Material Challenges and Opportunities for Commercial Electric Aircraft
NASA Technical Reports Server (NTRS)
Misra, Ajay
2014-01-01
Significant reduction in carbon dioxide emission for future air transportation system will require adoption of electric propulsion system and more electric architectures. Various options for aircraft electric propulsion include hybrid electric, turboelectric, and full electric system. Realization of electric propulsion system for commercial aircraft applications will require significant increases in power density of electric motors and energy density of energy storage system, such as the batteries and fuel cells. In addition, transmission of MW of power in the aircraft will require high voltage power transmission system to reduce the weight of the power transmission system. Finally, there will be significant thermal management challenges. Significant advances in material technologies will be required to meet these challenges. Technologies of interest include materials with higher electrical conductivity than Cu, high thermal conductivity materials, and lightweight electrically insulating materials with high breakdown voltage, high temperature magnets, advanced battery and fuel cell materials, and multifunctional materials. The presentation will include various challenges for commercial electric aircraft and provide an overview of material improvements that will be required to meet these challenges.
49 CFR 228.313 - Electrical system requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Electrical system requirements. 228.313 Section...; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.313 Electrical system requirements. (a) All heating, cooking, ventilation, air conditioning, and...
49 CFR 228.313 - Electrical system requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Electrical system requirements. 228.313 Section...; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.313 Electrical system requirements. (a) All heating, cooking, ventilation, air conditioning, and...
49 CFR 228.313 - Electrical system requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Electrical system requirements. 228.313 Section...; SLEEPING QUARTERS Safety and Health Requirements for Camp Cars Provided by Railroads as Sleeping Quarters § 228.313 Electrical system requirements. (a) All heating, cooking, ventilation, air conditioning, and...
46 CFR 111.97-1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-1 Applicability. This subpart applies to electric power-operated watertight door systems required under Subpart H of Part 170 of this chapter. [CGD...
46 CFR 111.97-1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-1 Applicability. This subpart applies to electric power-operated watertight door systems required under Subpart H of Part 170 of this chapter. [CGD...
46 CFR 111.97-1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-1 Applicability. This subpart applies to electric power-operated watertight door systems required under Subpart H of Part 170 of this chapter. [CGD...
46 CFR 111.97-1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-1 Applicability. This subpart applies to electric power-operated watertight door systems required under Subpart H of Part 170 of this chapter. [CGD...
46 CFR 111.97-1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-1 Applicability. This subpart applies to electric power-operated watertight door systems required under Subpart H of Part 170 of this chapter. [CGD...
NASA Technical Reports Server (NTRS)
Nainiger, J. J.; Burns, R. K.; Easley, A. J.
1982-01-01
A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.
46 CFR 111.97-3 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-3 General requirements. Each watertight door operating system must meet Subpart H, § 170.270 of this chapter. [CGD 74-125A, 47 FR 15236, Apr. 8...
46 CFR 111.97-3 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-3 General requirements. Each watertight door operating system must meet Subpart H, § 170.270 of this chapter. [CGD 74-125A, 47 FR 15236, Apr. 8...
46 CFR 111.97-3 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-3 General requirements. Each watertight door operating system must meet Subpart H, § 170.270 of this chapter. [CGD 74-125A, 47 FR 15236, Apr. 8...
46 CFR 111.97-3 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-3 General requirements. Each watertight door operating system must meet Subpart H, § 170.270 of this chapter. [CGD 74-125A, 47 FR 15236, Apr. 8...
46 CFR 111.97-3 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-3 General requirements. Each watertight door operating system must meet Subpart H, § 170.270 of this chapter. [CGD 74-125A, 47 FR 15236, Apr. 8...
NASA Technical Reports Server (NTRS)
Regetz, J. D., Jr.; Terwilliger, C. H.
1979-01-01
The directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions in the most cost effective manner are determined. The mission set requirements, state of the art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system level electric propulsion parameters are discussed. The impact on overall costs than specific masses or costs of propulsion and power systems is evaluated.
7 CFR 1767.12 - Accounting system requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Accounting system requirements. 1767.12 Section 1767..., DEPARTMENT OF AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767.12 Accounting system requirements. (a) Each Rural Development electric borrower must...
Solar thermal plant impact analysis and requirements definition study
NASA Technical Reports Server (NTRS)
1982-01-01
The technology and economics of solar thermal electric systems (STES) for electric power production is discussed. The impacts of and requirements for solar thermal electric power systems were evaluated.
NASA Technical Reports Server (NTRS)
Bains, R. W.; Herwig, H. A.; Luedeman, J. K.; Torina, E. M.
1974-01-01
The Shuttle Electric Power System Analysis SEPS computer program which performs detailed load analysis including predicting energy demands and consumables requirements of the shuttle electric power system along with parameteric and special case studies on the shuttle electric power system is described. The functional flow diagram of the SEPS program is presented along with data base requirements and formats, procedure and activity definitions, and mission timeline input formats. Distribution circuit input and fixed data requirements are included. Run procedures and deck setups are described.
46 CFR 111.95-3 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false General requirements. 111.95-3 Section 111.95-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-3 General requirements. (a) Each electrical...
46 CFR 111.95-3 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false General requirements. 111.95-3 Section 111.95-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-3 General requirements. (a) Each electrical...
46 CFR 111.95-3 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false General requirements. 111.95-3 Section 111.95-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-3 General requirements. (a) Each electrical...
46 CFR 111.95-3 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false General requirements. 111.95-3 Section 111.95-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-3 General requirements. (a) Each electrical...
46 CFR 111.95-3 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false General requirements. 111.95-3 Section 111.95-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-3 General requirements. (a) Each electrical...
46 CFR 111.87-3 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false General requirements. 111.87-3 Section 111.87-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-3 General requirements. (a) Each electric heater must meet...
46 CFR 111.87-3 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false General requirements. 111.87-3 Section 111.87-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-3 General requirements. (a) Each electric heater must meet...
46 CFR 111.87-3 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false General requirements. 111.87-3 Section 111.87-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-3 General requirements. (a) Each electric heater must meet...
46 CFR 111.87-3 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false General requirements. 111.87-3 Section 111.87-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-3 General requirements. (a) Each electric heater must meet...
46 CFR 111.87-3 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false General requirements. 111.87-3 Section 111.87-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-3 General requirements. (a) Each electric heater must meet...
16 CFR 309.12 - Recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.12 Recordkeeping. You must keep for one year... Vehicle Fuels (Other Than Electricity) and of Electric Vehicle Fuel Dispensing Systems ... REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of...
16 CFR 309.12 - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.12 Recordkeeping. You must keep for one year... Vehicle Fuels (Other Than Electricity) and of Electric Vehicle Fuel Dispensing Systems ... REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of...
16 CFR 309.12 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.12 Recordkeeping. You must keep for one year... Vehicle Fuels (Other Than Electricity) and of Electric Vehicle Fuel Dispensing Systems ... REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of...
16 CFR 309.12 - Recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.12 Recordkeeping. You must keep for one year... Vehicle Fuels (Other Than Electricity) and of Electric Vehicle Fuel Dispensing Systems ... REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of...
Multi-agent electricity market modeling with EMCAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
North, M.; Macal, C.; Conzelmann, G.
2002-09-05
Electricity systems are a central component of modern economies. Many electricity markets are transitioning from centrally regulated systems to decentralized markets. Furthermore, several electricity markets that have recently undergone this transition have exhibited extremely unsatisfactory results, most notably in California. These high stakes transformations require the introduction of largely untested regulatory structures. Suitable tools that can be used to test these regulatory structures before they are applied to real systems are required. Multi-agent models can provide such tools. To better understand the requirements such as tool, a live electricity market simulation was created. This experience helped to shape the developmentmore » of the multi-agent Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices.« less
14 CFR 23.1359 - Electrical system fire protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182. (b...
14 CFR 23.1359 - Electrical system fire protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182. (b...
14 CFR 23.1359 - Electrical system fire protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182. (b...
14 CFR 23.1359 - Electrical system fire protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182. (b...
14 CFR 23.1359 - Electrical system fire protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182. (b...
46 CFR 111.97-5 - Electric and hydraulic power supply.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...
46 CFR 111.97-5 - Electric and hydraulic power supply.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...
46 CFR 111.97-5 - Electric and hydraulic power supply.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...
46 CFR 111.97-5 - Electric and hydraulic power supply.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...
46 CFR 111.97-5 - Electric and hydraulic power supply.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...
Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems
NASA Technical Reports Server (NTRS)
Pond, Charles L.; Mcdermott, William A.; Lum, Ben T. F.
