneesh; Pillow, Jonathan W.

    2015-01-01

    Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron’s probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an information-theoretic quantity known as “single-spike information” to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex. PMID:25831448

  14. Associative Learning Through Acquired Salience

    PubMed Central

    Treviño, Mario

    2016-01-01

    Most associative learning studies describe the salience of stimuli as a fixed learning-rate parameter. Presumptive saliency signals, however, have also been linked to motivational and attentional processes. An interesting possibility, therefore, is that discriminative stimuli could also acquire salience as they become powerful predictors of outcomes. To explore this idea, we first characterized and extracted the learning curves from mice trained with discriminative images offering varying degrees of structural similarity. Next, we fitted a linear model of associative learning coupled to a series of mathematical representations for stimulus salience. We found that the best prediction, from the set of tested models, was one in which the visual salience depended on stimulus similarity and a non-linear function of the associative strength. Therefore, these analytic results support the idea that the net salience of a stimulus depends both on the items' effective salience and the motivational state of the subject that learns about it. Moreover, this dual salience model can explain why learning about a stimulus not only depends on the effective salience during acquisition but also on the specific learning trajectory that was used to reach this state. Our mathematical description could be instrumental for understanding aberrant salience acquisition under stressful situations and in neuropsychiatric disorders like schizophrenia, obsessive-compulsive disorder, and addiction. PMID:26793078

  15. Associative Learning Through Acquired Salience.

    PubMed

    Treviño, Mario

    2015-01-01

    Most associative learning studies describe the salience of stimuli as a fixed learning-rate parameter. Presumptive saliency signals, however, have also been linked to motivational and attentional processes. An interesting possibility, therefore, is that discriminative stimuli could also acquire salience as they become powerful predictors of outcomes. To explore this idea, we first characterized and extracted the learning curves from mice trained with discriminative images offering varying degrees of structural similarity. Next, we fitted a linear model of associative learning coupled to a series of mathematical representations for stimulus salience. We found that the best prediction, from the set of tested models, was one in which the visual salience depended on stimulus similarity and a non-linear function of the associative strength. Therefore, these analytic results support the idea that the net salience of a stimulus depends both on the items' effective salience and the motivational state of the subject that learns about it. Moreover, this dual salience model can explain why learning about a stimulus not only depends on the effective salience during acquisition but also on the specific learning trajectory that was used to reach this state. Our mathematical description could be instrumental for understanding aberrant salience acquisition under stressful situations and in neuropsychiatric disorders like schizophrenia, obsessive-compulsive disorder, and addiction.

  16. Involvement of α2-adrenoceptors in inhibitory and facilitatory pain modulation processes.

    PubMed

    Vo, L; Drummond, P D

    2016-03-01

    In healthy humans, high-frequency electrical stimulation (HFS) of the forearm not only produces hyperalgesia at the site of stimulation but also reduces sensitivity to pressure-pain on the ipsilateral side of the forehead. In addition, HFS augments the ipsilateral trigeminal nociceptive blink reflex and intensifies the ipsilateral component of conditioned pain modulation. The aim of this study was to determine whether α2-adrenoceptors mediate these ipsilateral nociceptive influences. The α2-adrenoceptor antagonist yohimbine was administered to 22 participants in a double-blind, placebo-controlled crossover study. In each session, thermal and mechanical sensitivity in the forearms and forehead was assessed before and after HFS. In addition, the combined effect of HFS and yohimbine on the nociceptive blink reflex and on conditioned pain modulation was explored. In this paradigm, the conditioning stimulus was cold pain in the ipsilateral or contralateral temple, and the test stimulus was electrically evoked pain in the forearm. Blood pressure and electrodermal activity increased for several hours after yohimbine administration, consistent with blockade of central α2-adrenoceptors. Yohimbine not only augmented the nociceptive blink reflex ipsilateral to HFS but also intensified the inhibitory influence of ipsilateral temple cooling on electrically evoked pain at the HFS-treated site in the forearm. Yohimbine had no consistent effect on primary or secondary hyperalgesia in the forearm or on pressure-pain in the ipsilateral forehead. These findings imply involvement of α2-adrenoceptors both in ipsilateral antinociceptive and pronociceptive pain modulation processes. However, a mechanism not involving α2-adrenoceptors appears to mediate analgesia in the ipsilateral forehead after HFS. © 2015 European Pain Federation - EFIC®

  17. Biased Intensity Judgements of Visceral Sensations After Learning to Fear Visceral Stimuli: A Drift Diffusion Approach.

    PubMed

    Zaman, Jonas; Madden, Victoria J; Iven, Julie; Wiech, Katja; Weltens, Nathalie; Ly, Huynh Giao; Vlaeyen, Johan W S; Van Oudenhove, Lukas; Van Diest, Ilse

    2017-10-01

    A growing body of research has identified fear of visceral sensations as a potential mechanism in the development and maintenance of visceral pain disorders. However, the extent to which such learned fear affects visceroception remains unclear. To address this question, we used a differential fear conditioning paradigm with nonpainful esophageal balloon distensions of 2 different intensities as conditioning stimuli (CSs). The experiment comprised of preacquisition, acquisition, and postacquisition phases during which participants categorized the CSs with respect to their intensity. The CS+ was always followed by a painful electrical stimulus (unconditioned stimulus) during the acquisition phase and in 60% of the trials during postacquisition. The second stimulus (CS-) was never associated with pain. Analyses of galvanic skin and startle eyeblink responses as physiological markers of successful conditioning showed increased fear responses to the CS+ compared with the CS-, but only in the group with the low-intensity stimulus as CS+. Computational modeling of response times and response accuracies revealed that differential fear learning affected perceptual decision-making about the intensities of visceral sensations such that sensations were more likely to be categorized as more intense. These results suggest that associative learning might indeed contribute to visceral hypersensitivity in functional gastrointestinal disorders. This study shows that associative fear learning biases intensity judgements of visceral sensations toward perceiving such sensations as more intense. Learning-induced alterations in visceroception might therefore contribute to the development or maintenance of visceral pain. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells.

    PubMed

    Chan, S A; Smith, C

    2001-12-15

    1. Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. 2. The sAPs evoked inward Na(+) and Ca(2+) currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (tau = 560 ms). 3. Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. 4. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. 5. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506.

  19. Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells

    PubMed Central

    Chan, Shyue-An; Smith, Corey

    2001-01-01

    Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. The sAPs evoked inward Na+ and Ca2+ currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (τ = 560 ms). Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506. PMID:11744761

  20. Temporal patterns of inputs to cerebellum necessary and sufficient for trace eyelid conditioning.

    PubMed

    Kalmbach, Brian E; Ohyama, Tatsuya; Mauk, Michael D

    2010-08-01

    Trace eyelid conditioning is a form of associative learning that requires several forebrain structures and cerebellum. Previous work suggests that at least two conditioned stimulus (CS)-driven signals are available to the cerebellum via mossy fiber inputs during trace conditioning: one driven by and terminating with the tone and a second driven by medial prefrontal cortex (mPFC) that persists through the stimulus-free trace interval to overlap in time with the unconditioned stimulus (US). We used electric stimulation of mossy fibers to determine whether this pattern of dual inputs is necessary and sufficient for cerebellar learning to express normal trace eyelid responses. We find that presenting the cerebellum with one input that mimics persistent activity observed in mPFC and the lateral pontine nuclei during trace eyelid conditioning and another that mimics tone-elicited mossy fiber activity is sufficient to produce responses whose properties quantitatively match trace eyelid responses using a tone. Probe trials with each input delivered separately provide evidence that the cerebellum learns to respond to the mPFC-like input (that overlaps with the US) and learns to suppress responding to the tone-like input (that does not). This contributes to precisely timed responses and the well-documented influence of tone offset on the timing of trace responses. Computer simulations suggest that the underlying cerebellar mechanisms involve activation of different subsets of granule cells during the tone and during the stimulus-free trace interval. These results indicate that tone-driven and mPFC-like inputs are necessary and sufficient for the cerebellum to learn well-timed trace conditioned responses.

  1. Influence of asymmetric attenuation of single and paired dendritic inputs on summation of synaptic potentials and initiation of action potentials.

    PubMed

    Fortier, Pierre A; Bray, Chelsea

    2013-04-16

    Previous studies revealed mechanisms of dendritic inputs leading to action potential initiation at the axon initial segment and backpropagation into the dendritic tree. This interest has recently expanded toward the communication between different parts of the dendritic tree which could preprocess information before reaching the soma. This study tested for effects of asymmetric voltage attenuation between different sites in the dendritic tree on summation of synaptic inputs and action potential initiation using the NEURON simulation environment. Passive responses due to the electrical equivalent circuit of the three-dimensional neuron architecture with leak channels were examined first, followed by the responses after adding voltage-gated channels and finally synaptic noise. Asymmetric attenuation of voltage, which is a function of asymmetric input resistance, was seen between all pairs of dendritic sites but the transfer voltages (voltage recorded at the opposite site from stimulation among a pair of dendritic sites) were equal and also summed linearly with local voltage responses during simultaneous stimulation of both sites. In neurons with voltage-gated channels, we reproduced the observations where a brief stimulus to the proximal ascending dendritic branch of a pyramidal cell triggers a local action potential but a long stimulus triggers a somal action potential. Combined stimulation of a pair of sites in this proximal dendrite did not alter this pattern. The attraction of the action potential onset toward the soma with a long stimulus in the absence of noise was due to the higher density of voltage-gated sodium channels at the axon initial segment. This attraction was, however, negligible at the most remote distal dendritic sites and was replaced by an effect due to high input resistance. Action potential onset occurred at the dendritic site of higher input resistance among a pair of remote dendritic sites, irrespective of which of these two sites received the synaptic input. Exploration of the parameter space showed how the gradient of voltage-gated channel densities and input resistances along a dendrite could draw the action potential onset away from the stimulation site. The attraction of action potential onset toward the higher density of voltage-gated channels in the soma during stimulation of the proximal dendrite was, however, reduced after the addition of synaptic noise. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Augmentation of the Sympathetic Skin Response after Electrical Train Stimuli

    PubMed Central

    Emmer, A.; Mangalo, S.; Kornhuber, M. E.

    2012-01-01

    It is well known that the size of the sympathetic skin response (SSR) depends on the stimulus strength. In the present investigation train stimuli (TS) were employed to study the behavior of the SSR when recruited above the usual level. The SSR was obtained in healthy human subjects over the palm of the hand after supramaximal single stimuli (SS) and trains of three (TS; interstimulus interval 3 ms) over the ipsilateral superficial radial nerve in 15 healthy volunteers. Ipsilateral to the stimulus site SSR amplitudes were 5.7 ± 5.3 (SS) and 7.7 ± 5.9 mV (TS; p < 0.001), and contralateral 6.3 ± 6.3 (SS) and 7.2 ± 4.9 mV (TS; not significant). The relative gain in amplitude after TS vs. SS was negatively correlated with the SSR amplitude after SS ipsilateral (p < 0.0005) and contralateral to the stimulus site (p < 0.01). The increase in SSR amplitudes after TS compared with SS is in line with temporal summation of the excitatory synaptic input in neurons generating the SSR. Driving the SSR with TS is of possible relevance for the investigation of disorders of the peripheral or central autonomic nervous system. PMID:23115555

  3. The Primary Visual Cortex Is Differentially Modulated by Stimulus-Driven and Top-Down Attention

    PubMed Central

    Bekisz, Marek; Bogdan, Wojciech; Ghazaryan, Anaida; Waleszczyk, Wioletta J.; Kublik, Ewa; Wróbel, Andrzej

    2016-01-01

    Selective attention can be focused either volitionally, by top-down signals derived from task demands, or automatically, by bottom-up signals from salient stimuli. Because the brain mechanisms that underlie these two attention processes are poorly understood, we recorded local field potentials (LFPs) from primary visual cortical areas of cats as they performed stimulus-driven and anticipatory discrimination tasks. Consistent with our previous observations, in both tasks, we found enhanced beta activity, which we have postulated may serve as an attention carrier. We characterized the functional organization of task-related beta activity by (i) cortical responses (EPs) evoked by electrical stimulation of the optic chiasm and (ii) intracortical LFP correlations. During the anticipatory task, peripheral stimulation that was preceded by high-amplitude beta oscillations evoked large-amplitude EPs compared with EPs that followed low-amplitude beta. In contrast, during the stimulus-driven task, cortical EPs preceded by high-amplitude beta oscillations were, on average, smaller than those preceded by low-amplitude beta. Analysis of the correlations between the different recording sites revealed that beta activation maps were heterogeneous during the bottom-up task and homogeneous for the top-down task. We conclude that bottom-up attention activates cortical visual areas in a mosaic-like pattern, whereas top-down attentional modulation results in spatially homogeneous excitation. PMID:26730705

  4. Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.

    PubMed

    Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying

    2017-02-01

    Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.

