Sample records for electrical system design

  1. Design and Implementation of Effective Electrical Power System for Surya Satellite-1

    NASA Astrophysics Data System (ADS)

    Sulistya, A. H.; Hasbi, W.; Muhida, R.

    2018-05-01

    Surya Satellite-1 is a nanosatellite developed by students of Surya University. The subject of this paper is the design and implementation of effective electrical power system for Surya Satellite 1. The electrical power system role is to supply other systems of the satellite with appropriate electrical power. First, the requirements of the electrical power system are defined. The architecture of the electrical power system is then designed to build the prototype. The orbit simulation is calculated to predict the power production. When prototype test and simulation data is gained, we make an operation scenario to keep the produced power and the consumed power in balance. The design of the modules of the electrical power system is carried out with triple junction solar cells, lithium ion batteries, maximum power point trackers, charging controllers, power distributions, and protection systems. Finally, the prototypes of the electrical power system are presented.

  2. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  3. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  4. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  5. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  6. 29 CFR 1910.302 - Electric utilization systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric utilization systems. 1910.302 Section 1910.302..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.302 Electric utilization systems. Sections 1910.302 through 1910.308 contain design...

  7. Specification and Design of Electrical Flight System Architectures with SysML

    NASA Technical Reports Server (NTRS)

    McKelvin, Mark L., Jr.; Jimenez, Alejandro

    2012-01-01

    Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.

  8. Nuclear power propulsion system for spacecraft

    NASA Astrophysics Data System (ADS)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  9. An Undergraduate Electrical Engineering Course on Computer Organization.

    ERIC Educational Resources Information Center

    Commission on Engineering Education, Washington, DC.

    Outlined is an undergraduate electrical engineering course on computer organization designed to meet the need for electrical engineers familiar with digital system design. The program includes both hardware and software aspects of digital systems essential to design function and correlates design and organizational aspects of the subject. The…

  10. Applying reliability analysis to design electric power systems for More-electric aircraft

    NASA Astrophysics Data System (ADS)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  11. Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup.more » The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)« less

  12. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  13. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  14. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  15. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  16. 7 CFR 1724.55 - Dam safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.55 Dam safety. (a) The provisions of this section apply only to RUS financed electric system... at RUS, Electric Staff Division, 1400 Independence Avenue, SW., Washington, DC, Room 1246-S, and at...

  17. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less

  18. The design of electric vehicle intelligent charger

    NASA Astrophysics Data System (ADS)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.

  19. A comparison of Stirling engines for use with a 25 kW dish-electric conversion system

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1987-01-01

    Two designs for an advanced Stirling conversion system (ASCS) are described. The objective of the ASCS is to generate about 25 kW of electric power to an electric utility grid at an engine/alternator target cost of $300.00/kW at the manufacturing rate of 10,000 unit/yr. Both designs contain a free-piston Stirling engine (FPSE), a heat transport system, solar receiver, a means to generate electric power, the necessary auxiliaries, and a control system. The major differences between the two concepts are: one uses a 25 kWe single-piston FPSE which incorporates a linear alternator to directly convert the energy to electricity on the utility grid; and in the second design, electrical power is generated indirectly using a hydraulic output to a ground based hydraulic motor coupled to a rotating alternator. Diagrams of the two designs are presented.

  20. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  1. National Electrical Code in Power Engineering Course for Electrical Engineering Curriculum

    ERIC Educational Resources Information Center

    Azizur, Rahman M. M.

    2011-01-01

    In order to ensure the safety of their inhabitants and properties, the residential, industrial and business installations require complying with NEC (national electrical code) for electrical systems. Electrical design engineers and technicians rely heavily on these very important design guidelines. However, these design guidelines are not formally…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, Daniel Harvey; Crafts, Chris C.

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehiclemore » applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.« less

  3. Aircraft Electric Propulsion Systems Applied Research at NASA

    NASA Technical Reports Server (NTRS)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  4. Design of a new concentrated photovoltaic system under UAE conditions

    NASA Astrophysics Data System (ADS)

    Hachicha, Ahmed Amine; Tawalbeh, Muahammad

    2017-06-01

    Concentrated Photovoltaic Systems (CPVs) are considered one of the innovative designs for concentrated solar power applications. By concentrating the incident radiation, the solar cells will be able to produce much more electricity compared to conventional PV systems. However, the temperature of the solar cells increases significantly with concentration. Therefore, cooling of the solar cells will be needed to maintain high conversion efficiency. In this work, a novel design of CPV system is proposed and implemented under UAE conditions for electricity generation and hot water production. The proposed design integrates a water cooling system and PV system to optimize both the electrical and thermal performances of the CPV system.

  5. Hybrid Electric Vehicle Basics | NREL

    Science.gov Websites

    design-In this design, the energy conversion unit and an electric propulsion system are connected . Series design-In this design, the primary engine is connected to a generator that produces electricity

  6. Study of curved glass photovoltaic module and module electrical isolation design requirements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.

  7. Study of curved glass photovoltaic module and module electrical isolation design requirements

    NASA Astrophysics Data System (ADS)

    1980-06-01

    The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.

  8. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  9. A new direction in energy conversion - The all-electric aircraft

    NASA Technical Reports Server (NTRS)

    Spitzer, C. R.

    1985-01-01

    This paper reviews recent studies of all-electric aircraft that use electric-only secondary power and flight critical fly-by-wire flight controls, and brings to the attention of the power system designer the intrinsic advantages of such aircraft. The all-electric aircraft is made possible by the development of rare earth magnet materials and fault tolerant systems technologies. Recent studies have shown all-electric aircraft to be more efficient than conventional designs and offer substantial operating costs reductions. Compared to present aircraft, an all-electric transport can save at least 10 percent in fuel burn. The cornerstone of an all-electric aircraft is the electric secondary power system. This paper reviews the major features of flight critical electric secondary power systems. Research required to lay the foundation for an all-electric aircraft is briefly discussed.

  10. 7 CFR 1724.53 - Preparation of plans and specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...

  11. 7 CFR 1724.53 - Preparation of plans and specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...

  12. 7 CFR 1724.53 - Preparation of plans and specifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...

  13. 7 CFR 1724.53 - Preparation of plans and specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.53 Preparation of plans and specifications. The provisions of this section apply to all borrower electric system facilities regardless of the source of financing. (a...

  14. 46 CFR 111.50-2 - Systems integration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...

  15. 46 CFR 111.50-2 - Systems integration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...

  16. 46 CFR 111.50-2 - Systems integration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...

  17. 46 CFR 111.50-2 - Systems integration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...

  18. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  19. Electrical design for origami solar panels and a small spacecraft test mission

    NASA Astrophysics Data System (ADS)

    Drewelow, James; Straub, Jeremy

    2017-05-01

    Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.

  20. Development of a Novel Wireless Electric Power Transfer System for Space Applications

    NASA Technical Reports Server (NTRS)

    VazquezRamos, Gabriel; Yuan, Jiann-Shiun

    2011-01-01

    This paper will introduce a new implementation for wireless electric power transfer systems: space applications. Due to the risks that constitute the use of electrical connector for some space missions/applications, a simple wireless power system design approach will be evaluated as an alternative for the use of electrical connectors. This approach takes into consideration the overall system performance by designing the magnetic resonance elements and by verifying the overall system electrical behavior. System characterization is accomplished by executing circuit and analytical simulations using Matlab(TradeMark) and LTSpiceIV(TradeMark) software packages. The design methodology was validated by two different experiments: frequency consideration (design of three magnetic elements) and a small scale proof-ofconcept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The proof-of-concept prototype provided approx.4 W of wireless power to the load (light bulb) at a separation of 3 cm from the source. In addition. a resonant circuit was designed and installed to the battery terminals of a handheld radio without batteries, making it tum on at a separation of approx.5 cm or less from the source. It was also demonstrated by prototype experimentation that multiple loads can be powered wirelessly at the same time with a single electric power source.

  1. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  2. MSFC Skylab Orbital Workshop, volume 2. [design and development of electrical systems and attitude control system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of the Skylab Orbital Workshop are discussed. The subjects considered are: (1) thrust attitude control system, (2) solar array system, (3) electrical power distribution system, (4) communication and data acquisition system, (5) illumination system, and (6) caution and warning system.

  3. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  4. Development of Analytical Algorithm for the Performance Analysis of Power Train System of an Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Ho; Lee, Kee-Man; Lee, Sang-Heon

    Power train system design is one of the key R&D areas on the development process of new automobile because an optimum size of engine with adaptable power transmission which can accomplish the design requirement of new vehicle can be obtained through the system design. Especially, for the electric vehicle design, very reliable design algorithm of a power train system is required for the energy efficiency. In this study, an analytical simulation algorithm is developed to estimate driving performance of a designed power train system of an electric. The principal theory of the simulation algorithm is conservation of energy with several analytical and experimental data such as rolling resistance, aerodynamic drag, mechanical efficiency of power transmission etc. From the analytical calculation results, running resistance of a designed vehicle is obtained with the change of operating condition of the vehicle such as inclined angle of road and vehicle speed. Tractive performance of the model vehicle with a given power train system is also calculated at each gear ratio of transmission. Through analysis of these two calculation results: running resistance and tractive performance, the driving performance of a designed electric vehicle is estimated and it will be used to evaluate the adaptability of the designed power train system on the vehicle.

  5. 7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...

  6. 7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...

  7. 7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...

  8. 7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...

  9. 7 CFR 1724.50 - Compliance with National Electrical Safety Code (NESC).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Compliance with National Electrical Safety Code (NESC... UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Design § 1724.50 Compliance with National Electrical Safety Code...

  10. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  11. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  12. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  13. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  14. 10 CFR 434.401 - Electrical power and lighting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1 Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...

  15. MW-Class Electric Propulsion System Designs

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary results of the COMPASS MW-class electric propulsion power system study are reported, and discussion is provided on how the analysis might be used to guide future technology investments as NASA moves to more capable high power in-space propulsion systems.

  16. Automotive Electrical and Electronic System II; Automotive Mechanics-Intermediate: 9045.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive electrical and electronic system course is an intermediate course designed for the student who has completed automotive Electrical and Electronic System I. The theory and principles of operation of the components of the starting and charging systems and other electrical accessory systems in the automobile will be learned by the…

  17. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Detectors for electric fire detection system. 108.407... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire detection system. (a) Each detector in an electric fire detection system must be located where— (1) No...

  18. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.

    2017-01-01

    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  19. Closed cycle electric discharge laser design investigation

    NASA Technical Reports Server (NTRS)

    Baily, P. K.; Smith, R. C.

    1978-01-01

    Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.

  20. Selection of active elements in system reduction of vibration

    NASA Astrophysics Data System (ADS)

    Bialas, K.

    2016-11-01

    This work presents non-classical method of design of mechatronic systems. The purpose of this paper is also introduces synthesis of mechatronic system understand as design of mechatronic systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. The system was consisted from mechanical and electrical elements. Electrical elements were used as subsystem reducing unwanted vibration of mechanical system. Electrical elements can be realized in the form of coils with movable core. The system was modelled in Matlab Simulink.

  1. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved under...

  2. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved under...

  3. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved under...

  4. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved under...

  5. 30 CFR 36.32 - Electrical components and systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved under...

  6. Method for Predicting and Optimizing System Parameters for Electrospinning System

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor)

    2011-01-01

    An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.

  7. Design of an Electric Propulsion System for SCEPTOR

    NASA Technical Reports Server (NTRS)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  8. Photochemically Etched Construction Technology Developed for Digital Xenon Feed Systems

    NASA Technical Reports Server (NTRS)

    Otsap, Ben; Cardin, Joseph; Verhey, Timothy R.; Rawlin, Vincent K.; Mueller, Juergen; Aadlund, Randall; Kay, Robert; Andrews, Michael

    2005-01-01

    Electric propulsion systems are quickly emerging as attractive options for primary propulsion in low Earth orbit, in geosynchronous orbit, and on interplanetary spacecraft. The driving force behind the acceptance of these systems is the substantial reduction in the propellant mass that can be realized. Unfortunately, system designers are often forced to utilize components designed for chemical propellants in their electric systems. Although functionally acceptable, these relatively large, heavy components are designed for the higher pressures and mass flow rates required by chemical systems. To fully realize the benefits of electric propulsion, researchers must develop components that are optimized for the low flow rates, critical leakage needs, low pressures, and limited budgets of these emerging systems.

  9. Analytical study of electrical disconnect system for use on manned and unmanned missions

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Lenda, J. A.; Trummer, R. O.

    1976-01-01

    The objective of this contract is to establish an optimum electrical disconnect system design(s) for use on manned and unmanned missions. The purpose of the disconnect system is to electrically mate and demate the spacecraft to subsystem module interfaces to accomplish orbital operations. The results of Task 1 and Task 2 of the effort are presented. Task 1 involves the definition of the functional, operational, and environmental requirements for the connector system to support the leading prototype candidate concepts. Task 2 involves the documentation review and survey of available existing connector designs.

  10. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance with...

  11. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance with...

  12. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance with...

  13. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance with...

  14. 33 CFR 127.1107 - Electrical systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Electrical systems. 127.1107... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1107 Electrical systems. Electrical equipment and wiring must be of the kind specified by, and must be installed in accordance with...

  15. Lunar Module Electrical Power System Design Considerations and Failure Modes

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the design and redesign considerations of the Apollo lunar module electrical power system. Included in the work are graphics showing the lunar module power system. It describes the in-flight failures, and the lessons learned from these failures.

  16. 7 CFR 1724.40 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES Electric System Planning... long-term needs for plant additions, improvements, replacements, and retirements for their electric systems. The primary components of the planning system consist of long-range engineering plans and...

  17. 14 CFR 25.1360 - Precautions against injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Electrical Systems and Equipment § 25.1360 Precautions against injury. (a) Shock. The electrical system must be designed to minimize risk of electric...

  18. Technology-based design and scaling for RTGs for space exploration in the 100 W range

    NASA Astrophysics Data System (ADS)

    Summerer, Leopold; Pierre Roux, Jean; Pustovalov, Alexey; Gusev, Viacheslav; Rybkin, Nikolai

    2011-04-01

    This paper presents the results of a study on design considerations for a 100 W radioisotope thermo-electric generator (RTG). Special emphasis has been put on designing a modular, multi-purpose system with high overall TRL levels and making full use of the extensive Russian heritage in the design of radioisotope power systems. The modular approach allowed insight into the scaling of such RTGs covering the electric power range from 50 to 200 W e (EoL). The retained concept is based on a modular thermal block structure, a radiative inner-RTG heat transfer and using a two-stage thermo-electric conversion system.

  19. Electric Propulsion System Selection Process for Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Landau, Damon; Chase, James; Kowalkowski, Theresa; Oh, David; Randolph, Thomas; Sims, Jon; Timmerman, Paul

    2008-01-01

    The disparate design problems of selecting an electric propulsion system, launch vehicle, and flight time all have a significant impact on the cost and robustness of a mission. The effects of these system choices combine into a single optimization of the total mission cost, where the design constraint is a required spacecraft neutral (non-electric propulsion) mass. Cost-optimal systems are designed for a range of mass margins to examine how the optimal design varies with mass growth. The resulting cost-optimal designs are compared with results generated via mass optimization methods. Additional optimizations with continuous system parameters address the impact on mission cost due to discrete sets of launch vehicle, power, and specific impulse. The examined mission set comprises a near-Earth asteroid sample return, multiple main belt asteroid rendezvous, comet rendezvous, comet sample return, and a mission to Saturn.

  20. INSTRUMENTATION AND CONTROLS DIVISION ELECTRICAL DESIGN STANDARDS AND GRAPHICAL SYMBOLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-11-01

    Copies are presented of the American Standards Association graphical symbols for electrical and electronic equipment and systems. Recommendations are given for electrical elementary design layout, device codings, etc., for permanent type installations. Electrical diagrams copied from American Drafting Standards Manual are presented. (M.C.G.)

  1. Design Reference Missions (DRM): Integrated ODM 'Air-Taxi' Mission Features

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt; Starr, Ginn; Saltzman, John A.

    2017-01-01

    Design Reference Missions (DRM): Integrated ODM Air-Taxi Mission Features, Hybrid Electric Integrated System Testbed (HEIST) flight control. Structural Health, Energy Storage, Electric Components, Loss of Control, Degraded Systems, System Health, Real-Time IO Operator Geo-Fencing, Regional Noise Abatement and Trusted Autonomy Inter-operability.

  2. 10 CFR 205.374 - Responses from “entities” designated in the application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Emergency... appropriate Regional Electric Reliability Council. Pursuant to section 202(c) of the Federal Power Act, DOE... Electric Power § 205.374 Responses from “entities” designated in the application. Each “entity” designated...

  3. Experimental investigation into the fault response of superconducting hybrid electric propulsion electrical power system to a DC rail to rail fault

    NASA Astrophysics Data System (ADS)

    Nolan, S.; Jones, C. E.; Munro, R.; Norman, P.; Galloway, S.; Venturumilli, S.; Sheng, J.; Yuan, W.

    2017-12-01

    Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, enabling future rising demands for air travel to be met. The development of appropriate electrical power systems to provide thrust for the aircraft is a significant challenge due to the much higher required power generation capacity levels and complexity of the aero-electrical power systems (AEPS). The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid propulsion are not mitigated by the electrical power train. Hence it is proposed that for larger aircraft (~200 passengers) superconducting power systems are used to meet target power densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical protection and fault management system. It is known from previous studies that the choice of protection system may have a significant impact on the overall efficiency of the AEPS. Hence an informed design process which considers the key trades between choice of cable and protection requirements is needed. To date the fault response of a voltage source converter interfaced DC link rail to rail fault in a superconducting power system has only been investigated using simulation models validated by theoretical values from the literature. This paper will present the experimentally obtained fault response for a variety of different types of superconducting tape for a rail to rail DC fault. The paper will then use these as a platform to identify key trades between protection requirements and cable design, providing guidelines to enable future informed decisions to optimise hybrid propulsion electrical power system and protection design.

  4. Design and fabrication of a photovoltaic power system for the Papago Indian village of Schuchuli (Gunsight), Arizona

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.; Ratajczak, A. F.; Ice, W. J.

    1978-01-01

    A stand alone photovoltaic power system for installation in the Papago Indian village of Schuchuli is being designed and fabricated to provide electricity for village water pumping and basic domestic needs. The system will consist of a 3.5 kW (peak) photovoltaic array; controls, instrumentations, and storage batteries located in an electrical equipment building and a 120 volt dc village distribution network. The system will power a 2 HP dc electric motor.

  5. Distributed electrical time domain reflectometry (ETDR) structural sensors: design models and proof-of-concept experiments

    NASA Astrophysics Data System (ADS)

    Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen

    1993-07-01

    A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.

  6. Space station electric power system requirements and design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1987-01-01

    An overview of the conceptual definition and design of the space station Electric Power System (EPS) is given. Responsibilities for the design and development of the EPS are defined. The EPS requirements are listed and discussed, including average and peak power requirements, contingency requirements, and fault tolerance. The most significant Phase B trade study results are summarized, and the design selections and rationale are given. Finally, the power management and distribution system architecture is presented.

  7. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mechanical and electrical systems to be installed was approved by registered professional engineers. After... Installation of Offshore Production Platform Piping Systems; (3) Electrical system information including a plan... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...

  8. Multi-Channel, Constant-Current Power Source for Aircraft Applications

    DTIC Science & Technology

    2017-03-01

    Special considerations impacting this design were minimizing volume, maintaining system power quality, and providing electrical fault protection...applications. Electrical loads, such as lighting, de-icing heaters, and actuators may be operated from this compact power conversion unit. Because of the...nature of aircraft systems, two of the most important design considerations are the maintenance of electrical power quality and minimization of weight

  9. Design and development of a new-type terminal for smart electricity use in the energy USB system

    NASA Astrophysics Data System (ADS)

    Wang, Mian; Cheng, Lefeng; Liu, Bin; Jiang, Haorong; Tan, Zhukui; Yu, Tao

    2017-11-01

    With the in-depth development of energy Internet, the requirements for smart electricity use (SEU) in a comprehensive energy system is higher. Aiming at the current smart electricity controllers that can only realize the monitoring of voltage, current, power and electricity consumption, while neglecting the impact of environmental quality on electricity use behaviours, this paper designs and develops a new type of terminal for SEU in the energy universal service bus system (USB), based on the techniques of digital signal processing, wireless communication and intelligent sensing. A detailed modular hardware design is given for the terminal, as well as the software design, apart from the basic functions, the terminal can complete harmonic analysis, wireless communication, on-off controlling, data display, etc. in addition, take the user perception into account through collecting the ambient temperature and humidity, as well as detecting indoor environment comfort, so that promoting home electricity use optimization. The terminal developed can play an important role in the energy USB system under the background of energy Internet, and the paper ends by giving the testing results which verify the effectiveness, intelligence and practicability of the terminal.

  10. Mission Options for an Electric Propulsion Demonstration Flight Test

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1989-01-01

    Several mission options are discussed for an electric propulsion space test which provides operational and performance data for ion and arcjet propulsion systems and testing of APSA arrays and a super power system. The results of these top-level studies are considered preliminary. Ion propulsion system design and architecture for the purposes of performing orbit raising missions for payloads in the range of 2400 to 2700 kg are described. Focus was placed on a design which can be characterized by simplicity, reliability, and performance. Systems of this design are suitable for an electric propulsion precursor flight which would provide proof of principle data necessary for more ambitious and complex missions.

  11. 46 CFR 111.05-3 - Design, construction, and installation; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Design, construction, and installation; general. 111.05-3 Section 111.05-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-3 Design, construction, and...

  12. 46 CFR 111.05-3 - Design, construction, and installation; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Design, construction, and installation; general. 111.05-3 Section 111.05-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-3 Design, construction, and...

  13. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuelmore » economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.« less

  14. 29 CFR 1910.308 - Special systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.308... conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic... are installed in an identified common mounting with electrical connections that will divide the...

  15. 29 CFR 1910.308 - Special systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.308... conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic... are installed in an identified common mounting with electrical connections that will divide the...

  16. 29 CFR 1910.308 - Special systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.308... conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic... are installed in an identified common mounting with electrical connections that will divide the...

  17. 29 CFR 1910.308 - Special systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.308... conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic... are installed in an identified common mounting with electrical connections that will divide the...

  18. 29 CFR 1910.308 - Special systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.308... conductors shall be installed in rigid metal conduit, in intermediate metal conduit, in electrical metallic... are installed in an identified common mounting with electrical connections that will divide the...

  19. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  20. Power processing methodology. [computerized design of spacecraft electric power systems

    NASA Technical Reports Server (NTRS)

    Fegley, K. A.; Hansen, I. G.; Hayden, J. H.

    1974-01-01

    Discussion of the interim results of a program to investigate the feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems. The object of the total program is to develop a flexible engineering tool which will allow the power processor designer to effectively and rapidly assess and analyze the tradeoffs available by providing, in one comprehensive program, a mathematical model, an analysis of expected performance, simulation, and a comparative evaluation with alternative designs. This requires an understanding of electrical power source characteristics and the effects of load control, protection, and total system interaction.

  1. Design, economic and system considerations of large wind-driven generators

    NASA Technical Reports Server (NTRS)

    Jorgensen, G. E.; Lotker, M.; Meier, R. C.; Brierley, D.

    1976-01-01

    The increased search for alternative energy sources has lead to renewed interest and studies of large wind-driven generators. This paper presents the results and considerations of such an investigation. The paper emphasizes the concept selection of wind-driven generators, system optimization, control system design, safety aspects, economic viability on electric utility systems and potential electric system interfacing problems.

  2. Power management and distribution system for a More-Electric Aircraft (MADMEL) -- Program status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maldonado, M.A.; Shah, N.M.; Cleek, K.J.

    1995-12-31

    A number of technology breakthroughs in recent years have rekindled the concept of a more-electric aircraft. High-power solid-state switching devices, electrohydrostatic actuators (EHAs), electromechanical actuators (EMAs), and high-power generators are just a few examples of component developments that have made dramatic improvements in properties such as weight, size, power, and cost. However, these components cannot be applied piecemeal. A complete, and somewhat revolutionary, system design approach is needed to exploit the benefits that a more-electric aircraft can provide. A five-phase Power Management and Distribution System for a More-Electric Aircraft (MADMEL) program was awarded by the Air Force to the Northrop/Grumman,more » Military Aircraft Division team in September 1991. The objective of the program is to design, develop, and demonstrate an advanced electrical power generation and distribution system for a more-electric aircraft (MEA). The MEA emphasizes the use of electrical power in place of hydraulics, pneumatic, and mechanical power to optimize the performance and life cycle cost of the aircraft. This paper presents an overview of the MADMEL program and a top-level summary of the program results, development and testing of major components to date. In Phase 1 and Phase 2 studies, the electrical load requirements were established and the electrical power system architecture was defined for both near-term (NT-year 1996) and far-term (FT-year 2003) MEA application. The detailed design and specification for the electrical power system (EPS), its interface with the Vehicle Management System, and the test set-up were developed under the recently completed Phase 3. The subsystem level hardware fabrication and testing will be performed under the on-going Phase 4 activities. The overall system level integration and testing will be performed in Phase 5.« less

  3. Restrictive loads powered by separate or by common electrical sources

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.