1993-01-01
Electrical actuator (ELA) power efficiency and requirements are examined for space system application. Requirements for Space Shuttle effector systems are presented, along with preliminary ELA trades and selection to form a preliminary ELA system baseline. Power and energy requirements for this baseline ELA system are applicable to the Space Shuttle and similar space vehicles.
46 CFR 111.95-1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-1 Applicability. (a) The electric installation of each electric power-operated boat winch must meet the requirements in this subpart, except that limit...
46 CFR 111.95-1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-1 Applicability. (a) The electric installation of each electric power-operated boat winch must meet the requirements in this subpart, except that limit...
46 CFR 111.95-1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-1 Applicability. (a) The electric installation of each electric power-operated boat winch must meet the requirements in this subpart, except that limit...
46 CFR 111.95-1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-1 Applicability. (a) The electric installation of each electric power-operated boat winch must meet the requirements in this subpart, except that limit...
46 CFR 111.95-1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-1 Applicability. (a) The electric installation of each electric power-operated boat winch must meet the requirements in this subpart, except that limit...
NASA Technical Reports Server (NTRS)
Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.
2007-01-01
The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.
46 CFR 111.50-2 - Systems integration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...
46 CFR 111.50-2 - Systems integration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...
46 CFR 111.50-2 - Systems integration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...
46 CFR 111.50-2 - Systems integration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each... the design of the entire protective system. Note to § 111.50-2: The electrical characteristics of...
46 CFR 111.10-4 - Power requirements, generating sources.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...
46 CFR 111.10-4 - Power requirements, generating sources.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...
46 CFR 111.10-4 - Power requirements, generating sources.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...
Power system characteristics for more electric aircraft
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1993-01-01
It should not be suprising that more electric aircraft must meet significantly more difficult electrical power system requirements than were considereed when today's power distribution systems were being developed. Electric power, no longer a secondary system, will become a critical element of the primary control system. Functional reliability requiirements will be extremely stringent and can only be met by controlling element redundancy within a distributed power system. Existing electrical systems were not developed to have both the power system and the control/sensing elements distributed and yet meet the requirements of lighting tolerance and high intensity radio frequency (HIRF). In addition, the operation of electric actuators involves high transient loading and reverse energy flows. Such phenomena were also not anticipated when power quality was specified for either 270 vdc or 400 Hertz ac power systems. This paper will expand upon the issues and discuss some of the technologies involved in their resolution.
Systems definition space based power conversion systems: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
Potential space-located systems for the generation of electrical power for use on earth were investigated. These systems were of three basic types: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.
Specification and testing for power by wire aircraft
NASA Technical Reports Server (NTRS)
Hansen, Irving G.; Kenney, Barbara H.
1993-01-01
A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.
Power And Propulsion Systems For Mobile Robotic Applications
NASA Astrophysics Data System (ADS)
Layuan, Li; Haiming, Zou
1987-02-01
Choosing the best power and propulsion systems for mobile robotic land vehicle applications requires consideration of technologies. The electric power requirements for onboard electronic and auxiliary equipment include 110/220 volt 60 Hz ac power as well as low voltage dc power. Weight and power are saved by either direct dc power distribution, or high frequency (20 kHz) ac power distribution. Vehicle control functions are performed electronically but steering, braking and traction power may be distributed electrically, mechanically or by fluid (hydraulic) means. Electric drive is practical, even for small vehicles, provided that advanced electric motors are used. Such electric motors have demonstrated power densities of 3.1 kilowatts per kilogram with devices in the 15 kilowatt range. Electric motors have a lower torque, but higher power density as compared to hydraulic or mechanical transmission systems. Power density being comparable, electric drives were selected to best meet the other requirements for robotic vehicles. Two robotic vehicle propulsion system designs are described to illustrate the implementation of electric drive over a vehicle size range of 250-7500 kilograms.
46 CFR 111.01-9 - Degrees of protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-9 Degrees of protection. (a) Interior electrical equipment exposed... service intended. (b) Electrical equipment in locations requiring exceptional degrees of protection as...
46 CFR 111.01-9 - Degrees of protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-9 Degrees of protection. (a) Interior electrical equipment exposed... service intended. (b) Electrical equipment in locations requiring exceptional degrees of protection as...
Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.; Thornton, M.
A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehiclesmore » (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.« less
Propulsion element requirements using electrical power system unscheduled power
NASA Technical Reports Server (NTRS)
Zimmermann, Frank; Hodge, Kathy
1989-01-01
The suitability of using the electrical energy from the Space Station's Electrical Power System (EPS) during the periods of peak solar insolation which is currently not specifically allocated (unscheduled power) to produce propulsion propellants, gaseous hydrogen, and oxygen by electrolyzing water is investigated. Reboost propellant requirements are emphasized, but the results are more generally relevant because the balance of recurring propellant requirements are an order of magnitude smaller and the nonrecurring requirements are not significant on an average basis.
30 CFR 36.32 - Electrical components and systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved under...
30 CFR 36.32 - Electrical components and systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved under...
30 CFR 36.32 - Electrical components and systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved under...
30 CFR 36.32 - Electrical components and systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved under...
30 CFR 36.32 - Electrical components and systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical components and systems. 36.32... TRANSPORTATION EQUIPMENT Construction and Design Requirements § 36.32 Electrical components and systems. (a) Electrical components on mobile diesel-powered transportation equipment shall be certified or approved under...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... for Locating People Using Electricity Dependent Medical Equipment During Public Health Emergencies... submissions to the ``System for Locating People Using Electricity Dependent Medical Equipment During Public....m. The ``System for Locating People Using Electricity Dependent Medical Equipment During Public...
Test facilities for high power electric propulsion
NASA Technical Reports Server (NTRS)
Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.
1991-01-01
Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.
NASA Technical Reports Server (NTRS)
1976-01-01
This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation amd maintenance, and the financial structure and tax environment of the utility.
Systems definition space-based power conversion systems. [for satellite power transmission to earth
NASA Technical Reports Server (NTRS)
1976-01-01
Potential space-located systems for the generation of electrical power for use on Earth are discussed and include: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; and (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Systems (1) and (2) would utilize a microwave beam system to transmit their output to Earth. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.
49 CFR 236.10 - Electric locks, force drop type; where required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Electric locks, force drop type; where required. 236.10 Section 236.10 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... Rules and Instructions: All Systems General § 236.10 Electric locks, force drop type; where required...
NASA Astrophysics Data System (ADS)
Abbatiello, L. A.; Nephew, E. A.; Ballou, M. L.
1981-03-01
The efficiency and life cycle costs of the brine chiller minimal annual cycle energy system (ACES) for residential space heating, air conditioning, and water heating requirements are compared with three conventional systems. The conventional systems evaluated are a high performance air-to-air heat pump with an electric resistance water heater, an electric furnace with a central air conditioner and an electric resistance water heater, and a high performance air-to-air heat pump with a superheater unit for hot water production. Monthly energy requirements for a reference single family house are calculated, and the initial cost and annual energy consumption of the systems, providing identical energy services, are computed and compared. The ACES consumes one third to one half ot the electrical energy required by the conventional systems and delivers the same annual loads at comparable costs.
Promising Electric Aircraft Drive Systems
NASA Technical Reports Server (NTRS)
Dudley, Michael R.
2010-01-01
An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-1 General. (a) Electric installations on vessels must ensure: (1) Maintenance of services... persons, and the vessel from electrical hazards. (3) Maintenance of system integrity through compliance...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-1 General. (a) Electric installations on vessels must ensure: (1) Maintenance of services... persons, and the vessel from electrical hazards. (3) Maintenance of system integrity through compliance...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-1 General. (a) Electric installations on vessels must ensure: (1) Maintenance of services... persons, and the vessel from electrical hazards. (3) Maintenance of system integrity through compliance...
Space station electric power system requirements and design
NASA Technical Reports Server (NTRS)
Teren, Fred
1987-01-01
An overview of the conceptual definition and design of the space station Electric Power System (EPS) is given. Responsibilities for the design and development of the EPS are defined. The EPS requirements are listed and discussed, including average and peak power requirements, contingency requirements, and fault tolerance. The most significant Phase B trade study results are summarized, and the design selections and rationale are given. Finally, the power management and distribution system architecture is presented.
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 111.50-2 - Systems integration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Systems integration. 111.50-2 Section 111.50-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Overcurrent Protection § 111.50-2 Systems integration. The electrical characteristics of each...