  5. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  6. Signal and response properties indicate an optoacoustic effect underlying the intra-cochlear laser-optical stimulation

    NASA Astrophysics Data System (ADS)

    Kallweit, Nicole; Baumhoff, Peter; Krueger, Alexander; Tinne, Nadine; Heisterkamp, Alexander; Kral, Andrej; Maier, Hannes; Ripken, Tammo

    2016-02-01

    Optical cochlea stimulation is under investigation as a potential alternative to conventional electric cochlea implants in treatment of sensorineural hearing loss. If direct optical stimulation of spiral ganglion neurons (SGNs) would be feasible, a smaller stimulation volume and, therefore, an improved frequency resolution could be achieved. However, it is unclear whether the mechanism of optical stimulation is based on direct neuronal stimulation or on optoacoustics. Animal studies on hearing vs. deafened guinea pigs already identified the optoacoustic effect as potential mechanism for intra-cochlear optical stimulation. In order to characterize the optoacoustic stimulus more thoroughly the acoustic signal along the beam path of a pulsed laser in water was quantified and compared to the neuronal response properties of hearing guinea pigs stimulated with the same laser parameters. Two pulsed laser systems were used for analyzing the influence of variable pulse duration, pulse energy, pulse peak power and absorption coefficient. Preliminary results of the experiments in water and in vivo suggesta similar dependency of response signals on the applied laser parameters: Both datasets show an onset and offset signal at the beginning and the end of the laser pulse. Further, the resulting signal amplitude depends on the pulse peak power as well as the temporal development of the applied laser pulse. The data indicates the maximum of the first derivative of power as the decisive factor. In conclusion our findings strengthen the hypothesis of optoacoustics as the underlying mechanism for optical stimulation of the cochlea.

  7. Influence of matching solubility parameter of polymer matrix and CNT on electrical conductivity of CNT/rubber composite

    PubMed Central

    Ata, Seisuke; Mizuno, Takaaki; Nishizawa, Ayumi; Subramaniam, Chandramouli; Futaba, Don N.; Hata, Kenji

    2014-01-01

    We report a general approach to fabricate elastomeric composites possessing high electrical conductivity for applications ranging from wireless charging interfaces to stretchable electronics. By using arbitrary nine kinds of rubbers as matrices, we experimentally demonstrate that the matching the solubility parameter of CNTs and the rubber matrix is important to achieve higher electrical conductivity in CNT/rubber composite, resulting in continuous conductive pathways leading to electrical conductivities as high as 15 S/cm with 10 vol% CNT in fluorinated rubber. Further, using thermodynamic considerations, we demonstrate an approach to mix CNTs to arbitrary rubber matrices regardless of solubility parameter of matrices by adding small amounts of fluorinated rubber as a polymeric-compatibilizer of CNTs. We thereby achieved electrical conductivities ranging from 1.2 to 13.8 S/cm (10 vol% CNTs) using nine varieties of rubber matrices differing in chemical structures and physical properties. Finally, we investigated the components of solubility parameter of CNT by using Hansen solubility parameters, these findings may useful for controlling solubility parameter of CNTs. PMID:25434701

  8. Power spectrum analysis for defect screening in integrated circuit devices

    DOEpatents

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  9. Servo-controlled hind-limb electrical stimulation for short-term arterial pressure control.

    PubMed

    Kawada, Toru; Shimizu, Shuji; Yamamoto, Hiromi; Shishido, Toshiaki; Kamiya, Atsunori; Miyamoto, Tadayoshi; Sunagawa, Kenji; Sugimachi, Masaru

    2009-05-01

    Autonomic neural intervention is a promising tool for modulating the circulatory system thereby treating some cardiovascular diseases. In 8 pentobarbital-anesthetized cats, it was examined whether the arterial pressure (AP) could be controlled by acupuncture-like hind-limb electrical stimulation (HES). With a 0.5-ms pulse width, HES monotonically reduced AP as the stimulus current increased from 1 to 5 mA, suggesting that the stimulus current could be a primary control variable. In contrast, the depressor effect of HES showed a nadir approximately 10 Hz in the frequency range between 1 and 100 Hz. Dynamic characteristics of the AP response to HES approximated a second-order low-pass filter with dead time (gain: -10.2 +/- 1.6 mmHg/mA, natural frequency: 0.040 +/- 0.004 Hz, damping ratio 1.80 +/- 0.24, dead time: 1.38 +/- 0.13 s, mean +/- SE). Based on these dynamic characteristics, a servo-controlled HES system was developed. When a target AP value was set at 20 mmHg below the baseline AP, the time required for the AP response to reach 90% of the target level was 38 +/- 10 s. The steady-state error between the measured and target AP values was 1.3 +/- 0.1 mmHg. Autonomic neural intervention by acupuncture-like HES might provide an additional modality to quantitatively control the circulatory system.

  10. Learning Multisensory Integration and Coordinate Transformation via Density Estimation

    PubMed Central

    Sabes, Philip N.

    2013-01-01

    Sensory processing in the brain includes three key operations: multisensory integration—the task of combining cues into a single estimate of a common underlying stimulus; coordinate transformations—the change of reference frame for a stimulus (e.g., retinotopic to body-centered) effected through knowledge about an intervening variable (e.g., gaze position); and the incorporation of prior information. Statistically optimal sensory processing requires that each of these operations maintains the correct posterior distribution over the stimulus. Elements of this optimality have been demonstrated in many behavioral contexts in humans and other animals, suggesting that the neural computations are indeed optimal. That the relationships between sensory modalities are complex and plastic further suggests that these computations are learned—but how? We provide a principled answer, by treating the acquisition of these mappings as a case of density estimation, a well-studied problem in machine learning and statistics, in which the distribution of observed data is modeled in terms of a set of fixed parameters and a set of latent variables. In our case, the observed data are unisensory-population activities, the fixed parameters are synaptic connections, and the latent variables are multisensory-population activities. In particular, we train a restricted Boltzmann machine with the biologically plausible contrastive-divergence rule to learn a range of neural computations not previously demonstrated under a single approach: optimal integration; encoding of priors; hierarchical integration of cues; learning when not to integrate; and coordinate transformation. The model makes testable predictions about the nature of multisensory representations. PMID:23637588

  11. Stimulus-specific adaptation in a recurrent network model of primary auditory cortex

    PubMed Central

    2017-01-01

    Stimulus-specific adaptation (SSA) occurs when neurons decrease their responses to frequently-presented (standard) stimuli but not, or not as much, to other, rare (deviant) stimuli. SSA is present in all mammalian species in which it has been tested as well as in birds. SSA confers short-term memory to neuronal responses, and may lie upstream of the generation of mismatch negativity (MMN), an important human event-related potential. Previously published models of SSA mostly rely on synaptic depression of the feedforward, thalamocortical input. Here we study SSA in a recurrent neural network model of primary auditory cortex. When the recurrent, intracortical synapses display synaptic depression, the network generates population spikes (PSs). SSA occurs in this network when deviants elicit a PS but standards do not, and we demarcate the regions in parameter space that allow SSA. While SSA based on PSs does not require feedforward depression, we identify feedforward depression as a mechanism for expanding the range of parameters that support SSA. We provide predictions for experiments that could help differentiate between SSA due to synaptic depression of feedforward connections and SSA due to synaptic depression of recurrent connections. Similar to experimental data, the magnitude of SSA in the model depends on the frequency difference between deviant and standard, probability of the deviant, inter-stimulus interval and input amplitude. In contrast to models based on feedforward depression, our model shows true deviance sensitivity as found in experiments. PMID:28288158

  12. Contributions of structural connectivity and cerebrovascular parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation.

    PubMed

    Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus

    2017-07-01

    Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.

  13. Sources of interference in item and associative recognition memory.

    PubMed

    Osth, Adam F; Dennis, Simon

    2015-04-01

    A powerful theoretical framework for exploring recognition memory is the global matching framework, in which a cue's memory strength reflects the similarity of the retrieval cues being matched against the contents of memory simultaneously. Contributions at retrieval can be categorized as matches and mismatches to the item and context cues, including the self match (match on item and context), item noise (match on context, mismatch on item), context noise (match on item, mismatch on context), and background noise (mismatch on item and context). We present a model that directly parameterizes the matches and mismatches to the item and context cues, which enables estimation of the magnitude of each interference contribution (item noise, context noise, and background noise). The model was fit within a hierarchical Bayesian framework to 10 recognition memory datasets that use manipulations of strength, list length, list strength, word frequency, study-test delay, and stimulus class in item and associative recognition. Estimates of the model parameters revealed at most a small contribution of item noise that varies by stimulus class, with virtually no item noise for single words and scenes. Despite the unpopularity of background noise in recognition memory models, background noise estimates dominated at retrieval across nearly all stimulus classes with the exception of high frequency words, which exhibited equivalent levels of context noise and background noise. These parameter estimates suggest that the majority of interference in recognition memory stems from experiences acquired before the learning episode. (c) 2015 APA, all rights reserved).

  14. A study of the human rod and cone electroretinogram a-wave component

    NASA Astrophysics Data System (ADS)

    Barraco, R.; Persano Adorno, D.; Bellomonte, L.; Brai, M.

    2009-03-01

    The study of the electrical response of the retina to a luminous stimulus is one of the main fields of research in ocular electrophysiology. The features of the first component (a-wave) of the retinal response reflect the functional integrity of the two populations of photoreceptors: rods and cones. We fit the a-wave for pathological subjects with functions that account for possible mechanisms governing the kinetics of the photoreceptors. The paper extends a previous analysis, carried out for normal subjects, in which both populations are active, to patients affected by two particular diseases that reduce the working populations to only one. The pathologies investigated are Achromatopsia, a cone disease, and Congenital Stationary Night Blindness, a rod problem. We present evidence that the analysis of a pathological a-wave can be employed to quantitatively measure either cone or rod activities and to test hypotheses about their responses. The results show that the photoreceptoral responses differ in the two cases and functions implying a different number of photocascade stages are necessary to achieve a correct modeling of the early phototransduction process. Numerical values of the parameters characterizing the best-fit functions are given and discussed.

  15. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocer, Hasan; Department of Electrical Engineering, Turkish Military Academy, 06654 Ankara; Butun, Serkan

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20%more » and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.« less

  16. Resonance energy transfer (RET)-Induced intermolecular pairing force: a tunable weak interaction and its application in SWNT separation.

    PubMed

    Pan, Xiaoyong; Chen, Hui; Wang, Wei Zhi; Ng, Siu Choon; Chan-Park, Mary B

    2011-07-21

    This paper explores evidence of an optically mediated interaction that is active in the separation mechanism of certain selective agents through consideration of the contrasting selective behaviors of two conjugated polymers with distinct optical properties. The involvement of a RET-induced intermolecular pairing force is implied by the different illumination response behaviors. The magnitude of this interaction scales with the external stimulus parameter, the illumination irradiance (I), and thus is tunable. This suggests a facile technique to modify the selectivity of polymers toward specific SWNT species by altering the polymer structure to adjust the corresponding intermolecular interaction. This is the first experimental verification and application of a RET-induced intermolecular pairing force to SWNT separation. With this kind of interaction taken into account, reasonable interpretation of some conflicting data, especially PLE maps, can be easily made. The above conclusion can be applied to other substances as long as they are electrically neutral and there is photon-induced RET between them. The significant magnitude of this interaction makes direct manipulation of molecules/particles possible and is expected to have applications in molecular engineering. © 2011 American Chemical Society

  17. Alpha-Band Brain Oscillations Shape the Processing of Perceptible as well as Imperceptible Somatosensory Stimuli during Selective Attention.

    PubMed

    Forschack, Norman; Nierhaus, Till; Müller, Matthias M; Villringer, Arno

    2017-07-19

    Attention filters and weights sensory information according to behavioral demands. Stimulus-related neural responses are increased for the attended stimulus. Does alpha-band activity mediate this effect and is it restricted to conscious sensory events (suprathreshold), or does it also extend to unconscious stimuli (subthreshold)? To address these questions, we recorded EEG in healthy male and female volunteers undergoing subthreshold and suprathreshold somatosensory electrical stimulation to the left or right index finger. The task was to detect stimulation at the randomly alternated cued index finger. Under attention, amplitudes of somatosensory evoked potentials increased 50-60 ms after stimulation (P1) for both suprathreshold and subthreshold events. Prestimulus amplitude of peri-Rolandic alpha, that is mu, showed an inverse relationship to P1 amplitude during attention compared to when the finger was unattended. Interestingly, intermediate and high amplitudes of mu rhythm were associated with the highest P1 amplitudes during attention and smallest P1 during lack of attention, that is, these levels of alpha rhythm seemed to optimally support the behavioral goal ("detect" stimuli at the cued finger while ignoring the other finger). Our results show that attention enhances neural processing for both suprathreshold and subthreshold stimuli and they highlight a rather complex interaction between attention, Rolandic alpha activity, and their effects on stimulus processing. SIGNIFICANCE STATEMENT Attention is crucial in prioritizing processing of relevant perceptible (suprathreshold) stimuli: it filters and weights sensory input. The present study investigates the controversially discussed question whether this attention effect extends to imperceptible (subthreshold) stimuli as well. We found noninvasive EEG signatures for attentional modulation of neural events following perceptible and imperceptible somatosensory stimulation in human participants. Specifically, stimulus processing for both kinds of stimulation, subthreshold and suprathreshold, is enhanced by attention. Interestingly, Rolandic alpha rhythm strength and its influence on stimulus processing are strikingly altered by attention most likely to optimally achieve the behavioral goal. Copyright © 2017 the authors 0270-6474/17/376983-12$15.00/0.

  18. Electrical and absorption properties of fresh cassava tubers and cassava starch

    NASA Astrophysics Data System (ADS)

    Harnsoongnoen, S.; Siritaratiwat, A.

