Science.gov

Sample records for electrical storms basic

  1. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Arnold, R. T.; Rust, W. D.

    1984-01-01

    Successful ground truth support of U-2 overflights was been accomplished. Data have been reduced for 4 June 1984 and some of the results have been integrated into some of MSFC's efforts. Staccato lightning (multiply branched, single stroke flash with no continuing current) is prevalent within the rainfree region around the main storm updraft and this is believed to be important, i.e., staccato flashes might be an important indicator of severe storm electrification. Results from data analysis from two stations appear to indicate that charge center heights can be estimated from a combination of intercept data with data from the fixed laboratory at NSSL. An excellent data base has been provided for determining the sight errors and efficiency of NSSL's LLP system. Cloud structures, observable in a low radar reflectivity region and on a scale smaller than is currently resolved by radar, which appear to be related to electrical activity are studied.

  2. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.; Taylor, W.; Arnold, R. T.

    1984-01-01

    Severe storms and lightning were measured with a NASA U2 and ground based facilities, both fixed base and mobile. Aspects of this program are reported. The following results are presented: (1) ground truth measurements of lightning for comparison with those obtained by the U2. These measurements include flash type identification, electric field changes, optical waveforms, and ground strike location; (2) simultaneous extremely low frequency (ELF) waveforms for cloud to ground (CG) flashes; (3) the CG strike location system (LLP) using a combination of mobile laboratory and television video data are assessed; (4) continued development of analog-to-digital conversion techniques for processing lightning data from the U2, mobile laboratory, and NSSL sensors; (5) completion of an all azimuth TV system for CG ground truth; (6) a preliminary analysis of both IC and CG lightning in a mesocyclone; and (7) the finding of a bimodal peak in altitude lightning activity in some storms in the Great Plains and on the east coast. In the forms on the Great Plains, there was a distinct class of flash what forms the upper mode of the distribution. These flashes are smaller horizontal extent, but occur more frequently than flashes in the lower mode of the distribution.

  3. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.

    1985-01-01

    During FY-85, Researchers conducted a field program and analyzed data. The field program incorporated coordinated measurements made with a NASA U2. Results include the following: (1) ground truth measurements of lightning for comparison with those obtained by the U2; (2) analysis of dual-Doppler radar and dual-VHF lightning mapping data from a supercell storm; (3) analysis of synoptic conditions during three simultaneous storm systems on 13 May 1983 when unusually large numbers of positive cloud-to-ground (+CG) flashes occurred; (4) analysis of extremely low frequency (ELF) wave forms; and (5) an assessment of a cloud -ground strike location system using a combination of mobile laboratory and fixed-base TV video data.

  4. A study of severe storm electricity via storm intercept

    NASA Technical Reports Server (NTRS)

    Arnold, Roy T.; Horsburgh, Steven D.; Rust, W. David; Burgess, Don

    1985-01-01

    Storm electricity data, radar data, and visual observations were used both to present a case study for a supercell thunderstorm that occurred in the Texas Panhandle on 19 June 1980 and to search for insight into how lightning to ground might be related to storm dynamics in the updraft/downdraft couplet in supercell storms. It was observed that two-thirds of the lightning ground-strike points in the developing and maturing stages of a supercell thunderstorm occurred within the region surrounding the wall cloud (a cloud feature often characteristic of a supercell updraft) and on the southern flank of the precipitation. Electrical activity in the 19 June 1980 storm was atypical in that it was a right-mover. Lightning to ground reached a peak rate of 18/min and intracloud flashes were as frequent as 176/min in the final stages of the storm's life.

  5. Basic Electricity. Part 1.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    A primarily illustrated introduction to the basics of electricity is presented in this guide, the first of a set of four designed for the student interested in a vocation in electrical work. This guide is intended for the first-year student and provides mostly diagrams with accompanying defintions/information in three units, each covering one of…

  6. The evaluation and management of electrical storm.

    PubMed

    Eifling, Michael; Razavi, Mehdi; Massumi, Ali

    2011-01-01

    Electrical storm is an increasingly common and life-threatening syndrome that is defined by 3 or more sustained episodes of ventricular tachycardia, ventricular fibrillation, or appropriate shocks from an implantable cardioverter-defibrillator within 24 hours. The clinical presentation can be dramatic. Electrical storm can manifest itself during acute myocardial infarction and in patients who have structural heart disease, an implantable cardioverter-defibrillator, or an inherited arrhythmic syndrome. The presence or absence of structural heart disease and the electrocardiographic morphology of the presenting arrhythmia can provide important diagnostic clues into the mechanism of electrical storm. Electrical storm typically has a poor outcome.The effective management of electrical storm requires an understanding of arrhythmia mechanisms, therapeutic options, device programming, and indications for radiofrequency catheter ablation. Initial management involves determining and correcting the underlying ischemia, electrolyte imbalances, or other causative factors. Amiodarone and β-blockers, especially propranolol, effectively resolve arrhythmias in most patients. Nonpharmacologic treatment, including radiofrequency ablation, can control electrical storm in drug-refractory patients. Patients who have implantable cardioverter-defibrillators can present with multiple shocks and may require drug therapy and device reprogramming. After the acute phase of electrical storm, the treatment focus should shift toward maximizing heart-failure therapy, performing revascularization, and preventing subsequent ventricular arrhythmias. Herein, we present an organized approach for effectively evaluating and managing electrical storm.

  7. Electrical storm: Incidence, Prognosis and Therapy

    PubMed Central

    Proietti, Riccardo; Sagone, Antonio

    2011-01-01

    Implantable defibrillators are lifesavers and have improved mortality rates in patients at risk of sudden death, both in primary and secondary prevention. However, they are unable to modify the myocardial substrate, which remains susceptible to life-threatening ventricular arrhythmias. Electrical storm is a clinical entity characterized the recurrence of hemodynamically unstable ventricular tachycardia and/or ventricular fibrillation, twice or more in 24 hours, requiring electrical cardioversion or defibrillation. With the arrival of the implantable cardioverter-defibrillator, this definition was broadened, and electrical storm is now defined as the occurrence of three or more distinct episodes of ventricular tachycardia or ventricular fibrillation in 24 hours, requiring the intervention of the defibrillator (anti-tachycardia pacing or shock). Clinical presentation can be very dramatic, with multiple defibrillator shocks and hemodynamic instability. Managing its acute presentation is a challenge, and mortality is high both in the acute phase and in the long term. In large clinical trials involving patients implanted with a defibrillator both for primary and secondary prevention, electrical storm appears to be a harbinger of cardiac death, with notably high mortality soon after the event. In most cases, the storm can be interrupted by medical therapy, though transcatheter radiofrequency ablation of ventricular arrhythmias may be an effective treatment for refractory cases. This narrative literature review outlines the main clinical characteristics of electrical storm and emphasises critical points in approaching and managing this peculiar clinical entity. Finally focus is given to studies that consider transcatheter ablation therapy in cases refractory to medical treatment. PMID:21468247

  8. Basic Electricity. Part 2.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    This guide, the second (part 2) in a set of four guides, is designed for the student interested in a vocation in electrical work, and includes two units: Unit IV--Electrical Theory, covering thirteen lessons (matter, the atom, electrical charges in the atom, rules of electric charges, electricity, atoms in an electrical conductor, electrical…

  9. Electrical Storm: Incidence, Prognosis and Therapy.

    PubMed

    Sagone, Antonio

    2015-12-01

    The term "electrical storm" indicates a life-threatening clinical condition characterized by the recurrence of hemodynamically unstable ventricular tachycardia and/or ventricular fibrillation, in particular in patients with ICD implanted for primary or secondary prevention. Although there isn't a shared definition of electrical storm, nowadays the most accepted definition refers to three or more separate arrhythmia episodes leading to ICD therapies including antitachycardia pacing or shock occurring over a single 24 hours' time period. Clinical presentation can be dramatic and triggering mechanism are not clear at all yet, but electrical storm is associated with high mortality rates and low patients quality of life, both in the acute phase and in the long term. The first line therapy is based on antiarrhythmic drugs to suppress electrical storm, but in refractory patients, interventions such as catheter ablation or in some cases surgical cardiac sympathetic denervation might be helpful. Anyhow, earlier interventional management can lead to better outcomes than persisting with antiarrhythmic pharmacologic therapy and, when available, an early interventional approach should be preferred.

  10. Optimal antiarrhythmic drug therapy for electrical storm

    PubMed Central

    Sorajja, Dan; Munger, Thomas M.; Shen, Win-Kuang

    2015-01-01

    Abstract Electrical storm, defined as 3 or more separate episodes of ventricular tachycardia or ventricular fibrillation within 24 hours, carries significant morbidity and mortality. These unstable ventricular arrhythmias have been described with a variety of conditions including ischemic heart disease, structural heart disease, and genetic conditions. While implantable cardioverter defibrillator implantation and ablation may be indicated and required, antiarrhythmic medication remains an important adjunctive therapy for these persons. PMID:25745472

  11. Basic Electricity. Part 3.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    Third (part 3) in a set of four guides designed for the student interested in a vocation in electrical work, this guide includes four units: Unit VI--Ohm's Law, covering six lessons (voltage, current-flow and resistance, the Ohm's Law formula, formula for finding voltage, formula for finding resistance); Unit VII--Voltages, covering five lessons…

  12. Basic Electricity. Part 4.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    Designed for the student interested in a vocation in electrical work, this guide, fourth in a set of four, includes three units: Unit X--Splicing Wires, covering thirteen lessons (removing insulation, pigtail splice, Western Union splice, tap splice, extension cord splice, connecting wires to a terminal screw, underwriter's knot, three-wire ground…

  13. Electrical Activity in Martian Dust Storms

    NASA Astrophysics Data System (ADS)

    Majid, W.

    2015-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. Such electrical activity poses serious risks to any Human exploration of the planet and the lack of sufficient data to characterize any such activity has been identified by NASA's MEPAG as a key human safety knowledge gap. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, frequency of occurrence, and the strength of the generated electric fields. We will describe a proposed program using NASA's Deep Space Network (DSN) to carry out a long term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The resulting knowledge of Mars electrical activity would allow NASA to plan risk mitigation measures to ensure human safety during Mars exploration. In addition, these measurements will also allow us to place limits on presence of oxidants such as H2O2 that may be produced by such discharges, providing another measurement point for models describing Martian atmospheric chemistry and habitability. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the DSN is the only instrument in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity at Mars from the ground.

  14. Electrical storm: A clinical and electrophysiological overview

    PubMed Central

    Conti, Sergio; Pala, Salvatore; Biagioli, Viviana; Del Giorno, Giuseppe; Zucchetti, Martina; Russo, Eleonora; Marino, Vittoria; Dello Russo, Antonio; Casella, Michela; Pizzamiglio, Francesca; Catto, Valentina; Tondo, Claudio; Carbucicchio, Corrado

    2015-01-01

    Electrical storm (ES) is a clinical condition characterized by three or more ventricular arrhythmia episodes leading to appropriate implantable cardioverter-defibrillator (ICD) therapies in a 24 h period. Mostly, arrhythmias responsible of ES are multiple morphologies of monomorphic ventricular tachycardia (VT), but polymorphic VT and ventricular fibrillation can also result in ES. Clinical presentation is very dramatic in most cases, strictly related to the cardiac disease that may worsen electrical and hemodynamic decompensation. Therefore ES management is challenging in the majority of cases and a high mortality is the rule both in the acute and in the long-term phases. Different underlying cardiomyopathies provide significant clues into the mechanism of ES, which can arise in the setting of structural arrhythmogenic cardiomyopathies or rarely in patients with inherited arrhythmic syndrome, impacting on pharmacological treatment, on ICD programming, and on the opportunity to apply strategies of catheter ablation. This latter has become a pivotal form of treatment due to its high efficacy in modifying the arrhythmogenic substrate and in achieving rhythm stability, aiming at reducing recurrences of ventricular arrhythmia and at improving overall survival. In this review, the most relevant epidemiological and clinical aspects of ES, with regard to the acute and long-term follow-up implications, were evaluated, focusing on these novel therapeutic strategies of treatment. PMID:26413232

  15. Mountain Plains Learning Experience Guide: Electrical Theory. Course: Basic Electricity.

    ERIC Educational Resources Information Center

    Belcher, Herb; Carey, John

    This individualized course on basic electricity covers the basic ideas of direct current and alternating current electricity. The course is comprised of two units: (1) Electrical Theory "B," and (2) Electrical Theory "A." Each unit is comprised of Learning Activity Packages (LAP) that provide specific information for completion…

  16. Reducing uncertainty - responses for electricity utilities to severe solar storms

    NASA Astrophysics Data System (ADS)

    Gaunt, Charles Trevor

    2014-01-01

    Until recently, electricity utilities in mid- and low-latitude regions believed that solar storms had no (or only insignificant) effect on their power systems. Then it was noticed that the onset of damage in several large transformers, leading to their failure, correlated very closely with the Halloween storm of 2003. Since then engineers have started to appreciate that a very severe storm could have serious consequences outside the high-latitude regions. There are many uncertainties in predicting the effects of solar storms on electrical systems. The severity and time of arrival of a storm are difficult to model; so are the geomagnetically induced currents (GICs) expected to flow in the power networks. Published information about the responses of different types of transformers to GICs is contradictory. Measurements of the abnormal power flows in networks during solar storms generally do not take into account the effects of the current distortion and unbalance, potentially giving misleading signals to the operators. The normal requirement for optimum system management, while allowing for the possibility of faults caused by lightning, birds and other causes, limits the capacity of system operators to respond to the threats of GICs, which are not assessed easily by the N - 1 reliability criterion. A utility's response to the threat of damage by GICs depends on the expected frequency and magnitude of solar storms. Approaches to formulating a response are located in a system model incorporating space physics, network analysis, transformer engineering, network reliability and decision support and the benefits are identified. Approaches adopted in high-latitude regions might not be appropriate where fewer storms are expected to reach damaging levels. The risks of an extreme storm cannot be ignored, and understanding the response mechanisms suitable for low-latitude regions has the capacity to inform and reduce the uncertainty for power systems planners and operators

  17. Cervical sympathetic blockade for the management of electrical storm.

    PubMed

    Ali, Rehan; Ciccone, Jeffrey; Tseng, Victor

    2017-02-01

    A 75-year-old man presented with dizziness and fatigue secondary to ventricular and supraventricular arrhythmias. He underwent an elective ablation but continued to suffer from ventricular tachycardia with cardiovascular instability despite antiarrhythmic therapy with multiple agents. The patient continued to develop episodes of ventricular tachycardia and an episode of ventricular fibrillation. Electrical storm encompasses a situation of cardiac instability which may present as several episodes of ventricular tachycardia or ventricular fibrillation in a short period. We performed an ultrasound-guided left stellate ganglion block at the bedside which resulted in abolition of electrical storm. The patient demonstrated sinus rhythm with episodes of sinus tachycardia. Left stellate ganglion block has proven to be a successful mode of treatment for those patients with ventricular tachyarrhythmia resistant to medical management or those who fail atrioventricular node ablation. Ultrasound-guided left stellate ganglion block is a valuable and effective means to providing sympathectomy in the management of electrical storm or ventricular tachyarrhythmias.

  18. Historically Large Geomagnetic Storms and Potential Electric Power Grid Impacts

    NASA Astrophysics Data System (ADS)

    Kappenman, J. G.

    2004-05-01

    While recent work has been done to examine the possible Dst Intensity of historically large geomagnetic storms, the impacts caused to modern day electric power grids from these storms occurs due to rapid rate-of-change of regional geomagnetic fields which in most cases are driven by large ionospheric electrojet current intensifications. These temporally and spatially dynamic disturbance morphologies are not well-characterized by Dst or other broad geomagnetic storm indices. For estimates of storm intensity that correctly scale the threat potential to electric power grids, it is necessary to describe the rate-of-change of geomagnetic field. The rate-of-change of the geomagnetic field (dB/dt usually measured in nT/min) creates at ground level a geoelectric field that causes the flow of geomagnetically-induced currents (GIC) through ground connection points in electric power grids. Therefore in general, the larger the dB/dt, the larger the resulting geo-electric field and GIC in exposed power grid infrastructures and the greater the operational impact these induced currents will have on the power grid. Both extensive modeling analysis and recent operational experience suggests that power grids are becoming more vulnerable to geomagnetic storms as they grow in size and complexity. Also, large power grid blackouts have occurred at relatively low geomagnetic storm intensities. For example, the regional disturbance intensity that triggered the Hydro Quebec collapse during the March 13, 1989 Superstorm only reached an intensity of 479 nT/min. Large numbers of power system impacts in the United States were also observed for intensities that ranged from 300 to 600 nT/min during this storm. Yet both recent and historical data indicate that storms with disturbance levels that range from 2000 nT/min to as much ~5000 nT/min may be possible over extensive regions at latitudes of concern for large continental power grids across North America and Europe. Large GIC have also been

  19. Exploratory Meeting on Atmospheric Electricity and Severe Storms

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W. (Editor)

    1978-01-01

    The meeting was arranged to discuss atmospheric electricity and its relationship to severe storms, the feasibility of developing a set of instruments for either a Space Shuttle or an unmanned satellite, and the scientific rationale which would warrant further in-depth assessment, involvement and development of supporting activities by NASA.

  20. Basic Electricity in Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This unit of instruction on electricity has been designed especially for teachers to use with freshmen and sophomore vocational agricultural students in Montana. It consists of an outline of the unit and eight lesson plans. The unit outline lists the following components: situation, aims and goals, lesson plans, student activities, teacher…

  1. Basic Electricity--a Novel Analogy.

    ERIC Educational Resources Information Center

    Grant, Richard

    1996-01-01

    Uses the analogy of water flow to introduce concepts in basic electricity. Presents a demonstration that uses this analogy to help students grasp the relationship between current, voltage, and resistance. (JRH)

  2. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  3. Surface electric fields for North America during historical geomagnetic storms

    USGS Publications Warehouse

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  4. Surface electric fields for North America during historical geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Wei, Lisa H.; Homeier, Nicole; Gannon, Jennifer L.

    2013-08-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 "Quebec" storm and the 2003 "Halloween" storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  5. Polarimetric Radar and Electric Field Observations of a Multicell Storm

    NASA Astrophysics Data System (ADS)

    Bruning, E. C.; Rust, W. D.; Macgorman, D. R.; Schuur, T.; Straka, J.; Krehbiel, P.; Rison, W.

    2004-12-01

    Much prior thunderstorm electrification research uses one-dimensional analyses of vertical profiles of the thunderstorm electric field, often incorporating cloud-to-ground lighting strike data and radar reflectivity observations. New instrumentation has provided the opportunity to investigate thunderstorm electrification and lightning in greater spatial detail. We present data from the late stages of a multicellular storm occurring on 28-29 June 2004 during the Thunderstorm Electrification and Lightning Experiment (TELEX) field program in central Oklahoma. Three-dimensional (3-D) vector electric field (measured by balloon sounding), total lighting mapping, and polarimetric radar are utilized. The maximum measured electric field exceeded -150 kV m-1. Preliminary charge analysis using the electric field vectors indicates a positive layer below 0\\deg C, followed by a large negative layer just above the melting level. Another positive and negative layer follow this. Polarimetric radar signatures within the melting layer are examined in the context of the electric field observations. Mapped lightning flashes are used to clarify and support the inferred charge structure. An interactive 3-D display is used to combine these data sources. Temporal evolution of the storm is also considered.

  6. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. BASIC ELECTRICITY, UNIT 2, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING BASIC ELECTRICAL FUNDAMENTALS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. THE COURSE OBJECTIVE IS TO DEVELOP AN UNDERSTANDING OF DIRECT CURRENT FUNDAMENTALS. EACH OF THE 15 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE,…

  7. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. BASIC ELECTRICITY, UNIT 4, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING BASIC ELECTRICAL FUNDAMENTALS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. THE COURSE OBJECTIVE IS TO DEVELOP AN UNDERSTANDING OF ALTERNATING CURRENT FUNDAMENTALS. EACH OF THE 16 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE,…

  8. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. BASIC ELECTRICITY, UNIT 3, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING BASIC ELECTRICAL FUNDAMENTALS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. THE COURSE OBJECTIVE IS TO DEVELOP AN UNDERSTANDING OF DIRECT CURRENT FUNDAMENTALS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE,…

  9. Electrical Trades. Suggested Basic Course Outline.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This course outline is intended to assist vocational instructors in developing and teaching a course in the electrical trades. Addressed in the individual sections of the outline are the following topics: orientation (a course overview, job orientation, safety, first aid, and Vocational Industrial Clubs of America); basic skills (mathematics,…

  10. Left ventricular assist device in the management of refractory electrical storm.

    PubMed

    Pourdjabbar, A; Maze, R; Hibbert, B; Ruel, M; Haddad, H

    2015-05-01

    Electrical storm refers to a state of cardiac electrical instability characterized by multiple episodes of ventricular tachycardia (VT) or ventricular fibrillation (VF) within a relatively short period of time and is associated with increased mortality and morbidity. The management of electrical storm involves a variety of strategies, including sedation, anti-arrhythmic and electrolyte replacement as well as revascularization and electrical ablation. However, the management strategy in patients with refractory storm is less clear and may require more invasive approaches. We present a case of severe ventricular tachycardia storm refractory to conservative management that was managed with a HeartMate II left ventricular assist device.

  11. Electrical Discharges in the Overshooting Tops of Five Storms

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.; Elliott, M.

    2013-12-01

    Individual electrical discharges detected by VHF Lightning Mapping Arrays (LMAs) in the overshooting tops of strong storms typically occur continually at rates of roughly 1 - 10 per second and do not appear to cluster systematically in time or space as flashes. This study analyzed discharges relative to S-band polarimetric radar data and to GOES infrared imagery in the overshooting tops of five storms ranging from moderately strong multicell storms to supercell storms. Although the density of VHF sources in overshooting tops was much less than the maximum densities below the level of neutral bouyancy, the overshooting top typically contained a secondary maximum of density. The onset of discharges in an overshooting top corresponded to an increase in the maximum magnitude and height of reflectivity as the top substantially penetrated the level of neutral bouyancy. Once the discharges began, most were within reflectivities of at least 18 dBZ and formed a dome having geometry similar to that of the dome in reflectivity. Discharges persisted for approximately as long as the reflectivity dome persisted and could last anywhere from a few minutes for short-lived overshooting tops to a few hours for cases with an overlapping series of overshooting tops produced by a succession of updraft pulses. The 99.99th percentile in the height of VHF sources was well correlated (correlation coefficient of at least 0.8) with the height of 18 and 30 dBZ, and the timing of variations in height of these parameters agreed well. We suggest the discharges are caused by turbulent cells bringing negative screening layer charge close to positive charge in the updraft core. The onset of discharges in an overshooting top preceded the detection of overshooting tops in satellite imagery. The poorer performance probably was the result of the poorer spatiotemporal resolution of infrared cloud-top imagery in the present GOES constellation. Severe weather was either imminent or occurring when

  12. Atmospheric Electricity Effects of Eastern Mediterranean Dust Storms

    NASA Astrophysics Data System (ADS)

    Katz, Shai; Yair, Yoav; Yaniv, Roy; Price, Colin

    2016-04-01

    We present atmospheric electrical measurements conducted at the Wise Observatory (WO) in Mizpe-Ramon (30035'N, 34045'E) and Mt. Hermon (30024'N, 35051'E), Israel, during two massive and unique dust storms that occurred over the Eastern Mediterranean region on February 10-11 and September 08-12, 2015. The first event transported Saharan dust from Egypt and the Sinai Peninsula in advance of a warm front of a Cyprus low pressure system. In the second event, dust particles were transported from the Syrian desert, which dominates the north-east border with Iraq, through flow associated with a shallow Persian trough system. In both events the concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 2200 μg m-3. Aerosol Optical Thickness (AOT) obtained from the AERONET station in Sde-Boker reached values up to 4.0. The gradual intensification of the first event reached peak values on the February 11th > 1200 μg m-3 and an AOT ~ 1.8, while the second dust storm commenced on September 8th with a sharp increase reaching peak values of 2225 μg m-3 and AOT of 4.0. Measurements of the fair weather vertical electric field (Ez) and of the vertical current density (Jz) were conducted continuously with a 1 minute temporal resolution. During the February event, very large fluctuations in the electrical parameters were measured at the WO. The Ez values changed between +1000 and +8000 V m-1 while the Jz fluctuated between -10 and +20 pA m-2 (this is an order of magnitude larger compared to the fair weather current density of ~2 pA m-2. In contrast, during the September event, Ez values registered at WO were between -430 and +10 V m-1 while the Jz fluctuated between -6 and +3 pA m2. For the September event the Hermon site showed Ez and Jz values fluctuating between -460 and +570 V m-1 and -14.5 and +18 pA m-2 respectively. The electric field and current variability, amplitude and the

  13. Successful treatment of cardiac electrical storm in dilated cardiomyopathy using esmolol: A case report.

    PubMed

    Li, L I; Zhou, Yuan-Li; Zhang, Xue-Jing; Wang, Hua-Ting

    2016-07-01

    The present study reports a case of electrical storm occurring in a 43-year-old woman with dilated cardiomyopathy. The patient suffered from a cardiac electrical storm, with 98 episodes of ventricular tachycardia rapidly degenerating to ventricular fibrillation in hospital. The patient was converted with a total of 120 defibrillations. Recurrent ventricular tachycardia/fibrillation was initiated by premature ventricular beats. The patient did not respond to the use of amiodaronum. However, the administration of esmolol stabilized the patient's heart rhythm. A moderate dose of the β-blocker esmolol, administered as an 0.5-mg intravenous bolus injection followed by an infusion at a rate of 0.15 mg/kg/min, inhibited the recurrence of ventricular fibrillation and normalized the electrocardiographic pattern. The results suggest that esmolol may be able to improve the survival rate of patients with electrical storm in dilated cardiomyopathy and should be considered as a primary therapy in the management of cardiac electrical storms.

  14. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  15. Electrical Storm Simulation to Improve the Learning Physics Process

    ERIC Educational Resources Information Center

    Martínez Muñoz, Miriam; Jiménez Rodríguez, María Lourdes; Gutiérrez de Mesa, José Antonio

    2013-01-01

    This work is part of a research project whose main objective is to understand the impact that the use of Information and Communication Technology (ICT) has on the teaching and learning process on the subject of Physics. We will show that, with the use of a storm simulator, physics students improve their learning process on one hand they understand…

  16. Progress in utilization of a mobile laboratory for making storm electricity measurements

    NASA Technical Reports Server (NTRS)

    Rust, W. David

    1988-01-01

    A mobile atmospheric science laboratory has been used to intercept and track storms on the Great Plains region of the U.S., with the intention of combining the data obtained with those from Doppler and conventional radars, NASA U-2 aircraft overflights, balloon soundings, and fixed-base storm electricity measurements. The mobile lab has proven to be valuable in the gathering of ground truth verifications for the two commercially operated lightning ground-strike locating systems. Data acquisition has recently been expanded by means of mobile ballooning before and during storms.

  17. Toast, Anyone? Project Teaches Electricity Basics and Math

    ERIC Educational Resources Information Center

    Quagliana, David F.

    2010-01-01

    This article describes an electrical technology experiment that shows students how to determine the cost of using an electrical appliance. The experiment also provides good math practice and teaches basic electricity terms and concepts, such as volt, ampere, watt, kilowatt, and kilowatt-hour. This experiment could be expanded to calculate the cost…

  18. Evaluation of the electrical properties of dust storms by multi-parameter observations and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Bo, Tian-Li; Zheng, Xiaojing

    2017-03-01

    Dusty phenomena, such as wind-blown sand, dust devils, and dust storms, play key roles in Earth's climate and geological processes. Dust electrification considerably affects the lifting and transport of dust particles. However, the electrical properties of dust storms remain poorly understood. Here, we conducted multi-parameter measurements and theoretical calculations to investigate the electrical properties of dust storms and their application to dust storm prediction. The results show that the vertical electric field (E-field) decreases first, then increases, and finally decreases with the height above the ground, reversing its direction at two heights, ∼ 8- 12 and ∼ 24 m. This suggests that the charge polarity of dust particles changes from negative to positive and back to negative again as the height increases. By carefully analyzing the E-field and dust concentration data, we further found that there is a significant positive linear relationship between the measured E-field intensity and dust concentration at the given ambient conditions. In addition, measurements and calculations demonstrate that a substantial enhancement in the vertical E-field can be observed several hours before the arrival of the external-source dust storms, indicating that the E-field can be used to provide an early warning of external-source dust storms.

  19. Automated Identification of Initial Storm Electrification and End-of-Storm Electrification Using Electric Field Mill Sensors

    NASA Technical Reports Server (NTRS)

    Maier, Launa M.; Huddleston, Lisa L.

    2017-01-01

    Kennedy Space Center (KSC) operations are located in a region which experiences one of the highest lightning densities across the United States. As a result, on average, KSC loses almost 30 minutes of operational availability each day for lightning sensitive activities. KSC is investigating using existing instrumentation and automated algorithms to improve the timeliness and accuracy of lightning warnings. Additionally, the automation routines will be warning on a grid to minimize under-warnings associated with not being located in the center of the warning area and over-warnings associated with encompassing too large an area. This study discusses utilization of electric field mill data to provide improved warning times. Specifically, this paper will demonstrate improved performance of an enveloping algorithm of the electric field mill data as compared with the electric field zero crossing to identify initial storm electrification. End-of-Storm-Oscillation (EOSO) identification algorithms will also be analyzed to identify performance improvement, if any, when compared with 30 minutes after the last lightning flash.

  20. Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times

    NASA Astrophysics Data System (ADS)

    Huang, C.

    2013-12-01

    Perturbed electric fields in the earth's ionosphere, resulting from the penetration electric fields from high latitudes and/or from the dynamo mechanism driven by the neutral disturbances, occurr in the storm periods. In general, the identification of the penetration electric fields is easier than that of the dynamo electric fields. At times, the latter becomes unperceivable or difficult to identify. This is an interesting problem which motivates a model study to investigate the possible reasons. Model runs made with the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR/TIEGCM) will be presented. Theoretical studies of ionospheric responses to geomagnetic storms with model simulations indicate that the intensities of disturbance dynamo electric fields are highly dependent on various parameters such as solar activities, seasonal effects and universal times, etc. When geomagnetic storms commence at 01~07 UT in summer solstices with low solar fluxes, the disturbance dynamo electric fields become very small. As compared with the general daily variations, they seem to be unperceivable. This phenomenon can be explained by the model results which show that the positive charge accumulation at low latitudes will be weakened when the equatward neutral disturbances penetrate into the opposite hemisphere in the storm time. For other cases, the magnitudes of the dynamo electric fields are relatively larger under the same geomagnetic activity.

  1. Basic Electricity/Electronics. Learning Guides.

    ERIC Educational Resources Information Center

    Eggett, A. J.

    This packet consists of 22 student learning guides for high school vocational education students in Illinois. The guides contain tasks for a course in electricity/electronics. Each task guide identifies the task and its purpose and provides a learning contract for the student and teacher to sign. Information on the learning contract consists of a…

  2. Lightning Mapping and Electric Field Change Observations of a Stationary New Mexico Storm

    NASA Astrophysics Data System (ADS)

    Krehbiel, P. R.; Rison, W.; Hunyady, S. J.; Edens, H. E.; Sonnenfeld, R. G.; Aulich, G. D.

    2010-12-01

    On August 23, 2010 a classic airmass thunderstorm occurred over high plains immediately east of the Langmuir Laboratory mountaintop observatory in central New Mexico. The energetic storm developed around 2:30 pm MDT (2030 UTC) and remained essentially stationary over its complete lifetime of about 2 hours. The complete sequence of lightning was recorded both by the 16-station Langmuir Laboratory Lightning Mapping Array (LMA) and by several electrostatic field change stations around and beneath the storm. The LMA and Delta-E data are both of very high quality and sensitivity. In this initial study we report on the lightning-inferred electrical structure of the storm and on estimated charging currents determined from a simple electrodynamic model of the storm. The electric field change measurements, in combination with the detailed 3-D mapping results, can be used to determine the amounts of charge involved in individual strokes and parts of flashes for comparison and improvement of the modeling. The LMA data regularly detected isolated attempted breakdown events at repeated locations at mid- to high altitudes in the storm that were clearly indicative of localized high-field regions. The attempted breakdown events were often exact pre-cursors of the initial breakdown of full-fledged IC flashes typically several seconds up to several tens of seconds later, but also often did not precurse a subsequent discharge. During both IC and CG flashes, numerous recoil-type, fast negative breakdown events were detected along otherwise undetected positive leader channels in the main, mid-level negative charge region. The localized fast events during IC flashes often repeatedly intensified in strength and number prior to upward negative leader K-events, and then temporarily ceased before starting up again prior to the next K-event. Many of the negative CG flashes in the storm produced strokes with long continuing currents (CCs). The overall electric field changes and hence total

  3. Dayside midlatitude ionospheric response to storm time electric fields: A case study for 7 September 2002

    NASA Astrophysics Data System (ADS)

    David, M.; Sojka, J. J.; Schunk, R. W.; Liemohn, M. W.; Coster, A. J.

    2011-12-01

    With the storm of 7-8 September 2002 as a study case, we demonstrate that an ionospheric model driven by a suitable storm time convection electric field can reproduce the F region dayside density enhancements associated with the ionospheric storm positive phase. The ionospheric model in this case is the Utah State University Time Dependent Ionospheric Model (TDIM); the electric field model is the University of Michigan's Hot Electron and Ion Drift Integrator (HEIDI). Extensive ground truth is available throughout the study period from two independent sources: ground-based vertical TEC and ionosonde stations; our simulation results are in good agreement with these observations. We address the question of what is the source of the high-density plasma that is seen during the positive storm phase and show that in this case a magnetospheric electric field with an eastward component that penetrates to midlatitudes increases local production on the dayside to a degree that is sufficient to account for the storm time density increases that have been observed.

  4. Section I: Basic Electricity. Syllabus in Trade Electricity-Electronics.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.

    This section describes the first of a three part curriculum in trade electricity-electronics (each part is described in a separate volume). It presents a unit of 6 to 10 weeks duration which develops only those competencies necessary to all electricity or electronics employment. A flow chart indicates how an individual student's program can be…

  5. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  6. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    NASA Astrophysics Data System (ADS)

    Mach, D. M.; Blakeslee, R.; Bateman, M. G.

    2010-12-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  7. In situ measurements and radar observations of a severe storm - Electricity, kinematics, and precipitation

    NASA Technical Reports Server (NTRS)

    Byrne, G. J.; Few, A. A.; Stewart, M. F.; Conrad, A. C.; Torczon, R. L.

    1987-01-01

    Electric field measurements made inside a multicell severe storm in Oklahoma in 1983 with a balloon-borne instrument are presented. The properties of the electric charge regions, such as altitude, thickness, and charge concentrations, are studied. These measurements are analzyed with meteorological measurements of temperature and humidity, and balloon tracking and radar observations. The relation between the electric charge structure and the precipitation and kinematic features of the storm is examined. The data reveal that the cell exhibits a bipolar charge structure with negative charge below positive charge. The average charge concentrations of the two regions are estimated as -1.2 and 0.15 nC/cu m, respectively; the upper positive charge is about 6 km in vertical extent, and the lower negative charge is less than 1 km in vertical extent.

  8. Electricity Demand Evolution Driven by Storm Motivated Population Movement

    SciTech Connect

    Allen, Melissa R; Fernandez, Steven J; Fu, Joshua S; Walker, Kimberly A

    2014-01-01

    Managing the risks posed by climate change to energy production and delivery is a challenge for communities worldwide. Sea Level rise and increased frequency and intensity of natural disasters due to sea surface temperature rise force populations to move locations, resulting in changing patterns of demand for infrastructure services. Thus, Infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Combining climate predictions and agent based population movement models shows promise for exploring the universe of these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these patterns. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. This work suggests that the importance of established evacuation routes that move large populations repeatedly through convergence points as an indicator may be under recognized.

  9. Summary of Almost 20 Years of Storm Overflight Electric Field, Conductivity, Flash Rates, and Electric Current Statistics

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard J.; Mach, Douglas M.; Bateman, Monte J.; Bailey, Jeffrey C.

    2011-01-01

    We determined total conduction currents and flash rates for around 900 high-altitude aircraft overflights of electrified clouds over 17 years. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV m(sup -1) to 16. kV m(sup -1), with mean (median) of 0.9 kV m(sup -1) (0.29 kV m(sup -1)). Total conductivity at flight altitude ranged from 0.6 pS m(sup -1) to 3.6 pS m(sup -1), with mean and median of 2.2 pS m(sup -1). Peak current densities ranged from -2.0 nA m(sup -2) to 33.0 nA m(sup -2) with mean (median) of 1.9 nA m(sup -2) (0.6 nA m(sup -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.6 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.39 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min(sup -1), respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate.

  10. BASIC ELECTRICITY. SCIENCE IN ACTION SERIES, NUMBER 14.

    ERIC Educational Resources Information Center

    CASSEL, RICHARD

    THIS TEACHING GUIDE, INVOLVING ACTIVITIES FOR DEVELOPING AN UNDERSTANDING OF BASIC ELECTRICITY, EMPHASIZES STUDENT INVESTIGATIONS RATHER THAN FACTS, AND IS BASED ON THE PREMISE THAT THE MAJOR GOAL IN SCIENCE TEACHING IS THE DEVELOPMENT OF THE INVESTIGATIVE ATTITUDE IN THE STUDENT. ACTIVITIES SUGGESTED INVOLVE SIMPLE DEMONSTRATIONS AND EXPERIMENTS…

  11. Basic Electricity. Training Module 3.325.1.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the basic concepts of electricity as applied to water and wastewater treatment. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers definition of terms, voltage, current…

  12. Summary of Almost 20 Years of Storm Overflight Electric Field, Conductivity, Flash Rate, and Current Statistics

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard J.; Mach, Douglas M.; Bateman, Monte J.; Bailey, Jeffrey C.

    2011-01-01

    We present total conduction (Wilson) currents for more than 1000 high-altitude aircraft overflights of electrified clouds acquired over nearly two decades. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV/m to 16. kV/m, with mean (median) of 0.9 kV/m (0.29 kV/m). Total conductivity at flight altitude ranged from 0.6 pS/m to 3.6 pS/m, with mean and median of 2.2 pS/m. Peak current densities ranged from -2.0 nA m(exp -2) to 33.0 nA m(exp -2) with mean (median) of 1.9 nA m(exp -2) (0.6 nA m(exp -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.7 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.41 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min-1, respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate.

  13. [Geomagnetic storm decreases coherence of electric oscillations of human brain while working at the computer].

    PubMed

    Novik, O B; Smirnov, F A

    2013-01-01

    The effect of geomagnetic storms at the latitude of Moscow on the electric oscillations of the human brain cerebral cortex was studied. In course of electroencephalogram measurements it was shown that when the voluntary persons at the age of 18-23 years old were performing tasks using a computer during moderate magnetic storm or no later than 24 hrs after it, the value of the coherence function of electric oscillations of the human brain in the frontal and occipital areas in a range of 4.0-7.9 Hz (so-called the theta rhythm oscillations of the human brain) decreased by a factor of two or more, sometimes reaching zero, although arterial blood pressure, respiratory rate and the electrocardiogram registered during electroencephalogram measurements remained within the standard values.

  14. Storming the Bastille: the effect of electric fields on the ionospheric F-layer

    NASA Astrophysics Data System (ADS)

    Rishbeth, H.; Heelis, R. A.; Makela, J. J.; Basu, S.

    2010-04-01

    We discuss different phenomena occurring during ionospheric F-region storms that in principle might be caused by electric fields and point out challenges that must be faced when considering the physical processes at work. We consider the transport of plasma across many degrees of latitude at sub-auroral latitudes, the origin of patches of so-called "storm enhanced density" at high mid-latitudes, and the very high reported heights of the F2 peak at low latitudes. We discuss the role that electric fields might play in changing locally the net production of ionization as well as transporting it. We suggest that the local change in ionization production should be considered as a more important process for producing plasma density enhancements than transport from a more remote source of enhanced density.

  15. Mid-Latitude Dayside Ionospheric Response to Storm-Time Electric Fields

    NASA Astrophysics Data System (ADS)

    David, M.; Sojka, J. J.; Schunk, R. W.; Liemohn, M. W.

    2010-12-01

    One way in which a geomagnetic storm may impact the ionosphere is through an expansion of the magnetospheric electric field to mid-latitudes. This mechanism was explored in detail by Heelis et al [2009], where it was shown that an electric field with a magnitude of just 1 mV/m at mid-latitudes is sufficient to produce a large increase in TEC on the dayside. This effect is brought about by the lifting of the ionosphere as dayside plasma is transported poleward under the influence of the eastward component of the expanded electric field; the lifting occurs because of the inclination of the magnetic field lines. At the time the above-mentioned article was written, the authors lacked a physics-based modeling capability for the behavior of the storm-time electric field at mid-latitudes, so a simple modified form of the Volland 2-cell model was used. In the present work we use the University of Michigan’s Hot Electron and Ion Drift Integrator (HEIDI) electric field model, along with the Utah State University Time Dependent Ionospheric Model (TDIM). The HEIDI model provides electric potential distributions spanning the northern mid-latitudes with a cadence of 30 minutes; these are used to drive the TDIM in carrying out mid-latitude simulations. The results are compared with model runs for the quiet-time ionosphere, as well as observations from ionosondes and ground-based GPS TEC receivers. ----------------- Heelis, R. A., J. J. Sojka, M. David, and R. W. Schunk (2009), Storm time density enhancements in the middle-latitude dayside ionosphere, J. Geophys. Res., 114, A03315, doi:10.1029/2008JA013690.

  16. Summary of the NASA/MSFC FY-79 Severe Storm and Local Weather research review. [cloud physics, atmospheric electricity, and mesoscale/storm dynamics reserach

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Significant acomplishments, current focus of work, plans for FY-80, and recommendations for new research are outlined for 36 research projects proposed for technical monitoring by the Atmospheric Sciences Division at Marshall Space Flight Center. Topics of the investigations, which were reviewed at a two-day meeting, relate to cloud physics, atmospheric electricity, and mesoscale/storm dynamics.

  17. Influence of the Convection Electric Field Models on Predicted Plasmapause Positions During Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Pierrard, V.; Khazanov, G.; Cabrera, J.; Lemaire, J.

    2007-01-01

    In the present work, we determine how three well documented models of the magnetospheric electric field, and two different mechanisms proposed for the formation of the plasmapause influence the radial distance, the shape and the evolution of the plasmapause during the geomagnetic storms of 28 October 2001 and of 17 April 2002. The convection electric field models considered are: Mcllwain's E51) electric field model, Volland-Stern's model and Weimer's statistical model compiled from low-Earth orbit satellite data. The mechanisms for the formation of the plasmapause to be tested are: (i) the MHD theory where the plasmapause should correspond to the last-closed- equipotential (LCE) or last-closed-streamline (LCS), if the E-field distribution is stationary or time-dependent respectively; (ii) the interchange mechanism where the plasmapause corresponds to streamlines tangent to a Zero-Parallel-Force surface where the field-aligned plasma distribution becomes convectively unstable during enhancements of the E-field intensity in the nightside local time sector. The results of the different time dependent simulations are compared with concomitant EUV observations when available. The plasmatails or plumes observed after both selected geomagnetic storms are predicted in all simulations and for all E-field models. However, their shapes are quite different depending on the E-field models and the mechanisms that are used. Despite the partial success of the simulations to reproduce plumes during magnetic storms and substorms, there remains a long way to go before the detailed structures observed in the EUV observations during periods of geomagnetic activity can be accounted for very precisely by the existing E-field models. Furthermore, it cannot be excluded that the mechanisms currently identified to explain the formation of "Carpenter's knee" during substorm events, will', have to be revised or complemented in the cases of geomagnetic storms.

  18. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. BASIC ELECTRICITY, UNIT 2, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDENT STUDY OF BASIC ELECTRICAL FUNDAMENTALS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. THE COURSE OBJECTIVE IS TO DEVELOP AN UNDERSTANDING OF DIRECT CURRENT FUNDAMENTALS. EACH OF THE 15 INSTRUCTOR'S SHEETS GIVE THE LESSON…

  19. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. BASIC ELECTRICITY, UNIT 4, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF BASIC ELECTRICAL FUNDAMENTALS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. THE UNIT OBJECTIVE IS TO DEVELOP AN UNDERSTANDING OF ALTERNATING CURRENT FUNDAMENTALS. EACH OF THE 16 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT,…

  20. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. BASIC ELECTRICITY, UNIT 3, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF BASIC ELECTRICAL FUNDAMENTALS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. THE COURSE OBJECTIVE IS TO DEVELOP AN UNDERSTANDING OF DIRECT CURRENT FUNDAMENTALS. EACH OF THE 10 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT,…

  1. Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects

    NASA Astrophysics Data System (ADS)

    Fejer, B. G.; Blanc, M.; Richmond, A. D.

    2017-03-01

    The Earth's upper atmosphere and ionosphere undergoes large and complex perturbations during and after geomagnetic storms. Thermospheric winds driven by enhanced energy and momentum due to geomagnetic activity generate large disturbance electric fields, plasma drifts and currents with a broad range of temporal and spatial scales from high to equatorial latitudes. This disturbance dynamo mechanism plays a fundamental role on the response of the middle and low-latitude ionosphere to geomagnetic activity. In this review, we initially describe the early evidence for the importance of this process and the first simulation study which already was able to explain its main effects on the electrodynamics of the middle and low-latitude ionosphere. We then describe the results of more recent simulations and the extensive experimental work that highlights the importance of this mechanism for ionospheric space weather studies extending to post-storms periods, and present some suggestions for future studies.