46 CFR 91.55-5 - Plans and specifications required for new construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... systems. (e) Marine engineering. For plans required for marine engineering equipment and systems, see... electrical engineering, equipment and systems, see subchapter J (Electrical Engineering) of this chapter. (g... bottoms, etc., and including inboard and outboard profile. (b) Hull structure. 1 (1) *Inner Bottom Plating...
Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems
NASA Technical Reports Server (NTRS)
Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey
2015-01-01
Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
49 CFR 579.21 - Reporting requirements for manufacturers of 5,000 or more light vehicles annually.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (compressed natural gas), CIF (compression ignition fuel), EBP (electric battery power), FCP (fuel-cell power... (electric battery power), FCP (fuel-cell power), HEV (hybrid electric vehicle), HCP (hydrogen combustion... and engine cooling system, 07 fuel system, 10 power train, 11 electrical system, 12 exterior lighting...
10 CFR 205.351 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... electric power supply system. (2) Equipment failures/system operational actions attributable to the loss of... greater for purposes of maintaining the continuity of the bulk electric power supply system. (2) Reports...) or terrorism directed at an electric power supply system, local or regional, in an attempt to either...
46 CFR 107.305 - Plans and information.
Code of Federal Regulations, 2013 CFR
2013-10-01
... systems. Marine Engineering (z) Plans required for marine engineering equipment and systems by Subchapter F of this chapter. Electrical Engineering (aa) Plans required for electrical engineering equipment... materials that do not conform to ABS or ASTM specifications, complete specifications, including chemical and...
Space vehicle electrical power processing distribution and control study. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Krausz, A.
1972-01-01
A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).
Specification and Design of Electrical Flight System Architectures with SysML
NASA Technical Reports Server (NTRS)
McKelvin, Mark L., Jr.; Jimenez, Alejandro
2012-01-01
Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.
46 CFR 111.97-9 - Overcurrent protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-9 Overcurrent protection. Overcurrent devices must be arranged to isolate a fault with as little disruption of the system as possible...
The status of power supplies for primary electric propulsion in the U.S.A.
NASA Technical Reports Server (NTRS)
Jones, R. M.; Scott-Monck, J. A.
1984-01-01
This paper reviews the status of and requirements on solar electric and nuclear electric power supplies for primary electric propulsion missions. The power supply requirements of power level, specific mass (kg/kWe) and lifetime are defined as a function of the mission and electric propulsion system characteristics for planetary missions. The technology status of planar and concentrator arrays is discussed. Nuclear reactors and thermoelectric, thermionic, Brayton and Rankine conversion technologies are reviewed, as well as recent nuclear power system design concepts and program activity. Technology projections for power supplies applicable to primary electric propulsion missions are included.
Fuzzy logic electric vehicle regenerative antiskid braking and traction control system
Cikanek, S.R.
1994-10-25
An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.
Electric vehicle regenerative antiskid braking and traction control system
Cikanek, S.R.
1995-09-12
An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.
Electric vehicle regenerative antiskid braking and traction control system
Cikanek, Susan R.
1995-01-01
An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.
Fuzzy logic electric vehicle regenerative antiskid braking and traction control system
Cikanek, Susan R.
1994-01-01
An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.
10 CFR 434.401 - Electrical power and lighting systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...
10 CFR 434.401 - Electrical power and lighting systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...
10 CFR 434.401 - Electrical power and lighting systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...
10 CFR 434.401 - Electrical power and lighting systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...
10 CFR 434.401 - Electrical power and lighting systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment § 434... motors of 1 hp or more shall meet these requirements: 401.2.1 Efficiency. NEMA design A & B squirrel-cage... used in systems designed to use more than one speed. (b) Motors used as a component of the equipment...
Advanced Electric Propulsion for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Oleson, Steve
1999-01-01
The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
10 CFR 205.351 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Report of Major Electric Utility System Emergencies § 205.351 Reporting requirements. For the purpose of this section, a report or a part of a report may be...
10 CFR 205.351 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Report of Major Electric Utility System Emergencies § 205.351 Reporting requirements. For the purpose of this section, a report or a part of a report may be...
10 CFR 205.351 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Report of Major Electric Utility System Emergencies § 205.351 Reporting requirements. For the purpose of this section, a report or a part of a report may be...
Electrical power systems for Space Station
NASA Technical Reports Server (NTRS)
Simon, W. E.
1984-01-01
Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.
46 CFR 111.30-24 - Generation systems greater than 3000 kw.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 111.30-24 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... Outer Continental Shelf facility, when the total installed electric power of the ship's service...
46 CFR 111.30-24 - Generation systems greater than 3000 kw.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 111.30-24 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... Outer Continental Shelf facility, when the total installed electric power of the ship's service...
46 CFR 111.30-24 - Generation systems greater than 3000 kw.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 111.30-24 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... Outer Continental Shelf facility, when the total installed electric power of the ship's service...
46 CFR 111.30-24 - Generation systems greater than 3000 kw.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 111.30-24 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... Outer Continental Shelf facility, when the total installed electric power of the ship's service...
46 CFR 111.30-24 - Generation systems greater than 3000 kw.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 111.30-24 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... Outer Continental Shelf facility, when the total installed electric power of the ship's service...
46 CFR 111.25-1 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false General requirements. 111.25-1 Section 111.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motors § 111.25-1 General requirements. The requirements for generators contained in § 111.12-5...
46 CFR 111.25-1 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false General requirements. 111.25-1 Section 111.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motors § 111.25-1 General requirements. The requirements for generators contained in § 111.12-5...
46 CFR 111.25-1 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false General requirements. 111.25-1 Section 111.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motors § 111.25-1 General requirements. The requirements for generators contained in § 111.12-5...
46 CFR 111.25-1 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false General requirements. 111.25-1 Section 111.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motors § 111.25-1 General requirements. The requirements for generators contained in § 111.12-5...
46 CFR 111.25-1 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false General requirements. 111.25-1 Section 111.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motors § 111.25-1 General requirements. The requirements for generators contained in § 111.12-5...
Solar-Powered Electric Propulsion Systems: Engineering and Applications
NASA Technical Reports Server (NTRS)
Stearns, J. W.; Kerrisk, D. J.
1966-01-01
Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.
Water Use in the US Electric Power Sector: Energy Systems Level Perspectives
This presentation reviews the water demands of long-range electricity scenarios. It addresses questions such as: What are the aggregate water requirements of the U.S. electric power sector? How could water requirements evolve under different long-range regional generation mixes? ...
10 CFR 205.329 - Environmental requirements for Presidential Permits-Alternative 2.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions... Facilities for Transmission of Electric Energy at International Boundaries § 205.329 Environmental... exempt from the requirements of this section. [48 FR 33820, July 25, 1983] Report of Major Electric...
24 CFR 3285.701 - Electrical crossovers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require... installation instructions. ...
Electrical power systems for Mars
NASA Technical Reports Server (NTRS)
Giudici, Robert J.
1986-01-01
Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.
Electrical power systems for Mars
NASA Astrophysics Data System (ADS)
Giudici, Robert J.
1986-05-01
Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.
Study of curved glass photovoltaic module and module electrical isolation design requirements
NASA Technical Reports Server (NTRS)
1980-01-01
The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.
Study of curved glass photovoltaic module and module electrical isolation design requirements
NASA Astrophysics Data System (ADS)
1980-06-01
The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as vehicles, missions and systems identified that are best suited to take advantage of their unique characteristics.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.
Investigation of Propulsion System Requirements for Spartan Lite
NASA Technical Reports Server (NTRS)
Urban, Mike; Gruner, Timothy; Morrissey, James; Sneiderman, Gary
1998-01-01
This paper discusses the (chemical or electric) propulsion system requirements necessary to increase the Spartan Lite science mission lifetime to over a year. Spartan Lite is an extremely low-cost (less than 10 M) spacecraft bus being developed at the NASA Goddard Space Flight Center to accommodate sounding rocket class (40 W, 45 kg, 35 cm dia by 1 m length) payloads. While Spartan Lite is compatible with expendable launch vehicles, most missions are expected to be tertiary payloads deployed by. the Space Shuttle. To achieve a one year or longer mission life from typical Shuttle orbits, some form of propulsion system is required. Chemical propulsion systems (characterized by high thrust impulsive maneuvers) and electrical propulsion systems (characterized by low-thrust long duration maneuvers and the additional requirement for electrical power) are discussed. The performance of the Spartan Lite attitude control system in the presence of large disturbance torques is evaluated using the Trectops(Tm) dynamic simulator. This paper discusses the performance goals and resource constraints for candidate Spartan Lite propulsion systems and uses them to specify quantitative requirements against which the systems are evaluated.