    2015-09-01

    The objective of this study was to analyze the electrical and absorption properties of fresh cassava tubers and cassava starch at various frequencies using electric impedance spectroscopy and near-infrared spectroscopy, as well as determine the classification of the electrical parameters of both materials using the principle component analysis (PCA) method. All samples were measured at room temperature. The electrical and absorption parameters consisted of dielectric constant, dissipation factor, parallel capacitance, resistance, reactance, impedance and absorbance. It was found that the electrical and absorption properties of fresh cassava tubers and cassava starch were a function of frequency, and there were significant differences between the materials. The dielectric constant, parallel capacitance, resistance and impedance of fresh cassava tubers and cassava starch had similar dramatic decreases with increasing frequency. However, the reactance of both materials increased with an increasing frequency. The electrical parameters of both materials could be classified into two groups. Moreover, the dissipation factor and phase of impedance were the parameters that could be used in the separation of both materials. According to the absorbance patterns of the fresh cassava tubers and cassava starch, there were significant differences.

  19. Neural hijacking: action of high-frequency electrical stimulation on cortical circuits.

    PubMed

    Cheney, P D; Griffin, D M; Van Acker, G M

    2013-10-01

    Electrical stimulation of the brain was one of the first experimental methods applied to understanding brain organization and function and it continues as a highly useful method both in research and clinical applications. Intracortical microstimulation (ICMS) involves applying electrical stimuli through a microelectrode suitable for recording the action potentials of single neurons. ICMS can be categorized into single-pulse stimulation; high-frequency, short-duration stimulation; and high-frequency, long-duration stimulation. For clinical and experimental reasons, considerable interest focuses on the mechanism of neural activation by electrical stimuli. In this article, we discuss recent results suggesting that action potentials evoked in cortical neurons by high-frequency electrical stimulation do not sum with the natural, behaviorally related background activity; rather, high-frequency stimulation eliminates and replaces natural activity. We refer to this as neural hijacking. We propose that a major component of the mechanism underlying neural hijacking is excitation of axons by ICMS and elimination of natural spikes by antidromic collision with stimulus-driven spikes evoked at high frequency. Evidence also supports neural hijacking as an important mechanism underlying the action of deep brain stimulation in the subthalamic nucleus and its therapeutic effect in treating Parkinson's disease.

  20. Electrical Signals in Prayer Plants (Marantaceae)? Insights into the Trigger Mechanism of the Explosive Style Movement

    PubMed Central

    Jerominek, Markus; Claßen-Bockhoff, Regine

    2015-01-01

    The explosive pollination mechanism of the prayer plants (Marantaceae) is unique among plants. After a tactile stimulus by a pollinator, the style curls up rapidly and mediates pollen exchange. It is still under discussion whether this explosive movement is released electrophysiologically, i.e. by a change in the membrane potential (as in Venus flytrap), or purely mechanically. In the present study, electrophysiological experiments are conducted to clarify the mechanism. Artificial release experiments (chemical and electrical) and electrophysiological measurements were conducted with two phylogenetically distant species, Goeppertia bachemiana (E. Morren) Borchs. & S. Suárez and Donax canniformis (G. Forst.) K. Schum. Electric responses recorded after style release by extracellular measurements are characterised as variation potentials due to their long repolarization phase and lack of self-perpetuation. In both species, chemical and electric stimulations do not release the style movement. It is concluded that the style movement in Marantaceae is released mechanically by relieving the tissue pressure. Accordingly, the variation potential is an effect of the movement and not its cause. The study exemplarily shows that fast movements in plants are not necessarily initiated by electric changes of the membrane as known from the Venus flytrap. PMID:25997015

  1. Electrical signals in prayer plants (marantaceae)? Insights into the trigger mechanism of the explosive style movement.

    PubMed

    Jerominek, Markus; Claßen-Bockhoff, Regine

    2015-01-01

    The explosive pollination mechanism of the prayer plants (Marantaceae) is unique among plants. After a tactile stimulus by a pollinator, the style curls up rapidly and mediates pollen exchange. It is still under discussion whether this explosive movement is released electrophysiologically, i.e. by a change in the membrane potential (as in Venus flytrap), or purely mechanically. In the present study, electrophysiological experiments are conducted to clarify the mechanism. Artificial release experiments (chemical and electrical) and electrophysiological measurements were conducted with two phylogenetically distant species, Goeppertia bachemiana (E. Morren) Borchs. & S. Suárez and Donax canniformis (G. Forst.) K. Schum. Electric responses recorded after style release by extracellular measurements are characterised as variation potentials due to their long repolarization phase and lack of self-perpetuation. In both species, chemical and electric stimulations do not release the style movement. It is concluded that the style movement in Marantaceae is released mechanically by relieving the tissue pressure. Accordingly, the variation potential is an effect of the movement and not its cause. The study exemplarily shows that fast movements in plants are not necessarily initiated by electric changes of the membrane as known from the Venus flytrap.

  2. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus.

    PubMed

    Fukutomi, Matasaburo; Someya, Makoto; Ogawa, Hiroto

    2015-12-01

    Animals flexibly change their locomotion triggered by an identical stimulus depending on the environmental context and behavioral state. This indicates that additional sensory inputs in different modality from the stimulus triggering the escape response affect the neuronal circuit governing that behavior. However, how the spatio-temporal relationships between these two stimuli effect a behavioral change remains unknown. We studied this question, using crickets, which respond to a short air-puff by oriented walking activity mediated by the cercal sensory system. In addition, an acoustic stimulus, such as conspecific 'song' received by the tympanal organ, elicits a distinct oriented locomotion termed phonotaxis. In this study, we examined the cross-modal effects on wind-elicited walking when an acoustic stimulus was preceded by an air-puff and tested whether the auditory modulation depends on the coincidence of the direction of both stimuli. A preceding 10 kHz pure tone biased the wind-elicited walking in a backward direction and elevated a threshold of the wind-elicited response, whereas other movement parameters, including turn angle, reaction time, walking speed and distance were unaffected. The auditory modulations, however, did not depend on the coincidence of the stimulus directions. A preceding sound consistently altered the wind-elicited walking direction and response probability throughout the experimental sessions, meaning that the auditory modulation did not result from previous experience or associative learning. These results suggest that the cricket nervous system is able to integrate auditory and air-puff stimuli, and modulate the wind-elicited escape behavior depending on the acoustic context. © 2015. Published by The Company of Biologists Ltd.

  3. Evaluating the operations underlying multisensory integration in the cat superior colliculus.

    PubMed

    Stanford, Terrence R; Quessy, Stephan; Stein, Barry E

    2005-07-13

    It is well established that superior colliculus (SC) multisensory neurons integrate cues from different senses; however, the mechanisms responsible for producing multisensory responses are poorly understood. Previous studies have shown that spatially congruent cues from different modalities (e.g., auditory and visual) yield enhanced responses and that the greatest relative enhancements occur for combinations of the least effective modality-specific stimuli. Although these phenomena are well documented, little is known about the mechanisms that underlie them, because no study has systematically examined the operation that multisensory neurons perform on their modality-specific inputs. The goal of this study was to evaluate the computations that multisensory neurons perform in combining the influences of stimuli from two modalities. The extracellular activities of single neurons in the SC of the cat were recorded in response to visual, auditory, and bimodal visual-auditory stimulation. Each neuron was tested across a range of stimulus intensities and multisensory responses evaluated against the null hypothesis of simple summation of unisensory influences. We found that the multisensory response could be superadditive, additive, or subadditive but that the computation was strongly dictated by the efficacies of the modality-specific stimulus components. Superadditivity was most common within a restricted range of near-threshold stimulus efficacies, whereas for the majority of stimuli, response magnitudes were consistent with the linear summation of modality-specific influences. In addition to providing a constraint for developing models of multisensory integration, the relationship between response mode and stimulus efficacy emphasizes the importance of considering stimulus parameters when inducing or interpreting multisensory phenomena.

  4. The role of nociceptive input and tissue injury on stress regulation in borderline personality disorder.

    PubMed

    Willis, Franziska; Kuniss, Sarah; Kleindienst, Nikolaus; Naoum, Janina; Reitz, Sarah; Boll, Sabrina; Bohus, Martin; Treede, Rolf-Detlef; Baumgärtner, Ulf; Schmahl, Christian

    2017-03-01

    Approximately 60% to 90% of patients with borderline personality disorder (BPD) show nonsuicidal self-injurious behavior (NSSI) with cutting being the most frequently applied method. One of NSSI's functions is to reduce aversive tension. Previous studies have found a tension-reducing effect of painful tissue injury by an incision. It is still unclear whether this effect is based on the effect of tissue injury or the effect of pain experience, or both. The aim of this study was to determine whether tissue injury leads to a stronger stress reduction than a sole pain stimulus in patients with BPD. After stress induction, 57 BPD patients and 60 healthy controls (HCs) received either an incision or a non-tissue-injuring mechanical nociceptive stimulus ("blade") typically perceived as painful or a non-nociceptive tactile sham stimulus (blunt end of scalpel). Participants were unaware of which procedure was applied. For stress assessment, subjective and objective parameters were measured. As immediate response to the stimulus application, we found greater stress reduction after both painful stimuli (incision and blade) in BPD patients but no difference in stress decrease between the tissue-injuring incision and the non-tissue-injuring pain stimulus (blade). Compared with HCs, incision and blade were followed by greater immediate decrease of arousal in BPD patients. Our findings confirm that among BPD patients, the nociceptive input leads to stress reduction. In contrast, the impact of tissue damage on stress reduction was relatively small. In addition, the results suggest that painful stimuli lead to a greater stress reduction in BPD patients compared with HCs.

  5. Gap detection measured with electrically evoked auditory event-related potentials and speech-perception abilities in children with auditory neuropathy spectrum disorder.

    PubMed

    He, Shuman; Grose, John H; Teagle, Holly F B; Woodard, Jennifer; Park, Lisa R; Hatch, Debora R; Buchman, Craig A

    2013-01-01

    This study aimed (1) to investigate the feasibility of recording the electrically evoked auditory event-related potential (eERP), including the onset P1-N1-P2 complex and the electrically evoked auditory change complex (EACC) in response to temporal gaps, in children with auditory neuropathy spectrum disorder (ANSD); and (2) to evaluate the relationship between these measures and speech-perception abilities in these subjects. Fifteen ANSD children who are Cochlear Nucleus device users participated in this study. For each subject, the speech-processor microphone was bypassed and the eERPs were elicited by direct stimulation of one mid-array electrode (electrode 12). The stimulus was a train of biphasic current pulses 800 msec in duration. Two basic stimulation conditions were used to elicit the eERP. In the no-gap condition, the entire pulse train was delivered uninterrupted to electrode 12, and the onset P1-N1-P2 complex was measured relative to the stimulus onset. In the gapped condition, the stimulus consisted of two pulse train bursts, each being 400 msec in duration, presented sequentially on the same electrode and separated by one of five gaps (i.e., 5, 10, 20, 50, and 100 msec). Open-set speech-perception ability of these subjects with ANSD was assessed using the phonetically balanced kindergarten (PBK) word lists presented at 60 dB SPL, using monitored live voice in a sound booth. The eERPs were recorded from all subjects with ANSD who participated in this study. There were no significant differences in test-retest reliability, root mean square amplitude or P1 latency for the onset P1-N1-P2 complex between subjects with good (>70% correct on PBK words) and poorer speech-perception performance. In general, the EACC showed less mature morphological characteristics than the onset P1-N1-P2 response recorded from the same subject. There was a robust correlation between the PBK word scores and the EACC thresholds for gap detection. Subjects with poorer speech-perception performance showed larger EACC thresholds in this study. These results demonstrate the feasibility of recording eERPs from implanted children with ANSD, using direct electrical stimulation. Temporal-processing deficits, as demonstrated by large EACC thresholds for gap detection, might account in part for the poor speech-perception performances observed in a subgroup of implanted subjects with ANSD. This finding suggests that the EACC elicited by changes in temporal continuity (i.e., gap) holds promise as a predictor of speech-perception ability among implanted children with ANSD.

  6. Identification of robust adaptation gene regulatory network parameters using an improved particle swarm optimization algorithm.

    PubMed

    Huang, X N; Ren, H P

    2016-05-13

    Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation.

  7. The past, present, and future of U.S. utility demand-side management programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, J.

    Demand-side management or DSM refers to active efforts by electric and gas utilities to modify customers` energy use patterns. The experience in the US shows that utilities, when provided with appropriate incentives, can provide a powerful stimulus to energy efficiency in the private sector. This paper describes the range and history of DSM programs offered by US electric utilities, with a focus on the political, economic, and regulatory events that have shaped their evolution. It also describes the changes these programs are undergoing as a result of US electricity industry restructuring. DSM programs began modestly in the 1970s in responsemore » to growing concerns about dependence on foreign sources of oil and environmental consequences of electricity generation, especially nuclear power. The foundation for the unique US partnership between government and utility interests can be traced first to the private-ownership structure of the vertically integrated electricity industry and second to the monopoly franchise granted by state regulators. Electricity industry restructuring calls into question both of these basic conditions, and thus the future of utility DSM programs for the public interest. Future policies guiding ratepayer-funded energy-efficiency DSM programs will need to pay close attention to the specific market objectives of the programs and to the balance between public and private interests.« less

  8. An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma.

    PubMed

    Ren, Wei; Beebe, Stephen J

    2011-04-01

    Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was >95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. Bid cleavage was caspase-dependent (55-60%) and calcium-dependent (40-45%). Intracellular calcium as an intrinsic mechanism and extracellular calcium as an extrinsic mechanism were responsible for about 30 and 70% of calcium dependence for Bid cleavage, respectively. The results reveal electric field-mediated cell death induction and progression, activating pro-apoptotic-like mechanisms and affecting plasma membrane and intracellular functions, primarily through extrinsic-like pathways with smaller contributions from intrinsic-like pathways. Nanosecond second pulsed electric fields trigger heterogeneous cell death mechanisms in E4 SCC populations to delete them, with caspase-associated cell death as a predominant, but not an unaccompanied event.