  2. Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects

    NASA Astrophysics Data System (ADS)

    Fejer, B. G.; Blanc, M.; Richmond, A. D.

    2016-12-01

    The Earth's upper atmosphere and ionosphere undergoes large and complex perturbations during and after geomagnetic storms. Thermospheric winds driven by enhanced energy and momentum due to geomagnetic activity generate large disturbance electric fields, plasma drifts and currents with a broad range of temporal and spatial scales from high to equatorial latitudes. This disturbance dynamo mechanism plays a fundamental role on the response of the middle and low-latitude ionosphere to geomagnetic activity. In this review, we initially describe the early evidence for the importance of this process and the first simulation study which already was able to explain its main effects on the electrodynamics of the middle and low-latitude ionosphere. We then describe the results of more recent simulations and the extensive experimental work that highlights the importance of this mechanism for ionospheric space weather studies extending to post-storms periods, and present some suggestions for future studies.

  3. Atmospheric Electrical Modeling in Support of the NASA F-106 Storm Hazards Project

    NASA Technical Reports Server (NTRS)

    Helsdon, John H., Jr.

    1988-01-01

    A recently developed storm electrification model (SEM) is used to investigate the operating environment of the F-106 airplane during the NASA Storm Hazards Project. The model is 2-D, time dependent and uses a bulkwater microphysical parameterization scheme. Electric charges and fields are included, and the model is fully coupled dynamically, microphysically and electrically. One flight showed that a high electric field was developed at the aircraft's operating altitude (28 kft) and that a strong electric field would also be found below 20 kft; however, this low-altitude, high-field region was associated with the presence of small hail, posing a hazard to the aircraft. An operational procedure to increase the frequency of low-altitude lightning strikes was suggested. To further the understanding of lightning within the cloud environment, a parameterization of the lightning process was included in the SEM. It accounted for the initiation, propagation, termination, and charge redistribution associated with an intracloud discharge. Finally, a randomized lightning propagation scheme was developed, and the effects of cloud particles on the initiation of lightning investigated.

  4. Electric Field Influence on Driving the Storm-Time Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Zaharia, S. G.; Jordanova, V. K.; MacDonald, E.; Reeves, G. D.

    2013-05-01

    We present initial numerical simulation results of the storm-time near-Earth magnetosphere obtained with our newly improved self-consistent model, RAM-SCB. The model represents a 2-way coupling of the kinetic ring current-atmosphere interactions model (RAM) with an Euler potential-based 3D plasma equilibrium code. In our approach, the magnetic field is computed in force balance with the anisotropic pressures in RAM (anisotropy being critically important for wave excitation), and then returned to RAM to guide the particle dynamics. RAM-SCB thus properly treats both the kinetic drift physics crucial in the inner magnetosphere (where gradient/curvature drifts are important) and the self-consistent interaction between plasma and magnetic field (required due to the strong depressions in the field during storms that affect the plasma evolution). Recent improvements in RAM-SCB are the expansion of the boundary from geosynchronous location to 9 RE from Earth and the first-time inclusion of a self-consistent electric field, obtained by closing the field-aligned currents in the ionosphere. This extension makes RAM-SCB the most physically complete inner magnetosphere model in the community, with fully self-consistent 3D magnetic and electric fields. The presentation will analyze, using storm-time simulations of the near-Earth magnetosphere with the improved model, the effect of the self-consistent electric field on ring current dynamics, in comparison with empirical electric field models such as Weimer 01 and Volland/Stern models. We will also compare model results with observations (including global indices such as Dst, but also plasma and field data from available spacecraft, such as Polar, Cluster, GOES and the recently launched Van Allen Probes).

  5. Effects of disturbed electric fields in the low-latitude and equatorial ionosphere during the 2015 St. Patrick's Day storm

    NASA Astrophysics Data System (ADS)

    Kuai, Jiawei; Liu, Libo; Liu, Jing; Sripathi, S.; Zhao, Biqiang; Chen, Yiding; Le, Huijun; Hu, Lianhuan

    2016-09-01

    The 2015 St. Patrick's Day geomagnetic storm with SYM-H value of -233 nT is an extreme space weather event in the current 24th solar cycle. In this work, we investigated the main mechanisms of the profound ionospheric disturbances over equatorial and low latitudes in the Asian-Australian sector and the American sector during this super storm event. The results reveal that the disturbed electric fields, which comprise penetration electric fields (PEFs) and disturbance dynamo electric fields (DDEFs), play a decisive role in the ionospheric storm effects in low latitude and equatorial regions. PEFs occur on 17 March in both the American sector and the Asian-Australian sector. The effects of DDEFs are also remarkable in the two longitudinal sectors. Both the DDEFs and PEFs show the notable local time dependence, which causes the sector differences in the characteristics of the disturbed electric fields. This differences would further lead to the sector differences in the low-latitude ionospheric response during this storm. The negative storm effects caused by the long-duration DDEFs are intense over the Asian-Australian sector, while the repeated elevations of hmF2 and the equatorial ionization anomaly intensifications caused by the multiple strong PEFs are more distinctive over the American sector. Especially, the storm time F3 layer features are caught on 17 March in the American equatorial region, proving the effects of the multiple strong eastward PEFs.

  6. Effect of Precipitating Electrons on Stormtime Inner Magnetospheric Electric Fields during the 17 March 2013 Storm

    NASA Astrophysics Data System (ADS)

    Chen, M.; Lemon, C. L.; Sazykin, S. Y.; Wolf, R.; Hecht, J. H.; Walterscheid, R. L.; Boyd, A. J.; Turner, D. L.

    2015-12-01

    We investigate how scattering of electrons by waves in the plasma sheet and plasmasphere affects precipitating energy flux distributions and how the precipitating electrons modify the ionospheric conductivity and electric potentials during the large 17 March 2013 magnetic storm. Of particular interest is how electron precipitation in the evening sector affects the development of the Sub-auroral Polarization Stream (SAPS) electric field that is observed at sub-auroral latitudes in that sector. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the stormtime precipitating electron distributions and the electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. We compare simulated trapped and precipitating electron flux distributions with measurements from Van Allen Probes/MagEIS, POES/TED and MEPED, respectively, to validate the electron loss model. Ground-based (SuperDARN) and in-situ (Van Allen Probes/EFW) observations of electric fields are compared with the simulation results. We discuss the effect of precipitating electrons on the SAPS and inner magnetospheric electric field through the data-model comparisons.

  7. Basics of a Solar Electric System: Better Buildings Series Solar Electric Fact Sheet

    SciTech Connect

    Not Available

    2002-07-01

    Today's solar technologies are more efficient and versatile than ever before, adding to the appeal of an already desirable energy source. This fact sheet provides information on the basics of a solar electric system, including components of a system, how to choose solar modules, and how to choose a solar system.

  8. BASIC MATHEMATICS FOR ELECTRICITY, ELECTRICAL, AND ELECTRONIC CONTROL. UNIT 1, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.; WYKES, MURRAY L.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING BASIC MATHEMATICS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 19 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, DIRECTIONS, AND PROBLEMS. THE LESSONS, KEYED TO THREE…

  9. BASIC MATHEMATICS FOR ELECTRICITY, ELECTRICAL, AND ELECTRONIC CONTROL. UNIT 1, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.; WYKES, MURRAY L.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDENT STUDY OF BASIC MATHEMATICS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 19 INSTRUCTOR'S SHEETS GIVE THE LESSON SUBJECT, REFERENCES, AND A STEP-BY-STEP SOLUTION OF THE STUDENT ASSIGNMENT SHEET PROBLEMS. THE…

  10. Analysis of Van Allen Probes Data Showing Nonlinear Electric Field Feedback During a Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Katus, R. M.; Smith, L. K.; Skoug, R. M.; Niehof, J. T.; Spence, H.; Wygant, J. R.; Bonnell, J. W.; Smith, C. W.; Kletzing, C.; Ilie, R.; Ganushkina, N.

    2013-12-01

    Van Allen Probes data was examined to assess the role of nonlinear feedback in relationship to the spatial structure of hot ions in the inner magnetosphere. During the magnetic storm that peaked on June 1, 2013, localized electric field perturbations from the EFW instrument were observed in relationship to the plasma pressure peak (as identified by the HOPE H+ and O+ fluxes in the 1-40 keV range, as well as magnetic field perturbations from EMFISIS) with a systematic sinusoidal perturbation. Near apogee, it takes the Van Allen Probes 30-60 minutes to traverse a peak in the ion fluxes. Therefore, the electric field was averaged over several minutes to remove the higher-frequency wave oscillations, revealing the longer-baseline perturbation associated with the pressure peak. While the fluxes indicate that the satellite is passing through a pressure peak, the magnetic field perturbation reveals the spatial location of the pressure extrema relative to the spacecraft location. The pattern of these electric fields relative to the location of the plasma pressure peak is in agreement with the hypothesis based on theory and numerical simulation results that an azimuthally localized pressure peak should create a systematic and predictable small-scale reconfiguration of the electric field. This electric field modification is because the field-aligned currents near each end of the pressure crescent close via Pedersen currents, perturbing the electric field in this region, as regulated by the ionospheric conductance. The level of this reconfiguration, relative to the expected dawn-dusk electric field within the magnetosphere, indicates the intensity of the nonlinear feedback.

  11. Reproducing Electric Field Observations during Magnetic Storms by means of Rigorous 3-D Modelling and Distortion Matrix Co-estimation

    NASA Astrophysics Data System (ADS)

    Püthe, Christoph; Manoj, Chandrasekharan; Kuvshinov, Alexey

    2015-04-01

    Electric fields induced in the conducting Earth during magnetic storms drive currents in power transmission grids, telecommunication lines or buried pipelines. These geomagnetically induced currents (GIC) can cause severe service disruptions. The prediction of GIC is thus of great importance for public and industry. A key step in the prediction of the hazard to technological systems during magnetic storms is the calculation of the geoelectric field. To address this issue for mid-latitude regions, we developed a method that involves 3-D modelling of induction processes in a heterogeneous Earth and the construction of a model of the magnetospheric source. The latter is described by low-degree spherical harmonics; its temporal evolution is derived from observatory magnetic data. Time series of the electric field can be computed for every location on Earth's surface. The actual electric field however is known to be perturbed by galvanic effects, arising from very local near-surface heterogeneities or topography, which cannot be included in the conductivity model. Galvanic effects are commonly accounted for with a real-valued time-independent distortion matrix, which linearly relates measured and computed electric fields. Using data of various magnetic storms that occurred between 2000 and 2003, we estimated distortion matrices for observatory sites onshore and on the ocean bottom. Strong correlations between modellings and measurements validate our method. The distortion matrix estimates prove to be reliable, as they are accurately reproduced for different magnetic storms. We further show that 3-D modelling is crucial for a correct separation of galvanic and inductive effects and a precise prediction of electric field time series during magnetic storms. Since the required computational resources are negligible, our approach is suitable for a real-time prediction of GIC. For this purpose, a reliable forecast of the source field, e.g. based on data from satellites

  12. Preliminary Optical And Electric Field Pulse Statistics From Storm Overflights During The Altus Cumulus Electrification Study

    NASA Technical Reports Server (NTRS)

    Mach, D. A.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.

    2003-01-01

    The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect high resolution optical pulse and electric field data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses with associated electric field changes. Most of these observations were made while close to the top of the storms. We found filtered mean and median 10-10% optical pulse widths of 875 and 830 microns respectively while the 50-50% mean and median optical pulse widths are 422 and 365 microns respectively. These values are similar to previous results as are the 10-90% mean and median rise times of 327 and 265 microns. The peak electrical to optical pulse delay mean and median were 209 and 145 microns which is longer than one would expect from theoretical results. The results of the pulse analysis will contribute to further validation of the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) satellites. Pre-launch estimates of the flash detection efficiency were based on a small sample of optical pulse measurements associated with less than 350 lightning discharges collected by NASA U-2 aircraft in the early 1980s. Preliminary analyses of the ACES measurements show that we have greatly increased the number of optical pulses available for validation of the LIS and other orbital lightning optical sensors. Since the Altus was often close to the cloud tops, many of the optical pulses are from low-energy pulses. From these low-energy pulses, we can determine the fraction of optical lightning pulses below the thresholds of LIS, OTD, and any future satellite-based optical sensors such as the geostationary Lightning Mapping Sensor.

  13. Van Allen Probes based investigation of storm time plasmasphere erosion and earthward penetration of the convection electric field

    NASA Astrophysics Data System (ADS)

    Thaller, S. A.; Wygant, J. R.; Dai, L.; Breneman, A. W.; Kersten, K.; Kletzing, C.; Kurth, W. S.; Bonnell, J. W.; De Pascuale, S.; Hospodarsky, G. B.; Bounds, S. R.

    2013-12-01

    Using the Van Allen Probes we investigate the erosion of the plasmasphere as well as the evolution in location of the plasmapause during large storms (Dst < -100 nT). In addition, we also examine the penetration of the large scale storm-time convection electric field to low L ( < 3 RE) and its role in erosion of the plasmasphere. The enhanced convection electric field penetrates to low L during large storms, and a tangible effect on plasmasphere erosion is observed at low L. The plasmaspause is identified through the UHR line in EMFISIS high frequency spectral data and plasma densities determined from calibration fits to the spacecraft potential from the EFW instrument; such fits are also presented herein. During large storms the plasmapause can move to within L~1.9 RE of the earth. The erosion of the plasmasphere and consequent inward movement of the plasmapause to low L from quite time locations (4-5 RE) occurs within less than one orbit period (~9hr).

  14. Reproducing electric field observations during magnetic storms by means of rigorous 3-D modelling and distortion matrix co-estimation

    NASA Astrophysics Data System (ADS)

    Püthe, Christoph; Manoj, Chandrasekharan; Kuvshinov, Alexey

    2014-12-01

    Electric fields induced in the conducting Earth by geomagnetic disturbances drive currents in power transmission grids, telecommunication lines or buried pipelines, which can cause service disruptions. A key step in the prediction of the hazard to technological systems during magnetic storms is the calculation of the geoelectric field. To address this issue for mid-latitude regions, we revisit a method that involves 3-D modelling of induction processes in a heterogeneous Earth and the construction of a magnetospheric source model described by low-degree spherical harmonics from observatory magnetic data. The actual electric field, however, is known to be perturbed by galvanic effects, arising from very local near-surface heterogeneities or topography, which cannot be included in the model. Galvanic effects are commonly accounted for with a real-valued time-independent distortion matrix, which linearly relates measured and modelled electric fields. Using data of six magnetic storms that occurred between 2000 and 2003, we estimate distortion matrices for observatory sites onshore and on the ocean bottom. Reliable estimates are obtained, and the modellings are found to explain up to 90% of the measurements. We further find that 3-D modelling is crucial for a correct separation of galvanic and inductive effects and a precise prediction of the shape of electric field time series during magnetic storms. Since the method relies on precomputed responses of a 3-D Earth to geomagnetic disturbances, which can be recycled for each storm, the required computational resources are negligible. Our approach is thus suitable for real-time prediction of geomagnetically induced currents by combining it with reliable forecasts of the source field.

  15. The Basics of Electric Weapons and Pulsed-Power Technologies

    DTIC Science & Technology

    2012-01-01

    shown in Figure 2. Electrical energy can be stored in many ways, such as a battery (actually a chemical storage ). A car battery has about a...becomes less attractive. Energy storage for electric weapons can also be done with chem- ical explosive energy , where an explosive force is converted...into electrical energy using techniques such as flux compression. Energy can be stored in the inertia of rotating machines and flywheels , but the

  16. Response of the Fair Weather Atmospheric Electrical Current to Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Price, Colin; Elhalal, Gal

    2013-04-01

    The Global Electric Circuit (GEC) is a conceptual model that integrates the observed electrical properties of the atmosphere in the Earth-ionosphere cavity. An average potential difference of 250 kV exists between these two conducting layers, leading to a surface electric field (Ez, sometimes also named the Potential Gradient or PG) of ~130 V/m, and a nearly constant downward flowing direct current density (Jz) of ~2 pA m-2. This is known as the DC component of the GEC. The Jz is an extremely sensitive parameter whose magnitude and fluctuations can be used for monitoring local and global conductivity changes due to aerosols, air-pollution and solar activity. The AC part of the circuit is driven by ~50 lightning flashes per second generating the global Schumann resonances (SR) in the ELF range. There are two time-scales for identifying solar effects on the GEC. On the longer scale, an 11-year modulation by solar activity, likely due to changes in ionization, was reported by several authors. For example, Satori et al. (2005) noted a decrease in the frequency of the first 3 modes of the SR band in conjunction with the solar minimum of 1995-6. On shorter time scales typical of solar activity (e.g. CMEs, solar flares and SEP events), observations show marked perturbations in Jz and in the ionospheric potential at the surface. Cobb (1967) observed an increase of Jz by 75% for ~ 6 h in measurements made at Mauna Loa in Hawaii, during a period of multiple solar flares. Reiter (1989) observed an increase in Jz of about 50%-60% following large solar flares, persisting for 4 days (at the Zungspietze station in the Alps). Belova et al. (2001) reported increased Jz for about 2 hours before T=0 (time of minimum in Bx) as well as enhanced average fluctuations. This talk will review the effects of solar storms on the GEC, and present new results from continuous measurements of Jz conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35'N, 34°45'E). During 3 different

  17. Electrical Power Generation. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Four classroom activities are included in this 8-10 period unit suitable for high school chemistry and physics classes. The first activity is a reading (12th-grade readability level determined by the Fry procedure) which explains electricity conversion, transportation, and efficiency ratings. The second and third activities are electrical energy…

  18. Basic Studies on Chaotic Characteristics of Electric Power Market Price

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yuya; Miyauchi, Hajime; Kita, Toshihiro

    Recently, deregulation and reform of electric power utilities have been progressing in many parts of the world. In Japan, partial deregulation has been started from generation sector since 1995 and partial deregulation of retail sector is executed through twice law revisions. Through the deregulation, because electric power is traded in the market and its price is always fluctuated, it is important for the electric power business to analyze and predict the price. Although the price data of the electric power market is time series data, it is not always proper to analyze by the linear model such as ARMA because the price sometimes changes suddenly. Therefore, in this paper, we apply the methods of chaotic time series analysis, one of non-linear analysis methods, and investigate the chaotic characteristics of the system price of JEPX.

  19. BASIC CHEMICAL RESEARCH PROGRAM. ELECTRICAL PROPERTIES OF ORGANIC COMPOUNDS

    DTIC Science & Technology

    BENZENE, *CYANIDES, *HYDROXIDES, *ORGANIC COMPOUNDS, ACETYLENES, ALKYL RADICALS, AMIDES, ANILINES , BENZALDEHYDES, CHEMICAL REACTIONS , CONDENSATION... REACTIONS , ELECTRICAL CONDUCTIVITY, MATERIALS, MEASUREMENT, MONOCYCLIC COMPOUNDS, PHENOLS, PHENYL RADICALS, QUINONES, SOLID STATE PHYSICS, SYNTHESIS.

  20. The 17 March 2013 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric Effects

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Gallardo-Lacourt, B.; Zou, S.; Weygand, J. M.; Nishimura, Y.; Li, W.; Gkioulidou, M.; Angelopoulos, V.; Donovan, E. F.; Ruohoniemi, J. M.; Anderson, B. J.; Shepherd, S. G.; Nishitani, N.

    2016-11-01

    The main phase of the 17 March 2013 storm had excellent coverage from ground-based instruments and from low- and high-altitude spacecraft, allowing for evaluation of the relations between major storm time phenomena that are often considered separately. The shock impact with its concurrent southward interplanetary magnetic field (IMF) immediately drove dramatic poleward expansion of the poleward boundary of the auroral oval (implying strong nightside reconnection), strong auroral activity, and strong penetrating midlatitude convection and ionospheric currents. This was followed by periods of southward IMF driving of electric fields that were at first relatively smooth as often employed in storm modeling but then became extremely bursty and structured associated with equatorward extending auroral streamers. The auroral oval did not expand much further poleward during these two latter periods, suggesting a lower overall nightside reconnection rate than that during the first period and approximate balance with dayside reconnection. Characteristics of these three modes of driving were reflected in horizontal and field-aligned currents. Equatorward expansion of the auroral oval occurred predominantly during the structured convection mode, when electric fields became extremely bursty. The period of this third mode also approximately corresponded to the time of largest equatorward motion of the ionospheric trough, of apparent transport of high total electron content (TEC) features into the auroral oval from the polar cap, and of largest earthward injection of ions and electrons into the ring current. The enhanced responses of the aurora, currents, TEC, and the ring current indicate a common driving of all these storm time features during the bursty convection mode period.

  1. Module Ten: Transformers; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module introduces a very important electrical device, the transformer. The module is divided into six lessons: transformer construction, transformer theory and operation, turns and voltage ratios, power and current, transformer efficiency, and semiconductor rectifiers. Each lesson consists of an overview, a list of study resources, lesson…

  2. Module Eight: Induction; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers in greater depth electromagnetic induction, its effects, and how it is used to advantage in electrical circuits; and the physical components, called inductors, designed to take advantage of the phenomenon of electromagnetic induction. This module is divided into four lessons: electromagnetism; inductors and flux density, inducing…

  3. The Elusive Memristor: Properties of Basic Electrical Circuits

    ERIC Educational Resources Information Center

    Joglekar, Yogesh N.; Wolf, Stephen J.

    2009-01-01

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge "q" and the magnetic flux [phi] in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of…

  4. Outcomes of ventricular tachycardia ablation in patients with structural heart disease: The impact of electrical storm

    PubMed Central

    Aldhoon, Bashar; Wichterle, Dan; Peichl, Petr; Čihák, Robert; Kautzner, Josef

    2017-01-01

    Aims To investigate predictors of long-term outcomes after catheter ablation (CA) for ventricular tachycardia (VT) and the impact of electrical storm (ES) prior to index ablation procedures. Methods We studied consecutive patients with structural heart disease and VT (n = 328; age: 63±12 years; 88% males; 72% ischaemic cardiomyopathy; LVEF: 32±12%) who had undergone CA. According to presenting arrhythmia at baseline, they were divided into ES (n = 93, 28%) and non-ES groups. Clinical predictors of all-cause mortality were investigated and a clinically useful risk score (SCORE) was constructed. Results During a median follow-up of 927 days (IQR: 564–1626), 67% vs. 60% of patients (p = 0.05) experienced VT recurrence in the ES vs. the non-ES group, respectively; and 41% vs. 32% patients died (p = 0.02), respectively. Five factors were independently associated with mortality: age >70 years (hazard ratio (HR): 1.6, 95% confidence interval (CI): 1.1–2.4, p = 0.01), NYHA class ≥3 (HR: 1.9, 95% CI: 1.2–2.9, p = 0.005), a serum creatinine level >1.3 mg/dL (HR: 1.6, 95% CI: 1.1–2.3, p = 0.02), LVEF ≤25% (HR: 2.4, 95% CI: 1.6–3.5, p = 0.00004), and amiodarone therapy (HR: 1.5, 95% CI: 1.0–2.2, p = 0.03). A risk SCORE ranging from 0–4 (1 point for either high-risk age, NYHA, creatinine, or LVEF) correlated with mortality. ES during index ablation independently predicted mortality only in patients with a SCORE ≤1. Conclusions Advanced LV dysfunction, older age, higher NYHA class, renal dysfunction, and amiodarone therapy, but not ES, were predictors of poor outcomes after CA for VT in the total population. However, ES did predict mortality in a low-risk sub-group of patients. PMID:28187168

  5. [Despite medication, overdrive pacing is required to stabilize the electrical storm associated with acute coronary syndrome: a case report].

    PubMed

    Umeda, Masanobu; Morimoto, Atsushi; Yokoyama, Kaori; Tateishi, Emi; Makino, Kanako; Yamamoto, Kazuo; Nakagawa, Yoko; Fukuhara, Shinya; Takase, Eiji

    2007-10-01

    A 75-year-old female complained of severe chest pain and was emergently admitted to our hospital because of anterior acute myocardial infarction. Emergent coronary angiography was performed and revealed occlusion in segment 7, so a stent was implanted. Lidocaine, carvedilol, amiodarone, magnesium, and nifekalant were administered successively because non-sustained ventricular tachycardia (NSVT) frequently appeared like an electrical storm. After nifekalant administration, QTc was significantly prolonged and torsades de pointes was induced. Overdrive pacing was performed and finally the NSVT was completely controlled. If fatal arrhythmias such as NSVT show resistance to medication, overdrive pacing should be considered to stabilize the arrhythmia associated with acute coronary syndrome.

  6. 10 CFR 431.385 - Cessation of distribution of a basic model of an electric motor.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Cessation of distribution of a basic model of an electric motor. 431.385 Section 431.385 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Enforcement for Electric Motors § 431.385 Cessation...

  7. 10 CFR 431.385 - Cessation of distribution of a basic model of an electric motor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Cessation of distribution of a basic model of an electric motor. 431.385 Section 431.385 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Enforcement for Electric Motors § 431.385 Cessation...

  8. 10 CFR 431.385 - Cessation of distribution of a basic model of an electric motor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Cessation of distribution of a basic model of an electric motor. 431.385 Section 431.385 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Enforcement for Electric Motors § 431.385 Cessation...

  9. Basic investigation into the electrical performance of solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1982-01-01

    The electrical performance of solid electrolyte membranes was investigated analytically and the results were compared with experimental data. It is concluded that in devices that are used for pumping oxygen the major power losses have to be attributed to the thin film electrodes. Relations were developed by which the effectiveness of tubular solid electrolyte membranes can be determined and the optimum length evaluated. The observed failure of solid electrolyte tube membranes in very localized areas is explained by the highly non-uniform current distribution in the membranes. The analysis points to a possible contact resistance between the electrodes and the solid electrolyte material. This possible contact resistance remains to be investigated experimentally. It is concluded that film electrodes are not appropriate for devices which operate with current flow, i.e., pumps though they can be employed without reservation in devices that measure oxygen pressures if a limited increase in the response time can be tolerated.

  10. Basic neuron model electrical equivalent circuit: an undergraduate laboratory exercise.

    PubMed

    Dabrowski, Katie M; Castaño, Diego J; Tartar, Jaime L

    2013-01-01

    We developed a hands-on laboratory exercise for undergraduate students in which they can build and manipulate a neuron equivalent circuit. This exercise uses electrical circuit components that resemble neuron components and are easy to construct. We describe the methods for creating the equivalent circuit and how to observe different neuron properties through altering the structure of the equivalent circuit. We explain how this hands-on laboratory activity allows for the better understanding of this fundamental neuroscience concept. At the conclusion of this laboratory exercise, undergraduate students will be able to apply the principles of Ohm's law, cable theory with regards to neurons, and understand the functions of resistance and capacitance in a neuron.

  11. Prompt penetration electric fields and the extreme topside ionospheric response to the June 22-23, 2015 geomagnetic storm as seen by the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Astafyeva, Elvira; Zakharenkova, Irina; Alken, Patrick

    2016-09-01

    Using data from the three Swarm satellites, we study the ionospheric response to the intense geomagnetic storm of June 22-23, 2015. With the minimum SYM-H excursion of -207 nT, this storm is so far the second strongest geomagnetic storm in the current 24th solar cycle. A specific configuration of the Swarm satellites allowed investigation of the evolution of the storm-time ionospheric alterations on the day- and the nightside quasi-simultaneously. With the development of the main phase of the storm, a significant dayside increase of the vertical total electron content (VTEC) and electron density Ne was first observed at low latitudes on the dayside. From ~22 UT of 22 June to ~1 UT of 23 June, the dayside experienced a strong negative ionospheric storm, while on the nightside an extreme enhancement of the topside VTEC occurred at mid-latitudes of the northern hemisphere. Our analysis of the equatorial electrojet variations obtained from the magnetic Swarm data indicates that the storm-time penetration electric fields were, most likely, the main driver of the observed ionospheric effects at the initial phase of the storm and at the beginning of the main phase. The dayside ionosphere first responded to the occurrence of the strong eastward equatorial electric fields. Further, penetration of westward electric fields led to gradual but strong decrease of the plasma density on the dayside in the topside ionosphere. At this stage, the disturbance dynamo could have contributed as well. On the nightside, the observed extreme enhancement of the Ne and VTEC in the northern hemisphere (i.e., the summer hemisphere) in the topside ionosphere was most likely due to the combination of the prompt penetration electric fields, disturbance dynamo and the storm-time thermospheric circulation. From ~2.8 UT, the ionospheric measurements from the three Swarm satellites detected the beginning of the second positive storm on the dayside, which was not clearly associated with electrojet

  12. Quantifying the Accuracy of Inner Magnetospheric Electric Field Descriptions With Data- Model Comparisons for All Intense Storms of Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Jazowski, M.; Ilie, R.; Thomsen, M. F.; Borovsky, J. E.

    2008-12-01

    All of the intense magnetic storms (minimum Dst value of < -100 nT) from solar cycle 23 (1996 - 2005) were simulated using the hot electron and ion drift integrator (HEIDI) model. The simulations were run using two electric field descriptions: a Kp-driven shielded Volland-Stern electric field and a self-consistent electric field calculated from the HEIDI-generated field-aligned currents. Of the 90 events, 69 had acceptable boundary condition inputs (nightside plasma data from LANL and upstream solar wind data during the main phase), and are included in the analysis. Storms were classified according to their solar wind driver and means and correlations were examined. Data-model comparisons are made against Dst* time series and dayside LANL plasma data (plasmaspheric plume, hot ion moments and fluxes). It is found, for example, with Dst* comparisons, that the self-consistent electric field simulations are, on average, more accurate than the Volland-Stern-driven simulations. This is especially true for magnetic cloud-driven storm events. For other storm driver categories, the self-consistent results are, on average, more precise than the Volland-Stern results, with less variability in the data-model comparisons from one storm to the next. Other aspects of the data-model comparisons are presented and discussed.

  13. Wave Science with the Electric and Magnetic Field Instrument Suite with Integrated Science (EMFISIS) on the Radiation Belt Storm Probes

    NASA Astrophysics Data System (ADS)

    Bounds, S. R.; Kletzing, C. A.; Kurth, W. S.; Acuna, M. H.; Torbert, R. B.; Thorne, R.; Jordanova, V.; Smith, C.; Santolik, O.; Pfaff, R.; Rpwlamd, D.; Hospodarsky, G.; Baumjohann, W.; Nakamura, R.; Puhl-Quinn, P.

    2008-12-01

    The physics of the creation and loss of radiation belt particles is intimately connected to the electric and magnetic fields of waves which mediate these processes. A large range of field regimes are involved in this physics from ring current magnetic fields to microscopic kinetic interactions such as whistler-mode chorus waves with energetic electrons. To measure these key field interactions, NASA has selected the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on the Radiation Belt Storm Probes (RBSP). EMFISIS is an integrated set of instruments consisting of a tri-axial fluxgate magnetometer (MAG) and a Waves instrument which includes a tri-axial search coil magnetometer and measures AC electric and magnetic fields from 10 Hz to 400 kHz. The broad frequency range of the Waves instrument enables the identification of resonances and cutoffs from Waves to achieve high cadence, accurate plasma density measurements that are essential to RBSP theory and modeling efforts. In combination with the selected double probe electric field and particle investigations on RBSP, EMFISIS will provide the essential measurements necessary to open the frontier of predictive capability for the Earth's highly variable radiation belts. We discuss of the key scientific goals of the EMFISIS investigation with particular attention to the wave physics of the radiation belts.

  14. Module One: Electrical Current; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The student is introduced in this module to some fundamental concepts of electricity. The module is divided into five lessons: electricity and the electron, electron movement, current flow, measurement of current, and the ammeter. Each lesson consists of an overview, a list of study resources, lesson narratives, programed materials, and lesson…

  15. Atmospheric electrical modeling in support of the NASA F106 Storm Hazards Project

    NASA Technical Reports Server (NTRS)

    Helsdon, J. H.

    1986-01-01

    With the use of composite (non-metallic) and microelectronics becoming more prevalent in the construction of both military and commercial aircraft, the control systems have become more susceptible to damage or failure from electromagnetic transients. One source of such transients is the lightning discharge. In order to study the effects of the lightning discharge on the vital components of an aircraft, NASA Langley Research Center has undertaken a Storm Hazards Program in which a specially instrumented F106B jet aircraft is flown into active thunderstorms with the intention of being struck by lightning. One of the specific purposes of the program is to quantify the environmental conditions which are conductive to aircraft lightning strikes.

  16. Electrical Experiments. VT-214-12-3. Part III. Basic Electronics.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    Designed for high school electronics students, this third document in a series of six electrical learning activity packages focuses on basic electronics. An introductory section gives the objective for the activities, an introduction, and an outline of the content. The remainder of the activity book is comprised of information sheets and job…

  17. Basic Electricity/Electronics (Industrial Arts). Vocational Education Curriculum Guide. Bulletin 1724.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum guide is designed to assist industrial arts teachers, counselors, and administrators in improving instruction in the areas of electricity and basic electronics. Included in the first part of the guide are a course flow chart, a course description, a discussion of target grade levels and prerequisites, course goals and objectives,…

  18. NEW APPROACHES: Addressing students' common difficulties in basic electricity by qualitative simulation-based activities

    NASA Astrophysics Data System (ADS)

    Ronen, M.; Eliahu, M.

    1997-11-01

    Simulation-based activities provide students with an opportunity to compare their physical intuition with the behaviour of the model and can sometimes offer unique advantages over other methods. This article presents various approaches to the development of qualitative simulation- based activities and describes how these activities can be addressed to students' common difficulties in basic electricity.

  19. 10 CFR 431.385 - Cessation of distribution of a basic model of an electric motor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Cessation of distribution of a basic model of an electric motor. 431.385 Section 431.385 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Enforcement § 431.385 Cessation of distribution of...

  20. 10 CFR 431.385 - Cessation of distribution of a basic model of an electric motor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Cessation of distribution of a basic model of an electric motor. 431.385 Section 431.385 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Enforcement § 431.385 Cessation of distribution of...

  1. The Electric and Magnetic Field Instrument Suite with Integrated Science (EMFISIS) on the Radiation Belt Storm Probes

    NASA Astrophysics Data System (ADS)

    Kletzing, C. A.; Kurth, W.; Acuna, M.; Torbert, R.; Thorne, R.; Jordanova, V.; Bounds, S.; Smith, C.; Santolik, O.; Pfaff, R.; Rowland, D.; Hospodarsky, G.; Baumjohann, W.; Nakamura, R.; Puhl-Quinn, P.

    2006-12-01

    The physics of the creation and loss of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field dynamics and time scales are involved in this physics from ring current magnetic fields to microscopic kinetic interactions such as whistler-mode chorus waves with energetic electrons. To measure these key field interactions, NASA has selected the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on the Radiation Belt Storm Probes (RBSP). EMFISIS is an integrated set of instruments consisting of a tri-axial fluxgate magnetometer (MAG) and a Waves instrument which includes a tri-axial search coil magnetometer and measures AC electric and magnetic fields from 10 Hz to MHz frequencies. The broad frequency range of the Waves instrument enables the identification of resonances and cutoffs from Waves to achieve high cadence, accurate plasma density measurements that are essential to RBSP theory and modeling efforts. The instruments are integrated through a Central Data Processor Unit (CDPU) which provides for flexible instrument operations in both burst and survey telemetry modes that can be optimized to address the specific physics of the many radiation belt processes. The EMFISIS multi-institution team comprises a group of knowledgeable space physics investigators, both experimental and theoretical, with the requisite capability, desire, and experience to accomplish the goals of the RBSP mission to further our nation's space weather capability. In combination with the selected double probe electric field and particle investigations on RBSP, EMFISIS will provide the essential measurements necessary to open the frontier of predictive capability for the Earth's highly variable radiation belts.

  2. The Electric and Magnetic Field Instrument Suite with Integrated Science (EMFISIS) on the Radiation Belt Storm Probes

    NASA Astrophysics Data System (ADS)

    Kletzing, Craig

    The physics of the creation and loss of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field regimes are involved in this physics from ring current magnetic fields to microscopic kinetic interactions such as whistler-mode chorus waves with energetic electrons. To measure these key field interactions, NASA has selected the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on the Radiation Belt Storm Probes (RBSP). EMFISIS is an integrated set of instruments consisting of a tri-axial fluxgate magnetometer (MAG) and a Waves instrument which includes a tri-axial search coil magnetometer and measures AC electric and magnetic fields from 10 Hz to 400 kHz. The broad frequency range of the Waves instrument enables the identification of resonances and cutoffs from Waves to achieve high cadence, accurate plasma density measurements that are essential to RBSP theory and modeling efforts. The instruments are integrated through a Central Data Processor Unit (CDPU) which provides for flexible instrument operations in both burst and survey telemetry modes that can be optimized to address the specific physics of the many radiation belt processes. The EMFISIS multi-institution team comprises a group of knowledgeable space physics investigators, both experimental and theoretical with the requisite capability, desire, and experience to accomplish the goals of the RBSP mission to further space weather capability. In combination with the selected double probe electric field and particle investigations on RBSP, EMFISIS will provide the essential measurements necessary to open the frontier of predictive capability for the Earth's highly variable radiation belts.

  3. The Electric Field Wave Instrument on the Radiation Belt Storm Probe Mission

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Cattell, C. A.; Dombeck, J.; Bonnell, J.; Mozer, F.; Bale, S.; Chaston, C.; Ergun, B.; Baker, D.; Li, X.; Hudson, M. K.; Strangeway, R.; Alpert, J.; Brautigam, D.; Mann, I.; Foster, J.

    2006-12-01

    The purpose of the Electric Field-Wave Instrument on the two RBSP spacecraft is to investigate the role of plasma structures and waves in the physical processes responsible for the acceleration, transport, and loss of energetic particles in the inner magnetosphere of the Earth. Some of these processes include: prompt acceleration induced by powerful interplanetary shocks, acceleration by the large scale convection electric field, abrupt energization by intense substorm injection fronts propagating in from the tail, coherent and stochastic radial transport by large scale MHD fluctuations, multi-step local energization and cattering by whistler waves, and scattering and energization by kinetic Alfven waves, ion cycltron waves, and other small scale waves and structures. In order to understand the role of these processes in accelerating particles, the EFW instrument measures the three dimensional electric field from dc to greater than 500 kHz. The spin plane electric field vector is obtained from spherical sensors at the ends of two pair of orthogonal booms with tip-to- tip separations of 80 and 100 m. The spin axis measurement is obtained by opposed stacer booms with a tip- to-tip separation of 12 meters or greater. The electric field below 12 Hz is telemetered continuously while higher time resolution is obtained from a programmable burst memory with a maximum sampling rate for six quantities of greater 30,000 samples/s each. DC magnetic fields from the fluxgate magnetometer and wave magnetic fields from the search coil, both associated with the University of Iowa Instrument are input into the EFW instrument for processing in the burst memory and in the Digital Signal Processing Board (DSP). The DSP provides wave spectra and cross spectra of electric and magnetic field data over the frequency range between 50 Hz and 10 kHz with a typical cadence of once per 12 seconds with a maximum rate of ~ 1 Hz in order to provide continuous information on wave properties

  4. The Electric Fields and Waves Instrument on the Radiation Belt Storm Probe Spacecraft

    NASA Astrophysics Data System (ADS)

    Wygant, John

    The purpose of the Electric Field-Wave (EFW) Instrument on the two RBSP spacecraft is to investigate the role of electric field structures and waves in the physical processes responsible for the acceleration, transport, and loss of energetic particles in the inner magnetosphere of the Earth. The RBSP spacecraft apogee will be at about 5.8 Re near the equatorial plane. Perigee will be at about 400 kms altitude. Some of processes that will be investigated by the RBSP-EFW instrument include: prompt acceleration induced by powerful interplanetary shocks, acceleration by the large scale convection electric field, abrupt energization by intense substorm injection fronts propagating in from the tail, coherent and stochastic radial transport by large scale MHD fluctuations, and multi-step local energization and loss by whistler waves. In order to understand the role of these processes in accelerating particles, the EFW instrument measures the three dimensional electric field and cold plasma density estimates from the spacecraft potential all over a frequency range from dc to ˜500 kHz. Measurements from the spatially separated spacecraft will provide information on azimuthal and radial spatial scales and propagation velocities of large scale structures. The spin plane electric field vector is obtained from spherical sensors at the ends of two pair of orthogonal booms with tip to tip separations of 80 and 100 m. The spin axis measurement is obtained from a pair of stace booms with a tip to tip separation of ˜12 meters. The electric field below 12 Hz is telemetered continuously while higher time resolution is obtained from a programmable burst memory with a maximum sampling rate for six quantities of ˜ 30,000 samples/s. High time resolution data includes interferometric timing measurements between individual probe at the ends of the booms which provide information on small scale structures and phase velocities. DC magnetic fields from the fluxgate magnetometer and wave

  5. Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick's Day storm on 17 March 2015

    NASA Astrophysics Data System (ADS)

    Tulasi Ram, S.; Yokoyama, T.; Otsuka, Y.; Shiokawa, K.; Sripathi, S.; Veenadhari, B.; Heelis, R.; Ajith, K. K.; Gowtam, V. S.; Gurubaran, S.; Supnithi, P.; Le Huy, M.

    2016-01-01

    The equatorial zonal electric field responses to prompt penetration of eastward convection electric fields (PPEF) were compared at closely spaced longitudinal intervals at dusk to premidnight sectors during the intense geomagnetic storm of 17 March 2015. At dusk sector (Indian longitudes), a rapid uplift of equatorial F layer to >550 km and development of intense equatorial plasma bubbles (EPBs) were observed. These EPBs were found to extend up to 27.13°N and 25.98°S magnetic dip latitudes indicating their altitude development to ~1670 km at apex. In contrast, at few degrees east in the premidnight sector (Thailand-Indonesian longitudes), no significant height rise and/or EPB activity has been observed. The eastward electric field perturbations due to PPEF are greatly dominated at dusk sector despite the existence of background westward ionospheric disturbance dynamo (IDD) fields, whereas they were mostly counter balanced by the IDD fields in the premidnight sector. In situ observations from SWARM-A and SWARM-C and Communication/Navigation Outage Forecasting System satellites detected a large plasma density depletion near Indian equatorial region due to large electrodynamic uplift of F layer to higher than satellite altitudes. Further, this large uplift is found to confine to a narrow longitudinal sector centered on sunset terminator. This study brings out the significantly enhanced equatorial zonal electric field in response to PPEF that is uniquely confined to dusk sector. The responsible mechanisms are discussed in terms of unique electrodynamic conditions prevailing at dusk sector in the presence of convection electric fields associated with the onset of a substorm under southward interplanetary magnetic field Bz.

  6. A coordinated study of a storm system over the South American continent. 1. Weather information and quasi-DC stratospheric electric field data

    NASA Astrophysics Data System (ADS)

    Pinto, O.; Pinto, I. R. C. A.; Gin, R. B. B.; Mendes, O.

    1992-11-01

    This paper reports on a coordinated campaign conducted in Brazil, December 13, 1989, to study the electrical signatures associated with a large storm system over the South American continent. Inside the storm, large convective cells developed extending up to the tropopause, as revealed from meteorological balloon soundings. Quasi-DC vertical electric field and temperature were measured by zero-pressure balloon-borne payload launched from Cachoeira Paulista, Brazil. The data were supported by radar and GOES satellite observations, as well as by a lightning position and tracking system (LPATS). The analysis of infrared imagery supports the general tendency for lightning strikes to be near to but not exactly under the coldest cloud tops. In turn, the radar maps located the strikes near to but outside of the most intense areas of precipitation (reflectivity levels above 40 dBz). The balloon altitude and stratospheric temperature show significant variations in association with the storm. The quasi-DC vertical electric field remained almost during the whole flight in a reversed direction relative to the usual fair weather downward orientation with values as large as 4 V/m. A simple calculation based on a static dipole model of electrical cloud structure gives charges of some tens of coulombs. In contrast with most electric field measurements in other regions, no indication of an intensification of the vertical field in the downward fair weather orientation was observed. This fact is in agreement with past observations in the South American region and seems to be related to a particular type of storm that would occur with more frequency in this region. If so, such a difference may have an important role in the global atmospheric electrical circuit, considering that South America is believed to give a significant current contribution to the global circuit.

  7. The impact of geomagnetic storms on the US electric power grid

    NASA Astrophysics Data System (ADS)

    Schrijver, C.; Mitchell, S.; Title, A. M.

    2012-12-01

    Large solar explosions are responsible for space weather that can impact technological infrastructure on and around Earth. We study the impacts of geomagnetic activity on the U.S. electric power grid for the period from 1992 through 2010. We find, with more than 3-sigma significance, that approximately 4% of the disturbances in the U.S. power grid reported to the U.S. Department of Energy are attributable to geomagnetic activity. The combination of our results with an economic assessment study by the electric power industry suggests that the average cost to the U.S. economy of non-catastrophic grid disturbances in which space weather conditions are a contributing factor exceeds $3 billion per year. The magnitude of this apparent economic impact warrants extensive follow-up studies to validate, understand, and mitigate against the weak but significant contribution of space weather in power grid disturbances.

  8. Modeling storm-time electrodynamics of the low-latitude ionosphere thermosphere system: Can long lasting disturbance electric fields be accounted for?