Energy Conversion and Storage Requirements for Hybrid Electric Aircraft
NASA Technical Reports Server (NTRS)
Misra, Ajay
2016-01-01
Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.
NASA Technical Reports Server (NTRS)
Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2013-01-01
A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.
NASA Technical Reports Server (NTRS)
Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2013-01-01
A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.
NASA Technical Reports Server (NTRS)
Cork, M. J.; Barnett, P. M.; Shaffer, J., Jr.; Doran, B. J.
1979-01-01
Earth escape mission requirements on Solar Electric Propulsion System (SEPS), and the interface definition and planned integration between SEPS, user spacecraft, and other elements of the STS. Emphasis is placed on the Comet rendezvous mission, scheduled to be the first SEPS user. Interactive SEPS interface characteristics with spacecraft and mission, as well as the multiple organizations and inter-related development schedules required to integrate the SEPS with spacecraft and STS, require early attention to definition of interfaces in order to assure a successful path to the first SEPS launch in July 1985
Electric Propulsion Options for a Magnetospheric Mapping Mission
NASA Technical Reports Server (NTRS)
Oleson, Steven; Russell, Chris; Hack, Kurt; Riehl, John
1998-01-01
The Twin Electric Magnetospheric Probes Exploring on Spiral Trajectories mission concept was proposed as a Middle Explorer class mission. A pre-phase-A design was developed which utilizes the advantages of electric propulsion for Earth scientific spacecraft use. This paper presents propulsion system analyses performed for the proposal. The proposed mission required two spacecraft to explore near circular orbits 0.1 to 15 Earth radii in both high and low inclination orbits. Since the use of chemical propulsion would require launch vehicles outside the Middle Explorer class a reduction in launch mass was sought using ion, Hall, and arcjet electric propulsion system. Xenon ion technology proved to be the best propulsion option for the mission requirements requiring only two Pegasus XL launchers. The Hall thruster provided an alternative solution but required two larger, Taurus launch vehicles. Arcjet thrusters did not allow for significant launch vehicle reduction in the Middle Explorer class.
NASA Astrophysics Data System (ADS)
Nolan, S.; Jones, C. E.; Munro, R.; Norman, P.; Galloway, S.; Venturumilli, S.; Sheng, J.; Yuan, W.
2017-12-01
Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, enabling future rising demands for air travel to be met. The development of appropriate electrical power systems to provide thrust for the aircraft is a significant challenge due to the much higher required power generation capacity levels and complexity of the aero-electrical power systems (AEPS). The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid propulsion are not mitigated by the electrical power train. Hence it is proposed that for larger aircraft (~200 passengers) superconducting power systems are used to meet target power densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical protection and fault management system. It is known from previous studies that the choice of protection system may have a significant impact on the overall efficiency of the AEPS. Hence an informed design process which considers the key trades between choice of cable and protection requirements is needed. To date the fault response of a voltage source converter interfaced DC link rail to rail fault in a superconducting power system has only been investigated using simulation models validated by theoretical values from the literature. This paper will present the experimentally obtained fault response for a variety of different types of superconducting tape for a rail to rail DC fault. The paper will then use these as a platform to identify key trades between protection requirements and cable design, providing guidelines to enable future informed decisions to optimise hybrid propulsion electrical power system and protection design.
46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Additional requirements for vessels carrying vehicles... SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels carrying vehicles with fuel in their tanks. Each vessel...
46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Additional requirements for vessels carrying vehicles... SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels carrying vehicles with fuel in their tanks. Each vessel...
46 CFR 111.05-13 - Grounding connection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-13 Grounding... power sources operating in parallel in the system. ...
46 CFR 129.120 - Alternative standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or less may meet the following requirements of the American Yacht and Boat Council Projects, where applicable, instead of § 129.340 of this part: (1) E-1, Bonding of Direct Current Systems. (2) E-8, AC Electrical Systems on Boats. (3) E-9, DC Electrical Systems on Boats. (b) An OSV with an electrical...
Intelligent sensor in control systems for objects with changing thermophysical properties
NASA Astrophysics Data System (ADS)
Belousov, O. A.; Muromtsev, D. Yu; Belyaev, M. P.
2018-04-01
The control of heat devices in a wide temperature range given thermophysical properties of an object is a topical issue. Optimal control systems of electric furnaces have to meet strict requirements in terms of accuracy of production procedures and efficiency of energy consumption. The fulfillment of these requirements is possible only if the dynamics model describing adequately the processes occurring in the furnaces is used to calculate the optimal control actions. One of the types of electric furnaces is the electric chamber furnace intended for heat treatment of various materials at temperatures from thousands of degrees Celsius and above. To solve the above-mentioned problem and to determine its place in the system of energy-efficient control of dynamic modes in the electric furnace, we propose the concept of an intelligent sensor and a method of synthesizing variables on sets of functioning states. The use of synthesis algorithms for optimal control in real time ensures the required accuracy when operating under different conditions and operating modes of the electric chamber furnace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirst, E.; Kirby, B.
1999-11-01
Just as the aviation industry needs air-traffic controllers to manage the movement of airplanes for safety and commerce, so too, the electricity industry requires system operators. The electrical-system-control functions encompass a range of activities that support commercial transactions and maintain bulk-power reliability. As part of a project for the Edison Electric Institute, the authors examined the functions and costs of system control and the issues that need to be resolved in a restructured electricity industry (Hirst and Kirby 1998).
Pratt & Whitney ESCORT derivative for mars surface power
NASA Astrophysics Data System (ADS)
Feller, Gerald J.; Joyner, Russell
1999-01-01
The purpose of this paper is to address the applicability of a common reactor system design from the Pratt & Whitney ESCORT nuclear thermal rocket engine concept to support current NASA mars surface-based power requirements. The ESCORT is a bimodal engine capable of supporting a wide range of propulsive thermal and vehicle electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In addition to an expander cycle propulsive mode, the ESCORT is capable of operating in an electrical power mode. In this mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. Recent Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential mars transfer missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. Additionally, these requirements detailed a surface power system capable of providing approximately 160 kW of electrical energy over an approximate 10 year period within a given weight and volume envelope. Current NASA studies use a SP-100 reactor (0.8 MT) and a NERVA derivative (1.6 MT) as baseline systems. A mobile power cart of approximate dimensions 1.7 m×4.5 m×4.4 m has been conceptualized to transport the reactor power system on the Mars Surface. The 63.25 cm diameter and 80.25 cm height of the ESCORT and its 1.3 MT of weight fit well within the current weight and volume target range of the NASA DRM requirements. The modifications required to the ESCORT reactor system to support this upgraded electrical power requirements along with operation in the Martian atmospheric conditions are addressed in this paper. Sufficient excess reactivity and burnup capability were designed into the ESCORT reactor system to support these upgraded requirements. Only slight modifications to reactor hardware were required to address any environmental considerations. These modifications involved sealing any refractory metal alloy components from the CO2 in the Martian Atmosphere. Also, the Brayton cycle Power Conversion Unit (PCU) hardware was modified to support the upgraded requirements. This paper discusses the design analysis performed and provides information on the final common reactor concept to be used on the Mars surface to support manned missions.
46 CFR 111.97-9 - Overcurrent protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Overcurrent protection. 111.97-9 Section 111.97-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-9 Overcurrent protection...
46 CFR 111.97-9 - Overcurrent protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Overcurrent protection. 111.97-9 Section 111.97-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-9 Overcurrent protection...
46 CFR 111.97-9 - Overcurrent protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Overcurrent protection. 111.97-9 Section 111.97-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-9 Overcurrent protection...
46 CFR 111.97-9 - Overcurrent protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Overcurrent protection. 111.97-9 Section 111.97-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-9 Overcurrent protection...
Design and Implementation of Effective Electrical Power System for Surya Satellite-1
NASA Astrophysics Data System (ADS)
Sulistya, A. H.; Hasbi, W.; Muhida, R.
2018-05-01
Surya Satellite-1 is a nanosatellite developed by students of Surya University. The subject of this paper is the design and implementation of effective electrical power system for Surya Satellite 1. The electrical power system role is to supply other systems of the satellite with appropriate electrical power. First, the requirements of the electrical power system are defined. The architecture of the electrical power system is then designed to build the prototype. The orbit simulation is calculated to predict the power production. When prototype test and simulation data is gained, we make an operation scenario to keep the produced power and the consumed power in balance. The design of the modules of the electrical power system is carried out with triple junction solar cells, lithium ion batteries, maximum power point trackers, charging controllers, power distributions, and protection systems. Finally, the prototypes of the electrical power system are presented.