  9. Modeling Electrically Evoked Otoacoustic Emissions

    NASA Astrophysics Data System (ADS)

    Grosh, K.; Deo, N.; Parthasarathi, A. A.; Nuttall, A. L.; Zheng, J. F.; Ren, T. Y.

    2003-02-01

    Electrical evoked otoacoustic emissions (EEOAE) are used to investigate in vivo cochlear electromechanical function. Round window electrical stimulation gives rise to a broad frequency EEOAE response, from 100 Hz or below to 40 kHz in guinea pigs. Placing bipolar electrodes very close to the basilar membrane (in the scala vestibuli and scala tympani) gives rise to a much narrower frequency range of EEOAE, limited to around 20 kHz when the electrodes are placed near the 18 kHz best frequency place. Model predictions using a three dimensional fluid model in conjunction with a simple model for outer hair cell (OHC) activity are used to interpret the experimental results. The model is solved using a 2.5D finite-element formulation. Predictions show that the high-frequency limit of the excitation is determined by the spatial extent of the current stimulus (also called the current spread). The global peaks in the EEOAE spectra are interpreted as constructive interference between electrically evoked backward traveling waves and forward traveling waves reflected from the stapes. Steady-state response predictions of the model are presented.

  10. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  11. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development

    NASA Astrophysics Data System (ADS)

    Sachs, Helmut G.; Schanze, Thomas; Brunner, Ursula; Sailer, Heiko; Wiesenack, Christoph

    2005-03-01

    Loss of photoreceptor function is responsible for a variety of blinding diseases, including retinitis pigmentosa. Advances in microtechnology have led to the development of electronic visual prostheses which are currently under investigation for the treatment of human blindness. The design of a subretinal prosthesis requires that the stimulation device should be implantable in the subretinal space of the eye. Current limitations in eye surgery have to be overcome to demonstrate the feasibility of this approach and to determine basic stimulation parameters. Therefore, polyimide film-bound electrodes were implanted in the subretinal space in anaesthetized domestic pigs as a prelude to electrical stimulation in acute experiments. Eight eyes underwent surgery to demonstrate the transscleral implantability of the device. Four of the eight eyes were stimulated electrically. In these four animals the cranium was prepared for epidural recording of evoked visual cortex responses, and stimulation was performed with sequences of current impulses. All eight subretinal implantation procedures were carried out successfully with polyimide film electrodes and each electrode was implanted beneath the outer retina of the posterior pole of the operated eyes. Four eyes were used for neurophysiological testing, involving recordings of epidural cortical responses to light and electrical stimulation. A light stimulus response, which occurred 40 ms after stimulation, proved the integrity of the operated eye. The electrical stimuli occurred about 20 ms after the onset of stimulation. The stimulation threshold was approximately 100 µA. Both the threshold and the cortical responses depended on the correspondence between retinal stimulation and cortical recording sites and on the number of stimulation electrodes used simultaneously. The subretinal implantation of complex stimulation devices using the transscleral procedure with consecutive subretinal stimulation is feasible in acute experiments in an animal model approximating to the situation in humans. The domestic pig is an appropriate animal model for basic testing of subretinal implants. Animal experiments with chronically implanted devices and long-term stimulation are advisable to prepare the field for successful human experiments. The first two authors (H G Sachs and Th Schanze) contributed equally to this paper.

  12. Response preparation and intra-individual reaction time variability in schizophrenia.

    PubMed

    Dankinas, Denisas; Mėlynytė, Sigita; Šiurkutė, Aldona; Dapšys, Kastytis

    2016-01-01

    Background. It is important to prepare response in advance to increase the efficiency of its execution. The process of response preparation is usually studied using the precueing paradigm. In this paradigm subjects have to employ the preceding information about further imperative stimulus to perform proper response preparation, which shortens the reaction time of subsequent response execution. Previous studies detected the impairment of response preparation in schizophrenia only with the help of electroencephalographic parameters, but not with the assessing of reaction time. Therefore, in this study we attempted to find a behavioural parameter that could detect impairment in response preparation of schizophrenia patients. It was recently found that appropriate response preparation not only shortens the reaction time but also increases its stability, which is measured with the intra-individual reaction time variability. It was also revealed that response stability could better find cognitive dysfunction in some studies of schizophrenia disorder than classical behavioural parameters. Hence, the main goal of this study was to verify if intra-individual reaction time variability could detect the impairment of response preparation in schizophrenia patients. Materials and methods. In order to achieve the main purpose, we carried out a study with 14 schizophrenia patients and 14 control group subjects. We used precueing paradigm in our research, in which participants had to employ information about stimulus probability for the proper response preparation. Results. Our main result showed that despite the responses of schizophrenia patients were faster to the high-probability stimulus than to the low-probability one ( F (1, 13) = 30.9, p < 0.001), intra-individual reaction time variability did not differ in this group between the responses to more and less probable stimuli ( F (1, 13) = 0.64, p = 0.44). Conclusions. Results of the study suggest that people with schizophrenia were able to use precueing probabilistic information only to shorten their reaction time, but not to increase response stability. Therefore, it was found that intra-individual reaction time variability parameter could detect response preparation impairment in schizophrenia, and could be used in clinical purposes.

  13. Hyperexcitability to electrical stimulation and accelerated muscle fatiguability of taut bands in rats.

    PubMed

    Wang, Yong-Hui; Yin, Ming-Jing; Fan, Zhen-Zhen; Arendt-Nielsen, Lars; Ge, Hong-You; Yue, Shou-Wei

    2014-04-01

    Myofascial trigger points contribute significantly to musculoskeletal pain and motor dysfunction and may be associated with accelerated muscle fatiguability. The aim of this study was to investigate the electrically induced force and fatigue characteristics of muscle taut bands in rats. Muscle taut bands were dissected out and subjected to trains of electrical stimulation. The electrical threshold intensity for muscle contraction and maximum contraction force (MCF), electrical intensity dependent fatigue and electrical frequency dependent fatigue characteristics were assessed in three different sessions (n=10 each) and compared with non-taut bands in the biceps femoris muscle. The threshold intensity for muscle contraction and MCF at the 10th, 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those of non-taut bands (all p<0.05). The MCF at the 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those at the 1st and 5th stimuli (all p<0.01). The MCF in the frequency dependent fatigue test was significantly higher and the stimulus frequency that induced MCF was significantly lower for taut bands than for non-taut bands (both p<0.01). The present study demonstrates that the muscle taut band itself was more excitable to electrical stimulation and significantly less fatigue resistant than normal muscle fibres.

  14. Automatic Realistic Real Time Stimulation/Recording in Weakly Electric Fish: Long Time Behavior Characterization in Freely Swimming Fish and Stimuli Discrimination

    PubMed Central

    Forlim, Caroline G.; Pinto, Reynaldo D.

    2014-01-01

    Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish’s position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution. PMID:24400122

  15. Motion Sickness: Significance in Aerospace Operations and Prophylaxis (Le Mal des Transports: Son Importance pour les Operations Aerospatiales et Prophylaxies)

    DTIC Science & Technology

    1991-09-01

    description of motion sickness will be based on the assumption that only one peculiar thing happens: a poison response is provoked by motion. Common sense...available for study , because it can be produced for study without the complicating presence of a poison. It is produced by a motion stimulus that...34nausea occurred only during gastric relaxation and hypomotility" (26). The electrical activity of the gut has also been studied during motion

  16. Electric and Magnetic Activity of the Central Nervous System: Research and Clinical Applications in Aerospace Medicine. Held in Trondheim, Norway on 25-29 May 1987

    DTIC Science & Technology

    1988-02-01

    research dealing with the pharmacological control of states of vigilance, in the context of maximizing the operational value of combat arms personnel...brain activity of human subjects while they process cognitive information, with the research based on care- ful stimulus control , systematic task... control in man-machine interaction. Annual Technical Report 1975-1976, Report # UCLA-ENG-7J51 for Advanced Research Projecto Agency. University of

  17. Self-organization of multifunctional surfaces--the fingerprints of light on a complex system.

    PubMed

    Reinhardt, Hendrik; Kim, Hee-Cheol; Pietzonka, Clemens; Kruempelmann, Julia; Harbrecht, Bernd; Roling, Bernhard; Hampp, Norbert

    2013-06-25

    Nanocomposite patterns and nanotemplates are generated by a single-step bottom-up concept that introduces laser-induced periodic surface structures (LIPSS) as a tool for site-specific reaction control in multicomponent systems. Periodic intensity fluctuations of this photothermal stimulus inflict spatial-selective reorganizations, dewetting scenarios and phase segregations, thus creating regular patterns of anisotropic physicochemical properties that feature attractive optical, electrical, magnetic, and catalytic properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In Vivo Magnetic Stimulation of Rat Sciatic Nerve With Centimeter- and Millimeter-Scale Solenoid Coils.

    PubMed

    Kagan, Zachary B; RamRakhyani, Anil Kumar; Lazzi, Gianluca; Normann, Richard A; Warren, David J

    2016-11-01

    Previous reports of magnetic stimulation of the peripheral nervous system (PNS) used various coil geometries, all with outer diameters larger than 35 mm, and stimulation energies in the 50 J range to evoke neural excitation. Recent reports of central nervous system (CNS) activation used sub-mm-scale solenoid coils with mJ energy levels. The goal of this study was to translate the lower energy levels from the CNS to the PNS via using smaller coils placed in closer proximity to the neural tissue. Such a performance improvement would advance the state of the art of magnetic stimulation and provide a path towards new neuroprosthetic devices. Primarily, we investigated the range of coil outer diameters from 25 mm down to 5 mm to better understand the dependence of coil diameter on energy required for PNS activation. Nine cm- and mm-scale copper solenoid coils, with various resistances, inductances, inner and outer diameters, and heights were compared by quantizing neuromuscular responses to magnetic stimulation via capacitive discharge excitation of rat sciatic nerves in vivo. Additionally, the effects of stimulus duration and coil position were investigated. As opposed to prior work, this study compares a subset of stimulation parameters in an intact nerve preparation, and shows that magnetic stimulation with coils that abut the nerve is a reliable, effective method of neuromuscular stimulation. Although we observed different energies required for neuromuscular activation depending on the coil and excitation parameters used, for the experimental configuration, devices, and stimulus waveform shapes presented in this manuscript, no systematic dependence of PNS activation on coil diameter was found, even for the mm-scale coils investigated herein. However, there was a clear relationship between discharge circuit capacitance and energy required to evoke a neuromuscular response. Coils approximately 12 mm in outer diameter and larger consistently evoked responses, whereas coils 5 mm in outer diameter did not. Furthermore, we observed meaningful neuromuscular excitation when stimulating with energies as low as 20 J. Although this is an improvement over prior work, it is still orders of magnitude greater than the energy required for conventional electrical stimulation, suggesting that these devices are presently not suitable for use in an application requiring continued pulsed stimulation. Nevertheless, these devices are suitable for basic research and as clinical tools that infrequently stimulate, such as in diagnostic applications.

  19. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    NASA Astrophysics Data System (ADS)

    Massof, Robert W.; Schmidt, Karen M.; Laby, Daniel M.; Kirschen, David; Meadows, David

    2013-09-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model.

  20. Stimulus discriminability in visual search.

    PubMed

    Verghese, P; Nakayama, K

    1994-09-01

    We measured the probability of detecting the target in a visual search task, as a function of the following parameters: the discriminability of the target from the distractors, the duration of the display, and the number of elements in the display. We examined the relation between these parameters at criterion performance (80% correct) to determine if the parameters traded off according to the predictions of a limited capacity model. For the three dimensions that we studied, orientation, color, and spatial frequency, the observed relationship between the parameters deviates significantly from a limited capacity model. The data relating discriminability to display duration are better than predicted over the entire range of orientation and color differences that we examined, and are consistent with the prediction for only a limited range of spatial frequency differences--from 12 to 23%. The relation between discriminability and number varies considerably across the three dimensions and is better than the limited capacity prediction for two of the three dimensions that we studied. Orientation discrimination shows a strong number effect, color discrimination shows almost no effect, and spatial frequency discrimination shows an intermediate effect. The different trading relationships in each dimension are more consistent with early filtering in that dimension, than with a common limited capacity stage. Our results indicate that higher-level processes that group elements together also play a strong role. Our experiments provide little support for limited capacity mechanisms over the range of stimulus differences that we examined in three different dimensions.

  1. Does semantic preactivation reduce inattentional blindness?

    PubMed

    Kreitz, Carina; Schnuerch, Robert; Furley, Philip A; Gibbons, Henning; Memmert, Daniel

    2015-04-01

    We are susceptible to failures of awareness if a stimulus occurs unexpectedly and our attention is focused elsewhere. Such inattentional blindness is modulated by various parameters, including stimulus attributes, the observer's cognitive resources, and the observer's attentional set regarding the primary task. In three behavioral experiments with a total of 360 participants, we investigated whether mere semantic preactivation of the color of an unexpected object can reduce inattentional blindness. Neither explicitly mentioning the color several times before the occurrence of the unexpected stimulus nor priming the color more implicitly via color-related concepts could significantly reduce the susceptibility to inattentional blindness. Even putting the specific color concept in the main focus of the primary task did not lead to reduced inattentional blindness. Thus, we have shown that the failure to consciously perceive unexpected objects was not moderated by semantic preactivation of the objects' most prominent feature: its color. We suggest that this finding reflects the rather general principle that preactivations that are not motivationally relevant for one's current selection goals do not suffice to make an unexpected object overcome the threshold of awareness.