    1989-01-01

    In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.

  4. X-57 Power and Command System Design

    NASA Technical Reports Server (NTRS)

    Clarke, Sean; Redifer, Matthew; Papathakis, Kurt; Samuel, Aamod; Foster, Trevor

    2017-01-01

    This paper describes the power and command system architecture of the X-57 Maxwell flight demonstrator aircraft. The X-57 is an experimental aircraft designed to demonstrate radically improved aircraft efficiency with a 3.5 times aero-propulsive efficiency gain at a "high-speed cruise" flight condition for comparable general aviation aircraft. These gains are enabled by integrating the design of a new, optimized wing and a new electric propulsion system. As a result, the X-57 vehicle takes advantage of the new capabilities afforded by electric motors as primary propulsors. Integrating new technologies into critical systems in experimental aircraft poses unique challenges that require careful design considerations across the entire vehicle system, such as qualification of new propulsors (motors, in the case of the X-57 aircraft), compatibility of existing systems with a new electric power distribution bus, and instrumentation and monitoring of newly qualified propulsion system devices.

  5. Solar Electric Power System Analyses for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Kohout, Lisa L.

    1999-01-01

    The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.

  6. Electrical. Teacher's Guide. Building Maintenance Units of Instruction.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    This teaching guide on electrical building maintenance, one in a series of six publications designed for building maintenance instructors in Texas, is designed to give students an understanding of electricity in order to know how to make basic repairs to the electrical systems in a building. Introductory material provides teachers with information…

  7. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XX, TROUBLESHOOTING ELECTRICAL SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO ACQUAINT THE TRAINEE WITH TROUBLESHOOTING PROCEDURES FOR DIESEL ENGINE ELECTRICAL SYSTEMS. TOPICS ARE (1) TROUBLESHOOTING ELECTRICAL SYSTEMS (INTRODUCTION), (2) TOOLS AND INSTRUMENTS FOR TROUBLESHOOTING, (3) THE BATTERY, (4) PERIODIC BATTERY SERVICING, (5) THE DC CHARGING SYSTEM, (6) PERIODIC…

  8. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  9. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  10. Design of Stand-Alone Hybrid Power Generation System at Brumbun Beach Tulungagung East Java

    NASA Astrophysics Data System (ADS)

    Rahmat, A. N.; Hidayat, M. N.; Ronilaya, F.; Setiawan, A.

    2018-04-01

    Indonesian government insists to optimize the use of renewable energy resources in electricity generation. One of the efforts is launching Independent Energy Village plan. This program aims to fulfill the need of electricity for isolated or remote villages in Indonesia. In order to support the penetration of renewable energy resources in electricity generation, a hybrid power generation system is developed. The simulation in this research is based on the availability of renewable energy resources in Brumbun beach, Tulungagung, East Java. Initially, the electricity was supplied through stand-alone electricity generations which are installed at each house. Hence, the use of electricity between 5 p.m. – 9 p.m. requires high operational costs. Based on the problem above, this research is conducted to design a stand-alone hybrid electricity generation system, which may consist of diesel, wind, and photovoltaic. The design is done by using HOMER software to optimize the use of electricity from renewable resources and to reduce the operation of diesel generation. The combination of renewable energy resources in electricity generation resulted in NPC of 44.680, COE of 0,268, and CO2 emissions of 0,038 % much lower than the use of diesel generator only.

  11. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  12. Modeling and Synthesis Methods for Retrofit Design of Submarine Actuation Systems. Energy Storage for Electric Actuators

    DTIC Science & Technology

    2011-12-15

    for Retrofit Design of Submarine Actuation Systems 5b. GRANT NUMBER Energy Storage for Electric Actuators NOOO 14-08-1-0424 5c. PROGRAM ELEMENT...are used to derive power and energy storage requirements for control surface actuation during extreme submarine maneuvers, such as emergency...and for initially sizing system components. 15. SUBJECT TERMS Submarines, electromagnetic actuators, energy storage, simulation-based design

  13. HORIZONTAL HYBRID SOLAR LIGHT PIPE: AN INTEGRATED SYSTEM OF DAYLIGHT AND ELECTRIC LIGHT

    EPA Science Inventory

    This project will test the feasibility of an advanced energy efficient perimeter lighting system that integrates daylighting, electric lighting, and lighting controls to reduce electricity consumption. The system is designed to provide adequate illuminance levels in deep-floor...

  14. 7 CFR 1724.1 - Introduction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES General § 1724.1... standard form of loan documents between the Rural Utilities Service (RUS) and its electric borrowers. (b... to design, construction standards, and the use of RUS accepted material on their electric systems. (c...

  15. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric propulsion system. The CMAC neural network approximates the hyper-plane generated from the instantaneous optimization algorithm and produces torque commands for the internal combustion engine and electric motor. The CMAC neural network controller saves on the required memory as compared to a large look-up table by two orders of magnitude. The CMAC controller also prevents the need to compute a hyper-plane or complex logic every time step.

  16. Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite

    NASA Astrophysics Data System (ADS)

    Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian; Yuan, Bin

    2017-09-01

    State-of-the-art all-electric geostationary earth orbit (GEO) satellites use electric thrusters to execute all propulsive duties, which significantly differ from the traditional all-chemical ones in orbit-raising, station-keeping, radiation damage protection, and power budget, etc. Design optimization task of an all-electric GEO satellite is therefore a complex multidisciplinary design optimization (MDO) problem involving unique design considerations. However, solving the all-electric GEO satellite MDO problem faces big challenges in disciplinary modeling techniques and efficient optimization strategy. To address these challenges, we presents a surrogate assisted MDO framework consisting of several modules, i.e., MDO problem definition, multidisciplinary modeling, multidisciplinary analysis (MDA), and surrogate assisted optimizer. Based on the proposed framework, the all-electric GEO satellite MDO problem is formulated to minimize the total mass of the satellite system under a number of practical constraints. Then considerable efforts are spent on multidisciplinary modeling involving geosynchronous transfer, GEO station-keeping, power, thermal control, attitude control, and structure disciplines. Since orbit dynamics models and finite element structural model are computationally expensive, an adaptive response surface surrogate based optimizer is incorporated in the proposed framework to solve the satellite MDO problem with moderate computational cost, where a response surface surrogate is gradually refined to represent the computationally expensive MDA process. After optimization, the total mass of the studied GEO satellite is decreased by 185.3 kg (i.e., 7.3% of the total mass). Finally, the optimal design is further discussed to demonstrate the effectiveness of our proposed framework to cope with the all-electric GEO satellite system design optimization problems. This proposed surrogate assisted MDO framework can also provide valuable references for other all-electric spacecraft system design.

  17. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  18. A Theoretical Secure Enterprise Architecture for Multi Revenue Generating Smart Grid Sub Electric Infrastructure

    ERIC Educational Resources Information Center

    Chaudhry, Hina

    2013-01-01

    This study is a part of the smart grid initiative providing electric vehicle charging infrastructure. It is a refueling structure, an energy generating photovoltaic system and charge point electric vehicle charging station. The system will utilize advanced design and technology allowing electricity to flow from the site's normal electric service…

  19. World Key Information Service System Designed For EPCOT Center

    NASA Astrophysics Data System (ADS)

    Kelsey, J. A.

    1984-03-01

    An advanced Bell Laboratories and Western Electric designed electronic information retrieval system utilizing the latest Information Age technologies, and a fiber optic transmission system is featured at the Walt Disney World Resort's newest theme park - The Experimental Prototype Community of Tomorrow (EPCOT Center). The project is an interactive audio, video and text information system that is deployed at key locations within the park. The touch sensitive terminals utilizing the ARIEL (Automatic Retrieval of Information Electronically) System is interconnected by a Western Electric designed and manufactured lightwave transmission system.

  20. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Production Platform Piping Systems (as incorporated by reference in § 250.198). (4) Electrical system... classified according to API RP 500, Recommended Practice for Classification of Locations for Electrical..., Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities...

  1. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Production Platform Piping Systems (as incorporated by reference in § 250.198). (4) Electrical system... classified according to API RP 500, Recommended Practice for Classification of Locations for Electrical..., Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities...

  2. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Production Platform Piping Systems (as incorporated by reference in § 250.198). (4) Electrical system... classified according to API RP 500, Recommended Practice for Classification of Locations for Electrical..., Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities...

  3. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Systems; (3) Electrical system information including a plan of each platform deck, outlining all hazardous... Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2, or API RP 505, Recommended Practice for Classification of Locations for Electrical Installations at Petroleum...

  4. Empirical testing of an analytical model predicting electrical isolation of photovoltaic models

    NASA Astrophysics Data System (ADS)

    Garcia, A., III; Minning, C. P.; Cuddihy, E. F.

    A major design requirement for photovoltaic modules is that the encapsulation system be capable of withstanding large DC potentials without electrical breakdown. Presented is a simple analytical model which can be used to estimate material thickness to meet this requirement for a candidate encapsulation system or to predict the breakdown voltage of an existing module design. A series of electrical tests to verify the model are described in detail. The results of these verification tests confirmed the utility of the analytical model for preliminary design of photovoltaic modules.

  5. MOD-OA 200 kW wind turbine generator engineeringing

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.

    1980-01-01

    Engineering drawings and the detailed mechanical and electrical design of a horizontal-axis wind turbine designed for DOE at the NASA Lewis Research Center and installed in Clayton, New Mexico are discussed. The drawings show the hub, pitch change mechanism, drive train, nacelle equipment, yaw drive system, tower, foundation, electrical power systems, and the control and safety systems.

  6. Electric motor/controller design tradeoffs for noise, weight, and efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, N.L.; Brown, G.W.

    1994-12-31

    It is common for an AUV [Autonomous Underwater Vehicle] designer to be put in the position of a subsystem hardware integrator. In the case of electric motors and controllers this may be more by necessity than choice because a suitable subsystems supplier cannot be found. As a result, motors and controllers are purchased from various manufacturers who may optimize the design of each part but hold system performance secondary in importance. Unlike hydraulics, an electric motor/controller system presents significant opportunities to improve noise, weight, and efficiency. But, these opportunities can best be recognized by a single source who not onlymore » understands the technology but has the ability to implement them in the development and manufacture of the product. An analysis is presented which explains the various design considerations of noise, weight and efficiency of electric motors and controllers for submersible AUV`s. In concert with the design considerations, their interrelationships are discussed as to how they affect each other in the overall optimization of the system. In conclusion, a matrix is created which shows how the resultant system parameters of noise, weight, and efficiency may be ``traded off`` to tailor the best overall system for the application. 1 ref.« less

  7. Solar total energy project at Shenandoah, Georgia system design

    NASA Technical Reports Server (NTRS)

    Poche, A. J.

    1980-01-01

    The solar total energy system (STES) was to provide 50% of the total electrical and thermal energy requirements of the 25,000 sq ft Bleyle of America knitwear plant located at the Shenandoah Site. The system will provide 400 kilowatts electrical and 3 megawatts of thermal energy. The STES has a classical, cascaded total energy system configuration. It utilizes one hundred twenty (120), parabolic dish collectors, high temperature (750 F) trickle oil thermal energy storage and a steam turbine generator. The electrical load shaving system was designed for interconnected operation with the Georgia Power system and for operation in a stand alone mode.

  8. Electrodynamic tethers for energy conversion

    NASA Technical Reports Server (NTRS)

    Nobles, W.

    1986-01-01

    Conductive tethers have been proposed as a new method for converting orbital mechanical energy into electrical power for use on-board a satellite (generator mode) or conversely (motor mode) as a method of providing electric propulsion using electrical energy from the satellite. The operating characteristics of such systems are functionally dependent on orbit altitude and inclination. Effects of these relationships are examined to determine acceptable regions of application. To identify system design considerations, a specific set of system performance goals and requirements are selected. The case selected is for a 25 kW auxiliary power system for use on Space Station. Appropriate system design considerations are developed, and the resulting system is described.

  9. Comparison of photovoltaic energy systems for the solar village

    NASA Astrophysics Data System (ADS)

    Piercefrench, Eric C.

    1988-08-01

    Three different solar photovoltaic (PV) energy systems are compared to determine if the electrical needs of a solar village could be supplied more economically by electricity generated by the sun than by existing utility companies. The solar village, a one square mile community of 900 homes and 50 businesses, would be located in a semi-remote area of the Arizona desert. A load survey is conducted and information on the solar PV industry is reviewed for equipment specifications, availability, and cost. Three specific PV designs, designated as Stand-Alone, Stand-Alone with interconnection, and Central Solar Plant, were created and then economically compared through present worth analysis against utility supplied electrical costs. A variety of technical issues, such as array protection, system configuration and operation, and practicability, are discussed for each design. The present worth analysis conclusively shows none of the solar PV designs could supply electricity to the solar village for less cost than utility supplied electricity, all other factors being equal. No construction on a solar village should begin until the cost of solar generated electricity is more competitive with electricity generated by coal, oil, and nuclear energy. However, research on ways to reduce solar PV equipment costs and on ways to complement solar PV energy, such as the use of solar thermal ponds for heating and cooling, should continue.

  10. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...

  11. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...

  12. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...

  13. 46 CFR 108.407 - Detectors for electric fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...

  14. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...

  15. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and electrical systems to be installed were approved by registered professional engineers. After these... reference as specified in § 250.198). (4) Electrical system information including the following: (i) A plan... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...

  16. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...

  17. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...

  18. Electrical Power Systems for NASA's Space Transportation Program

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  19. Fail-safe designs for large capacity battery systems

    DOEpatents

    Kim, Gi-Heon; Smith, Kandler; Ireland, John; Pesaran, Ahmad A.; Neubauer, Jeremy

    2016-05-17

    Fail-safe systems and design methodologies for large capacity battery systems are disclosed. The disclosed systems and methodologies serve to locate a faulty cell in a large capacity battery, such as a cell having an internal short circuit, determine whether the fault is evolving, and electrically isolate the faulty cell from the rest of the battery, preventing further electrical energy from feeding into the fault.

  20. Thermal storage system flops at Illinois State office building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponczak, G.

    1986-02-03

    A thermal storage and electric resistive heating system in the new State of Illinois building in Chicago has used about 65% more electricity in its first year of operation than building designers originally predicted, according to state government sources. The state proposes to spend about $2 million to fine tune the system this year. Total first year electricity usage for the all-electric, 1.15 million square foot building was expected to be 18.7 million kilowatt hours (kWh). But according to recent energy bills, actual usage for the first year of operation, ending in December, was 31 million kWh, a usage overrunmore » that has cost the state of Illinois an extra $500,000. Some industry sources blame the thermal storage system and the electric heat system, which were untried when proposed in 1980, for much of the overrun, while others blame the building design.« less

  1. [Design of an embedded stroke rehabilitation apparatus system based on Linux computer engineering].

    PubMed

    Zhuang, Pengfei; Tian, XueLong; Zhu, Lin

    2014-04-01

    A realizaton project of electrical stimulator aimed at motor dysfunction of stroke is proposed in this paper. Based on neurophysiological biofeedback, this system, using an ARM9 S3C2440 as the core processor, integrates collection and display of surface electromyography (sEMG) signal, as well as neuromuscular electrical stimulation (NMES) into one system. By embedding Linux system, the project is able to use Qt/Embedded as a graphical interface design tool to accomplish the design of stroke rehabilitation apparatus. Experiments showed that this system worked well.

  2. DYNAMIC ELECTRICITY GENERATION FOR ADDRESSING DAILY AIR QUALITY EXCEEDANCES IN THE US

    EPA Science Inventory

    We will design, demonstrate, and evaluate a dynamic management system for managing daily air quality, exploring different elements of the design of this system such as how air quality forecasts can best be used, and decision rules for the electrical dispatch model. We will ...

  3. Design of efficient and simple interface testing equipment for opto-electric tracking system

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Deng, Chao; Tian, Jing; Mao, Yao

    2016-10-01

    Interface testing for opto-electric tracking system is one important work to assure system running performance, aiming to verify the design result of every electronic interface matching the communication protocols or not, by different levels. Opto-electric tracking system nowadays is more complicated, composed of many functional units. Usually, interface testing is executed between units manufactured completely, highly depending on unit design and manufacture progress as well as relative people. As a result, it always takes days or weeks, inefficiently. To solve the problem, this paper promotes an efficient and simple interface testing equipment for opto-electric tracking system, consisting of optional interface circuit card, processor and test program. The hardware cards provide matched hardware interface(s), easily offered from hardware engineer. Automatic code generation technique is imported, providing adaption to new communication protocols. Automatic acquiring items, automatic constructing code architecture and automatic encoding are used to form a new program quickly with adaption. After simple steps, a standard customized new interface testing equipment with matching test program and interface(s) is ready for a waiting-test system in minutes. The efficient and simple interface testing equipment for opto-electric tracking system has worked for many opto-electric tracking system to test entire or part interfaces, reducing test time from days to hours, greatly improving test efficiency, with high software quality and stability, without manual coding. Used as a common tool, the efficient and simple interface testing equipment for opto-electric tracking system promoted by this paper has changed traditional interface testing method and created much higher efficiency.

  4. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to themore » EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.« less

  5. 20--500 watt AMTEC auxiliary electric power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1996-12-31

    Numerous design studies have been completed on Alkali Metal Thermal to Electric Converter (AMTEC) power systems for space applications demonstrating their substantial increase in performance. Recently design studies have been initiated to couple AMTEC power conversion with fossil fueled combustion systems. This paper describes the results of a Phase 1 SBIR effort to design an innovative, efficient, reliable, long life AMTEC Auxiliary Electric Power System (AEPS) for remote site applications (20--500 watts). The concept uses high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated with a combustor and recuperator. These multi-tube AMTEC cells are low cost,more » reliable, long life static converters. AMTEC technology is ideal for auxiliary electric power supplies that must operate reliably over a broad range of temperatures, fuel sources, power levels, and operational specifications. The simplicity, efficiency (20% systems) and modularity of this technology allow it to fill applications as varied as light-weight backpacks, remote site power supplies, and military base power. Phase 1 demonstrated the feasibility of a 20% system design, and showed that the development needs to focus on identifying long life AMTEC cell components, determining the AMTEC cell and system reliability, and demonstrating that a 20 watt AMTEC system is 3--5 times more efficient than existing systems for the same application.« less

  6. Aircraft Electrical Systems Specialist (AFSC 42350), Volumes 1-3, and Change Supplement, Volume 3.

    ERIC Educational Resources Information Center

    Savage, Leslie R.

    This three-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for aircraft electrical systems specialists. Covered in the individual volumes are career field fundamentals, electrical systems and test equipment, and aircraft control and warning systems. Each volume in the set contains a series…

  7. High bandwidth magnetically isolated signal transmission circuit

    NASA Technical Reports Server (NTRS)

    Repp, John Donald (Inventor)

    2005-01-01

    Many current electronic systems incorporate expensive or sensitive electrical components. Because electrical energy is often generated or transmitted at high voltages, the power supplies to these electronic systems must be carefully designed. Power supply design must ensure that the electrical system being supplied with power is not exposed to excessive voltages or currents. In order to isolate power supplies from electrical equipment, many methods have been employed. These methods typically involve control systems or signal transfer methods. However, these methods are not always suitable because of their drawbacks. The present invention relates to transmitting information across an interface. More specifically, the present invention provides an apparatus for transmitting both AC and DC information across a high bandwidth magnetic interface with low distortion.

  8. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  9. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 8: Open-cycle MHD. [energy conversion efficiency and design analysis of electric power plants employing magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q.

    1976-01-01

    Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.

  10. Personal Rotorcraft Design and Performance with Electric Hybridization

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2017-01-01

    Recent and projected improvements for more or all-electric aviation propulsion systems can enable greater personal mobility, while also reducing environmental impact (noise and emissions). However, all-electric energy storage capability is significantly less than present, hydrocarbon-fueled systems. A system study was performed exploring design and performance assuming hybrid propulsion ranging from traditional hydrocarbon-fueled cycles (gasoline Otto and diesel) to all-electric systems using electric motors generators, with batteries for energy storage and load leveling. Study vehicles were a conventional, single-main rotor (SMR) helicopter and an advanced vertical takeoff and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew); the design range for the VTOL aircraft was set to 150 miles (about one hour total flight). Search and rescue (SAR), loiter, and cruise-dominated missions were chosen to illustrate each vehicle and degree of hybrid propulsion strengths and weaknesses. The traditional, SMR helicopter is a hover-optimized design; electric hybridization was performed assuming a parallel hybrid approach by varying degree of hybridization. Many of the helicopter hybrid propulsion combinations have some mission capabilities that might be effective for short range or on-demand mobility missions. However, even for 30 year technology electrical components, all hybrid propulsion systems studied result in less available fuel, lower maximum range, and reduced hover and loiter duration than the baseline vehicle. Results for the VTOL aircraft were more encouraging. Series hybrid combinations reflective of near-term systems could improve range and loiter duration by 30. Advanced, higher performing series hybrid combinations could double or almost triple the VTOL aircrafts range and loiter duration. Additional details on the study assumptions and work performed are given, as well as suggestions for future study effort.

  11. Effect of Voltage Level on Power System Design for Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2003-01-01

    This paper presents study results quantifying the benefits of higher voltage, electric power system designs for a typical solar electric propulsion spacecraft Earth orbiting mission. A conceptual power system architecture was defined and design points were generated for system voltages of 28-V, 50-V, 120-V, and 300-V using state-of-the-art or advanced technologies. A 300-V 'direct-drive' architecture was also analyzed to assess the benefits of directly powering the electric thruster from the photovoltaic array without up-conversion. Fortran and spreadsheet computational models were exercised to predict the performance and size power system components to meet spacecraft mission requirements. Pertinent space environments, such as electron and proton radiation, were calculated along the spiral trajectory. In addition, a simplified electron current collection model was developed to estimate photovoltaic array losses for the orbital plasma environment and that created by the thruster plume. The secondary benefits of power system mass savings for spacecraft propulsion and attitude control systems were also quantified. Results indicate that considerable spacecraft wet mass savings were achieved by the 300-V and 300-V direct-drive architectures.

  12. Survey of aircraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Brandner, J. J.

    1972-01-01

    Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability.

  13. Space station electrical power distribution analysis using a load flow approach

    NASA Technical Reports Server (NTRS)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  14. Aerospace Power Systems Design and Analysis (APSDA) Tool

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1998-01-01

    The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.

  15. Solar powered dispensary in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S.F.; Rittelmann, P.R.; Kingman, K.

    1995-11-01

    A solar powered dispensary has been designed in Kastel, Tibet. This area is characterized by cold winters and clear skies. Solar energy systems are designed to provide space heating, water heating and electric power. since sources of auxiliary fuel are scarce, the building has been designed to provide heating by the sun only. Innovative use of daylighting is made to reduce the lighting electricity requirements. The design presented provides a good compromise between performance and the cost of the system.

  16. Hybrid and electric advanced vehicle systems (heavy) simulation

    NASA Technical Reports Server (NTRS)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  17. Low-Heat-Leak Electrical Leads For Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Hooker, Matthew W.

    1994-01-01

    Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.

  18. Kinetic energy recovery systems in motor vehicles

    NASA Astrophysics Data System (ADS)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  19. Description of the Prometheus Program Alternator/Thruster Integration Laboratory (ATIL)

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Birchenough, Arthur G.; Lebron-Velilla, Ramon C.; Gonzalez, Marcelo C.

    2005-01-01

    The Project Prometheus Alternator Electric Thruster Integration Laboratory's (ATIL) primary two objectives are to obtain test data to influence the power conversion and electric propulsion systems design, and to assist in developing the primary power quality specifications prior to system Preliminary Design Review (PDR). ATIL is being developed in stages or configurations of increasing fidelity and complexity in order to support the various phases of the Prometheus program. ATIL provides a timely insight of the electrical interactions between a representative Permanent Magnet Generator, its associated control schemes, realistic electric system loads, and an operating electric propulsion thruster. The ATIL main elements are an electrically driven 100 kWe Alternator Test Unit (ATU), an alternator controller using parasitic loads, and a thruster Power Processing Unit (PPU) breadboard. This paper describes the ATIL components, its development approach, preliminary integration test results, and current status.

  20. Lead/acid battery development for heat engine/electric hybrid vehicles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giner, J.; Taylor, A.H.; Goebel, F.

    A program was undertaken to develop a lead/acid battery system for use in a hybrid heat engine/electric vehicle. The basic requirements are that the battery be capable of supplying high-rate power pulses and of accepting high-rate charge pulses, both of short duration. The feasibility of developing a bipolar lead/acid battery system which conforms to these specifications was investigated by using a modular approach to system design. In the preferred design, a vertical array of lead strips placed on either side of each substrate are connected with adjacent strips on the opposite side only over the top of the substrate tomore » provide electrical conduction through the substrate. The following topics are discussed concerning this system: study of electrochemical problem areas relevant to design of a high-power-density battery; corrosion of substrate materials; development and mechanical testing of structures; life testing; design and preliminary cost analysis.« less

  1. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  2. 46 CFR 111.05-20 - Grounded distribution systems on OSVs designed to carry flammable or combustible liquids with...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounded distribution systems on OSVs designed to carry flammable or combustible liquids with closed-cup flashpoints not exceeding 60 °C (140 °F). 111.05-20 Section 111.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS...