    NASA Astrophysics Data System (ADS)

    Maruyama, Naomi; Sazykin, Stanislav; Spiro, Robert W.; Anderson, David; Anghel, Adela; Wolf, Richard A.; Toffoletto, Frank R.; Fuller-Rowell, Timothy J.; Codrescu, Mihail V.; Richmond, Arthur D.; Millward, George H.

    2007-07-01

    Storm-time ionospheric disturbance electric fields are studied for two large geomagnetic storms, March 31, 2001 and April 17 18, 2002, by comparing low-latitude observations of ionospheric plasma drifts with results from numerical simulations based on a combination of first-principles models. The simulation machinery combines the Rice convection model (RCM), used to calculate inner magnetospheric electric fields, and the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model, driven, in part, by RCM-computed electric fields. Comparison of model results with measured or estimated low-latitude vertical drift velocities (zonal electric fields) shows that the coupled model is capable of reproducing measurements under a variety of conditions. In particular, our model results suggest, from theoretical grounds, a possibility of long-lasting penetration of magnetospheric electric fields to low latitudes during prolonged periods of enhanced convection associated with southward-directed interplanetary magnetic field, although the model probably overestimates the magnitude and duration of such penetration during extremely disturbed conditions. During periods of moderate disturbance, we found surprisingly good overall agreement between model predictions and data, with penetration electric fields accounting for early main phase changes and oscillations in low-latitude vertical drift, while the disturbance dynamo mechanism becomes increasingly important later in the modeled events. Discrepancies between the model results and the observations indicate some of the difficulties in validating these combined numerical models, and the limitations of the available experimental data.

  9. Correlation of basic oil quality indices and electrical properties of model vegetable oil systems.

    PubMed

    Prevc, Tjaša; Cigić, Blaž; Vidrih, Rajko; Poklar Ulrih, Nataša; Šegatin, Nataša

    2013-11-27

    Model vegetable oil mixtures with significantly different basic oil quality indices (free fatty acid, iodine, and Totox values) were prepared by adding oleic acids, synthetic saturated triglycerides, or oxidized safflower oil ( Carthamus tinctorius ) to the oleic type of sunflower oil. Dielectric constants, dielectric loss factors, quality factors, and electrical conductivities of model lipids were determined at frequencies from 50 Hz to 2 MHz and at temperatures from 293.15 to 323.15 K. The dependence of these dielectric parameters on basic oil quality indices was investigated. Adding oleic acids to sunflower oil resulted in lower dielectric constants and conductivities and higher quality factors. Reduced iodine values resulted in increased dielectric constants and quality factors and decreased conductivities. Higher Totox values resulted in higher dielectric constants and conductivities at high frequencies and lower quality factors. Dielectric constants decreased linearly with temperature, whereas conductivities followed the Arrhenius law.

  10. [A case of electrical storm in a patient with short-coupled variant of torsade de pointes].

    PubMed

    Conte, Giulio; Coppini, Lucia; Demola, Maria Antonietta; Ardissino, Diego

    2013-01-01

    Short-coupled variant of torsade de pointes (TdP) is an uncommon variant of polymorphic ventricular tachycardia with unknown etiology. It is initiated by a closely coupled premature ventricular complex (<300 ms) in the absence of QT prolongation and structural heart disease. Verapamil seems to be the only drug able to suppress the arrhythmia but, as it does not reduce the risk of sudden death, implantation of a cardioverter-defibrillator (ICD) is recommended. We describe the case of a 46-year-old woman referred to our Emergency Department because of palpitations. The initial ECG showed a non-sustained polymorphic ventricular tachycardia with a borderline QTc interval (450 ms). After admission, the patient experienced an episode of TdP that started after short-coupling interval (280 ms) between the last sinus beat and the ventricular premature beat (VPB). DC-shock restored sinus rhythm. Physical examination, exercise testing, echocardiography and cardiac magnetic resonance were all normal, and she had no family history of sudden cardiac death. Baseline ECG showed sinus rhythm and unifocal VPBs with the same morphology of the VPB of TdP. The patient received an ICD and was treated medically with verapamil. She was discharged from the hospital on oral therapy with verapamil (240 mg/day), and she was free of recurrence 12 months later when an electrical storm occurred. The verapamil dose was therefore increased to 480 mg/day. Unifocal VPBs disappeared from her body surface ECG, and the subsequent 3-year follow-up was uneventful.

  11. Basic setup for breast conductivity imaging using magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Lee, Byung Il; Oh, Suk Hoon; Kim, Tae-Seong; Woo, Eung Je; Lee, Soo Yeol; Kwon, Ohin; Seo, Jin Keun

    2006-01-01

    We present a new medical imaging technique for breast imaging, breast MREIT, in which magnetic resonance electrical impedance tomography (MREIT) is utilized to get high-resolution conductivity and current density images of the breast. In this work, we introduce the basic imaging setup of the breast MREIT technique with an investigation of four different imaging configurations of current-injection electrode positions and pathways through computer simulation studies. Utilizing the preliminary findings of a best breast MREIT configuration, additional numerical simulation studies have been carried out to validate breast MREIT at different levels of SNR. Finally, we have performed an experimental validation with a breast phantom on a 3.0 T MREIT system. The presented results strongly suggest that breast MREIT with careful imaging setups could be a potential imaging technique for human breast which may lead to early detection of breast cancer via improved differentiation of cancerous tissues in high-resolution conductivity images.

  12. Magnetic storms and induction hazards

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Balch, Christopher

    2014-01-01

    Magnetic storms are potentially hazardous to the activities and technological infrastructure of modern civilization. This reality was dramatically demonstrated during the great magnetic storm of March 1989, when surface geoelectric fields, produced by the interaction of the time-varying geomagnetic field with the Earth's electrically conducting interior, coupled onto the overlying Hydro-Québec electric power grid in Canada. Protective relays were tripped, the grid collapsed, and about 9 million people were temporarily left without electricity [Bolduc, 2002].

  13. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 23: Multivibrators. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on multivibrators is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Three lessons are included in the…

  14. Instructor's Index to U.S. Navy and Air Force Materials for Teaching Basic Electricity. Final Report, No. 29.

    ERIC Educational Resources Information Center

    Stoller, Alan

    The purpose of this index is to identify U.S. Navy and U.S. Air Force transparencies, films, and manuals which can be used by schools and colleges to teach basic electricity. Materials are classified according to 39 major categories including Electron Theory, Batteries and Battery Connections, D.C. Series Circuits, Network Theorems,…

  15. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 22: Oscillators. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on oscillators is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the module:…

  16. Groundwater discharge to wetlands driven by storm and flood events: Quantification using continuous Radon-222 and electrical conductivity measurements and dynamic mass-balance modelling

    NASA Astrophysics Data System (ADS)

    Gilfedder, B. S.; Frei, S.; Hofmann, H.; Cartwright, I.

    2015-09-01

    The dynamic response of groundwater discharge to external influences such as rainfall is an often neglected part of water and solute balances in wetlands. Here we develop a new field platform for long-term continuous 222Rn and electrical conductivity (EC) measurements at Sale Wetland, Australia to study the response of groundwater discharge to storm and flood events. The field measurements, combined with dynamic mass-balance modelling, demonstrate that the groundwater flux can increase from 3 to ∼20 mm d-1 following storms and up to 5 mm d-1 on the receding limb of floods. The groundwater pulses are likely produced by activation of local groundwater flow paths by water ponding on the surrounding flood plains. While 222Rn is a sensitive tracer for quantifying transient groundwater discharge, the mass-balance used to estimate fluxes is sensitive to parameterisation of gas exchange (k) with the atmosphere. Comparison of six equations for calculating k showed that, based on parameterisation of k alone, the groundwater flux estimate could vary by 58%. This work shows that neglecting transient processes will lead to errors in water and solute flux estimates based on infrequent point measurements. This could be particularly important for surface waters connected to contaminated or saline groundwater systems.

  17. A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation

    NASA Astrophysics Data System (ADS)

    Tinsley, Brian A.

    2012-09-01

    This paper outlines, and explores the uncertainties in, hypothesized connections between a series of processes that could explain two long-standing puzzles; those of (1) the observed winter storm vorticity responses to atmospheric energy inputs that change the ionosphere-earth current density, Jz, that appear to involve storm invigoration, and (2) changes in anti-cyclonic blocking and circulation that include the observed colder winters in Great Britain and western Europe at solar minima, and especially at extended solar minima. A working hypothesis for the mechanism responsible for (1) is that the flow of Jz through conductivity gradients, as in stratified cloud layers and fog, especially with sea-salt aerosol haze over the high latitude winter oceans, deposits electric changes on droplets and aerosol particles; most importantly on cloud condensation nuclei (CCN). These electric charges modulate scavenging of the particles in clouds and haze layers, increasing the concentration of small CCN and decreasing the concentration of large CCN. When further cloud formation occurs there is increased concentration of small droplets and decreased concentration of large ones, reducing coalescence and the production of rain. Thus updrafts carry more liquid water above the freezing level, and there the increased production of ice releases more latent heat and invigorates the updraft (the Rosenfeld mechanism), leading to increased vorticity. Here we explore the major uncertainties for the reality of the above chain of physical processes. A consequence of cumulative cyclonic vorticity increases is increases in downstream anti-cyclonic blocking. A further working hypothesis for (2) is that the invigoration may be large enough to contribute to the observed increases in blocking in winters at solar minima (high Jz) in the North Atlantic, that result in colder winters in the UK and northern Europe.

  18. Discrimination of Basic Taste Solutions and Soft Drinks on Electrical and Optical Response Patterns of Artificial Lipid Membrane

    NASA Astrophysics Data System (ADS)

    Mukai, Keiichi; Misawa, Kenji; Arisawa, Junji

    In this paper, electrical and optical characteristics of artificial lipid membrane for basic taste solutions and tea drinks were examined. The possibility of taste sensing on the electrical and optical response patterns of a single membrane was also discussed. As a result, in case of sour and sweet solutions with different concentration, the patterns of taste response were similar in shape. In case of the tea drinks on some commercial goods, the different shapes among the sample solutions were obtained. Furthermore, the strength of sour taste was reflected in the electrical axis of response pattern and the strength of sweet taste was reflected in the optical axis of response pattern. Therefore, it was found that the possibility of taste sensing using electrical and optical response patterns was obtained from a single membrane.

  19. Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Gonzalez, Walter D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine. A few years later, speculation on a causal relationship between flares and storms arose when Carrington reported that a large magnetic storm followed the great September 1859 solar flare. However, it was not until this century that a well-accepted statistical survey on large solar flares and geomagnetic storms was performed, and a significant correlation between flares and geomagnetic storms was noted. Although the two phenomena, one on the Sun and the other on the Earth, were statistically correlated, the exact physical linkage was still an unknown at this time. Various hypotheses were proposed, but it was not until interplanetary spacecraft measurements were available that a high-speed plasma stream rich in helium was associated with an intense solar flare. The velocity of the solar wind increased just prior to and during the helium passage, identifying the solar ejecta for the first time. Space plasma measurements and Skylab's coronagraph images of coronal mass elections (CMES) from the Sun firmly established the plasma link between the Sun and the Earth. One phenomenon associated with magnetic storms is brilliant "blood" red auroras, as shown.

  20. On extreme geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Cid, Consuelo; Palacios, Judith; Saiz, Elena; Guerrero, Antonio; Cerrato, Yolanda

    2014-10-01

    Extreme geomagnetic storms are considered as one of the major natural hazards for technology-dependent society. Geomagnetic field disturbances can disrupt the operation of critical infrastructures relying on space-based assets, and can also result in terrestrial effects, such as the Quebec electrical disruption in 1989. Forecasting potential hazards is a matter of high priority, but considering large flares as the only criterion for early-warning systems has demonstrated to release a large amount of false alarms and misses. Moreover, the quantification of the severity of the geomagnetic disturbance at the terrestrial surface using indices as Dst cannot be considered as the best approach to give account of the damage in utilities. High temporal resolution local indices come out as a possible solution to this issue, as disturbances recorded at the terrestrial surface differ largely both in latitude and longitude. The recovery phase of extreme storms presents also some peculiar features which make it different from other less intense storms. This paper goes through all these issues related to extreme storms by analysing a few events, highlighting the March 1989 storm, related to the Quebec blackout, and the October 2003 event, when several transformers burnt out in South Africa.

  1. The Cause of Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Nagatsuma, T.

    2001-12-01

    Although the cause of magnetic storms is important issue, the exact mechanism of the storm development is still controversial. Two mechanisms of storm development are considered. One is that the frequent substorm activity injects high-energy particles to the inner magnetosphere; the other is that the enhanced convection plays a role. Further, Iyermori and Rao [1996] shows that the substorm reduces the development of storms. On the contrary, magnetospheric convections and magnetic storms correspond different solar wind parameter. It is well known that the variations of the magnetospheric convection correspond to merging electric field (Em) by Kan and Lee [1979]. However, the variations of the magenetic storm correspond Ey [e.g. Burton et al., 1975]. This suggests that magnetospheric convection and magnetic storm are independent phenomena. However, we cannot discuss the independency of two phenomena since the difference between Em and Ey is small, under usual solar wind condition. We have analyzed Nov. 8, 1998 storm event, since the big difference between Em and Ey exists during 6 hours. The enhancement of Ey terminates first, and Em continues to enhance more than 6 hours after that. Although the variation of the storm estimated from SYM-H(Dst) index corresponds to Ey, that of the magnetospheric convection estimated from PC index corresponds to Em. This shows that the development of the storm terminate although the magnetospheric convection still enhances. This result suggests that the development of magnetic storms is independent from enhanced convection and the magnetic storm is directly caused by the enhancement of Ey in the solar wind.

  2. The Electron Runaround: Understanding Electric Circuit Basics through a Classroom Activity

    ERIC Educational Resources Information Center

    Singh, Vandana

    2010-01-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not…

  3. Electric versus hydraulic hospital beds: differences in use during basic nursing tasks.

    PubMed

    Capodaglio, Edda Maria

    2013-01-01

    Biomechanical, postural and ergonomic aspects during real patient-assisting tasks performed by nurses using an electric versus a hydraulic hospital bed were observed. While there were no differences in the flexed postures the nurses adopted, longer performance times were recorded when electric beds were used. Subjective effort, force exertion and lumbar shear forces exceeding safety limits proved electric beds were superior. Patients' dependency level seemed to influence the type of nurses' intervention (duration and force actions), irrespective of the bed used. The nurses greatly appreciated the electric bed. Its use seemed to reduce the level of effort perceived during care giving and the postural load during critical subtasks. Ergonomics and organizational problems related to adopting electric beds in hospital wards should be addressed further to make their use more efficient.

  4. 30 CFR 56.6604 - Precautions during storms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Precautions during storms. 56.6604 Section 56... Extraneous Electricity § 56.6604 Precautions during storms. During the approach and progress of an electrical storm, blasting operations shall be suspended and persons withdrawn from the blast area or to a...

  5. 30 CFR 56.6604 - Precautions during storms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Precautions during storms. 56.6604 Section 56... Extraneous Electricity § 56.6604 Precautions during storms. During the approach and progress of an electrical storm, blasting operations shall be suspended and persons withdrawn from the blast area or to a...

  6. 30 CFR 56.6604 - Precautions during storms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Precautions during storms. 56.6604 Section 56... Extraneous Electricity § 56.6604 Precautions during storms. During the approach and progress of an electrical storm, blasting operations shall be suspended and persons withdrawn from the blast area or to a...

  7. 30 CFR 56.6604 - Precautions during storms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Precautions during storms. 56.6604 Section 56... Extraneous Electricity § 56.6604 Precautions during storms. During the approach and progress of an electrical storm, blasting operations shall be suspended and persons withdrawn from the blast area or to a...

  8. 30 CFR 56.6604 - Precautions during storms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Precautions during storms. 56.6604 Section 56... Extraneous Electricity § 56.6604 Precautions during storms. During the approach and progress of an electrical storm, blasting operations shall be suspended and persons withdrawn from the blast area or to a...

  9. Electrical Trades. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Cannone, Richard

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  10. Geomagnetic storms: historical perspective to modern view

    NASA Astrophysics Data System (ADS)

    Lakhina, Gurbax S.; Tsurutani, Bruce T.

    2016-12-01

    The history of geomagnetism is more than 400 years old. Geomagnetic storms as we know them were discovered about 210 years ago. There has been keen interest in understanding Sun-Earth connection events, such as solar flares, CMEs, and concomitant magnetic storms in recent times. Magnetic storms are the most important component of space weather effects on Earth. We give an overview of the historical aspects of geomagnetic storms and the progress made during the past two centuries. Super magnetic storms can cause life-threatening power outages and satellite damage, communication failures and navigational problems. The data for such super magnetic storms that occurred in the last 50 years during the space era is sparce. Research on historical geomagnetic storms can help to create a database for intense and super magnetic storms. New knowledge of interplanetary and solar causes of magnetic storms gained from spaceage observations will be used to review the super magnetic storm of September 1-2, 1859. We discuss the occurrence probability of such super magnetic storms, and the maximum possible intensity for the effects of a perfect ICME: extreme super magnetic storm, extreme magnetospheric compression, and extreme magnetospheric electric fields.

  11. Analogies and "Modeling Analogies" in Teaching: Some Examples in Basic Electricity.

    ERIC Educational Resources Information Center

    Dupin, J. J.; Johsua, S.

    1989-01-01

    Investigates the effect of modeling analogy on learning of the concepts of electricity in grade 6, 8, and 10. Describes 2 analogies (train analogy and thermal analogy) with diagrams and examples. Discusses the accessibility, transferability, and difficulty of each analogy. Reports treatment effect and some further implications. (YP)

  12. Making Their Own Connections: Students' Understanding of Multiple Models in Basic Electricity.

    ERIC Educational Resources Information Center

    Gutwill, Joshua P.; Frederiksen, John R.; White, Barbara Y.

    1999-01-01

    This study explored impact of teaching high schoolers coordinated or uncoordinated models of static electricity. Posttest results showed that students who were taught the uncoordinated models outperformed those in that control group; however, the coordinated model group did not outperform its control group. Process data suggest that the…

  13. Progress Check Module; Basic Electricity and Electronics Individualized Learning System. Progress Check Booklet.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The Progress Check Booklet is designed to be used by the student working in the programed course to determine if he has mastered the concepts in the course booklets on: electrical current; voltage; resistance; measuring current and voltage in series circuits; relationships of current, voltage, and resistance; parellel circuits; combination…

  14. The link between abnormal calcium handling and electrical instability in acquired long QT syndrome--Does calcium precipitate arrhythmic storms?

    PubMed

    Němec, Jan; Kim, Jong J; Salama, Guy

    2016-01-01

    Release of Ca(2+) ions from sarcoplasmic reticulum (SR) into myocyte cytoplasm and their binding to troponin C is the final signal form myocardial contraction. Synchronous contraction of ventricular myocytes is necessary for efficient cardiac pumping function. This requires both shuttling of Ca(2+) between SR and cytoplasm in individual myocytes, and organ-level synchronization of this process by means of electrical coupling among ventricular myocytes. Abnormal Ca(2+) release from SR causes arrhythmias in the setting of CPVT (catecholaminergic polymorphic ventricular tachycardia) and digoxin toxicity. Recent optical mapping data indicate that abnormal Ca(2+) handling causes arrhythmias in models of both repolarization impairment and profound bradycardia. The mechanisms involve dynamic spatial heterogeneity of myocardial Ca(2+) handling preceding arrhythmia onset, cell-synchronous systolic secondary Ca(2+) elevation (SSCE), as well as more complex abnormalities of intracellular Ca(2+) handling detected by subcellular optical mapping in Langendorff-perfused hearts. The regional heterogeneities in Ca(2+) handling cause action potential (AP) heterogeneities through sodium-calcium exchange (NCX) activation and eventually overwhelm electrical coupling of the tissue. Divergent Ca(2+) dynamics among different myocardial regions leads to temporal instability of AP duration and - on the patient level - in T wave lability. Although T-wave alternans has been linked to cardiac arrhythmias, non-alternans lability is observed in pre-clinical models of the long QT syndrome (LQTS) and CPVT, and in LQTS patients. Analysis of T wave lability may provide a real-time window on the abnormal Ca(2+) dynamics causing specific arrhythmias such as Torsade de Pointes (TdP).

  15. Modeling extracellular electrical neural stimulation: from basic understanding to MEA-based applications.

    PubMed

    Joucla, Sébastien; Yvert, Blaise

    2012-01-01

    Extracellular electrical stimulation of neural networks has been widely used empirically for decades with individual electrodes. Since recently, microtechnology provides advanced systems with high-density microelectrode arrays (MEAs). Taking the most of these devices for fundamental goals or developing neural prosthesis requires a good knowledge of the mechanisms underlying electrical stimulation. Here, we review modeling approaches used to determine (1) the electric potential field created by a stimulation and (2) the response of an excitable cell to an applied field. Computation of the potential field requires solving the Poisson equation. While this can be performed analytically in simple electrode-neuron configurations, numerical models are required for realistic geometries. In these models, special care must be taken to model the potential drop at the electrode/tissue interface using appropriate boundary conditions. The neural response to the field can then be calculated using compartmentalized cell models, by solving a cable equation, the source term of which (called activating function) is proportional to the second derivative of the extracellular field along the neural arborization. Analytical and numerical solutions to this equation are first presented. Then, we discuss the use of approximated solutions to intuitively predict the neuronal response: Either the "activating function" or the "mirror estimate", depending on the pulse duration and the cell space constant. Finally, we address the design of optimal electrode configurations allowing the selective activation of neurons near each stimulation site. This can be achieved using either multipolar configurations, or the "ground surface" configuration, which can be easily integrated in high-density MEAs. Overall, models highlighting the mechanisms of electrical microstimulation and improving stimulating devices should help understanding the influence of extracellular fields on neural elements and developing

  16. Quantifying Power Grid Risk from Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Homeier, N.; Wei, L. H.; Gannon, J. L.

    2012-12-01

    We are creating a statistical model of the geophysical environment that can be used to quantify the geomagnetic storm hazard to power grid infrastructure. Our model is developed using a database of surface electric fields for the continental United States during a set of historical geomagnetic storms. These electric fields are derived from the SUPERMAG compilation of worldwide magnetometer data and surface impedances from the United States Geological Survey. This electric field data can be combined with a power grid model to determine GICs per node and reactive MVARs at each minute during a storm. Using publicly available substation locations, we derive relative risk maps by location by combining magnetic latitude and ground conductivity. We also estimate the surface electric fields during the August 1972 geomagnetic storm that caused a telephone cable outage across the middle of the United States. This event produced the largest surface electric fields in the continental U.S. in at least the past 40 years.

  17. The Electric Fields and Waves (EFW) Instrument on the Radiation Belt Storm Probes: Science Operations Center, Operational Modes, and Data Products

    NASA Astrophysics Data System (ADS)

    Bonnell, J. W.; Wygant, J. R.; Ergun, R. E.; Schroeder, P. C.; Rachelson, W.; Tao, J.; Vernetti, J.; Mozer, F.; Kersten, K.; Breneman, A. W.; Kletzing, C.; Bounds, S. R.; Kurth, W. S.; Hospodarsky, G. B.; MacDowall, R. J.; Smith, C. W.

    2012-12-01

    The Electric Field and Waves (EFW) instrument on the NASA Radiation Belt Storm Probes (RBSP) observatories provides measurement of 3D DC and AC E-fields, as well as 3D AC magnetic fields as provided on board from the EMFISIS tri-axial searchcoil magnetometer (MSC). Two 100-m tip-to-tip spin plane and 12 to 14-m tip-to-tip axial E-field antennas are deployed on each of the two RBSP observatories, with all instrument operations controlled on board via the EFW Instrument Data Processing Unit (IDPU). Both continuous waveform and spectral data products from DC up to 8 kHz, as well as high-rate burst waveforms (E-field and interferometric modes) are produced on-board through a highly-configurable digital signal processing system. A large-capacity waveform burst memory (32 GB) with human-in-the-loop playback selection is also included in the EFW instrument, allowing for days to tens of days of lookback and playback of selected time intervals of burst data. EFW also provides higher-frequency 3D E-field signals to the EMFISIS suite, providing waveform coverage up to 12 kHz and spectral coverage to over 400 kHz. A description of all the EFW operational modes and data products is presented. Access tot he ISTP-compliant CDF datasets served from the primary EFW Science Operations Center (SOC) at the University of California, Berkeley is shown, along with support for data acquisition and analysis under the IDL THEMIS Data Analysis Software (TDAS) and Science Data Tool (SDT) packages.

  18. On the watch for geomagnetic storms

    USGS Publications Warehouse

    Green, Arthur W.; Brown, William M.

    1997-01-01

    Geomagnetic storms, induced by solar activity, pose significant hazards to satellites, electrical power distribution systems, radio communications, navigation, and geophysical surveys. Strong storms can expose astronauts and crews of high-flying aircraft to dangerous levels of radiation. Economic losses from recent geomagnetic storms have run into hundreds of millions of dollars. With the U.S. Geological Survey (USGS) as the lead agency, an international network of geomagnetic observatories monitors the onset of solar-induced storms and gives warnings that help diminish losses to military and commercial operations and facilities.

  19. Basic concepts, status, opportunities, and challenges of electrical machines utilizing high-temperature superconducting (HTS) windings

    NASA Astrophysics Data System (ADS)

    Frauenhofer, J.; Grundmann, J.; Klaus, G.; Nick, W.

    2008-02-01

    An overview of the different approaches towards achieving a marketable application of a superconducting electrical machine, either as synchronous motor or generator, will be given. This field ranges from relatively small industrial drives to utility generators with large power ratings, from the low speed and high torque of wind power generators and ship propulsion motors, to high speed generators attached to turbines. Essentially HTS machine technology offers several advantages such as compactness (weight and volume reduction), increased efficiency, and other operational benefits. The machine features have to be optimized with regard to the specific application, and different concepts were developed by internationally competing teams, with Siemens being one of them. The achieved status in these fields will be summarized, pointing to the specific technical challenges to overcome. For this purpose we have not only to consider the technology of manufacturing the HTS rotor winding itself, but also to check requirements and availability of supporting technologies. This ranges from new challenges posed to the non-superconducting ("conventional") components of such innovative HTS machines, manufacturing superconducting material in the coming transition from 1st to 2nd generation HTS tape, cryogenic technology including material behavior, to new and challenging tasks in simulating and predicting the performance of such machines by computational tools. The question of market opportunities for this technology obviously is a function of all these aspects; however, a strong tendency for the near future is seen in the area of high-torque ship propulsion.

  20. Current understanding of magnetic storms: Storm-substorm relationships

    SciTech Connect

    Kamide, Y.; Gonzalez, W.D.; Baumjohann, W.; Daglis, I.A.; Grande, M.; Joselyn, J.A.; Singer, H.J.; McPherron, R.L.; Phillips, J.L.; Reeves, E.G.; Rostoker, G.; Sharma, A.S.; Tsurutani, B.T.

    1998-08-01

    This paper attempts to summarize the current understanding of the storm/substorm relationship by clearing up a considerable amount of controversy and by addressing the question of how solar wind energy is deposited into and is dissipated in the constituent elements that are critical to magnetospheric and ionospheric processes during magnetic storms. (1) Four mechanisms are identified and discussed as the primary causes of enhanced electric fields in the interplanetary medium responsible for geomagnetic storms. It is pointed out that in reality, these four mechanisms, which are not mutually exclusive, but interdependent, interact differently from event to event. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are found to be the primary phenomena responsible for the main phase of geomagnetic storms. The other two mechanisms, i.e., HILDCAA (high-intensity, long-duration, continuous auroral electrojet activity) and the so-called Russell-McPherron effect, work to make the ICME and CIR phenomena more geoeffective. The solar cycle dependence of the various sources in creating magnetic storms has yet to be quantitatively understood. (2) A serious controversy exists as to whether the successive occurrence of intense substorms plays a direct role in the energization of ring current particles or whether the enhanced electric field associated with southward IMF enhances the effect of substorm expansions. While most of the {ital Dst} variance during magnetic storms can be solely reproduced by changes in the large-scale electric field in the solar wind and the residuals are uncorrelated with substorms, recent satellite observations of the ring current constituents during the main phase of magnetic storms show the importance of ionospheric ions. This implies that ionospheric ions, which are associated with the frequent occurrence of intense substorms, are accelerated upward along magnetic field lines, contributing to the energy density of

  1. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 21: Basic Transistor Theory; Module 21T: Multi-Element Vacuum Tubes. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This set of individualized learning modules on transistor theory is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two modules are included in…

  2. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    SciTech Connect

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  3. 30 CFR 57.6604 - Precautions during storms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Precautions during storms. 57.6604 Section 57... Extraneous Electricity-Surface and Underground § 57.6604 Precautions during storms. During the approach and progress of an electrical storm— (a) Surface blasting operations shall be suspended and persons...

  4. 30 CFR 57.6604 - Precautions during storms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Precautions during storms. 57.6604 Section 57... Extraneous Electricity-Surface and Underground § 57.6604 Precautions during storms. During the approach and progress of an electrical storm— (a) Surface blasting operations shall be suspended and persons...

  5. 30 CFR 57.6604 - Precautions during storms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Precautions during storms. 57.6604 Section 57... Extraneous Electricity-Surface and Underground § 57.6604 Precautions during storms. During the approach and progress of an electrical storm— (a) Surface blasting operations shall be suspended and persons...

  6. 30 CFR 57.6604 - Precautions during storms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Precautions during storms. 57.6604 Section 57... Extraneous Electricity-Surface and Underground § 57.6604 Precautions during storms. During the approach and progress of an electrical storm— (a) Surface blasting operations shall be suspended and persons...

  7. 30 CFR 57.6604 - Precautions during storms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Precautions during storms. 57.6604 Section 57... Extraneous Electricity-Surface and Underground § 57.6604 Precautions during storms. During the approach and progress of an electrical storm— (a) Surface blasting operations shall be suspended and persons...

  8. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Ten: Transformers. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on transformers is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Six lessons are included in the module:…

  9. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 34: Linear Integrated Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on linear integrated circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two lessons are included in…

  10. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Two: Voltage. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on voltage is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Six lessons are included in the module: (1)…

  11. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Eight: Induction. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on induction is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the module: (1)…

  12. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 31: RF, IF, and Video Amplifiers. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on radio frequency (RF), intermediate frequency (IF), and video amplifiers is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a…

  13. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 30: Intermediate Power Supplies. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on intermediate power supplies is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included…

  14. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 33: Special Devices. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on special devices is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the…

  15. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 25: Special Devices. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on special devices is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Two lessons are included in the module:…

  16. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics. CANTRAC A-100-0010. Module 24: Wave Shaping Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on wave-shaping circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Three lessons are included in the…

  17. Industrial Arts Education Competency Catalogs for Basic Technical Drawing, Engineering Drawing, Architectural Drawing, Electricity and Electronics, Energy and Power, Graphic Communications.

    ERIC Educational Resources Information Center

    Old Dominion Univ., Norfolk, VA. Dept. of Industrial Arts Education.

    Six competency catalogs of tasks for industrial arts programs are presented. These include catalogs in Architectural Drawing, Basic Technical Drawing, Electricity and Electronics, Energy and Power, Engineering Drawing, and Graphic Communications. The purpose of each catalog is to establish a basis for program content selection and criterion levels…

  18. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Five: Relationships of Current, Voltage, and Resistance. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on the relationships of current, voltage, and resistance is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptaticn to vocational instructional and curriculum development in a civilian setting.…

  19. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Six: Parallel Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on parallel circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Four lessons are included in the…

  20. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Twelve: Series AC Resistive-Reactive Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on series alternating current resistive-reactive circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting.…

  1. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Eleven: Capacitance. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on capacitance is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian setting. Seven lessons are included in the module:…

  2. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Fourteen: Parallel AC Resistive-Reactive Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on parallel alternating current resistive-reaction circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and curriculum development in a civilian…

  3. Tropical Storm Frances Situation Report, September 7, 2004 (10:00 PM EDT)

    SciTech Connect

    2004-09-07

    The report provides highlights related to impacts of Tropical Storm Frances in the Florida area. Sections on electric information, oil and gas information, storm track, and county outage data are provided.

  4. Exploring the Basic Principles of Electric Motors and Generators with a Low-Cost Sophomore-Level Experiment

    ERIC Educational Resources Information Center

    Schubert, T. F.; Jacobitz, F. G.; Kim, E. M.

    2009-01-01

    In order to meet changing curricular needs, an electric motor and generator laboratory experience was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum and in that it focuses on modeling electric motors, predicting their performance, and measuring efficiency of energy conversion. While…

  5. Pacific Northwest Storms Situation Report # 1

    SciTech Connect

    2006-12-15

    Severe wind and snow storms hit the Pacific Northwest region on December 14 – 15, 2006, following severe flooding during the past few days. The severe weather resulted in major power outages through the region. At peak there were 1.8 million customers without power which included BC Hydro in Canada. Currently, there are over 1.5 million outages in the region as a result of the Pacific Northwest Storms. This represents about 42 percent of customers in affected utility service areas in Oregon and Washington. See table below. Because the current wind and snow storms are coming on the heels of extensive flooding in the region, electric utilities are experiencing damage. Wind gusts reached close to 100 mph in some areas of the region. The storm is expected to bring its strong winds and heavy snow into Idaho, Montana and Wyoming Friday and into the weekend. There are currently no reported major impacts to the petroleum and natural gas infrastructure.

  6. Characterizing Extreme Ionospheric Storms

    NASA Astrophysics Data System (ADS)

    Sparks, L.; Komjathy, A.; Altshuler, E.

    2011-12-01

    Ionospheric storms consist of disturbances of the upper atmosphere that generate regions of enhanced electron density typically lasting several hours. Depending upon the storm magnitude, gradients in electron density can sometimes become large and highly localized. The existence of such localized, dense irregularities is a major source of positioning error for users of the Global Positioning System (GPS). Consequently, satellite-based augmentation systems have been implemented to improve the accuracy and to ensure the integrity of user position estimates derived from GPS measurements. Large-scale irregularities generally do not pose a serious threat to estimate integrity as they can be readily detected by such systems. Of greater concern, however, are highly localized irregularities that interfere with the propagation of a signal detected by a user measurement but are poorly sampled by the receivers in the system network. The most challenging conditions have been found to arise following disturbances of large magnitude that occur only rarely over the course of a solar cycle. These extremely disturbed conditions exhibit behavior distinct from moderately disturbed conditions and, hence, have been designated "extreme storms". In this paper we examine and compare the behavior of the extreme ionospheric storms of solar cycle 23 (or, more precisely, extreme storms occurring between January 1, 2000, and December 31, 2008), as represented in maps of vertical total electron content. To identify these storms, we present a robust means of quantifying the regional magnitude of an ionospheric storm. Ionospheric storms are observed frequently to occur in conjunction with magnetic storms, i.e., periods of geophysical activity as measured by magnetometers. While various geomagnetic indices, such as the disturbance storm time (Dst) and the planetary Kp index, have long been used to rank the magnitudes of distinct magnetic storms, no comparable, generally recognized index exists for

  7. Coastal Storm Model.

    DTIC Science & Technology

    1976-04-30

    MILL IBARS I ~ 1022.8. 0 SEA I LND 0’ 100 A-STORM TRACK 200 :km. NORTH; B-STORM TRACK 0_____. T% WO - X00 SHORE SITEI C-STORM TRACK 300 SOU 00 .) -400 0...SCOTIA CANADA PRUF. C. . A. M._KING D PARTMENT IF GFOGRAPHY JR. H. J. SCHOEMAKER _1,NIVELSITY UF NOTT INGHAM . ... W ATFRLOUPKUNDIG LARIORATORIUM TE

  8. Transcranial electric stimulation (tES) and NeuroImaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience.

    PubMed

    Soekadar, Surjo R; Herring, Jim Don; McGonigle, David

    2016-10-15

    Transcranial electric stimulation (tES) of the brain has attracted an increased interest in recent years. Yet, despite remarkable research efforts to date, the underlying neurobiological mechanisms of tES' effects are still incompletely understood. This Special Issue aims to provide a comprehensive and up-to-date overview of the state-of-the-art in studies combining tES and neuroimaging, while introducing most recent insights and outlining future prospects related to this new and rapidly growing field. The findings reported here combine methodological advancements with insights into the underlying mechanisms of tES itself. At the same time, they also point to the many caveats and specific challenges associated with such studies, which can arise from both technical and biological sources. Besides promising to advance basic neuroscience, combined tES and neuroimaging studies may also substantially change previous conceptions about the methods of action of electric or magnetic stimulation on the brain.

  9. Global ionospheric disturbances during super magnetic storms

    NASA Astrophysics Data System (ADS)

    Huang, C.; Foster, J.; Rideout, W.; Zhang, Y.; Paxton, L.

    2005-12-01

    Magnetic storms represent the largest disturbances in the magnetosphere and ionosphere. We will present the ionospheric observations by the Millstone Hill incoherent scatter radar, global GPS network, and TIMED GUVI instrument during two super storms. The sudden commencement (SSC) of the 15 July 2000 storm occurred at 19 UT, and the minimum Dst reached -301 nT. The dayside midlatitude ionospheric F region electron density showed a sudden decrease at Millstone Hill and Eglin in response to the SSC. The elevation scan measurements of the Millstone HIll radar show that the sudden decrease in the ionospheric electron density was related to an electron density trough which had an equatorward boundary at Eglin (magnetic latitude 41 degree) at 16 MLT. The formation of the trough may be related to equatorward incursion of the disturbance SAPS electric field. The dayside TEC decreased significantly at the equatorial and upper midlatitudes, and an enhanced TEC band occurred between the depleted regions. The SSC of the 29 October 2003 storm occurred at 07 UT, the storm was further enhanced at 18 UT, and the minimum Dst reached -363 nT. The Millstone Hill radar also detected a sudden decrease of the dayside F region electron density immediately after the storm enhancement. The simultaneous TIMED GUVI measurements show a significant decrease in the O/N2 ratio over the Atlantic sector from the auroral zone to anomaly latitudes, and large TEC depletions occurred coincidentally with the O/N2 decrease. In this second case, both the enhanced electric field and decrease of O/N2 ratio contributed to the depletion of the dayside midlatitude F-region electron density and TEC. The multiple measurements during the two storms reveal the distinct properties and mechanisms of the global ionospheric disturbances.

  10. Ionospheric data assimilation and forecasting during storms

    NASA Astrophysics Data System (ADS)

    Chartier, Alex T.; Matsuo, Tomoko; Anderson, Jeffrey L.; Collins, Nancy; Hoar, Timothy J.; Lu, Gang; Mitchell, Cathryn N.; Coster, Anthea J.; Paxton, Larry J.; Bust, Gary S.

    2016-01-01

    Ionospheric storms can have important effects on radio communications and navigation systems. Storm time ionospheric predictions have the potential to form part of effective mitigation strategies to these problems. Ionospheric storms are caused by strong forcing from the solar wind. Electron density enhancements are driven by penetration electric fields, as well as by thermosphere-ionosphere behavior including Traveling Atmospheric Disturbances and Traveling Ionospheric Disturbances and changes to the neutral composition. This study assesses the effect on 1 h predictions of specifying initial ionospheric and thermospheric conditions using total electron content (TEC) observations under a fixed set of solar and high-latitude drivers. Prediction performance is assessed against TEC observations, incoherent scatter radar, and in situ electron density observations. Corotated TEC data provide a benchmark of forecast accuracy. The primary case study is the storm of 10 September 2005, while the anomalous storm of 21 January 2005 provides a secondary comparison. The study uses an ensemble Kalman filter constructed with the Data Assimilation Research Testbed and the Thermosphere Ionosphere Electrodynamics General Circulation Model. Maps of preprocessed, verticalized GPS TEC are assimilated, while high-latitude specifications from the Assimilative Mapping of Ionospheric Electrodynamics and solar flux observations from the Solar Extreme Ultraviolet Experiment are used to drive the model. The filter adjusts ionospheric and thermospheric parameters, making use of time-evolving covariance estimates. The approach is effective in correcting model biases but does not capture all the behavior of the storms. In particular, a ridge-like enhancement over the continental USA is not predicted, indicating the importance of predicting storm time electric field behavior to the problem of ionospheric forecasting.

  11. Electricity

    SciTech Connect

    Sims, B.

    1983-01-01

    Historical aspects of electricity are reviewed with individual articles on hydroelectric dams, coal-burning power plants, nuclear power plants, electricity distribution, and the energy future. A glossary is included. (PSB)

  12. Effects of a geomagnetic storm on thermospheric circulation. Master's thesis

    SciTech Connect

    Brinkman, D.G.

    1987-01-01

    The motions of the thermosphere and its interactions with the ionosphere during a geomagnetic storm are of current interest to space scientists. A two-dimensional model was used to simulate the thermospheric response to the impulsive high-latitude heating associated with a geomagnetic storm. The storm-induced motions can be characterized by an initial period of transient waves followed by the development of a mean circulation. These motions generate an electrical-current system that is on the same order of magnitude as, and in the opposite sense to the normal s/sub q/ current system. Model-simulated winds and electrical currents were then compared to observations.

  13. Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

    NASA Technical Reports Server (NTRS)

    Henderson, R. A.; Schrag, R. L.

    1986-01-01

    A summary of modeling the electrical system aspects of a coil and metal target configuration resembling a practical electro-impulse deicing (EIDI) installation, and a simple circuit for providing energy to the coil, was presented. The model was developed in sufficient theoretical detail to allow the generation of computer algorithms for the current in the coil, the magnetic induction on both surfaces of the target, the force between the coil and target, and the impulse delivered to the target. These algorithms were applied to a specific prototype EIDI test system for which the current, magnetic fields near the target surfaces, and impulse were previously measured.

  14. Developing Basic Electronics Aptitudes.

    ERIC Educational Resources Information Center

    Lakeshore Technical Coll., Cleveland, WI.

    This curriculum guide provides materials for basic training in electrical and electronic theory to enable participants to analyze circuits and use test equipment to verify electrical operations and to succeed in the beginning electrical and electronic courses in the Lakeshore Technical College (Wisconsin) electronics programs. The course includes…

  15. Dust storms: recent developments.

    PubMed

    Goudie, Andrew S

    2009-01-01

    Dust storms have a number of impacts upon the environment including radiative forcing, and biogeochemical cycling. They transport material over many thousands of kilometres. They also have a range of impacts on humans, not least on human health. In recent years the identification of source areas for dust storms has been an important area or research, with the Sahara (especially Bodélé) and western China being recognised as the strongest sources globally. Another major development has been the recognition of the degree to which dust storm activity has varied at a range of time scales, millennial, century, decadal, annual and seasonal.

  16. Hazards of geomagnetic storms

    USGS Publications Warehouse

    Herzog, D.C.

    1992-01-01

    Geomagnetic storms are large and sometimes rapid fluctuations in the Earth's magnetic field that are related to disturbances on the Sun's surface. Although it is not widely recognized, these transient magnetic disturbances can be a significant hazard to people and property. Many of us know that the intensity of the auroral lights increases during magnetic storms, but few people realize that these storms can also cause massive power outages, interrupt radio communications and satellite operations, increase corrosion in oil and gas pipelines, and lead to spuriously high rejection rates in the manufacture of sensitive electronic equipment. 

  17. 2001 Leonid Meteoroid Storm

    DTIC Science & Technology

    2007-11-02

    and discuss their possible consequences and mitigation strategies. 15. SUBJECT TERMS Meteors , Leonids, Meteoroids, Spacecraft, Meteor showers , Impact...release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT We present the latest predictions about the November 2001 Leonid Meteor storms

  18. Powerful Midwest Storm System

    NASA Video Gallery

    This animation of imagery from NOAA’s GOES-13 satellite shows themovement of storm systems in the south central United States on May 20,2013. Warm, moist gulf air flowing across Texas, Oklahoma...

  19. Tropical Storm Faxai

    NASA Video Gallery

    NASA/JAXA's TRMM Satellite provided data of developing Tropical Storm Faxai to make this 3-D image that showed some towering thunderstorms in the area were reaching altitudes of up to 15.5km/~9.6 m...

  20. Tropical Storm Don

    NASA Video Gallery

    GOES-13 data was compiled into an animation by the NASA GOES Project at NASA Goddard that shows the development of Tropical Storm Don in the southern Gulf of Mexico, west of Cuba. The animation run...

  1. Tropical Storm Dolly Develops

    NASA Video Gallery

    This animation from NOAA's GOES-East satellite from Aug. 31-Sept. 2 shows the movement of a low pressure area from the western Caribbean Sea over the Yucatan Peninsula as it becomes Tropical Storm ...

  2. Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

    NASA Technical Reports Server (NTRS)

    Henderson, Robert A.; Schrag, Robert L.

    1987-01-01

    A method of modelling a system consisting of a cylindrical coil with its axis perpendicular to a metal plate of finite thickness, and a simple electrical circuit for producing a transient current in the coil, is discussed in the context of using such a system for de-icing aircraft surfaces. A transmission line model of the coil and metal plate is developed as the heart of the system model. It is shown that this transmission model is central to calculation of the coil impedance, the coil current, the magnetic fields established on the surfaces of the metal plate, and the resultant total force between the coil and the plate. FORTRAN algorithms were developed for numerical calculation of each of these quantities, and the algorithms were applied to an experimental prototype system in which these quantities had been measured. Good agreement is seen to exist between the predicted and measured results.