  2. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.

    PubMed

    Luo, An; Sullivan, Thomas J

    2010-04-01

    We introduce a user-friendly steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) system. Single-channel EEG is recorded using a low-noise dry electrode. Compared to traditional gel-based multi-sensor EEG systems, a dry sensor proves to be more convenient, comfortable and cost effective. A hardware system was built that displays four LED light panels flashing at different frequencies and synchronizes with EEG acquisition. The visual stimuli have been carefully designed such that potential risk to photosensitive people is minimized. We describe a novel stimulus-locked inter-trace correlation (SLIC) method for SSVEP classification using EEG time-locked to stimulus onsets. We studied how the performance of the algorithm is affected by different selection of parameters. Using the SLIC method, the average light detection rate is 75.8% with very low error rates (an 8.4% false positive rate and a 1.3% misclassification rate). Compared to a traditional frequency-domain-based method, the SLIC method is more robust (resulting in less annoyance to the users) and is also suitable for irregular stimulus patterns.

  3. Durability of classification and action learning: differences revealed using ex-Gaussian distribution analysis.

    PubMed

    Moutsopoulou, Karolina; Waszak, Florian

    2013-05-01

    It has been shown that in associative learning it is possible to disentangle the effects caused on behaviour by the associations between a stimulus and a classification (S-C) and the associations between a stimulus and the action performed towards it (S-A). Such evidence has been provided using ex-Gaussian distribution analysis to show that different parameters of the reaction time distribution reflect the different processes. Here, using this method, we investigate another difference between these two types of associations: What is the relative durability of these associations across time? Using a task-switching paradigm and by manipulating the lag between the point of the creation of the associations and the test phase, we show that S-A associations have stronger effects on behaviour when the lag between the two repetitions of a stimulus is short. However, classification learning affects behaviour not only in short-term lags but also (and equally so) when the lag between prime and probe is long and the same stimuli are repeatedly presented within a different classification task, demonstrating a remarkable durability of S-C associations.

  4. Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics.

    PubMed

    Sokoloski, Sacha

    2017-09-01

    In order to interact intelligently with objects in the world, animals must first transform neural population responses into estimates of the dynamic, unknown stimuli that caused them. The Bayesian solution to this problem is known as a Bayes filter, which applies Bayes' rule to combine population responses with the predictions of an internal model. The internal model of the Bayes filter is based on the true stimulus dynamics, and in this note, we present a method for training a theoretical neural circuit to approximately implement a Bayes filter when the stimulus dynamics are unknown. To do this we use the inferential properties of linear probabilistic population codes to compute Bayes' rule and train a neural network to compute approximate predictions by the method of maximum likelihood. In particular, we perform stochastic gradient descent on the negative log-likelihood of the neural network parameters with a novel approximation of the gradient. We demonstrate our methods on a finite-state, a linear, and a nonlinear filtering problem and show how the hidden layer of the neural network develops tuning curves consistent with findings in experimental neuroscience.

  5. Statistical analysis of electric field parameters for negative lightning in Malaysia

    NASA Astrophysics Data System (ADS)

    Wooi, Chin-Leong; Abdul-Malek, Zulkurnain; Ahmad, Noor-Azlinda; El Gayar, Ali I.

    2016-08-01

    This paper presents a comparative study on the electric field and its derivative parameters of negative lightning in Malaysia and other regions. This study is the first in Malaysia where the parameters of negative electric field and its derivative are thoroughly analyzed. 104 negative lightning flashes containing 277 negative return strokes occurring within 10-100 km from the measuring station and recorded during monsoon period in the state of Johor, Malaysia had been analyzed. It was found that 73% of the recorded flashes are multiple strokes with an average multiplicity of 2.6 strokes per flash. For first return strokes, the arithmetic mean (AM) of initial peak electric field and the AM of initial peak electric field derivative are 21.8 V/m and 11.3 V/m/μs, respectively. The initial peaks of electric field and its derivative for first return strokes are larger than those for the subsequent return strokes. Comparison of overall results with those obtained earlier in Sri Lanka, Germany, Sweden, Japan, Florida indicates that several electric field and its derivative parameters are affected by propagation media and geographical region. Similarity of results with other countries having the same climatic condition is also observed.

  6. Optimizing the stimulus presentation paradigm design for the P300-based brain-computer interface using performance prediction.

    PubMed

    Mainsah, B O; Reeves, G; Collins, L M; Throckmorton, C S

    2017-08-01

    The role of a brain-computer interface (BCI) is to discern a user's intended message or action by extracting and decoding relevant information from brain signals. Stimulus-driven BCIs, such as the P300 speller, rely on detecting event-related potentials (ERPs) in response to a user attending to relevant or target stimulus events. However, this process is error-prone because the ERPs are embedded in noisy electroencephalography (EEG) data, representing a fundamental problem in communication of the uncertainty in the information that is received during noisy transmission. A BCI can be modeled as a noisy communication system and an information-theoretic approach can be exploited to design a stimulus presentation paradigm to maximize the information content that is presented to the user. However, previous methods that focused on designing error-correcting codes failed to provide significant performance improvements due to underestimating the effects of psycho-physiological factors on the P300 ERP elicitation process and a limited ability to predict online performance with their proposed methods. Maximizing the information rate favors the selection of stimulus presentation patterns with increased target presentation frequency, which exacerbates refractory effects and negatively impacts performance within the context of an oddball paradigm. An information-theoretic approach that seeks to understand the fundamental trade-off between information rate and reliability is desirable. We developed a performance-based paradigm (PBP) by tuning specific parameters of the stimulus presentation paradigm to maximize performance while minimizing refractory effects. We used a probabilistic-based performance prediction method as an evaluation criterion to select a final configuration of the PBP. With our PBP, we demonstrate statistically significant improvements in online performance, both in accuracy and spelling rate, compared to the conventional row-column paradigm. By accounting for refractory effects, an information-theoretic approach can be exploited to significantly improve BCI performance across a wide range of performance levels.

  7. Optimizing the stimulus presentation paradigm design for the P300-based brain-computer interface using performance prediction

    NASA Astrophysics Data System (ADS)

    Mainsah, B. O.; Reeves, G.; Collins, L. M.; Throckmorton, C. S.

    2017-08-01

    Objective. The role of a brain-computer interface (BCI) is to discern a user’s intended message or action by extracting and decoding relevant information from brain signals. Stimulus-driven BCIs, such as the P300 speller, rely on detecting event-related potentials (ERPs) in response to a user attending to relevant or target stimulus events. However, this process is error-prone because the ERPs are embedded in noisy electroencephalography (EEG) data, representing a fundamental problem in communication of the uncertainty in the information that is received during noisy transmission. A BCI can be modeled as a noisy communication system and an information-theoretic approach can be exploited to design a stimulus presentation paradigm to maximize the information content that is presented to the user. However, previous methods that focused on designing error-correcting codes failed to provide significant performance improvements due to underestimating the effects of psycho-physiological factors on the P300 ERP elicitation process and a limited ability to predict online performance with their proposed methods. Maximizing the information rate favors the selection of stimulus presentation patterns with increased target presentation frequency, which exacerbates refractory effects and negatively impacts performance within the context of an oddball paradigm. An information-theoretic approach that seeks to understand the fundamental trade-off between information rate and reliability is desirable. Approach. We developed a performance-based paradigm (PBP) by tuning specific parameters of the stimulus presentation paradigm to maximize performance while minimizing refractory effects. We used a probabilistic-based performance prediction method as an evaluation criterion to select a final configuration of the PBP. Main results. With our PBP, we demonstrate statistically significant improvements in online performance, both in accuracy and spelling rate, compared to the conventional row-column paradigm. Significance. By accounting for refractory effects, an information-theoretic approach can be exploited to significantly improve BCI performance across a wide range of performance levels.

  8. False memory for orthographically versus semantically similar words in adolescents with dyslexia: a fuzzy-trace theory perspective.

    PubMed

    Obidziński, Michał; Nieznański, Marek

    2017-10-01

    The presented research was conducted in order to investigate the connections between developmental dyslexia and the functioning of verbatim and gist memory traces-assumed in the fuzzy-trace theory. The participants were 71 high school students (33 with dyslexia and 38 without learning difficulties). The modified procedure and multinomial model of Stahl and Klauer (simplified conjoint recognition model) was used to collect and analyze data. Results showed statistically significant differences in four of the model parameters: (a) the probability of verbatim trace recollection upon presentation of orthographically similar stimulus was higher in the control than dyslexia group, (b) the probability of verbatim trace recollection upon presentation of semantically similar stimulus was higher in the control than dyslexia group, (c) the probability of gist trace retrieval upon presentation of semantically similar stimulus was higher in the dyslexia than control group, and (d) the probability of gist trace retrieval upon target stimulus presentation (in the semantic condition) was higher in the control than dyslexia group. The obtained results suggest differences of memory functioning in terms of verbatim and gist trace retrieval between people with and without dyslexia on specific, elementary cognitive processes postulated by the fuzzy-trace theory. These can indicate new approaches in the education of persons with developmental dyslexia, focused on specific impairments and the strengths of their memory functioning.

  9. Interactive Light Stimulus Generation with High Performance Real-Time Image Processing and Simple Scripting

    PubMed Central

    Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter

    2017-01-01

    Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations. PMID:29326579

  10. Contextual effects on preattentive processing of sound motion as revealed by spatial MMN.

    PubMed

    Shestopalova, L B; Petropavlovskaia, E A; Vaitulevich, S Ph; Nikitin, N I

    2015-04-01

    The magnitude of spatial distance between sound stimuli is critically important for their preattentive discrimination, yet the effect of stimulus context on auditory motion processing is not clear. This study investigated the effects of acoustical change and stimulus context on preattentive spatial change detection. Auditory event-related potentials (ERPs) were recorded for stationary midline noises and two patterns of sound motion produced by linear or abrupt changes of interaural time differences. Each of the three types of stimuli was used as standard or deviant in different blocks. Context effects on mismatch negativity (MMN) elicited by stationary and moving sound stimuli were investigated by reversing the role of standard and deviant stimuli, while the acoustical stimulus parameters were kept the same. That is, MMN amplitudes were calculated by subtracting ERPs to identical stimuli presented as standard in one block and deviant in another block. In contrast, effects of acoustical change on MMN amplitudes were calculated by subtracting ERPs of standards and deviants presented within the same block. Preattentive discrimination of moving and stationary sounds indexed by MMN was strongly dependent on the stimulus context. Higher MMNs were produced in oddball configurations where deviance represented increments of the sound velocity, as compared to configurations with velocity decrements. The effect of standard-deviant reversal was more pronounced with the abrupt sound displacement than with gradual sound motion. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Electroactive hydrogel comprising poly(methyl 2-acetamido acrylate) for an artificial actuator

    NASA Astrophysics Data System (ADS)

    Ha, Eun-Ju; Kim, Bong-Soo; Park, Chun-ho; Lee, Jang-Oo; Paik, Hyun-jong

    2013-08-01

    A poly(methyl 2-acetamidoacrylic acrylate) (MAA) hydrogel was developed for use in an artificial actuator. The equilibrium swelling ratio of the MAA hydrogel was observed at different pH values with different concentrations of cross-linking agent; the hydrogel containing 2% cross-linking agent exhibited the maximum equilibrium swelling ratio at pH 10. The bending behavior of the MAA hydrogel under an electric field was measured in aqueous NaCl. The actuation response of the MAA hydrogel occurred via reversible bending behavior at 6 V. It was found that the MAA hydrogel features stable bending behavior over consecutive cycles in aqueous NaCl at different voltages depending on the cross-linking agent. Hence, the MAA hydrogel can be utilized as an artificial actuator using electrical stimulus.

  12. From dynamic measurements of photosynthesis in a living plant to sunlight transformation into electricity.

    PubMed

    Flexer, Victoria; Mano, Nicolas

    2010-02-15

    We propose here a new method for the direct and continuous measurement of O(2) and glucose generated during photosynthesis. Our system is based on amperometric enzyme biosensors comprising immobilized redox enzymes (glucose oxidase (GOx) and bilirubin oxidase (BOD)) and redox hydrogels "wiring" the enzyme reaction centers to electrodes. We found that these electrodes, implanted into a living plant, responded in real time to visible light as an external stimulus triggering photosynthesis. They proved to be highly selective and fast enough and may be a valuable tool in understanding photosynthesis kinetics. Furthermore, we demonstrate that with our electrodes we could harvest glucose and O(2) produced during photosynthesis to produce energy, transforming sunlight into electricity in a simple, green, renewable, and sustainable way.

  13. Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices

    PubMed Central

    Raeis-Hosseini, Niloufar; Rho, Junsuk

    2017-01-01

    Integration of phase-change materials (PCMs) into electrical/optical circuits has initiated extensive innovation for applications of metamaterials (MMs) including rewritable optical data storage, metasurfaces, and optoelectronic devices. PCMs have been studied deeply due to their reversible phase transition, high endurance, switching speed, and data retention. Germanium-antimony-tellurium (GST) is a PCM that has amorphous and crystalline phases with distinct properties, is bistable and nonvolatile, and undergoes a reliable and reproducible phase transition in response to an optical or electrical stimulus; GST may therefore have applications in tunable photonic devices and optoelectronic circuits. In this progress article, we outline recent studies of GST and discuss its advantages and possible applications in reconfigurable metadevices. We also discuss outlooks for integration of GST in active nanophotonic metadevices. PMID:28878196

  14. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry.