Selection and Prioritization of Advanced Propulsion Technologies for Future Space Missions
NASA Technical Reports Server (NTRS)
Eberle, Bill; Farris, Bob; Johnson, Les; Jones, Jonathan; Kos, Larry; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)
2002-01-01
The exploration of our solar system will require spacecraft with much greater capability than spacecraft which have been launched in the past. This is particularly true for exploration of the outer planets. Outer planet exploration requires shorter trip times, increased payload mass, and ability to orbit or land on outer planets. Increased capability requires better propulsion systems, including increased specific impulse. Chemical propulsion systems are not capable of delivering the performance required for exploration of the solar system. Future propulsion systems will be applied to a wide variety of missions with a diverse set of mission requirements. Many candidate propulsion technologies have been proposed but NASA resources do not permit development of a] of them. Therefore, we need to rationally select a few propulsion technologies for advancement, for application to future space missions. An effort was initiated to select and prioritize candidate propulsion technologies for development investment. The results of the study identified Aerocapture, 5 - 10 KW Solar Electric Ion, and Nuclear Electric Propulsion as high priority technologies. Solar Sails, 100 Kw Solar Electric Hall Thrusters, Electric Propulsion, and Advanced Chemical were identified as medium priority technologies. Plasma sails, momentum exchange tethers, and low density solar sails were identified as high risk/high payoff technologies.
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2011-10-01 2011-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space...
Designing, Implementing and Maintaining a First Year Project Course in Electrical Engineering
ERIC Educational Resources Information Center
Lillieskold, J.; Ostlund, S.
2008-01-01
Being a modern electrical engineer does not only require state of the art skills in areas such as transfer and processing of information, electronics, systems engineering, and biomedical electrical engineering; it also requires generic engineering skills such as oral and written communication, team building, interpersonal skills, and the ability…
Control of large wind turbine generators connected to utility networks
NASA Technical Reports Server (NTRS)
Hinrichsen, E. N.
1983-01-01
This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.
Static and dynamic high power, space nuclear electric generating systems
NASA Technical Reports Server (NTRS)
Wetch, J. R.; Begg, L. L.; Koester, J. K.
1985-01-01
Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed.
24 CFR 3285.701 - Electrical crossovers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...
24 CFR 3285.701 - Electrical crossovers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...
24 CFR 3285.701 - Electrical crossovers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...
24 CFR 3285.701 - Electrical crossovers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...
46 CFR 111.85-1 - Electric oil immersion heaters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...
46 CFR 111.85-1 - Electric oil immersion heaters.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...
46 CFR 111.85-1 - Electric oil immersion heaters.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...
46 CFR 111.85-1 - Electric oil immersion heaters.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...
46 CFR 111.85-1 - Electric oil immersion heaters.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...
16 CFR 309.16 - Recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-01-01
... electric vehicle fuel dispensing system by the manufacturer, you must not remove or deface the permanent marking or label. The required records, other than the permanent marking or label on the electric vehicle..., including the permanent marking or label on each electric vehicle fuel dispensing system, must be available...
16 CFR 309.16 - Recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-01-01
... electric vehicle fuel dispensing system by the manufacturer, you must not remove or deface the permanent marking or label. The required records, other than the permanent marking or label on the electric vehicle..., including the permanent marking or label on each electric vehicle fuel dispensing system, must be available...
16 CFR 309.16 - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-01-01
... electric vehicle fuel dispensing system by the manufacturer, you must not remove or deface the permanent marking or label. The required records, other than the permanent marking or label on the electric vehicle..., including the permanent marking or label on each electric vehicle fuel dispensing system, must be available...
16 CFR 309.16 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-01-01
... electric vehicle fuel dispensing system by the manufacturer, you must not remove or deface the permanent marking or label. The required records, other than the permanent marking or label on the electric vehicle..., including the permanent marking or label on each electric vehicle fuel dispensing system, must be available...
7 CFR 1730.21 - Inspections and tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... reliability and security of the electric power grid, cause significant risk to the safety and health of the... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Operations and Maintenance Requirements § 1730.21... parts of its electric system, annually exercise its ERP, and maintain records of such inspections and...
16 CFR 309.16 - Recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-01-01
... electric vehicle fuel dispensing system by the manufacturer, you must not remove or deface the permanent marking or label. The required records, other than the permanent marking or label on the electric vehicle..., including the permanent marking or label on each electric vehicle fuel dispensing system, must be available...
Solar electric propulsion system technology
NASA Technical Reports Server (NTRS)
Masek, T. D.; Macie, T. W.
1971-01-01
Achievements in the solar electric propulsion system technology program (SEPST 3) are reported and certain propulsion system-spacecraft interaction problems are discussed. The basic solar electric propulsion system concept and elements are reviewed. Hardware is discussed only briefly, relying on detailed fabrication or assembly descriptions reported elsewhere. Emphasis is placed on recent performance data, which are presented to show the relationship between spacecraft requirements and present technology.
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2016-01-01
As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.
The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco
This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water.more » The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.« less
Electric System Flexibility and Storage | Energy Analysis | NREL
. Featured Studies India Renewable Integration Study Grid Flexibility and Storage Required To Achieve Very demand-in Texas. Key findings from this study include: A highly flexible system with must-run baseload . Publications Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage
46 CFR 111.105-5 - System integrity.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false System integrity. 111.105-5 Section 111.105-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-5 System integrity. In order to maintain system integrity, each...
46 CFR 111.105-5 - System integrity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false System integrity. 111.105-5 Section 111.105-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-5 System integrity. In order to maintain system integrity, each...
46 CFR 111.05-25 - Ungrounded systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Ungrounded systems. 111.05-25 Section 111.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-25 Ungrounded systems. Each...
46 CFR 111.05-25 - Ungrounded systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Ungrounded systems. 111.05-25 Section 111.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-25 Ungrounded systems. Each...
46 CFR 111.105-5 - System integrity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false System integrity. 111.105-5 Section 111.105-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-5 System integrity. In order to maintain system integrity, each...
46 CFR 111.05-25 - Ungrounded systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Ungrounded systems. 111.05-25 Section 111.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-25 Ungrounded systems. Each...
Simulation Models for the Electric Power Requirements in a Guideway Transit System
DOT National Transportation Integrated Search
1980-04-01
This report describes a computer simulation model developed at the Transportation Systems Center to study the electrical power distribution characteristics of Automated Guideway Transit (AGT) systems. The objective of this simulation effort is to pro...
NASA Technical Reports Server (NTRS)
Maisel, James E.
1988-01-01
Addressed are some of the space electrical power system technologies that should be developed for the U.S. space program to remain competitive in the 21st century. A brief historical overview of some U.S. manned/unmanned spacecraft power systems is discussed to establish the fact that electrical systems are and will continue to become more sophisticated as the power levels appoach those on the ground. Adaptive/Expert power systems that can function in an extraterrestrial environment will be required to take an appropriate action during electrical faults so that the impact is minimal. Manhours can be reduced significantly by relinquishing tedious routine system component maintenance to the adaptive/expert system. By cataloging component signatures over time this system can set a flag for a premature component failure and thus possibly avoid a major fault. High frequency operation is important if the electrical power system mass is to be cut significantly. High power semiconductor or vacuum switching components will be required to meet future power demands. System mass tradeoffs have been investigated in terms of operating at high temperature, efficiency, voltage regulation, and system reliability. High temperature semiconductors will be required. Silicon carbide materials will operate at a temperature around 1000 K and the diamond material up to 1300 K. The driver for elevated temperature operation is that radiator mass is reduced significantly because of inverse temperature to the fourth power.
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.
2005-01-01
Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.
46 CFR 111.106-17 - Piping: electrical bonding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Piping: electrical bonding. 111.106-17 Section 111.106-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations on OSVs § 111.106-17 Piping: electrical bonding. (a...
A new direction in energy conversion - The all-electric aircraft
NASA Technical Reports Server (NTRS)
Spitzer, C. R.
1985-01-01
This paper reviews recent studies of all-electric aircraft that use electric-only secondary power and flight critical fly-by-wire flight controls, and brings to the attention of the power system designer the intrinsic advantages of such aircraft. The all-electric aircraft is made possible by the development of rare earth magnet materials and fault tolerant systems technologies. Recent studies have shown all-electric aircraft to be more efficient than conventional designs and offer substantial operating costs reductions. Compared to present aircraft, an all-electric transport can save at least 10 percent in fuel burn. The cornerstone of an all-electric aircraft is the electric secondary power system. This paper reviews the major features of flight critical electric secondary power systems. Research required to lay the foundation for an all-electric aircraft is briefly discussed.