  3. THE DEVELOPMENT AND TESTING OF AN EXPERIMENTAL POLYSENSORY SELF-INSTRUCTIONAL SYSTEM DESIGNED TO HELP STUDENTS ACQUIRE BASIC ELECTRICAL OCCUPATIONAL COMPETENCIES. FINAL REPORT NO. 19.

    ERIC Educational Resources Information Center

    HILL, EDWIN K.

    AN EXPERIMENTAL POLYSENSORY SELF-INSTRUCTIONAL SYSTEM DESIGNED TO ASSIST STUDENTS IN ACQUIRING AND APPLYING KNOWLEDGE OF THE NATURE, CONVERSION, AND TRANSMISSION OF ELECTRICAL ENERGY AND OF PRINCIPLES OF SIMPLE EELECTRICAL CIRCUITS WAS DEVELOPED AND TESTED FOR EFFECTIVENESS. RELATED LABORATORY EXERCISES WERE AN INTEGRAL PART OF THE SYSTEM WHICH…

  4. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... current, and which may include a non-electrical source of power designed to charge batteries and... dissipating electrical energy. Skid number means the frictional resistance of a pavement measured in... subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a...

  5. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... current, and which may include a non-electrical source of power designed to charge batteries and... dissipating electrical energy. Skid number means the frictional resistance of a pavement measured in..., designed so that a single failure in any subsystem (such as a leakage-type failure of a pressure component...

  6. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... current, and which may include a non-electrical source of power designed to charge batteries and... dissipating electrical energy. Skid number means the frictional resistance of a pavement measured in... subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a...

  7. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... current, and which may include a non-electrical source of power designed to charge batteries and... dissipating electrical energy. Skid number means the frictional resistance of a pavement measured in..., designed so that a single failure in any subsystem (such as a leakage-type failure of a pressure component...

  8. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... current, and which may include a non-electrical source of power designed to charge batteries and... dissipating electrical energy. Skid number means the frictional resistance of a pavement measured in..., designed so that a single failure in any subsystem (such as a leakage-type failure of a pressure component...

  9. Space Station Freedom electrical performance model

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Green, Robert D.; Kerslake, Thomas W.; Mckissock, David B.; Trudell, Jeffrey J.

    1993-01-01

    The baseline Space Station Freedom electric power system (EPS) employs photovoltaic (PV) arrays and nickel hydrogen (NiH2) batteries to supply power to housekeeping and user electrical loads via a direct current (dc) distribution system. The EPS was originally designed for an operating life of 30 years through orbital replacement of components. As the design and development of the EPS continues, accurate EPS performance predictions are needed to assess design options, operating scenarios, and resource allocations. To meet these needs, NASA Lewis Research Center (LeRC) has, over a 10 year period, developed SPACE (Station Power Analysis for Capability Evaluation), a computer code designed to predict EPS performance. This paper describes SPACE, its functionality, and its capabilities.

  10. Electric prototype power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.

  11. Reduction of vibration by using mechatronical subsystem

    NASA Astrophysics Data System (ADS)

    Białas, K.; Buchacz, A.

    2015-11-01

    The primary aim introduced in this paper is synthesis of mechatronical system understand as planning of this type of systems. Mechatronical system is consisted of fundamental mechanical system and subsystem reducing vibration including electric elements. Fundamental system is received applying reverse task of dynamic (synthesis) and it's including inertial and elastic elements. The subsystem includes electric elements by means moving-coil transducer. The synthesis can also be used to change the already existing systems. Due to the method, introduced in this work, may be performed as early as whilst the designing of future functions. Using this way of designing is support for designers of mechanical systems with active reducing of vibrations.

  12. Design of portable electric and magnetic field generators

    NASA Astrophysics Data System (ADS)

    Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.

    2000-11-01

    Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.

  13. An experimental system for symmetric capacitive rf discharge studies

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.

    1990-09-01

    An experimental system has been designed and built to comprehensively study the electrical and plasma characteristics in symmetric capacitively coupled rf discharges at low gas pressures. Descriptions of the system concept, the discharge chamber, the vacuum-gas control system, and the rf matching and electrical measurement system are presented together with some results of electrical measurements carried out in an argon discharge at 13.56 MHz. The system has been specifically designed to facilitate external discharge parameter measurements and probe measurements and to be compatible with a wide variety of other diagnostics. External electrical measurements and probe measurements within the discharge show that it is an ideal vehicle to study low-pressure rf discharge physics. Measurements from this system should be comparable to one-dimensional rf symmetric capacitive discharge theories and may help to verify them. Although only a few results are given here, the system has been operated reliably over a wide range of gas pressures and should give reproducible and accurate results for discharge electrical characteristics and plasma parameters over a wide range of driving frequency and gas components.

  14. Small space station electrical power system design concepts

    NASA Technical Reports Server (NTRS)

    Jones, G. M.; Mercer, L. N.

    1976-01-01

    A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.

  15. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in some states. Data from this study provides insight of impacts from applying energy efficiency design strategies in buildings with grid-connected PV systems. With the current transition from traditional electric grids to future smart grids, this information plus large database of various building conditions allow possible investigations needed by governments or utilities in large scale communities for implementing various measures and policies.

  16. Development of a solar-powered electric bicycle in bike sharing transportation system

    NASA Astrophysics Data System (ADS)

    Adhisuwignjo, S.; Siradjuddin, I.; Rifa'i, M.; Putri, R. I.

    2017-06-01

    The increasing mobility has directly led to deteriorating traffic conditions, extra fuel consumption, increasing automobile exhaust emissions, air pollution and lowering quality of life. Apart from being clean, cheap and equitable mode of transport for short-distance journeys, cycling can potentially offer solutions to the problem of urban mobility. Many cities have tried promoting cycling particularly through the implementation of bike-sharing. Apparently the fourth generation bikesharing system has been promoted utilizing electric bicycles which considered as a clean technology implementation. Utilization of solar power is probably the development keys in the fourth generation bikesharing system and will become the standard in bikesharing system in the future. Electric bikes use batteries as a source of energy, thus they require a battery charger system which powered from the solar cells energy. This research aims to design and implement electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. It is necessary to develop an electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. The study was conducted by means of experimental method which includes the design, manufacture and testing controller systems. The designed fuzzy algorithm have been planted in EEPROM microcontroller ATmega8535. The charging current was set at 1.2 Amperes and the full charged battery voltage was observed to be 40 Volts. The results showed a fuzzy logic controller was able to maintain the charging current of 1.2 Ampere with an error rate of less than 5% around the set point. The process of charging electric bike lead acid batteries from empty to fully charged was 5 hours. In conclusion, the development of solar-powered electric bicycle controlled using fuzzy logic controller can keep the battery charging current in solar-powered electric bicycle to remain stable. This shows that the fuzzy algorithm can be used as a controller in the process of charging for a solar electric bicycle.

  17. Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital missions

    NASA Technical Reports Server (NTRS)

    Regetz, J. D., Jr.; Terwilliger, C. H.

    1979-01-01

    The directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions in the most cost effective manner are determined. The mission set requirements, state of the art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system level electric propulsion parameters are discussed. The impact on overall costs than specific masses or costs of propulsion and power systems is evaluated.

  18. Comparison of Stirling engines for use with a 25-kW disk-electric conversion system

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1987-01-01

    Heat engines were evaluated for terrestrial solar heat receivers. The Stirling Engine was identified as one of the most promising engines for terrestrial applications. The potential to meet the Department of Energy (DOE) goals for performance and cost can be met by the free-piston Stirling engine. NASA Lewis is providing technical management for an Advanced Stirling Conversion System (ASCS) through a cooperative interagency agreement with DOE. Parallel contracts were awarded for conceptual designs of an ASCS. Each design will feature a free-piston Stirling engine, a liquid-metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting long-term performance and goals. The Mechanical Technology, Ins. (MTI) design incorporates a linear alternator to directly convert the solar energy to electricity while the Stirling Technology Company (STC) generates electrical power indirectly by using a hydraulic output to a ground-bases hydraulic pump/motor coupled to a rotating alternator. Both designs use technology which can reasonably be expected to be available in the 1980's. The ASCS designs using a free-piston Stirling engine, a heat transport system, a receiver, and the methods of providing electricity to the utility grid will be discussed.

  19. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G. H.; Smith, K.; Ireland, J.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ionmore » battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.« less

  20. Energy Efficient Engine: Control system component performance report

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Bennett, G. W.

    1984-01-01

    An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.

  1. DC-to-DC power supply for light aircraft flight testing

    NASA Technical Reports Server (NTRS)

    Yost, S. R.

    1980-01-01

    The power supply unit was developed to serve as the power source for a loran-C receiver. The power supply can be connected directly to the aircraft's electrical system, and is compatible with either 14 or 28 volt electrical systems. Design specifications are presented for the unit along with a description of the circuit design.

  2. Power processing

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.

  3. Space tug point design study. Volume 3: Design definition. Part 1: Propulsion and mechanical, avionics, thermal control and electrical power subsystems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.

  4. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  5. Design study of toroidal traction CVT for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Kraus, J.; Bell, D. D.

    1980-01-01

    The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.

  6. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  7. Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic

    NASA Astrophysics Data System (ADS)

    Xu, Huan

    Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is explored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.

  8. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs tomore » achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.« less

  9. Advanced Cogeneration Technology Economic Optimization Study (ACTEOS)

    NASA Technical Reports Server (NTRS)

    Nanda, P.; Ansu, Y.; Manuel, E. H., Jr.; Price, W. G., Jr.

    1980-01-01

    The advanced cogeneration technology economic optimization study (ACTEOS) was undertaken to extend the results of the cogeneration technology alternatives study (CTAS). Cost comparisons were made between designs involving advanced cogeneration technologies and designs involving either conventional cogeneration technologies or not involving cogeneration. For the specific equipment cost and fuel price assumptions made, it was found that: (1) coal based cogeneration systems offered appreciable cost savings over the no cogeneration case, while systems using coal derived liquids offered no costs savings; and (2) the advanced cogeneration systems provided somewhat larger cost savings than the conventional systems. Among the issues considered in the study included: (1) temporal variations in steam and electric demands; (2) requirements for reliability/standby capacity; (3) availability of discrete equipment sizes; (4) regional variations in fuel and electricity prices; (5) off design system performance; and (6) separate demand and energy charges for purchased electricity.

  10. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    NASA Astrophysics Data System (ADS)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  11. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    NASA Astrophysics Data System (ADS)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the prototype electric truck with a different battery pack, the prototype electric truck with a higher power drivetrain and higher towing capability, and an electric city transit bus. Performance advantages provided by the HESS are demonstrated and verified for these vehicles in several areas including: longer vehicle range, improved low-temperature operation with lithium-ion batteries, and reduced battery losses and cycling stresses.

  12. 76 FR 33129 - Airworthiness Standards; Electrical and Electronic System Lightning Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    .... At the time, most aircraft contained mechanical systems, or simple electrical and electronic systems... adversely affected during or after the time the aircraft is exposed to lightning, and that the system that... aircraft must be designed and installed so that the system automatically recovers normal operation of that...

  13. Mini Solar and Sea Current Power Generation System

    NASA Astrophysics Data System (ADS)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  14. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  15. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  16. 29 CFR 1910.306 - Specific purpose equipment and installations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and multicar installations. On single-car and multicar installations, equipment receiving electrical... ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.306 Specific purpose equipment and installations. (a) Electric signs and...

  17. 29 CFR 1910.306 - Specific purpose equipment and installations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and multicar installations. On single-car and multicar installations, equipment receiving electrical... ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.306 Specific purpose equipment and installations. (a) Electric signs and...

  18. 29 CFR 1910.306 - Specific purpose equipment and installations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and multicar installations. On single-car and multicar installations, equipment receiving electrical... ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.306 Specific purpose equipment and installations. (a) Electric signs and...

  19. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  20. Assessment of industrial applications for fuel cell cogeneration systems

    NASA Technical Reports Server (NTRS)

    Stickles, R. P.; Oneill, J. K.; Smith, E. H.

    1978-01-01

    The fuel cell energy systems are designed with and without a utility connection for emergency back-up power. Sale of electricity to the utility during periods of low plant demand is not considered. For each of the three industrial applications, conceptual designs were also developed for conventional utility systems relying on purchased electric power and fossil-fired boilers for steam/hot water. The capital investment for each energy system is estimated. Annual operating costs are also determined for each system. These cost estimates are converted to levelized annual costs by applying appropriate economic factors. The breakeven electricity price that would make fuel cell systems competitive with the conventional systems is plotted as a function of naphtha price. The sensitivity of the breakeven point to capital investment and coal price is also evaluated.

  1. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  2. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Astrophysics Data System (ADS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  3. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's

  4. A study of a space communication system for the control and monitoring of the electric distribution system. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Vaisnys, A.

    1980-01-01

    It is technically feasible to design a satellite communication system to serve the United States electric utility industry's needs relative to load management, real-time operations management, remote meter reading, and to determine the costs of various elements of the system. A definition of distribution control and monitoring functions is given. Associated communications traffic is quantified. A baseline conceptual design in terms of operating capability and equipment is described, important factors to be considered in designing a system are examined, and preliminary cost data are provided. Factors associated with implementation are discussed and conclusions and recommendations are listed.

  5. High temperature antenna development for space shuttle, volume 1

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1973-01-01

    Design concepts for high temperature flush mounted Space Shuttle Orbiter antenna systems are discussed. The design concepts include antenna systems for VHF, L-band, S-band, C-band and Ku-band frequencies. The S-band antenna system design was completed and test hardware fabricated. It was then subjected to electrical and thermal testing to establish design requirements and determine reuse capabilities. The thermal tests consisted of applying ten high temperature cycles simulating the Orbiter entry heating environment in an arc tunnel plasma facility and observing the temperature distributions. Radiation pattern and impedance measurements before and after high temperature exposure were used to evaluated the antenna systems performance. Alternate window design concepts are considered. Layout drawings, supported by thermal and strength analyses, are given for each of the antenna system designs. The results of the electrical and thermal testing of the S-band antenna system are given.

  6. 11. An abandoned electrical system was found under the pressedsteel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. An abandoned electrical system was found under the pressed-steel ceiling. For some undetermined reason the pattern of the ceiling panels has 'photographed' onto the cardboard substrate. Two different panel designs were utilized in a checkerboard pattern. One panel of each design remains in place. Credit GADA/MRM. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ

  7. Status of a Power Processor for the Prometheus-1 Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Hill, Gerald M.; Aulisio, Michael; Gerber, Scott; Griebeler, Elmer; Hewitt, Frank; Scina, Joseph

    2006-01-01

    NASA is developing technologies for nuclear electric propulsion for proposed deep space missions in support of the Exploration initiative under Project Prometheus. Electrical power produced by the combination of a fission-based power source and a Brayton power conversion and distribution system is used by a high specific impulse ion propulsion system to propel the spaceship. The ion propulsion system include the thruster, power processor and propellant feed system. A power processor technology development effort was initiated under Project Prometheus to develop high performance and lightweight power-processing technologies suitable for the application. This effort faces multiple challenges including developing radiation hardened power modules and converters with very high power capability and efficiency to minimize the impact on the power conversion and distribution system as well as the heat rejection system. This paper documents the design and test results of the first version of the beam supply, the design of a second version of the beam supply and the design and test results of the ancillary supplies.

  8. "METHOD": A tool for mechanical, electrical, thermal, and optical characterization of single lens module design

    NASA Astrophysics Data System (ADS)

    Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu

    2015-09-01

    The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.

  9. The Architecture Design of Detection and Calibration System for High-voltage Electrical Equipment

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Lin, Y.; Yang, Y.; Gu, Ch; Yang, F.; Zou, L. D.

    2018-01-01

    With the construction of Material Quality Inspection Center of Shandong electric power company, Electric Power Research Institute takes on more jobs on quality analysis and laboratory calibration for high-voltage electrical equipment, and informationization construction becomes urgent. In the paper we design a consolidated system, which implements the electronic management and online automation process for material sampling, test apparatus detection and field test. In the three jobs we use QR code scanning, online Word editing and electronic signature. These techniques simplify the complex process of warehouse management and testing report transferring, and largely reduce the manual procedure. The construction of the standardized detection information platform realizes the integrated management of high-voltage electrical equipment from their networking, running to periodic detection. According to system operation evaluation, the speed of transferring report is doubled, and querying data is also easier and faster.

  10. Design of a photovoltaic system for a southwest all-electric residence

    NASA Astrophysics Data System (ADS)

    Mehalick, E. M.; Obrien, G.; Tully, G. F.; Johnson, J.; Parker, J.

    1980-04-01

    The grid connected residential photovoltaic system for the Southwest is designed to meet both space conditioning requirements and all conventional electrical load requirements for an all-electric residence. The system is comprised of two major subsystems, the solar array and the power conditioning subsystem (PCS). An 8 kW peak photovoltaic array been designed for the house. The 93 square meters solar array uses a shingle solar cell module in a highly redundant series/parallel matrix. The photovoltaic generated power is supplied to a 10kVA power conversion subsystem which is controlled to track the solar array maximum power operating point and feed the 240 Vac output power directly to the house loads or back to the utility when excess power is generated. The photovoltaic power is isolated from the utility by a 15 kVA transformer. The house design and subsystem specifications are given in detail.

  11. Designing Empathetic Animated Agents for a B-Learning Training Environment within the Electrical Domain

    ERIC Educational Resources Information Center

    Hernández, Yasmin; Pérez-Ramírez, Miguel; Zatarain-Cabada, Ramon; Barrón-Estrada, Lucia; Alor-Hernández, Giner

    2016-01-01

    Electrical tests involve high risk; therefore utility companies require highly qualified electricians and efficient training. Recently, training for electrical tests has been supported by virtual reality systems; nonetheless, these training systems are not yet adaptive. We propose a b-learning model to support adaptive and distance training. The…

  12. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  13. EPRI and Schneider Electric Demonstrate Distributed Resource Communications

    Science.gov Websites

    Electric Power Research Institute (EPRI) is designing, building, and testing a flexible, open-source Schneider Electric ADMS, open software platforms, an open-platform home energy management system

  14. Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks

    NASA Astrophysics Data System (ADS)

    Magnetto, D.; Vidiella, G.

    2012-06-01

    The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.

  15. The Electric Vehicle Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  16. Exploring Students' Engineering Designs through Open-Ended Assignments

    ERIC Educational Resources Information Center

    Puente, S. M. Gómez; Jansen, J. W.

    2017-01-01

    This paper aims at presenting the experience of the Power Conversion project in teaching students to design a proof-of-principle contactless energy transfer system for the charging of electrical vehicles. The Power Conversion is a second-year electrical engineering (EE) project in which students are to gather and apply EE knowledge to design and…

  17. Electrical resistivity well-logging system with solid-state electronic circuitry

    USGS Publications Warehouse

    Scott, James Henry; Farstad, Arnold J.

    1977-01-01

    An improved 4-channel electrical resistivity well-logging system for use with a passive probe with electrodes arranged in the 'normal' configuration has been designed and fabricated by Westinghouse Electric Corporation to meet technical specifications developed by the U.S. Geological Survey. Salient features of the system include solid-state switching and current regulation in the transmitter circuit to produce a constant-current source square wave, and synchronous solid-state switching and sampling of the potential waveform in the receiver circuit to provide an analog dc voltage proportions to the measured resistivity. Technical specifications and design details are included in this report.

  18. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  19. Electric and hybrid vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacovides, L.J.; Cornell, E.P.; Kirk, R.

    1981-01-01

    A study of the energy utilization of gasoline and battery-electric powered special purpose vehicles is discussed along with the impact of electric cars on national energy consumption, the development of electric vehicles in Japan, the applicability of safety standards to electric and hybrid-vehicles, and crashworthiness tests on two electric vehicles. Aspects of energy storage are explored, taking into account a review of battery systems for electrically powered vehicles, the dynamic characterization of lead-acid batteries for vehicle applications, nickel-zinc storage batteries as energy sources for electric vehicles, and a high energy tubular battery for a 1800 kg payload electric delivery van.more » Subjects considered in connection with drive systems include the drive system of the DOE near-term electric vehicle, a high performance AC electric drive system, an electromechanical transmission for hybrid vehicle power trains, and a hybrid vehicle for fuel economy. Questions of vehicle development are examined, giving attention to the Electrovair electric car, special purpose urban cars, the system design of the electric test vehicle, a project for city center transport, and a digital computer program for simulating electric vehicle performance.« less

  20. The re-design at the transformer portion of transcutaneous energy transmission system for all implantable devices.

    PubMed

    Watada, Masaya; Saisho, Ryohei; Kim, Yong-Jae; Ohuchi, Katsuhiro; Takatani, Setsuo; Um, Yong-Su

    2007-01-01

    All implantable devices, such as an artificial heart, an artificial lung, a pacemaker, a defibrillator, need electric power. So the electric power supply through the skin is requested. Then, it is transcutaneous energy transmission system (TETS) that has been studied and used a lot. TETS is the system which performs an electric power supply by non-contact transcutaneously using the electromagnetic induction phenomenon of an external primary side coil and a secondary side coil in human body. In this research, we are developing the core type TETS which applied for the implantable devices. In this paper, corresponding to various conditions, such as a difference in required electric power and transmission distance change, the core type transformer which can hold high transmission efficiency is designed.

  1. The NASA Lewis large wind turbine program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Baldwin, D. H.

    1981-01-01

    The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine.

  2. Electric Propulsion Space Experiment (ESEX): Spacecraft design issues for high-power electric propulsion

    NASA Astrophysics Data System (ADS)

    Kriebel, Mary M.; Sanks, Terry M.

    1992-02-01

    Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.

  3. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    NASA Technical Reports Server (NTRS)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  4. Multimegawatt electric propulsion system design considerations

    NASA Technical Reports Server (NTRS)

    Gilland, J. H.; Myers, Roger M.; Patterson, Michael J.

    1991-01-01

    Piloted Mars Mission Requirements of relatively short trip times and low initial mass in Earth orbit as identified by the NASA Space Exploration Initiative, indicate the need for multimegawatt electric propulsion systems. The design considerations and results for two thruster types, the argon ion, and hydrogen magnetoplasmadynamic thrusters, are addressed in terms of configuration, performance, and mass projections. Preliminary estimates of power management and distribution for these systems are given. Some assessment of these systems' performance in a reference Space Exploration Initiative piloted mission are discussed. Research and development requirements of these systems are also described.

  5. Washing when the sun is shining! How users interact with a household energy management system.

    PubMed

    Kobus, Charlotte B A; Mugge, Ruth; Schoormans, Jan P L

    2013-01-01

    To make optimal use of sustainable energy, domestic electricity consumption should shift to match local supply conditions. Energy management systems (EMS) are a new sustainable technology that can help to disrupt consumers' habits concerning electricity consumption, whilst reinforcing desired behaviours. This research examined the factors that influence the likelihood that people will shift their electricity consumption to match sustainable supply. Twenty-one interviews were conducted with households who had used the EMS 'Smart Wash' for several months. The findings showed that the likelihood of behaviour change is influenced by a combination of the user's motivation, specific contextual factors and the design of the EMS. Based on these results, several recommendations are given for the future design of EMSs. Energy management systems (EMS) are a new technology that encourages people to shift electricity consumption to match local solar supply. Interviews among users of an EMS showed that the likelihood of behaviour change is influenced by the combination of the user's motivation, contextual factors and the EMS design.

  6. Critical Infrastructure Protection: EMP Impacts on the U.S. Electric Grid

    NASA Astrophysics Data System (ADS)

    Boston, Edwin J., Jr.

    The purpose of this research is to identify the United States electric grid infrastructure systems vulnerabilities to electromagnetic pulse attacks and the cyber-based impacts of those vulnerabilities to the electric grid. Additionally, the research identifies multiple defensive strategies designed to harden the electric grid against electromagnetic pulse attack that include prevention, mitigation and recovery postures. Research results confirm the importance of the electric grid to the United States critical infrastructures system and that an electromagnetic pulse attack against the electric grid could result in electric grid degradation, critical infrastructure(s) damage and the potential for societal collapse. The conclusions of this research indicate that while an electromagnetic pulse attack against the United States electric grid could have catastrophic impacts on American society, there are currently many defensive strategies under consideration designed to prevent, mitigate and or recover from an electromagnetic pulse attack. However, additional research is essential to further identify future target hardening opportunities, efficient implementation strategies and funding resources.

  7. Test Facilities in Support of High Power Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.

  8. Multipurpose electric furnace system. [for use in Apollo-Soyuz Test Program

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Mchugh, J. P.; Foust, H. C.; Piotrowski, P. A.

    1974-01-01

    A multipurpose electric furnace system of advanced design for space applications was developed and tested. This system is intended for use in the Apollo-Soyuz Test Program. It consists of the furnace, control package and a helium package for rapid cooldown.

  9. Design of a low-cost system for electrical conductivity measurements of high temperature

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    2018-05-01

    It is always a curiosity and interest among researchers working in the field of material science to know the impact of high temperature on the physical and transport properties of the materials. In this paper, we report on the design and working of a system for the measurements of electrical resistivity with high temperature. It was designed at our place and successively used for these measurements in the temperature range from room temperature to 500 ˚C.

  10. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  11. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  12. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  13. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  14. 29 CFR 1910.303 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems § 1910.303..., including, for parts designed to enclose and protect other equipment, the adequacy of the protection thus... from grounds other than those required or permitted by this subpart. (4) Interrupting rating. Equipment...