    PubMed

    Du, Peng; Paskaranandavadivel, Niranchan; O'Grady, Greg; Tang, Shou-Jiang; Cheng, Leo K

    2015-12-01

    Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself. © The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  15. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry

    PubMed Central

    Du, Peng; Paskaranandavadivel, Niranchan; O’Grady, Greg; Tang, Shou-Jiang; Cheng, Leo K.

    2015-01-01

    Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. Main findings: (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself. PMID:25552487

  16. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands

    PubMed Central

    Donohue, Sarah E.; Appelbaum, Lawrence G.; McKay, Cameron C.; Woldorff, Marty G.

    2016-01-01

    Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity ‘Ninc’ was observed for all conditions, which was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related Ninc, indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. PMID:26827917

  17. Effects of intravenous nonsteroidal antiinflammatory drugs on a C-fiber reflex elicited by a wide range of stimulus intensities in the rat.

    PubMed

    Bustamante, D; Paeile, C; Willer, J C; Le Bars, D

    1996-03-01

    A C-fiber reflex elicited by electrical stimulation within the territory of the sural nerve, was recorded from the ipsilateral biceps femoris muscle in anesthetized rats. The temporal evolution of the response was studied using a constant stimulus intensity (3 x threshold) and recruitment curves were built by varying stimulus intensity from 0 to 7 x threshold. The i.v. administration of aspirin, indomethacin, ketoprofen, paracetamol (= acetaminophen) and lysine clonixinate resulted in dose-dependent depressions of the C-fiber reflex by up to 30 to 40%. By contrast, saline was ineffective. High doses of the effective drugs that produced large disturbances in heart rate and/or acid-base equilibrium were not considered in the pharmacological analysis. When a constant level of stimulation was used, different dose-dependent profiles of drug action were observed. Aspirin induced a slow and gradual depression, although indomethacin, ketoprofen and paracetamol produced a peak effect within the first 10-min period and then reached a steady state phase for up to 30 min. The depressive effects of lysine clonixinate appeared more stable. When recruitment curves were built with a range of nociceptive stimulus intensities, all the drugs produced a dose-dependent decrease in the slopes and the areas under the recruitment curves without any major modification in the thresholds. The order of potency was the same for both stimulation paradigms, e.g., aspirin < paracetamol < lysine clonixinate = ketoprofen < indomethacin. It is concluded that NSAID elicit significant antinociceptive effects at a central level, which do not depend on the existence of a hyperalgesic or inflammatory state.

  18. Inhibition of long-term memory formation by anti-ependymin antisera after active shock-avoidance learning in goldfish.

    PubMed

    Piront, M L; Schmidt, R

    1988-02-23

    Ependymins are acidic glycoprotein constituents of goldfish brain cytoplasm and extracellular fluid which are known to participate in biochemical reactions of long-term memory formation. In earlier experiments, anti-ependymin antisera were found to cause amnesia when injected into goldfish brain ventricles after the acquisition of a vestibulomotoric training task. To investigate whether they also inhibit memory consolidation after other learning events the anti-ependymin antisera were injected after an active shock-avoidance learning paradigm, as follows: goldfish were trained in a shuttle-box to cross a barrier in order to avoid electric shocks (unconditioned stimulus) applied shortly after a light signal (conditioned stimulus). Anti-ependymin antisera blocked retention of the learned avoidance when injected 0.5, 4.5 or 24 h after acquisition of the new behavior. They had no effect, however, when injected 72 h after learning. Apparently, long-term memory was already consolidated at this point. Antisera injected 0.5 or 72 h prior to training, also did not influence learning or memory. Thirteen percent of the goldfish fled the light stimulus spontaneously. These fish therefore did not experience the unconditioned stimulus and thus were unable to learn the task. When they were treated with the anti-ependymin antisera and tested 3 days later, the spontaneous escape reaction was not affected (active control group). The ability of anti-ependymin antisera to inhibit memory consolidation and their efficacy after administration at specific time intervals are very similar for the active shock-avoidance learning and for the vestibulomotoric training. We conclude that ependymins are not task-specific, but serve a general function in biochemical reactions essential for long-term memory formation.

  19. Disrupting reconsolidation of fear memory in humans by a noradrenergic β-blocker.

    PubMed

    Kindt, Merel; Soeter, Marieke; Sevenster, Dieuwke

    2014-12-18

    The basic design used in our human fear-conditioning studies on disrupting reconsolidation includes testing over different phases across three consecutive days. On day 1 - the fear acquisition phase, healthy participants are exposed to a series of picture presentations. One picture stimulus (CS1+) is repeatedly paired with an aversive electric stimulus (US), resulting in the acquisition of a fear association, whereas another picture stimulus (CS2-) is never followed by an US. On day 2 - the memory reactivation phase, the participants are re-exposed to the conditioned stimulus without the US (CS1-), which typically triggers a conditioned fear response. After the memory reactivation we administer an oral dose of 40 mg of propranolol HCl, a β-adrenergic receptor antagonist that indirectly targets the protein synthesis required for reconsolidation by inhibiting the noradrenaline-stimulated CREB phosphorylation. On day 3 - the test phase, the participants are again exposed to the unreinforced conditioned stimuli (CS1- and CS2-) in order to measure the fear-reducing effect of the manipulation. This retention test is followed by an extinction procedure and the presentation of situational triggers to test for the return of fear. Potentiation of the eye blink startle reflex is measured as an index for conditioned fear responding. Declarative knowledge of the fear association is measured through online US expectancy ratings during each CS presentation. In contrast to extinction learning, disrupting reconsolidation targets the original fear memory thereby preventing the return of fear. Although the clinical applications are still in their infancy, disrupting reconsolidation of fear memory seems to be a promising new technique with the prospect to persistently dampen the expression of fear memory in patients suffering from anxiety disorders and other psychiatric disorders.

  20. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands.

    PubMed

    Donohue, Sarah E; Appelbaum, Lawrence G; McKay, Cameron C; Woldorff, Marty G

    2016-04-01

    Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity 'N(inc)' was observed for all conditions, but was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related N(inc), indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Facial Control Method Using Emotional Parameters in Sensibility Robot

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroshi; Kanoh, Masayoshi; Kato, Shohei; Kunitachi, Tsutomu; Itoh, Hidenori

    The “Ifbot” robot communicates with people by considering its own “emotions”. Ifbot has many facial expressions to communicate enjoyment. These are used to express its internal emotions, purposes, reactions caused by external stimulus, and entertainment such as singing songs. All these facial expressions are developed by designers manually. Using this approach, we must design all facial motions, if we want Ifbot to express them. It, however, is not realistic. We have therefore developed a system which convert Ifbot's emotions to its facial expressions automatically. In this paper, we propose a method for creating Ifbot's facial expressions from parameters, emotional parameters, which handle its internal emotions computationally.

  2. Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming.

    PubMed

    Snellman, Josefin; Mehta, Bhupesh; Babai, Norbert; Bartoletti, Theodore M; Akmentin, Wendy; Francis, Adam; Matthews, Gary; Thoreson, Wallace; Zenisek, David

    2011-07-24

    In vision, balance and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli while also transmitting graded information covering a wide range of stimulus intensity and must be able to sustain this signaling for long time periods. To meet these demands, specialized machinery for transmitter release, the synaptic ribbon, has evolved at the synaptic outputs of these neurons. We found that acute disruption of synaptic ribbons by photodamage to the ribbon markedly reduced both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate both slow and fast signaling at sensory synapses and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones.

  3. Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets

    PubMed Central

    Mukhitov, Nikita; Roper, Michael G.; Bertram, Richard

    2016-01-01

    Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal’s ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion. PMID:27788129

  4. Amplitude modulation of steady-state visual evoked potentials by event-related potentials in a working memory task

    PubMed Central

    Yao, Dezhong; Tang, Yu; Huang, Yilan; Su, Sheng

    2009-01-01

    Previous studies have shown that the amplitude and phase of the steady-state visual-evoked potential (SSVEP) can be influenced by a cognitive task, yet the mechanism of this influence has not been understood. As the event-related potential (ERP) is the direct neural electric response to a cognitive task, studying the relationship between the SSVEP and ERP would be meaningful in understanding this underlying mechanism. In this work, the traditional average method was applied to extract the ERP directly, following the stimulus of a working memory task, while a technique named steady-state probe topography was utilized to estimate the SSVEP under the simultaneous stimulus of an 8.3-Hz flicker and a working memory task; a comparison between the ERP and SSVEP was completed. The results show that the ERP can modulate the SSVEP amplitude, and for regions where both SSVEP and ERP are strong, the modulation depth is large. PMID:19960240

  5. Is temporal summation of pain and spinal nociception altered during normal aging?

    PubMed Central

    Marouf, Rafik; Piché, Mathieu; Rainville, Pierre

    2015-01-01

    Abstract This study examines the effect of normal aging on temporal summation (TS) of pain and the nociceptive flexion reflex (RIII). Two groups of healthy volunteers, young and elderly, received transcutaneous electrical stimulation applied to the right sural nerve to assess pain and the nociceptive flexion reflex (RIII-reflex). Stimulus intensity was adjusted individually to 120% of RIII-reflex threshold, and shocks were delivered as a single stimulus or as a series of 5 stimuli to assess TS at 5 different frequencies (0.17, 0.33, 0.66, 1, and 2 Hz). This study shows that robust TS of pain and RIII-reflex is observable in individuals aged between 18 and 75 years and indicates that these effects are comparable between young and older individuals. These results contrast with some previous findings and imply that at least some pain regulatory processes, including TS, may not be affected by normal aging, although this may vary depending on the method. PMID:26058038

  6. Effect of presynaptic membrane potential on electrical vs. chemical synaptic transmission

    PubMed Central

    Evans, Colin G.; Ludwar, Bjoern Ch.; Kang, Timothy

    2011-01-01

    The growing realization that electrical coupling is present in the mammalian brain has sparked renewed interest in determining its functional significance and contrasting it with chemical transmission. One question of interest is whether the two types of transmission can be selectively regulated, e.g., if a cell makes both types of connections can electrical transmission occur in the absence of chemical transmission? We explore this issue in an experimentally advantageous preparation. B21, the neuron we study, is an Aplysia sensory neuron involved in feeding that makes electrical and chemical connections with other identified cells. Previously we demonstrated that chemical synaptic transmission is membrane potential dependent. It occurs when B21 is centrally depolarized prior to and during peripheral activation, but does not occur if B21 is peripherally activated at its resting membrane potential. In this article we study effects of membrane potential on electrical transmission. We demonstrate that maximal potentiation occurs in different voltage ranges for the two types of transmission, with potentiation of electrical transmission occurring at more hyperpolarized potentials (i.e., requiring less central depolarization). Furthermore, we describe a physiologically relevant type of stimulus that induces both spiking and an envelope of depolarization in the somatic region of B21. This depolarization does not induce functional chemical synaptic transmission but is comparable to the depolarization needed to maximally potentiate electrical transmission. In this study we therefore characterize a situation in which electrical and chemical transmission can be selectively controlled by membrane potential. PMID:21593394

  7. The inverse problem in electroencephalography using the bidomain model of electrical activity.

    PubMed

    Lopez Rincon, Alejandro; Shimoda, Shingo

    2016-12-01

    Acquiring information about the distribution of electrical sources in the brain from electroencephalography (EEG) data remains a significant challenge. An accurate solution would provide an understanding of the inner mechanisms of the electrical activity in the brain and information about damaged tissue. In this paper, we present a methodology for reconstructing brain electrical activity from EEG data by using the bidomain formulation. The bidomain model considers continuous active neural tissue coupled with a nonlinear cell model. Using this technique, we aim to find the brain sources that give rise to the scalp potential recorded by EEG measurements taking into account a non-static reconstruction. We simulate electrical sources in the brain volume and compare the reconstruction to the minimum norm estimates (MNEs) and low resolution electrical tomography (LORETA) results. Then, with the EEG dataset from the EEG Motor Movement/Imagery Database of the Physiobank, we identify the reaction to visual stimuli by calculating the time between stimulus presentation and the spike in electrical activity. Finally, we compare the activation in the brain with the registered activation using the LinkRbrain platform. Our methodology shows an improved reconstruction of the electrical activity and source localization in comparison with MNE and LORETA. For the Motor Movement/Imagery Database, the reconstruction is consistent with the expected position and time delay generated by the stimuli. Thus, this methodology is a suitable option for continuously reconstructing brain potentials. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Muscle and bone plasticity after spinal cord injury: Review of adaptations to disuse and to electrical muscle stimulation

    PubMed Central

    Dudley-Javoroski, Shauna; Shields, Richard K.