  3. Lightning parameterization in a storm electrification model

    NASA Technical Reports Server (NTRS)

    Helsdon, John H., Jr.; Farley, Richard D.; Wu, Gang

    1988-01-01

    The parameterization of an intracloud lightning discharge has been implemented in our Storm Electrification Model. The initiation, propagation direction, termination and charge redistribution of the discharge are approximated assuming overall charge neutrality. Various simulations involving differing amounts of charge transferred have been done. The effects of the lightning-produced ions on the hydrometeor charges, electric field components and electrical energy depend strongly on the charge transferred. A comparison between the measured electric field change of an actual intracloud flash and the field change due to the simulated discharge show favorable agreement.

  4. Proton exchange membrane fuel cells for space and electric vehicle applications: From basic research to technology development

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James

    1994-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.

  5. The relationship of storm severity to directionally resolved radio emissions

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.

    1986-01-01

    The objective was to provide continuous observation of atmospheric electrical activity occurring in association with tropical storms in the Gulf of Mexico. The observations were to include the location of all detected intracloud and cloud-to-ground lightning activity occurring in the storm. To provide synoptic scale coverage, a phase linear interferometer high frequency direction finder (HFDF) system was constructed and developed at Marshall Space Flight Center (MSFC). This was used in concert with the existing HFDF interferometer at the southwest research institute to provide lightning location data through triangulation. Atmospheric electrical events were synchronized through the use of satellite receivers at each site. The intent of the data analysis was to correlate the location of electrical centers of activity with radar and satellite imagry to identify areas of intense convection within the tropical storm system. Analysis of the hurricane Alicia data indicate a center of atmospheric electrical activity associated with the vortex of the storm. The center appears to rotate from the Northern side of the vortex to the Southern side during the period of observation. An analysis of the atmospheric electrical burst rates associated with hurrican Alicia indicates that the electrical activity appears to maximize at the time of greatest storm intensity, i.e., maximum winds and lowest central pressure.

  6. Coastal storm monitoring in Virginia

    USGS Publications Warehouse

    Wicklein, Shaun M.; Bennett, Mark

    2014-01-01

    Coastal communities in Virginia are prone to flooding, particularly during hurricanes, nor’easters, and other coastal low-pressure systems. These weather systems affect public safety, personal and public property, and valuable infrastructure, such as transportation, water and sewer, and electric-supply networks. Local emergency managers, utility operators, and the public are tasked with making difficult decisions regarding evacuations, road closures, and post-storm recovery efforts as a result of coastal flooding. In coastal Virginia these decisions often are made on the basis of anecdotal knowledge from past events or predictions based on data from monitoring sites located far away from the affected area that may not reflect local conditions. Preventing flood hazards, such as hurricane-induced storm surge, from becoming human disasters requires an understanding of the relative risks that flooding poses to specific communities. The risk to life and property can be very high if decisions about evacuations and road closures are made too late or not at all.

  7. An interval-possibilistic basic-flexible programming method for air quality management of municipal energy system through introducing electric vehicles.

    PubMed

    Yu, L; Li, Y P; Huang, G H; Shan, B G

    2017-03-25

    Contradictions of sustainable transportation development and environmental issues have been aggravated significantly and been one of the major concerns for energy systems planning and management. A heavy emphasis is placed on stimulation of electric vehicles (EVs) to handle these problems associated with various complexities and uncertainties in municipal energy system (MES). In this study, an interval-possibilistic basic-flexible programming (IPBFP) method is proposed for planning MES of Qingdao, where uncertainties expressed as interval-flexible variables and interval-possibilistic parameters can be effectively reflected. Support vector regression (SVR) is used for predicting electricity demand of the city under various scenarios. Solutions of EVs stimulation levels and satisfaction levels in association with flexible constraints and predetermined necessity degrees are analyzed, which can help identify the optimized energy-supply patterns that could plunk for improvement of air quality and hedge against violation of soft constraints. Results disclose that largely developing EVs can help facilitate the city's energy system with an environment-effective way. However, compared to the rapid growth of transportation, the EVs' contribution of improving the city's air quality is limited. It is desired that, to achieve an environmentally sustainable MES, more concerns should be focused on the integration of increasing renewable energy resources, stimulating EVs as well as improving energy transmission, transport and storage.

  8. Great magnetic storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Lee, Yen T.; Gonzalez, Walter D.; Tang, Frances

    1992-01-01

    The five largest magnetic storms that occurred between 1971 to 1986 are studied to determine their solar and interplanetary causes. All of the events are found to be associated with high speed solar wind streams led by collisionless shocks. The high speed streams are clearly related to identifiable solar flares. It is found that: (1) it is the extreme values of the southward interplanetary magnetic fields rather than solar wind speeds that are the primary causes of great magnetic storms, (2) shocked and draped sheath fields preceding the driver gas (magnetic cloud) are at least as effective in causing the onset of great magnetic storms (3 of 5 events) as the strong fields within the driver gas itself, and (3) precursor southward fields ahead of the high speed streams allow the shock compression mechanism (item 2) to be particularly geoeffective.

  9. Storms and Moons

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons Long Range Reconnaissance Imager (LORRI) took this 2-millisecond exposure of Jupiter at 04:41:04 UTC on January 24, 2007. The spacecraft was 57 million kilometers (35.3 million miles) from Jupiter, closing in on the giant planet at 41,500 miles (66,790 kilometers) per hour. At right are the moons Io (bottom) and Ganymede; Ganymede's shadow creeps toward the top of Jupiter's northern hemisphere.

    Two of Jupiter's largest storms are visible; the Great Red Spot on the western (left) limb of the planet, trailing the Little Red Spot on the eastern limb, at slightly lower latitude. The Great Red Spot is a 300-year old storm more than twice the size of Earth. The Little Red Spot, which formed over the past decade from the merging of three smaller storms, is about half the size of its older and 'greater' counterpart.

  10. Storm Warning Service

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A Huntsville meteorologist of Baron Services, Inc. has formed a commercial weather advisory service. Weather information is based on data from Marshall Space Flight Center (MSFC) collected from antennas in Alabama and Tennessee. Bob Baron refines and enhances MSFC's real time display software. Computer data is changed to audio data for radio transmission, received by clients through an antenna and decoded by computer for display. Using his service, clients can monitor the approach of significant storms and schedule operations accordingly. Utilities and emergency management officials are able to plot a storm's path. A recent agreement with two other companies will promote continued development and marketing.

  11. Superposed Epoch Analysis of Current Systems During Intense Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Katus, R. M.

    2013-05-01

    A statistical approach to investigating the intensity and timing of storm-time current systems is conducted and presented. The Hot Electron and Ion Drift Integrator (HEIDI) model was used to simulate all of the intense storms (Dstmin < -100 nT) from solar cycle 23 (1996-2005). Five different HEIDI input combinations were used to create a large collection of numerical results, varying the plasma outer boundary condition and electric field description in the model. The simulation results are then combined with a normalized superposed epoch analysis, where each phase of each storm is prorated to the average duration of that phase and then all of the storms are averaged together. The azimuthal currents in the HEIDI simulation domain are classified as westward and eastward symmetric ring current, partial ring current, banana current, and tail current. The average behavior of these current systems with respect to the HEIDI plasma and electric field boundary conditions are then presented and discussed. It is found that the Volland-Stern electric field produces an earlier increase in the inner magnetospheric current systems because of the usage of the 3-h Kp index. A self-consistent electric field develops the current systems a few hours later, but produces much stronger asymmetric current systems (partial, banana, and tail currents), especially in the main phase of the storm. Applying a nonuniform local time distribution for the plasma outer boundary condition slightly increases the magnitudes of the current systems, but this effect is smaller than the electric field influence.

  12. Basic Electronics I.

    ERIC Educational Resources Information Center

    Robertson, L. Paul

    Designed for use in basic electronics programs, this curriculum guide is comprised of twenty-nine units of instruction in five major content areas: Orientation, Basic Principles of Electricity/Electronics, Fundamentals of Direct Current, Fundamentals of Alternating Current, and Applying for a Job. Each instructional unit includes some or all of…

  13. Tropical Storm Lee to Newfoundland

    NASA Video Gallery

    This video shows Tropical Storm Lee as it made landfall in Louisiana and Mississippi on September 4, 2011. This storm produced flooding and tornadoes to the southern states all the way to flooding ...

  14. California's Perfect Storm

    ERIC Educational Resources Information Center

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  15. Tropical Storm Katrina

    Atmospheric Science Data Center

    2014-05-15

    ... Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are ... nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper ...

  16. STORM INLET FILTRATION DEVICE

    EPA Science Inventory

    Five field tests were conducted to evaluate the effectiveness of the Storm and Groundwater Enhancement Systems (SAGES) device for removing contaminants from stormwater. The SAGES device is a three-stage filtering system that could be used as a best management practices (BMP) retr...

  17. Recovery from major storms

    SciTech Connect

    Holeman, J.S.

    1980-01-01

    Public Service Company of Oklahoma's transmission and distribution system is in tornado alley, and it seems the number of tornados hitting some part of the system is increasing each year. In the past 30 years, Tulsa his been hit 7 times, and experienced 3 very wide and destructive tornado storm systems between 1971 and 1975.

  18. Estimation of Observatory Geoelectric Fields Induced during Great Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Swidinsky, A.

    2014-12-01

    In support of a project for monitoring hazards for electric power grids, we present a new method for estimating electric fields that are induced in the Earth's interior at a particular site during magnetic storms. For this, we adopt a model of the electrical conductivity of the lithosphere that is simple but sufficient to model most variation in the induced geoelectric field: two horizontal layers, each with uniform electrical conductivity properties that can be parameterized by a galvanic distortion tensor. After Laplace transformation of the induction equations into the complex frequency domain, we obtain an electromagnetic impedance function. Upon inverse transformation back to the time domain, convolution of the impedance tensor with a geomagnetic time series yields an estimated geoelectric time series. We optimize the model conductivity parameters using 1-sec resolution magnetic and electric field data collected at the Kakioka magnetic observatory during the October 2003 Halloween storm. We validate the algorithm against Kakioka magnetic and electric field data for the July 2000 Bastille-Day storm. Finally, we infer 1-sec geoelectric fields that were realized (but not directly measured) in Japan during the 1989 Quebec storm. Results highlight the need for improved ground-level monitoring of geomagnetic and geoelectric fields. They also reveal the need for accommodating the galvanic distortion of three-dimensional conductivity when predicting geoelectric fields in the lithosphere and geomagnetically induced currents in electric power grids.

  19. Electrical Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    The purpose of this electrical program is to prepare students for service, repair, and assembly of electrically driven or controlled devices. The program theory and application includes mechanical assemblies, electrical circuitry, and electronic principles including basic digital circuitry. The electrical program manual includes the following…

  20. Historic and Future Ice Storms

    NASA Astrophysics Data System (ADS)

    Klima, K.; Morgan, M. G.

    2014-12-01

    Ice storm losses from business interruption as well as transportation and health damages can range into billions of dollars. For instance, the December 2008 New England and Upstate New York ice storm caused four deaths and monetary damages between 2.5 and 3.7 billion, and the 2008 Chinese winter storms resulted in over 130 deaths and over 20 billion in damages. Informal discussions with ice storm experts indicate that due to competing temperature and precipitation effects as well as local topographic effects, it is unclear how exactly climate change will affect ice storms. Here we ask how incident frequencies might change in a future climate at four weather stations prone to ice storms. Using historical atmospheric soundings, we conduct a thought experiment where we perturb the temperatures as might be expected in a future climate. We then discuss changes in monthly frequency of ice storms.

  1. Military Curricula for Vocational & Technical Education. Basic Electricity and Electronics Individualized Learning System. CANTRAC A-100-0010. Module Nine: Relationships of Current, Counter EMF, and Voltage in LR Circuits. Study Booklet.

    ERIC Educational Resources Information Center

    Chief of Naval Education and Training Support, Pensacola, FL.

    This individualized learning module on the relationships of current, electromotive force, and voltage in inductive-resistive circuits is one in a series of modules for a course in basic electricity and electronics. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instructional and…

  2. Extreme Geomagnetic Storms - 1868 - 2010

    NASA Astrophysics Data System (ADS)

    Vennerstrom, S.; Lefevre, L.; Dumbović, M.; Crosby, N.; Malandraki, O.; Patsou, I.; Clette, F.; Veronig, A.; Vršnak, B.; Leer, K.; Moretto, T.

    2016-05-01

    We present the first large statistical study of extreme geomagnetic storms based on historical data from the time period 1868 - 2010. This article is the first of two companion papers. Here we describe how the storms were selected and focus on their near-Earth characteristics. The second article presents our investigation of the corresponding solar events and their characteristics. The storms were selected based on their intensity in the aa index, which constitutes the longest existing continuous series of geomagnetic activity. They are analyzed statistically in the context of more well-known geomagnetic indices, such as the Kp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensive geomagnetic measure of the extreme storms. We rank the storms by including long series of single magnetic observatory data. The top storms on the rank list are the New York Railroad storm occurring in May 1921 and the Quebec storm from March 1989. We identify key characteristics of the storms by combining several different available data sources, lists of storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks, solar wind in-situ measurements, neutron monitor data, and associated identifications of Forbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms are very strongly correlated with the occurrence of interplanetary shocks (91 - 100 %), Forbush decreases (100 %), and energetic solar proton events (70 %). A quantitative comparison of these associations relative to less intense storms is also presented. Most notably, we find that most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar wind disturbances and that they frequently occur when the geomagnetic activity is already elevated. We also investigate the semiannual variation in storm occurrence

  3. Dust Storm, Aral Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Aral Sea has shrunk to less than half its size since 1985. The Aral Sea receives little water (sometimes no water) from the two major rivers that empty into it-the Syr Darya and Amu Darya. Instead, the river water is diverted to support irrigation for the region's extensive cotton fields. Recently, water scarcity has increased due to a prolonged drought in Central Asia. As the Aral Sea recedes, its former sea bed is exposed. The Aral's sea bed is composed of fine sediments-including fertilizers and other agricultural chemicals-that are easily picked up by the region's strong winds, creating thick dust storms. The International Space Station crew observed and recorded a large dust storm blowing eastward from the Aral Sea in late June 2001. This image illustrates the strong coupling between human activities (water diversions and irrigation), and rapidly changing land, sea and atmospheric processes-the winds blow across the

  4. Ice Storm Supercomputer

    SciTech Connect

    2009-01-01

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  5. Ice Storm Supercomputer

    ScienceCinema

    None

    2016-07-12

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  6. How Ionospheric Ions Populate the Magnetosphere during a Magnetic Storm

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, T. E.; Kistler, L. M.; Slinker, S. P.; Fedder, J. A.; Delcourt, D. C.

    2008-01-01

    Ionospheric oxygen ions have been observed throughout the magnetosphere, from the plasma sheet to the ring current region. I t has been found that the O+ /H+ density ratio in the magnetosphere increases with geomagnetic activity and varies with storm phases. During the magnetic storm in late September to earIy October 2002, Cluster was orbiting in the plasma sheet and ring current regions. At prestorm time, Cluster observed high H+ density and low O+ density in the plasma sheet and lobes. During the storm main phase, 0+ density has increased by 10 times over the pre-storm level. Strong field-aligned beams of O+ were observed in the lobes. O+ fluxes were significantly reduced in the central plasma sheet during the storm recovery. However, 0+ was still evident on the boundaries of the plasma sheet and in the lobes. In order to interpret the Cluster observations and to understand how O+ ions populate the magnetosphere during a magnetic storm, we model the storm in early October 2002 using our global ion kinetic simulation (GIK). We use the LFN global simulation model to produce electric and magnetic fields in the outer magnetosphere, the Strangeway outflow scaling with Delcourt ion trajectories to include ionospheric outflows, and the Fok inner magnetospheric model for the plasmaspheric and ring current response to all particle populations. We find that the observed composition features are qualitatively reproduced by the simulations, with some quantitative differences that point to future improvements in the models.

  7. Defining Coastal Storm and Quantifying Storms Applying Coastal Storm Impulse Parameter

    NASA Astrophysics Data System (ADS)

    Mahmoudpour, Nader

    2014-05-01

    What defines a storm condition and what would initiate a "storm" has not been uniquely defined among scientists and engineers. Parameters that have been used to define a storm condition can be mentioned as wind speed, beach erosion and storm hydrodynamics parameters such as wave height and water levels. Some of the parameters are storm consequential such as beach erosion and some are not directly related to the storm hydrodynamics such as wind speed. For the purpose of the presentation, the different storm conditions based on wave height, water levels, wind speed and beach erosion will be discussed and assessed. However, it sounds more scientifically to have the storm definition based on the hydrodynamic parameters such as wave height, water level and storm duration. Once the storm condition is defined and storm has initiated, the severity of the storm would be a question to forecast and evaluate the hazard and analyze the risk in order to determine the appropriate responses. The correlation of storm damages to the meteorological and hydrodynamics parameters can be defined as a storm scale, storm index or storm parameter and it is needed to simplify the complexity of variation involved developing the scale for risk analysis and response management. A newly introduced Coastal Storm Impulse (COSI) parameter quantifies storms into one number for a specific location and storm event. The COSI parameter is based on the conservation of linear, horizontal momentum to combine storm surge, wave dynamics, and currents over the storm duration. The COSI parameter applies the principle of conservation of momentum to physically combine the hydrodynamic variables per unit width of shoreline. This total momentum is then integrated over the duration of the storm to determine the storm's impulse to the coast. The COSI parameter employs the mean, time-averaged nonlinear (Fourier) wave momentum flux, over the wave period added to the horizontal storm surge momentum above the Mean High

  8. Weather radar research at the USA's storm laboratory

    NASA Technical Reports Server (NTRS)

    Doviak, R. J.

    1982-01-01

    Radar research that is directed toward improving storm forecasts and hazard warnings and studying lightning is discussed. The two moderately sensitive Doppler weather radars in central Oklahoma, with their wide dynamic range, have demonstrated the feasibility of mapping wind fields in all weather conditions from the clear skies of quiescent air and disturbed prestorm air near the earth's surface to the optically opaque interior of severe and sometimes tornadic thunderstorms. Observations and analyses of Doppler weather radar data demonstrate that improved warning of severe storm phenomena and improved short-term forecast of storms may be available when Doppler techniques are well integrated into the national network of weather radars. When used in combination with other sensors, it provides an opportunity to learn more about the complex interrelations between the wind, water, and electricity in storms.

  9. Statistical analysis of geomagnetic storm driver and intensity

    NASA Astrophysics Data System (ADS)

    Katus, R. M.; Liemohn, M. W.

    2013-05-01

    Geomagnetic storms are investigated statistically with respect to the solar wind driver and the intensity of the events. The Hot Electron and Ion Drift Integrator (HEIDI) model was used to simulate all of the intense storms (minimum Dst < - 100 nT) from solar cycle 23 (1996-2005). Four different configurations of HEIDI were used to investigate the outer boundary condition and electric field description. The storms are then classified as being a coronal mass ejection (CME) or corotating interaction region (CIR) driven event and binned based on the magnitude of the minimum Dst. The simulation results as well as solar wind and geomagnetic data sets are then analyzed along a normalized epoch timeline. The average behavior of each storm type and the corresponding HEIDI configurations are then presented and discussed. It is found that while the self-consistent electric field better reproduces stronger CME driven storms, the Volland-Stern electric field does well reproducing the results for CIR driven events.

  10. Storm-Substorm Relations Workshop

    NASA Astrophysics Data System (ADS)

    Kan, Joe

    2006-06-01

    Magnetic storms in the magnetosphere can cause damage to communication satellites and large-scale power outages. The concept that a magnetic storm is a compilation of a series of substorms was proposed by Akasofu [1968]. However, Kamide [1992] showed that substorms are not a necessary condition for the occurrence of a magnetic storm. This controversy initiated a new era of research on the storm-substorm relation, which was the subject of a recent workshop in Banff, Alberta, Canada. The main topics discussed during the meeting included a brief overview of what a substorm is, how quasiperiodic substorm events and steady magnetospheric convection (SMC) events without substorms contribute to storms, and how plasma flows enhanced by magnetic reconnection in the plasma sheet contribute to substorms and storms.

  11. Desert Shield/Storm Logistics

    DTIC Science & Technology

    1993-04-15

    Wc This document may not be retee for open publiarion until it has bm deaed by the Vproprnite military service or gmeanen agency. DESERT SHIELD /STORM...capture what had occurred during Operations DESERT SHIELD and STORM, the commanders of the Division Support Command of the 24th Infantry Division...Mechanized) held a ful. day of discussion centering on what occurted during Operation DESERT STORM and its preceding operation, DESERT SHIELD . The entire

  12. Tropical Storm Erin

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Location: The Atlantic Ocean 210 miles south of Galveston, Texas Categorization: Tropical Storm Sustained Winds: 40 mph (60 km/hr)

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Infrared ImageMicrowave Image

    Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity.

    Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue

  13. Storms & Blizzards. The Natural Disaster Series. Grades 4-8.

    ERIC Educational Resources Information Center

    Micallef, Mary

    This document provides a unit of lessons and activities on thunder storms and blizzards that are intended to provide students with a basic understanding of the causes and consequences of these natural disasters. The booklet is designed to be used in correlation with a science unit or as a supplement to an elementary science curriculum. The lessons…

  14. STORM WATER BEST MANAGEMENT PRACTICES: CAPACITIES, CAPABILITIES, AND SOME LIMITATIONS

    EPA Science Inventory

    This presentation will cover the basics of what a storm water best management practices and focus on infiltration-type practices using the example of rain gardens. I will demonstrate how water moves through rain gardens with a simple hydrologic model and discuss ancillary benefit...

  15. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  16. Communicating Storm Surge Forecast Uncertainty

    NASA Astrophysics Data System (ADS)

    Troutman, J. A.; Rhome, J.

    2015-12-01

    When it comes to tropical cyclones, storm surge is often the greatest threat to life and property along the coastal United States. The coastal population density has dramatically increased over the past 20 years, putting more people at risk. Informing emergency managers, decision-makers and the public about the potential for wind driven storm surge, however, has been extremely difficult. Recently, the Storm Surge Unit at the National Hurricane Center in Miami, Florida has developed a prototype experimental storm surge watch/warning graphic to help communicate this threat more effectively by identifying areas most at risk for life-threatening storm surge. This prototype is the initial step in the transition toward a NWS storm surge watch/warning system and highlights the inundation levels that have a 10% chance of being exceeded. The guidance for this product is the Probabilistic Hurricane Storm Surge (P-Surge) model, which predicts the probability of various storm surge heights by statistically evaluating numerous SLOSH model simulations. Questions remain, however, if exceedance values in addition to the 10% may be of equal importance to forecasters. P-Surge data from 2014 Hurricane Arthur is used to ascertain the practicality of incorporating other exceedance data into storm surge forecasts. Extracting forecast uncertainty information through analyzing P-surge exceedances overlaid with track and wind intensity forecasts proves to be beneficial for forecasters and decision support.

  17. Toward storm-time ionosphere forecast using GNSS observations

    NASA Astrophysics Data System (ADS)

    Lin, Charles; Chen, Chia-Hung; Liu, Tiger J. Y.; Chen, Wei-Han

    2016-04-01

    Previous theoretical simulations of the mid- and low-latitude ionospheric responses to space weather events have indicated general features of electron density disturbances. The magnetic storm produced penetration electric field and neutral wind disturbances lead to formation of various storm-time ionospheric electron density structures, such as super plasma fountain, equatorial electron density trough and F3 layer, as well as long-lasting global ionosphere suppression. We attempt to model these storm-related ionospheric electron density structures using the global assimilative ionospheric model that assimilates electron densities taken from FORMOSAT-3/COSMIC and TEC from ground-based GNSS receivers. Using the ensemble Kalman filter with consideration of ion densities, electric potential, thermospheric neutral wind and compositions as update variables, we study the performance and forecast capability of the assimilative model. The assimilative model could be utilized for ionosphere forecast in near future.

  18. Ionospheric redistribution during geomagnetic storms.

    PubMed

    Immel, T J; Mannucci, A J

    2013-12-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<-100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3-6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow.

  19. Thyroid storm: an updated review.

    PubMed

    Chiha, Maguy; Samarasinghe, Shanika; Kabaker, Adam S

    2015-03-01

    Thyroid storm, an endocrine emergency first described in 1926, remains a diagnostic and therapeutic challenge. No laboratory abnormalities are specific to thyroid storm, and the available scoring system is based on the clinical criteria. The exact mechanisms underlying the development of thyroid storm from uncomplicated hyperthyroidism are not well understood. A heightened response to thyroid hormone is often incriminated along with increased or abrupt availability of free hormones. Patients exhibit exaggerated signs and symptoms of hyperthyroidism and varying degrees of organ decompensation. Treatment should be initiated promptly targeting all steps of thyroid hormone formation, release, and action. Patients who fail medical therapy should be treated with therapeutic plasma exchange or thyroidectomy. The mortality of thyroid storm is currently reported at 10%. Patients who have survived thyroid storm should receive definite therapy for their underlying hyperthyroidism to avoid any recurrence of this potentially fatal condition.

  20. Clouds and Dust Storms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with

  1. Dust storm in Chad

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Chad (lower left) and the surrounding wetlands are under increasing pressure from desertification. The encroachment of the Sahara occurs with creeping sand dunes and major dust storms, such as the one pictured in this MODIS image from October 28, 2001. The amount of open water (lighter green patch within the darker one) has declined markedly over the last decades and the invasion of dunes is creating a rippled effect through the wetlands that is all too clear in the high-resolution images. Growing population and increasing demands on the lake give it an uncertain future. The loss of such an important natural resource will have profound effects on the people who depend on the rapidly diminishing source of fresh water. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  2. Anesthesia Basics

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Anesthesia Basics KidsHealth > For Teens > Anesthesia Basics Print A ... español Conceptos básicos sobre la anestesia What Is Anesthesia? No doubt about it, getting an operation can ...

  3. Moments of catchment storm area

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Wang, Q.

    1985-01-01

    The portion of a catchment covered by a stationary rainstorm is modeled by the common area of two overlapping circles. Given that rain occurs within the catchment and conditioned by fixed storm and catchment sizes, the first two moments of the distribution of the common area are derived from purely geometrical considerations. The variance of the wetted fraction is shown to peak when the catchment size is equal to the size of the predominant storm. The conditioning on storm size is removed by assuming a probability distribution based upon the observed fractal behavior of cloud and rainstorm areas.

  4. Centralized Storm Information System (CSIS)

    NASA Technical Reports Server (NTRS)

    Norton, C. C.

    1985-01-01

    A final progress report is presented on the Centralized Storm Information System (CSIS). The primary purpose of the CSIS is to demonstrate and evaluate real time interactive computerized data collection, interpretation and display techniques as applied to severe weather forecasting. CSIS objectives pertaining to improved severe storm forecasting and warning systems are outlined. The positive impact that CSIS has had on the National Severe Storms Forecast Center (NSSFC) is discussed. The benefits of interactive processing systems on the forecasting ability of the NSSFC are described.

  5. Myriad Genetics: In the eye of the policy storm.

    PubMed

    Gold, E Richard; Carbone, Julia

    2010-04-01

    From the late 1980s, a storm surrounding the wisdom, ethics, and economics of human gene patents has been brewing. The various winds of concern in this storm touched on the impact of gene patents on basic and clinical research, on health care delivery, and on the ability of public health care systems to provide equal access when faced with costly patented genetic diagnostic tests. Myriad Genetics, Inc., along with its subsidiary, Myriad Genetic Laboratories, Inc., a small Utah-based biotechnology company, found itself unwittingly in the eye of this storm after a series of decisions it made regarding the commercialization of a hereditary breast cancer diagnostic test. This case study examine the background to Myriad's decisions, the context in which these decisions were made and the policy, research and business response to them.

  6. Myriad Genetics: In the eye of the policy storm

    PubMed Central

    Gold, E. Richard; Carbone, Julia

    2011-01-01

    From the late 1980s, a storm surrounding the wisdom, ethics, and economics of human gene patents has been brewing. The various winds of concern in this storm touched on the impact of gene patents on basic and clinical research, on health care delivery, and on the ability of public health care systems to provide equal access when faced with costly patented genetic diagnostic tests. Myriad Genetics, Inc., along with its subsidiary, Myriad Genetic Laboratories, Inc., a small Utah-based biotechnology company, found itself unwittingly in the eye of this storm after a series of decisions it made regarding the commercialization of a hereditary breast cancer diagnostic test. This case study examine the background to Myriad's decisions, the context in which these decisions were made and the policy, research and business response to them. PMID:20393310

  7. Severe Storms Branch research report (April 1984 April 1985)

    NASA Technical Reports Server (NTRS)

    Dubach, L. (Editor)

    1985-01-01

    The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior.

  8. Polar and equatorial ionosphere interaction during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Biktash, L.

    The solar wind-magnetosphere-ionosphere coupling as applied to the polar and equatorial ionosphere dynamics is examined. To do this simultaneous observations of the IMF, ground-based measurements of the ionospheric parameters and geomagnetic field variations from the high latitudes to the equator are used during magnetic storms. It is shown that the auroral electric fields during magnetically disturbed conditions by the magnetospheric current systems can play a dominant role in the equatorial ionosphere processes. During magnetic storms the equatorial ionosphere parameters h'F, foF2 and etc. widely deviated from quiet day conditions and different kinds of ionospheric irregularities are formed. The equatorial ionospheric irregularities manifest as spread F in ionograms, reversals of drift velocities, scintillation of radio transmissions through the ionosphere, etc. These phenomena can interpret as the result of direct penetration of electric fields from the high latitude field-aligned currents (FAC) to the equatorial ionosphere. Model of direct penetration of FAC electric field of Polar Regions 1 and Region 2, which are controlled by the solar wind, to the equatorial ionosphere is presented. From this model the solar wind electric field through the FAC is likely to the factor wich generate or inhibit the equatorward penetration of the high latitude electric field. We demonstrate that the model is suitable to explain h'F, foF2 variations and scintillation activity during geomagnetic storms. Taking into account of the equatorial and auroral electric fields coupling, relationship, between these regions can be useful to study difficult auroral conditions during magnetic storms.

  9. Neonatal thyroid storm accompanied with severe anaemia.

    PubMed

    Cao, Lu-Ying; Wei, Hong; Wang, Zheng-Li

    2015-07-01

    Neonatal thyroid storm is rare; the diagnostic criteria and management of neonatal thyroid storm have not been well established. In this paper, we report a preterm infant diagnosed with neonatal hyperthyroidism secondary to maternal Graves' disease who was discharged after therapy. Unfortunately, he was rehospitalised for neonatal thyroid storm. We will discuss the diagnosis and general therapy of neonatal thyroid storm.

  10. The Radiation Belt Storm Probes

    NASA Video Gallery

    The Radiation Belt Storm Probe mission (RBSP) will explore the Van Allen Radiation Belts in the Earth's magnetosphere. The charge particles in these regions can be hazardous to both spacecraft and ...

  11. Storm Water Management Model (SWMM)

    EPA Pesticide Factsheets

    EPA's Storm Water Management Model (SWMM) is used throughout the world for planning, analysis and design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban areas.

  12. Cloudsat Dissects Tropical Storm Ileana

    NASA Video Gallery

    NASA's CloudSat satellite's Cloud Profiling Radar captured a sideways look across Tropical Storm Ileana on Aug. 27 at 20:40 UTC. The colors indicate intensity of reflected radar energy. The blue ar...

  13. Satellite Animation Shows California Storms

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite shows a series of moisture-laden storms affecting California from Jan. 6 through Jan. 9, 2017. TRT: 00:36 Credit: NASA...

  14. Tropical Storm Faxai's Rainfall Rates

    NASA Video Gallery

    This animation shows Tropical Storm Faxai's rainfall rates on March 2 from a TRMM TMI/PR rainfall analysis being faded in over infrared cloud data from the TRMM VIRS instrument. Credit: SSAI/NASA, ...

  15. Winter Storms and Extreme Cold

    MedlinePlus

    ... Us Social Media Contact Us FAQS Publications Emergency Alerts Home Search × Close Search Enter Search Term(s): Languages × ... take when you receive a winter weather storm alert from the National Weather Service for your local ...

  16. Storm and Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Yesterday's storm front was moving westward, today's moves eastward. Note the thick cloud cover and beautifully delineated cloud tops.

    Image information: VIS instrument. Latitude 72.1, Longitude 308.3 East (51.7 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Riding the storm out

    NASA Astrophysics Data System (ADS)

    Wurman, Josh

    2009-04-01

    I am standing on a bridge near the North Carolina coast. There is a light breeze, and I am enjoying some hazy sunshine. But this calm is an illusion: in a few minutes winds of up to 45ms-1 (100 mph) will sweep in again. The approaches to my section of the bridge are already drowned under 2.5 m of water, and my companions on this island are an eclectic mix of traumatized animals, including snakes, rats, wounded pelicans and frogs. Earlier, one of the snakes flew through the air past my truck. The animals and I have been drawn to this bridge by Hurricane Isabel, which has just slammed into the coastal islands of North Carolina, and at the moment we are in the calm, sunny eye of the storm. The animals are just trying to survive on the area's only dry ground. But I have come to the bridge with a radar system on a truck and have spent a night and a day on it because I want to know what is happening inside this hurricane.

  18. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<−100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3–6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  19. The Basics

    ERIC Educational Resources Information Center

    Indrisano, Roselmina; And Others

    1976-01-01

    These articles are presented as an aide in teaching basic subjects. This issue examines reading diagnosis, food preservation, prime numbers, electromagnets, acting out in language arts, self-directed spelling activities, and resources for environmental education. (Editor/RK)

  20. Basic Finance

    NASA Technical Reports Server (NTRS)

    Vittek, J. F.

    1972-01-01

    A discussion of the basic measures of corporate financial strength, and the sources of the information is reported. Considered are: balance sheet, income statement, funds and cash flow, and financial ratios.

  1. Fluoridation Basics

    MedlinePlus

    ... Water Fluoridation Journal Articles for Community Water Fluoridation Water Fluoridation Basics Recommend on Facebook Tweet Share Compartir ... because of tooth decay. History of Fluoride in Water In the 1930s, scientists examined the relationship between ...

  2. Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Jin, Rui; Kutoglu, H.

    2017-01-01

    The most intense geomagnetic storm in solar cycle 24 occurred on March 17, 2015, and the detailed ionospheric storm morphologies are difficultly obtained from traditional observations. In this paper, the Geostationary Earth Orbit (GEO) observations of BeiDou Navigation Satellite System (BDS) are for the first time used to investigate the ionospheric responses to the geomagnetic storm. Using BDS GEO and GIMs TEC series, negative and positive responses to the March 2015 storm are found at local and global scales. During the main phase, positive ionospheric storm is the main response to the geomagnetic storm, while in the recovery phase, negative phases are pronounced at all latitudes. Maximum amplitudes of negative and positive phases appear in the afternoon and post-dusk sectors during both main and recovery phases. Furthermore, dual-peak positive phases in main phase and repeated negative phase during the recovery are found from BDS GEO observations. The geomagnetic latitudes corresponding to the maximum disturbances during the main and recovery phases show large differences, but they are quasi-symmetrical between southern and northern hemispheres. No clear zonal propagation of traveling ionospheric disturbances is detected in the GNSS TEC disturbances at high and low latitudes. The thermospheric composition variations could be the dominant source of the observed ionospheric storm effect from GUVI [O]/[N2] ratio data as well as storm-time electric fields. Our study demonstrates that the BDS (especially the GEO) observations are an important data source to observe ionospheric responses to the geomagnetic storm.

  3. Impact of famous CEDAR, GEM and ISTP geomagnetic Storms on HF Radio Propagation

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D.; Sergeeva, M.

    The mighty geomagnetic storms due to the extraordinary Sun s activity cause as a rule some impacts in these areas radiation effects on human and satellites commercial airlines outages electric power and other geomagnetic effects navigation and communication GPS effects ionospheric disturbances HF communication effects Therefore our scientific understanding of this activity is very important Joint efforts for example within the framework of the CAWSES enable progress in our ability to i identify critical inputs to specify the geospace environment at a level needed to minimize impacts on technology human society and life and ii support the development of robust models that predict conditions in geospace based on understanding of the Sun-Earth system and all of its interacting components In this study influence of 14 geomagnetic storms from a list of CEDAR GEM and ISTP storms within 1997-99 on radio propagation conditions have been investigated These conditions were estimated through variations of the MOF and LOF the maximum and lowest operation frequencies on each path from three high-latitude HF radio paths of North-west Russia before during and after a storm It was shown that the storm impact on the ionosphere and radio propagation for each storm has an individual character Nevertheless the common character of the certain manifestations during storm-time was revealed For example the frequency range MOF - LOF is getting wider several hours before a storm then it is sharply narrow during a storm-time and further it is expanded again several

  4. Energy and Mass Transport of Magnetospheric Plasmas during the November 2003 Magnetic Storm

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Chging; Moore, Thomas

    2008-01-01

    Intensive energy and mass transport from the solar wind across the magnetosphere boundary is a trigger of magnetic storms. The storm on 20-21 November 2003 was elicited by a high-speed solar wind and strong southward component of interplanetary magnetic field. This storm attained a minimum Dst of -422 nT. During the storm, some of the solar wind particles enter the magnetosphere and eventually become part of the ring current. At the same time, the fierce solar wind powers strong outflow of H+ and O+ from the ionosphere, as well as from the plasmasphere. We examine the contribution of plasmas from the solar wind, ionosphere and plasmasphere to the storm-time ring current. Our simulation shows, for this particular storm, ionospheric O+ and solar wind ions are the major sources of the ring current particles. The polar wind and plasmaspheric H+ have only minor impacts. In the storm main phase, the strong penetration of solar wind electric field pushes ions from the geosynchronous orbit to L shells of 2 and below. Ring current is greatly intensified during the earthward transport and produces a large magnetic depression in the surface field. When the convection subsides, the deep penetrating ions experience strong charge exchange loss, causing rapid decay of the ring current and fast initial storm recovery. Our simulation reproduces very well the storm development indicated by the Dst index.

  5. Different behavior of storm-time themospheric mass density response to merging E field for different type of magnetic storms

    NASA Astrophysics Data System (ADS)

    Ma, S. Y.; Zhou, Yunliang; Liu, Ruosi

    With the help of GRACE accelerometer observations and the solar wind and IMF OMNI data, a statistical investigation has been made on the relationships of merging electrical field, Em, with the storm-time changes in the upper thermospheric mass density for 35 great storms during 2002-2006. The linear control factors of Em on the storm-time changes of both mass density and its algorithm are examined, along with the delay times of density changes behind Em. The dependences of the control factors on the latitude and local time are investigated for different storm types. It is found that the influences of Em on the storm-time mass densities characterized by nonlinear control factors show different behavior for different types of storms. The influence intensity of Em on mass density is stronger for CIR-driven than for CME-driven storms, manifested as 2.7 times for CME-driven over CIR driven storm at dawn sector. In terms of the ratio of influence factor for CIR over CME, there is a larger intensification in dawn/dusk sector than in noon/midnight sector clearly. Besides, it is very interesting that, except for noon sector, the delay times of mass density changes in respect to Em at low latitudes are shorter than at mid-latitudes. This phenomenon seems in contravention of high latitude origin of mass density changes and consequent propagation equatorward. We surmise that this may imply some additional heating or disturbance sources rather than high latitude origin at working for low and/or mid-latitude mass density changes. One possible source is energetic neutral atom (ENA) precipitation of storm-time ring current origin caused by charge exchange between energetic RC (ring current) ions and cold atoms of geo-corona, another may be the coupling between low-latitude thermosphere and ionosphere associated with prompt penetration of interplanetary electric field that has larger penetration efficiency during night. Acknowledgements: Many thanks to Prof. Luehr for useful

  6. Electrification in winter storms and the analysis of thunderstorm overflight

    NASA Technical Reports Server (NTRS)

    Brook, Marx

    1991-01-01

    The emergence of 24 hr operational lightning detection networks has led to the finding that positive lightning strokes, although still much fewer in number than the normal negative strokes, are present in summer and winter storms. Recent papers address the importance of understanding the meteorological conditions which lead to a dominance of one polarity of stroke over another; the appearance of positive strokes at the end of a storm appeared to presage the end-of-storm downdraft and subsidence leading to downburst activity. It is beginning to appear that positive strokes may be important meteorological indicators. Significant research accomplishments on the following topics are addressed: (1) a study to verify that the black boxes used in the lightning networks to detect both negative and positive strokes to ground were accurate; (2) the use of slow tails to determine the polarity of distant lightning; (3) lightning initiation in winter vs. summer storms; (4) the upgrade of sensors for the measurement of electric field signals associated with lightning; (5) the analysis of lightning flash records from storms between 40 and 125 km from the sensor; and (6) an interesting aspect of the initiation process which involves the physical processes driving the stepped leader. The focus of current research and future research plans are presented.

  7. Solar Energetic Particle Trapping During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Hudson, M.; Kress, B.; Blake, J. B.; Mazur, J.

    2007-12-01

    The prompt trapping of Solar Energetic Particles (SEPs) in the inner magnetosphere inside of L = 4 has been reported, including protons and heavier ions, in association with high speed interplanetary shocks and Storm Sudden Commencements (SSCs). These observations include the Bastille Day 2000 CME-driven storm as well as two in November 2001, which produced a long-lived new proton belt, as well as trapping of heavy ions up to Fe in all three cases. A survey of such events around the most recent solar maximum, including high altitude measurements from Polar, HEO and ICO satellites along with low altitude measurements from SAMPEX, indicates similarities to the well-studied March 24, 1991 SSC event. In this event, electrons and protons in drift resonance with a magnetosonic impulse were transported radially inward, requiring a source population which is multi-MeV at geosynchronous. A requirement for such shock-induced acceleration is a high-speed CME- shock at 1 AU, which launches a perturbation with comparable velocity inside the magnetosphere. Secondly, there must be a source population which is drift-resonant with the impulse. The CME-shock itself is a source of solar energetic particles, both protons and heavy ions, with higher fluxes and harder spectra associated with faster moving CMEs. A 3D Lorentz integration of SEP trajectories in electric and magnetic fields taken from the Lyon-Fedder-Mobarry (LFM) global MHD model, using solar wind input parameters from spacecraft measurements upstream from the bow shock, has been carried out for two November, 2001 SEP trapping events, and a CME-shock associated with the Halloween 2003 storm period, 29 October, which transported outer zone electrons and trapped solar energetic electrons into around L = 2.5, with little effect on SEPs. These results indicate that an enhancement in solar wind dynamic pressure for these events plays a role in the observed injection of ions (and electrons) to low L-values, as does the extent of

  8. The 17 March 2015 storm: the associated magnetic flux rope structure and the storm development

    NASA Astrophysics Data System (ADS)

    Marubashi, Katsuhide; Cho, Kyung-Suk; Kim, Rok-Soon; Kim, Sujin; Park, Sung-Hong; Ishibashi, Hiromitsu

    2016-11-01

    The objective of this study is (1) to determine the magnetic cloud (MC) structure associated with the 17 March 2015 storm and (2) to gain an insight into how the storm developed responding to the solar wind conditions. First, we search MC geometries which can explain the observed solar wind magnetic fields by fitting to both cylindrical and toroidal flux rope models. Then, we examine how the resultant MC geometries can be connected to the solar source region to find out the most plausible model for the observed MC. We conclude that the observations are most consistently explained by a toroidal flux rope with the torus plane nearly parallel to the ecliptic plane. It is emphasized that the observations are characterized by the peculiar spacecraft crossing through the MC, in that the magnetic fields to be observed are southward throughout the passage. For understanding of the storm development, we first estimate the injection rate of the storm ring current from the observed Dst variation. Then, we derive an expression to calculate the estimated injection rate from the observed solar wind variations. The point of the method is to evaluate the injection rate by the convolution of the dawn-to-dusk electric field in the solar wind and a response function. By using the optimum response function thus determined, we obtain a modeled Dst variation from the solar wind data, which is in good agreement with the observed Dst variation. The agreement supports the validity of our method to derive an expression for the ring current injection rate as a function of the solar wind variation.[Figure not available: see fulltext.

  9. New forecasting methods of the intensity and time development of geomagnetic and ionospheric storms

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    The main phase of a geomagnetic storm develops differently from one storm to another. A description is given of the solar wind quantity which controls directly the development of the main phase of geomagnetic storms. The parameters involved include the solar wind speed, the magnetic field intensity, and the polar angle of the solar wind magnetic field projected onto the dawn-dusk plane. A redefinition of geomagnetic storm and auroral activity is given. It is pointed out that geomagnetic disturbances are caused by the magnetic fields of electric currents which are generated by the solar wind-magnetosphere dynamo. Attention is given to approaches for forecasting the occurrence and intensity of geomagnetic storms and ionospheric disturbances.

  10. On the Variability of Wilson Currents by Storm Type and Phase

    NASA Technical Reports Server (NTRS)

    Deierling, Wiebke; Kalb, Christina; Mach, Douglas; Liu, Chuntao; Peterson, Michael; Blakeslee, Richard

    2014-01-01

    Storm total conduction currents from electrified clouds are thought to play a major role in maintaining the potential difference between the earth's surface and the upper atmosphere within the Global Electric Circuit (GEC). However, it is not entirely known how the contributions of these currents vary by cloud type and phase of the clouds life cycle. Estimates of storm total conduction currents were obtained from data collected over two decades during multiple field campaigns involving the NASA ER-2 aircraft. In this study the variability of these currents by cloud type and lifecycle is investigated. We also compared radar derived microphysical storm properties with total storm currents to investigate whether these storm properties can be used to describe the current variability of different electrified clouds. The ultimate goal is to help improve modeling of the GEC via quantification and improved parameterization of the conduction current contribution of different cloud types.