  15. Insulation detection of electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Dai, Qiqi; Zhu, Zhongwen; Huang, Denggao; Du, Mingxing; Wei, Kexin

    2018-06-01

    In this paper, an electric vehicle insulation detection method with single side switching fixed resistance is designed, and the hardware and software design of the system are given. The experiment proves that the insulation detection system can detect the insulation resistance in a wide range of resistance values, and accurately report the fault level. This system can effectively monitor the insulation fault between the car body and the high voltage line and avoid the passengers from being injured.

  16. A miniature fuel reformer system for portable power sources

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan

    2014-12-01

    A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.

  17. A Thruster Sub-System Module (TSSM) for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.

    1975-01-01

    Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near-earth and planetary missions. Thruster systems for these missions could be integrated directly into a spacecraft or modularized into a Thruster Sub-System Module (TSSM). A TSSM for electric propulsion missions would consist of a 30-cm ion thruster, thruster gimbal system, propellant storage and feed system, associated Power Processing Unit (PPU), thermal control system and complete supporting structure. The TSSM would be wholly self-contained and be essentially a plug-in or strap-on electric stage with simple mechanical, thermal, electrical and propellant interfaces. The TSSM described in this report is designed for a broad range of missions requiring from two to ten TSSM's mounted in a 2 by x configuration. The thermal control system is designed to accommodate waste heat from the power processor based on realistic efficiencies when the TSSM is operating from 0.7 to 3.5 AU's. The modules are 0.61 M (2 ft) wide by 2.29 M (7.5 ft) long and have a dry weight including propellant tank of 54.4 kg (120 lb). The propellant tank will hold 145.1 kg (320 lb) of mercury.

  18. The MOD-OA 200 kilowatt wind turbine generator design and analysis report

    NASA Astrophysics Data System (ADS)

    Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.

    1980-08-01

    The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.

  19. The MOD-OA 200 kilowatt wind turbine generator design and analysis report

    NASA Technical Reports Server (NTRS)

    Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.

    1980-01-01

    The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.

  20. Smart grid technologies in local electric grids

    NASA Astrophysics Data System (ADS)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  1. Home Photovoltaic System Design in Pangkalpinang City

    NASA Astrophysics Data System (ADS)

    Sunanda, Wahri

    2018-02-01

    This research aims to obtain the design of home photovoltaic systems in Pangkalpinang and the opportunity of economic savings. The system consists of photovoltaic with batteries. Based on electricity consumption of several houses with installed power of 1300 VA and 2200 VA in Pangkalpinang for one year, the daily load of photovoltaic system is varied to 40%, 30% and 20% of the average value of the daily home electricity consumption. The investment costs, the cost of replacement parts and the cost of electricity consumption accrued to PLN during lifetime of systems (25 years) are also calculated. The result provided that there are no economic saving opportunities for photovoltaic systems with batteries at home with installed power of 1300 VA and 2200 VA in Pangkalpinang. The most economical is the photovoltaic system with the daily load of 20% of the average value of the daily home electricity consumption. The configuration of photovoltaic system for 1300 VA home consists of 10 modules of 200 wattpeak and 4 batteries 150 AH, 12 Volt while photovoltaic system for 2200 VA home consists of 15 modules of 200 wattpeak and 6 batteries 150 AH,12Volt.

  2. Advances in series resonant inverter technology and its effect on spacecraft employing electric propulsion

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1982-01-01

    The efficiency of transistorized Series Resonant Inverters (SRIs), which is higher than that of silicon-controlled rectifier alternatives, reduces spacecraft radiator requirements by 40% and may eliminate the need for heat pipes on 30-cm ion thruster systems. Recently developed 10- and 25-kW inverters have potential applications in gas thrusters, and represent the first spaceborne SRI designs for such power levels. Attention is given to the design and control system approaches employed in these inverter designs to improve efficiency and reduce weight, along with the impact of such improved parameters on electric propulsion systems.

  3. EXECUTIVE SUMMARY FOR FULL-SCALE DUAL-ALKALI DEMONSTRATION AT LOUISVILLE GAS AND ELECTRIC CO. - PRELIMINARY DESIGN AND COST ESTIMATE

    EPA Science Inventory

    The report is the executive summary for the preliminary design of the dual-alkali system, designed by Combustion Equipment Associates, Inc./Arthur D. Little, Inc. and being installed to control SO2 emissions from Louisville Gas and Electric Company's Cane Run Unit No. 6 boiler. T...

  4. Building Maintenance and Repair Data for Life-Cycle Cost Analyses: Electrical Systems.

    DTIC Science & Technology

    1991-05-01

    Repair Data for Life-Cycle Cost Analyses: Electrical Systems by Edgar S. Neely Robert D. Neathammer James R. Stirn Robert P. Winkler This research...systems have been developed to assist planners in preparing DD Form 1391 documentation, designers in life-cycle cost component selection, and maintainers...Maintenance and Repair Data for Life-Cycle Cost Analyses: RDTE dated 1980 Electrical Systems REIMB 1984 - 1989 6. AUTH4OR(S) Edgar S. Neely, Robert D

  5. A Theoretical Solid Oxide Fuel Cell Model for System Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni; Xu, Ming

    2006-01-01

    As the aviation industry moves towards higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The Hybrid Solid Oxide Fuel Cell system combines the fuel cell with a microturbine to obtain up to 70 percent cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multi-discipline system, and design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and distribution system and the fuel cell and microturbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. A novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled, but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  6. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  7. 14 CFR 25.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1309... electrical system and equipment design and installation, critical environmental conditions must be considered. For electrical generation, distribution, and utilization equipment required by or used in complying...

  8. Learning Platform for Study of Power Electronic Application in Power Systems

    ERIC Educational Resources Information Center

    Bauer, P.; Rompelman, O.

    2005-01-01

    Present engineering has to deal with increasingly complex systems. In particular, this is the case in electrical engineering. Though this is obvious in microelectronics, also in the field of power systems engineers have to design, operate and maintain highly complex systems such as power grids, energy converters and electrical drives. This is…

  9. Microspacecraft and Earth observation: Electrical field (ELF) measurement project

    NASA Technical Reports Server (NTRS)

    Olsen, Tanya; Elkington, Scot; Parker, Scott; Smith, Grover; Shumway, Andrew; Christensen, Craig; Parsa, Mehrdad; Larsen, Layne; Martinez, Ranae; Powell, George

    1990-01-01

    The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined.

  10. Price Incentivised Electric Vehicle Charge Control for Community Voltage Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Damian; Baroncelli, Fabio; Fowler, Christopher

    2014-11-03

    With the growing availability of Electric Vehicles, there is a significant opportunity to use battery 'smart-charging' for voltage regulation. This work designs and experimentally evaluates a system for price-incentivised electric vehicle charging. The system is designed to eliminate negative impacts to the user while minimising the cost of charging and achieving a more favourable voltage behaviour throughout the local grid over time. The practical issues associated with a real-life deployment are identified and resolved. The efficacy of the system is evaluated in the challenging scenario in which EVs are deployed in six closely distributed homes, serviced by the same lowmore » voltage residential distribution feeder.« less

  11. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  12. Aerospace Engineering Space Mission Concept Feasibility Study: A Neptune Mission Design Example

    NASA Technical Reports Server (NTRS)

    Esper, Jaime

    2007-01-01

    This viewgraph document reviews the feasibility study of a mission to Neptune. Included are discussions of the science instruments, the design methodology, the trajectory, the spacecraft design, the alternative propulsion systems, (chemical, solar electric (SEP)), the communications systems, the power systems, the thermal system.

  13. Energy storage and thermal control system design status

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Vanommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for and the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation and storage is described.

  14. Energy storage and thermal control system design status. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  15. Status report on nuclear electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.

    1975-01-01

    Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.

  16. Development of the 7.3 MW MOD-5A wind-turbine generator system

    NASA Astrophysics Data System (ADS)

    Barton, R. S.; Lucas, W. C.

    1983-12-01

    The General Electric Company Advanced Energy Programs Department is designing, under DOE/NASA sponsorship through Contract DEN 3-153, the MOD-5A wind-turbine system, which must generate electricity for less than 3.75 cents/kWh (1980 dollars). During the conceptual and preliminary design phases, the basic features were established as a result of tradeoff and optimization studies driven by minimizing the system cost of energy. During the past year, the program has been in the final design phase, and a reassessment to minimize risk has received strong emphasis in the design process. The program has progressed to the point that an agreement of sale has been reached for the first unit.

  17. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  18. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2004-02-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a ``partial energy conversion'' system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  19. Evolutionary growth for Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  20. Results of solar electric thrust vector control system design, development and tests

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.

    1973-01-01

    Efforts to develop and test a thrust vector control system TVCS for a solar-energy-powered ion engine array are described. The results of solar electric propulsion system technology (SEPST) III real-time tests of present versions of TVCS hardware in combination with computer-simulated attitude dynamics of a solar electric multi-mission spacecraft (SEMMS) Phase A-type spacecraft configuration are summarized. Work on an improved solar electric TVCS, based on the use of a state estimator, is described. SEPST III tests of TVCS hardware have generally proved successful and dynamic response of the system is close to predictions. It appears that, if TVCS electronic hardware can be effectively replaced by control computer software, a significant advantage in control capability and flexibility can be gained in future developmental testing, with practical implications for flight systems as well. Finally, it is concluded from computer simulations that TVCS stabilization using rate estimation promises a substantial performance improvement over the present design.

  1. Practical implementation of the concept of converted electric vehicle with advanced traction and dynamic performance and environmental safety indicators

    NASA Astrophysics Data System (ADS)

    Sidorov, K. M.; Yutt, V. E.; Grishchenko, A. G.; Golubchik, T. V.

    2018-02-01

    The objective of the work presented in this paper is to describe the implementation of the technical solutions have been developed, with regard to structure, composition, and characteristics, for an experimental prototype of an electric vehicle which has been converted from a conventional vehicle. The methodology of the study results is based on the practical implementation of the developed concept of the conversion of conventional vehicles into electric vehicles. The main components of electric propulsion system of the experimental prototype of electric vehicle are developed and manufactured on the basis of computational researches, taking into account the criteria and principles of conversion within the framework of presented work. The article describes a schematic and a design of power conversion and commutation electrical equipment, traction battery, electromechanical transmission. These results can serve as guidance material in the design and implementation of electric propulsion system (EPS) components of electric vehicles, facilitate the development of optimal technical solutions in the development and manufacture of vehicles, including those aimed at autonomy of operation and the use of perspective driver assistance systems. As part of this work, was suggested a rational structure for an electric vehicle experimental prototype, including technical performance characteristics of the components of EPS.

  2. Design of High Voltage Electrical Breakdown Strength measuring system at 1.8K with a G-M cryocooler

    NASA Astrophysics Data System (ADS)

    Li, Jian; Huang, Rongjin; Li, Xu; Xu, Dong; Liu, Huiming; Li, Laifeng

    2017-09-01

    Impregnating resins as electrical insulation materials for use in ITER magnets and feeder system are required to be radiation stable, good mechanical performance and high voltage electrical breakdown strength. In present ITER project, the breakdown strength need over 30 kV/mm, for future DEMO reactor, it will be greater than this value. In order to develop good property insulation materials to satisfy the requirements of future fusion reactor, high voltage breakdown strength measurement system at low temperature is necessary. In this paper, we will introduce our work on the design of this system. This measuring system has two parts: one is an electrical supply system which provides the high voltage from a high voltage power between two electrodes; the other is a cooling system which consists of a G-M cryocooler, a superfluid chamber and a heat switch. The two stage G-M cryocooler pre-cool down the system to 4K, the superfluid helium pot is used for a container to depress the helium to superfluid helium which cool down the sample to 1.8K and a mechanical heat switch connect or disconnect the cryocooler and the pot. In order to provide the sufficient time for the test, the cooling system is designed to keep the sample at 1.8K for 300 seconds.

  3. Report on Lincoln Electric System gas turbine inlet air cooling. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebeling, J.A.; Buecker, B.J.; Kitchen, B.J.

    1993-12-01

    As a result of increased electric power demand, the Lincoln Electric System (LES) of Lincoln, Nebraska (USA) decided to upgrade the generating capacity of their system. Based on capacity addition studies, the utility elected to improve performance of a GE MS7001B combustion turbine located at their Rokeby station. The turbine is used to meet summer-time peak loads, and as is common among combustion turbines, capacity declines as ambient air temperature rises. To improve the turbine capacity, LES decided to employ the proven technique of inlet air cooling, but with a novel approach: off-peak ice generation to be used for peak-loadmore » air cooling. EPRI contributed design concept definition and preliminary engineering. The American Public Power Association provided co-funding. Burns & McDonnell Engineering Company, under contract to Lincoln Electric System, provided detailed design and construction documents. LES managed the construction, start-up, and testing of the cooling system. This report describes the technical basis for the cooling system design, and it discusses combustion turbine performance, project economics, and potential system improvements. Control logic and P&ID drawings are also included. The inlet air cooling system has been available since the fall of 1991. When in use, the cooling system has increased turbine capacity by up to 17% at a cost of less than $200 per increased kilowatt of generation.« less

  4. Design of Smart-Meter data acquisition device based on Cloud Platform

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-05-01

    In recent years, the government has attached great importance to ‘Four-Meter Unified’ Project. Under the call of national policy, State Grid is participate in building ‘Four-Meter Unified’ Project actively by making use of electricity information acquisition system. In this paper, a new type Smart-Meter data acquisition device based on Cloud Platform is designed according to the newest series of standards Energy Measure and Management System for Electric, Water, Gas and Heat Meter, and this paper introduces the general scheme, main hardware design and main software design for the Smart-Meter data acquisition device.

  5. COMPASS Final Report: Saturn Moons Orbiter Using Radioisotope Electric Propulsion (REP): Flagship Class Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document

  6. Electric motorcycle charging station powered by solar energy

    NASA Astrophysics Data System (ADS)

    Siriwattanapong, Akarawat; Chantharasenawong, Chawin

    2018-01-01

    This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.

  7. 78 FR 25310 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    .../diminished. There are no design changes associated with this TS amendment. The DC power system/batteries will... changes restructure the Technical Specifications (TS) for the direct current (DC) electrical power system... battery and battery charger operability requirements. The DC electrical power system, including associated...

  8. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    NASA Astrophysics Data System (ADS)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  9. 7 CFR 1724.21 - Architectural services contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE ELECTRIC ENGINEERING, ARCHITECTURAL SERVICES AND DESIGN POLICIES AND PROCEDURES... RUS financed electric system facilities. (a) RUS Form 220, Architectural Services Contract, must be used by electric borrowers when obtaining architectural services. (b) The borrower shall ensure that...

  10. Automatic detection of electric power troubles (AI application)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint

    1987-01-01

    The design goals for the Automatic Detection of Electric Power Troubles (ADEPT) were to enhance Fault Diagnosis Techniques in a very efficient way. ADEPT system was designed in two modes of operation: (1) Real time fault isolation, and (2) a local simulator which simulates the models theoretically.

  11. Optimization of a hybrid electric power system design for large commercial buildings: An application design guide

    NASA Astrophysics Data System (ADS)

    Lee, Keun

    Renewable energy in different forms has been used in various applications for survival since the beginning of human existence. However, there is a new dire need to reevaluate and recalibrate the overall energy issue both nationally and globally. This includes, but is not limited to, the finite availability of fossil fuel, energy sustainability with an increasing demand, escalating energy costs, environmental impact such as global warming and green-house gases, to name a few. This dissertation is primarily focused and related to the production and usage of electricity from non-hydro renewable sources. Among non-hydro renewable energy sources, electricity generation from wind and solar energy are the fastest-growing technologies in the United States and in the world. However, due to the intermittent nature of such renewable sources, energy storage devices are required to maintain proper operation of the grid system and in order to increase reliability. A hybrid system, as the name suggests, is a combination of different forms of non-renewable and renewable energy generation, with or without storage devices. Hybrid systems, when applied properly, are able to improve reliability and enhance stability, reduce emissions and noise pollution, provide continuous power, increase operation life, reduce cost, and efficiently use all available energy. In the United States (U.S.), buildings consume approximately 40% of the total primary energy and 74% of the total electricity. Therefore, reduction of energy consumption and improved energy efficiency in U.S. buildings will play a vital role in the overall energy picture. Electrical energy usage for any such building varies widely depending on age (construction technique), electricity and natural gas usage, appearance, location and climate. In this research, a hybrid system including non-renewable and renewable energy generation with storage devices specifically for building applications, is studied in detail. This research deals with the optimization of the hybrid system design (which consists of PV panels and/or wind turbines and/or storage devices for building applications) by developing an algorithm designed to make the system cost effective and energy efficient. Input data includes electrical load demand profile of the buildings, buildings' structural and geographical characteristics, real time pricing of electricity, and the costs of hybrid systems and storage devices. When the electrical load demand profile of a building that is being studied is available, a measured demand profile is directly used as input data. However, if that information is not available, a building's electric load demand is estimated using a developed algorithm based on three large data sources from a public domain, and used as input data. Using the acquired input data, the algorithm of this research is designed and programmed in order to determine the size of renewable components and to minimize the total yearly net cost. This dissertation also addresses the parametric sensitivity analysis to determine which factors are more significant and are expected to produce useful guidelines in the decision making process. An engineered and more practical, simplified solution has been provided for the optimized design process.

  12. 2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 12. Tracks 15, 16 and 17

    DTIC Science & Technology

    2005-08-04

    glare, surface luminances, and uniformity. Also, the importance of daylight on human health and productivity is emphasized. • Exterior lighting design...Electrical Safety Requirements – OSHA CFR Title 29 Part 1910 Occupational Safety and Health Standard, Subpart S – Electrical – Design Safety...Standards and Safety Related Work Practices Part 1926 Safety and Health Regulations for Construction, Subpart K – Electrical – Installation Safety

  13. Solar Power System Analyses for Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Gefert, Leon P.

    1999-01-01

    Solar electric propulsion (SEP) mission architectures are applicable to a wide range of NASA missions including human Mars exploration and robotic exploration of the outer planets. In this paper, we discuss the conceptual design and detailed performance analysis of an SEP stage electric power system (EPS). EPS performance, mass and area predictions are compared for several PV array technologies. Based on these studies, an EPS design for a 1-MW class, Human Mars Mission SEP stage was developed with a reasonable mass, 9.4 metric tons, and feasible deployed array area, 5800 sq m. An EPS was also designed for the Europa Mapper spacecraft and had a mass of 151 kg and a deployed array area of 106 sq m.

  14. Design of "Eye Closure" system for the stealth of photo-electric equipments

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Hua, W. S.; Li, G.

    2012-10-01

    Based on the optical activity of liquid crystal, a new approach for the stealth of "cat's eye" targets is proposed in this paper. It imitates the physiological close reaction of human eyes when strong light irradiates eyes. With this approach, the "cat's eye" effect will vanish, which is applied in restricting photo-electric equipments being detected and located by active laser detection system. The structure and working principle of the design are presented. The drive circuit is given to control the optical switch automatically. Feasibility of this design is demonstrated by experimental method. The measured data illustrate that the proposed approach is effective to eliminate the "cat's eye" effect, so as to enhancing the viability of photo-electric equipments on the battlefield.

  15. Design and fabrication of an energy-harvesting device using vibration absorber

    NASA Astrophysics Data System (ADS)

    Heidari, Hamidreza; Afifi, Arash

    2017-05-01

    Energy-harvesting devices collect energy that is being wasted and convert to the electrical energy. For this reason, this type of devices is considered as a convenient alternative to traditional batteries. In this paper, experimental examinations were performed to investigate the application of harvesting device for the reduction of the vibration amplitude in a vibration system and also increase the efficiency of energy-harvesting device. This study focuses on the energy-harvesting device as both producing electrical device and a vibration disabled absorber. In this regard, a motion-based energy-harvesting device is designed to produce electrical energy and also eliminate vibrations of a two joint-end beam which is located under the harmonic excitation force. Then, the governing equations of the forced motion on the main beam are derived and energy-harvesting system are simulated. In addition, the system designed by MATLAB simulation is explained and its results are expressed. Finally, a prototype of the system was made and the ability of the energy-harvesting device to absorb the original system vibrations, as well as parameters impact on the efficiency of energy harvesting is investigated. Experimental results show that the energy-harvesting device, in addition to producing electric current with a maximum value of 1.5V, reduces 94% of the original system vibrations.

  16. Advanced hybrid vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  17. The characterization of the antibacterial efficacy of an electrically activated silver ion-based surface system

    NASA Astrophysics Data System (ADS)

    Shirwaiker, Rohan A.

    There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are achieved by formulating the system design, fabricating prototypes with appropriate design parameters, evaluating the prototypes using various physical and electrical characterization techniques, and characterizing the antibacterial efficacy of the prototypes using statistical experiments. The major contributions of this dissertation include: (1) Design of a systems focused approach that quantifies the potential effectiveness of silver ions under various configurations of the surface system design. (2) Development of meso and micro-scale fabrication methodologies for prototype fabrication. (3) Development of microbiological testing protocols utilizing variance reduction techniques to test the antibacterial efficacy of system prototypes. (4) Development of empirical models for the surface system using factorial design of experiments (DOE). Basic results from the research demonstrate significant antibacterial efficacy of the surface system against four dangerous bacteria including Staph aureus, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis which are together responsible for more than 80% of nosocomial infections. Results of the DOE characterization study indicate the statistically significant contributions of three system parameters -- size of features, electric current, and type of bacteria -- to the antibacterial performance of the system. This dissertation synergistically utilizes knowledge and principles from three broader areas of research -- industrial engineering, materials science and microbiology -- to model, design, fabricate and characterize an electrically activated silver-ion based antibacterial surface system with practical applications in improving human health and healthcare systems. The research is aimed at promoting novel integrative research and development of technologies utilizing antibacterial properties of silver and other heavy metals.

  18. Study of Plasma Motor Generator (PMG) tether system for orbit reboost

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Detailed designs were produced for a 2 kW plasma motor generator tether system based largely on existing hardware and hardware designs. Specifically, the hollow cathode design and electronics are derived from ion propulsion equipment. A prototype tether was constructed and will be tested for deployment, strength, resistance to breakage and abrasion and electrical properties. In addition, laboratory development models of the electronics will be used to operate two plasma motor generator hollow cathode assemblies with this tether to verify electrical performance parameters for the complete system. Results show that a low cost demonstration of a plasma motor generator tether system appears to be feasible by the middle of the 1990s.

  19. A Theoretical Solid Oxide Fuel Cell Model for Systems Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni

    2008-01-01

    As the aviation industry moves toward higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The hybrid solid oxide fuel cell system combines the fuel cell with a micro-turbine to obtain up to 70% cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multidiscipline system and the design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and a distribution system, and the fuel cell and micro-turbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. The novelty in this paper is that, first, the case is made why a high fidelity fuel cell mode is needed for systems control and stability designs. Second, a novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  20. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    NASA Astrophysics Data System (ADS)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell-stack sizing and operating strategy (base-load or load-following and cogeneration or electric-only) are also presented.

  1. Electronic Computer Aided Design. Its Application in FE.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    A study was conducted at the Electronics Industrial Unit at the Dorset Institute of Higher Education to investigate the feasibility of incorporating computer-aided design (CAD) in electrical and electronic courses. The aim was to investigate the application of CAD to electrical and electronic systems; the extent to which industrial developments…

  2. System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1996-01-01

    Demonstration of required safety margins on critical electrical/electronic circuits in large complex systems has become an implementation and cost problem. These margins are the difference between the activation level of the circuit and the electrical noise on the circuit in the actual operating environment. This document discusses the origin of the requirement and gives a detailed process flow for the identification of the system electromagnetic compatibility (EMC) critical circuit list. The process flow discusses the roles of engineering disciplines such as systems engineering, safety, and EMC. Design and analysis guidelines are provided to assist the designer in assuring the system design has a high probability of meeting the margin requirements. Examples of approaches used on actual programs (Skylab and Space Shuttle Solid Rocket Booster) are provided to show how variations of the approach can be used successfully.

  3. Assessment of Design Modifications to Final Clothe the Soldier Rucksack

    DTIC Science & Technology

    2006-03-01

    of Fastrak™ positional data with data collected from an opto-electric positional recording system ( Optotrak ™ by Northern Digital Incorporated) with...positional data with data collected from an opto-electric positional recording system ( Optotrak ™ by Northern Digital Incorporated) with high

  4. 10 CFR 436.11 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... measure or any portion of the structure of a building or any mechanical, electrical, or other functional... portion of the structure of a building or any mechanical, electrical, or other functional system... systems for such collection. Investment costs means the initial costs of design, engineering, purchase...

  5. The World's Largest Photovoltaic Concentrator System.

    ERIC Educational Resources Information Center

    Smith, Harry V.