    2009-01-01

    The paralyzed musculoskeletal system retains a remarkable degree of plasticity after spinal cord injury (SCI). In response to reduced activity, muscle atrophies and shifts toward a fast-fatigable phenotype arising from numerous changes in histochemistry and metabolic enzymes. The loss of routine gravitational and muscular loads removes a critical stimulus for maintenance of bone mineral density (BMD), precipitating neurogenic osteoporosis in paralyzed limbs. The primary adaptations of bone to reduced use are demineralization of epiphyses and thinning of the diaphyseal cortical wall. Electrical stimulation of paralyzed muscle markedly reduces deleterious post-SCI adaptations. Recent studies demonstrate that physiological levels of electrically induced muscular loading hold promise for preventing post-SCI BMD decline. Rehabilitation specialists will be challenged to develop strategies to prevent or reverse musculoskeletal deterioration in anticipation of a future cure for SCI. Quantifying the precise dose of stress needed to efficiently induce a therapeutic effect on bone will be paramount to the advancement of rehabilitation strategies. PMID:18566946

  9. Small intestinal model for electrically propelled capsule endoscopy

    PubMed Central

    2011-01-01

    The aim of this research is to propose a small intestine model for electrically propelled capsule endoscopy. The electrical stimulus can cause contraction of the small intestine and propel the capsule along the lumen. The proposed model considered the drag and friction from the small intestine using a thin walled model and Stokes' drag equation. Further, contraction force from the small intestine was modeled by using regression analysis. From the proposed model, the acceleration and velocity of various exterior shapes of capsule were calculated, and two exterior shapes of capsules were proposed based on the internal volume of the capsules. The proposed capsules were fabricated and animal experiments were conducted. One of the proposed capsules showed an average (SD) velocity in forward direction of 2.91 ± 0.99 mm/s and 2.23 ± 0.78 mm/s in the backward direction, which was 5.2 times faster than that obtained in previous research. The proposed model can predict locomotion of the capsule based on various exterior shapes of the capsule. PMID:22177218

  10. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. I. Passive unmyelinated axon.

    PubMed Central

    Rubinstein, J T; Spelman, F A

    1988-01-01

    The cable model of a passive, unmyelinated fiber in an applied extracellular field is derived. The solution is valid for an arbitrary, time-varying, applied field, which may be determined analytically or numerically. Simple analytical computations are presented. They explain a variety of known phenomena and predict some previously undescribed properties of extracellular electrical stimulation. The polarization of a fiber in an applied field behaves like the output of a spatial high-pass and temporal low-pass filter of the stimulus. High-frequency stimulation results in a more spatially restricted region of fiber excitation, effectively reducing current spread relative to that produced by low-frequency stimulation. Chronaxie measured extracellularly is a function of electrode position relative to the stimulated fiber, and its value may differ substantially from that obtained intracellularly. Frequency dependence of psychophysical threshold obtained by electrical stimulation of the macaque cochlea closely follows the frequency dependence of single-fiber passive response. PMID:3233274

  11. Improvement of calculation method for electrical parameters of short network of ore-thermal furnaces

    NASA Astrophysics Data System (ADS)

    Aliferov, A. I.; Bikeev, R. A.; Goreva, L. P.

    2017-10-01

    The paper describes a new calculation method for active and inductive resistance of split interleaved current leads packages in ore-thermal electric furnaces. The method is developed on basis of regression analysis of dependencies of active and inductive resistances of the packages on their geometrical parameters, mutual disposition and interleaving pattern. These multi-parametric calculations have been performed with ANSYS software. The proposed method allows solving split current lead electrical parameters minimization and balancing problems for ore-thermal furnaces.

  12. AutoNR: an automated system that measures ECAP thresholds with the Nucleus Freedom cochlear implant via machine intelligence.

    PubMed

    Botros, Andrew; van Dijk, Bas; Killian, Matthijs

    2007-05-01

    AutoNRT is an automated system that measures electrically evoked compound action potential (ECAP) thresholds from the auditory nerve with the Nucleus Freedom cochlear implant. ECAP thresholds along the electrode array are useful in objectively fitting cochlear implant systems for individual use. This paper provides the first detailed description of the AutoNRT algorithm and its expert systems, and reports the clinical success of AutoNRT to date. AutoNRT determines thresholds by visual detection, using two decision tree expert systems that automatically recognise ECAPs. The expert systems are guided by a dataset of 5393 neural response measurements. The algorithm approaches threshold from lower stimulus levels, ensuring recipient safety during postoperative measurements. Intraoperative measurements use the same algorithm but proceed faster by beginning at stimulus levels much closer to threshold. When searching for ECAPs, AutoNRT uses a highly specific expert system (specificity of 99% during training, 96% during testing; sensitivity of 91% during training, 89% during testing). Once ECAPs are established, AutoNRT uses an unbiased expert system to determine an accurate threshold. Throughout the execution of the algorithm, recording parameters (such as implant amplifier gain) are automatically optimised when needed. In a study that included 29 intraoperative and 29 postoperative subjects (a total of 418 electrodes), AutoNRT determined a threshold in 93% of cases where a human expert also determined a threshold. When compared to the median threshold of multiple human observers on 77 randomly selected electrodes, AutoNRT performed as accurately as the 'average' clinician. AutoNRT has demonstrated a high success rate and a level of performance that is comparable with human experts. It has been used in many clinics worldwide throughout the clinical trial and commercial launch of Nucleus Custom Sound Suite, significantly streamlining the clinical procedures associated with cochlear implant use.

  13. fEITER - a new EIT instrument for functional brain imaging

    NASA Astrophysics Data System (ADS)

    Davidson, J. L.; Wright, P.; Ahsan, S. T.; Robinson, R. L.; Pomfrett, C. J. D.; McCann, H.

    2010-04-01

    We report on human tests of the new EIT-based system fEITER (functional Electrical Impedance Tomography of Evoked Responses), targeted principally at functional brain imaging. It is designed and built to medical standard BS EN 60601-1:2006 and clinical trials have been approved by the MHRA in the UK. fEITER integrates an EIT sub-system with an evoked response sub-system capable of providing visual, auditory or other stimuli, and the timing of each stimulus is recorded within the EIT data to a resolution of 500 microseconds. The EIT sub-system operates at 100 frames per second using 20 polar/near-polar current patterns distributed among 32 scalp electrodes that are arranged in a 3-dimensional array on the subject. Presently, current injection is fixed in firmware at 1 mA pk-pk and 10 kHz. Performance testing on inanimate subjects has shown voltage measurement SNR better than 75 dB, at 100 frames per second. We describe the fEITER system and give example topographic results for a human subject under no-stimulus (i.e. reference) conditions and on application of auditory stimuli. The system's excellent noise properties and temporal resolution show clearly the influence of basic physiological phenomena on the EIT voltages. In response to stimulus presentation, the voltage data contain fast components (~100 ms) and components that persist for many seconds.

  14. Dissociable effects of inter-stimulus interval and presentation duration on rapid face categorization.

    PubMed

    Retter, Talia L; Jiang, Fang; Webster, Michael A; Rossion, Bruno

    2018-04-01

    Fast periodic visual stimulation combined with electroencephalography (FPVS-EEG) has unique sensitivity and objectivity in measuring rapid visual categorization processes. It constrains image processing time by presenting stimuli rapidly through brief stimulus presentation durations and short inter-stimulus intervals. However, the selective impact of these temporal parameters on visual categorization is largely unknown. Here, we presented natural images of objects at a rate of 10 or 20 per second (10 or 20 Hz), with faces appearing once per second (1 Hz), leading to two distinct frequency-tagged EEG responses. Twelve observers were tested with three squarewave image presentation conditions: 1) with an ISI, a traditional 50% duty cycle at 10 Hz (50-ms stimulus duration separated by a 50-ms ISI); 2) removing the ISI and matching the rate, a 100% duty cycle at 10 Hz (100-ms duration with 0-ms ISI); 3) removing the ISI and matching the stimulus presentation duration, a 100% duty cycle at 20 Hz (50-ms duration with 0-ms ISI). The face categorization response was significantly decreased in the 20 Hz 100% condition. The conditions at 10 Hz showed similar face-categorization responses, peaking maximally over the right occipito-temporal (ROT) cortex. However, the onset of the 10 Hz 100% response was delayed by about 20 ms over the ROT region relative to the 10 Hz 50% condition, likely due to immediate forward-masking by preceding images. Taken together, these results help to interpret how the FPVS-EEG paradigm sets temporal constraints on visual image categorization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Determinants of endogenous analgesia magnitude in a diffuse noxious inhibitory control (DNIC) paradigm: do conditioning stimulus painfulness, gender and personality variables matter?

    PubMed

    Granot, Michal; Weissman-Fogel, Irit; Crispel, Yonathan; Pud, Dorit; Granovsky, Yelena; Sprecher, Elliot; Yarnitsky, David

    2008-05-01

    Descending modulation of pain can be demonstrated psychophysically by dual pain stimulation. This study evaluates in 31 healthy subjects the association between parameters of the conditioning stimulus, gender and personality, and the endogenous analgesia (EA) extent assessed by diffuse noxious inhibitory control (DNIC) paradigm. Contact heat pain was applied as the test stimulus to the non-dominant forearm, with stimulation temperature at a psychophysical intensity score of 60 on a 0-100 numerical pain scale. The conditioning stimulus was a 60s immersion of the dominant hand in cold (12, 15, 18 degrees C), hot (44 and 46.5 degrees C), or skin temperature (33 degrees C) water. The test stimulus was repeated on the non-dominant hand during the last 30s of the conditioning immersion. EA extent was calculated as the difference between pain scores of the two test stimuli. State and trait anxiety and pain catastrophizing scores were assessed prior to stimulation. EA was induced only for the pain-generating conditioning stimuli at 46.5 degrees C (p=0.011) and 12 degrees C (p=0.003). EA was independent of conditioning pain modality, or personality, but a significant gender effect was found, with greater EA response in males. Importantly, pain scores of the conditioning stimuli were not correlated with EA extent. The latter is based on both our study population, and on additional 82 patients, who participated in another study, in which EA was induced by immersion at 46.5 degrees C. DNIC testing, thus, seems to be relatively independent of the stimulation conditions, making it an easy to apply tool, suitable for wide range applications in pain psychophysics.

  16. A Bioimpedance Analysis Platform for Amputee Residual Limb Assessment.

    PubMed

    Sanders, Joan E; Moehring, Mark A; Rothlisberger, Travis M; Phillips, Reid H; Hartley, Tyler; Dietrich, Colin R; Redd, Christian B; Gardner, David W; Cagle, John C

    2016-08-01

    The objective of this research was to develop a bioimpedance platform for monitoring fluid volume in residual limbs of people with trans-tibial limb loss using prostheses. A customized multifrequency current stimulus profile was sent to thin flat electrodes positioned on the thigh and distal residual limb. The applied current signal and sensed voltage signals from four pairs of electrodes located on the anterior and posterior surfaces were demodulated into resistive and reactive components. An established electrical model (Cole) and segmental limb geometry model were used to convert results to extracellular and intracellular fluid volumes. Bench tests and testing on amputee participants were conducted to optimize the stimulus profile and electrode design and layout. The proximal current injection electrode needed to be at least 25 cm from the proximal voltage sensing electrode. A thin layer of hydrogel needed to be present during testing to ensure good electrical coupling. Using a burst duration of 2.0 ms, intermission interval of 100 μs, and sampling delay of 10 μs at each of 24 frequencies except 5 kHz, which required a 200-μs sampling delay, the system achieved a sampling rate of 19.7 Hz. The designed bioimpedance platform allowed system settings and electrode layouts and positions to be optimized for amputee limb fluid volume measurement. The system will be useful toward identifying and ranking prosthetic design features and participant characteristics that impact residual limb fluid volume.

  17. Comparative Evaluation of Effect of Nano-hydroxyapatite and 8% Arginine Containing Toothpastes in Managing Dentin Hypersensitivity: Double Blind Randomized Clinical Trial.

    PubMed

    Anand, Suresh; Rejula, Fathima; Sam, Joseph V G; Christaline, Ramakrishnan; Nair, Mali G; Dinakaran, Shiji

    This double blind randomized clinical trial was conducted with the purpose of evaluating the effects of Nano-hydroxyapatite toothpaste as compared to 8% Arginine containing toothpaste in the management of Dentin hypersensitivity (DH). Patients (30 in each group) suffering from DH and eliciting a VAS score higher than 2 in air blast and tactile test were randomly allocated (block randomization) into either a group 1 (arginine toothpaste) or group 2 (nHA toothpaste). The primary outcome evaluated was the reduction of DH as measured by the electrical stimulus reading on the digital pulp tester. Current required for eliciting a VAS score of 2 was recorded before application of dentifrice. 1 cm of toothpaste was then expressed on the tooth surface for two minutes in each group and rinsed off. The electrical stimulus required to elicit a VAS score of 2 was recorded after 5 minutes, 1 week and 4 weeks. The desensitizing paste containing arginine provided a statistically significant reduction in DH and so did the paste containing nHA. Mean increase in amperage value (reduction in DH) was higher for nHA based than the arginine containing dentifrice. This difference was not statistically significant showing that both toothpastes are equally effective. The findings of the present study encourage the use of Nano-hydroxyapatite and arginine containing dentifrice as an effective desensitizing agent providing relief from symptoms 5 minutes after application and after 1 and 4 weeks.