NASA Technical Reports Server (NTRS)
Corman, J. C.
1976-01-01
A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.
Projected electric power demands for the Potomac Electric Power Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, J.W.
1975-07-01
Included are chapters on the background of the Potomac Electric Power Company, forecasting future power demand, demand modeling, accuracy of market predictions, and total power system requirements. (DG)
46 CFR 111.107-1 - Industrial systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Industrial systems. 111.107-1 Section 111.107-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Industrial Systems § 111.107-1 Industrial systems. (a) For the purpose of this subpart, an...
46 CFR 111.107-1 - Industrial systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Industrial systems. 111.107-1 Section 111.107-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Industrial Systems § 111.107-1 Industrial systems. (a) For the purpose of this subpart, an...
46 CFR 111.107-1 - Industrial systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Industrial systems. 111.107-1 Section 111.107-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Industrial Systems § 111.107-1 Industrial systems. (a) For the purpose of this subpart, an...
46 CFR 111.107-1 - Industrial systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Industrial systems. 111.107-1 Section 111.107-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Industrial Systems § 111.107-1 Industrial systems. (a) For the purpose of this subpart, an...
46 CFR 111.107-1 - Industrial systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Industrial systems. 111.107-1 Section 111.107-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Industrial Systems § 111.107-1 Industrial systems. (a) For the purpose of this subpart, an...
Polychlorinated Biphenyls (PCBs) in Transit System Electrical Equipment
DOT National Transportation Integrated Search
1984-05-01
This report presents the legislative history and current regulatory requirement concerning the continued use of Polychlorinated Biphenyls (PCBs) in transit system electrical equipment. Recent rule-making promulgated by the Environmental Protection Ag...
NASA Technical Reports Server (NTRS)
Biernacki, John; Juhasz, John; Sadler, Gerald
1991-01-01
A team of Space Station Freedom (SSF) system engineers are in the process of extensive analysis of the SSF requirements, particularly those pertaining to the electrical power system (EPS). The objective of this analysis is the development of a comprehensive, computer-based requirements model, using an enhanced modern structured analysis methodology (EMSA). Such a model provides a detailed and consistent representation of the system's requirements. The process outlined in the EMSA methodology is unique in that it allows the graphical modeling of real-time system state transitions, as well as functional requirements and data relationships, to be implemented using modern computer-based tools. These tools permit flexible updating and continuous maintenance of the models. Initial findings resulting from the application of EMSA to the EPS have benefited the space station program by linking requirements to design, providing traceability of requirements, identifying discrepancies, and fostering an understanding of the EPS.
Single High Fidelity Geometric Data Sets for LCM - Model Requirements
2006-11-01
are extensive single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems, which make...single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems. During this same period...be sufficiently flexible to accommodate the diverse requirements of various types of structural analyses. Section Properties & Material Data
NASA Technical Reports Server (NTRS)
1974-01-01
The SERT C (Space Electric Rocket Test - C) project study defines a spacecraft mission that would demonstrate the technology readiness of ion thruster systems for primary propulsion and station keeping applications. As a low cost precursor, SERT C develops the components and systems required for subsequent Solar Electric Propulsion (SEP) applications. The SERT C mission requirements and preliminary spacecraft and subsystem design are described.
National Electrical Code in Power Engineering Course for Electrical Engineering Curriculum
ERIC Educational Resources Information Center
Azizur, Rahman M. M.
2011-01-01
In order to ensure the safety of their inhabitants and properties, the residential, industrial and business installations require complying with NEC (national electrical code) for electrical systems. Electrical design engineers and technicians rely heavily on these very important design guidelines. However, these design guidelines are not formally…
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 111.52-3 - Systems below 1500 kilowatts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Calculation of Short-Circuit Currents § 111.52-3 Systems below 1500 kilowatts. The... maximum short-circuit current of a direct current system must be assumed to be 10 times the aggregate...
46 CFR 111.52-3 - Systems below 1500 kilowatts.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Calculation of Short-Circuit Currents § 111.52-3 Systems below 1500 kilowatts. The... maximum short-circuit current of a direct current system must be assumed to be 10 times the aggregate...
Impacts of Groundwater Constraints on Saudi Arabia's Low-Carbon Electricity Supply Strategy.
Parkinson, Simon C; Djilali, Ned; Krey, Volker; Fricko, Oliver; Johnson, Nils; Khan, Zarrar; Sedraoui, Khaled; Almasoud, Abdulrahman H
2016-02-16
Balancing groundwater depletion, socioeconomic development and food security in Saudi Arabia will require policy that promotes expansion of unconventional freshwater supply options, such as wastewater recycling and desalination. As these processes consume more electricity than conventional freshwater supply technologies, Saudi Arabia's electricity system is vulnerable to groundwater conservation policy. This paper examines strategies for adapting to long-term groundwater constraints in Saudi Arabia's freshwater and electricity supply sectors with an integrated modeling framework. The approach combines electricity and freshwater supply planning models across provinces to provide an improved representation of coupled infrastructure systems. The tool is applied to study the interaction between policy aimed at a complete phase-out of nonrenewable groundwater extraction and concurrent policy aimed at achieving deep reductions in electricity sector carbon emissions. We find that transitioning away from nonrenewable groundwater use by the year 2050 could increase electricity demand by more than 40% relative to 2010 conditions, and require investments similar to strategies aimed at transitioning away from fossil fuels in the electricity sector. Higher electricity demands under groundwater constraints reduce flexibility of supply side options in the electricity sector to limit carbon emissions, making it more expensive to fulfill climate sustainability objectives. The results of this analysis underscore the importance of integrated long-term planning approaches for Saudi Arabia's electricity and freshwater supply systems.
ERIC Educational Resources Information Center
Hernández, Yasmin; Pérez-Ramírez, Miguel; Zatarain-Cabada, Ramon; Barrón-Estrada, Lucia; Alor-Hernández, Giner
2016-01-01
Electrical tests involve high risk; therefore utility companies require highly qualified electricians and efficient training. Recently, training for electrical tests has been supported by virtual reality systems; nonetheless, these training systems are not yet adaptive. We propose a b-learning model to support adaptive and distance training. The…
EPA/ECLSS consumables analyses for the Spacelab 1 flight
NASA Technical Reports Server (NTRS)
Steines, G. J.; Pipher, M. D.
1976-01-01
The results of electrical power system (EPS) and environmental control/life support system (ECLSS) consumables analyses of the Spacelab 1 mission are presented. The analyses were performed to assess the capability of the orbiter systems to support the proposed mission and to establish the various non propulsive consumables requirements. The EPS analysis was performed using the shuttle electrical power system (SEPS) analysis computer program. The ECLSS analysis was performed using the shuttle environmental consumables requirements evaluation tool (SECRET) program.
Empirical testing of an analytical model predicting electrical isolation of photovoltaic models
NASA Astrophysics Data System (ADS)
Garcia, A., III; Minning, C. P.; Cuddihy, E. F.
A major design requirement for photovoltaic modules is that the encapsulation system be capable of withstanding large DC potentials without electrical breakdown. Presented is a simple analytical model which can be used to estimate material thickness to meet this requirement for a candidate encapsulation system or to predict the breakdown voltage of an existing module design. A series of electrical tests to verify the model are described in detail. The results of these verification tests confirmed the utility of the analytical model for preliminary design of photovoltaic modules.
Electric propulsion for lunar exploration and lunar base development
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
1992-01-01
Using electric propulsion to deliver materials to lunar orbit for the development and construction of a lunar base was investigated. Because the mass of the base and its life-cycle resupply mass are large, high specific impulse propulsion systems may significantly reduce the transportation system mass and cost. Three electric propulsion technologies (arcjet, ion, and magnetoplasmadynamic (MPD) propulsion) were compared with oxygen/hydrogen propulsion for a lunar base development scenario. Detailed estimates of the orbital transfer vehicles' (OTV's) masses and their propellant masses are presented. The fleet sizes for the chemical and electric propulsion systems are estimated. Ion and MPD propulsion systems enable significant launch mass savings over O2/H2 propulsion. Because of the longer trip time required for the low-thrust OTV's, more of them are required to perform the mission model. By offloading the lunar cargo from the manned O2/H2 OTV missions onto the electric propulsion OTV's, a significant reduction of the low Earth orbit (LEO) launch mass is possible over the 19-year base development period.
46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Additional requirements for vessels carrying vehicles with fuel in their tanks. 111.105-39 Section 111.105-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels...