    1982-01-01

    The Mississippi County Community College large-scale energy experiment, featuring the emerging high technology of solar electricity, is described. The project includes a building designed for solar electricity and a power plant consisting of a total energy photovoltaic system, and features two experimental developments. (MLW)

  6. A Summary Description of a Computer Program Concept for the Design and Simulation of Solar Pond Electric Power Generation Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A solar pond electric power generation subsystem, an electric power transformer and switch yard, a large solar pond, a water treatment plant, and numerous storage and evaporation ponds. Because a solar pond stores thermal energy over a long period of time, plant operation at any point in time is dependent upon past operation and future perceived generation plans. This time or past history factor introduces a new dimension in the design process. The design optimization of a plant must go beyond examination of operational state points and consider the seasonal variations in solar, solar pond energy storage, and desired plant annual duty-cycle profile. Models or design tools will be required to optimize a plant design. These models should be developed in order to include a proper but not excessive level of detail. The model should be targeted to a specific objective and not conceived as a do everything analysis tool, i.e., system design and not gradient-zone stability.

  7. A Remote Monitoring System for Voltage, Current, Power and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Barakat, E.; Sinno, N.; Keyrouz, C.

    This paper presents a study and design of a monitoring system for the continuous measurement of electrical energy parameters such as voltage, current, power and temperature. This system is designed to monitor the data remotely over internet. The electronic power meter is based on a microcontroller from Microchip Technology Inc. PIC family. The design takes into consideration the correct operation in the event of an outage or brown out by recording the electrical values and the temperatures in EEPROM internally available in the microcontroller. Also a digital display is used to show the acquired measurements. A computer will remotely monitor the data over internet.

  8. Design criteria and candidate electrical power systems for a reusable Space Shuttle booster.

    NASA Technical Reports Server (NTRS)

    Merrifield, D. V.

    1972-01-01

    This paper presents the results of a preliminary study to establish electrical power requirements, investigate candidate power sources, and select a representative power generation concept for the NASA Space Shuttle booster stage. Design guidelines and system performance requirements are established. Candidate power sources and combinations thereof are defined and weight estimates made. The selected power source concept utilizes secondary silver-zinc batteries, engine-driven alternators with constant speed drive, and an airbreathing gas turbine. The need for cost optimization, within safety, reliability, and performance constraints, is emphasized as being the most important criteria in design of the final system.

  9. Round-Trip Solar Electric Propulsion Missions for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.

    2014-01-01

    Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.

  10. Formulation of advanced consumables management models: Environmental control and electrical power system performance models requirements

    NASA Technical Reports Server (NTRS)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    Software design specifications for developing environmental control and life support system (ECLSS) and electrical power system (EPS) programs into interactive computer programs are presented. Specifications for the ECLSS program are at the detail design level with respect to modification of an existing batch mode program. The FORTRAN environmental analysis routines (FEAR) are the subject batch mode program. The characteristics of the FEAR program are included for use in modifying batch mode programs to form interactive programs. The EPS program specifications are at the preliminary design level. Emphasis is on top-down structuring in the development of an interactive program.

  11. Shipboard Electrical System Modeling for Early-Stage Design Space Exploration

    DTIC Science & Technology

    2013-04-01

    method is demonstrated in several system studies. I. INTRODUCTION The integrated engineering plant ( IEP ) of an electric warship can be viewed as a...which it must operate [2], [4]. The desired IEP design should be dependable [5]. The operability metric has previously been defined as a measure of...the performance of an IEP during a specific scenario [2]. Dependability metrics have been derived from the operability metric as measures of the IEP

  12. Electricity Market Manipulation: How Behavioral Modeling Can Help Market Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallo, Giulia

    The question of how to best design electricity markets to integrate variable and uncertain renewable energy resources is becoming increasingly important as more renewable energy is added to electric power systems. Current markets were designed based on a set of assumptions that are not always valid in scenarios of high penetrations of renewables. In a future where renewables might have a larger impact on market mechanisms as well as financial outcomes, there is a need for modeling tools and power system modeling software that can provide policy makers and industry actors with more realistic representations of wholesale markets. One optionmore » includes using agent-based modeling frameworks. This paper discusses how key elements of current and future wholesale power markets can be modeled using an agent-based approach and how this approach may become a useful paradigm that researchers can employ when studying and planning for power systems of the future.« less

  13. Design of electric control system for automatic vegetable bundling machine

    NASA Astrophysics Data System (ADS)

    Bao, Yan

    2017-06-01

    A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.

  14. 30 CFR 250.114 - How must I install and operate electrical equipment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... their facilities. (a) You must classify all areas according to API RP 500, Recommended Practice for... 1 and Division 2, or API RP 505, Recommended Practice for Classification of Locations for Electrical... electrical systems according to API RP 14F, Recommended Practice for Design and Installation of Electrical...

  15. 30 CFR 250.114 - How must I install and operate electrical equipment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... their facilities. (a) You must classify all areas according to API RP 500, Recommended Practice for... 1 and Division 2, or API RP 505, Recommended Practice for Classification of Locations for Electrical... electrical systems according to API RP 14F, Recommended Practice for Design and Installation of Electrical...

  16. 30 CFR 250.114 - How must I install and operate electrical equipment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... their facilities. (a) You must classify all areas according to API RP 500, Recommended Practice for... 1 and Division 2, or API RP 505, Recommended Practice for Classification of Locations for Electrical... electrical systems according to API RP 14F, Recommended Practice for Design and Installation of Electrical...

  17. Development of a differentially balanced magnetic bearing and control system for use with a flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Higgins, Mark A.; Plant, David P.; Ries, Douglas M.; Kirk, James A.; Anand, Davinder K.

    1992-01-01

    The purpose of a magnetically suspended flywheel energy storage system for electric utility load leveling is to provide a means to store energy during times when energy is inexpensive to produce and then return it to the customer during times of peak power demand when generated energy is most expensive. The design of a 20 kWh flywheel energy storage system for electric utility load leveling applications involves the successful integration of a number of advanced technologies so as to minimize the size and cost of the system without affecting its efficiency and reliability. The flywheel energy storage system uses a carbon epoxy flywheel, two specially designed low loss magnetic bearings, a high efficiency motor generator, and a 60 cycle AC power converter all integrated through a microprocessor controller. The basic design is discussed of each of the components that is used in the energy storage design.

  18. The propulsive design aspects on the world's first direct drive hybrid airplane

    NASA Astrophysics Data System (ADS)

    Nanda, Ankit

    The purpose of this thesis is to design a safe technology demonstrator by implementing a direct drive propulsion system for a gas-electric hybrid aircraft. This system was integrated on the Embry-Riddle Eco-Eagle for the Green Flight Challenge 2011. The aim of the system is to allow the pilot to use the electric motor as an independent power source to fly the aircraft once at cruise altitude, while having a gas engine to allow for higher power capability. The system was designed to incorporate the motor and the motor control unit provided by Flight Design and Drivetek AG alongside a Rotax 912ULS engine. The hardware is integrated such that the pilot would be able to fly the aircraft with controls similar to conventional general aviation aircraft. This thesis discusses the method of integration of the hybrid powerplant system into a Stemme S-10 and describes the various components of that system.

  19. Power system modeling and optimization methods vis-a-vis integrated resource planning (IRP)

    NASA Astrophysics Data System (ADS)

    Arsali, Mohammad H.

    1998-12-01

    The state-of-the-art restructuring of power industries is changing the fundamental nature of retail electricity business. As a result, the so-called Integrated Resource Planning (IRP) strategies implemented on electric utilities are also undergoing modifications. Such modifications evolve from the imminent considerations to minimize the revenue requirements and maximize electrical system reliability vis-a-vis capacity-additions (viewed as potential investments). IRP modifications also provide service-design bases to meet the customer needs towards profitability. The purpose of this research as deliberated in this dissertation is to propose procedures for optimal IRP intended to expand generation facilities of a power system over a stretched period of time. Relevant topics addressed in this research towards IRP optimization are as follows: (1) Historical prospective and evolutionary aspects of power system production-costing models and optimization techniques; (2) A survey of major U.S. electric utilities adopting IRP under changing socioeconomic environment; (3) A new technique designated as the Segmentation Method for production-costing via IRP optimization; (4) Construction of a fuzzy relational database of a typical electric power utility system for IRP purposes; (5) A genetic algorithm based approach for IRP optimization using the fuzzy relational database.

  20. A flight simulator control system using electric torque motors

    NASA Technical Reports Server (NTRS)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  1. Reducing unscheduled plant maintenance delays -- Field test of a new method to predict electric motor failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homce, G.T.; Thalimer, J.R.

    1996-05-01

    Most electric motor predictive maintenance methods have drawbacks that limit their effectiveness in the mining environment. The US Bureau of Miens (USBM) is developing an alternative approach to detect winding insulation breakdown in advance of complete motor failure. In order to evaluate the analysis algorithms necessary for this approach, the USBM has designed and installed a system to monitor 120 electric motors in a coal preparation plant. The computer-based experimental system continuously gathers, stores, and analyzes electrical parameters for each motor. The results are then correlated to data from conventional motor-maintenance methods and in-service failures to determine if the analysismore » algorithms can detect signs of insulation deterioration and impending failure. This paper explains the on-line testing approach used in this research, and describes monitoring system design and implementation. At this writing data analysis is underway, but conclusive results are not yet available.« less

  2. Intelligence by design in an entropic power grid

    NASA Astrophysics Data System (ADS)

    Negrete-Pincetic, Matias Alejandro

    In this work, the term Entropic Grid is coined to describe a power grid with increased levels of uncertainty and dynamics. These new features will require the reconsideration of well-established paradigms in the way of planning and operating the grid and its associated markets. New tools and models able to handle uncertainty and dynamics will form the required scaffolding to properly capture the behavior of the physical system, along with the value of new technologies and policies. The leverage of this knowledge will facilitate the design of new architectures to organize power and energy systems and their associated markets. This work presents several results, tools and models with the goal of contributing to that design objective. A central idea of this thesis is that the definition of products is critical in electricity markets. When markets are constructed with appropriate product definitions in mind, the interference between the physical and the market/financial systems seen in today's markets can be reduced. A key element of evaluating market designs is understanding the impact that salient features of an entropic grid---uncertainty, dynamics, constraints---can have on the electricity markets. Dynamic electricity market models tailored to capture such features are developed in this work. Using a multi-settlement dynamic electricity market, the impact of volatility is investigated. The results show the need to implement policies and technologies able to cope with the volatility of renewable sources. Similarly, using a dynamic electricity market model in which ramping costs are considered, the impacts of those costs on electricity markets are investigated. The key conclusion is that those additional ramping costs, in average terms, are not reflected in electricity prices. These results reveal several difficulties with today's real-time markets. Elements of an alternative architecture to organize these markets are also discussed.

  3. 14 CFR 25.1717 - Circuit protective devices: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1717 Circuit protective devices: EWIS. Electrical wires and cables must be designed and...

  4. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  5. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  6. Preliminary design of an advanced Stirling system for terrestrial solar energy conversion

    NASA Astrophysics Data System (ADS)

    White, M. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    A preliminary design was generated for an advanced Stirling conversion system (ASCS) that will be capable of delivering about 25 kW of electric power to an electric utility grid. Stirling engines are being evaluated for terrestrial solar applications. A two-year task to complete detailed design, fabrication, assembly and testing of an ASCS prototype began in April, 1990. The ASCS is designed to deliver maximum power per year over a range of solar inputs with a design life of 30 years (60,000 h). The ACSC has a long-term cost goal of about $450 per kilowatt, exclusive of the 11-m parabolic dish concentrator. The proposed system includes a Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator. The major thrusts of the preliminary design are described, including material selection for the hot-end components, heat transport system (reflux pool boiler) design, system thermal response, improved manufacturability, FMECA/FTA analysis, updated manufacturing cost estimate, and predicted system performance.

  7. Preliminary design of an advanced Stirling system for terrestrial solar energy conversion

    NASA Technical Reports Server (NTRS)

    White, M. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1990-01-01

    A preliminary design was generated for an advanced Stirling conversion system (ASCS) that will be capable of delivering about 25 kW of electric power to an electric utility grid. Stirling engines are being evaluated for terrestrial solar applications. A two-year task to complete detailed design, fabrication, assembly and testing of an ASCS prototype began in April, 1990. The ASCS is designed to deliver maximum power per year over a range of solar inputs with a design life of 30 years (60,000 h). The ACSC has a long-term cost goal of about $450 per kilowatt, exclusive of the 11-m parabolic dish concentrator. The proposed system includes a Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator. The major thrusts of the preliminary design are described, including material selection for the hot-end components, heat transport system (reflux pool boiler) design, system thermal response, improved manufacturability, FMECA/FTA analysis, updated manufacturing cost estimate, and predicted system performance.

  8. Design of belt conveyor electric control device based on CC-link bus

    NASA Astrophysics Data System (ADS)

    Chen, Goufen; Zhan, Minhua; Li, Jiehua

    2016-01-01

    In view of problem of the existing coal mine belt conveyor is no field bus communication function, two levels belt conveyor electric control system design is proposed based on field bus. Two-stage belt conveyor electric control system consists of operation platform, PLC control unit, various sensors, alarm device and the water spraying device. The error protection is realized by PLC programming, made use of CC-Link bus technology, the data share and the cooperative control came true between host station and slave station. The real-time monitor was achieved by the touch screen program. Practical application shows that the system can ensure the coalmine production, and improve the automatic level of the coalmine transport equipment.

  9. Conceptual design of an advanced Stirling conversion system for terrestrial power generation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A free piston Stirling engine coupled to an electric generator or alternator with a nominal kWe power output absorbing thermal energy from a nominal 100 square meter parabolic solar collector and supplying electric power to a utility grid was identified. The results of the conceptual design study of an Advanced Stirling Conversion System (ASCS) were documented. The objectives are as follows: define the ASCS configuration; provide a manufacturability and cost evaluation; predict ASCS performance over the range of solar input required to produce power; estimate system and major component weights; define engine and electrical power condidtioning control requirements; and define key technology needs not ready by the late 1980s in meeting efficiency, life, cost, and with goalds for the ASCS.

  10. Spacecraft high-voltage power supply construction

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Stern, J. E.

    1975-01-01

    The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing.

  11. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1982-01-01

    Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. Qualification testing, specimens of various types, and a finalized optimum design are projected.

  12. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC

    NASA Technical Reports Server (NTRS)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr

    2014-01-01

    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  13. Monitoring of electric-cardio signals based on DSP

    NASA Astrophysics Data System (ADS)

    Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang

    2008-10-01

    Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.

  14. National Energy with Weather System Simultator (NEWS) Sets Bounds on Cost Effective Wind and Solar PV Deployment in the USA without the Use of Storage.

    NASA Astrophysics Data System (ADS)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. In 2009, we began a large-scale investigation into the characteristics of weather-driven renewables. The project utilized the best available weather data assimilation model to compute high spatial and temporal resolution power datasets for the renewable resources of wind and solar PV. The weather model used is the Rapid Update Cycle for the years of 2006-2008. The team also collated a detailed electrical load dataset for the contiguous USA from the Federal Energy Regulatory Commission for the same three-year period. The coincident time series of electrical load and weather data allows the possibility of temporally correlated computations for optimal design over large geographic areas. The past two years have seen the development of a cost optimization mathematic model that designs electric power systems. The model plans the system and dispatches it on an hourly timescale. The system is designed to be reliable, reduce carbon, reduce variability of renewable resources and move the electricity about the whole domain. The system built would create the infrastructure needed to reduce carbon emissions to 0 by 2050. The advantages of the system is reduced water demain, dual incomes for farmers, jobs for construction of the infrastructure, and price stability for energy. One important simplified test that was run included existing US carbon free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. The study also showed how the price of natural gas fuel influenced the optimal system designed.

  15. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ela, E.; Milligan, M.; Bloom, A.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  16. 50 kWp Photovoltaic Concentrator Application Experiment, Phase I. Final report, 1 June 1978-28 February 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maget, H.J.R.

    1979-06-15

    This program consists of a design study and component development for an experimental 50-kWp photovoltaic concentrator system to supply power to the San Ramon substation of the Pacific Gas and Electric Company. The photovoltaic system is optimized to produce peaking power to relieve the air conditioning load on the PG and E system during summer afternoons; and would therefore displace oil-fired power generation capacity. No electrical storage is required. The experiment would use GaAs concentrator cells with point-focus fresnel lenses operating at 400X, in independent tracking arrays of 440 cells each, generating 3.8 kWp. Fourteen arrays, each 9 feet bymore » 33 feet, are connected electrically in series to generate the 50 kWp. The high conversion efficiency possible with GaAs concentrator cells results in a projected annual average system efficiency (AC electric power output to sunlight input) of better than 15%. The capability of GaAs cells for high temperature operation made possible the design of a total energy option, whereby thermal power from selected arrays could be used to heat and cool the control center for the installation. System design and analysis, fabrication and installation, environmental assessment, and cost projections are described in detail. (WHK)« less

  17. Analysis of integrated photovoltaic-thermal systems using solar concentrators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, M.B.

    1983-01-01

    An integrated photovoltaic-thermal system using solar concentrators utilizes the solar radiation spectrum in the production of electrical and thermal energy. The electrical conversion efficiency of this system decreases with increasing solar cell temperature. Since a high operating temperature is desirable to maximize the quality of thermal output of the planned integrated system, a proper choice of the operating temperature for the unit cell is of vital importance. The analysis predicts performance characteristics of the unit cell by considering the dependence of the heat generation, the heat absorption and the heat transmission on the material properties of the unit cell structure.more » An analytical model has been developed to describe the heat transport phenomena occurring in the unit cell structure. The range of applicability of the one-dimensional and the two-dimensional models, which have closed-form solutions, has been demonstrated. Parametric and design studies point out the requirements for necessary good electrical and thermal performance. A procedure utilizing functional forms of component characteristics in the form of partial coefficients of the dependent variable has been developed to design and operate the integrated system to have a desirable value of the thermal to electrical output ratio both at design and operating modes.« less

  18. 40 CFR 273.9 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrically connected electrochemical cells which is designed to receive, store, and deliver electric energy. An electrochemical cell is a system consisting of an anode, cathode, and an electrolyte, plus such...

  19. 40 CFR 273.9 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electrically connected electrochemical cells which is designed to receive, store, and deliver electric energy. An electrochemical cell is a system consisting of an anode, cathode, and an electrolyte, plus such...

  20. Toward an electrical power utility for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.

    1989-01-01

    Future electrical power requirements for space exploration are discussed. Megawatts of power with enough reliability for multi-year missions and with enough flexibility to adapt to needs unanticipated at design time are some of the criteria which space power systems must be able to meet. The reasons for considering the power management and distribution in the various systems, from a total mission perspective rather than simply extrapolating current spacecraft design practice, are discussed. A utility approach to electric power integrating requirements from a broad selection of current development programs, with studies in which both space and terrestrial technologies are conceptually applied to exploration mission scenarios, is described.

  1. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staunton, R. H.; Ayers, C. W.; Marlino, L. D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200–1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) – Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available. This report summarizes vehicle-level and subsystem-level test results obtained for the 2004 Prius and various electrical and mechanical subassemblies of its hybrid electric drive system. The primary objective of these tests was to (1) characterize the electrical and mechanical performance of the 2004 Prius, and (2) map the performance of the inverter/motor system over the full design speed and load ranges.« less

  2. A nuclear electric propulsion vehicle for planetary exploration

    NASA Technical Reports Server (NTRS)

    Pawlik, E. V.; Phillips, W. M.

    1976-01-01

    A study is currently underway at JPL to design a nuclear electric-propulsion vehicle capable of performing detailed exploration of the outer planets. Evaluation of the design indicates that it is also applicable to orbit raising. Primary emphasis is on the power subsystem. Work on the design of the power system, the mission rationale, and preliminary spacecraft design are summarized. A propulsion system at a 400-kWe power level with a specific weight goal of no more than 25-kg/kW was selected for this study. The results indicate that this goal can be realized along with compatibility with the shuttle launch-vehicle constraints.

  3. Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.

    2013-01-01

    Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.

  4. NASA wiring for space applications program test results

    NASA Astrophysics Data System (ADS)

    Stavnes, Mark; Hammoud, Ahmad

    1995-11-01

    The electrical power wiring tests results from the NASA Wiring for Space Applications program are presented. The goal of the program was to develop a base for the building of a lightweight, arc track-resistant electrical wiring system for aerospace applications. This new wiring system would be applied to such structures as pressurized modules, trans-atmospheric vehicles, LEO/GEO environments, and lunar and Martian environments. Technological developments from this program include the fabrication of new insulating materials, the production of new wiring constructions, an improved system design, and an advanced circuit protection design.

  5. MSFC Skylab airlock module, volume 1. [systems design and performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The history and development of the Skylab Airlock Module and Payload Shroud is presented from initial concept through final design. A summary is given of the Airlock features and systems. System design and performance are presented for the Spent Stage Experiment Support Module, structure and mechanical systems, mass properties, thermal and environmental control systems, EVA/IVA suite system, electrical power system, sequential system, sequential system, and instrumentation system.

  6. Development of Servo Motor Trainer for Basic Control System in Laboratory of Electrical Engineering Control System Faculty of Engineering Universitas Negeri Surabaya

    NASA Astrophysics Data System (ADS)

    Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi

    2018-04-01

    In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.

  7. Dish Stirling solar receiver program

    NASA Technical Reports Server (NTRS)

    Haglund, R. A.

    1980-01-01

    A technology demonstration of a Dish Stirling solar thermal electric system can be accomplished earlier and at a much lower cost than previous planning had indicated by employing technical solutions that allow already existing hardware, with minimum modifications, to be integrated into a total system with a minimum of development. The DSSR operates with a modified United Stirling p-40 engine/alternator and the JPL Test Bed Concentrator as a completely integrated solar thermal electric system having a design output of 25 kWe. The system is augmented by fossil fuel combustion which ensures a continuous electrical output under all environmental conditions. Technical and economic studies by government and industry in the United States and abroad identify the Dish Stirling solar electric system as the most appropriate, efficient and economical method for conversion of solar energy to electricity in applications when the electrical demand is 10 MWe and less.

  8. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  9. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  10. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  11. Packaging - Materials review

    NASA Astrophysics Data System (ADS)

    Herrmann, Matthias

    2014-06-01

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device, valve, etc.), chemical inertness, cost issues, and others. Finally, proper cell design has to be considered for effective thermal management (i.e. cooling and heating) of battery packs.

  12. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...

  13. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...

  14. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...

  15. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...

  16. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...

  17. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.

    2017-01-01

    NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

  18. Integrated thermal management of a hybrid electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traci, R.M.; Acebal, R.; Mohler, T.

    1999-01-01

    A thermal management methodology, based on the Vehicle Integrated Thermal Management Analysis Code (VITMAC), has been developed for a notional vehicle employing the All-Electric Combat Vehicle (AECV) concept. AECV uses a prime power source, such as a diesel, to provide mechanical energy which is converted to electrical energy and stored in a central energy storage system consisting of flywheels, batteries and/or capacitors. The combination of prime power and stored energy powers the vehicle drive system and also advanced weapons subsystems such as an ETC or EM gun, electrically driven lasers, an EM armor system and an active suspension. Every majormore » system is electrically driven with energy reclamation when possible from braking and gun recoil. Thermal management of such a complicated energy transfer and utilization system is a major design consideration due to the substantial heat rejection requirements. In the present paper, an overall integrated thermal management system (TMS) is described which accounts for energy losses from each subsystem component, accepts the heat using multiple coolant loops and expels the heat from the vehicle. VITMAC simulations are used to design the TMS and to demonstrate that a conventional TMS approach is capable of successfully handling vehicle heat rejection requirements under stressing operational conditions.« less

  19. The status of power supplies for primary electric propulsion in the U.S.A.

    NASA Technical Reports Server (NTRS)

    Jones, R. M.; Scott-Monck, J. A.

    1984-01-01

    This paper reviews the status of and requirements on solar electric and nuclear electric power supplies for primary electric propulsion missions. The power supply requirements of power level, specific mass (kg/kWe) and lifetime are defined as a function of the mission and electric propulsion system characteristics for planetary missions. The technology status of planar and concentrator arrays is discussed. Nuclear reactors and thermoelectric, thermionic, Brayton and Rankine conversion technologies are reviewed, as well as recent nuclear power system design concepts and program activity. Technology projections for power supplies applicable to primary electric propulsion missions are included.

  20. The use of mathematics and electric circuit simulator software in the learning process of wireless power transfer for electrical engineering students

    NASA Astrophysics Data System (ADS)

    Habibi, Muhammad Afnan; Fall, Cheikh; Setiawan, Eko; Hodaka, Ichijo; Wijono, Hasanah, Rini Nur

    2017-09-01

    Wireless Power Transfer (WPT) isa technique to deliver the electrical power from the source to the load without using wires or conductors. The physics of WPT is well known and basically learned as a course in high school. However, it is very recent that WPT is useful in practical situation: it should be able to transfer electric power in a significant efficiency. It means that WPT requires not much knowledge to university students but may attract students because of cutting edge technique of WPT. On the other hand, phenomena of WPT is invisible and sometimes difficult to imagine. The objective of this paper is to demonstrate the use of mathematics and an electric circuit simulator using MATHEMATICA software and LT-SPICE software in designing a WPT system application. It brings to a conclusion that the students as well the designer can take the benefit of the proposed method. By giving numerical values to circuit parameters, students acquires the power output and efficiency of WPT system. The average power output as well as the efficiency of the designed WPT which resonance frequency set on the system,leads it to produce high output power and better efficiency.

  1. Design of bipolar, flowing-electrolyte zinc-bromine electric-vehicle battery systems

    NASA Astrophysics Data System (ADS)

    Malachesky, P. A.; Bellows, R. J.; Einstein, H. E.; Grimes, P. G.; Newby, K.; Young, A.