  18. Reduced local field potential power in the medial prefrontal cortex by noxious stimuli.

    PubMed

    Li, Ai-Ling; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-10-01

    Nociceptive signals produced by noxious stimuli at the periphery reach the brain through ascending pathways. These signals are processed by various brain areas and lead to activity changes in those areas. The medial prefrontal cortex (mPFC) is involved in higher cognitive functions and emotional processing. It receives projections from brain areas involved in nociception. In this study, we investigated how nociceptive input from the periphery changes the local field potential (LFP) activity in the mPFC. Three different types of noxious stimuli were applied to the hind paw contralateral to the LFP recording site. They were transcutaneous electrical stimulations, mechanical stimuli and a chemical stimulus (formalin injection). High intensity transcutaneous stimulations (10V to 50V) and noxious mechanical stimulus (pinch) significantly reduced the LFP power during the stimulating period (p<0.05), but not the low intensity subcutaneous stimulations (0.1V to 5V) and other innocuous mechanical stimuli (brush and pressure). More frequency bands were inhibited with increased intensity of transcutaneous electrical stimulation, and almost all frequency bands were inhibited by stimulations at or higher than 30v. Pinch significantly reduced the power for beta band and formalin injection significantly reduced the power of alpha and beta band. Our data demonstrated the noxious stimuli-induced reduction of LFP power in the mPFC, which indicates the active processing of nociceptive information by the mPFC. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Neurophysiological mechanism of possibly confounding peripheral activation of the facial nerve during corticobulbar tract monitoring.

    PubMed

    Téllez, Maria J; Ulkatan, Sedat; Urriza, Javier; Arranz-Arranz, Beatriz; Deletis, Vedran

    2016-02-01

    To improve the recognition and possibly prevent confounding peripheral activation of the facial nerve caused by leaking transcranial electrical stimulation (TES) current during corticobulbar tract monitoring. We applied a single stimulus and a short train of electrical stimuli directly to the extracranial portion of the facial nerve. We compared the peripherally elicited compound muscle action potential (CMAP) of the facial nerve with the responses elicited by TES during intraoperative monitoring of the corticobulbar tract. A single stimulus applied directly to the facial nerve at subthreshold intensities did not evoke a CMAP, whereas short trains of subthreshold stimuli repeatedly evoked CMAPs. This is due to the phenomenon of sub- or near-threshold super excitability of the cranial nerve. Therefore, the facial responses evoked by short trains TES, when the leaked current reaches the facial nerve at sub- or near-threshold intensity, could lead to false interpretation. Our results revealed a potential pitfall in the current methodology for facial corticobulbar tract monitoring that is due to the activation of the facial nerve by subthreshold trains of stimuli. This study proposes a new criterion to exclude peripheral activation during corticobulbar tract monitoring. The failure to recognize and avoid facial nerve activation due to leaking current in the peripheral portion of the facial nerve during TES decreases the reliability of corticobulbar tract monitoring by increasing the possibility of false interpretation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Verification of the technical parameters of head-only electrical stunning of pigs under commercial conditions.

    PubMed

    Végh, Akos; Abonyi-Tóth, Zsolt; Rafai, Pál

    2010-06-01

    The European Food Safety Authority recommends a minimum current of 1.3 Amps for the electrical head-only stunning of pigs. However, it is stated as well that 'the technical reference data for head-only electrical stunning of pigs such as 1.3 Amps are either rather old or worked out under experimental laboratory conditions'. This study was carried out to verify the electrical parameters of pig stunning under commercial conditions. Altogether 145 fattener pigs (body weight range: 30-150 kg, median 109 kg) were tested at four different private slaughterhouses in Hungary where head-only electrical stunners were used with different constant voltage settings. In each case the following data were recorded: individual liveweight (kg), current (A) and voltage (V) (measured with an individually developed analogue device placed in the circuit), current duration (s), effectiveness of stunning, grading of carcass. Correlations between these parameters and effectiveness were examined. Besides that, any correlation between the test parameters and impedance of head was examined. In 128 out of the 145 cases the stunning was effective (88.3%). Effectiveness was significantly related to current but not to other parameters such as voltage and duration of load. Impedance of head was not correlated with the size of the animal and the meat grading scores. Generally, it was concluded that the use of a single electrical parameter (e.g. a minimum current of 1.3 A) as a prerequisite of good stunning is not ideal.

  1. Deciding about Decision Models of Remember and Know Judgments: A Reply to Murdock (2006)

    ERIC Educational Resources Information Center

    Macmillan, Neil A.; Rotello, Caren M.

    2006-01-01

    B. B. Murdock (2006; see record 2006-08257-009) has interpreted remember-know data within a decision space defined by item and associative information, the fundamental variables in his general recognition memory model TODAM (B. B. Murdock, 1982). He has related parameters of this extended model to stimulus characteristics for several classic…

  2. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    PubMed

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.

  3. Parametric analysis of parameters for electrical-load forecasting using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael

    1997-04-01

    Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.

  4. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty.

    PubMed

    Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre; Vaes, Peter

    2014-01-01

    To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.

  5. Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.

    2018-03-01

    In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.

  6. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    PubMed

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic.

  7. Effect of Dorsal and Ventral Hippocampal Lesions on Contextual Fear Conditioning and Unconditioned Defensive Behavior Induced by Electrical Stimulation of the Dorsal Periaqueductal Gray

    PubMed Central

    Ballesteros, Carolina Irurita; de Oliveira Galvão, Bruno; Maisonette, Silvia; Landeira-Fernandez, J.

    2014-01-01

    The dorsal (DH) and ventral (VH) subregions of the hippocampus are involved in contextual fear conditioning. However, it is still unknown whether these two brain areas also play a role in defensive behavior induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into the dPAG to determine freezing and escape response thresholds after sham or bilateral electrolytic lesions of the DH or VH. The duration of freezing behavior that outlasted electrical stimulation of the dPAG was also measured. The next day, these animals were subjected to contextual fear conditioning using footshock as an unconditioned stimulus. Electrolytic lesions of the DH and VH impaired contextual fear conditioning. Only VH lesions disrupted conditioned freezing immediately after footshock and increased the thresholds of aversive freezing and escape responses to dPAG electrical stimulation. Neither DH nor VH lesions disrupted post-dPAG stimulation freezing. These results indicate that the VH but not DH plays an important role in aversively defensive behavior induced by dPAG electrical stimulation. Interpretations of these findings should be made with caution because of the fact that a non-fiber-sparing lesion method was employed. PMID:24404134

  8. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  9. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  10. Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus.

    PubMed

    Tervaniemi, M; Kruck, S; De Baene, W; Schröger, E; Alter, K; Friederici, A D

    2009-10-01

    By recording auditory electrical brain potentials, we investigated whether the basic sound parameters (frequency, duration and intensity) are differentially encoded among speech vs. music sounds by musicians and non-musicians during different attentional demands. To this end, a pseudoword and an instrumental sound of comparable frequency and duration were presented. The accuracy of neural discrimination was tested by manipulations of frequency, duration and intensity. Additionally, the subjects' attentional focus was manipulated by instructions to ignore the sounds while watching a silent movie or to attentively discriminate the different sounds. In both musicians and non-musicians, the pre-attentively evoked mismatch negativity (MMN) component was larger to slight changes in music than in speech sounds. The MMN was also larger to intensity changes in music sounds and to duration changes in speech sounds. During attentional listening, all subjects more readily discriminated changes among speech sounds than among music sounds as indexed by the N2b response strength. Furthermore, during attentional listening, musicians displayed larger MMN and N2b than non-musicians for both music and speech sounds. Taken together, the data indicate that the discriminative abilities in human audition differ between music and speech sounds as a function of the sound-change context and the subjective familiarity of the sound parameters. These findings provide clear evidence for top-down modulatory effects in audition. In other words, the processing of sounds is realized by a dynamically adapting network considering type of sound, expertise and attentional demands, rather than by a strictly modularly organized stimulus-driven system.

  11. [Perimetric changes in advanced glaucoma].

    PubMed

    Feraru, Crenguta Ioana; Pantalon, Anca

    2011-01-01

    The evaluation of various perimetric aspects in advanced glaucoma stages correlated to morpho-functional changes. MATHERIAL AND METHOD: Retrospective clinical trial over a 10 months time period that included patients with advanced glaucoma stages, for which there have been recorded several computerised visual field tests (central 24-2 strategy, 10-2 strategy with either III or V--Goldman stimulus spot size) along with other morpho-funtional ocular paramaters: VA, lOP optic disk analysis. We included in our study 56 eyes from 45 patients. In most cases 89% it was an open angle glaucoma (either primary or secondary) Mean visual acuity was 0.45 +/- 0.28. Regarding the perimetric deficit 83% had advanced deficit, 9% moderate and 8% early visual changes. As perimetric type of defect we found a majority with general reduction of sensitivity (33 eyes) + ring shape scotoma. In 6 eyes (10.7%) having left only a central isle of vision we performed the central 10-2 strategy with III or V Goldmann stimulus spot size. Statistic analysis showed scarce correlation between the visual acuity and the quantitative perimetric parameters (MD and PSD), and variance analysis found present a multiple correlation parameter p = 0.07 that proves there is no liniary correspondence between the morpho-functional parameters: VA-MD(PSD) and C/D ratio. In advanced glaucoma stages, the perimetric changes are mostly severe. Perimetric evaluation is essential in these stages and needs to be individualised.

  12. Constraining Unsaturated Hydraulic Parameters Using the Latin Hypercube Sampling Method and Coupled Hydrogeophysical Approach

    NASA Astrophysics Data System (ADS)

    Farzamian, Mohammad; Monteiro Santos, Fernando A.; Khalil, Mohamed A.

    2017-12-01

    The coupled hydrogeophysical approach has proved to be a valuable tool for improving the use of geoelectrical data for hydrological model parameterization. In the coupled approach, hydrological parameters are directly inferred from geoelectrical measurements in a forward manner to eliminate the uncertainty connected to the independent inversion of electrical resistivity data. Several numerical studies have been conducted to demonstrate the advantages of a coupled approach; however, only a few attempts have been made to apply the coupled approach to actual field data. In this study, we developed a 1D coupled hydrogeophysical code to estimate the van Genuchten-Mualem model parameters, K s, n, θ r and α, from time-lapse vertical electrical sounding data collected during a constant inflow infiltration experiment. van Genuchten-Mualem parameters were sampled using the Latin hypercube sampling method to provide a full coverage of the range of each parameter from their distributions. By applying the coupled approach, vertical electrical sounding data were coupled to hydrological models inferred from van Genuchten-Mualem parameter samples to investigate the feasibility of constraining the hydrological model. The key approaches taken in the study are to (1) integrate electrical resistivity and hydrological data and avoiding data inversion, (2) estimate the total water mass recovery of electrical resistivity data and consider it in van Genuchten-Mualem parameters evaluation and (3) correct the influence of subsurface temperature fluctuations during the infiltration experiment on electrical resistivity data. The results of the study revealed that the coupled hydrogeophysical approach can improve the value of geophysical measurements in hydrological model parameterization. However, the approach cannot overcome the technical limitations of the geoelectrical method associated with resolution and of water mass recovery.

  13. Customized electric power storage device for inclusion in a microgrid

    DOEpatents

    Goldsmith, Steven Y.; Wilson, David; Robinett, III, Rush D.

    2017-08-01

    An electric power storage device included in a microgrid is described herein. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for the microgrid. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the microgrid and specified load parameters in the microgrid.

  14. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    NASA Astrophysics Data System (ADS)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  15. Mechanoelectric feedback in a model of the passively inflated left ventricle.

    PubMed

    Vetter, F J; McCulloch, A D

    2001-05-01

    Mechanoelectric feedback has been described in isolated cells and intact ventricular myocardium, but the mechanical stimulus that governs mechanosensitive channel activity in intact tissue is unknown. To study the interaction of myocardial mechanics and electrophysiology in multiple dimensions, we used a finite element model of the rabbit ventricles to simulate electrical propagation through passively loaded myocardium. Electrical propagation was simulated using the collocation-Galerkin finite element method. A stretch-dependent current was added in parallel to the ionic currents in the Beeler-Reuter ventricular action potential model. We investigated different mechanical coupling parameters to simulate stretch-dependent conductance modulated by either fiber strain, cross-fiber strain, or a combination of the two. In response to pressure loading, the conductance model governed by fiber strain alone reproduced the epicardial decrease in action potential amplitude as observed in experimental preparations of the passively loaded rabbit heart. The model governed by only cross-fiber strain reproduced the transmural gradient in action potential amplitude as observed in working canine heart experiments, but failed to predict a sufficient decrease in amplitude at the epicardium. Only the model governed by both fiber and cross-fiber strain reproduced the epicardial and transmural changes in action potential amplitude similar to experimental observations. In addition, dispersion of action potential duration nearly doubled with the same model. These results suggest that changes in action potential characteristics may be due not only to length changes along the long axis direction of the myofiber, but also due to deformation in the plane transverse to the fiber axis. The model provides a framework for investigating how cellular biophysics affect the function of the intact ventricles.

  16. Electric-car simulation

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.; Slusser, R. A.

    1980-01-01

    PARAMET, interactive simulation program for parametric studies of electric vehicles, guides user through simulation by menu and series of prompts for input parameters. Program considers aerodynamic drag, rolling resistance, linear and rotational acceleration, and road gradient as forces acting on vehicle.

  17. 40 CFR 63.1383 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... parameter(s), such as secondary voltage of each electrical field, to be monitored and the minimum and/or... centimeters (18 to 24 inches) above the surface of the molten glass in a cold top electric furnace that does...

  18. 40 CFR 63.1383 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... parameter(s), such as secondary voltage of each electrical field, to be monitored and the minimum and/or... centimeters (18 to 24 inches) above the surface of the molten glass in a cold top electric furnace that does...

  19. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive

    PubMed Central

    Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.

    2015-01-01

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677

  20. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive.

    PubMed

    Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A

    2015-06-29

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.

Top