46 CFR 111.105-39 - Additional requirements for vessels carrying vehicles with fuel in their tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Additional requirements for vessels carrying vehicles with fuel in their tanks. 111.105-39 Section 111.105-39 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-39 Additional requirements for vessels...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
ESCORT: A Pratt & Whitney nuclear thermal propulsion and power system for manned mars missions
NASA Astrophysics Data System (ADS)
Feller, Gerald J.; Joyner, Russell
1999-01-01
The purpose of this paper is to describe the conceptual design of an upgrade to the Pratt & Whitney ESCORT nuclear thermal rocket engine. The ESCORT is a bimodal engine capable of supporting a wide range of vehicle propulsive and electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In propulsive mode, the reactor is used to heat hot hydrogen to approximately 2700 K which is expanded through a converging/diverging nozzle to generate thrust. Heat pickup in the nozzle and the radial beryllium reflectors is used to drive the turbomachinery in the ESCORT expander cycle. In electrical mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. This closed loop system has the additional function of a decay heat removal system after the propulsive mode operation is discontinued. The original ESCORT design was capable of delivering 4448.2 N (1000 lbf) of thrust at a vacuum impulse level of approximately 900 s. Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential manned Mars missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. This is met assuming three engines capable of each delivering 66723 N (15000 lbf) of vacuum thrust and 25 kWe of electrical power. The individual engine requirements were developed assuming three out of three engine reliability for propulsion and two out of three engine reliability for spacecraft electrical power. The approximate target vacuum impulse is 925 s. The Pratt & Whitney ESCORT concept was upgraded to meet these requirements. The hexagonal prismatic fuel elements were modified to address the uprated power requirements while maintaining the peak fuel temperature below the 2880 K limit for W-UO2 CERMET fuels. A system integrated performance methodology was developed to assess the sensitivity to weight, thrust and impulse to the DRM requirements. Propellant tanks, shielding, and Brayton cycle power conversion unit requirements were included in this evaluation.
A Future with Hybrid Electric Propulsion Systems: A NASA Perspective
NASA Technical Reports Server (NTRS)
DelRosario, Ruben
2014-01-01
The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.
NASA Astrophysics Data System (ADS)
Herrera, J. I.; Reddoch, T. W.
1988-02-01
Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3 percent (within the 5 percent limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz less than component.
46 CFR 111.35-1 - Electrical propulsion installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13, 4-8-5/5.17...
46 CFR 111.35-1 - Electrical propulsion installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13, 4-8-5/5.17...
46 CFR 111.35-1 - Electrical propulsion installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13, 4-8-5/5.17...
46 CFR 111.35-1 - Electrical propulsion installations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13, 4-8-5/5.17...
46 CFR 111.35-1 - Electrical propulsion installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13, 4-8-5/5.17...
Worthy test programmes and developments of smart electromechanical actuators
NASA Astrophysics Data System (ADS)
Annaz, Fawaz Yahya
2007-02-01
Early aircraft flight control systems were totally manually operated, that is, the force required to move flight control surfaces was generated by the pilot and transmitted by cables and rods. As aerodynamics and airframe technology developed and speeds increased, the forces required to move control surfaces increased, as did the number of surfaces. In order to provide the extra power required, hydraulic technology was introduced. To date, the common element in the development of flight control systems has been, mainly, restricted to this type of technology. This is because of its proven reliability and the lack of alternative technologies. However, the technology to build electromechanically actuated primary flight control systems is now available. Motors developing the required power at the required frequencies are now possible (with the use of high energy permanent magnetic materials and compact high speed electronic circuits). It is this particular development which may make the concept of an 'all electric aircraft' realizable in the near future. The purpose of the all electric aircraft concept is the consolidation of all secondary power systems into electric power. The elimination of hydraulic and pneumatic secondary power systems will improve maintainability, flight readiness and use of energy. This paper will present the development of multi-lane smart electric actuators and offer an insight into other subsequent fields of study. The key areas of study may be categorized as follows. State of the art hydraulic actuators. Electromechanical actuator system test programmes. Development of electromechanical actuators. Modelling of electromechanical actuators.
46 CFR 111.52-3 - Systems below 1500 kilowatts.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Systems below 1500 kilowatts. 111.52-3 Section 111.52-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Calculation of Short-Circuit Currents § 111.52-3 Systems below 1500 kilowatts. The...
46 CFR 111.52-3 - Systems below 1500 kilowatts.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Systems below 1500 kilowatts. 111.52-3 Section 111.52-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Calculation of Short-Circuit Currents § 111.52-3 Systems below 1500 kilowatts. The...
49 CFR 393.40 - Required brake systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subpart. (2) Air brake systems. Buses, trucks and truck-tractors equipped with air brake systems and..., and 393.52 of this subpart. (4) Electric brake systems. Motor vehicles equipped with electric brake..., trucks and truck tractors manufactured on or after March 1, 1975, and trailers manufactured on or after...
Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems
NASA Technical Reports Server (NTRS)
Lum, Ben T. F.; Pond, Charles; Dermott, William
1993-01-01
This interim report presents the preliminary results of an electrical actuation (ELA) system study (subtask TA3-1A) to support the NASA strategic avionics technology definition studies. The final report of this ELA study is scheduled for September 30, 1993. The topics are presented in viewgraph form and include the following ELA technology demonstration testing; ELA system baseline; power and energy requirements for shuttle effector systems; power efficiency and losses of ELA effector systems; and power and energy requirements for ELA power sources.
Multimegawatt electric propulsion system design considerations
NASA Technical Reports Server (NTRS)
Gilland, J. H.; Myers, Roger M.; Patterson, Michael J.
1991-01-01
Piloted Mars Mission Requirements of relatively short trip times and low initial mass in Earth orbit as identified by the NASA Space Exploration Initiative, indicate the need for multimegawatt electric propulsion systems. The design considerations and results for two thruster types, the argon ion, and hydrogen magnetoplasmadynamic thrusters, are addressed in terms of configuration, performance, and mass projections. Preliminary estimates of power management and distribution for these systems are given. Some assessment of these systems' performance in a reference Space Exploration Initiative piloted mission are discussed. Research and development requirements of these systems are also described.
46 CFR 111.01-19 - Inclination of the vessel.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...
46 CFR 111.87-1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Applicability. 111.87-1 Section 111.87-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-1 Applicability. This subpart applies to electrically...
46 CFR 111.87-1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Applicability. 111.87-1 Section 111.87-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-1 Applicability. This subpart applies to electrically...
46 CFR 111.87-1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Applicability. 111.87-1 Section 111.87-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-1 Applicability. This subpart applies to electrically...
46 CFR 111.87-1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Applicability. 111.87-1 Section 111.87-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-1 Applicability. This subpart applies to electrically...
46 CFR 111.87-1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Applicability. 111.87-1 Section 111.87-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Air Heating Equipment § 111.87-1 Applicability. This subpart applies to electrically...
46 CFR 111.01-19 - Inclination of the vessel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...
46 CFR 111.01-19 - Inclination of the vessel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...
46 CFR 111.01-19 - Inclination of the vessel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...
Job Grading Standard for Electrician (High Voltage) WG-2810.
ERIC Educational Resources Information Center
Civil Service Commission, Washington, DC. Bureau of Policies and Standards.
The standard covers nonsupervisory work involved in installation, test, repair, and maintenance of electric power plant and/or overhead and underground primary electrical distribution systems. These jobs require knowledge and application of electrical principles, procedures, materials, and safety standards governing work on electrical systems…
7 CFR 1767.26 - Operating revenue.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767.26 Operating... 453Sales of Water and Water Power 454Rent from Electric Property 455Interdepartmental Rents 456Other Electric Revenues 456.1Revenues from Transmission of Electricity of Others 457.1Regional Transmission...
7 CFR 1767.26 - Operating revenue.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767... 451Miscellaneous Service Revenues 453Sales of Water and Water Power 454Rent from Electric Property 455Interdepartmental Rents 456Other Electric Revenues 456.1Revenues from Transmission of Electricity of Others 457...
7 CFR 1767.26 - Operating revenue.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767... 451Miscellaneous Service Revenues 453Sales of Water and Water Power 454Rent from Electric Property 455Interdepartmental Rents 456Other Electric Revenues 456.1Revenues from Transmission of Electricity of Others 457...
7 CFR 1767.26 - Operating revenue.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767... 451Miscellaneous Service Revenues 453Sales of Water and Water Power 454Rent from Electric Property 455Interdepartmental Rents 456Other Electric Revenues 456.1Revenues from Transmission of Electricity of Others 457...
7 CFR 1767.26 - Operating revenue.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767... 451Miscellaneous Service Revenues 453Sales of Water and Water Power 454Rent from Electric Property 455Interdepartmental Rents 456Other Electric Revenues 456.1Revenues from Transmission of Electricity of Others 457...