    1983-01-01

    The integration of bipolar, flowing electrolyte zinc-bromine technology into a viable electric vehicle battery system requires careful analysis of the requirements placed on the battery system by the EV power train. In addition to the basic requirement of an appropriate battery voltage and power density, overall battery system energy efficiency must also be considered and parasitic losses from auxiliaries such as pumps and shunt current protection minimized. An analysis of the influence of these various factors on zinc-bromine EV battery system design has been carried out for two types of EV propulsion systems. The first of these is a nominal 100V dc system, while the second is a high voltage (200V dc) system as might be used with an advanced design ac propulsion system. Battery performance was calculated using an experimentally determined relationship which expresses battery voltage as a function of current density and state-of-charge.

  2. Computational models of an inductive power transfer system for electric vehicle battery charge

    NASA Astrophysics Data System (ADS)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  3. Applicability of Long Duration Exposure Facility environmental effects data to the design of Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene

    1992-01-01

    Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.

  4. Proceedings of the International Conference on the Performance of Off-Road Vehicles and Machines (8th). Volume 3. Held at Cambridge England, on August 5-11, 1984.

    DTIC Science & Technology

    1984-08-01

    energy-savIng propulsion systems for tracked all- -terrain vehicles with extremely high mobility. Mong many proposed idea, Sthoeof hybrid -electric...propulsion system are dominant. Hybrid -electric propulsion system are hybrids In which at least one of the energy stores, sources or convertors can...Aer’teed b*.of I F~ Po ’edfJr* dema. 1046 Modern newly designed energy-saving hybrid -electric propulsion systems work on tracked all-terrain vehicles are

  5. Strategic avionics technology definition studies. Subtask 3-1A3: Electrical Actuation (ELA) Systems Test Facility

    NASA Technical Reports Server (NTRS)

    Rogers, J. P.; Cureton, K. L.; Olsen, J. R.

    1994-01-01

    Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.

  6. MSFC Skylab electrical power systems mission evaluation

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.

    1974-01-01

    The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.

  7. MIT-CSR XIS Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report outlines the proposers' progress toward MIT's contribution to the X-Ray Imaging Spectrometer (XIS) experiment on the Japanese ASTRO-E mission. The report discusses electrical system design, mechanical system design, and ground support equipment.

  8. System performance predictions for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Green, Robert D.; Follo, Jeffrey C.

    1993-01-01

    Space Station Freedom Electric Power System (EPS) capability to effectively deliver power to housekeeping and user loads continues to strongly influence Freedom's design and planned approaches for assembly and operations. The EPS design consists of silicon photovoltaic (PV) arrays, nickel-hydrogen batteries, and direct current power management and distribution hardware and cabling. To properly characterize the inherent EPS design capability, detailed system performance analyses must be performed for early stages as well as for the fully assembled station up to 15 years after beginning of life. Such analyses were repeatedly performed using the FORTRAN code SPACE (Station Power Analysis for Capability Evaluation) developed at the NASA Lewis Research Center over a 10-year period. SPACE combines orbital mechanics routines, station orientation/pointing routines, PV array and battery performance models, and a distribution system load-flow analysis to predict EPS performance. Time-dependent, performance degradation, low earth orbit environmental interactions, and EPS architecture build-up are incorporated in SPACE. Results from two typical SPACE analytical cases are presented: (1) an electric load driven case and (2) a maximum EPS capability case.

  9. A 15kWe (nominal) solar thermal electric power conversion concept definition study: Steam Rankine reheat reciprocator system

    NASA Technical Reports Server (NTRS)

    Fuller, H.; Demler, R.; Poulin, E.; Dantowitz, P.

    1979-01-01

    An evaluation was made of the potential of a steam Rankine reheat reciprocator engine to operate at high efficiency in a point-focusing distributed receiver solar thermal-electric power system. The scope of the study included the engine system and electric generator; not included was the solar collector/mirror or the steam generator/receiver. A parametric analysis of steam conditions was completed leading to the selection of 973 K 12.1 MPa as the steam temperature/pressure for a conceptual design. A conceptual design was completed for a two cylinder/ opposed engine operating at 1800 rpm directly coupled to a commercially available induction generator. A unique part of the expander design is the use of carbon/graphite piston rings to eliminate the need for using oil as an upper cylinder lubricant. The evaluation included a system weight estimate of 230 kg at the mirror focal point with the condenser mounted separately on the ground. The estimated cost of the overall system is $1932 or $90/kW for the maximum 26 kW output.

  10. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  11. Which Factors Can Protect Against Range Stress in Everyday Usage of Battery Electric Vehicles? Toward Enhancing Sustainability of Electric Mobility Systems.

    PubMed

    Franke, Thomas; Rauh, Nadine; Günther, Madlen; Trantow, Maria; Krems, Josef F

    2016-02-01

    The objective of the present research was to advance understanding of factors that can protect against range anxiety, specifically range stress in everyday usage of battery electric vehicles (BEVs). Range anxiety is a major barrier to the broad adoption of sustainable electric mobility systems. To develop strategies aimed at overcoming range anxiety, a clear understanding of this phenomenon and influencing factors is needed. We examined range anxiety in the form of everyday range stress (ERS) in a field study setting. Seventy-two customers leased a BEV for 3 months. The field study was specifically designed to enable examination of factors that can contribute to lower ERS. In particular, study design and sample recruitment were targeted at generating vehicle usage profiles that would lead to relatively frequent experience of situations requiring active management of range resources and thereby potentially leading to experienced range stress. Less frequent encounter with critical range situations, higher practical experience, subjective range competence, tolerance of low range, and experienced trustworthiness of the range estimation system were related to lower ERS. Moreover, range stress was found to be related to range satisfaction and BEV acceptance. The results underline the importance of the human factors perspective to overcome range anxiety and enhance sustainability of electric mobility systems. Trustworthiness should be employed as a key benchmark variable in the design of range estimation systems, and assistance systems should target increasing drivers' adaptive capacity (i.e., resilience) to cope with critical range situations. © 2015, Human Factors and Ergonomics Society.

  12. Low-Mass, Low-Power Hall Thruster System

    NASA Technical Reports Server (NTRS)

    Pote, Bruce

    2015-01-01

    NASA is developing an electric propulsion system capable of producing 20 mN thrust with input power up to 1,000 W and specific impulse ranging from 1,600 to 3,500 seconds. The key technical challenge is the target mass of 1 kg for the thruster and 2 kg for the power processing unit (PPU). In Phase I, Busek Company, Inc., developed an overall subsystem design for the thruster/cathode, PPU, and xenon feed system. This project demonstrated the feasibility of a low-mass power processing architecture that replaces four of the DC-DC converters of a typical PPU with a single multifunctional converter and a low-mass Hall thruster design employing permanent magnets. In Phase II, the team developed an engineering prototype model of its low-mass BHT-600 Hall thruster system, with the primary focus on the low-mass PPU and thruster. The goal was to develop an electric propulsion thruster with the appropriate specific impulse and propellant throughput to enable radioisotope electric propulsion (REP). This is important because REP offers the benefits of nuclear electric propulsion without the need for an excessively large spacecraft and power system.

  13. Electrical Grounding Architecture for Unmanned Spacecraft

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook is approved for use by NASA Headquarters and all NASA Centers and is intended to provide a common framework for consistent practices across NASA programs. This handbook was developed to describe electrical grounding design architecture options for unmanned spacecraft. This handbook is written for spacecraft system engineers, power engineers, and electromagnetic compatibility (EMC) engineers. Spacecraft grounding architecture is a system-level decision which must be established at the earliest point in spacecraft design. All other grounding design must be coordinated with and be consistent with the system-level architecture. This handbook assumes that there is no one single 'correct' design for spacecraft grounding architecture. There have been many successful satellite and spacecraft programs from NASA, using a variety of grounding architectures with different levels of complexity. However, some design principles learned over the years apply to all types of spacecraft development. This handbook summarizes those principles to help guide spacecraft grounding architecture design for NASA and others.

  14. Performance Testing of Thermal Cutting Systems for Sweet Pepper Harvesting Robot in Greenhouse Horticulture

    NASA Astrophysics Data System (ADS)

    Bachche, Shivaji; Oka, Koichi

    2013-03-01

    This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.

  15. Determination of power and moment on shaft of special asynchronous electric drives

    NASA Astrophysics Data System (ADS)

    Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.

    2018-03-01

    In the article, questions and tasks of determination of power and the moment on a shaft of special asynchronous electric drives are considered. Use of special asynchronous electric drives in mechanical engineering and other industries is relevant. The considered types of electric drives possess the improved mass-dimensional indicators in comparison with singleengine systems. Also these types of electric drives have constructive advantages; the improved characteristics allow one to realize the technological process. But creation and design of new electric drives demands adjustment of existing or development of new methods and approaches of calculation of parameters. Determination of power and the moment on a shaft of special asynchronous electric drives is the main objective during design of electric drives. This task has been solved based on a method of electromechanical transformation of energy.

  16. Optimization of Hybrid-Electric Propulsion Systems for Small Remotely-Piloted Aircraft

    DTIC Science & Technology

    2011-03-24

    automobile manufacturer has developed its version of a HEV. In 2008, a group from the University of Padova, Italy designed a surface-mounted permanent...File:Hybridpeak.png [8] Ernest H. Wakefield, History of the Electric Automobile : Hybrid Electric Vehicles. Warrendale, PA: Society of Automotive

  17. Robust planning of dynamic wireless charging infrastructure for battery electric buses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhaocai; Song, Ziqi

    Battery electric buses with zero tailpipe emissions have great potential in improving environmental sustainability and livability of urban areas. However, the problems of high cost and limited range associated with on-board batteries have substantially limited the popularity of battery electric buses. The technology of dynamic wireless power transfer (DWPT), which provides bus operators with the ability to charge buses while in motion, may be able to effectively alleviate the drawbacks of electric buses. In this paper, we address the problem of simultaneously selecting the optimal location of the DWPT facilities and designing the optimal battery sizes of electric buses formore » a DWPT electric bus system. The problem is first constructed as a deterministic model in which the uncertainty of energy consumption and travel time of electric buses is neglected. The methodology of robust optimization (RO) is then adopted to address the uncertainty of energy consumption and travel time. The affinely adjustable robust counterpart (AARC) of the deterministic model is developed, and its equivalent tractable mathematical programming is derived. Both the deterministic model and the robust model are demonstrated with a real-world bus system. The results of our study demonstrate that the proposed deterministic model can effectively determine the allocation of DWPT facilities and the battery sizes of electric buses for a DWPT electric bus system; and the robust model can further provide optimal designs that are robust against the uncertainty of energy consumption and travel time for electric buses.« less

  18. Robust planning of dynamic wireless charging infrastructure for battery electric buses

    DOE PAGES

    Liu, Zhaocai; Song, Ziqi

    2017-10-01

    Battery electric buses with zero tailpipe emissions have great potential in improving environmental sustainability and livability of urban areas. However, the problems of high cost and limited range associated with on-board batteries have substantially limited the popularity of battery electric buses. The technology of dynamic wireless power transfer (DWPT), which provides bus operators with the ability to charge buses while in motion, may be able to effectively alleviate the drawbacks of electric buses. In this paper, we address the problem of simultaneously selecting the optimal location of the DWPT facilities and designing the optimal battery sizes of electric buses formore » a DWPT electric bus system. The problem is first constructed as a deterministic model in which the uncertainty of energy consumption and travel time of electric buses is neglected. The methodology of robust optimization (RO) is then adopted to address the uncertainty of energy consumption and travel time. The affinely adjustable robust counterpart (AARC) of the deterministic model is developed, and its equivalent tractable mathematical programming is derived. Both the deterministic model and the robust model are demonstrated with a real-world bus system. The results of our study demonstrate that the proposed deterministic model can effectively determine the allocation of DWPT facilities and the battery sizes of electric buses for a DWPT electric bus system; and the robust model can further provide optimal designs that are robust against the uncertainty of energy consumption and travel time for electric buses.« less

  19. An assessment of alternative fuel cell designs for residential and commercial cogeneration

    NASA Technical Reports Server (NTRS)

    Wakefield, R. A.

    1980-01-01

    A comparative assessment of three fuel cell systems for application in different buildings and geographic locations is presented. The study was performed at the NASA Lewis Center and comprised the fuel cell design, performance in different conditions, and the economic parameters. Applications in multifamily housing, stores and hospitals were considered, with a load of 10kW-1 MW. Designs were traced through system sizing, simulation/evaluation, and reliability analysis, and a computer simulation based on a fourth-order representation of a generalized system was performed. The cells were all phosphoric acid type cells, and were found to be incompatible with gas/electric systems and more favorable economically than the gas/electric systems in hospital uses. The methodology used provided an optimized energy-use pattern and minimized back-up system turn-on.

  20. Automated Ground Umbilical Systems (AGUS) Project

    NASA Technical Reports Server (NTRS)

    Gosselin, Armand M.

    2007-01-01

    All space vehicles require ground umbilical systems for servicing. Servicing requirements can include, but are not limited to, electrical power and control, propellant loading and venting, pneumatic system supply, hazard gas detection and purging as well as systems checkout capabilities. Of the various types of umbilicals, all require several common subsystems. These typically include an alignment system, mating and locking system, fluid connectors, electrical connectors and control !checkout systems. These systems have been designed to various levels of detail based on the needs for manual and/or automation requirements. The Automated Ground Umbilical Systems (AGUS) project is a multi-phase initiative to develop design performance requirements and concepts for launch system umbilicals. The automation aspect minimizes operational time and labor in ground umbilical processing while maintaining reliability. This current phase of the project reviews the design, development, testing and operations of ground umbilicals built for the Saturn, Shuttle, X-33 and Atlas V programs. Based on the design and operations lessons learned from these systems, umbilicals can be optimized for specific applications. The product of this study is a document containing details of existing systems and requirements for future automated umbilical systems with emphasis on design-for-operations (DFO).

  1. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT... magnitudes and directions when the inner tank is fully loaded and the car is equipped with a conventional... electrically, by either the support system, piping, or a separate electrical connection of approved design. ...

  2. Research on the full life cycle management system of smart electric energy meter

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  3. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to the technology of the process, and information pertaining to the equipment in the process. (b...) Information pertaining to the technology of the process. (1) Information concerning the technology of the...) Electrical classification; (iv) Relief system design and design basis; (v) Ventilation system design; (vi...

  4. 40 CFR 86.1803-01 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procurement. Auxiliary Emission Control Device (AECD) means any element of design which senses temperature... components are those components which are designed primarily for emission control, or whose failure may... system as a means of providing electrical energy. Element of design means any control system (i.e...

  5. Locker Rooms: The Durable Design.

    ERIC Educational Resources Information Center

    Viklund, Roy; Coons, John

    1997-01-01

    Offers advice on heavy-use locker-room design that provides easier maintenance and vandal resistance. Design features and materials used for flooring, ceilings, and walls are addressed as are built-in systems and equipment, toilet and shower fixtures and partitions, lockers, and mechanical and electrical systems. (GR)

  6. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to the technology of the process, and information pertaining to the equipment in the process. (b...) Information pertaining to the technology of the process. (1) Information concerning the technology of the...) Electrical classification; (iv) Relief system design and design basis; (v) Ventilation system design; (vi...

  7. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the technology of the process, and information pertaining to the equipment in the process. (b...) Information pertaining to the technology of the process. (1) Information concerning the technology of the...) Electrical classification; (iv) Relief system design and design basis; (v) Ventilation system design; (vi...

  8. A study of a space communication system for the control and monitoring of the electric distribution system. Volume 2: Supporting data and analyses

    NASA Technical Reports Server (NTRS)

    Vaisnys, A.

    1980-01-01

    It is technically feasible to design a satellite communication system to serve the United States electric utility industry's needs relative to load management, real-time operations management, remote meter reading and to determine the costs of various elements of the system. The functions associated with distribution automation and control and communication system requirements are defined. Factors related to formulating viable communication concepts, the relationship of various design factors to utility operating practices, and the results of the cost analysis are discussed The system concept and several ways in which the concept could be integrated into the utility industry are described.

  9. The ERDA/LeRC photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.

    1977-01-01

    A test facility was designed, and built to provide a place where photovoltaic systems may be assembled and electrically configured, to evaluate system performance and characteristics. The facility consists of a solar cell array of an initial 10-kW peak power rating, test hardware for several alternate methods of power conditioning, a variety of loads, an electrical energy storage system, and an instrumentation and data acquisition system.

  10. Document for 270 Voltage Direct Current (270 V dc) System

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The paper presents the technical design and application information established by the SAE Aerospace Recommended Practice concerning the generation, distribution, control, and utilization of aircraft 270 V dc electrical power systems and support equipment. Also presented are references and definitions making it possible to compare various electrical systems and components. A diagram of the generic 270 V Direct Current High-Voltage Direct System is included.

  11. Electrical characterization of a Space Station Freedom alpha utility transfer assembly

    NASA Technical Reports Server (NTRS)

    Yenni, Edward J.

    1994-01-01

    Electrical power, command signals and data are transferred across the Space Station Freedom solar alpha rotary joint by roll rings, which are incorporated within the Utility Transfer Assembly (UTA) designed and manufactured by Honeywell Space Systems Operations. A developmental Model of the UTA was tested at the NASA Lewis Research Center using the Power Management and Distribution DC test bed. The objectives of these tests were to obtain data for calibrating system models and to support final design of qualification and flight units. This testing marked the first time the UTA was operated at high power levels and exposed to electrical conditions similar to that which it will encounter on the actual Space Station. Satisfactory UTA system performance was demonstrated within the scope of this testing.

  12. SMS engineering design report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The engineering design for the Shuttle Missions Simulator is presented in sections, with each section representing a subsystem development activity. Subsystems covered include: electrical power system; mechanical power system; main propellant and external tank; solid rocket booster; reaction control system; orbital maneuvering system; guidance, navigation, and control; data processing system; mission control center interface; and image display system.

  13. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 3: General purpose spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) general purpose aircraft segment are presented. The satellite is designed to provide attitude stabilization, electrical power, and a communications data handling subsystem which can support various mission peculiar subsystems. The various specifications considered include the following: (1) structures subsystem, (2) thermal control subsystem, (3) communications and data handling subsystem module, (4) attitude control subsystem module, (5) power subsystem module, and (6) electrical integration subsystem.

  14. Mission Impact Through Neuro-Inspired Design (MIND) Laboratory: Design Principles and Performance Characteristics

    DTIC Science & Technology

    2013-09-01

    sprinkler , fire alarm, and mass-notification systems ). Piping required for the sprinkler system uses dielectric couplers at each penetration of the...environment for neuroscience research designed for studying Soldier- system interactions in support of the U.S. Army Research Laboratory’s (ARL’s...Engineers, of Towson, MD, —designed the heating, ventilation, and air conditioning and electrical systems ; Hi-Tech Services, Inc., of Ferndale, WA

  15. 40 CFR 60.270a - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...

  16. 40 CFR 60.270a - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...

  17. 40 CFR 60.270a - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...

  18. 40 CFR 60.270a - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...

  19. 40 CFR 60.270a - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...

  20. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  1. Cables and connectors for Large Space System Technology (LSST)

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1980-01-01

    The effect of the environment and extravehicular activity/remote assembly operations on the cables and connectors for spacecraft with metallic and/or nonmetallic structures was examined. Cable and connector philosophy was outlined for the electrical systems and electronic compartments which contain high-voltage, high-power electrical and electronic equipment. The influence of plasma and particulates on the system is analyzed and the effect of static buildup on the spacecraft electrical system discussed. Conceptual cable and connector designs are assessed for capability to withstand high current and high voltage without danger of arcs and electromagnetic interference. The extravehicular activites required of the space station and/or supply spacecraft crew members to join and inspect the electrical system, using manual or remote assembly construction are also considered.

  2. Advanced electric motor technology: Flux mapping

    NASA Technical Reports Server (NTRS)

    Doane, George B., III; Campbell, Warren; Brantley, Larry W.; Dean, Garvin

    1992-01-01

    This report contains the assumptions, mathematical models, design methodology, and design points involved with the design of an electromechanical actuator (EMA) suitable for directing the thrust vector of a large MSFC/NASA launch vehicle. Specifically the design of such an actuator for use on the upcoming liquid fueled National Launch System (NLS) is considered culminating in a point design of both the servo system and the electric motor needed. A major thrust of the work is in selecting spur gear and roller screw reduction ratios to achieve simultaneously wide bandwidth, maximum power transfer, and disturbance rejection while meeting specified horsepower requirements at a given stroking speed as well as a specified maximum stall force. An innovative feedback signal is utilized in meeting these diverse objectives.

  3. Study of Method for Designing the Power and the Capacitance of Fuel Cells and Electric Double-Layer Capacitors of Hybrid Railway Vehicle

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Kondo, Keiichiro

    A hybrid railway traction system with fuel cells (FCs) and electric double layer-capacitors (EDLCs) is discussed in this paper. This system can save FC costs and absorb the regenerative energy. A method for designing FCs and EDLCs on the basis of the output power and capacitance, respectively, has not been reported, even though their design is one of the most important technical issues encountered in the design of hybrid railway vehicles. Such design method is presented along with a train load profile and an energy management strategy. The design results obtained using the proposed method are verified by performing numerical simulations of a running train. These results reveal that the proposed method for designing the EDLCs and FCs on the basis of the capacitance and power, respectively, and by using a method for controlling the EDLC voltage is sufficiently effective in designing efficient EDLCs and FCs of hybrid railway traction systems.

  4. Electrically insulated MLI and thermal anchor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Koji; Furukawa, Masato; Murakami, Haruyuki

    2014-01-29

    The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter methodmore » and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.« less

  5. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  6. 13kW Advanced Electric Propulsion Flight System Development and Qualification

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry; Allen, May; Myers, Roger; Soendker, Erich; Welander, Benjamin; Tolentino, Artie; Hablitzel, Sam; Yeatts, Chyrl; Xu, Steven; Sheehan, Chris; hide

    2017-01-01

    The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.

  7. Shock to the system: How catastrophic events and institutional relationships impact Japanese energy policymaking, resilience, and innovation

    NASA Astrophysics Data System (ADS)

    Sklarew, Jennifer F.

    External shocks do not always generate energy system transformation. This dissertation examines how government relationships with electric utilities and the public impact whether shocks catalyze energy system change. The study analyzes Japanese energy policymaking from the oil crises through the Fukushima nuclear disaster. Findings reveal that policymakers' cooperation with and clout over electric utilities and the public can enable shocks to transform energy systems. When electric utilities wield clout, public trust in and influence on the government determine the existing system's resilience and the potential for a new system to emerge. Understanding this effect informs energy policy design and innovation.

  8. Energy harvesting concepts for small electric unmanned systems

    NASA Astrophysics Data System (ADS)

    Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.

    2004-07-01

    In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.

  9. A pilot scale electrical infrared dry-peeling system for tomatoes: design and performance evaluation

    USDA-ARS?s Scientific Manuscript database

    A pilot scale infrared dry-peeling system for tomatoes was designed and constructed. The system consisted of three major sections including the IR heating, vacuum, and pinch roller sections. The peeling performance of the system was examined under different operational conditions using tomatoes with...

  10. Micro-cogen AMTEC systems for residential and transportation opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mital, R.; Rasmussen, J.R.; Hunt, T.

    1998-07-01

    This paper describes the design and anticipated performance of high efficiency AMTEC systems suitable for natural gas fired micro-cogeneration for residential and transportation applications. AMTEC systems have a relatively flat efficiency curve from a few tens of watts to several kilowatts. This unique quality of AMTEC makes it well suited for micro-cogen as opposed to other technologies, such as internal combustion (IC) engines, which lose efficiency at low power levels. AMTEC also offers additional advantages of high efficiency, high reliability, low noise and low emissions. Combustion heated AMTEC cogeneration systems can also be used in trucks and trailers to keepmore » the diesel engines and cabs warm, provide electrical power for charging the battery and maintain power to the electrical systems during stand down periods. A market study indicates that residential micro-cogen units should have a design generating capacity between 0.5--2 kW. AMTEC systems producing 500 W net electric power have been designed and are presently being built. A 350 W prototype unit is being manufactured for a European firm as a trial unit for central heat and power from a home furnace. Modular one kilowatt units are also being designed that will allow combination into multi-kilowatt systems. The results of feasibility studies focused on price/Watt, efficiency, noise, emission, vibrations, expected lifetime and maintenance cost are also presented in this paper.« less

  11. Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system

    NASA Astrophysics Data System (ADS)

    Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin

    2017-03-01

    In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.

  12. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  13. AMTEC radioisotope power system design and analysis for Pluto Express Fly-By

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.; Sievers, R.K.