  11. SAMI3-RCM simulation of the 17 March 2015 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Sazykin, S.; Coster, A.

    2017-01-01

    We present a self-consistent modeling study of the ionosphere-plasmasphere system response to the 17 March 2015 geomagnetic storm using the coupled SAMI3-RCM code. The novel feature of this work is that we capture the important storm time dynamics of the ionosphere on a global scale and its manifestation in the plasmasphere. We find that the penetration electric fields associated with the magnetic storm lead to a storm time enhanced density in the low- to middle-latitude ionosphere. We compare the modeled total electron content (TEC) with GPS-measured TEC in the American sector. Additionally, we observe the development of polar cap "tongues of ionization" and the formation of subauroral plasma streams in the postsunset, premidnight sector, and its impact on the plasmasphere. However, we did not see the development of plasmaspheric plumes during this event which we attribute to the long main phase of the storm (˜18 h).

  12. Ring Current Development During Storm Main Phase

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, Thomas E.; Greenspan, Marian E.

    1996-01-01

    The development of the ring current ions in the inner magnetosphere during the main phase of a magnetic storm is studied. The temporal and spatial evolution of the ion phase space densities in a dipole field are calculated using a three dimensional ring current model, considering charge exchange and Coulomb losses along drift paths. The simulation starts with a quiet time distribution. The model is tested by comparing calculated ion fluxes with Active Magnetospheric Particle Tracer Explorers/CCE measurement during the storm main phase on May 2, 1986. Most of the calculated omnidirectional fluxes are in good agreement with the data except on the dayside inner edge (L less than 2.5) of the ring current, where the ion fluxes are underestimated. The model also reproduces the measured pitch angle distributions of ions with energies below 10 keV. At higher energy, an additional diffusion in pitch angle is necessary in order to fit the data. The role of the induced electric field on the ring current dynamics is also examined by simulating a series of substorm activities represented by stretching and collapsing the magnetic field lines. In response to the impulsively changing fields, the calculated ion energy content fluctuates about a mean value that grows steadily with the enhanced quiescent field.

  13. Basic Research in Electric Propulsion. Part I: Pulsed Plasma Thruster Propellant Efficiency and Contamination. Part II: Arcjet Remote Plume Measurement and Hydrogen Density

    DTIC Science & Technology

    2002-02-01

    neutral density NO nitrous oxide NO2 nitrogen dioxide Nd:YAG NeodymiumYttrium Aluminum Garnet laser NSTAR NASA Solar Electric Propulsion Technical...Signature experiments underway and Multiphoton Laser Induced Fluorescence Measurements of Ground State Atomic Hydrogen have been performed in an...in low power hydrogen arcjet plumes. This work applied a flame diagnostic, Multiphoton Laser Induced Fluorescence, to the excited-state plasma

  14. Storm tracks near marginal stability

    NASA Astrophysics Data System (ADS)

    Ambaum, Maarten; Novak, Lenka

    2015-04-01

    The variance of atmospheric storm tracks is characterised by intermittent bursts of activity interspersed with relatively quiescent periods. Most of the poleward heat transport by storm tracks is due to a limited number of strong heat flux events, which occur in a quasi-periodic fashion. This behaviour is in contradiction with the usual conceptual model of the storm tracks, which relies on high growth rate background flows which then spawn weather systems that grow in an exponential or non-normal fashion. Here we present a different conceptual model of the atmospheric storm tracks which is built on the observation that, when including diabatic and other dissipative effects, the storm track region is in fact most of the time marginally stable. The ensuing model is a nonlinear oscillator, very similar to Volterra-Lotka predator-prey models. We demonstrate the extensions of this model to a stochastically driven nonlinear oscillator. The model produces quasi-periodic behaviour dominated by intermittent heat flux events. Perhaps most surprisingly, we will show strong evidence from re-analysis data for our conceptual model: the re-analysis data produces a phase-space plot that is very similar indeed to the phase-space plot for our nonlinear oscillator model.

  15. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images.

    The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image.

    The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image.

    Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation.

    Each image covers a swath approximately 380 kilometers wide.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  16. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of Multi-angle Imaging Spectroradiometer (MISR) nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001. Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. Image courtesy NASA/JPL/GSFC/LaRC, MISR Team

  17. Sediment Transport on Continental Shelves: Storm Bed Formation and Preservation in Heterogeneous Sediments

    DTIC Science & Technology

    2012-01-01

    modern storm beds and applies the principle of uniformitarianism to estimate the preservation potential of beds within a storm-dominated shelf...One of the basic tenets of the geological sciences is uniformitarianism . All of the evidence indicates that the climate of the past varied from that...late from the modern ocean, it is becoming pos- sible to test the assumptions implicit in uniformitarianism with respect to processes

  18. Studying Peculiarities of Ionospheric Response to the 2015 March 17-19 Geomagnetic Storm in East Asia: Observations and Simulation

    NASA Astrophysics Data System (ADS)

    Romanova, Elena; Zherebtsov, Gelii; Polekh, Nelya; Wang, Xiao; Wang, Guojun; Zolotukhina, Nina; Shi, Jiankui

    2016-07-01

    latitudes. The prolonged negative disturbances during the recovery storm phase in middle latitudes are attributed to variations in the global wind circulation and to [O]/[N2] reduction; in low latitudes, a prolonged negative disturbance is also conditioned by variations in the global wind circulation and, to a lesser extent, by [O]/[N2] reduction as well as by penetration of electric fields to low latitudes; hence there was no equatorial anomaly on March 18. This is confirmed by total electron content data (http://cdaweb.gsfc.nasa.gov/cgi-bin/eval2.cgi). The recovery storm phase lasted until mid-March 25. The work is supported by the Russian Foundation for Basic Research (RFBR grant No. 16-55-53003_DVEH_a).

  19. Basic Education.

    ERIC Educational Resources Information Center

    Robinson, Virginia, Ed.

    1984-01-01

    This issue of "Basic Education" is devoted to the arts in education as a concern that should be addressed in a time of new priorities for the curriculum. Five articles and a book review are included. The opening article, "The State of the Arts in Education: Envisioning Active Participation By All" (Virginia Robinson),…

  20. Basic Backwardness.

    ERIC Educational Resources Information Center

    Weingartner, Charles

    This paper argues that the "back to basics" movement is regressive and that regression is the characteristic mode of fear-ridden personalities. It is argued that many people in American society today have lost their ability to laugh and do not have the sense of humor which is crucial to a healthy mental state. Such topics as necrophilia, mental…

  1. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  2. Basic Science.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…

  3. Basic Horticulture.

    ERIC Educational Resources Information Center

    Geer, Barbra Farabough

    This learning packet contains teaching suggestions and student learning materials for a course in basic horticulture aimed at preparing students for employment in a number of horticulture areas. The packet includes nine sections and twenty instructional units. Following the standard format established for Oklahoma vocational education materials in…

  4. Body Basics

    MedlinePlus

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System ...

  5. Radiation Belt Storm Probe (RBSP) Mission

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Fox, N.; Grebowsky, J. M.; Mauk, B. H.

    2009-01-01

    Scheduled to launch in May 2012, NASA's dual spacecraft Living With a Star Radiation Belt Storm Probe mission carries the field and particle instrumentation needed to determine the processes that produce enhancements in radiation belt ion and electron fluxes, the dominant mechanisms that cause the loss of relativistic electrons, and the manner by which the ring current and other geomagnetic phenomena affect radiation belt behavior. The two spacecraft will operate in low-inclination elliptical lapping orbits around the Earth, within and immediately exterior to the Van Allen radiation belts. During course of their two year primary mission, they will cover the full range of local times, measuring both AC and DC electric and magnetic fields to 10kHz, as well as ions from 50 eV to 1 GeV and electrons with energies ranging from 50 eV to 10 MeV.

  6. The ice storm of the century: how affected hospitals and communities dealt with the challenges of a unique, prolonged emergency.

    PubMed

    1998-04-01

    A huge ice storm in early January 1998 caused severe damage in northern New York and parts of Maine and Canada. The storm, which lasted in some areas for several weeks and is being called the "storm of the century," led to 30 deaths (many from carbon monoxide poisoning); closed roads and schools; downed thousand of trees and power lines; and left hundreds of thousands without electricity. In this report, we'll present details on how hospitals in these three locations which were declared disaster areas were affected by the storm as well as the measures that they and their security departments took to help patients, staff, and their communities.

  7. Springtime North Polar Dust Storms

    NASA Technical Reports Server (NTRS)

    2002-01-01

    MGS MOC Release No. MOC2-321, 12 December 2002

    As on the Earth, many severe storms brew in the martian polar regions. Here, temperature contrasts between the cold carbon dioxide ('dry ice') seasonal frost cap and the warm ground adjacent to it--combined with a flow of cool polar air evaporating off the cap--sweeps up dust and funnels it into swirling dust storms along the cap edge. The dust storms shown here were observed during the recent northern spring by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in May 2002. The picture is a mosaic of daily global images from the MOC wide angle cameras. The north polar cap is the bright, frosty surface at the top.

  8. Agents to reduce cytokine storm.

    PubMed

    Gerlach, Herwig

    2016-01-01

    The increasing insight into pathomechanisms of dysregulated host response in several inflammatory diseases led to the implementation of the term "cytokine storm" in the literature more than 20 years ago. Direct toxic effects as well as indirect immunomodulatory mechanisms during cytokine storm have been described and were the basis for the rationale to use several substances and devices in life-threatening infections and hyperinflammatory states. Clinical trials have been performed, most of them in the form of minor, investigator-initiated protocols; major clinical trials focused mostly on sepsis and septic shock. The following review tries to summarize the background, pathophysiology, and results of clinical investigations that had implications for the development of therapeutic strategies and international guidelines for the management of hyperinflammation during syndromes of cytokine storm in adult patients, predominantly in septic shock.

  9. Investigating repeatable ionospheric features during large space storms and superstorms

    DTIC Science & Technology

    2014-08-25

    Final 3. DATES COVERED (From - To) Mar-13 – Jan-14 4. TITLE AND SUBTITLE Investigating repeatable ionospheric features during large... Ionosphere -Plasmasphere Electrodynamics). The 6 April 2000 superstorm (Dst = -314 nT) was complex as the prompt penetration electric field developed and...event because of its unusual pattern producing unusual ionospheric storms. Our results reveal some strong longitudinal differences caused by the

  10. Mesoscale aspects of convective storms

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1981-01-01

    The structure, evolution and mechanisms of mesoscale convective disturbances are reviewed and observation techniques for "nowcasting" their nature are discussed. A generalized mesometeorological scale is given, classifying both low and high pressure systems. Mesoscale storms are shown often to induce strong winds, but their wind speeds are significantly less than those accompanied by submesoscale disturbances, such as tornadoes, downbursts, and microbursts. Mesoscale convective complexes, severe storm wakes, and flash floods are considered. The understanding of the evolution of supercells is essential for improving nowcasting capabilities and a very accurate combination of radar and satellite measurements is required.

  11. National Severe Storms Forecast Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The principal mission of the National Severe Storms Forecast Center (NSSFC) is to maintain a continuous watch of weather developments that are capable of producing severe local storms, including tornadoes, and to prepare and issue messages designated as either Weather Outlooks or Tornado or Severe Thunderstorm Watches for dissemination to the public and aviation services. In addition to its assigned responsibility at the national level, the NSSFC is involved in a number of programs at the regional and local levels. Subsequent subsections and paragraphs describe the NSSFC, its users, inputs, outputs, interfaces, capabilities, workload, problem areas, and future plans in more detail.

  12. Geomagnetic storm of 29-31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Antti; Lindahl, Sture; Viljanen, Ari; Pirjola, Risto

    2005-08-01

    On 30 October 2003, an ongoing geomagnetic superstorm knocked down a part of the high-voltage power transmission system in southern Sweden. The blackout lasted for an hour and left about 50,000 customers without electricity. The incident was probably the most severe geomagnetically induced current (GIC) failure observed since the well-known March 1989 Québec blackout. The "three-phase" storm produced exceptionally large geomagnetic activity at the Fennoscandian auroral region. Although the diversity of the GIC drivers is addressed in the study, the problems in operating the Swedish system during the storm are attributed geophysically to substorms, storm sudden commencement, and enhanced ionospheric convection, all of which created large and complex geoelectric fields capable of driving large GIC. On the basis of the basic twofold nature of the failure-related geoelectric field characteristics, a semideterministic approach for forecasting GIC-related geomagnetic activity in which average overall activity is supplemented with statistical estimations of the amplitudes of GIC fluctuations is suggested. The study revealed that the primary mode of GIC-related failures in the Swedish high-voltage power transmission system were via harmonic distortions produced by GIC combined with too sensitive operation of the protective relays. The outage in Malmö on 30 October 2003 was caused by a combination of an abnormal switching state of the system and tripping of a low-set residual overcurrent relay that had a high sensitivity for the third harmonic of the fundamental frequency.

  13. Research on Historical Records of Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Lakhina, G. S.; Alex, S.; Tsurutani, B. T.; Gonzalez, W. D.

    In recent times, there has been keen interest in understanding Sun-Earth connection events, such as solar flares, CMEs and concomitant magnetic storms. Magnetic storms are the most dramatic and perhaps important component of space weather effects on Earth. Super-intense magnetic storms (defined here as those with Dst < -500 nT, where Dst stands for the disturbance storm time index that measures the strength of the magnetic storm) although relatively rare, have the largest societal and technological relevance. Such storms can cause life-threatening power outages, satellite damage, communication failures and navigational problems. However, the data for such magnetic storms is rather scarce. For example, only one super-intense magnetic storm has been recorded (Dst=-640 nT, March 13, 1989) during the space-age (since 1958), although such storms may have occurred many times in the last 160 years or so when the regular observatory network came into existence. Thus, research on historical geomagnetic storms can help to create a good data base for intense and super-intense magnetic storms. From the application of knowledge of interplanetary and solar causes of storms gained from the spaceage observations applied to the super-intense storm of September 1-2, 1859, it has been possible to deduce that an exceptionally fast (and intense) magnetic cloud was the interplanetary cause of this geomagnetic storm with a Dst -1760 nT, nearly 3 times as large as that of March 13, 1989 super-intense storm. The talk will focus on super-intense storms of September 1-2, 1859, and also discuss the results in the context of some recent intense storms.

  14. Magnetospheric signature of some F layer positive storms

    SciTech Connect

    Miller, N.J.; Mayr, H.G.; Grebowsky, J.M.; Harris, I.; Tulunay, Y.K.

    1981-05-01

    Calculations using a self-consistent model of the global thermosphere-ionosphere system perturbed by high-latitude thermospheric heating show that the resultant electron density disturbances within the mid-latitude F layer can propagate upward along magnetic field lines to the equator. The F layer disturbances described by the model calculations correspond to the evolution of enhancements or reductions in electron density that is called the positive or negative phase of an F layer storm. We deduce that the positive phase of dayside F layer storms is initiated when high-latitude thermospheric heating generates equatorward winds. These winds raise the mid-latitude F layer along the geomagnetic field B through momentum transfer from neutral atoms to F layer ons that pull electrons with them. For Lapprox.3 or less the upward movement of ionospheric plasma results in ionization increases at all altitudes along B from the F2 maximum to the equator. An increase in the average magnitude of the equatorial dawn-dusk magnetospheric electric field retards the dayside development of a positive storm phase by drifting plasma away from mid-latitude field lines along which the electron density is increasing. During an F layer storm in June 1972, instruments on Explorer 45 and Ariel 4 detected dayside electron density enhancements simultaneously at 550 km over mid-latitudes and near the equatorial plane in the magnetosphere. These in situ measurements support the model prediction that disturbances in the magnetospheric plasma near the equator can arise through interactions occuring at lower altitudes along a magnetic field line. Our study demonstrates that some storm time enhancements of dayside magnetospheric plasma near Lapprox.2--3 may be signatures of the positive phase of an F layer storm.

  15. GPM Sees Powerful Storms in Tropical Storm Hermine

    NASA Video Gallery

    This is a 3-D animated flyby of Tropical Storm Hermine created using radar data from the GPM core satellite. On Aug. 31 at 4 p.m. EDT GPM found rainfall occurring at a rate of over 9.9 inches (251 ...

  16. Education: The Basics. The Basics

    ERIC Educational Resources Information Center

    Wood, Kay

    2011-01-01

    Everyone knows that education is important, we are confronted daily by discussion of it in the media and by politicians, but how much do we really know about education? "Education: The Basics" is a lively and engaging introduction to education as an academic subject, taking into account both theory and practice. Covering the schooling system, the…

  17. Templates of Change: Storms and Shoreline Hazards.

    ERIC Educational Resources Information Center

    Dolan, Robert; Hayden, Bruce

    1980-01-01

    Presents results of research designed to assess and predict the storm-related hazards of living on the coast. Findings suggest that certain sections of coastline are more vulnerable than others to storm damage. (WB)

  18. Tropical Storm Debby Moves into Atlantic

    NASA Video Gallery

    An animation of satellite observations shows the progression of Tropical Storm Debby from June 25-27, 2012. The animation shows that Tropical Storm Debby's center move from the northeastern Gulf of...

  19. Satellite View of 2 Trop. Storms

    NASA Video Gallery

    System 98L exploded into Tropical Storm Irene on Saturday, August 20. This GOES-13 Video shows Tropical Storm Harvey making landfall in Belize (just beneath the Yucatan Peninsula) and moving into t...

  20. nuSTORM and A Path to a Muon Collider

    SciTech Connect

    Adey, David; Bayes, Ryan; Bross, Alan; Snopok, Pavel

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ+μ- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years ago in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ+μ-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.

  1. nuSTORM and A Path to a Muon Collider

    DOE PAGES

    Adey, David; Bayes, Ryan; Bross, Alan; ...

    2015-05-20

    Our article reviews the current status of the nuSTORM facility and shows how it can be utilized to perform the next step on the path toward the realization of a μ+μ- collider. This review includes the physics motivation behind nuSTORM, a detailed description of the facility and the neutrino beams it can produce, and a summary of the short-baseline neutrino oscillation physics program that can be carried out at the facility. The idea for nuSTORM (the production of neutrino beams from the decay of muons in a racetrack-like decay ring) was discussed in the literature more than 30 years agomore » in the context of searching for noninteracting (sterile) neutrinos. However, only in the past 5 years has the concept been fully developed, motivated in large part by the facility's unmatched reach in addressing the evolving data on oscillations involving sterile neutrinos. Finally, this article reviews the basics of the μ+μ-collider concept and describes how nuSTORM provides a platform to test advanced concepts for six-dimensional muon ionization cooling.« less

  2. ENSO and winter storms in California

    USGS Publications Warehouse

    Cayan, D.R.; Bromirski, Peter

    2003-01-01

    The frequency and intensity of North Pacific winter storms that penetrate the California coast drives the winds, sea level, precipitation and streamflow that are crucial influences on coastal processes. There is considerable variability of these storm characteristics, in large part owing to the El Nino/Southern Oscillation (ENSO} phenomenon. There is a great contrast of the storm characteristics during the El Nino phase vs. the La Nina phase, with the largest scale, southerly extensive winter storms generated during El Nino.

  3. 46 CFR 129.220 - Basic safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Basic safety. 129.220 Section 129.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS General Requirements § 129.220 Basic safety. (a) Electrical equipment and installations must be...

  4. 46 CFR 129.220 - Basic safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Basic safety. 129.220 Section 129.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS General Requirements § 129.220 Basic safety. (a) Electrical equipment and installations must be...

  5. 46 CFR 129.220 - Basic safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Basic safety. 129.220 Section 129.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS General Requirements § 129.220 Basic safety. (a) Electrical equipment and installations must be...

  6. Industrial Electronics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Tiffany, Earl

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 30 terminal objectives for a two-semester (2 hours daily) high school course in basic industrial electronics. The objectives cover instruction in basic electricity including AC-DC theory, magnetism, electrical safety, care and use of hand tools,…

  7. Rain from Tropical Storm Noel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Though not the most powerful storm of the 2007 Atlantic Hurricane season, Tropical Storm Noel was among the most deadly. Only Category 5 Hurricane Felix and its associated flooding had a higher toll. The slow-moving Tropical Storm Noel inundated the Dominican Republic, Haiti, Jamaica, Cuba, and the Bahamas with heavy rain between October 28 and November 1, 2007. The resulting floods and mudslides left at least 115 dead and thousands homeless throughout the Caribbean, reported the Associated Press on November 2, 2007. This image shows the distribution of the rainfall that made Noel a deadly storm. The image shows rainfall totals as measured by the Multi-satellite Precipitation Analysis (MPA) at NASA Goddard Space Flight Center from October 26 through November 1, 2007. The analysis is based on measurements taken by the Tropical Rainfall Measuring Mission (TRMM) satellite. The heaviest rainfall fell in the Dominican Republic and the Bahamas, northeast of Noel's center. Areas of dark red show that rainfall totals over the south-central Dominican Republic and parts of the Bahamas were over 551 millimeters (21 inches). Much of eastern Hispaniola, including both the Dominican Republic and Haiti received at least 200 mm (about 8 inches) of rain, shown in yellow. Rainfall totals over Haiti and Cuba were less, with a range of at least 50 mm (2 inches) to over 200 mm (8 inches).

  8. Storm Water Management Model (SWMM)

    EPA Science Inventory

    Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. The U.S. Environmental Protection Agency (E...

  9. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  10. 46 CFR 116.920 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where...

  11. 46 CFR 116.920 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where...

  12. 46 CFR 127.320 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and...

  13. 46 CFR 116.920 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where...

  14. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the...

  15. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  16. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  17. 46 CFR 127.320 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and...

  18. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the...

  19. 46 CFR 127.320 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and...

  20. 46 CFR 177.920 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must...

  1. 46 CFR 177.920 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must...

  2. 46 CFR 127.320 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and...

  3. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  4. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the...

  5. 46 CFR 116.920 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where...

  6. 46 CFR 116.920 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where...

  7. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  8. 46 CFR 127.320 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and...

  9. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the...

  10. 46 CFR 177.920 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must...

  11. 46 CFR 177.920 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must...

  12. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the...

  13. 46 CFR 177.920 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must...

  14. Storm severity detection (RF)

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Goodman, S. J.

    1985-01-01

    Atmospheric electrical emissions occurring in association with Hurricane Alicia were observed by two crossed baseline phase linear interferometers. The sensors were located in San Antonio, Texas, and at Marshall Space Flight Center (MSFC), Huntsville, Alabama. An analysis of the data has indicated that the direction finding (DF) performance of the San Antonio site was extremely good while the DF performance at the MSFC site evidenced erratic behavior. A check of the data acquisition hardware revealed an intermitted problem in one of the radio receiver channels. Since the system has experienced several lightning strikes during the early spring of 1984, it was necessary to ship the entire rack of equipment back to SwRI for refurbishment. Analysis of the DF data from the interferometer site at San Antonio is being done. A limited subset of the MSFC data acquired during Hurricane Alicia has been found to be valid. These were data which satisfied the phase linearity criteria. Approximately 2,000 location estimates have been produced on the valid data. The results of the DF analysis and the location data are being correlated with the McIDAS data base at Marshall Space Flight Center, and with the radar summary data provided by the Hurricane Research Division using the National weather Service radar Facility at Galveston, Texas.

  15. Interactive modeling of storm impact

    NASA Astrophysics Data System (ADS)

    van Rooijen, A.; Baart, F.; Roelvink, J. A.; Donchyts, G.; Scheel, F.; de Boer, W.

    2014-12-01

    In the past decades the impact of storms on the coastal zone has increasingly drawn the attention of policy makers and coastal planners, engineers and researchers. The mean reason for this interest is the high density of the world's population living near the ocean, in combination with climate change. Due to sea level rise and extremer weather conditions, many of the world's coastlines are becoming more vulnerable to the potential of flooding. Currently it is common practice to predict storm impact using physics-based numerical models. The numerical model utilizes several inputs (e.g. bathymetry, waves, surge) to calculate the impact on the coastline. Traditionally, the numerical modeller takes the following three steps: schematization/model setup, running and post-processing. This process generally has a total feedback time in the order of hours to days, and is suitable for so-called confirmatory modelling.However, often models are applied as an exploratory tool, in which the effect of e.g. different hydraulic conditions, or measures is investigated. The above described traditional work flow is not the most efficient method for exploratory modelling. Interactive modelling lets users adjust a simulation while running. For models typically used for storm impact studies (e.g. XBeach, Delft3D, D-Flow FM), the user can for instance change the storm surge level, wave conditions, or add a measure such as a nourishment or a seawall. The model will take the adjustments into account immediately, and will directly compute the effect. Using this method, tools can be developed in which stakeholders (e.g. coastal planners, policy makers) are in control and together evaluate ideas by interacting with the model. Here we will show initial results for interactive modelling with a storm impact model.

  16. Problems with Modeling Plasmasphere Refilling After Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.

    2015-12-01

    During geomagnetic storms, the plasma in the outer plasmasphere is depleted as the plasma drifts away from the Earth across magnetic field (B) lines due to storm-time electric fields. After the storm, the plasmasphere refills due to an upward flow of plasma from the ionosphere that is initially supersonic (H+). The current numerical models of plasmasphere refilling are typically based on a numerical solution of the ion (H+, O+, He+) and electron continuity, momentum, and energy equations. The equations are solved along closed magnetic field lines that connect conjugate ionospheres, with allowance for cross-B plasma drift during storms. Both diffusion and hydrodynamic approximations have been adopted. The diffusion approximation neglects the nonlinear initial term in the momentum equations, so this approximation is not rigorously valid for early refilling times (~ day). At high altitudes, the plasma becomes collisionless and there are different temperatures parallel and perpendicular to B (not included in current models). Also, single-stream and multi-stream (separate ion streams from the conjugate ionospheres) formulations have been adopted, and the refilling features are different. These and other problems with the current plasmasphere refilling models will be discussed.

  17. Evolution of the ring current during two geomagnetic storms

    SciTech Connect

    Lui, A.T.Y.; McEntire, R.W.; Krimigis, S.M.

    1987-07-01

    The progressive developments in the radial profiles of the particle pressure, plasma beta, and electric currents of the storm time ring current are investigated with data from the medium energy particle analyzer on the AMPTE Charged Particle Explorer spacecraft. Measurements of ions from 25 keV to 1 MeV, which carry 70--85% of the energy density of the entire ring current population, are used in this work. Two geomagnetic storms in September of 1984 are selected and four traversals of the equatorial ring current region during the course of each storm are studied. It is shown that enhancements in the particle pressure occur initially in the outer region and reach the inner region in the late phase of the storm. Structures suggestive of multiple particle injections are seen in the pressure profile. The leading and trailing edges of the particle injection structures are associated, respectively, with the depressions and enhancements of the westward current densities of the ring current. Plasma beta occasionally increases to values of the order of 1 in some regions of the ring current from prestorm values of the order of 0.1 or less. It is also found that the location of the maximum ring current particle pressure can be several earth radii from where the most intense westward ring current flows. This is a consequence of the dominance of pressure gradient current over the current associated with the magnetic field line curvature and particle anisotropy. copyright American Geophysical Union 1987

  18. The Ring Current Response to Solar and Interplanetary Storm Drivers

    NASA Astrophysics Data System (ADS)

    Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.

    2014-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.

  19. Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.

    2013-01-01

    Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).

  20. Solar-Storm/Lunar Atmosphere Model (SSLAM): An Overview of the Effort and Description of the Driving Storm Environment

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Halekas, J. S.; Killen, R. M.; Delroy, G. T.; Gross, N.; Bleacher, V; Krauss-Varben, D.; Hurley, D; Zimmerman, M. I.

    2012-01-01

    On 29 April 1998, a coronal mass ejection (CME) was emitted from the Sun that had a significant impact on bodies located at 1 AU. The terrestrial magnetosphere did indeed become more electrically active during the storm passage but an obvious question is the effect of such a storm on an exposed rocky body like our Moon. The solar-storm/lunar atmosphere modeling effort (SSLAM) brings together surface interactions, exosphere, plasma, and surface charging models all run with a common driver - the solar storm and CME passage occurring from 1-4 May 1998. We present herein an expanded discussion on the solar driver during the 1-4 May 1998 period that included the passage of an intense coronal mass ejection (CME) that had> 10 times the solar wind density and had a compositional component of He++ that exceeded 20%. We also provide a very brief overview oflhe SSLAM system layout and overarching results. One primary result is that the CME driver plasma can greatly increase the exospheric content via sputtering, with total mass loss rates that approach 1 kg/s during the 2-day CME passage. By analogy, we suggest that CME-related sputtering increases might also be expected during a CME passage by a near-earth asteroid or at the Mars exobase, resulting in an enhanced loss of material.

  1. Large Geomagnetic Storms: Introduction to Special Section

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2010-01-01

    Solar cycle 23 witnessed the accumulation of rich data sets that reveal various aspects of geomagnetic storms in unprecedented detail both at the Sun where the storm causing disturbances originate and in geospace where the effects of the storms are directly felt. During two recent coordinated data analysis workshops (CDAWs) the large geomagnetic storms (Dst < or = -100 nT) of solar cycle 23 were studied in order to understand their solar, interplanetary, and geospace connections. This special section grew out of these CDAWs with additional contributions relevant to these storms. Here I provide a brief summary of the results presented in the special section.

  2. Dust storms - Great Plains, Africa, and Mars

    NASA Technical Reports Server (NTRS)

    Woiceshyn, P. M.; Krauss, R.; Minzner, R.; Shenk, W.

    1977-01-01

    Dust storms in the Great Plains of North America and in the Sahara Desert are analyzed on the basis of imagery from the geostationary Synchronous Meteorological Satellite. The onset time, location and areal extent of the dust storms are studied. Over land surfaces, contrast enhancement techniques are needed to obtain an adequate picture of dust storm development. In addition, infrared imagery may provide a means of monitoring the strong horizontal temperature gradients characteristic of dust cloud boundaries. Analogies between terrestrial dust storms and the airborne rivers of dust created by major Martian dust storms are also drawn.

  3. Storm Impacts on Potential Pathogens in Estuaries

    NASA Astrophysics Data System (ADS)

    Fries, J. Stephen; Noble, Rachel T.; Kelly, Ginger M.; Hsieh, Jennifer L.

    2007-02-01

    Estuarine and coastal environments are susceptible to a variety of changes driven by tropical storms and hurricanes. The 2005 Atlantic hurricane season impressed upon the public the devastating impacts of storms on coastal populations and the possible social and public health costs. Storm surges and subsequent flooding have the potential to redistribute water and associated contaminants, including a wide range of chemicals and microorganisms. While this impact is difficult to observe through monitoring during larger storms, smaller storms provide opportunities to observe the mechanisms responsible for contaminant and microbial transport.

  4. Some physical drivers of changes in the winter storm tracks over the North Atlantic and Mediterranean during the Holocene.

    PubMed

    Brayshaw, David James; Hoskins, Brian; Black, Emily

    2010-11-28

    The winter climate of Europe and the Mediterranean is dominated by the weather systems of the mid-latitude storm tracks. The behaviour of the storm tracks is highly variable, particularly in the eastern North Atlantic, and has a profound impact on the hydroclimate of the Mediterranean region. A deeper understanding of the storm tracks and the factors that drive them is therefore crucial for interpreting past changes in Mediterranean climate and the civilizations it has supported over the last 12 000 years (broadly the Holocene period). This paper presents a discussion of how changes in climate forcing (e.g. orbital variations, greenhouse gases, ice sheet cover) may have impacted on the 'basic ingredients' controlling the mid-latitude storm tracks over the North Atlantic and the Mediterranean on intermillennial time scales. Idealized simulations using the HadAM3 atmospheric general circulation model (GCM) are used to explore the basic processes, while a series of timeslice simulations from a similar atmospheric GCM coupled to a thermodynamic slab ocean (HadSM3) are examined to identify the impact these drivers have on the storm track during the Holocene. The results suggest that the North Atlantic storm track has moved northward and strengthened with time since the Early to Mid-Holocene. In contrast, the Mediterranean storm track may have weakened over the same period. It is, however, emphasized that much remains still to be understood about the evolution of the North Atlantic and Mediterranean storm tracks during the Holocene period.

  5. An intracloud lightning parameterization scheme for a storm electrification model

    NASA Technical Reports Server (NTRS)

    Helsdon, John H., Jr.; Wu, Gang; Farley, Richard D.

    1992-01-01

    The parameterization of an intracloud lightning discharge has been implemented in the present storm electrification model. The initiation, propagation direction, and termination of the discharge are computed using the magnitude and direction of the electric field vector as the determining criteria. The charge redistribution due to the lightning is approximated assuming the channel to be an isolated conductor with zero net charge over its entire length. Various simulations involving differing amounts of charge transferred and distribution of charges have been done. Values of charge transfer, dipole moment change, and electrical energy dissipation computed in the model are consistent with observations. The effects of the lightning-produced ions on the hydrometeor charges and electric field components depend strongly on the amount of charge transferred. A comparison between the measured electric field change of an actual intracloud flash and the field change due to the simulated discharge shows favorable agreement. Limitations of the parameterization scheme are discussed.

  6. Ligand and electrically induced acitivation patterns in myenteric neuronal networks. Confocal calcium imaging as a bridge between basic and human physiology.

    PubMed

    Bisschops, R

    2008-01-01

    Confocal imaging in combination with fluorescent calcium indicators provides the possibility to study neuronal activation in entire neuronal networks. The experiments presented in this essay aimed at applying confocal calcium imaging to study activation patterns in neuronal networks of myenteric ganglia in situ. First we studied the response to electrical train stimulation (ETS). ETS induced Ca2+ transients in 52.2% and 65.4% of the neurons when applied orally and aborally respectively. We observed more responses during aboral ETS which is not in line with the hypothesis of neuronal polarity, suggesting complex neuronal activation patterns and neuronal interaction in ETS-induced activation in myenteric ganglia. We demonstrated that ghrelin has a direct excitatory effect on myenteric neurons in situ via ghrelin receptor activation. Ghrelin induced Ca2+ transients in one third of the myenteric neurons, involving release of Ca2+ from intracellular stores and direct GHS-receptor activation. We found that CRF activates one fifth of the myenteric neurons, via CRF1 receptor activation. These CRF induced Ca2+ signals involved somatic influx through (mainly R-type) voltage operated Ca2+ channels. Finally we set up human studies in healthy volunteers and dyspeptic patients to test the effect of ghrelin on gastrointestinal motility. Intravenous administration of ghrelin induced a premature phase 3 activity front that originated in the stomach and an increase in gastric tone. Ghrelin decreased gastric emptying time for fluids and reduced symptom scores for fullness and pain. These studies provide further evidence for a role of ghrelin in the regulation of gastrointestinal motility, and possibly provide new therapeutic approaches. Our studies show that confocal calcium imaging allows to assess neuronal activation of myenteric neurons. The influence of new hormones or new pharmaceutical compounds on the myenteric plexus can hereby be easily assessed.

  7. Home-Based Functional Electrical Stimulation for Long-Term Denervated Human Muscle: History, Basics, Results and Perspectives of the Vienna Rehabilitation Strategy

    PubMed Central

    Kern, Helmut

    2014-01-01

    We will here discuss the following points related to Home-based Functional Electrical Stimulation (h-b FES) as treatment for patients with permanently denervated muscles in their legs: 1. Upper (UMN) and lower motor neuron (LMN) damage to the lower spinal cord; 2. Muscle atrophy/hypertrophy versus processes of degeneration, regeneration, and recovery; 3. Recovery of twitch- and tetanic-contractility by h-b FES; 4. Clinical effects of h-b FES using the protocol of the “Vienna School”; 5. Limitations and perspectives. Arguments in favor of using the Vienna protocol include: 1. Increased muscle size in both legs; 2. Improved tetanic force production after 3-5 months of percutaneous stimulation using long stimulus pulses (> 100 msec) of high amplitude (> 80 mAmp), tolerated only in patients with no pain sensibility; 3. Histological and electron microscopic evidence that two years of h-b FES return muscle fibers to a state typical of two weeks denervated muscles with respect to atrophy, disrupted myofibrillar structure, and disorganized Excitation-Contraction Coupling (E-CC) structures; 4. The excitability never recovers to that typical of normal or reinnervated muscles where pulses less than 1 msec in duration and 25 mAmp in intensity excite axons and thereby muscle fibres. It is important to motivate these patients for chronic stimulation throughout life, preferably standing up against the load of the body weight rather than sitting. Only younger and low weight patients can expect to be able to stand-up and do some steps more or less independently. Some patients like to maintain the h-b FES training for decades. Limitations of the procedure are obvious, in part related to the use of multiple, large surface electrodes and the amount of time patients are willing to use for such muscle training. PMID:26913127

  8. Thyroid storm precipitated by duodenal ulcer perforation.

    PubMed

    Natsuda, Shoko; Nakashima, Yomi; Horie, Ichiro; Ando, Takao; Kawakami, Atsushi

    2015-01-01

    Thyroid storm is a rare and life-threatening complication of thyrotoxicosis that requires prompt treatment. Thyroid storm is also known to be associated with precipitating events. The simultaneous treatment of thyroid storm and its precipitant, when they are recognized, in a patient is recommended; otherwise such disorders, including thyroid storm, can exacerbate each other. Here we report the case of a thyroid storm patient (a 55-year-old Japanese male) complicated with a perforated duodenal ulcer. The patient was successfully treated with intensive treatment for thyroid storm and a prompt operation. Although it is believed that peptic ulcer rarely coexists with hyperthyroidism, among patients with thyroid storm, perforation of a peptic ulcer has been reported as one of the causes of fatal outcome. We determined that surgical intervention was required in this patient, reported despite ongoing severe thyrotoxicosis, and reported herein a successful outcome.

  9. [Diagnosis and treatment of thyroid storm].

    PubMed

    Akamizu, Takashi

    2012-11-01

    Thyrotoxic storm is a life-threatening condition requiring emergency treatment. Neither its epidemiological data nor diagnostic criteria have been fully established. We clarified the clinical and epidemiological characteristics of thyroid storm using nationwide surveys and then formulate diagnostic criteria for thyroid storm. To perform the nationwide survey on thyroid storm, we first developed tentative diagnostic criteria for thyroid storm, mainly based upon the literature (the first edition). We analyzed the relationship of the major features of thyroid storm to mortality and to certain other features. Finally, based upon the findings of these surveys, we revised the diagnostic criteria. Thyrotoxic storm is still a life-threatening disorder with over 10% mortality in Japan.

  10. Thermospheric storms and related ionospheric effects

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Spencer, N. W.

    1976-01-01

    A comparative study of thermospheric storms for equinox and winter conditions is presented based on neutral-composition measurements from the Aeros-A neutral-atmosphere temperature experiment. The main features of the two storms as inferred from changes in N2, Ar, He, and O are described, and their implications for current theories of thermospheric storms are discussed. On the basis of the study of the F-region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are different manifestations of thermospheric storms.

  11. Regional characteristics of dust storms in China

    NASA Astrophysics Data System (ADS)

    Qian, Weihong; Tang, Xu; Quan, Linsheng

    2004-09-01

    Regional characteristics of dust storms in northern China are analyzed using a rotated empirical orthogonal function (REOF), based on the annual days of dust storms from 1954 to 1998. The relationships between regional dust storms corresponding to other factors such as precipitation and temperature are explored. The results show that five leading modes of dust storms exist in the following areas: the Taklamakan Desert (Tarim Basin) over the Xinjiang region (far northwestern China), the eastern part of Inner Mongolia (North China), the Tsaidam Basin, the Tibetan Plateau, and the upper reaches of the Yellow River (Gobi Desert). These areas are associated with an arid climate and frequent winds. For the first mode in the Tarim Basin, most dust storms appear in the 1980s, while dust storms become less frequent in the 1990s. The second mode (North China) shows the highest frequency of dust storms in the mid-1960s but the frequency decreases afterward. The third mode indicates a decreasing trend of annual dust storms after the mid-1960s but with a high interannual variability. The fourth mode also shows a decreasing trend but with a low interannual variability. The fifth mode displays a high frequency of dust storms in the 1970s followed by a decreasing trend. For the five modes of dust storm distribution, four of the centers are located in desert regions. The annual dust storms of a selected station in each mode region are shown to compare the coefficient time series of these modes. The negative correlation between the prior winter temperature and dust storm frequency is identified for most stations. There is no consistency in the correlation between the dust storm frequency and the annual rainfall as well as the prior winter rainfall at these stations. The activity of dust storms in northern China are directly linked to the cyclone activity, especially for the interdecadal variability.

  12. Agents to reduce cytokine storm

    PubMed Central

    Gerlach, Herwig

    2016-01-01

    The increasing insight into pathomechanisms of dysregulated host response in several inflammatory diseases led to the implementation of the term “cytokine storm” in the literature more than 20 years ago. Direct toxic effects as well as indirect immunomodulatory mechanisms during cytokine storm have been described and were the basis for the rationale to use several substances and devices in life-threatening infections and hyperinflammatory states. Clinical trials have been performed, most of them in the form of minor, investigator-initiated protocols; major clinical trials focused mostly on sepsis and septic shock. The following review tries to summarize the background, pathophysiology, and results of clinical investigations that had implications for the development of therapeutic strategies and international guidelines for the management of hyperinflammation during syndromes of cytokine storm in adult patients, predominantly in septic shock. PMID:28105327

  13. Storm Warnings on Lake Balaton,

    DTIC Science & Technology

    1982-04-06

    Vorhergesagt1 _ ___ !, ( SSZ . LI). (331, K _. )___ : 2 !daenkmmuflg 3 ja 4__ ’%ein %ZtLron S-0 6 j. a 3 10 24 126 B 88% A N in 4 13 173 186 B, 60% SZu...15 24 15 14 13 14 13 12 16 7 7 4 5 5 % 12 12 7 It 7 7 S 7 6 6 7 3 3 2 2 2 Key: 1-duration 2-number of storms 3-hours and one-third of storms last only...16-18 August 1959 and on 11- 13 June 1958, with a duration of 49.9 hours. Table 4 provides information about the frequency distribution of the maximum

  14. Dust storm off Western Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The impacts of Saharan dust storms reach far beyond Africa. Wind-swept deserts spill airborne dust particles out over the Atlantic Ocean where they can enter trade winds bound for Central and North America and the Caribbean. This Moderate Resolution Imaging Spectroradiometer (MODIS) image shows a dust storm casting an opaque cloud of cloud across the Canary Islands and the Atlantic Ocean west of Africa on June 30, 2002. In general it takes between 5 and 7 days for such an event to cross the Atlantic. The dust has been shown to introduce foreign bacteria and fungi that have damaged reef ecosystems and have even been hypothesized as a cause of increasing occurrences of respiratory complaints in places like Florida, where the amount of Saharan dust reaching the state has been increasing over the past 25 years.

  15. 46 CFR 129.220 - Basic safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS General Requirements § 129.220 Basic safety. (a) Electrical equipment and installations must be suitable... does not permit improper connection. (d) Electrical equipment and circuits must be clearly marked...

  16. 46 CFR 129.220 - Basic safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS General Requirements § 129.220 Basic safety. (a) Electrical equipment and installations must be suitable... does not permit improper connection. (d) Electrical equipment and circuits must be clearly marked...

  17. Severe storms observing satellite study

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Stern, D. A.

    1976-01-01

    Payload distribution and the attitude control system for the multi-mission modular spacecraft/StormSat configuration are discussed. The design of the advanced atmospheric sounder and imaging radiometer (AASIR) gimbal drive and its servomechanism is described. Onboard data handling, data downlink communications, and ground data handling systems are developed. Additional topics covered include: magnetic unloading at synchronous altitude, north-south stationkeeping, and the feasibility and impact of flying the microwave atmospheric sounding radiometer (MASR) as an additional payload.

  18. Magnetosphere-associated storms and the autonomous storms in the ionosphere-plasmasphere environment

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Stanislawska, I.

    2010-01-01

    Global GPS-derived ionosphere maps (GIM) of total electron content (TEC) were transformed into magnetic latitude (MLAT) versus magnetic local time (MLT) frame. TEC enhancement or depletion marked by W index show dominant electron content depressions and the ionosphere-plasmasphere storms increasing by nighttime, at high magnetic latitudes and over the crests of equatorial anomaly. Based on W maps, the planetary Wp index was produced and used for derivation of a catalogue of more than 140 TEC storms during 1999-2009. In total 33 space weather intense storms and 35 moderate storms are revealed with four series of indices (AE, Ap, Dst and Wp) but more than half Wp storms were either partially overlapping in time with magnetic storm or observed autonomously under non-storm magnetosphere conditions. Relation between an annual number of intense Dst storms and Wp storms has been used for their prediction towards the peak of the forthcoming 24th solar cycle.

  19. Investigation of Ionospheric Response to Geomagnetic Storms over a Low Latitude Station, Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Jimoh, Oluwaseyi E.; Yesufu, Thomas K.; Ariyibi, Emmanuel A.

    2016-06-01

    Due to several complexities associated with the equatorial ionosphere, and the significant role which the total electron content (TEC) variability plays in GPS signal transmission, there is the need to monitor irregularities in TEC during storm events. The GPS SCINDA receiver data at Ile-Ife, Nigeria, was analysed with a view to characterizing the ionospheric response to geomagnetic storms on 9 March and 1 October 2012. Presently, positive storm effects, peaks in TEC which were associated with prompt penetration of electric fields and changes in neutral gas composition were observed for the storms. The maximum percentage deviation in TEC of about 120 and 45% were observed for 9 March and 1 October 2012, respectively. An obvious negative percentage TEC deviation subsequent to sudden storm commencement (SSC) was observed and besides a geomagnetic storm does not necessarily suggest a high scintillation intensity (S4) index. The present results show that magnetic storm events at low latitude regions may have an adverse effect on navigation and communication systems.

  20. Storm-related carbon monoxide poisoning: lessons learned from recent epidemics.

    PubMed

    Hampson, N B; Stock, A L

    2006-01-01

    Over the past 15 years, a number of epidemics of carbon monoxide (CO) poisoning related to various storms have been reported. While the geographical location of these outbreaks and the types of storms involved has been diverse, review of the events reveals a number of common factors and themes. This paper summarizes the details of 9 published reports describing CO poisoning associated with 11 different storms. When common patterns were examined, five "lessons to be learned" from the experience were derived. They are (1) loss of electrical power can lead indirectly to carbon monoxide poisoning, (2) campaigns to educate the public about risks for CO exposure should be timed regionally to coincide with the peak risk for typical storms, (3) significant opportunities exist for prevention of generator-related CO poisoning, (4) there is a window of time for effective communications regarding the dangers of CO poisoning even after a storm strikes, and (5) the major sources of CO responsible for poisonings can be related to the type of storm and are predictable. It is hoped that each of these lessons are used to develop public programs designed to prevent storm-associated CO poisoning in the future.

  1. Simulation and 'TWINS Observations of the 22 July 2009 Storm

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Buzulukova, Natalia Y.; Chen, Sheng-Hsien; Valek, Phil; Goldstein, Jerry; McComas, David

    2010-01-01

    TWINS is the first mission to perform stereo imaging of the Earth's ring current. The magnetic storm on 22 July 2009 is the largest storm observed since TWINS began routine stereo imaging in June 2008. On 22 July 2009, the Dst dropped to nearly -80nT at 7:00 and 10:00 UT. During the main phase and at the peak of the storm, TWINS 1 and 2 were near apogee and moving from pre-dawn to post-dawn local time. The energetic neutral atom (ENA) imagers on the 2 spacecraft captured the storm intensification and the formation of the partial ring current. The peak of the ENA emissions was seen in the midnight-to-dawn local-time sector. The development of this storm has been simulated using the Comprehensive Ring Current Model (CRCM) to understand and interpret the observed signatures. We perform CRCM runs with constant and time-varying magnetic field. The model calculations are validated by comparing the simulated ENA and ion flux intensities with TWINS ENA images and in-situ ion data from THEMIS satellites. Simulation with static magnetic field produces a strong shielding electric field that skews the ion drift trajectories toward dawn. The model's corresponding peak ENA emissions are always eastward than those in the observed TWINS images. On the other hand, simulation with a dynamic magnetic field gives better spatial agreements with both ENA and insitu particle data, suggesting that temporal variations of the geomagnetic field exert a significant influence upon global ring current ion dynamics.

  2. Simulation and Twins Observations of the 22 July 2009 Storm

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Buzulukova, N.; Chen, S.-H.; Valek, P. W.; Goldstein, J.; McComas, D. J.

    2011-01-01

    TWINS is the first mission to perform stereo imaging of the Earth's ring current. The magnetic storm on 22 July 2009 was at the time the largest storm observed since TWINS began routine stereo imaging in June 2008. On 22 July 2009, the Dst dropped to nearly .80 nT at 0700 and 1000 UT. During the main phase, and at the peak of the storm, TWINS 1 and 2 were near apogee and moving between predawn and postdawn local time. The energetic neutral atom (ENA) imagers on the two spacecraft captured the storm intensification and the formation of the partial ring current. The peak of the high-altitude ENA emissions was seen in the midnight-to-dawn local time sector. The development of this storm has been simulated using the comprehensive ring current model (CRCM) to understand and interpret the observed signatures. We perform CRCM runs with constant and time-varying magnetic field. The model calculations are validated by comparing the simulated ENA and ion flux intensities with TWINS ENA images and in situ ion data from a THEMIS satellite. Simulation with a static magnetic field produces a strong shielding electric field that skews the ion drift trajectories toward dawn. The model's corresponding peak ENA emissions are always more eastward than those in the observed TWINS images. On the other hand, the simulation with a dynamic magnetic field gives better spatial agreement with both ENA and in situ particle data, suggesting that temporal variations of the geomagnetic field exert a significant influence upon global ring current ion dynamics.

  3. Dust Storm Time Lapse Shows Opportunity's Skies Darken

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Dust Storm Time Lapse Shows Opportunity's Skies Darken

    NASA's Opportunity rover is literally seeing some of its darkest days. Both Mars Exploration Rovers have been riding out a regional dust storm for several weeks. Conditions became particularly dreary in the Meridiani Planum region where Opportunity sits, perched on the edge of 'Victoria Crater.'

    This image is a time-lapse composite where each horizon-survey image has been compressed horizontally (but not vertically) to emphasize the sky. The relative brightness and darkness of the sky from sol to sol (over a 30-sol period beginning June 14, 2007) is depicted accurately in these images, which view roughly the same part of the plains southwest of the rover. The images are approximately true color composites, generated from calibrated radiance data files using the panoramic camera's 601-nanometer, 535-nanometer and 482-nanometer filters.

    The rovers' atmospheric science team is concerned that smaller, regional dust storms could expand into a larger, globe-encircling storm. That could extend the time the sun stays obscured, challenging the capability of Opportunity's solar panels to produce enough electricity for the rover to function.

    Fortunately, as of July 19, 2007, the Opportunity site is clearing slightly. When the storm ends, atmospheric scientists hope to review data from the rovers that will help them determine what sort of dust was being lifted and distributed.

    The numbers across the top of the image report a measurement of atmospheric opacity, called by the Greek letter tau. The lower the number, the clearer the sky. Both Opportunity and Spirit have been recording higher tau measurements in July 2007 than they had seen any time previously in their three and a half years on Mars. The five sol numbers across the bottom correspond (left to right) to June 14, June 30, July 5, July 13 and July 15, 2007.

  4. Responses in the polar and equatorial ionosphere to the March 2015 St. Patrick Day storm

    NASA Astrophysics Data System (ADS)

    Hairston, Marc; Coley, W. R.; Stoneback, Russell

    2016-11-01

    The St. Patrick Day storm of 2015 (17 March 2015) occurred at a unique time when there were multiple spacecraft observing the Earth's ionosphere between 350 and 885 km. Observations of the plasma flows and densities from the five operational polar-orbiting DMSP spacecraft combined with those from the equatorial-orbiting C/NOFS spacecraft provided a comprehensive global record of the both the polar and equatorial ionosphere regions' responses to the storm. This paper presents an overview of the data from this suite of spacecraft focusing on the following aspects: (1) the polar cap ionosphere's reaction to the storm, (2) the change in the penetration electric field in the midlatitude region as a function of time and the solar local time during the storm, (3) the equatorial ionosphere's response of the meridional (vertical) flows to the penetration electric field and the disturbance dynamo during the storm, and (4) the creation of a predawn ionospheric bubble system near the equator during the storm's main phase that was observed at low altitudes by C/NOFS and later at high altitudes by several DMSP. Examining these phenomenon enable us to trace the dynamic flow of energy from the solar wind input in the polar ionosphere all the way to the equatorial ionosphere.

  5. Dust Storm in Southern California

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Along historic Route 66, just southeast of the little town of Amboy, California, lies a dried-up lake. Dry lakebeds are good sources of two things: salt and dust. In this image, the now-parched Bristol Lake offers up both. On April 12, 2007, dust storms menaced the area around Amboy. To the northwest, near Newberry Springs, California, dust hampered visibility and led to a multi-car collision on Interstate 40, killing two people and injuring several others. The same day, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of a dust storm in the dry remains of Bristol Lake. Many small dust clouds boil up from the ground surface, casting their shadows to the northwest. A bright white cloud floating over the dust also throws its shadow onto the ground below. East of the dust storm are salt works that stand out from the surrounding landscape thanks to their straight lines and sharp angles. Dark ground surfaces alternate with mined white salt in a network of stripes. When lakes evaporate, chemicals that had been dissolved in the water stay behind, making dry lake beds an ideal place to find heavy concentrations of minerals, including salt. Besides the salt works, something else appears in stark contrast to this arid place. Lush green fields of irrigated crops appear in the east. Besides their color, their orderly arrangement reveals their human-made origin.

  6. Inflation Basics

    SciTech Connect

    Green, Dan

    2014-03-01

    inflation since metrical fluctuations, both scalar and tensor, are also produced in inflationary models. Thus, the time appears to be appropriate for a very basic and simple exposition of the inflationary model written from a particle physics perspective. Only the simplest scalar model will be explored because it is easy to understand and contains all the basic elements of the inflationary model.

  7. The relationship of storm severity to directionally resolved radio emissions

    NASA Technical Reports Server (NTRS)

    Johnson, R. O.; Bushman, M. L.; Sherrill, W. M.

    1980-01-01

    Directionally resolved atmospheric radio frequency emission data were acquired from thunderstorms occurring in the central and southwestern United States. In addition, RF sferic tracking data were obtained from hurricanes and tropical depressions occurring in the Gulf of Mexico. The data were acquired using a crossed baseline phase interferometer operating at a frequency of 2.001 MHz. The received atmospherics were tested for phase linearity across the array, and azimuth/elevation angles of arrival were computed in real time. A histogram analysis of sferic burst count versus azimuth provided lines of bearing to centers of intense electrical activity. Analysis indicates a consistent capability of the phase linear direction finder to detect severe meteorological activity to distances of 2000 km from the receiving site. The technique evidences the ability to discriminate severe storms from nonsevere storms coexistent in large regional scale thunderstorm activity.

  8. The responses of the thermosphere due to a geomagnetic storm: A MHD model

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Chang, S.

    1972-01-01

    A magnetohydrodynamics theory was used to study the dynamic response of the neutral atmosphere to a geomagnetic storm. A full set of magnetohydrodynamic equations appropriate for the present problem is derived and their various orders of approximation are discussed in some detail. In order to demonstrate the usefulness of this theoretical model, the May 1967 geomagnetic storm data were used in the resulting set of nonlinear, time dependent, partial differential magnetohydrodynamic equations to calculate variations of the thermosphere due to the storm. The numerical results are presented for wind speeds, electric field strength, and amount of joule heating at a constant altitude for the data recorded. Data show that the strongest thermospheric responses are at the polar region becoming weaker in the equatorial region. This may lead to the speculation that a thermospheric wave is generated in the polar region due to the geomagnetic storm which propagates towards the equator.

  9. Extreme Lightning Flash Rates as an Early Indicator of Severe Storms

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Extreme lightning flash rates are proving to be an early indicator of intensifying storms capable of producing tornadoes, damaging winds and hail. Most of this lightning is in the cloud, where the naked eye can not see it. Recent global observations of thunderstorms from space indicate that giant electrical storms (supercells and convective complexes) with flash rates on the order of 1 flash per second are most common over the land masses of the America sub-tropics and equatorial Congo Basin. Within the United States, the average tornado warning lead time on a national basis is about 11 min. The real-time observation of extreme flash rates and the rapid increase in the in-cloud flash rate, signalling the intensification of the storm updraft, may provide as much as a 50% increase in severe storm warning lead time.

  10. Electric Utility Industry Experience with Geomagnetic Disturbances

    DTIC Science & Technology

    1991-09-01

    the March 13, 1989, geomagnetic storm. Source: North American Electric Reliability Council ................................................ 9 Fig. 2.2...Events and K intensity recorded in North America during the March 13, 1989, geomagnetic storm. Source: North American Electric Reliability Council. 2.2...Unit I experienced VAR excursions of 150 to 200 MVAR. Additional VARs were consumed by the saturated step-up transformers. An empirical equation

  11. Reduction of coherence of the human brain electric potentials

    NASA Astrophysics Data System (ADS)

    Novik, Oleg; Smirnov, Fedor

    Plenty of technological processes are known to be damaged by magnetic storms. But technology is controlled by men and their functional systems may be damaged as well. We are going to consider the electro-neurophysiological aspect of the general problem: men surrounded by physical fields including ones of cosmic origination. Magnetic storms’ influence had been observed for a group of 13 students (practically healthy girls and boys from 18 to 23 years old, Moscow). To control the main functional systems of the examinees, their electroencephalograms (EEG) were being registered along with electrocardiograms, respiratory rhythms, arterial blood pressure and other characteristics during a year. All of these characteristics, save for the EEG, were within the normal range for all of the examinees during measurements. According to the EEG investigations by implementation of the computer proof-reading test in absence of magnetic storms, the values of the coherence function of time series of the theta-rhythm oscillations (f = 4 - 7.9 Hz, A = 20 μV) of electric potentials of the frontal-polar and occipital areas of the head belong to the interval [0.3, 0.8] for all of the students under investigation. (As the proof-reading test, it was necessary to choose given symbols from a random sequence of ones demonstrated at a monitor and to enter the number of the symbols discovered in a computer. Everyone was known that the time for determination of symbols is unlimited. On the other hand, nobody was known that the EEG and other registrations mentioned are connected with electromagnetic geophysical researches and geomagnetic storms). Let us formulate the main result: by implementation of the same test during a magnetic storm, 5 ≤ K ≤ 6, or no later then 24 hours after its beginning (different types of moderate magnetic storms occurred, the data of IZMIRAN were used), the values of the theta-rhythm frontal - occipital coherence function of all of the students of the group under

  12. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. ); Taylor, E.R. Jr. ); Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  13. Electric Utility Industry Experience with Geomagnetic Disturbances

    SciTech Connect

    Barnes, P.R.

    1991-01-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

  14. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W.; Taylor, E.R. Jr.; Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  15. The danger to satellites from meteor storms

    NASA Astrophysics Data System (ADS)

    Beech, M.; Brown, P.; Jones, J.; Webster, A. R.

    During past meteor storms impact probabilities of between 1 and 0.01 percent have be realized per 50m^2 of exposed surface area at altitudes corresponding to both GEO and LEO. The most likely meteoroid stream to yield a storm in the near future is that of the Leonids. Numerical simulations of the orbital evolution of hypothetical Leonid stream meteoroids suggest that storms may occur in the years 1999 and 2000.

  16. Storm-induced changes of the topside ionosphere as deduced from incoherent-scatter radars. Master's thesis

    SciTech Connect

    Lunn, K.J.

    1990-01-01

    Incoherent scatter radar observations from Millstone Hill, Saint Santin, and Arecibo are used to illustrate changes of the topside ionosphere during a geomagnetic storm. These observations consist of electron density, electron and ion temperatures, and ion velocity components parallel and perpendicular to the magnetic field. These parameters can further describe changes in ion composition, electric fields, and neutral winds. Attention is given to a specific storm during the Equinox Transition Study (ETS) of September 1984. In order to isolate the storm effects in the topside ionosphere, a comparison will be made between a disturbed and quiet day. A novel result from this study is the finding of correlated oscillations between parallel and perpendicular ion velocity components which are apparently storm induced. Previously, these oscillations have been observed primarily at night, but now it's noticed that during storm conditions there are prominent oscillations during the day.

  17. Numerical Simulations of 1990 Saturn's Giant Storm

    NASA Astrophysics Data System (ADS)

    Garcia-Melendo, E.; Sanchez-Lavega, A.

    2015-12-01

    We present here a study of the Saturn's 1990 equatorial major storm based on numerical simulations. Six planetary scale storms, nicknamed as Great White Spots (GWS) have been observed since the nineteenth century, three of them at the equatorial region in 1876 (~ +8º), 1933 (~ +2º), and 1990 (+12º), on the broad prograde equatorial jet where equatorial dynamics dominated producing a storm nucleus, with rapid expansion to the east and west to become a planetary-scale disturbance (Sánchez-Lavega, CHAOS 4, 341-353, 1994). We have detailed information, ground-based CCD imaging and Hubble Space Telescope (HST) data, for the 1990 event. Numerical experiments on the 1990 storm indicate that the onset of the storm can only be reproduced if the Voyager era background zonal flow is used, which suggests that it dominated the circulation dynamics at the storm's outbreak region at that time. We review the possible impact of the 1990 storm on the equatorial jet, storm dynamics, and how it relates to the observed storm morphology and zonal wind measurements derived from HST observations (Barnet et al., Icarus 100, 499-511, 1992). Observations also describe the formation of equatorial planetary waves and instabilities during the disturbance. We discuss the impact of major energy and mass injection by a planetary-scale convective event on the equatorial dynamics following our simulation results.

  18. Observing storm surges from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2016-07-01

    Storm surges can cause catastrophic damage to properties and loss of life in coastal communities. Thus it is important to enhance our capabilities of observing and forecasting storm surges for mitigating damage and loss. In this presentation we show examples of observing storm surges around the world using nadir satellite altimetry, during Hurricane Sandy, Igor, and Isaac, as well as other cyclone events. The satellite observations are evaluated against tide-gauge observations and discussed for dynamic mechanisms. We also show the potential of a new wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  19. A Personal Storm Warning Service

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Although lightning detection systems operated by government agencies, utilities and other businesses provide storm warnings, this information often does not reach the public until some time after the observations have been made. A low-cost personal lightning detector offers a significant safety advantage to private flyers, boaters, golfers and others. Developed by Airborne Research Associates, the detectors originated in Space Shuttle tests of an optical lightning detection technique. The commercial device is pointed toward a cloud to detect invisible intracloud lightning by sensing subtle changes in light presence. The majority of the sales have been to golf courses. Additional products and more advanced applications are in progress.

  20. 11th International Conference on Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Christian, H. J. (Compiler)

    1999-01-01

    This document contains the proceedings from the 11th International Conference on Atmospheric Electricity (ICAE 99), held June 7-11, 1999. This conference was attended by scientists and researchers from around the world. The subjects covered included natural and artificially initiated lightning, lightning in the middle and upper atmosphere (sprites and jets), lightning protection and safety, lightning detection techniques (ground, airborne, and space-based), storm physics, electric fields near and within thunderstorms, storm electrification, atmospheric ions and chemistry, shumann resonances, satellite observations of lightning, global electrical processes, fair weather electricity, and instrumentation.

  1. In the Eye of the Storm: A Participatory Course on Coastal Storms

    ERIC Educational Resources Information Center

    Curtis, Scott

    2013-01-01

    Storm disasters are amplified in the coastal environment due to population pressures and the power of the sea. The upper-division/graduate university course "Coastal Storms" was designed to equip future practitioners with the skills necessary to understand, respond to, and mitigate for these natural disasters. To accomplish this, "Coastal Storms"…

  2. Global lightning and severe storm monitoring from GPS orbit

    SciTech Connect

    Suszcynsky, D. M.; Jacobson, A. R.; Linford, J; Pongratz, M. B.; Light, T.; Shao, X.

    2004-01-01

    electrical activity within that cell as measured by the lightning flash rate. Williams [2001] has provided a review of experimental work that shows correlations between the total lightning flash rate and the fifth power of the radar cloud-top height (i.e. convective strength) of individual thunder cells. More recently, Ushio et al., [2001] used a large statistical sampling of optical data from the Lightning Imaging Sensor (LIS) in conjunction with data provided by the Precipitation Radar (PR) aboard the Tropical Rainfall Monitoring Mission (TRMM) satellite to conclude that the total lightning flash rate increases exponentially with storm height. Lightning activity levels have also been correlated to cloud ice content, a basic product of the convective process. For example, Blyth et al. [2001] used the Thermal Microwave Imager (TMI) aboard the TRMM satellite to observe a decrease in the 37 and 85 GHz brightness temperatures of upwelling terrestrial radiation during increased lightning activity. This reduction in brightness temperature is believed to be the result of increased ice scattering in the mixed phase region of the cloud. Toracinta and Zipser [2001] have found similar relationships using the Optical Transient Detector (OTD) satellite instrument and the Special Sensor Microwave Imager (SSM/I) aboard the DMSP satellites.

  3. Prediction of Solar Storms in Future

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Using the Solar Vector Magnetograph, a solar observation facility at NASA's Marshall Space Flight Center (MSFC), scientists from the National Space Science and Technology Center (NSSTC) in Huntsville, Alabama, are monitoring the explosive potential of magnetic areas of the Sun. This effort could someday lead to better prediction of severe space weather, a phenomenon that occurs when blasts of particles and magnetic fields from the Sun impact the magnetosphere, the magnetic bubble around the Earth. When massive solar explosions, known as coronal mass ejections, blast through the Sun's outer atmosphere and plow toward Earth at speeds of thousands of miles per second, the resulting effects can be harmful to communication satellites and astronauts outside the Earth's magnetosphere. Like severe weather on Earth, severe space weather can be costly. On the ground, the magnetic storm wrought by these solar particles can knock out electric power. The researchers from MSFC and NSSTC's solar physics group develop instruments for measuring magnetic fields on the Sun. With these instruments, the group studies the origin, structure, and evolution of the solar magnetic field and the impact it has on Earth's space environment. This photograph shows the Solar Vector Magnetograph and Dr. Mona Hagyard of MSFC, the director of the observatory who leads the development, operation and research program of the Solar Vector Magnetograph.

  4. Prediction of Solar Storms in Future

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Using the Solar Vector Magnetograph, a solar observation facility at NASA's Marshall Space Flight Center (MSFC), scientists from the National Space Science and Technology Center (NSSTC) in Huntsville, Alabama, are monitoring the explosive potential of magnetic areas of the Sun. This effort could someday lead to better prediction of severe space weather, a phenomenon that occurs when blasts of particles and magnetic fields from the Sun impact the magnetosphere, the magnetic bubble around the Earth. When massive solar explosions, known as coronal mass ejections, blast through the Sun's outer atmosphere and plow toward Earth at speeds of thousands of miles per second, the resulting effects can be harmful to communication satellites and astronauts outside the Earth's magnetosphere. Like severe weather on Earth, severe space weather can be costly. On the ground, magnetic storms wrought by these solar particles can knock out electric power. Photographed are a group of contributing researchers in front of the Solar Vector Magnetograph at MSFC. The researchers are part of NSSTC's solar physics group, which develops instruments for measuring magnetic fields on the Sun. With these instruments, the group studies the origin, structure, and evolution of the solar magnetic fields and the impact they have on Earth's space environment.

  5. Prediction of Solar Storms in Future

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center (MSFC) and university scientists from the National Space Science and Technology Center (NSSTC) in Huntsville, Alabama, are watching the Sun in an effort to better predict space weather - blasts of particles and magnetic fields from the Sun that impact the magnetosphere, the magnetic bubble around the Earth. Filled by charged particles trapped in the Earth's magnetic field, the spherical comet-shaped magnetosphere extends out 40,000 miles from Earth's surface in the sunward direction and more in other directions. This image illustrates the Sun-Earth cornection. When massive solar explosions, known as coronal mass ejections, blast through the Sun's outer atmosphere and plow toward Earth at speeds of thousands of miles per second, the resulting effects can be harmful to communication satellites and astronauts outside the Earth's magnetosphere. Like severe weather on Earth, severe space weather can be costly. On the ground, magnetic storms wrought by these solar particles can knock out electric power. By using the Solar Vector Magnetograph, a solar observation facility at MSFC, scientists are learning what signs to look for as indicators of potential severe space weather.

  6. Severe Local Storms Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Gladich, I.; Gallai, I.; Giaiotti, D. B.; Morgan, G. M.; Stel, F.

    2009-09-01

    Local storms always had a deep impact on people communities, mainly because of the severe damage caused, because of their unpredictability and, up to a few years ago, even because of the lack of knowledge and awareness on their physical origin. Because of this large impact on real life and on imagination, people needed and wanted to describe and report the occurrence of these events, giving them suited names. Often, these nouns are related to the myth developed to explain the cause of the events. In this work, a short presentation and description of the popular nouns used to describe severe local storm events in different areas of the World is given. Countries taken into account span from Italy, moving toward Africa and reaching a few communities of Native Americans. The etymology of the names gives interesting information, useful even under the anthropological point of view, on the Culture and Believes of the peoples who adopted them. This research work is the result of an underground activity carried out in the last ten years by the authors, during their contacts with students and researchers coming from different Countries and mainly met at the International Center for Theoretical Physics in Trieste.

  7. Ionospheric response to great geomagnetic storms during solar cycle 23

    NASA Astrophysics Data System (ADS)

    Merline Matamba, Tshimangadzo; Bosco Habarulema, John

    2016-07-01

    The analyses of ionospheric responses due to great geomagnetic storms i.e. Dst index < 350 nT that occurred during solar cycle 23 are presented. The GPS Total Electron Content (TEC) and ionosonde data over Southern and Northern Hemisphere mid-latitudes were used to study the ionospheric responses. A geomagnetic latitude region of ±30° to ±46° within a longitude sector of 15° to 40° was considered. Using a criteria of Dst < -350 nT, there were only four great storm periods (29 March - 02 April 2001, 27 - 31 October 2003, 18 - 23 November 2003 and 06 - 11 November 2004) in solar cycle 23. Analysis has shown that ionospheric dynamics during these disturbed conditions could be due to a number of dynamic and electrodynamics processes in both Hemispheres. In some instances the ionosphere responds differently to the same storm condition in both Hemispheres. Physical mechanisms related to (but not limited to) composition changes and electric fields will be discussed.

  8. Tropical Storm Ernesto over Cuba

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Microwave Image

    These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite.

    Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Image In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity.

    Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most

  9. Stresses and storms: the case of Bangladesh.

    PubMed

    Ahmad, N

    1993-01-01

    The problems of women and environmental degradation have recently come to be addressed by women's groups, nongovernmental organizations (NGOs), and government policies in Bangladesh. NGOs have been the most active, with 600 registered organizations: 40% international, 38% national, and 22% local. NGOs have promoted the recent inclusion of environmental concerns into development plans. About 100 NGOs are engaged in forestry projects. The National Association for Resource Improvement, for example, involves women in tree planting along roadsides and income-generating activities. About 75% of upazilas (administrative units) have environmental and women's projects, but under 20% of all villages are affected and 1% of landless people are reached. Women's groups have created awareness of women's problems and advocated for socioeconomic changes. Women, despite cultural and social restrictions on their social behavior, have changed environmental and economic conditions. Women's leadership and organizing abilities have contributed to public awareness of environmental degradation. Because Bangladesh is a delta, a rise in sea level from greenhouse effects would have serious consequences for the land and population. Global warming has contributed to river flooding and climate changes that have increased rainfall and tropical storms. Deforestation upriver adds to the water runoff problems. About 20% of the cultivable land area is affected by natural disasters. Population density is 760 persons per sq km. About 50% of forested areas have been destroyed within the past 20 years. 4% of gross domestic product comes from forest activity. The lack of wood fuel limits the ability of people to boil water and contributes to the increased incidence of diarrhea, other intestinal problems, and less nutritious food. Drought is another problem. Urban migration has overwhelmed the ability of urban centers to provide basic services. Coastal areas have been settled by 20% of total population

  10. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.

    PubMed

    Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U

    2015-06-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.

  11. Arecibo observations of ionospheric perturbations associated with the passage of Tropical Storm Odette

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Aponte, N.; Earle, G. D.; Sulzer, M.; Larsen, M. F.; Peng, G. S.

    2006-11-01

    A suite of instruments including incoherent scatter radar, ionosonde, and a satellite-bourne GPS receiver observed the ionosphere immediately following the passage of a tropical storm. Tropical Storm Odette formed on 4 December 2003 and proceeded northeasterly over the next 4 days, passing within 600 km of the Arecibo Observatory (AO). On the night of 7-8 December AO measured F region plasma densities and velocities nearly coincident with the storm. Large velocity variations, 10-80 m/s, are evident in the plasma drift components. The variations appear wave-like with an average period of 90 min at 367 km. Zonal drifts were observed with magnitudes significantly greater than commonly observed for similar geomagnetic conditions. The Ramey ionosonde observed intense midlatitude spread F on the night following the closest passage of the storm. GPS occultations within the storm path showed an increase in gravity wave activity and F region scintillation. Combining the local increase in gravity wave activity with the large drift variations and dominant meridional electric field observed immediately following the storm's traversal of the flux tube coincident with the AO observing volume provide insight into coupling between mesoscale weather systems and the ionosphere.

  12. Storm-time ionization enhancements at the topside low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Dmitriev, A.; Yeh, H.-C.

    2008-05-01

    Ion density enhancements at the topside low-latitude ionosphere during a Bastille storm on 15-16 July 2000 and Halloween storms on 29-31 October 2003 were studied using data from ROCSAT-1/IPEI experiment. Prominent ion density enhancements demonstrate similar temporal dynamics both in the sunlit and in the nightside hemispheres. The ion density increases dramatically (up to two orders of magnitude) during the main phase of the geomagnetic storms and reaches peak values at the storm maximum. The density enhancements are mostly localized in the region of a South Atlantic Anomaly (SAA), which is characterized by very intense fluxes of energetic particles. The dynamics of near-Earth radiation was studied using SAMPEX/LEICA data on >0.6 MeV electrons and >0.8 MeV protons at around 600 km altitude. During the magnetic storms the energetic particle fluxes in the SAA region and in its vicinity increase more than three orders of magnitude. The location of increased fluxes overlaps well with the regions of ion density enhancements. Two mechanisms were considered to be responsible for the generation of storm-time ion density enhancements: prompt penetration of the interplanetary electric field and abundant ionization of the ionosphere by enhanced precipitation of energetic particles from the radiation belt.

  13. NASA's 3-D Animation of Tropical Storm Ulika from Space

    NASA Video Gallery

    An animated 3-D flyby of Tropical Storm Ulika using GPM's Radar data showed some strong convective storms inside the tropical storm were dropping precipitation at a rate of over 187 mm (7.4 inches)...

  14. Severe storms and local weather research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Developments in the use of space related techniques to understand storms and local weather are summarized. The observation of lightning, storm development, cloud development, mesoscale phenomena, and ageostrophic circulation are discussed. Data acquisition, analysis, and the development of improved sensor and computer systems capability are described. Signal processing and analysis and application of Doppler lidar data are discussed. Progress in numerous experiments is summarized.

  15. Polarimetric radar characteristics of storms with and without lightning activity

    NASA Astrophysics Data System (ADS)

    Mattos, Enrique V.; Machado, Luiz A. T.; Williams, Earle R.; Albrecht, Rachel I.

    2016-12-01

    This paper analyzes the cloud microphysics in different layers of storms as a function of three-dimensional total lightning density. A mobile X-band polarimetric radar and very high frequency (VHF) sources from Lightning Mapping Array (LMA) observations during the 2011/2012 Brazil spring-summer were used to determine the microphysical signatures of radar vertical profiles and lightning density. This study quantified the behavior of 5.3 million vertical profiles of the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and correlation coefficient (ρHV). The principal changes in the polarimetric variables occurred only for VHF source rate density greater than 14 VHF sources per km2 in 4 min. These storms showed an enhanced positive KDP in the mixed 1 layer (from 0 to -15°C) probably associated with supercooled liquid water signatures, whereas regions with negative ZDR and KDP and moderate ZH in the mixed 2 layer (from -15 to -40°C) were possibly associated with the presence of conical graupel. The glaciated (above -40°C) and upper part of the mixed 2 layers showed a significant trend to negative KDP with an increase in lightning density, in agreement with vertical alignment of ice particle by the cloud electric field. A conceptual model that presents the microphysical signatures in storms with and without lightning activity was constructed. The observations documented in this study provide an understanding of how the combinations of polarimetric variables could help to identify storms with different lightning density and vice versa.

  16. Position of the Ring Current Peak During ICME- and CIR-Driven Storms

    NASA Astrophysics Data System (ADS)

    Jahn, J.; Elliott, H. A.; Perez, J. D.; Pulkkinen, T. I.; Samara, M.; Barrows, S.

    2006-12-01

    Under appropriate solar wind driving during the main phase of a storm, the peak of the ring current (as deduced from ENA observations) can move past midnight towards early morning magnetic local times. Several mechanisms explaining this dawnward shift have been proposed, including the deformation of the convection electric field due to the shielding electric field, and the local time dependence of the plasma sheet density. We present a study of all Dst storms during the IMAGE mission (2000-2005) for which below 80 keV hydrogen ENA remote sensing ring current data are available. We expand previous investigations in several areas. In addition to all ICME-driven events we also include all CIR-driven storms. The relevant (and sufficient) solar wind driving may occur in either event type. We discuss the coupling between solar wind and magnetosphere in more detail, also considering the magnetospheric state prior to storm main phase. This will better represent the role of the plasma sheet in the control of the storm time ring current peak position. Furthermore, we include a comparison of ENA-based results with ground-based magnetometer observations of the ring current morphology for a select number of cases. This provides ground truth for studies previously based on remote- sensing ENA observations alone.

  17. Middle- and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S. M.; Amory-Mazaudier, C.; Fleury, R.

    2016-04-01

    This paper presents a study of the St Patrick's Day storm of 2015, with its ionospheric response at middle and low latitudes. The effects of the storm in each longitudinal sector (Asian, African, American, and Pacific) are characterized using global and regional electron content. At the beginning of the storm, one or two ionospheric positive storm effects are observed depending on the longitudinal zones. After the main phase of the storm, a strong decrease in ionization is observed at all longitudes, lasting several days. The American region exhibits the most remarkable increase in vertical total electron content (vTEC), while in the Asian sector, the largest decrease in vTEC is observed. At low latitudes, using spectral analysis, we were able to separate the effects of the prompt penetration of the magnetospheric convection electric field (PPEF) and of the disturbance dynamo electric field (DDEF) on the basis of ground magnetic data. Concerning the PPEF, Earth's magnetic field oscillations occur simultaneously in the Asian, African, and American sectors, during southward magnetization of the Bz component of the interplanetary magnetic field. Concerning the DDEF, diurnal magnetic oscillations in the horizontal component H of the Earth's magnetic field exhibit a behavior that is opposed to the regular one. These diurnal oscillations are recognized to last several days in all longitudinal sectors. The observational data obtained by all sensors used in the present paper can be interpreted on the basis of existing theoretical models.

  18. Interactions Between Convective Storms and Their Environment

    NASA Technical Reports Server (NTRS)

    Maddox, R. A.; Hoxit, L. R.; Chappell, C. F.

    1979-01-01

    The ways in which intense convective storms interact with their environment are considered for a number of specific severe storm situations. A physical model of subcloud wind fields and vertical wind profiles was developed to explain the often observed intensification of convective storms that move along or across thermal boundaries. A number of special, unusually dense, data sets were used to substantiate features of the model. GOES imagery was used in conjunction with objectively analyzed surface wind data to develop a nowcast technique that might be used to identify specific storm cells likely to become tornadic. It was shown that circulations associated with organized meso-alpha and meso-beta scale storm complexes may, on occasion, strongly modify tropospheric thermodynamic patterns and flow fields.

  19. A rare case of thyroid storm.

    PubMed

    McMillen, Brock; Dhillon, Manvinder Shelley; Yong-Yow, Sabrina

    2016-04-18

    Thyroid storm is a rare and life-threatening state of thyroid hormone excess. Rapid recognition of thyroid storm is key to decreasing the morbidity and mortality of this condition. Clinical manifestations of thyroid storm include unexplained weight loss, hyperactivity and irritability. The most common causes of thyrotoxicosis are Graves' disease, toxic multinodular goitre and toxic adenoma. We present a rare case of thyroid storm induced by dual nivolumab and ipilimumab immunotherapy in a patient receiving treatment for advanced melanoma. In this case, our patient was admitted for thyroid storm 1 month after initiating treatment with nivolumab and ipilimumab immunotherapy. The patient was treated with β-blockers, antithyroid medications and systemic steroids resulting in an improvement in thyroid function testing and symptoms.

  20. Ionospheric effects at low latitudes during the March 22, 1979, geomagnetic storm

    SciTech Connect

    Fesen, C.G. ); Crowley, G.; Roble, R.G. )

    1989-05-01

    This paper investigates the response of the equatorial ionosphere to the neutral atmosphere perturbations produced by the magnetic storm of March 22, 1979. A numerical model of the equatorial ionosphere is used to calculate the maximum electron densities and F layer heights associated with a storm-perturbed neutral atmosphere and circulation model. Possible electric field perturbations due to the storm are ignored. The neutral atmosphere and dynamics are simulated by the National Center for Atmospheric Research thermospheric general circulation model (TGCM) for the storm day of March 22, 1979, and the preceding quiet day. The most striking feature of the TGCM storm day simulations is the presence of waves in the neutral composition, wind, and temperature fields which propagate from high latitudes to the equator. The TGCM-calculated fields for the two days are input into a low-latitude ionosphere model which calculates n{sub max} and h{sub max} between {plus minus}20{degree}dip latitude. The calculated nighttime 6300-{angstrom} airglow emission and the altitude profiles of electron concentration are also highly perturbed by the storm. Examination of ionosonde data for March 22, 1979, shows remarkable agreement between the measured and predicted changes in f{sub 0}F{sub 2} and h{sub max} near 140{degree}W. Poorer agreement near 70{degree}W may be due to the neglect of electric field perturbations and the approximations inherent in the modeling. The results of these simulations indicate that the major factor influencing the storm time ionospheric behavior in this case is the neutral wind.

  1. Electric Current Solves Mazes

    ERIC Educational Resources Information Center

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  2. Effect of Asian dust storms on daily mortality in seven metropolitan cities of Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyewon; Kim, Ho; Honda, Yasushi; Lim, Youn-Hee; Yi, Seungmuk

    2013-11-01

    The adverse effects of dust storms on health have been a major issue in several countries. A substantial number of studies have found significant associations between dust storms and morbidity such as emergency visits and hospitalizations. However, the results of the studies on the association between dust storms and mortality are inconsistent. In Korea, no study has found statistically significant effect of Asian dust storms on daily mortality. Thus, this study aims to explore the effect of Asian dust storms on daily mortality in Korea during 2001-2009. All analyses were confined to non-accidental mortality. We used generalized additive model with Quasi-Poisson regressions. We considered the lag effect of dust storms up to 7 days and performed subgroup analyses by disease, sex and age. Current day's temperature, relative humidity, barometric pressure, day of the week, season and time trends were controlled for in a basic model. SO2, NO2 and PM10 levels were also added in the further analyses. Meta-analysis was applied for seven metropolitan cities in Korea to estimate the pooled effects of Asian dust storms. We reported results as excessive mortality by percentage due to Asian dust storms. We found significant positive associations between Asian dust storms and mortality at lag 0 (cardiovascular: 2.91%; 95% CI: 0.13, 5.77, male: 2.74%; 95% CI: 0.74, 4.77 and <65 years: 2.52%; 95% CI: 0.06, 5.04), at lag 2 (male 2.4%; 95% CI: 0.43, 4.4 and <65 years: 2.49%; 95% CI: 0.07, 4.97), at lag 3 (total non-accidental: 1.57%; 95% CI: 0.11, 3.06, male: 2.24%; 95% CI: 0.28, 4.25 and <65 years: 2.43%; 95% CI: 0.01, 4.91) and at lag 5 (cardiovascular: 3.7%; 95% CI: 0.93, 6.54 and male: 2.04%, 95 CI: 0.08, 4.04) in the model which adjusted for NO2 additionally. Other models showed similar significant results except the PM10-adjusted model. This is the first study to show the significant relationship between Asian dust storms and mortality in Korea and to present a pooled effect

  3. Severe storms and nowcasting in the Carpathian basin

    NASA Astrophysics Data System (ADS)

    Horváth, Ákos; Geresdi, István

    Summer weather can cause severe situations in the Carpathian basin. Convective events such as thunderstorms (sometimes tornado-producing supercells) and squall lines occur frequently during the summer. In the first part of this paper, some typical convective storm events and their atmospheric conditions are presented. Most of the convective storms are associated with cold fronts but the most dangerous phenomena can be connected to waves on frontal systems or cutoff cyclones. To solve the problem of very short range forecasts of these phenomena, the Hungarian Meteorological Service (HMS) runs a project to develop a nowcasting system (the MEANDER system), which is described in the second part of the paper. This system supports a framework for several nowcasting procedures and produces complex objective analyses and forecasts as long as 3 h. The MEANDER system has two main segments: an analysis segment and a forecasting segment. Input and processed parameters are divided into basic parameters (such as pressure, temperature, geopotential, etc.) and derived parameters (such as visibility, present weather) which are calculated from the basic parameters. In the objective analysis, radar and satellite data are also involved. In the forecasting procedure, the objective analysis at the beginning time, and the (practically at 3 h forecast) fields of the background dynamical model at the final time are considered as nowcasted fields. Between these two times, basic parameters follow the tendency of the numerical model, but gradually approach the forecasted values of the background numerical model. To forecast radar parameters (precipitating systems), so-called replacement vectors are applied. These are calculated from the nowcasted basic parameters. The MEANDER system has both a special update segment to catch rapidly growing cloud systems and a warning segment to issue automated weather warnings as well.

  4. Electronics Technology. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Campbell, Guy

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 20 terminal objectives for a basic electronics technology course. The materials were developed for a two-semester course (2 hours daily) designed to include instruction in basic electricity and electronic fundamentals, and to develop skills and…

  5. Computer Maintenance Technology. Suggested Basic Course Outline.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This competency-based basic course outline is designed for a two-year secondary program in computer maintenance technology. The first year is devoted to basic electricity and electronics, the second to the troubleshooting, maintenance, and service of microcomputers. (The repair section is based upon the Apple II computer, disc drive, monitor, and…

  6. Ionospheric storm effects and equatorial plasma irregularities during the 17-18 March 2015 event

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Liang; Lühr, Hermann; Xiong, Chao; Pfaff, Robert F.

    2016-09-01

    The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (Em). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/prenoon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the postsunset sector. As a response to a short-lived decline of Em, EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 h. Only after the onset of recovery phase does EPI activity start again in the postmidnight sector, lasting more than 7 h. This comprehensive view of

  7. An Evaluation of Lightning Flash Rate Parameterizations Based on Observations of Colorado Storms during DC3

    NASA Astrophysics Data System (ADS)

    Basarab, B.; Fuchs, B.; Rutledge, S. A.

    2013-12-01

    Predicting lightning activity in thunderstorms is important in order to accurately quantify the production of nitrogen oxides (NOx = NO + NO2) by lightning (LNOx). Lightning is an important global source of NOx, and since NOx is a chemical precursor to ozone, the climatological impacts of LNOx could be significant. Many cloud-resolving models rely on parameterizations to predict lightning and LNOx since the processes leading to charge separation and lightning discharge are not yet fully understood. This study evaluates predicted flash rates based on existing lightning parameterizations against flash rates observed for Colorado storms during the Deep Convective Clouds and Chemistry Experiment (DC3). Evaluating lightning parameterizations against storm observations is a useful way to possibly improve the prediction of flash rates and LNOx in models. Additionally, since convective storms that form in the eastern plains of Colorado can be different thermodynamically and electrically from storms in other regions, it is useful to test existing parameterizations against observations from these storms. We present an analysis of the dynamics, microphysics, and lightning characteristics of two case studies, severe storms that developed on 6 and 7 June 2012. This analysis includes dual-Doppler derived horizontal and vertical velocities, a hydrometeor identification based on polarimetric radar variables using the CSU-CHILL radar, and insight into the charge structure using observations from the northern Colorado Lightning Mapping Array (LMA). Flash rates were inferred from the LMA data using a flash counting algorithm. We have calculated various microphysical and dynamical parameters for these storms that have been used in empirical flash rate parameterizations. In particular, maximum vertical velocity has been used to predict flash rates in some cloud-resolving chemistry simulations. We diagnose flash rates for the 6 and 7 June storms using this parameterization and compare

  8. A Basic Guide to Nuclear Power.

    ERIC Educational Resources Information Center

    Martocci, Barbara; Wilson, Greg

    More than 100 nuclear power plants supply over 17 percent of the electricity in the United States. The basic principles of how nuclear energy works and how it is used to make electricity are explained in this profusely illustrated booklet written for the average sixth grade reader. Discussions include: (1) atomic structure; (2) nuclear fission;…

  9. Basic physics of the incandescent lamp (lightbulb)

    NASA Astrophysics Data System (ADS)

    MacIsaac, Dan; Kanner, Gary; Anderson, Graydon

    1999-12-01

    We describe the basic electrical and optical characteristics of the incandescent lamp (lightbulb), as an appropriate exemplar for use in teaching introductory electricity and magnetism. We discuss filament characteristics, blackbody physics, mechanical bulb manufacture, and halogen technology. Variants of the incandescent bulb are also addressed.

  10. Appliance Services. Basic Course. Career Education.

    ERIC Educational Resources Information Center

    Killough, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 25 terminal objectives for a basic appliance repair course. The materials were developed for a 36-week course (2 hours daily) designed to enable the student to be well-grounded in the fundamentals of electricity as well as applied electricity.…

  11. An electrified dust storm over the Negev desert, Israel

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Price, C. G.; Yaniv, R.; Katz, S.

    2015-12-01

    We report on atmospheric electrical measurements conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30035'N, 34045'E) during a massive dust storm that occurred over the Eastern Mediterranean region on 10-11 February 2015. The event transported Saharan dust from Egypt and the Sinai Peninsula in advance of the warm front of a Cyprus low pressure system. Satellite images show the dust plume covering the Negev desert and Southern Israel and moving north. The concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 450 μg m-3 and AOT from the AERONET station in Sde-Boker was 1.5 on the 10th. The gradual intensification of the event reached peak values on February 11th of over 1200 μg m-3 and AOT of 1.8. This was the most severe dust event in a decade. Continuous measurements of the fair weather vertical electric field (Ez) and vertical current density (Jz) were conducted with 1 minute temporal resolution. Meteorological data was also recorded at the site. As the dust was advected over the observation site, we noted very large fluctuations in the electrical parameters. Since the onset of the dust storm, the Ez values changed between +1000 and +8000 V m-1 while the Jz fluctuated between -10 pA m2 and +20 pA m2, both on time-scales of a few minutes. These values are a significant departures from the mean fair-weather values measured at the site, which are -~200 V m-1 and ~2 pA m2. The disturbed episodes lasted for several hours on the 10th and 11th and coincided with local meteorological conditions related to the wind direction, which carried large amounts of dust particles. We interpret the rapid changes as caused by the transport of electrically charged dust. Calculation of the total electrical charge during the dust storm will be presented.