    1997-12-31

    The Pluto Express Fly-By program requires a Radioisotope Power System (RPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, high-efficiency RPS to power the Pluto Express Fly-By spacecraft. An AMTEC-based RPS using the General Purpose Heat Source (GPHS) has been conceptually designed to satisfy the Pluto Express power requirements. Integrated AMTEC cell and system thermal/electrical design analyses, structural design analyses, and mass analyses were performed to define an optimum system design. Using fresh radioisotope fuel at beginning of mission, the RPS producesmore » 102 watts of power, has a mass of 8.35 kg (specific power density = 12.2 watts/kg), with a system conversion efficiency of 20.3%. Mass/power scale-up estimates have also been generated, indicating that a 150-watt version of this RPS would weigh approximately 11.3 kg. This paper presents and discusses the key features of this RPS design, the design and analysis methodology, and the numerous system and AMTEC cell tradeoff studies establishing the optimum AMTEC-based RPS.« less

  14. Thermal management of batteries

    NASA Astrophysics Data System (ADS)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  15. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications

    PubMed Central

    MacKay, Scott; Hermansen, Peter; Wishart, David; Chen, Jie

    2015-01-01

    In this paper, we describe a point-of-care biosensor design. The uniqueness of our design is in its capability for detecting a wide variety of target biomolecules and the simplicity of nanoparticle enhanced electrical detection. The electrical properties of interdigitated electrodes (IDEs) and the mechanism for gold nanoparticle-enhanced impedance-based biosensor systems based on these electrodes are simulated using COMSOL Multiphysics software. Understanding these properties and how they can be affected is vital in designing effective biosensor devices. Simulations were used to show electrical screening develop over time for IDEs in a salt solution, as well as the electric field between individual digits of electrodes. Using these simulations, it was observed that gold nanoparticles bound closely to IDEs can lower the electric field magnitude between the digits of the electrode. The simulations are also shown to be a useful design tool in optimizing sensor function. Various different conditions, such as electrode dimensions and background ion concentrations, are shown to have a significant impact on the simulations. PMID:26364638

  16. Practical application of power conditioning to electric propulsion for passenger vehicles

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Lee, F. C.; Nehl, T. W.; Overton, B. P.

    1980-01-01

    A functional model 15 HP, 120 volt, 4-pole, 7600 r.p.m. samarium-cobalt permanent magnet type brushless dc motor-transistorized power conditioner unit was designed, fabricated and tested for specific use in propulsion of electric passenger vehicles. This new brushless motor system, including its power conditioner package, has a number of important advantages over existing systems such as reduced weight and volume, higher reliability, and potential for improvements in efficiencies. These advantages are discussed in this paper in light of the substantial test data collected during experimentation with the newly developed conditioner motor propulsion system. Details of the power conditioner design philosophy and particulars are given in the paper. Also, described here are the low level electronic design and operation in relation to the remainder of the system.

  17. Power processing for electric propulsion

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Herron, B. G.; Gant, G. D.

    1975-01-01

    The potential of achieving up to 30 per cent more spacecraft payload or 50 per cent more useful operating life by the use of electric propulsion in place of conventional cold gas or hydrazine systems in science, communications, and earth applications spacecraft is a compelling reason to consider the inclusion of electric thruster systems in new spacecraft design. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. This paper will present electron bombardment ion thruster requirements; review the performance characteristics of present power processing systems; discuss design philosophies and alternatives in areas such as inverter type, arc protection, and control methods; and project future performance potentials for meeting goals in the areas of power processor weight (10 kg/kW), efficiency (approaching 92 per cent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).

  18. SNAP-8 power conversion system design review

    NASA Technical Reports Server (NTRS)

    Lopez, L. P.

    1970-01-01

    The conceptual design of the SNAP-8 electrical generating system configurations are reviewed including the evolution of the PCS configuration, and the current concepts. The reliabilities of two alternative PCS-G heat rejection loop configurations with two radiator design concepts are also reviewed. A computer program for calculating system pressure loss using multiple-loop flow analysis is included.

  19. Using Intelligent System Approaches for Simulation of Electricity Markets

    NASA Astrophysics Data System (ADS)

    Hamagami, Tomoki

    Significances and approaches of applying intelligent systems to artificial electricity market is discussed. In recent years, with the moving into restructuring of electric system in Japan, the deregulation for the electric market is progressing. The most major change of the market is a founding of JEPX (Japan Electric Power eXchange.) which is expected to help lower power bills through effective use of surplus electricity. The electricity market designates exchange of electric power between electric power suppliers (supplier agents) themselves. In the market, the goal of each supplier agents is to maximize its revenue for the entire trading period, and shows complex behavior, which can model by a multiagent platform. Using the multiagent simulations which have been studied as “artificial market" helps to predict the spot prices, to plan investments, and to discuss the rules of market. Moreover, intelligent system approaches provide for constructing more reasonable policies of each agents. This article, first, makes a brief summary of the electricity market in Japan and the studies of artificial markets. Then, a survey of tipical studies of artificial electricity market is listed. Through these topics, the future vision is presented for the studies.

  20. Mechatronic System Design Course for Undergraduate Programmes

    ERIC Educational Resources Information Center

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-01-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching…

  1. NSTX Electrical Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Ilic; E. Baker; R. Hatcher

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in themore » Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.« less

  2. Electric vehicle energy management system

    NASA Astrophysics Data System (ADS)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  3. Skylab technology electrical power system

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.; Smith, O. B.; Nassen, H. S.

    1974-01-01

    The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.

  4. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.

  5. Solar water heating system for a lunar base

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  6. Design of Electrical Systems for Rocket Propulsion Test Facilities at the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Hughes, Mark S.; Davis, Dawn M.; Bakker, Henry J.; Jensen, Scott L.

    2007-01-01

    This viewgraph presentation reviews the design of the electrical systems that are required for the testing of rockets at the Rocket Propulsion Facility at NASA Stennis Space Center (NASA SSC). NASA/SSC s Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware. These must be accurate reliable comprehensive and timely. Data acquisition in a rocket propulsion test environment is challenging: severe temporal transient dynamic environments, large thermal gradients, vacuum to 15 ksi pressure regimes SSC has developed and employs DAS, control systems and control systems and robust instrumentation that effectively satisfies these challenges.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewablemore » energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.« less

  8. High voltage energy storage system design for a parallel-through-the-road plug-in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Belt, Bryan Whitney D.

    A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle (PHEV) pairs an engine powering the front wheels of a vehicle with an electric motor powering the rear wheels. This arrangement gives the flexibility of being able to operate the vehicle in an all-electric mode, an all biodiesel mode, or a combination of both to create maximum power. For this work, a 1.7 L CIDI engine running on biodiesel will be the engine being used and a 103 kW Magna motor will power the rear wheels. In order to power the motor, a high voltage (HV) energy storage system (ESS) needs to be designed and integrated into the vehicle. The goal for the mechanical design of the ESS is to create a structure that will enclose all of the batteries and battery control modules to protect them from environmental factors such as dirt and water as well as to prevent them from becoming dislodged in the event of a collision. The enclosure will also serve as a means to protect the consumer from the dangers of HV. The mechanical design also entailed designing a cooling system that will keep the batteries operating in an acceptable temperature range while they are charging and discharging. The electrical design focused on designing a HV system that could adequately supply enough current flow to each component to meet the peak loading condition yet be able to disconnect should a fault occur to prevent component damage. The system was also designed with safety in mind. Controllers will constantly be monitoring both the HV and LV systems to make sure that each is isolated from the other. Should a controller detect a problem, it will disconnect the HV system. The electrical system will have a high voltage interlock loop (HVIL). The HVIL will be a continuous LV circuit that passes through every HV connector and various switches, so that, if a connector is unplugged or a switch is flipped, the circuit will open. A controller will be monitoring the HVIL for LV. Should it not detect LV, the controller will disconnect the HV system. Several simulations and calculations were conducted as to whether six or seven batteries should be used. Seven batteries will allow the vehicle to accelerate quicker and have lower fuel consumption and emissions produced. However, there are several integration and cooling challenges that arise when trying to integrate seven batteries onto the vehicle. In the end, these challenges outweighed the benefits of seven batteries, and the six battery system was chosen. On top of all of the design and simulation results discussed above, there were also many lessons learned in regards to managing the design team involved in this project. The best way found to keep all members on task was to split the project into smaller sections, create a timeline with specific tasks and corresponding completion dates, and assign a person to be responsible for each task. This helped to gauge whether the project was behind schedule but also gave each member a responsibility and ownership to the project. It was also established that the best way to transmit data was to have a secure, networked drive that allowed members to access it from any computer at any time. This gave members the flexibility to work whenever and wherever was most convenient for them and allowed them to easily share data amongst members without having to attach large files to emails.

  9. Design consideration for a nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Pawlik, E. V.

    1978-01-01

    A study is currently underway to design a nuclear electric propulsion vehicle capable of performing detailed exploration of the outer-planets. Primary emphasis is on the power subsystem. Secondary emphasis includes integration into a spacecraft, and integration with the thrust subsystem and science package or payload. The results of several design iterations indicate an all-heat-pipe system offers greater reliability, elimination of many technology development areas and a specific weight of under 20 kg/kWe at the 400 kWe power level. The system is compatible with a single Shuttle launch and provides greater safety than could be obtained with designs using pumped liquid metal cooling. Two configurations, one with the reactor and power conversion forward on the spacecraft with the ion engines aft and the other with reactor, power conversion and ion engines aft were selected as dual baseline designs based on minimum weight, minimum required technology development and maximum growth potential and flexibility.

  10. Study of aircraft electrical power systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  11. UMR’S DESIGN FOR AN ENVIRONMENTAL STEP AHEAD: SOLAR THERMAL ELECTRIC PANELS

    EPA Science Inventory

    Not only is the STEP hybrid system effective in its aesthetics but also it is more efficient than its two stand-alone counterparts. The estimated overall efficiency of the STEP system is estimated to be 15-45 percent as compared to a separate thermal and separate electric sy...

  12. Power supply sharing in the Apollo telescope mount electrical power system

    NASA Technical Reports Server (NTRS)

    Lanier, R., Jr.; Kapustka, R.

    1977-01-01

    A modular dc power supply power sharing technique was developed for the Apollo telescope mount electrical power sytem on Skylab. The advantages and disadvantages of various techniques used are reviewed and compared. The new technique design is discussed, and results of its implementation in the power system are reviewed.

  13. A Self-Instructional System in Electricity.

    ERIC Educational Resources Information Center

    Greene, Mark M.; And Others

    A self-instructional system is presented designed to teach high school students fundamental concepts of electricity and how they are applied in daily life. In six lessons, the student attends to a self-paced slide and tape presentation and makes written responses in the workbooks. A supplementary application problem, requiring the assembly of some…

  14. Wheeled Vehicle Electrical Systems. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle electrical systems. It provides the basic theory, and also includes…

  15. Isolated step-down DC -DC converter for electric vehicles

    NASA Astrophysics Data System (ADS)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  16. Manned spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  17. Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-07-01

    This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heatmore » exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.« less

  18. Design of tapered arm impulse radiating antenna with log periodic lens system for skin cancer treatment.

    PubMed

    Petrishia, A; Sasikala, M

    2014-04-01

    A Prolate-Spheroidal Impulse Radiating Antenna (PSIRA) is used as a non-invasive technique for generating an electromagnetic implosion to kill melanoma cells. It can launch and focus fast (100 ps) high voltage (>50 KV) pulses into the biological targets. It can be used to obtain electromagnetic focusing on the target to reduce the damage to the tissue layers surrounding the target (skin). The main aim of this work is to improve the gain of the antenna, enhance the electric field intensity and to reduce the spot size at the focal point. In this work the PSIRA with tapered arm is designed to increase the gain of the antenna. The log periodic lens system is designed to enhance the electric field and reduce the spot size. The IRA with tapered arms located at the position of φ = 60° gives a gain improvement of 14.28% when compared to a traditional IRA. In this work a 10-layer dielectric lens system is designed to match the 100 ps pulses to the skin phantom. Simulation results show that the electric field is increased by a factor of 2. The spot size is reduced from 1 cm to 0.75 cm at the focal point where the target is placed. The proposed Log periodic lens system provides an increase in electric field amplitude and reduction in spot size.

  19. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level, specific impulse and propellant type are discussed.

  20. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret

    2013-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level, specific impulse and propellant type are discussed.

  1. A High-power Electric Propulsion Test Platform in Space

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for diagnostic instruments, data handling and thermal control. The platform will be designed to accommodate the side-by-side testing of multiple types of electric thrusters. It is intended to be a permanent facility in which different thrusters can be tested over time. ISS crews can provide maintenance for the platform and change out thruster test units as needed. The primary objective of this platform is to provide a test facility for electric propulsion devices of interest for future exploration missions. These thrusters are expected to operate in the range of hundreds of kilowatts and above. However, a platform with this capability could also accommodate testing of thrusters that require much lower power levels. Testing at the higher power levels would be accomplished by using power fiom storage devices on the platform, which would be gradually recharged by the ISS power generation system. This paper will summarize the results of the preliminary phase of the study with an explanation of the user requirements and the initial conceptual design. The concept for test operations will also be described. The NASA project team is defining the requirements but they will also reflect the inputs of the broader electric propulsion community including those at universities, commercial enterprises and other government laboratories. As a facility on the International Space Station, the design requirements are also intended to encompass the needs of international users. Testing of electric propulsion systems on the space station will help advance the development of systems needed for exploration and could also serve the needs of other customers. Propulsion systems being developed for commercial and military applications could be tested and certification testing of mature thrusters could be accomplished in the space environment.

  2. Specification and testing for power by wire aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Kenney, Barbara H.

    1993-01-01

    A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.

  3. Dual-mode, high energy utilization system concept for mars missions

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.

    2000-01-01

    This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ~1-5 kWe for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and Isp>35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kWe prototype are presented and discussed to illustrate the operation and design principles of the proposed system. .

  4. Solar energy system performance evaluation: Seasonal report for IBM system 1A, Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of the solar energy system, Sims Prototype System 1A, is described. The system was designed by IBM to provide 50 to 60 percent of the space heating and domestic hot water preheating load to a 2,000 square foot floor space single family residence in the Huntsville area. The load design temperature inside the building was to be maintained at 70 degrees fahrenheit with auxiliary energy for heating supplied by an electric heat pump assisted by an electric resistance strip heater. In general the disappointing operation of this system is attributed to the manner in which it was used. The system was designed for residential application and used to satisfy the demands of an office environment. The differences were: (1) inside temperature was not maintained at 70 F as expected; and (2) hot water usage was much lower than expected. The conclusion is that the solar energy system must be designed for the type of application in which it is used. Misapplication usually will have an adverse affect on system performance.

  5. Virtual reality robotic telesurgery simulations using MEMICA haptic system

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mavroidis, Constantinos; Bouzit, Mourad; Dolgin, Benjamin; Harm, Deborah L.; Kopchok, George E.; White, Rodney

    2001-01-01

    The authors conceived a haptic mechanism called MEMICA (Remote Mechanical Mirroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace haptic system. The development of a novel MEMICA gloves and virtual reality models are being explored to allow simulation of telesurgery and other applications. The MEMICA gloves are being designed to provide intuitive mirroring of the conditions at a virtual site where a robot simulates the presence of a human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and electrically controlled force and stiffness (ECFS) actuators that are based on the use of Electro-Rheological Fluids (ERF. In this paper the design of the MEMICA system and initial experimental results are presented.

  6. Costs and Operating Dynamics of Integrating Distributed Energy Resources in Commercial and Industrial Buildings with Electric Vehicle Charging

    NASA Astrophysics Data System (ADS)

    Flores, Robert Joseph

    Growing concerns over greenhouse gas and pollutant emissions have increased the pressure to shift energy conversion paradigms from current forms to more sustainable methods, such as through the use of distributed energy resources (DER) at industrial and commercial buildings. This dissertation is concerned with the optimal design and dispatch of a DER system installed at an industrial or commercial building. An optimization model that accurately captures typical utility costs and the physical constraints of a combined cooling, heating, and power (CCHP) system is designed to size and operate a DER system at a building. The optimization model is then used with cooperative game theory to evaluate the financial performance of a CCHP investment. The CCHP model is then modified to include energy storage, solar powered generators, alternative fuel sources, carbon emission limits, and building interactions with public and fleet PEVs. Then, a separate plugin electric vehicle (PEV) refueling model is developed to determine the cost to operate a public Level 3 fast charging station. The CCHP design and dispatch results show the size of the building load and consistency of the thermal loads are critical to positive financial performance. While using the CCHP system to produce cooling can provide savings, heat production drives positive financial performance. When designing the DER system to reduce carbon emissions, the use of renewable fuels can allow for a gas turbine system with heat recovery to reduce carbon emissions for a large university by 67%. Further reductions require large photovoltaic installations coupled with energy storage or the ability to export electricity back to the grid if costs are to remain relatively low. When considering Level 3 fast charging equipment, demand charges at low PEV travel levels are sufficiently high to discourage adoption. Integration of the equipment can reduce demand charge costs only if the building maximum demand does not coincide with PEV refueling. Electric vehicle refueling does not typically affect DER design at low PEV travel levels, but can as electric vehicle travel increases. However, as PEV travel increases, the stochastic nature of PEV refueling disappears, and the optimization problem may become deterministic.

  7. Trends and problems in development of the power plants electrical part

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. P.

    2015-03-01

    The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.

  8. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  9. Designing, Implementing and Maintaining a First Year Project Course in Electrical Engineering

    ERIC Educational Resources Information Center

    Lillieskold, J.; Ostlund, S.

    2008-01-01

    Being a modern electrical engineer does not only require state of the art skills in areas such as transfer and processing of information, electronics, systems engineering, and biomedical electrical engineering; it also requires generic engineering skills such as oral and written communication, team building, interpersonal skills, and the ability…

  10. Georgetown University Photovoltaic Higher Education National Exemplar Facility (PHENEF)

    NASA Technical Reports Server (NTRS)

    Marshall, N.

    1984-01-01

    Several photographs of this facility using photovoltaic (PV) cells are shown. An outline is given of the systems requirements, system design and wiring topology, a simplified block design, module electrical characteristics, PV module and PV module matching.

  11. Apollo experience report: Command and service module electrical power distribution on subsystem

    NASA Technical Reports Server (NTRS)

    Munford, R. E.; Hendrix, B.

    1974-01-01

    A review of the design philosophy and development of the Apollo command and service modules electrical power distribution subsystem, a brief history of the evolution of the total system, and some of the more significant components within the system are discussed. The electrical power distribution primarily consisted of individual control units, interconnecting units, and associated protective devices. Because each unit within the system operated more or less independently of other units, the discussion of the subsystem proceeds generally in descending order of complexity; the discussion begins with the total system, progresses to the individual units of the system, and concludes with the components within the units.

  12. Smart Energy Choices Free Up Dollars for Capital Improvements.

    ERIC Educational Resources Information Center

    Ritchey, David

    2003-01-01

    Describes several ways to design or renovate school building to save thousand of dollars of energy costs. Considers site design, energy-efficient building envelope, renewable energy systems, lighting and electrical systems, mechanical and ventilation systems, water conservation, and transportation. Describes how to obtain information about the…

  13. Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.

    2002-01-01

    A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.

  14. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less

  15. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  16. Nuclear Electric Vehicle Optimization Toolset (NEVOT): Integrated System Design Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Qualls, A. L.; Bancroft, S.; Molvik, Greg

    2003-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major Nuclear Electric Propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a Genetic Algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be conceived of through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  17. Design and analysis of hydraulic ram water pumping system

    NASA Astrophysics Data System (ADS)

    Hussin, N. S. M.; Gamil, S. A.; Amin, N. A. M.; Safar, M. J. A.; Majid, M. S. A.; Kazim, M. N. F. M.; Nasir, N. F. M.

    2017-10-01

    The current pumping system (DC water pump) for agriculture is powered by household electricity, therefore, the cost of electricity will be increased due to the higher electricity consumption. In addition, the water needs to be supplied at different height of trees and different places that are far from the water source. The existing DC water pump can pump the water to 1.5 m height but it cost money for electrical source. The hydraulic ram is a mechanical water pump that suitable used for agriculture purpose. It can be a good substitute for DC water pump in agriculture use. The hydraulic ram water pumping system has ability to pump water using gravitational energy or the kinetic energy through flowing source of water. This project aims to analyze and develop the water ram pump in order to meet the desired delivery head up to 3 meter height with less operation cost. The hydraulic ram is designed using CATIA software. Simulation work has been done using ANSYS CFX software to validate the working concept. There are three design were tested in the experiment study. The best design reached target head of 3 m with 15% efficiency and flow rate of 11.82l/min. The results from this study show that the less diameter of pressure chamber and higher supply head will create higher pressure.

  18. Control design and performance analysis of a 6 MW wind turbine-generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murdoch, A.; Barton, R.S.; Javid, S.H.

    1983-05-01

    This paper discusses an approach to the modeling and performance for the preliminary design phase of a large (6.2 MW) horizontal axis wind turbine generator (WTG). Two control philosophies are presented, both of which are based on linearized models of the WT mechanical and electrical systems. The control designs are compared by showing the performance through detailed non-linear time simulation. The disturbances considered are wind gusts, and electrical faults near the WT terminals.

  19. Control design and performance analysis of a 6 MW wind turbine-generator

    NASA Technical Reports Server (NTRS)

    Murdoch, A.; Winkelman, J. R.; Javid, S. H.; Barton, R. S.

    1983-01-01

    This paper discusses an approach to the modeling and performance for the preliminary design phase of a large (6.2 MW) horizontal axis wind turbine generator (WTG). Two control philosophies are presented, both of which are based on linearized models of the WT mechanical and electrical systems. The control designs are compared by showing the performance through detailed non-linear time simulation. The disturbances considered are wind gusts, and electrical faults near the WT terminals.

  20. Heavy Duty Diesel Truck and Bus Hybrid Powertrain Study

    DTIC Science & Technology

    2012-03-01

    electric 22 ft. bus that offers greater range than battery-electric buses can provide. Designed to seat 22 passengers plus standees, this Ebus model...system that has both parallel and series operating modes. The relatively low volume of many truck and bus designs has inhibited the development of...that battery packs need to be designed for 50,000 lifetime energy storage cycles in a hybrid transit bus vs. just 3,600 cycles in the typical

  1. Conceptual design of thermal energy storage systems for near term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.

    1979-01-01

    Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.

  2. Power And Propulsion Systems For Mobile Robotic Applications

    NASA Astrophysics Data System (ADS)

    Layuan, Li; Haiming, Zou

    1987-02-01

    Choosing the best power and propulsion systems for mobile robotic land vehicle applications requires consideration of technologies. The electric power requirements for onboard electronic and auxiliary equipment include 110/220 volt 60 Hz ac power as well as low voltage dc power. Weight and power are saved by either direct dc power distribution, or high frequency (20 kHz) ac power distribution. Vehicle control functions are performed electronically but steering, braking and traction power may be distributed electrically, mechanically or by fluid (hydraulic) means. Electric drive is practical, even for small vehicles, provided that advanced electric motors are used. Such electric motors have demonstrated power densities of 3.1 kilowatts per kilogram with devices in the 15 kilowatt range. Electric motors have a lower torque, but higher power density as compared to hydraulic or mechanical transmission systems. Power density being comparable, electric drives were selected to best meet the other requirements for robotic vehicles. Two robotic vehicle propulsion system designs are described to illustrate the implementation of electric drive over a vehicle size range of 250-7500 kilograms.

  3. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  4. Design of fuel cell powered data centers for sufficient reliability and availability

    NASA Astrophysics Data System (ADS)

    Ritchie, Alexa J.; Brouwer, Jacob

    2018-04-01

    It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.

  5. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.

    2003-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.

  6. Design and Development of Wireless Power Transmission for Unmanned Air Vehicles

    DTIC Science & Technology

    2012-09-01

    ELECTRONIC WARFARE SYSTEMS ENGINEERING and MASTER OF SCIENCE IN ELECTRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL September 2012...Agilent Advanced Design System (ADS). Tuning elements were added and adjusted in order to optimize the efficiency. A maximum efficiency of 57% was...investigated by a series of simulations using Agilent Advanced Design System (ADS). Tuning elements were added and adjusted

  7. The Vector Electric Field Instrument on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Kujawski, J.; Uribe, P.; Bromund, K.; Fourre, R.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; McCarthy, M.; hide

    2008-01-01

    We provide an overview of the Vector Electric Field Instrument (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA GSFC instrument designed 1) to investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) to determine the electric fields associated with abrupt, large amplitude, density depletions and 3) to quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions or Equatorial Spread-F. The VEFI instrument includes a vector electric field double probe detector, a Langmuir trigger probe, a flux gate magnetometer, a lightning detector and associated electronics. The heart of the instrument is the set of double probe detectors designed to measure DC and AC electric fields using 6 identical, mutually orthogonal, deployable 9.5 m booms tipped with 10 cm diameter spheres containing embedded preamplifiers. A description of the instrument and its sensors will be presented. If available, representative measurements will be provided.

  8. 29 CFR 1910.309-1910.330 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems §§ 1910.309-1910.330 [Reserved] Safety-Related Work Practices ...

  9. 29 CFR 1910.309-1910.330 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Electrical Design Safety Standards for Electrical Systems §§ 1910.309-1910.330 [Reserved] Safety-Related Work Practices ...

  10. Atmospheric electricity. [lightning protection criteria in spacecraft design

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.