  12. Effects of magnetic-storm phases on F-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 April-30 June 1990

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1990-06-30

    In progress is a major study of the effect of the ring current on the sub-auroral and equatorial generation of patches of irregularities. In addition studies are on-going for determining the dynamics of electric field penetration in latitude with the start of a major geomagnetic storm. For the first time simultaneous observations of irregularities at high and equatorial latitudes will be utilized. The studies use scintillation and spread F data as well as optical observations for data from 1971-1989. Two basic concepts are being studied. With the statistics of morphology of F-layer irregularities now in hand, it is possible to forecast in broad terms what to expect at equatorial, auroral and polar latitudes during various levels of solar flux. With the beginning of an understanding of the effect of the various phases of magnetic storms on generating irregularities as noted from the solar wind, ring current, convection, auroral index, and magnetic index parameters, it is possible to roughly forecast levels of F-layer irregularity intensity. With these in hand, the utility of space, time, and frequency diversity can be evaluated. Diversity could be used if forecasting in real time was possible.

  13. Numerical Simulations of the Ring Current During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Lemon, C.; Guild, T. B.; Schulz, M.; Roeder, J. L.; Lui, A.; Keesee, A. M.; Goldstein, J.; Le, G.; Rodriguez, J. V.

    2012-12-01

    Recent progress in ring current modeling has shown the importance of a self-consistent treatment of particle transport along with magnetic and electric fields in the inner magnetosphere. The ring current intensity and spatial distribution are significantly affected by variations in the plasma sheet (the major source to the ring current), the cross polar cap potential, and compressions and expansions of the magnetosphere. We simulate the ion and electron ring current and plasma sheet by using the magnetically and electrically self-consistent Rice Convection Model-Equilibrium [Lemon et al., JGR, 2004] with a time-varying magnetopause driven by upstream solar wind and interplanetary magnetic (IMF) conditions and with time-varying plasma sheet distributions as boundary conditions. Examples of detailed comparisons of simulated storm events with in-situ magnetic intensities (e. g., GOES, Polar/MPA, or THEMIS) and proton flux spectra (e. g., LANL/MPA and SOPA, Polar/CAMMICE, or THEMIS) and energetic neutral atom (ENA) fluxes (e. g., TWINS) will be shown. We will also present comparisons of observed electron flux spectra with simulations based on a few simple electron loss models. These data-model comparisons test the ability of our model to characterize the ring current environment and the storm-time inner magnetospheric magnetic field.

  14. A new parameter of geomagnetic storms for the severity of space weather

    NASA Astrophysics Data System (ADS)

    Balan, N.; Batista, I. S.; Tulasi Ram, S.; Rajesh, P. K.

    2016-12-01

    Using the continuous Dst data available since 1957 and H component data for the Carrington space weather event of 1859, the paper shows that the mean value of Dst during the main phase of geomagnetic storms, called mean DstMP, is a unique parameter that can indicate the severity of space weather. All storms having high mean DstMP (≤-250 nT), which corresponds to high amount of energy input in the magnetosphere-ionosphere system in short duration, are found associated with severe space weather events that caused all known electric power outages and telegraph system failures.

  15. Probability of occurrence of planetary ionosphere storms associated with the magnetosphere disturbance storm time events

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Stanislawska, I.

    2014-11-01

    The ionospheric W index allows to distinguish state of the ionosphere and plasmasphere from quiet conditions (W = 0 or ±1) to intense storm (W = ±4) ranging the plasma density enhancements (positive phase) or plasma density depletions (negative phase) regarding the quiet ionosphere. The global W index maps are produced for a period 1999-2014 from Global Ionospheric Maps of Total Electron Content, GIM-TEC, designed by Jet Propulson Laboratory, converted from geographic frame (-87.5:2.5:87.5° in latitude, -180:5:180° in longitude) to geomagnetic frame (-85:5:85° in magnetic latitude, -180:5:180° in magnetic longitude). The probability of occurrence of planetary ionosphere storm during the magnetic disturbance storm time, Dst, event is evaluated with the superposed epoch analysis for 77 intense storms (Dst ≤ -100 nT) and 230 moderate storms (-100 < Dst ≤ -50 nT) with start time, t0, defined at Dst storm main phase onset. It is found that the intensity of negative storm, iW-, exceeds the intensity of positive storm, iW+, by 1.5-2 times. An empirical formula of iW+ and iW- in terms of peak Dst is deduced exhibiting an opposite trends of relation of intensity of ionosphere-plasmasphere storm with regard to intensity of Dst storm.

  16. Storm Sudden Commencements Without Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Park, Wooyeon; Lee, Jeongwoo; Yi, Yu; Ssessanga, Nicholas; Oh, Suyeon

    2015-09-01

    Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism ? Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than ?30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.

  17. long duration dust storm sequences on Mars

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2012-12-01

    The Mars Global Surveyor (MGS) Mars Observer Camera (MOC) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) Mars daily global maps have revealed new characteristics for long duration dust storm sequences. These dust storm sequences have long histories of more than a week, travel long distances out of their origination region, and influence large areas in different regions of the planet. During the Ls = 180 - 360 season, except for global dust storms which involve multiple remote dust lifting centers and generally expand explosively from the southern hemisphere northward, other long-lived dust storm sequences usually travel southward through the Acidalia-Chryse, Utopia-Isidis or Arcadia-Amazonis channels with subsequent dust lifting along the way. Sometimes, they penetrate remarkably deep to the southern high latitudes, producing fantastic display of dust band. During the rest of the year, long duration dust storm sequences usually originate from the Argyre/Solis, Hellas/Noachis, or Cimmeria/Sirenum area and travel northward toward the southern low latitudes. Each route exhibits its own peculiar characteristics. We will present our results about these long duration dust storm sequences summarized from the complete archive of MGS MOC daily global maps and two years of MRO MARCI daily global maps. The systematic daily nearly global coverage of these maps makes it feasible to reconstruct the history of long duration dust storm sequences with detail.

  18. In Brief: Cassini images Saturn storm

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-11-01

    The Cassini spacecraft has spotted an 8000-kilometer-wide, hurricane-like storm around Saturn's South Pole, NASA announced on 9 November. The storm has a dark `eye' at the South Pole along with eye-wall clouds and spiral arms, but it is not known if moist convection-the driver of hurricanes on Earth-drives the Saturn storm. A movie taken by Cassini's camera indicates that the winds are blowing clockwise at about 560 kilometers per hour. Although large storms have been observed on other planets in the past-most notably, Jupiter's Great Red Spot-this is the first storm found to have eye-wall clouds and a relatively calm center. Andrew Ingersoll, a member of Cassini's imaging team at the California Institute of Technology, Pasadena, said the storm looks like a hurricane but is not behaving like one. ``Whatever it is, we are going to focus on the eye of this storm and find out why it is there.''

  19. Stability of subsea pipelines during large storms

    PubMed Central

    Draper, Scott; An, Hongwei; Cheng, Liang; White, David J.; Griffiths, Terry

    2015-01-01

    On-bottom stability design of subsea pipelines transporting hydrocarbons is important to ensure safety and reliability but is challenging to achieve in the onerous metocean (meteorological and oceanographic) conditions typical of large storms (such as tropical cyclones, hurricanes or typhoons). This challenge is increased by the fact that industry design guidelines presently give no guidance on how to incorporate the potential benefits of seabed mobility, which can lead to lowering and self-burial of the pipeline on a sandy seabed. In this paper, we demonstrate recent advances in experimental modelling of pipeline scour and present results investigating how pipeline stability can change in a large storm. An emphasis is placed on the initial development of the storm, where scour is inevitable on an erodible bed as the storm velocities build up to peak conditions. During this initial development, we compare the rate at which peak near-bed velocities increase in a large storm (typically less than 10−3 m s−2) to the rate at which a pipeline scours and subsequently lowers (which is dependent not only on the storm velocities, but also on the mechanism of lowering and the pipeline properties). We show that the relative magnitude of these rates influences pipeline embedment during a storm and the stability of the pipeline. PMID:25512592

  20. Statistical analysis of storm-time near-Earth current systems

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Katus, R. M.; Ilie, R.

    2015-08-01

    Currents from the Hot Electron and Ion Drift Integrator (HEIDI) inner magnetospheric model results for all of the 90 intense storms (disturbance storm-time (Dst) minimum < -100 nT) from solar cycle 23 (1996-2005) are calculated, presented, and analyzed. We have categorized these currents into the various systems that exist in near-Earth space, specifically the eastward and westward symmetric ring current, the partial ring current, the banana current, and the tail current. The current results from each run set are combined by a normalized superposed epoch analysis technique that scales the timeline of each phase of each storm before summing the results. It is found that there is a systematic ordering to the current systems, with the asymmetric current systems peaking during storm main phase (tail current rising first, then the banana current, followed by the partial ring current) and the symmetric current systems peaking during the early recovery phase (westward and eastward symmetric ring current having simultaneous maxima). The median and mean peak amplitudes for the current systems ranged from 1 to 3 MA, depending on the setup configuration used in HEIDI, except for the eastward symmetric ring current, for which the mean never exceeded 0.3 MA for any HEIDI setup. The self-consistent electric field description in HEIDI yielded larger tail and banana currents than the Volland-Stern electric field, while the partial and symmetric ring currents had similar peak values between the two applied electric field models.

  1. Reduced Baroclinicity During Martian Global Dust Storms

    NASA Astrophysics Data System (ADS)

    Battalio, Joseph; Szunyogh, Istvan; Lemmon, Mark

    2015-11-01

    The eddy kinetic energy equation is applied to the Mars Analysis Correction Data Assimilation (MACDA) dataset during the pre-winter solstice period for the northern hemisphere of Mars. Traveling waves are triggered by geopotential flux convergence, grow baroclinically, and decay barotropically. Higher optical depth increases the static stability, which reduces vertical and meridional heat fluxes. Traveling waves during a global dust storm year develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Baroclinic energy conversion is reduced during the global dust storm, but eddy intensity is undiminished. Instead, the frequency of storms is reduced due to a stabilized vertical profile.

  2. Desert Shield and Desert Storm Emerging Observations

    DTIC Science & Technology

    1991-10-07

    becomes much more apparent over relatively flat terrain. d. Recommended or Ongoing Action. The M577 CPV is scheduled to yo through a system conversion to...STORM Vehicle exchange policy at maintenanfce points. 9? 40115 4f996 (0017?) DESERT STORM Fretracide, peor ommunication. poor flank ceerdihutien. 24...02413 fll% yo (00M) DEIil SIONM Distribut ion of Wcom arM Iaf amon units 4??44 INAI8 (002 n) TILSll STORM Pro-combat trainfig V4 14145 U’,411 (00276

  3. Measured winter performance of storm windows

    SciTech Connect

    Klems, Joseph H.

    2002-08-23

    Direct comparison measurements were made between various prime/storm window combinations and a well-weatherstripped, single-hung replacement window with a low-E selective glazing. Measurements were made using an accurate outdoor calorimetric facility with the windows facing north. The doublehung prime window was made intentionally leaky. Nevertheless, heat flows due to air infiltration were found to be small, and performance of the prime/storm combinations was approximately what would be expected from calculations that neglect air infiltration. Prime/low-E storm window combinations performed very similarly to the replacement window. Interestingly, solar heat gain was not negligible, even in north-facing orientation.

  4. Stride search: A general algorithm for storm detection in high resolution climate data

    DOE PAGES

    Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.; ...

    2015-09-08

    This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less

  5. Stride search: A general algorithm for storm detection in high resolution climate data

    SciTech Connect

    Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.; Mundt, Miranda

    2015-09-08

    This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropical cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.

  6. TEC Variations Over Korean Peninsula During Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Ji, E.-Y.; Choi, B.-K.; Kim, K.-H.; Lee, D.-H.; Cho, J.-H.; Chung, J.-K.; Park, J.-U.

    2008-03-01

    By analyzing the observations from a number of ground- and space-based instruments, including ionosonde, magnetometers, and ACE interplanetary data, we examine the response of the ionospheric TEC over Korea during 2003 magnetic storms. We found that the variation of vertical TEC is correlated with the southward turning of the interplanetary magnetic field B_z. It is suggested that the electric fields produced by the dynamo process in the high-latitude region and the prompt penetration in the low-latitude region are responsible for TEC increases. During the June 16 event, dayside TEC values increase more than 15%. And the ionospheric F2-layer peak height (hmF2) was ˜300km higher and the vertical E×B drift (estimated from ground-based magnetometer equatorial electrojet delta H) showed downward drift, which may be due to the ionospheric disturbance dynamo electric field produced by the large amount of energy dissipation into high-latitude regions. In contr! ast, during November 20 event, the nightside TEC increases may be due to the prompt penetration westward electric field. The ionospheric F2-layer peak height was below 200km and the vertical E×B drift showed downward drift. Also, a strong correlation is observed between enhanced vertical TEC and enhanced interplanetary electric field. It is shown that, even though TEC increases are caused by the different processes, the electric field disturbances in the ionosphere play an important role in the variation of TEC over Korea.

  7. Stem Cell Basics

    MedlinePlus

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  8. Sediment-driven mercury transport in post-fire storm runoff

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Ferreira, M.; Hogue, T. S.; Jay, J.; Rademacher, L. K.

    2009-12-01

    Wildfire alters terrestrial stores of mercury (Hg) within a watershed, releasing Hg to the atmosphere and creating conditions that can be conducive to Hg export in streamwater. Hg transport to terrestrial waters is often associated with suspended sediments and organic matter, and particulate-bound Hg delivery to downstream water bodies may be enhanced following wildfire. Burned watersheds experience increased overland flow, soil erosion, sediment transport, and, consequently, transport of sediment bound contaminants during early post-fire storm events. Southern California’s September 2006 Day Fire consumed 660km2 and almost 50% of the 512km2 Piru Creek watershed. Piru Creek drains into Pyramid Lake, a storage reservoir for the California State Water Project, which provides drinking water for Los Angeles. Streamwater was collected from Piru Creek watershed over a 1.5 year period following the Day Fire, on a monthly basis during low flow periods, and every two hours during storm events using an automated sampler. Samples were analyzed for both dissolved and total Hg, total suspended solids, and basic anions and cations. Low Hg concentrations (> 1ng Hg/ L dissolved and > 5ng Hg/L total) were measured in inter-storm samples. The first winter (2006-07) following the Day Fire was one of the driest on record, with precipitation totals (130mm) less than one third of normal. The only significant storm measured total Hg concentrations just slightly higher than the inter-storm samples, while no change was observed in the dissolved Hg concentrations. However, these total Hg concentrations were well correlated to TSS measurements (r2 = 0.91) and followed the storm hydrograph. The following winter (2007-08) brought higher precipitation totals (370mm) and more intense storms. Elevated, turbid stream flow was observed in Piru Creek during many of the 2007-08 storms. Little change was observed in the dissolved Hg concentrations of the storm samples; however, a two-order magnitude

  9. 46 CFR 72.40-10 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall...

  10. 46 CFR 72.40-10 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall...

  11. 46 CFR 72.40-10 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall...

  12. 46 CFR 72.40-10 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall...

  13. 46 CFR 72.40-10 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall...

  14. The 1973 dust storm on Mars: Maps from hourly photographs

    NASA Technical Reports Server (NTRS)

    Martin, L. J.

    1975-01-01

    The hourly progress of the 1973 major Martian storm was mapped using photographic images from the International Planetary Patrol. Two series of 20 daily maps show the semi-hourly positions of the storm brightenings in red light and blue light. The maps indicate that the 1973 storm had many similarities to the 1971 storm.

  15. Criteria of interplanetary parameters causing intense magnetic storms (Dst of less than -100 nT)

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Tsurutani, Bruce T.

    1987-01-01

    An analysis of ISEE-3 field and plasma data shows that 10 intense magnetic storms that occurred in 1979 were caused by long-duration, large-amplitude (13-30 nT) and negative (less than -10 nT) IMF Bz events associated with interplanetary duskward-electric fields of greater than 5 mV/m. The results suggest that these criteria may be used as predictors of intense storms. A study of opposite polarity (northward) Bz events with the same criteria shows that their occurrence is similar both in number and in their relationship to interplanetary disturbances. The amplitudes of the storms were not found to vary with shock strengths.

  16. Radiation Belt Storm Probe Mission Trailer

    NASA Video Gallery

    With launch scheduled for 2012, the Radiation Belt Storm Probe (RBSP) are two identical spacecraft that will investigate the doughnut shaped Van Allen radiation belts, the first discovery of the sp...

  17. Rainfall Totals Over Storm Life of Matthew

    NASA Video Gallery

    This animation shows the amount of rainfall dropped by Hurricane Matthew over the life and track of the storm/ IMERG real time data covering the period from Sept. 28 through Oct. 10, 2016 show rain...

  18. Satellite Movie Sees Southern California Storms

    NASA Video Gallery

    This animation NOAA's GOES-West satellite imagery from Jan. 5 through Jan 7 shows the progression of storm systems in the Eastern Pacific Ocean that hit southern California and generated flooding a...

  19. Satellite Sees Birth of Tropical Storm Gordon

    NASA Video Gallery

    An animation of satellite observations from August 13-16, 2012, shows the birth of the Atlantic Ocean hurricane season's eighth tropical depression that strengthens into Tropical Storm Gordon. This...

  20. GMI Rainfall Data on Tropical Storm Adjali

    NASA Video Gallery

    This animation shows GMI rainfall data on Tropical Storm Adjali on Nov. 19, 2014 combined with cloud data from the METEOSAT-7 satellite. Rainfall was found to be falling at a rate of over 69 mm/hr ...

  1. GPM Flyby of Tropical Storm Dineo

    NASA Video Gallery

    This flyby animation of rainfall data within Tropical Cyclone Dineo was taken from NASA/JAXA's GPM satellite on Feb.16. Storms over Swaziland were dropping precipitation at a rate of over 86 mm (3....

  2. Tropical Storm Wali Seen by GOESWest

    NASA Video Gallery

    This animation of infrared and visible imagery from NOAA's GOES-West satellite from July 15 to 18 shows the birth of Tropical Storm Wali southeast of the Big Island of Hawaii on July 17. Credit: NA...

  3. Tropical Storm Gil - July 31, 2013

    NASA Video Gallery

    NASA's TRMM satellite traveled above intensifying Tropical Storm Gil on July 31 at 12:55 a.m. EDT. The TRMM satellite pass showed that Gil was already very well organized with intense bands of rain...

  4. Tropical Storm Gilma in Eastern Pacific

    NASA Video Gallery

    An animation of satellite observations shows the progression of Tropical Storm Gilma from August 7-10, 2012, along the coast of the Eastern Pacific Ocean. This visualization was created by the NASA...

  5. TRMM Sees California Storm Move East

    NASA Video Gallery

    This animation from Feb. 28 to Mar. 3 shows the movement of the rain associated with the storm system that soaked California. On March 3, precipitation (yellow) and snow cover (white/yellow) spread...

  6. GOES Movie of Tropical Storm Danielle

    NASA Video Gallery

    This animation NOAA's GOES-East satellite imagery from June 18 to 20 shows the development and movement Tropical Storm Danielle from the western Caribbean Sea into the Bay of Campeche/Gulf of Mexic...

  7. The Surprising Power of Solar Storms

    NASA Video Gallery

    NASA-funded researchers say a flurry of solar storms from March 8-10, 2012 dumped enough energy in Earth's upper atmosphere (our thermosphere absorbed 26 billion kWh of energy) to power every resid...

  8. GOES video of Tropical Storm Andrea

    NASA Video Gallery

    This NOAA GOES-East satellite animation shows the development of System 91L into Tropical Storm Andrea over the course of 3 days from June 4 to June 6, just after Andrea was officially designated a...

  9. GOES Satellite Movie of 2014 Winter Storms

    NASA Video Gallery

    This new animation of NOAA's GOES-East satellite imagery shows the movement of winter storms from January 1 to March 24 making for a snowier-than-normal winter along the U.S. East coast and Midwest...

  10. Storm sudden commencements and earthquakes

    NASA Astrophysics Data System (ADS)

    Lavrov, Ivan; Sobisevich, Aleksey; Guglielmi, Anatol

    2015-03-01

    We have investigated statistically the problem of possible impact of the geomagnetic storm sudden com-mencement (SSC) on the global seismic activity. SSC are used as reference points for comparative analysis of seismicity by the method of superposed epoch. We selected 405 earthquakes from 1973 to 2010 with M˜5 magnitudes from a representative part of USGS Catalog. The comparative analysis of seismicity was carried out at the intervals of ˜60 min relative to the reference point. With a high degree of reliability, it was found that before the reference point the number of earthquakes is noticeably greater than after it. In other words, the global seismicity is suppressed by SSC. We refer to some studies in which the chemical, thermal and force mechanisms of the electromagnetic field action on rocks are discussed. We emphasize the incompleteness of the study concerning the correlation between SSC and earthquakes because we still do not succeed in understanding and interpreting the relationship in terms of physics and mathematics. The study need to be continued to solve this problem of interest and importance.

  11. Magnetic Reconnection During Major Magnetospheric Storms

    NASA Astrophysics Data System (ADS)

    Hubert, B. A.; Milan, S. E.; Cowley, S. W. H.

    2014-12-01

    We combine imaging of the proton aurora from the SI12-IMAGE instrument with ionospheric convection measurement from the SuperDARN radar network to analyze the cycle of magnetic flux opening and closure of the Earth magnetosphere. Interaction between the solar wind and the Earth geomagnetic environment causes a reconfiguration of the magnetic field that connects the interplanetary magnetic field (IMF) to the geomagnetic field. This reconnection process produces open magnetic field lines (i.e. field lines of the magnetosphere that close through the interplanetary medium) that are dragged to the magnetotail by the solar wind flow, where they eventually reconnect again, back to a closed topology. The SI12 imaging of the Doppler-shifted Lyman-α emission of the proton aurora is used to estimate the location of the boundary separating open and closed field lines at ionospheric altitude. We then estimate the open magnetic flux of the Earth magnetosphere, encircled by this boundary. The rate of reconnection causing a variation of the open magnetic flux can be expressed as a voltage in application of Faraday's law. This voltage is measured along the open/closed field line boundary determined from the imaging data. The electric field associated with the voltage has two origins: motion of the boundary and the ionospheric field. We use the ionospheric electric field deduced from ionospheric convection measurement from the SuperDARN to estimate the reconnection voltage at the magnetopause (flux opening) and in the magnetotail (flux closure) accounting for the motion of the open/closed field line boundary determined from the SI12 images. The method is applied during several (strong) geomagnetic storms. These intervals are characterized by large values of open flux and reconnection rates, as a result of coupling between the solar wind and the geomagnetic environment. We present these results in terms of a magnetospheric mode that develops under strong coupling with the solar wind

  12. Tropical Storm Alberto, Seen Through New 'Eyes'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's new CloudSat satellite captured its first tropical storm, Alberto, as it spun over the Gulf of Mexico the morning of June 12, 2006. This image comparison shows how CloudSat 'sees' such storms differently than conventional weather satellites. The CloudSat image (top of this page and bottom of figure 1) is compared with images obtained at nearly the same time from two National Oceanic and Atmospheric Administration National Weather Service tools that are mainstays for monitoring the development and movement of tropical cyclones: the NEXRAD storm detection radar, which maps out precipitation patterns for that portion of the storm that comes into its range, and the GOES-12 (Geostationary Operational Environmental Satellite) infrared imager, which is presented here to indicate the scale of the storm and the location where CloudSat overflies it. CloudSat sees the storm outside the range of NEXRAD and provides significantly greater vertical detail compared to the GOES satellite. NEXRAD, for example, can only see out to about 402 kilometers (250 nautical miles), and so could not see the portion of the storm that CloudSat was flying over at the time. GOES-12 only sees the very top of the clouds, and cannot provide any detail about what is being seen beneath the cloud tops.

    The CloudSat data show a storm that reaches about 16 kilometers (10 miles) in height and extends perhaps 1,000 kilometers (621 miles) in scale. The green line at the bottom of the CloudSat image is the radar echo of the Earth's surface. Where this line starts to disappear (change color) under the storm is where the rainfall is heaviest. Very heavy rainfall can be seen over about 400 kilometers (249 miles) of the satellite track. Cirrus clouds can also been seen out ahead of the storm (near letter A) -- this is also evident in the GOES-12 image. A smaller thunderstorm is visible in the CloudSat image under that cirrus cloud

  13. Semiannual variations of great geomagnetic storms: Solar sources of great storms. (Reannouncement with new availability information)

    SciTech Connect

    Cliver, E.W.; Crooker, N.U.; Cane, H.V.

    1992-01-01

    The authors report preliminary results of an investigation of the solar sources of 25 great geomagnetic storms with D sub st < or = {minus}250 nT occurring from 1957-1990. These storms exhibit a clear semiannual variation with 14 events occurring within {+-} 30 days of the equinoxes vs. 5 storms within {+-} 30 days of the solstices. This seasonal variation appears to result from a variable threshold for the size of a solar event required to produce a great geomagnetic storm, in the sense that weaker solar events, such as disappearing solar filaments, are more likely to produce great storms at the equinoxes than near the solstices. The great problem storms of the last four solar cycles, i.e., those storms lacking commensurate preceding solar activity, are all found to occur relatively near the equinoxes. Conversely, four of the five great storms that occurred near the solstices were preceded by truly outstanding solar flares. About half (11/25) of the great storms had obvious precursor geomagnetic activity, i.e., periods of approximately > 1 day with D sub st approximately < {minus}30 nT. The precursors can enable some weaker solar events to be more geoeffective than would otherwise be the case in two ways: (1) compression and amplification of pre-existing southward (precursor) fields by the transient shock, and (2) establishment of a lower D sub st baseline , making it easier for transient events to drive D sub st to values < or = {minus}250 nT.

  14. The effects of storms and storm-generated currents on sand beaches in Southern Maine, USA

    USGS Publications Warehouse

    Hill, H.W.; Kelley, J.T.; Belknap, D.F.; Dickson, S.M.

    2004-01-01

    Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms. Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999-2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000-2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999-2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer. A northeast storm on March 5-6, 2001, resulted in currents in excess of 1 m s-1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches

  15. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  16. Geomagnetic storm effect on the occurrence of ionospheric irregularities over African equatorial sector using GPS-TEC

    NASA Astrophysics Data System (ADS)

    Amaechi, Paul; Oyeyemi, Elijah; Akala, Andrew

    2016-07-01

    Total electron content (TEC) derived from Global Navigation Satellite Systems (GNSS) measurements provided by the International GNSS Service (IGS) network have been used to study the occurrence of large scale ionospheric irregularities over the African equatorial sector. The rate of change of TEC (ROT) as well as its standard deviation over five minutes (ROTI) were used to monitor the level of irregularities over 3 stations distributed across the three longitudinal sectors of Africa (eastern, central and western longitudinal sectors). The storm effect on irregularities occurrence has been studied in conjunction with the disturbance storm time (Dst) and the z component of the Interplanetary magnetic field (IMFBz) indices during four intense storms which were classified according to their season of occurrence during the year 2015. Irregularities were associated with GPS-TEC fluctuations as seen in the increased ROT and ROTI values especially in the post sunset period. Irregularities were inhibited over all the stations during the storm of March plausibly as a result of electric field conditioned by the southward turning of IMFBz during the pre and post midnight periods. The triggering of irregularities over the western and central stations and their inhibition over the eastern station during the storm of June was controlled by the ring current. The storm effect on irregularities was not evident over the western and central stations but inhibition of irregularities was observed over the eastern station during the storm of September.

  17. EVIDENCE FOR COMET STORMS IN METEORITE AGES

    SciTech Connect

    Perlmutter, S.; Muller, R.A.

    1987-10-01

    Clustering of cosmic-ray exposure ages of H chondritic meteorites occurs at 7 {+-} 3 and 30 {+-} 6 Myr ago. There is independent evidence that comet storms have occurred at the same times, based on the fossil record of family and genus extinctions, impact craters and glass, and geomagnetic reversals. We suggest that H chondrites were formed by the impact of shower comets on asteroids. The duration of the most recent comet shower was {le} 4 Myr, in agreement with storm theory.

  18. Ionospheric F-Region Storms: Unsolved Problems

    DTIC Science & Technology

    2006-06-01

    the largest solar - terrestrial storms ever observed, with an X17/4B flare on October 28, a solar wind velocity of nearly 2000 km/s and a minimum Dst...disturbance dynamo effects over low and equatorial lat- itude F-region, in Recurrent Magnetic Storms: Corotating Solar Wind Streams (B.T. Tsurutani, R.L...some of the more prominent anomalies observed in this region, including the heating effect below the magne- tospheric cusp, the subauroral electron

  19. Dust Storm, Red Sea and Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Outlined against the dark blue water of the Red Sea, a prominent dust storm is making its way across the Red Sea into Saudi Arabia (22.0N, 39.0E) between the Islamic holy cities of Medinah and Mecca. Funneled through a gap in the coastal ranges of southern Sudan near the Ethiopian border, dust storms frequently will blow counter to the prevailing tropical easterly winds of the region.

  20. Ionospheric storm effects at subauroral latitudes - A case study

    NASA Technical Reports Server (NTRS)

    Proelss, G. W.; Brace, L. H.; Mayr, H. G.; Carignan, G. R.; Killeen, T. L.

    1991-01-01

    An attempt is made to classify ionospheric storm effects at subauroral latitudes according to their presumed origin. The storm of December 7/8, 1982, serves as an example. It is investigated using ionosonde, electron content, and DE 2 satellite data. The following effects are distinguished: (1) positive storm effects caused by traveling atmospheric disturbances, (2) positive storm effects caused by changes in the large-scale thermospheric wind circulation, (3) positive storm effects caused by the expansion of the polar ionization enhancement, (4) negative storm effects caused by perturbations of the neutral gas composition, and (5) negative storm effects caused by the equatorward displacement of the trough region.

  1. Ionospheric storm effects at subauroral latitudes: A case study

    SciTech Connect

    Proelss, G.W. ); Brace, L.H.; Mayr, H.G. ); Carignan, G.R.; Killeen, T.L. ); Klobuchar, J.A. )

    1991-02-01

    An attempt is made to classify ionospheric storm effects at subauroral latitudes according to their presumed origin. The storm of December 7/8, 1982, serves as an example. It is investigated using ionosonde, electron content, and DE 2 satellite data. The following effects are distinguished: (1) positive storm effects caused by traveling atmospheric disturbances, (2) positive storm effects caused by changes in the large-scale thermospheric wind circulation, (3) positive storm effects caused by the expansion of the polar ionization enhancement, (4) negative storm effects caused by perturbations of the neutral gas composition, and (5) negative storm effects caused by the equatorward displacement of the trough region.

  2. Field Evaluation of Low-E Storm Windows

    SciTech Connect

    Drumheller, S. Craig; Kohler, Christian; Minen, Stefanie

    2007-07-11

    A field evaluation comparing the performance of low emittance (low-e) storm windows with both standard clear storm windows and no storm windows was performed in a cold climate. Six homes with single-pane windows were monitored over the period of one heating season. The homes were monitored with no storm windows and with new storm windows. The storm windows installed on four of the six homes included a hard coat, pyrolitic, low-e coating while the storm windows for the other two homeshad traditional clear glass. Overall heating load reduction due to the storm windows was 13percent with the clear glass and 21percent with the low-e windows. Simple paybacks for the addition of the storm windows were 10 years for the clear glass and 4.5 years forthe low-e storm windows.

  3. Low-E Storm Windows Gain Acceptance as a Home Weatherization Measure

    SciTech Connect

    Gilbride, Theresa L.; Cort, Katherine A.

    2016-05-16

    This article for Home Energy Magazine describes work by the U.S. Department of Energy to develop low-emissivity storm windows as an energy efficiency-retrofit option for existing homes. The article describes the low-emissivity invisible silver metal coatings on the glass, which reflect heat back into the home in winter or back outside in summer and the benefits of low-e storm windows including insulation, air sealing, noise blocking, protection of antique windows, etc. The article also describes Pacific Northwest National Laboratory's efforts on behalf of DOE to overcome market barriers to adoption of the technology, including performance validation studies in the PNNL Lab Homes, cost effectiveness analysis, production of reports, brochures, how-to guides on low-e storm window installation for the Building America Solution Center, and a video posted on YouTube. PNNL's efforts were reviewed by the Pacific Northwest Regional Technical Forum (RTF), which serves as the advisory board to the Pacific Northwest Electric Power Planning Council and Bonneville Power Administration. In late July 2015, the RTF approved the low-e storm window measure’s savings and specifications, a critical step in integrating low-e storm windows into energy-efficiency planning and utility weatherization and incentive programs. PNNL estimates that more than 90 million homes in the United States with single-pane or low-performing double-pane windows would benefit from the technology. Low-e storm windows are suitable not only for private residences but also for small commercial buildings, historic properties, and facilities that house residents, such as nursing homes, dormitories, and in-patient facilities. To further assist in the market transformation of low-e storm windows and other high-efficiency window attachments, DOE helped found the window Attachment Energy Rating Council (AERC) in 2015. AERC is an independent, public interest, non-profit organization whose mission is to rate, label

  4. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    NASA Technical Reports Server (NTRS)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  5. Energetic particle precipitation in the Brazilian geomagnetic anomaly during the "Bastille Day storm" of July 2000

    NASA Astrophysics Data System (ADS)

    Nishino, M.; Makita, K.; Yumoto, K.; Miyoshi, Y.; Schuch, N. J.; Abdu, M. A.

    2006-05-01

    Ionospheric absorption associated with a great geomagnetic storm on July 15-16, 2000 (the "Bastille Day storm") was observed in the Brazilian geomagnetic anomaly using a two-dimensional 4×4 imaging riometer (IRIS). In the afternoon of July 15, weak absorption (~0.2 dB) was observed during the initial phase of the storm; large spatial-scale absorption exceeded the IRIS field of view (330×330 km). During the sharp magnetic decrease in the main phase of the storm, absorption was intensified (<0.5 dB) in the evening, showing a sheet structure with ~150 km latitudinal width and >330 km longitudinal elongation. Subsequently, absorption was intensified (~1 dB), having a small spatial-scale (~150 km) in the background sheet structure and a pronounced westward drift (~570 m s-1). In association with large magnetic fluctuations in the Bz component of the interplanetary magnetic field (IMF), the ground magnetic variation in the night sector showed large positive swings during the initial to main phases of the storm. With the subsequent southward turning of the IMF Bz, the ground magnetic variation in the evening sector showed rapid storm development. Particle fluxes measured by a geosynchronous satellite (L = ~6.6) demonstrated large enhancements of low-energy protons (50-400 keV) and probably electrons (50-225 keV) during the storm's initial phase. Particle fluxes from the low-altitude NOAA satellite (~870 km) indicated the invasion of low-energy particles into the region of L < 2 during the main phase of the storm. These results indicate that low-energy particles injected into the outer radiation belt in association with frequent and strong substorm occurrences, were transported into the inner radiation belt through direct convective access by the storm-induced electric fields during the storm's development. These particles then precipitated into the ionosphere over the Brazilian geomagnetic anomaly. Notably, the most intense absorption could be dominantly caused by

  6. Mapping Hurricane Rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  7. Scientists Track 'Perfect Storm' on Mars

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Two dramatically different faces of our Red Planet neighbor appear in these comparison images showing how a global dust storm engulfed Mars with the onset of Martian spring in the Southern Hemisphere. When NASA's Hubble Space Telescope imaged Mars in June, the seeds of the storm were caught brewing in the giant Hellas Basin (oval at 4 o'clock position on disk) and in another storm at the northern polar cap.

    When Hubble photographed Mars in early September, the storm had already been raging across the planet for nearly two months obscuring all surface features. The fine airborne dust blocks a significant amount of sunlight from reaching the Martian surface. Because the airborne dust is absorbing this sunlight, it heats the upper atmosphere. Seasonal global Mars dust storms have been observed from telescopes for over a century, but this is the biggest storm ever seen in the past several decades.

    Mars looks gibbous in the right photograph because it is 26 million miles farther from Earth than in the left photo (though the pictures have been scaled to the same angular size), and our viewing angle has changed. The left picture was taken when Mars was near its closest approach to Earth for 2001 (an event called opposition); at that point the disk of Mars was fully illuminated as seen from Earth because Mars was exactly opposite the Sun.

    Both images are in natural color, taken with Hubble's Wide Field Planetary Camera 2.

  8. Mapping hurricane rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, C.; Mason, R.R.; Blanchard, S.F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of affected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-h intervals from midnight (00:00 hours) through noon (12:00 hours) on 24 September 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared with the extent of flood inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks. ?? 2009 Blackwell Publishing Ltd.

  9. Solar storm effects on the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Brain, David; Lillis, Robert; Peticolas, Laura; Luhmann, Janet G.

    Solar storms, including solar flares, solar energetic particles (SEPs), and coronal mass ejections (CMEs), may have a profound influence on planetary atmospheres left unprotected by global magnetic fields, such as Mars and Venus. Energy deposited in the upper atmosphere by photons and charged particles during storms should contribute to ionization and heating, driving chemistry and dynamics over periods of hours or days. There is observational evidence that the escape rate of planetary ions from the Venus atmosphere can increase by an order of magnitude during a storm. The planetary plasma environment may also change considerably during a storm (for example compressing during a passing CME and leading to a strongly magnetized ionosphere). We will present observations and model calculations of the influence of solar energetic particle events and CMEs on the atmosphere of Mars, focusing on three areas. First, we will present a correlation between the energy of auroral-like electron distributions observed by the Mars Global Surveyor (MGS) spacecraft and the presence of solar energetic particles. We will use an electron transport model to calculate the influence of these electron distributions on the nightside atmosphere. Second, we will present an analysis of electron pitch angle distributions recorded by MGS during solar storms, showing a substantial increase in ionization resulting from SEP impact. Third, we will present model calculations of the atmospheric energy deposition by solar energetic particles during a storm.

  10. Non-storm water discharges technical report

    SciTech Connect

    Mathews, S.

    1994-07-01

    Lawrence Livermore National Laboratory (LLNL) submitted a Notice of Intent to the California State Water Resources Control Board (hereafter State Board) to discharge storm water associated with industrial activities under the California General Industrial Activity Storm Water National Pollutant Elimination System Discharge Permit (hereafter General Permit). As required by the General Permit, LLNL provided initial notification of non-storm water discharges to the Central Valley Regional Water Quality Control Board (hereafter Regional Board) on October 2, 1992. Additional findings and progress towards corrective actions were reported in subsequent annual monitoring reports. LLNL was granted until March 27, 1995, three years from the Notice of Intent submission date, to eliminate or permit the non-storm water discharges. On May 20, 1994, the Regional Board issued Waste Discharge Requirements (WDR Board Order No. 94-131, NPDES No. CA0081396) to LLNL for discharges of non-contact cooling tower wastewater and storm water related to industrial activities. As a result of the issuance of WDR 94-131, LLNL rescinded its coverage under the General Permit. WDR 94-131 allowed continued non-storm water discharges and requested a technical report describing the discharges LLNL seeks to permit. For the described discharges, LLNL anticipates the Regional Board will either waive Waste Discharge Requirements as allowed for in The Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region (hereafter Basin Plan) or amend Board Order 94-131 as appropriate.

  11. Major Geomagnetic Storms (Dst less than or equal to -100 nT) Generated by Corotating Interaction Regions

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Webb, D. F.; Zhang, J.; Berdichevsky, B. D.; Biesecker, D. A.; Kasper, J. C.; Kataoka, R.; Steinberg, J. T.; Thompson, B. J.; Wu, C.-C.; Zhukov, A. N.

    2006-01-01

    Seventy-nine major geomagnetic storms (minimum Dst less than or equal to -100 nT) observed in 1996 to 2004 were the focus of a Living with a Star Coordinated Data-Analysis Workshop (CDAW) in March, 2005. In 9 cases, the storm driver appears to have been purely a corotating interaction region (CIR) without any contribution from coronal mass ejection-related material (interplanetary coronal mass ejections, ICMEs). These storms were generated by structures within CIRs located both before and/or after the stream interface that included persistently southward magnetic fields for intervals of several hours. We compare their geomagnetic effects with those of 159 CIRs observed during 1996 - 2005. The major storms form the extreme tail of a continuous distribution of CIR geoeffectiveness which peaks at Dst approx. -40 nT but is subject to a prominent seasonal variation of - 40 nT which is ordered by the spring and fall equinoxes and the solar wind magnetic field direction towards or away from the Sun. The O'Brien and McPherron [2000] equations, which estimate Dst by integrating the incident solar wind electric field and incorporating a ring current loss term, largely account for the variation in storm size. They tend to underestimate the size of the larger CIR-associated storms by Dst approx. 20 nT. This suggests that injection into the ring current may be more efficient than expected in such storms. Four of the nine major storms in 1996 - 2004 occurred during a period of less than three solar rotations in September - November, 2002, also the time of maximum mean IMF and solar magnetic field intensity during the current solar cycle. The maximum CIR-storm strength found in our sample of events, plus additional 23 probable CIR-associated Dst less than or equal to -100 nT storms in 1972 - 1995, is (Dst = -161 nT). This is consistent with the maximum storm strength (Dst approx. -180 nT) expected from the O'Brien and McPherron equations for the typical range of solar wind

  12. Use of historical information in extreme storm surges frequency analysis

    NASA Astrophysics Data System (ADS)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    The prevention of storm surge flood risks is critical for protection and design of coastal facilities to very low probabilities of failure. The effective protection requires the use of a statistical analysis approach having a solid theoretical motivation. Relating extreme storm surges to their frequency of occurrence using probability distributions has been a common issue since 1950s. The engineer needs to determine the storm surge of a given return period, i.e., the storm surge quantile or design storm surge. Traditional methods for determining such a quantile have been generally based on data from the systematic record alone. However, the statistical extrapolation, to estimate storm surges corresponding to high return periods, is seriously contaminated by sampling and model uncertainty if data are available for a relatively limited period. This has motivated the development of approaches to enlarge the sample extreme values beyond the systematic period. The nonsystematic data occurred before the systematic period is called historical information. During the last three decades, the value of using historical information as a nonsystematic data in frequency analysis has been recognized by several authors. The basic hypothesis in statistical modeling of historical information is that a perception threshold exists and that during a giving historical period preceding the period of tide gauging, all exceedances of this threshold have been recorded. Historical information prior to the systematic records may arise from high-sea water marks left by extreme surges on the coastal areas. It can also be retrieved from archives, old books, earliest newspapers, damage reports, unpublished written records and interviews with local residents. A plotting position formula, to compute empirical probabilities based on systematic and historical data, is used in this communication paper. The objective of the present work is to examine the potential gain in estimation accuracy with the

  13. Transport of Energetic Ions in the Ring Current During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Kistler, Lynn M.; Kaufmann, Richard

    2001-01-01

    In the final year (plus no-cost extentions) of this grant, we have: Used the particle tracing code to perform a systematic study of the expected energy spectra over the full range of local times in the ring current using a variety of electric and magnetic field models. Shown that the Weimer electric field is superior to the Volland-Stern electric field in reproducing the observed energy spectra on the AMPTE CCE spacecraft. Redone our analysis of the pitch angle spectra of energetic ions during storms in the magnetosphere, using a larger data set, and a more reliable classification technique.

  14. Differences in generation of magnetic storms driven by magnetic clouds, ejecta, sheath region before ICME and CIR

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Nadezhda; Yermolaev, Yuri; Lodkina, Irina

    2016-07-01

    We investigate the efficiency of main phase storm generation by different solar wind (SW) streams when using 12 functions coupling (FC) various interplanetary parameters with magnetospheric state. By using our Catalog of Solar Wind Phenomena [Yermolaev et al., 2009] created on the basis of the OMNI database for 1976-2000, we selected the magnetic storms with Dst ≤ -50 nT for which interplanetary sources were following: MC (10 storms); Ejecta (31 storms); Sheath (21 storms); CIRs (31magnetic storms). To compare the interplanetary drivers we estimate an efficiency of magnetic storm generation by type of solar wind stream with using 12 coupling functions. We obtained that in average Sheath has more large efficiency of the magnetic storm generation and MC has more low efficiency in agreement with our previous results which show that by using a modification of formula by Burton et al. [1975] for connection of interplanetary conditions with Dst and Dst* indices the efficiency of storm generation by Sheath and CIR was ~50% higher than generation by ICME [Nikolaeva et al., 2013; 2015]. The most part of FCs has sufficiently high correlation coefficients. In particular the highest values of coefficients (~ 0.5 up to 0.63) are observed for Sheath- driven storms. In a small part of FCs with low coefficients it is necessary to increase the number of magnetic storms to increase the statistical significance of results. The reliability of the obtained data and possible reasons of divergences for various FCs and various SW types require further researches. The authors are grateful for the opportunity to use the OMNI database. This work was supported by the Russian Foundation for Basic Research, project 16-02-00125, and by Program of Presidium of the Russian Academy of Sciences. References: Nikolaeva, N. S., Y. I. Yermolaev, and I. G. Lodkina (2013), Modeling of Dst-index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic

  15. Ring current simulations of the 90 intense storms during solar cycle 23

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Jazowski, M.