  11. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    PubMed

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  12. A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients

    PubMed Central

    Huang, Zonghao; Wang, Zhigong; Lv, Xiaoying; Zhou, Yuxuan; Wang, Haipeng; Zong, Sihao

    2014-01-01

    Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. PMID:25657728

  13. Evolution of low-profile and lightweight electrical connectors for soldier-worn applications

    NASA Astrophysics Data System (ADS)

    Gans, Eric; Lee, Kang; Jannson, Tomasz; Walter, Kevin

    2011-06-01

    In addition to military radios, modern warfighters carry cell phones, GPS devices, computers, and night-vision aids, all of which require electrical cables and connectors for data and power transmission. Currently each electrical device operates via independent cables using conventional cable and connector technology. Conventional cables are stiff and difficult to integrate into a soldier-worn garment. Conventional connectors are tall and heavy, as they were designed to ensure secure connections to bulkhead-type panels, and being tall, represent significant snag-hazards in soldier-worn applications. Physical Optics Corporation has designed a new, lightweight and low-profile electrical connector that is more suitable for body-worn applications and operates much like a standard garment snap. When these connectors are mated, the combined height is <0.3 in. - a significant reduction from the 2.5 in. average height of conventional connectors. Electrical connections can be made with one hand (gloved or bare) and blindly (without looking). Furthermore, POC's connectors are integrated into systems that distribute data or power from a central location on the soldier's vest, reducing the length and weight of the cables necessary to interconnect various mission-critical electronic systems. The result is a lightweight power/data distribution system offering significant advantages over conventional electrical connectors in soldier-worn applications.

  14. Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leick, Michael T.; Moses, Ronald W.

    2015-03-01

    This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to chargemore » the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.« less

  15. An expert system for simulating electric loads aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kukich, George; Dolce, James L.

    1990-01-01

    Space Station Freedom will provide an infrastructure for space experimentation. This environment will feature regulated access to any resources required by an experiment. Automated systems are being developed to manage the electric power so that researchers can have the flexibility to modify their experiment plan for contingencies or for new opportunities. To define these flexible power management characteristics for Space Station Freedom, a simulation is required that captures the dynamic nature of space experimentation; namely, an investigator is allowed to restructure his experiment and to modify its execution. This changes the energy demands for the investigator's range of options. An expert system competent in the domain of cryogenic fluid management experimentation was developed. It will be used to help design and test automated power scheduling software for Freedom's electric power system. The expert system allows experiment planning and experiment simulation. The former evaluates experimental alternatives and offers advice on the details of the experiment's design. The latter provides a real-time simulation of the experiment replete with appropriate resource consumption.

  16. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 10: Liquid-metal MHD systems. [energy conversion efficiency of electric power plants using liquid metal magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.

  17. Adaptive displays and controllers using alternative feedback.

    PubMed

    Repperger, D W

    2004-12-01

    Investigations on the design of haptic (force reflecting joystick or force display) controllers were conducted by viewing the display of force information within the context of several different paradigms. First, using analogies from electrical and mechanical systems, certain schemes of the haptic interface were hypothesized which may improve the human-machine interaction with respect to various criteria. A discussion is given on how this interaction benefits the electrical and mechanical system. To generalize this concept to the design of human-machine interfaces, three studies with haptic mechanisms were then synthesized and analyzed.

  18. Analysis of Hybrid-Electric Propulsion System Designs for Small Unmanned Aircraft Systems

    DTIC Science & Technology

    2010-03-01

    34 5. Fundamental Aerodynamics... turbocharger , allowing the turbine and compressor to run at different speeds. The concept would simplify designing small diesel engines, which are...ICEs. Weight reductions in ancillary components like turbochargers and cooling systems must also be achieved for use in aviation. Since small

  19. Evaluation of all-electric secondary power for transport aircraft

    NASA Technical Reports Server (NTRS)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  20. Evaluation of all-electric secondary power for transport aircraft

    NASA Astrophysics Data System (ADS)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  1. An Investigation into the Potential Benefits of Distributed Electric Propulsion on Small UAVs at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Baris, Engin

    Distributed electric propulsion systems benefit from the inherent scale independence of electric propulsion. This property allows the designer to place multiple small electric motors along the wing of an aircraft instead of using a single or several internal combustion motors with gear boxes or other power train components. Aircraft operating at low Reynolds numbers are ideal candidates for benefiting from increased local flow velocities as provided by distributed propulsion systems. In this study, a distributed electric propulsion system made up of eight motor/propellers was integrated into the leading edge of a small fixed wing-body model to investigate the expected improvements on the aerodynamics available to small UAVs operating at low Reynolds numbers. Wind tunnel tests featuring a Design of Experiments (DOE) methodology were used for aerodynamic characterization. Experiments were performed in four modes: all-propellers-on, wing-tip-propellers-alone-on, wing-alone mode, and two-inboard-propellers-on-alone mode. In addition, the all-propeller-on, wing-alone, and a single-tractor configuration were analyzed using VSPAERO, a vortex lattice code, to make comparisons between these different configurations. Results show that the distributed propulsion system has higher normal force, endurance, and range features, despite a potential weight penalty.

  2. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  3. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems

    NASA Technical Reports Server (NTRS)

    Dietz, Anthony

    2014-01-01

    Hybrid turboelectric aircraft-with gas turbines driving electric generators connected to electric propulsion motors-have the potential to transform aircraft design. Decoupling power generation from propulsion enables innovative aircraft designs, such as blended-wing bodies, with distributed propulsion. These hybrid turboelectric aircraft have the potential to significantly reduce emissions, decrease fuel burn, and reduce noise, all of which are required to make air transportation growth projections sustainable. The power density requirements for these electric machines can only be achieved with superconductors, which in turn require lightweight, high-capacity cryocoolers.

  4. Screamer version 4.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, Rick; Struve, Kenneth W.; Kiefer, Mark L.

    2017-02-16

    Screamer is a special purpose circuit code developed for the design of Pulsed Power systems. It models electrical circuits which have a restricted topology in order to provide a fast-running tool while still allowing configurations general enough for most Pulsed Power system designs

  5. Digital combined instrument transformer for automated electric power supply control systems of mining companies

    NASA Astrophysics Data System (ADS)

    Topolsky, D. V.; Gonenko, T. V.; Khatsevskiy, V. F.

    2017-10-01

    The present paper discusses ways to solve the problem of enhancing operating efficiency of automated electric power supply control systems of mining companies. According to the authors, one of the ways to solve this problem is intellectualization of the electric power supply control system equipment. To enhance efficiency of electric power supply control and electricity metering, it is proposed to use specially designed digital combined instrument current and voltage transformers. This equipment conforms to IEC 61850 international standard and is adapted for integration into the digital substation structure. Tests were performed to check conformity of an experimental prototype of the digital combined instrument current and voltage transformer with IEC 61850 standard. The test results have shown that the considered equipment meets the requirements of the standard.

  6. Photovoltaic technology for sustainability: An investigation of the distributed utility concept as a policy framework

    NASA Astrophysics Data System (ADS)

    Letendre, Steven Emery

    The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables through the pricing system. Based on past policy experience, it is unlikely that such an approach would allow PV to compete in Delaware as an energy supply option in the next ten to twenty years. Alternatively, a market-based, or green pricing, approach will not create significant market opportunities for PV as a centralized energy supply option. However, structural policies designed to encourage the explicit recognition of the localized benefits of distributed resources could result in PV being introduced into the electrical system early in the next century.

  7. Understanding Cognitive and Collaborative Work: Observations in an Electric Transmission Operations Control Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obradovich, Jodi H.

    2011-09-30

    This paper describes research that is part of an ongoing project to design tools to assist in the integration of renewable energy into the electric grid. These tools will support control room dispatchers in real-time system operations of the electric power transmission system which serves much of the Western United States. Field observations comprise the first phase of this research in which 15 operators have been observed over various shifts and times of day for approximately 90 hours. Findings describing some of the cognitive and environmental challenges of managing the dynamically changing electric grid are presented.

  8. Knowledge-based systems for power management

    NASA Technical Reports Server (NTRS)

    Lollar, L. F.

    1992-01-01

    NASA-Marshall's Electrical Power Branch has undertaken the development of expert systems in support of further advancements in electrical power system automation. Attention is given to the features (1) of the Fault Recovery and Management Expert System, (2) a resource scheduler or Master of Automated Expert Scheduling Through Resource Orchestration, and (3) an adaptive load-priority manager, or Load Priority List Management System. The characteristics of an advisory battery manager for the Hubble Space Telescope, designated the 'nickel-hydrogen expert system', are also noted.

  9. Static and dynamic high power, space nuclear electric generating systems

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Begg, L. L.; Koester, J. K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed.

  10. The Mod-2 wind turbine development project

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Dennett, J. T.; Gordon, L. H.

    1981-01-01

    A major phase of the Federal Wind Energy Program, the Mod-2 wind turbine, a second-generation machine developed by the Boeing Engineering and Construction Co. for the U.S. Department of Energy and the Lewis Research Center of the National Aeronautics and Space Administration, is described. The Mod-2 is a large (2.5-MW power rating) horizontal-axis wind turbine designed for the generation of electrical power on utility networks. Three machines were built and are located in a cluster at Goodnoe Hills, Washington. All technical aspects of the project are described: design approach, significant innovation features, the mechanical system, the electrical power system, the control system, and the safety system.

  11. Advanced technology cogeneration system conceptual design study: Closed cycle gas turbines

    NASA Technical Reports Server (NTRS)

    Mock, E. A. T.; Daudet, H. C.

    1983-01-01

    The results of a three task study performed for the Department of Energy under the direction of the NASA Lewis Research Center are documented. The thermal and electrical energy requirements of three specific industrial plants were surveyed and cost records for the energies consumed were compiled. Preliminary coal fired atmospheric fluidized bed heated closed cycle gas turbine and steam turbine cogeneration system designs were developed for each industrial plant. Preliminary cost and return-on-equity values were calculated and the results compared. The best of the three sites was selected for more detailed design and evaluation of both closed cycle gas turbine and steam turbine cogeneration systems during Task II. Task III involved characterizing the industrial sector electrical and thermal loads for the 48 contiguous states, applying a family of closed cycle gas turbine and steam turbine cogeneration systems to these loads, and conducting a market penetration analysis of the closed cycle gas turbine cogeneration system.

  12. Design and installation of 3 photovoltaic village power systems in Tunisia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darkazalli, G.; Rangaraian, A.; Scudder, L.

    1982-09-01

    A joint program sponsored by the United States Agency for International Development (U.S.A.I.D.) and the government of Tunisia was initiated to study the feasibility of using photovoltaics to supply electricity to remote villages in Tunisia. U.S.A.I.D. selected the NASA Lewis Research Center to implement the installation of three photovoltaic systems in the Tunisian village of Hammam Biadha Sud. In a competitive procurement, NASA selected a team proposed by the Solar Power Corporation, TriSolar Corporation, Esso Standard Tunisie and Development Sciences, Inc. to design and install the systems and train the villagers in the use of photovoltaics. The Tunisian Government counterpartmore » to NASA, is STEG, the Tunisian electrical generation authority. An overview of the systems designs is presented in this paper.« less

  13. Automotive Electrical and Electronic Systems I; Automotive Mechanics 2: 9045.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The automotive electrical and electronic system I course is designed as one of a group of quinmester courses offered in the field of automotive mechanics. General information will be given along with technical knowledge, basic skills, attitudes and values that are required for job entry level. The nine week (135 clock hour) course overcomes some…

  14. Packaging - Materials review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Matthias

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in manymore » shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device, valve, etc.), chemical inertness, cost issues, and others. Finally, proper cell design has to be considered for effective thermal management (i.e. cooling and heating) of battery packs.« less

  15. Evaluation of EIT system performance.

    PubMed

    Yasin, Mamatjan; Böhm, Stephan; Gaggero, Pascal O; Adler, Andy

    2011-07-01

    An electrical impedance tomography (EIT) system images internal conductivity from surface electrical stimulation and measurement. Such systems necessarily comprise multiple design choices from cables and hardware design to calibration and image reconstruction. In order to compare EIT systems and study the consequences of changes in system performance, this paper describes a systematic approach to evaluate the performance of the EIT systems. The system to be tested is connected to a saline phantom in which calibrated contrasting test objects are systematically positioned using a position controller. A set of evaluation parameters are proposed which characterize (i) data and image noise, (ii) data accuracy, (iii) detectability of single contrasts and distinguishability of multiple contrasts, and (iv) accuracy of reconstructed image (amplitude, resolution, position and ringing). Using this approach, we evaluate three different EIT systems and illustrate the use of these tools to evaluate and compare performance. In order to facilitate the use of this approach, all details of the phantom, test objects and position controller design are made publicly available including the source code of the evaluation and reporting software.

  16. Tracking and data relay satellite system configuration and tradeoff study. Volume 4: Spacecraft and subsystem design, part 1

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1972-01-01

    The design and development of the Tracking and Data Relay satellite are discussed. The subjects covered are: (1) spacecraft mechanical and structural design, (2) attitude stabilization and control subsystem, (3) propulsion system, (4) electrical power subsystem, (5) thermal control, and (6) reliability engineering.

  17. A Reusable Lunar Shuttlecraft (RLS): A systems study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study effort to conceive and design a reusable lunar space vehicle system was conducted at a university. The purpose of the program was to expose students to the problems faced by other disciplines in the design of a complete vehicle system. The subjects investigated are: (1) objectives, feasibility, and cost of reusable lunar shuttlecraft, (2) trajectory analysis, (3) guidance and navigation, (4) communication system, (5) propulsion system, (6) electrical power system, and (7) landing gear design.

  18. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  19. Description of a MIL-STD-1553B Data Bus Ada Driver for the LeRC EPS Testbed

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.

    1995-01-01

    This document describes the software designed to provide communication between control computers in the NASA Lewis Research Center Electrical Power System Testbed using MIL-STD-1553B. The software drivers are coded in the Ada programming language and were developed on a MSDOS-based computer workstation. The Electrical Power System (EPS) Testbed is a reduced-scale prototype space station electrical power system. The power system manages and distributes electrical power from the sources (batteries or photovoltaic arrays) to the end-user loads. The electrical system primary operates at 120 volts DC, and the secondary system operates at 28 volts DC. The devices which direct the flow of electrical power are controlled by a network of six control computers. Data and control messages are passed between the computers using the MIL-STD-1553B network. One of the computers, the Power Management Controller (PMC), controls the primary power distribution and another, the Load Management Controller (LMC), controls the secondary power distribution. Each of these computers communicates with two other computers which act as subsidiary controllers. These subsidiary controllers are, in turn, connected to the devices which directly control the flow of electrical power.

  20. An intelligent value-driven scheduling system for Space Station Freedom with special emphasis on the electric power system

    NASA Technical Reports Server (NTRS)

    Krupp, Joseph C.

    1991-01-01

    The Electric Power Control System (EPCS) created by Decision-Science Applications, Inc. (DSA) for the Lewis Research Center is discussed. This system makes decisions on what to schedule and when to schedule it, including making choices among various options or ways of performing a task. The system is goal-directed and seeks to shape resource usage in an optimal manner using a value-driven approach. Discussed here are considerations governing what makes a good schedule, how to design a value function to find the best schedule, and how to design the algorithm that finds the schedule that maximizes this value function. Results are shown which demonstrate the usefulness of the techniques employed.

  1. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    PubMed

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  2. Analysis of tuning methods in semiconductor frequency-selective surfaces

    NASA Astrophysics Data System (ADS)

    Shemelya, Corey; Palm, Dominic; Fip, Tassilo; Rahm, Marco

    2017-02-01

    Advanced technology, such as sensing and communication equipment, has recently begun to combine optically sensitive nano-scale structures with customizable semiconductor material systems. Included within this broad field of study is the aptly named frequency-selective surface; which is unique in that it can be artificially designed to produce a specific electromagnetic or optical response. With the inherent utility of a frequency-selective surface, there has been an increased interest in the area of dynamic frequency-selective surfaces, which can be altered through optical or electrical tuning. This area has had exciting break throughs as tuning methods have evolved; however, these methods are typically energy intensive (optical tuning) or have met with limited success (electrical tuning). As such, this work investigates multiple structures and processes which implement semiconductor electrical biasing and/or optical tuning. Within this study are surfaces ranging from transmission meta-structures to metamaterial surface-waves and the associated coupling schemes. This work shows the utility of each design, while highlighting potential methods for optimizing dynamic meta-surfaces. As an added constraint, the structures were also designed to operate in unison with a state-of-the-art Ti:Sapphire Spitfire Ace and Spitfire Ace PA dual system (12 Watt) with pulse front matching THz generation and an EOS detection system. Additionally, the Ti:Sapphire laser system would provide the means for optical tunablity, while electrical tuning can be obtained through external power supplies.

  3. A preliminary design for a satellite power system

    NASA Technical Reports Server (NTRS)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  4. Effects of electrode gap and electric current on chlorine generation of electrolyzed deep ocean water.

    PubMed

    Hsu, Guoo-Shyng Wang; Hsu, Shun-Yao

    2018-04-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmental friendly. A two-factor central composite design was adopted for studying the effects of electrode gap and electric current on chlorine generation efficiency of electrolyzed deep ocean water. Deep ocean water was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode in a constant-current operation mode. Results showed that current density, chlorine concentration, and electrolyte temperature increased with electric current, while electric efficiency decreased with electric current and electrode gap. An electrode gap of less than 11.7 mm, and a low electric current appeared to be a more energy efficient design and operation condition for the electrolysis system. Copyright © 2017. Published by Elsevier B.V.

  5. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  6. Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy

    2016-01-01

    The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. The NASA Aeronautics Research Mission Directorate has identified a suite of investments to meet long term research demands beyond the purview of commercial investment. Electrification of aviation propulsion through turboelectric or hybrid electric propulsion is one of many exciting research areas which has the potential to revolutionize the aviation industry. This paper will provide an overview of the turboelectric and hybrid electric technologies being developed under NASAs Advanced Air Transportation Technology (AATT) Project, and how these technologies can impact vehicle design. An overview will be presented of vehicle system studies and the electric drive system assumptions for successful turboelectric and hybrid electric propulsion in single aisle size commercial aircraft. Key performance parameters for electric drive system technologies will be reviewed, and the technical investment made in materials, electric machines, power electronics, and integrated power systems will be discussed. Finally, power components for a single aisle turboelectric aircraft with an electrically driven tail cone thruster and a hybrid electric nine passenger aircraft with a range extender will be parametrically sized.

  7. Two designs for an orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    The Orbital Transfer Vehicle (OTV) and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures.

  8. Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey

    2015-01-01

    Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  9. Space station WP-04 power system. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Results of the phase B study contract for the definition of the space station Electric Power System (EPS) are presented in detail along with backup information and supporting data. Systems analysis and trades, preliminary design, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning are addressed. The station design is a hybrid approach which provides user power of 25 kWe from the photovoltaic subsystem and 50 kWe from the solar dynamic subsystem. The electric power is distributed to users as a utility service; single phase at a frequency of 20 kHz and voltage of 440VAC. The solar array NiH2 batteries of the photovoltaic subsystem are based on commonality to those used on the co-orbiting and solar platforms.

  10. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    NASA Technical Reports Server (NTRS)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  11. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion

    NASA Technical Reports Server (NTRS)

    Welstead, Jason R.; Felder, James L.

    2016-01-01

    A single-aisle commercial transport concept with a turboelectric propulsion system architecture was developed assuming entry into service in 2035 and compared to a similar technology conventional configuration. The turboelectric architecture consisted of two underwing turbofans with generators extracting power from the fan shaft and sending it to a rear fuselage, axisymmetric, boundary layer ingesting fan. Results indicate that the turbo- electric concept has an economic mission fuel burn reduction of 7%, and a design mission fuel burn reduction of 12% compared to the conventional configuration. An exploration of the design space was performed to better understand how the turboelectric architecture changes the design space, and system sensitivities were run to determine the sensitivity of thrust specific fuel consumption at top of climb and propulsion system weight to the motor power, fan pressure ratio, and electrical transmission efficiency of the aft boundary layer ingesting fan.

  12. Testing For EM Upsets In Aircraft Control Computers

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1994-01-01

    Effects of transient electrical signals evaluated in laboratory tests. Method of evaluating nominally fault-tolerant, aircraft-type digital-computer-based control system devised. Provides for evaluation of susceptibility of system to upset and evaluation of integrity of control when system subjected to transient electrical signals like those induced by electromagnetic (EM) source, in this case lightning. Beyond aerospace applications, fault-tolerant control systems becoming more wide-spread in industry; such as in automobiles. Method supports practical, systematic tests for evaluation of designs of fault-tolerant control systems.

  13. Automated electric power management and control for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Mellor, Pamela A.; Kish, James A.

    1990-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. It strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. An integrated approach to the power system command and control problem is defined and used to direct technology development in: diagnosis, security monitoring and analysis, battery management, and cooperative problem-solving for resource allocation. The prototype automated power system is developed using simulations and test-beds.

  14. Preliminary design data package, appendix C. [hybrid electric vehicles

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The data and documentation required to define the preliminary design of a near term hybrid vehicle and to quantify its operational characteristics are presented together with the assumptions and rationale behind the design decisions. Aspects discussed include development requirements for the propulsion system, the chassis system, the body, and the vehicle systems. Particular emphasis is given to the controls, the heat engine, and the batteries.

  15. Extending green technology innovations to enable greener fabs

    NASA Astrophysics Data System (ADS)

    Takahisa, Kenji; Yoo, Young Sun; Fukuda, Hitomi; Minegishi, Yuji; Enami, Tatsuo

    2015-03-01

    Semiconductor manufacturing industry has growing concerns over future environmental impacts as fabs expand and new generations of equipment become more powerful. Especially rare gases supply and price are one of prime concerns for operation of high volume manufacturing (HVM) fabs. Over the past year it has come to our attention that Helium and Neon gas supplies could be unstable and become a threat to HVM fabs. To address these concerns, Gigaphoton has implemented various green technologies under its EcoPhoton program. One of the initiatives is GigaTwin deep ultraviolet (DUV) lithography laser design which enables highly efficient and stable operation. Under this design laser systems run with 50% less electric energy and gas consumption compared to conventional laser designs. In 2014 we have developed two technologies to further reduce electric energy and gas efficiency. The electric energy reduction technology is called eGRYCOS (enhanced Gigaphoton Recycled Chamber Operation System), and it reduces electric energy by 15% without compromising any of laser performances. eGRYCOS system has a sophisticated gas flow design so that we can reduce cross-flow-fan rotation speed. The gas reduction technology is called eTGM (enhanced Total gas Manager) and it improves gas management system optimizing the gas injection and exhaust amount based on laser performances, resulting in 50% gas savings. The next steps in our roadmap technologies are indicated and we call for potential partners to work with us based on OPEN INNOVATION concept to successfully develop faster and better solutions in all possible areas where green innovation may exist.

  16. Development of an efficient, low cost, small-scale natural gas fuel reformer for residential scale electric power generation. Final report for the period October 1, 1998 - December 31, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutz, Thomas G; Ogden, Joan M

    2000-07-01

    In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., singlemore » family, residential, multi-dwelling, neighborhood).« less

  17. Inspection and analysis of the walls of fluid filled tubes by active electrolocation: a biomimetic approach

    NASA Astrophysics Data System (ADS)

    Gottwald, Martin; Mayekar, Kavita; Reiswich, Vladislav; Bousack, Herbert; Damalla, Deepak; Biswas, Shubham; Metzen, Michael G.; von der Emde, Gerhard

    2011-04-01

    During their nocturnal activity period, weakly electric fish employ a process called "active electrolocation" for navigation and object detection. They discharge an electric organ in their tail, which emits electrical current pulses, called electric organ discharges (EOD). Local EODs are sensed by arrays of electroreceptors in the fish's skin, which respond to modulations of the signal caused by nearby objects. Fish thus gain information about the size, shape, complex impedance and distance of objects. Inspired by these remarkable capabilities, we have designed technical sensor systems which employ active electrolocation to detect and analyse the walls of small, fluid filled pipes. Our sensor systems emit pulsed electrical signals into the conducting medium and simultaneously sense local current densities with an array of electrodes. Sensors can be designed which (i) analyse the tube wall, (ii) detect and localize material faults, (iii) identify wall inclusions or objects blocking the tube (iv) and find leakages. Here, we present first experiments and FEM simulations on the optimal sensor arrangement for different types of sensor systems and different types of tubes. In addition, different methods for sensor read-out and signal processing are compared. Our biomimetic sensor systems promise to be relatively insensitive to environmental disturbances such as heat, pressure, turbidity or muddiness. They could be used in a wide range of tubes and pipes including water pipes, hydraulic systems, and biological systems. Medical applications include catheter based sensors which inspect blood vessels, urethras and similar ducts in the human body.

  18. Nuclear electric propulsion operational reliability and crew safety study: NEP systems/modeling report

    NASA Technical Reports Server (NTRS)

    Karns, James

    1993-01-01

    The objective of this study was to establish the initial quantitative reliability bounds for nuclear electric propulsion systems in a manned Mars mission required to ensure crew safety and mission success. Finding the reliability bounds involves balancing top-down (mission driven) requirements and bottom-up (technology driven) capabilities. In seeking this balance we hope to accomplish the following: (1) provide design insights into the achievability of the baseline design in terms of reliability requirements, given the existing technology base; (2) suggest alternative design approaches which might enhance reliability and crew safety; and (3) indicate what technology areas require significant research and development to achieve the reliability objectives.

  19. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  20. Photovoltaic-Thermal New Technology Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Jesse; McNutt, Peter; Lisell, Lars

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

Top