    2008-03-01

    All of the intense magnetic storms (minimum Dst value of <-100 nT) from solar cycle 23 (1996-2005) were simulated using the hot electron and ion drift integrator (HEIDI) model. The simulations were run using a Kp-driven shielded Volland-Stern electric field, static dipole magnetic field, and nightside plasma data from instruments on the Los Alamos geosynchronous satellites. Of the 90 events, 79 had acceptable plasma boundary condition coverage (with main phase data gaps of 4 h or less) and are included in the analysis. Storms were classified according to their solar wind driver, and means and correlations were examined. It is found that for this model configuration, the HEIDI model was able to best reproduce the Dst time series for sheath-driven events with an average minimum Dst* from the simulations at or below the observed minimum Dst* value. CIR-driven events were the least reproducible class of storms, with simulated minimum Dst* values typically only half to two thirds of the observed minimum value. In general, there was a strong correlation between the observed and modeled minimums of Dst* and essentially no correlation between the observed minimum Dst* and the modeled-to-observed Dst* ratio. This implies that the size of the eventual storm is not a good indicator of whether this version of HEIDI will be able to accurately reproduce it; rather, a Kp-driven HEIDI simulation is consistently on the low side of predicting storm intensity, except for sheath-driven events.

  16. Criteria of interplanetary parameters causing intense magnetic storms (Dst less than -100nT)

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Tsurutani, Bruce T.

    1987-01-01

    Ten intense storms occurred during the 500 days of August 16, 1978 to December 28, 1979. From the analysis of ISEE-3 field and plasma data, it is found that the interplanetary cause of these storms are long-duration, large and negative IMF B sub Z events, associated with interplanetary duskward-electric fields greater than 5 mV/m. Because a one-to-one relationship was found between these interplanetary events and intense storms, it is suggested that these criteria can, in the future, be used as predictors of intense storms by an interplanetary monitor such as ISEE-3. These B sub Z events are found to occur in association with large amplitudes of the IMF magnitude within two days after the onset of either high-speed solar wind streams or of solar wind density enhancement events, giving important clues to their interplanetary origin. Some obvious possibilities will be discussed. The close proximity of B sub Z events and magnetic storms to the onset of high speed streams or density enhancement events is in sharp contrast to interplanetary Alfven waves and HILDCAA events previously reported, and thus the two interplanetary features corresponding geomagnetic responses can be thought of as being complementary in nature. An examination of opposite polarity B sub Z events with the same criteria show that their occurrence is similar both in number as well as in their relationship to interplanetary disturbances, and that they lead to low levels of geomagnetic activity.

  17. Ionospheric and Thermospheric Response to the 2015 St. Patrick's Day Storm: a Global Multi-Instrumental Overview

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Zakharenkova, I.; Foerster, M.; Doornbos, E.; Encarnacao, J.; Siemes, C.

    2015-12-01

    We study the ionospheric response to the geomagnetic storm of 17-18 March 2015 (the St. Patrick's Day 2015 storm) that was up to now the strongest in the 24th solar cycle (minimum SYM-H value of -233 nT). For this purpose, we use data of ground-based GPS-receivers and ionosondes, along space-borne instruments onboard the following satellites: Jason-2, GRACE, Terra-SAR-X, the three Swarm satellites (A, B, and C), and GUVI/TIMED. The storm consisted of two successive moderate storms. In the response to the first short storm, a short-term positive effect in the ionospheric vertical electron content (VTEC) occurred at low- and mid-latitudes on the dayside. The second event lasted longer and caused significant and complex storm-time changes around the globe. At high-latitudes, negative storm signatures were recorded in all longitudinal regions. The negative storm phase was found to be strongest in the Asian sector, in particular in the northern hemisphere (NH), but developed globally on March 18 at the beginning of the recovery phase. At mid-latitudes, inverse hemispheric asymmetries occurred in different longitudinal regions: in the European-African sector, positive storm signatures were observed in the NH, whereas in the American sector, a large positive storm occurred in the southern hemisphere (SH), and the NH experienced a negative storm. These observations performed around the spring equinox signify the existence of other impact factors than seasonal dependence for hemispheric asymmetries to occur. At low-latitudes, data from multiple satellites revealed the strongest storm-time effects in the morning (~100-150% enhancement) and post-sunset (~80-100% enhancement) sectors in the topside ionosphere. These dramatic VTEC enhancements were observed at different UT, but around the same area of Eastern Pacific region. To further understand the storm development, we are planning to use thermospheric data from Swarm-C satellite, as well as the data from the electric field

  18. A case study of the Thunderstorm Research International Project storm of July 11, 1978. 1. Analysis of the data base

    SciTech Connect

    Nisbet, J.S.; Barnard, T.A.; Forbes, G.S. ); Krider, E.P. ); Lhermitte, R. ); Lennon, C.L. )

    1990-04-20

    A coordinated analysis of the Thunderstorm Research International Project storm of July 11, 1978, from 1900 to 2000 UT at the Kennedy Space Center is presented using data from three Doppler radars, a lightning detection and ranging system and a network of 25 electric field mills, and rain gages. This storm produced two cells for which the center of the updraft remained within range of the observational network. Electric field measurements were used to analyze the charge moments transferred by lightning flashes. An attempt was made to analyze as large a percentage as possible of the flashes so that the measurements would be usable to study the charge moment transferred by lightning in the storm. These data were fitted to Weibull distributions which were used to estimate statistical parameters of the lightning for both intracloud and cloud-to-ground flashes and to estimate the fraction of the flashes which were below the observation threshold for the two cells studied. The displacement and conduction current densities were calculated throughout the storm from electric field measurements between flashes, and data are presented of values at 5-min intervals throughout the storm. These values were used to derive the magnitudes and locations of dipole and monopole generators by least squares fitting the measured Maxwell current densities to the displacement-dominated equations. Constrained fitting was used to examine the uniqueness of the solutions.

  19. Adult Basic Education Basic Computer Literacy Handbook.

    ERIC Educational Resources Information Center

    Manini, Catalina M.; Cervantes, Juan

    This handbook, in both English and Spanish versions, is intended for use with adult basic education (ABE) students. It contains five sections of basic computer literacy activities and information about the ABE computer literacy course offered at Dona Ana Community College (DACC) in New Mexico. The handbook begins with forewords by the handbook's…

  20. Is the storm time response of the inner magnetospheric hot ions universally similar or driver dependent?

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael W.; Katus, Roxanne

    2012-04-01

    The Hot Electron and Ion Drift Integrator (HEIDI) model was used to simulate all of the intense storms (Dstmin < -100 nT) from solar cycle 23 (1996-2005). These storms were classified according to their heliospheric driving structure, namely, either an interplanetary coronal mass ejection (ICME) or a corotating interaction region and its trailing high-speed stream (CIR/HSS). Five different HEIDI input combinations were used to create a large collection of numerical results, varying the plasma outer boundary condition and electric field description in the model. Statistical data-model analyses were conducted on the total energy content, yielding error estimates on the correlation coefficients and root-mean-square error values for each run set. The accuracy of each run set depends on the method of comparison and classification of the driver. For the correlation coefficients, the simulations using a local-time-dependent outer boundary condition were consistently better than those using a local-time-averaged (but high-time-resolution) nightside boundary condition, with the simplistic electric field being better than the self-consistent field description. For the root-mean-square error, the results are less conclusive. For the CIR/HSS-driven storms, those with the high-time-resolution boundary condition were systematically better than those with the local-time-dependent (but lower-time-resolution) boundary condition. For the ICME-driven storms, those run sets employing the self-consistent electric field calculation were systematically better than those using the simplistic electric field. The implication, therefore, is that the inner magnetospheric physical response to strong driving is, at least to some degree, fundamentally different depending on the heliospheric structure impacting geospace. Specifically, for an accurate SYMH* comparison, it is found that CIR/HSS events respond strongly to transient spikes in the plasma outer boundary condition, while ICME passages

  1. Observatory geoelectric fields induced in a two-layer lithosphere during magnetic storms

    USGS Publications Warehouse

    Love, Jeffrey J.; Swidinsky, Andrei

    2015-01-01

    We report on the development and validation of an algorithm for estimating geoelectric fields induced in the lithosphere beneath an observatory during a magnetic storm. To accommodate induction in three-dimensional lithospheric electrical conductivity, we analyze a simple nine-parameter model: two horizontal layers, each with uniform electrical conductivity properties given by independent distortion tensors. With Laplace transformation of the induction equations into the complex frequency domain, we obtain a transfer function describing induction of observatory geoelectric fields having frequency-dependent polarization. Upon inverse transformation back to the time domain, the convolution of the corresponding impulse-response function with a geomagnetic time series yields an estimated geoelectric time series. We obtain an optimized set of conductivity parameters using 1-s resolution geomagnetic and geoelectric field data collected at the Kakioka, Japan, observatory for five different intense magnetic storms, including the October 2003 Halloween storm; our estimated geoelectric field accounts for 93% of that measured during the Halloween storm. This work demonstrates the need for detailed modeling of the Earth’s lithospheric conductivity structure and the utility of co-located geomagnetic and geoelectric monitoring.

  2. Tropical storm tracks in a global tide and storm surge reanalysis

    NASA Astrophysics Data System (ADS)

    Verlaan, Martin; Winsemius, Hessel; Vatvani, Deepak; Muis, Sanne; Ward, Philip

    2016-04-01

    Flooding due to tides and storm surges causes massive societal impacts and the largest economic damage of all flood hazards. To adequately estimate and counteract upon their risk, sound global scientific information on hazards due to storm surges and tides is required. Recently, a first global tide and storm surge reanalysis (GTSR) has been prepared (Muis et al., 2015) that provides a 36 year time series of sea levels, along with extreme value statistics. The GTSR is established using a physically based model, forced by meteorological reanalysis data. Validation of GTSR showed that tropical storms are underrepresented, firstly, due to the fact that they occur rarely and then only affect a limited area, and secondly, because the spatio-temporal resolution of reanalysis wind and pressure fields is too low to accurately represent the strong spatio-temporal variability of tropical storms. In this contribution, we show the GTSR as well as its recent advancements by contributing a large amount of historical tropical storm tracks into the analysis. This advancement is seen as a first step to accommodate tropical storms in the reanalysis. We estimate how the statistics of the meteorological extremes in pressure and wind are changing, and consequently, how this translates into new statistics of storm surge extremes.

  3. Tropical Storm Track representation in a Global Tide and Storm Surge Reanalysis

    NASA Astrophysics Data System (ADS)

    Winsemius, H.; Verlaan, M.; Vatvani, D.; Muis, S.; Ward, P.

    2015-12-01

    Flooding due to tides and storm surges causes massive societal impacts and the largest economic damage of all flood hazards. To adequately estimate and counteract upon their risk, sound global scientific information on hazards due to storm surges and tides is required. Recently, a first global tide and storm surge reanalysis (GTSR) has been prepared (Muis et al., 2015) that provides a 36 year time series of sea levels, along with extreme value statistics. The GTSR is established using a physically based model, forced by meteorological reanalysis data. Validation of GTSR showed that tropical storms are underrepresented, firstly, due to the fact that they occur rarely and then only affect a limited area, and secondly, because the spatio-temporal resolution of reanalysis wind and pressure fields is too low to accurately represent the strong spatio-temporal variability of tropical storms. In this contribution, we are improving GTSR by contributing a large amount of historical tropical storm tracks into the analysis as a first step to accommodate tropical storms in the reanalysis. We estimate how the statistics of the meteorological extremes in pressure and wind are changing, and consequently, how this translates into new statistics of storm surge extremes.

  4. Derivation of a planetary ionospheric storm index

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Stanislawska, I.

    2008-09-01

    The planetary ionospheric storm index, Wp, is deduced from the numerical global ionospheric GPS-IONEX maps of the vertical total electron content, TEC, for more than half a solar cycle, 1999-2008. The TEC values are extracted from the 600 grid points of the map at latitudes 60° N to 60° S with a step of 5° and longitudes 0° to 345° E with a step of 15° providing the data for 00:00 to 23:00 h of local time. The local effects of the solar radiant energy are filtered out by normalizing of the TEC in terms of the solar zenith angle χ at a particular time and the local noon value χ0. The degree of perturbation, DTEC, is computed as log of TEC relative to quiet reference median for 27 days prior to the day of observation. The W-index map is generated by segmentation of DTEC with the relevant thresholds specified earlier for foF2 so that 1 or -1 stands for the quiet state, 2 or -2 for the moderate disturbance, 3 or -3 for the moderate ionospheric storm, and 4 or -4 for intense ionospheric storm at each grid point of the map. The planetary ionospheric storm Wp index is obtained from the W-index map as a latitudinal average of the distance between maximum positive and minimum negative W-index weighted by the latitude/longitude extent of the extreme values on the map. The threshold Wp exceeding 4.0 index units and the peak value Wpmax≥6.0 specify the duration and the power of the planetary ionosphere-plasmasphere storm. It is shown that the occurrence of the Wp storms is growing with the phase of the solar cycle being twice as much as the number of the magnetospheric storms with Dst≤-100 nT and Ap≥100 nT.

  5. Comparison of Probabilistic Coastal Inundation Maps Based on Historical Storms and Statistically Modeled Storm Ensemble

    NASA Astrophysics Data System (ADS)

    Feng, X.; Sheng, Y.; Condon, A. J.; Paramygin, V. A.; Hall, T.

    2012-12-01

    A cost effective method, JPM-OS (Joint Probability Method with Optimal Sampling), for determining storm response and inundation return frequencies was developed and applied to quantify the hazard of hurricane storm surges and inundation along the Southwest FL,US coast (Condon and Sheng 2012). The JPM-OS uses piecewise multivariate regression splines coupled with dimension adaptive sparse grids to enable the generation of a base flood elevation (BFE) map. Storms are characterized by their landfall characteristics (pressure deficit, radius to maximum winds, forward speed, heading, and landfall location) and a sparse grid algorithm determines the optimal set of storm parameter combinations so that the inundation from any other storm parameter combination can be determined. The end result is a sample of a few hundred (197 for SW FL) optimal storms which are simulated using a dynamically coupled storm surge / wave modeling system CH3D-SSMS (Sheng et al. 2010). The limited historical climatology (1940 - 2009) is explored to develop probabilistic characterizations of the five storm parameters. The probability distributions are discretized and the inundation response of all parameter combinations is determined by the interpolation in five-dimensional space of the optimal storms. The surge response and the associated joint probability of the parameter combination is used to determine the flood elevation with a 1% annual probability of occurrence. The limited historical data constrains the accuracy of the PDFs of the hurricane characteristics, which in turn affect the accuracy of the BFE maps calculated. To offset the deficiency of limited historical dataset, this study presents a different method for producing coastal inundation maps. Instead of using the historical storm data, here we adopt 33,731 tracks that can represent the storm climatology in North Atlantic basin and SW Florida coasts. This large quantity of hurricane tracks is generated from a new statistical model

  6. Healthcare4VideoStorm: Making Smart Decisions Based on Storm Metrics

    PubMed Central

    Zhang, Weishan; Duan, Pengcheng; Chen, Xiufeng; Lu, Qinghua

    2016-01-01

    Storm-based stream processing is widely used for real-time large-scale distributed processing. Knowing the run-time status and ensuring performance is critical to providing expected dependability for some applications, e.g., continuous video processing for security surveillance. The existing scheduling strategies’ granularity is too coarse to have good performance, and mainly considers network resources without computing resources while scheduling. In this paper, we propose Healthcare4Storm, a framework that finds Storm insights based on Storm metrics to gain knowledge from the health status of an application, finally ending up with smart scheduling decisions. It takes into account both network and computing resources and conducts scheduling at a fine-grained level using tuples instead of topologies. The comprehensive evaluation shows that the proposed framework has good performance and can improve the dependability of the Storm-based applications. PMID:27120606

  7. Healthcare4VideoStorm: Making Smart Decisions Based on Storm Metrics.

    PubMed

    Zhang, Weishan; Duan, Pengcheng; Chen, Xiufeng; Lu, Qinghua

    2016-04-23

    Storm-based stream processing is widely used for real-time large-scale distributed processing. Knowing the run-time status and ensuring performance is critical to providing expected dependability for some applications, e.g., continuous video processing for security surveillance. The existing scheduling strategies' granularity is too coarse to have good performance, and mainly considers network resources without computing resources while scheduling. In this paper, we propose Healthcare4Storm, a framework that finds Storm insights based on Storm metrics to gain knowledge from the health status of an application, finally ending up with smart scheduling decisions. It takes into account both network and computing resources and conducts scheduling at a fine-grained level using tuples instead of topologies. The comprehensive evaluation shows that the proposed framework has good performance and can improve the dependability of the Storm-based applications.

  8. A magnetospheric signature of some F layer positive storms

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Mayr, H. G.; Grebowsky, J. M.; Harris, I.; Tulunay, Y. K.

    1981-01-01

    Calculations of electron density distributions in the global thermosphere-ionosphere system perturbed by high-latitude thermospheric heating are presented which indicate a link between the heating and magnetospheric plasma disturbances near the equator. The calculations were made using a self-consistent model of the global sunlit thermosphere-ionosphere system describing the evolution of equatorial plasma disturbances. The heat input is found to cause electron density enhancements that propagate along magnetic field lines from the F2 maximum over mid-latitudes to the equator in the magnetosphere and which correspond to the positive phase of an F layer storm. The positive phase is shown to be generated by the induction of equatorward winds that raise the mid-latitude F layer through momentum transfer from neutral atoms to ionospheric ions, which ions pull electrons with them. Model results are used to identify plasma signatures of equatorward winds and an intensified magnetospheric electric field in Explorer 45 and Arial 4 measurements taken during the positive phase of an F layer storm.

  9. Empirical reconstruction of storm-time steady magnetospheric convection events

    NASA Astrophysics Data System (ADS)

    Stephens, G. K.; Sitnov, M. I.; Kissinger, J.; Tsyganenko, N. A.; McPherron, R. L.; Korth, H.; Anderson, B. J.

    2013-12-01

    We investigate the storm-scale morphology of the magnetospheric magnetic field as well as underlying distributions of electric currents, equatorial plasma pressure and entropy for four Steady Magnetospheric Convection (SMC) events that occurred during the May 2000 and October 2011 magnetic storms. The analysis is made using the empirical geomagnetic field model TS07D, in which the structure of equatorial currents is not predefined and it is dictated by data. The model also combines the strengths of statistical and event-oriented approaches in mining data for the reconstruction of the magnetic field. The formation of a near-Earth minimum of the equatorial magnetic field in the midnight sector is inferred from data without ad hoc assumptions of a special current system postulated in earlier empirical reconstructions. In addition, a new SMC class is discovered where the minimum equatorial field is substantially larger and located closer to Earth. The magnetic field tailward of the minimum is also much larger, and the corresponding region of accumulated magnetic flux may occupy a very short tail region. The equatorial current and plasma pressure are found to be strongly enhanced far beyond geosynchronous orbit and in a broad local time interval covering the whole nightside region. This picture is consistent with independent recent statistical studies of the SMC pressure distributions, global MHD and kinetic RCM-E simulations. Distributions of the flux tube volume and entropy inferred from data reveal different mechanisms of the magnetotail convection crisis resolution for two classes of SMC events.

  10. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGES

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; ...

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result inmore » flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  11. Acceleration and loss of relativistic electrons during small geomagnetic storms

    SciTech Connect

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  12. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    SciTech Connect

    Deng, W.; Killeen, T.L.; Burns, A.G. ); Roble, R.G. ); Slavin, J.A.; Wharton, L.E. )

    1993-05-01

    The authors extend previous work with a National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM), to study dynamo effects in the high latitude thermosphere. Ionospheric convection can drive neutral currents in much the same pattern by means of ion drag reactions. It has been observed that ion currents established during magnetic storms can induce neutral currents which persist for hours after the end of the storm. Model results have shown that such currents can account for up to 80 percent of the Hall currents in the period immediately following storms. Here this previous work is extended and compared with experimental observations. The authors simulate time dependent Hall currents, field-aligned currents, and electrical power fluxes coupling the magnetosphere and ionosphere. They discuss their results in terms of a loaded magnetosphere, which accounts for the fact that the neutral currents can also induce currents and electric fields in the ionosphere.

  13. [Magnetic storms as a stress factor].

    PubMed

    Rapoport, S I; Boldypakova, T D; Malinovskaia, N K; Oraevskiĭ, V N; Meshcheriakova, S A; Breus, T K; Sosnovskiĭ, A M

    1998-01-01

    The functional characteristics variations during the magnetic storms were observed in both the healthy humans and in patients with cardio-vascular diseases as well as in cosmonauts at SOYUZ spacecraft and MIR station. These characteristics revealed a nonspecific adaptive stress reaction, which should be accompanied by the variations in the stress-hormone production rate. The neurohumoral regulation of the organism functions during the geomagnetic storms in a group of patients with cardio-vascular pathology and in a control group of healthy individuals were studied. The magnetic storm effect characterised of both the sick and healthy examines was the violated ratio of glucocorticoids and mineralocorticoids, namely increase of cortisone secretion (adrenal cortex hormone), as well as some tendency to the activation of sympathoadrenal system. Our investigations revealed also a suppressed production of melatonin (the pineal gland hormone) during the geomagnetic storm. These results are not in contradictions with the functional characteristics violation by the magnetic storms and correspond to the existence of adaptive stress reaction of the human organism to the geomagnetic field disturbances.

  14. Emergency health impact of a severe storm.

    PubMed

    Geehr, E C; Salluzzo, R; Bosco, S; Braaten, J; Wahl, T; Wallenkampf, V

    1989-11-01

    A severe, premature snow storm resulted in widespread loss of power, communications, and transportation in a populous region of the Northeast. Staff in hospital emergency departments centered in the path of the storm reported a large number of injuries and many unexpected health effects related to the storm. A retrospective survey of the five major hospital emergency departments serving the most heavily affected urban and suburban areas was undertaken to determine the emergency health impact of the storm and resulting operational problems. Expected findings included a decrease in emergency department visits the day of the storm, followed by a sharp increase the day after. Clean-up activities accounted for a large number of the injuries, most of which were preventable. Unexpected findings include a large number of carbon monoxide poisonings and disposition and staffing problems created by caring for many patients who lost access to customary home health care services. Emergency department staff are encouraged to engage in public education efforts that may reduce serious illness or injury related to severe weather and its aftermath. Moreover, traditional disaster plans may need to be supplemented in anticipation of the disposition and staffing problems created by a growing population of elderly patients who will be cut off from vital home health care services by severe weather.

  15. Spatial modelling of total storm rainfall

    NASA Technical Reports Server (NTRS)

    Rodriguez-Iturbe, I.; Cox, D. R.; Eagleson, P. S.

    1986-01-01

    The spatial structure of the depth of rainfall from a stationary storm event is investigated by using point process techniques. Cells are assumed to be stationary and to be distributed in space either independently according to a Poisson process, or with clustering according to a Neyman-Scott scheme. Total storm rainfall at the centre of each cell is a random variable and rainfall is distributed around the centre in a way specified by a spread function that may incorporate random parameters. The mean, variance and covariance structure of the precipitation depth at a point are obtained for different spread functions. For exponentially distributed centre depth and a spread function having quadratically exponential decay, the total storm depth at any point in the field is shown to have a gamma distribution. The probability of zero rainfall at a point is investigated, as is the stochastic variability of model parameters from storm to storm. Data from the Upper Rio Guaire basin in Venezuela are used in illustration.

  16. Modeling of the 22 July 2009 Storm

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Buzulukova, Natalia

    2009-01-01

    The magnetic storm on 22 July 2009 is the greatest storm observed since the summer of 2008 when TWINS began its stereo imaging of the magnetosphere, On 22 July 2009, the Dst dropped to nearly -80 nT at 07:00 and 10:00 UT. During the main phase and at the peak of the storm, TWINS 1 and 2 were near apogee and moving from pre-dawn to post-dawn local time. The energetic neutral atom (ENA) Imagers on the 2 spacecraft captured the storm intensification and the formation of the partial ring current. The development of this storm has been simulated using the Comprehensive Ring Current Model (CRCM) to understand and interpret the observed signatures. The CRCM reproduced the double-dip in the Dst index and the simulated ENA flux intensities agree very well with the TWINS images. However, the peak of ion flux predicted by the model is always eastward of the observed maximum by TWINS. This discrepancy posts a challenge to reexamine the physical models employed in the CRCM.

  17. Global Storm-Time Depletion of the Outer Electron Belt

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sitnov, M. I.; Millan, R. M.; Kress, B. T.; Fennell, J. F.

    2014-12-01

    The outer radiation belt consists of relativistic (≳0.5 MeV) electrons trapped on closed trajectories around Earth where its magnetic field is nearly dipolar. During increased geomagnetic activity electron intensities in the belt can vary by orders of magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the depletions: fully adiabatic inflation of electron drift orbits caused the ring current growth, electron loss into the atmosphere due to pitch-angle scattering by plasma waves (e.g., EMIC and whistler waves), and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the magnetopause losses to the rapid depletion of the outer belt observed at the Van Allen Probes spacecraft during the main phase of March 17, 2013 storm. The intensities of > 1 MeV electrons were depleted by more that an order of magnitude over the entire radial extent of the belt in less than 6 hours after the sudden storm commencement. For the analysis we used three-dimensional test-particle simulations of global evolution of the outer belt in the Tsyganenko-Sitnov (TS07D) magnetic field model with the inductive electric field. The comparison of the simulation results with electron measurements from the MagEIS experiment shows that the magnetopause losses in the model accounts for most of the observed depletion. The individual electron motion the process is non-adiabatic; the third invariant is violated by global variations of the inner magnetospheric fields caused by the magnetopause compressions and the buildup of ring current, while the second invariant is violated at drift orbit bifurcations. The analysis shows that the observed deep depletion of radiation belt intensities is enabled by the change in the global configuration of magnetic

  18. Atoms to Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and the role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: the role of nuclear power; the role of electricity; generating electricity with the…

  19. Storm water modeling at Lawrence Livermore National Laboratory

    SciTech Connect

    Veis, Christopher

    1996-05-01

    Storm water modeling is important to Lawrence Livermore National Laboratory (LLNL) for compliance with regulations that govern water discharge at large industrial facilities. Modeling is also done to study trend in contaminants and storm sewer infrastructure. The Storm Water Management Model (SWMM) was used to simulate rainfall events at LLNL. SWMM is a comprehensive computer model for simulation of urban runoff quantity and quality in storm and combined sewer systems. Due to time constraints and ongoing research, no modeling was completed at LLNL. With proper information about the storm sewers, a SWMM simulation of a rainfall event on site would be beneficial to storm sewer analyst.

  20. Changes in contaminant loading and hydro-chemical storm behavior after the Station Fire

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Hogue, T. S.; Barco, J.; Wessel, C. J.

    2010-12-01

    The 2009 Station Fire, currently noted as the largest fire in Los Angeles County history, consumed over 650 square kilometers of National Forest land in the San Gabriel Mountain Range. These mountains, located on the east side (leeward) of the Los Angeles basin, are known to have some of the highest deposition rates of atmospheric pollutants in the nation. Even pre-fire, urban-fringe basins in this mountain range serve as an upstream source of contaminants to downstream urban streams. Burned watersheds undergo significant physical and chemical changes that dramatically alter hydrologic flowpaths, erosion potential, surface soil chemistry, and pollutant delivery. Much of the degradation in water quality is attributed to the extensive soil erosion during post-fire runoff events which carry large sediment loads, mobilizing and transporting contaminants to and within downstream waters. High resolution storm samples collected from a small front range watershed provide a unique opportunity to investigate the impacts of wildfire contaminant loading in a watershed that is significantly impacted by high atmospheric deposition of urban contaminates. Data includes four events from WY 2009 (pre-fire) and WY 2010 (post-fire), along with inter-storm grab samples from each storm season. Samples were analyzed for basic anions, nutrients, trace metals, and total suspended solids. Following the fire, storms with similar precipitation patterns yielded loads up to three orders of magnitude greater than pre-fire for some toxic metals, including lead and cadmium. Dramatic increases were also observed in trace metal concentrations typically associated with particulates, while weathering solute concentrations decreased. Post fire intra-storm dynamics exhibited a shift back toward pre-fire behavior by the end of the first rainy season for most of the measured constituents. Additionally, some unexpected behaviors were observed; specifically mercury loads continued to increase throughout the

  1. The Living with a Star Radiation Belt Storm Probes

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Mauk, B. H.; Grebowsky, J. M.; Fox, N. J.

    2007-01-01

    The goal of NASA's Living With a Star Radiation Belt Storm Probe mission is to understand, ideally to the point of predictability, how populations of relativistic electrons and ions in space form or change in response to the variable inputs of energy from the Sun. The investigations selected for this 2-spacecraft mission scheduled for launch in early 2012 address this task by making extensive observations of the plasma waves, thermal, ring current, and relativistic particle populations, and DC electric and magnetic fields within the Earth's inner and outer radiation belts. We first describe the current mission concept within the scope of NASA's strategic plan and the Vision for Exploration, and then consider how its observations will be used to define and quantify the processes that accelerate, transport, and remove particles in the Earth's radiation belts.

  2. Thunderstorm hazards flight research: Storm hazards 1980 overview

    NASA Technical Reports Server (NTRS)

    Deal, P. L.; Keyser, G. L.; Fisher, B. D.; Crabill, N. L.

    1981-01-01

    A highly instrumented NASA F-106B aircraft, modified for the storm hazards mission and protected against direct lightning strikes, was used in conjunction with various ground based radar and lightning measurement systems to collect data during thunderstorm penetration flights. During 69 thunderstorm penetrations, there were 10 direct lightning strikes to the aircraft. No problems were encountered with any of the aircraft's systems as a result of the strikes and the research instrumentation performed as designed. Electromagnetic characteristics of nine strikes were recorded, and the results of other experiments confirm the theory that X-ray radiation and nitrous oxide gas are being produced by processes associated directly with thunderstorm electric fields and lightning discharges. A better understanding of aircraft lightning attachment mechanisms and strike zones is being accomplished by careful inspection, identification, and documentation of lightning attachment points and swept stroke paths following each strike to the aircraft.

  3. Dust Storm Moving Near Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This series of images show the movement of several dust storms near NASA's Phoenix Mars Lander. These images were taken by the lander's Surface Stereo Imager (SSI) on the 137th Martian day, or sol, of the mission (Oct. 13, 2008).

    These images were taken about 50 seconds apart, showing the formation and movement of dust storms for nearly an hour. Phoenix scientists are still figuring out the exact distances these dust storms occurred from the lander, but they estimate them to be about 1 to 2 kilometers (.6 or 1.2 miles) away.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Simple buffers for 3D STORM microscopy.

    PubMed

    Olivier, Nicolas; Keller, Debora; Rajan, Vinoth Sundar; Gönczy, Pierre; Manley, Suliana

    2013-06-01

    3D STORM is one of the leading methods for super-resolution imaging, with resolution down to 10 nm in the lateral direction, and 30-50 nm in the axial direction. However, there is one important requirement to perform this type of imaging: making dye molecules blink. This usually relies on the utilization of complex buffers, containing different chemicals and sensitive enzymatic systems, limiting the reproducibility of the method. We report here that the commercial mounting medium Vectashield can be used for STORM of Alexa-647, and yields images comparable or superior to those obtained with more complex buffers, especially for 3D imaging. We expect that this advance will promote the versatile utilization of 3D STORM by removing one of its entry barriers, as well as provide a more reproducible way to compare optical setups and data processing algorithms.

  5. HUBBLE TRACKS 'PERFECT STORM' ON MARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Two dramatically different faces of our Red Planet neighbor appear in these comparison images showing how a global dust storm engulfed Mars with the onset of Martian spring in the Southern Hemisphere. When NASA's Hubble Space Telescope imaged Mars in June, the seeds of the storm were caught brewing in the giant Hellas Basin (oval at 4 o'clock position on disk) and in another storm at the northern polar cap. When Hubble photographed Mars in early September, the storm had already been raging across the planet for nearly two months obscuring all surface features. The fine airborne dust blocks a significant amount of sunlight from reaching the Martian surface. Because the airborne dust is absorbing this sunlight, it heats the upper atmosphere. Seasonal global Mars dust storms have been observed from telescopes for over a century, but this is the biggest storm ever seen in the past several decades. Mars looks gibbous in the right photograph because it is 26 million miles farther from Earth than in the left photo (though the pictures have been scaled to the same angular size), and our viewing angle has changed. The left picture was taken when Mars was near its closest approach to Earth for 2001 (an event called opposition); at that point the disk of Mars was fully illuminated as seen from Earth because Mars was exactly opposite the Sun. Both images are in natural color, taken with Hubble's Wide Field Planetary Camera 2. Credit: NASA, James Bell (Cornell Univ.), Michael Wolff (Space Science Inst.), and the Hubble Heritage Team (STScI/AURA)

  6. The intense magnetic storm of December 19, 1980: Observations at L = 4

    SciTech Connect

    Bering, E.A. III; Benbrook, J.R.; Haacke, R. ); Dudeney, J.R. ); Lanzerotti, L.J.; MacLennan, C.G. ); Rosenberg, T.J. )

    1991-04-01

    The intense magnetic storm of December 19, 1980 occurred during a major rocket and balloon geophysical research campaign at Siple Station, Antarctica. A balloon flight measuring the electric field and bremsstrahlung X ray flux was conducted during the main phase of the storm. The balloon data and associated ground-based data from around the world contain several lines of evidence which indicate that the dayside auroral oval expanded to an invariant latitude {le} 59{degree} during the storm. Evidence for this conclusion includes (1) the pattern of ground-based magnetic field and ionospheric electric field perturbations; (2) a substantial departure from the normal diurnal curve of the vertical component of the electric field in the stratosphere; and, (3) identical, relatively rapid equatorward motion of regions of electron precipitation, observed or inferred to occur, simultaneously at three L{approximately}4 stations: Siple, Halley Bay and SANAE, separated by several hours in local time across the dayside. The absence of electron precipitation at Siple after this equatorward motion is an indication that the polar cap had expanded to include Siple during this interval. The power spectra of the magnetic field fluctuations at ULF observed at Siple and in a conjugate latitude chain of magnetometers were consistent with the presence of the dayside auroral oval in the near vicinity of Siple and with the presence of a major magnetospheric boundary slightly equatorward of {approximately} 59 {degree}. The stratospheric electric field measured during the recovery phase was very large for this latitude for a period of several hours. This observation suggests that a subauroral latitude ion drift event of unusual intensity and duration accompanied this storm.

  7. Total Lightning and Radar Storm Characteristics Associated with Severe Storms in Central Florida

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Raghavan, Ravi; Ramachandran, Rahul; Buechler, Dennis; Hodanish, Stephen; Sharp, David; Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark

    1998-01-01

    A number of prior studies have examined the association of lightning activity with the occurrence of severe weather and tornadoes, in particular. High flash rates are often observed in tornadic storms (Taylor, 1973; Johnson, 1980; Goodman and Knupp, 1993) but not always. Taylor found that 23% of nontornadic storms and 1% of non-severe storms had sferics rates comparable to the tornadic storms. MacGorman (1993) found that storms with mesocyclones produced more frequent intracloud (IC) lightning than cloud-to-ground (CG) lightning. MacGorman (1993) and others suggest that the lightning activity accompanying tomadic storms will be dominated by intracloud lightning-with an increase in intracloud and total flash rates as the updraft increases in depth, size, and velocity. In a recent study, Perez et al. (1998) found that CG flash rates alone are too variable to be a useful predictor of (F4, F5) tornado formation. Studies of non-tomadic storms have also shown that total lightning flash rates track the updraft, with rates increasing as the updraft intensities and decreasing rapidly with cessation of vertical growth or downburst onset (Goodman et al., 1988; Williams et al., 1989). Such relationships result from the development of mixed phase precipitation and increased hydrometer collisions that lead to the efficient separation of charge. Correlations between updraft strength and other variables such as cloud-top height, cloud water mass, and hail size have also been observed.

  8. Mapping storm velocity over catchments: Distribution and scale dependence for flash flood-inducing storms.

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, E. I.; Zoccatelli, D.; Anagnostou, E. N.

    2012-04-01

    The concept of catchment-scale storm velocity permits examination of storm motion and velocity from the perspective of a distance metric imposed by the drainage network structure of a catchment. This paper aims to examine the distribution and scale-dependency of catchment scale storm velocity values for major flash flood-inducing storms. Eight extreme flash flood-inducing storms occurred in Europe in the period 1999 to 2008 are examined. Analyses are carried out for a set of basins that range in area from 7 to 982 km2. It is shown that the distribution of catchment-scale storm velocity depends on basin-averaged rain rate and catchment size. Hourly velocity values corresponding to maximal rain rates during the flood producing period exhibit a non linear dependence on basin scale and may attain values as high as 2 m s-1. Integration of velocity over the catchment response time leads to a reduction of maximal velocities. Response-time integrated maximal storm velocity shows a peak for catchment scales in the range of 20-100 km2, with values up to 1 m s-1.

  9. Health Insurance Basics

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Health Insurance Basics KidsHealth > For Teens > Health Insurance Basics A ... thought advanced calculus was confusing. What Exactly Is Health Insurance? Health insurance is a plan that people buy ...

  10. Health Insurance Basics

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Health Insurance Basics KidsHealth > For Teens > Health Insurance Basics Print ... thought advanced calculus was confusing. What Exactly Is Health Insurance? Health insurance is a plan that people buy ...

  11. PASCAL vs BASIC

    ERIC Educational Resources Information Center

    Mundie, David A.

    1978-01-01

    A comparison between PASCAL and BASIC as general purpose microprocessor languages rates PASCAL above BASIC in such points as program structure, data types, structuring methods, control structures, procedures and functions, and ease in learning. (CMV)

  12. Storm Water Management Model (SWMM) | Science Inventory ...

    EPA Pesticide Factsheets

    Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. The U.S. Environmental Protection Agency (EPA) developed the Storm Water Management Model (SWMM) to help support local, state, and national stormwater management objectives to reduce runoff through infiltration and retention. SWMM was first developed in 1971 and has undergone several major upgrades since then. To inform the public on EPA's green infrastructure models.

  13. An outbreak of carbon monoxide poisoning after a major ice storm in Maine.

    PubMed

    Daley, W R; Smith, A; Paz-Argandona, E; Malilay, J; McGeehin, M

    2000-01-01

    Unintentional carbon monoxide (CO) exposure kills over 500 people in the U.S. annually. Outbreaks of CO poisoning have occurred after winter storms. The objective of this study was to describe clinical features and identify important risk factors of a CO poisoning outbreak occurring after a major ice storm. The study design included a case series of CO poisoning patients, a telephone survey of the general community, and a case-controlled study of households using specific CO sources. The setting was the primary service area of four hospital emergency departments located in the heavily storm-impacted interior region of Maine. Participants included all patients with a laboratory-confirmed diagnosis of CO poisoning during the 2 weeks after the storm onset, and a population-based comparison group of 522 households selected by random digit dialing. There were 100 cases identified, involving 42 common-source exposure incidents, most of them during the first week. Though classic CO symptoms of headache, dizziness, and nausea predominated, 9 patients presented with chest pain and 10 were asymptomatic. One patient died and 5 were transferred for hyperbaric oxygen therapy. Gasoline-powered electric generators were a CO source in 30 incidents, kerosene heaters in 8, and propane heaters in 4. In the community, 31.4% of households used a generator after the ice storm. The strongest risk factor for poisoning was locating a generator in a basement or an attached structure such as a garage. Cases of CO poisoning with various presentations can be expected in the early aftermath of a severe ice storm. Generators are a major CO source and generator location an important risk factor for such disasters.

  14. Atmospheric electricity

    NASA Technical Reports Server (NTRS)

    1987-01-01

    In the last three years the focus was on the information contained in the lightning measurement, which is independent of other meteorological measurements that can be made from space. The characteristics of lightning activity in mesoscale convective systems were quantified. A strong relationship was found between lightning activity and surface rainfall. It is shown that lightning provides a precursor signature for wet microbursts (the strong downdrafts that produce windshears hazardous to aircraft) and that the lightning signature is a direct consequence of storm evolution. The Universities Space Research Association (USRA) collaborated with NASA scientists in the preliminary analysis and scientific justification for the design and deployment of an optical instrument which can detect lightning from geostationary orbit. Science proposals for the NASA mesoscale science program and for the Tethered Satellite System were reviewed. The weather forecasting research and unmanned space vehicles. Software was written to ingest and analyze the lightning ground strike data on the MSFC McIDAS system. The capabilities which were developed have a wide application to a number of problems associated with the operational impacts of electrical discharge within the atmosphere.

  15. Evolution of charge and lightning throughout an observed and simulated supercell storm

    NASA Astrophysics Data System (ADS)

    Kuhlman, Kristin Marie

    A high-precipitation tornadic supercell storm was observed by multiple platforms on 29 May 2004 during the Thunderstorm Electrification and Lightning Experiment (TELEX). Observational systems included the Oklahoma Lightning Mapping Array (LMA), mobile balloon-borne soundings, and two mobile SMART-R (SR) C-Band radars. This dissertation utilizes data from these platforms to relate the spatial distribution and evolution of lightning to storm kinematics and microphysics, especially to regions of microphysical charging and the location and geometry of those charge regions. One example is the relationship of the observed transient lightning hole and of large lightning densities to kinematic properties inferred from dual-Doppler analyses of the SR data. The lightning flashes near the core of this storm, although extraordinarily frequent, tended to have shorter duration and smaller horizontal extent than typical flashes in other storms having less frequent lightning. This is due, at least in part, to many small pockets of charge lying in close proximity to small pockets of the opposite polarity of charge. Thus, each polarity of lightning leader propagates only a relatively short distance before reaching regions of unfavorable electrical potential. In the anvil, however, lightning extended tens of kilometers from the reflectivity cores in roughly horizontal layers, consistent with the charge spreading through the anvil in broad sheets. Previous studies of lightning in anvil clouds have reported that flashes began in or near the storm core and propagated downwind into the anvil, and many flashes followed that pattern in this storm. However, this dissertation presents the first observations of flashes that began in the anvil 30-100 km from the cores of the storms and propagated upwind back toward the cores. It had been thought that flashes could not be initiated far downwind in the anvil, because anvil charge was thought to be produced mainly in the storm's deep updraft and

  16. Basic Cake Decorating Workbook.

    ERIC Educational Resources Information Center

    Bogdany, Mel

    Included in this student workbook for basic cake decorating are the following: (1) Drawings of steps in a basic way to ice a layer cake, how to make a paper cone, various sizes of flower nails, various sizes and types of tin pastry tubes, and special rose tubes; (2) recipes for basic decorating icings (buttercream, rose paste, and royal icing);…

  17. Basic photovoltaic principles and methods

    SciTech Connect

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  18. Statistical analysis of storm-time near-Earth current systems

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael; Katus, Roxanne M.; Ilie, Raluca

    2015-04-01

    Currents from the Hot Electron and Ion Drift Integrator (HEIDI) inner magnetospheric hot ion results for all of the intense storms (90 events) from solar cycle 23 (1996 - 2005) are calculated, presented, and analyzed. We have categorized these currents into the various systems that exist in near-Earth space, specifically the eastward and westward symmetric ring current, the partial ring current, the banana current, and the tail current. The current results from each run set are combined by a normalized superposed epoch analysis technique that scales the timeline of each phase of each storm before summing the results. It is found that there is a systematic ordering to the current systems, with the asymmetric current systems peaking during storm main phase (tail current rising first, then the banana current, followed by the partial ring current) and the symmetric current systems peaking during the early recovery phase (westward and eastward symmetric ring current having simultaneous maxima). The median and mean peak amplitudes for the current systems ranged from 1 to 3 MA, depending on the setup configuration used in HEIDI, except for the eastward symmetric ring current, for which the mean never exceeded 0.3 MA for any HEIDI setup. The self-consistent electric field description in HEIDI yielded larger tail and banana currents than the Volland-Stern electric field, while the partial and symmetric ring currents had similar peak values between the two applied electric field models.

  19. A GPM Satellite Flyover of Tropical Storm Darby

    NASA Video Gallery

    The animated flyby from NASA's GPM satellite shows Tropical Storm Darby in 3-D on July 23. GPM saw a line of intense storms in Darby, located southeast of the big island of Hawaii was dropping rain...

  20. Major coastal impact induced by a 1000-year storm event

    PubMed Central

    Fruergaard, Mikkel; Andersen, Thorbjørn J.; Johannessen, Peter N.; Nielsen, Lars H.; Pejrup, Morten

    2013-01-01

    Extreme storms and storm surges may induce major changes along sandy barrier coastlines, potentially causing substantial environmental and economic damage. We show that the most destructive storm (the 1634 AD storm) documented for the northern Wadden Sea within the last thousand years both caused permanent barrier breaching and initiated accumulation of up to several metres of marine sand. An aggradational storm shoal and a prograding shoreface sand unit having thicknesses of up to 8 m and 5 m respectively were deposited as a result of the storm and during the subsequent 30 to 40 years long healing phase, on the eroded shoreface. Our results demonstrate that millennial-scale storms can induce large-scale and long-term changes on barrier coastlines and shorefaces, and that coastal changes assumed to take place over centuries or even millennia may occur in association with and be triggered by a single extreme storm event.