NASA Technical Reports Server (NTRS)
Rehder, J. J.; Wurster, K. E.
1978-01-01
Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.
14 CFR 29.812 - Emergency lighting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... lighting system, they may be recharged from the rotorcraft's main electrical power system provided the... power supply independent of the main lighting system must be installed to— (1) Illuminate each passenger... upon interruption of the rotorcraft's normal electric power. (d) Any means required to assist the...
Computer program analyzes and monitors electrical power systems (POSIMO)
NASA Technical Reports Server (NTRS)
Jaeger, K.
1972-01-01
Requirements to monitor and/or simulate electric power distribution, power balance, and charge budget are discussed. Computer program to analyze power system and generate set of characteristic power system data is described. Application to status indicators to denote different exclusive conditions is presented.
NASA Astrophysics Data System (ADS)
Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru
2016-12-01
A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.
18 CFR 292.302 - Availability of electric utility system cost data.
Code of Federal Regulations, 2010 CFR
2010-04-01
... electric utility, in any calendar year, if the total sales of electric energy by such utility for purposes... electric energy for purposes other than resale of less than one billion kilowatt-hours during any calendar... which is legally obligated to obtain all its requirements for electric energy and capacity from another...
A/E/C CAD Standard, Release 5.0
2012-12-01
System Control Panels Halon System Inert Gas Smoke/Pressurization Control Egress Requirements Fire Protection System Appendix A ... System Natural Gas System Miter Gates Makeup Air System Appendix A Model File Level/Layer Assignment Tables A54 Discipline: Mechanical Model...SWITCHES Element type: Symbol Electrical: STP14B SURFACE 1X4 STRIP BATTERY Element type: Symbol Electrical: SUBST A
46 CFR 111.05-17 - Generation and distribution system grounding.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17... must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power generation...
46 CFR 111.05-17 - Generation and distribution system grounding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17... must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power generation...
46 CFR 111.05-17 - Generation and distribution system grounding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17... must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power generation...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... engine and engine parts manufacturing,'' ``Motor vehicle electrical and electronic equipment... manufacturing,'' ``Other motor vehicle electrical and electronic equipment manufacturing,'' and ``All other motor vehicle parts manufacturing'' in the second column from the list of required NAICS codes for the...
Shahini, Mehdi; Yeow, John T W
2011-08-12
We report on the enhancement of electrical cell lysis using carbon nanotubes (CNTs). Electrical cell lysis systems are widely utilized in microchips as they are well suited to integration into lab-on-a-chip devices. However, cell lysis based on electrical mechanisms has high voltage requirements. Here, we demonstrate that by incorporating CNTs into microfluidic electrolysis systems, the required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by ten times, compared to non-CNT microchips. In our experiment, E. coli cells are lysed while passing through an electric field in a microchannel. Based on the lightning rod effect, the electric field strengthened at the tip of the CNTs enhances cell lysis at lower voltage and higher throughput. This approach enables easy integration of cell lysis with other on-chip high-throughput sample-preparation processes.
Development of a PMAD System for Flywheel Based Energy Storage System
NASA Technical Reports Server (NTRS)
Wolff, Fred
2001-01-01
We will discuss the following: (1) the Flywheel Energy Storage System (FESS) program objective; (2) benefits of flywheels for the International Space Station; (3) the FESS development team; (4) FESS electrical requirements; (5) FESS electrical architecture; and (6) electrical subsystem functionality. The objective of the FESS program is to demonstrate flywheel technologies operating together as a system and having improved performance characteristics over batteries in a low earth orbit energy storage application (such as the ISS).
14 CFR 25.1309 - Equipment, systems, and installations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1309... electrical system and equipment design and installation, critical environmental conditions must be considered. For electrical generation, distribution, and utilization equipment required by or used in complying...
46 CFR 161.002-9 - Automatic fire detecting system, power supply.
Code of Federal Regulations, 2013 CFR
2013-10-01
... system must meet the requirements of § 113.10-9 of subchapter J (Electrical Engineering Regulations) of... 46 Shipping 6 2013-10-01 2013-10-01 false Automatic fire detecting system, power supply. 161.002-9..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Fire-Protective Systems § 161.002...
46 CFR 161.002-9 - Automatic fire detecting system, power supply.
Code of Federal Regulations, 2014 CFR
2014-10-01
... system must meet the requirements of § 113.10-9 of subchapter J (Electrical Engineering Regulations) of... 46 Shipping 6 2014-10-01 2014-10-01 false Automatic fire detecting system, power supply. 161.002-9..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Fire-Protective Systems § 161.002...
46 CFR 161.002-9 - Automatic fire detecting system, power supply.
Code of Federal Regulations, 2012 CFR
2012-10-01
... system must meet the requirements of § 113.10-9 of subchapter J (Electrical Engineering Regulations) of... 46 Shipping 6 2012-10-01 2012-10-01 false Automatic fire detecting system, power supply. 161.002-9..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Fire-Protective Systems § 161.002...
46 CFR 111.95-7 - Wiring of boat winch components.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-7 Wiring of boat winch... electric installation from all sources of potential. The switch must be in series with and on the supply...
46 CFR 111.95-7 - Wiring of boat winch components.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-7 Wiring of boat winch... electric installation from all sources of potential. The switch must be in series with and on the supply...
46 CFR 111.95-7 - Wiring of boat winch components.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-7 Wiring of boat winch... electric installation from all sources of potential. The switch must be in series with and on the supply...
46 CFR 111.95-7 - Wiring of boat winch components.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Boat Winches § 111.95-7 Wiring of boat winch... electric installation from all sources of potential. The switch must be in series with and on the supply...
77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... Group (WG) to develop proposed requirements for commercial electricity-measuring devices (including those used in sub- metering electricity at residential and business locations and those used to measure and sell electricity dispensed as a vehicle fuel) and to ensure that the prescribed methodologies and...
10 CFR 205.372 - Filing procedures; number of copies.
Code of Federal Regulations, 2010 CFR
2010-01-01
....372 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System... Electric Facilities and the Transfer of Electricity to Alleviate An Emergency Shortage of Electric Power... and reports required under §§ 205.370 through 205.379 shall be filed with the Division of Power Supply...
10 CFR 205.372 - Filing procedures; number of copies.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and reports required under §§ 205.370 through 205.379 shall be filed with the Division of Power Supply....372 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System... Electric Facilities and the Transfer of Electricity to Alleviate An Emergency Shortage of Electric Power...
Realizing the geothermal electricity potential—water use and consequences
NASA Astrophysics Data System (ADS)
Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia
2011-07-01
Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.
A Novel Data System for Verification of Internal Parameters of Motor Design
NASA Technical Reports Server (NTRS)
Smith, Doug; Saint Jean, Paul; Everton, Randy; Uresk, Bonnie
2003-01-01
Three major obstacles have limited the amount of information that can be obtained from inside an operating solid rocket motor. The first is a safety issue due to the presence of live propellant interacting with classical, electrical instrumentation. The second is a pressure vessel feed through risk arising from bringing a large number of wires through the rocket motor wall safely. The third is an attachment/protection issue associated with connecting gages to live propellant. Thiokol has developed a highly miniaturized, networked, electrically isolated data system that has safely delivered information from classical, electrical instrumentation (even on the burning propellant surface) to the outside world. This system requires only four wires to deliver 80 channels of data at 2300 samples/second/channel. The feed through leak path risk is massively reduced from the current situation where each gage requires at least three pressure vessel wire penetrations. The external electrical isolation of the system is better than that of the propellant itself. This paper describes the new system.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
.../diminished. There are no design changes associated with this TS amendment. The DC power system/batteries will... changes restructure the Technical Specifications (TS) for the direct current (DC) electrical power system... battery and battery charger operability requirements. The DC electrical power system, including associated...
46 CFR 76.27-15 - Operation and installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Operation and installation. 76.27-15 Section 76.27-15... EQUIPMENT Electric Fire Detecting System, Details § 76.27-15 Operation and installation. (a) The system... system. (e) All wiring and electrical circuits and equipment shall meet the applicable requirements of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General § 1726.10 Introduction. The policies... of loan documents between the Rural Utilities Service (RUS) and its electric borrowers. Unless prior... construction and improvement of electric facilities. Requirements relating to RUS approval of plans and...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General § 1726.10 Introduction. The policies... of loan documents between the Rural Utilities Service (RUS) and its electric borrowers. Unless prior... construction and improvement of electric facilities. Requirements relating to RUS approval of plans and...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General § 1726.10 Introduction. The policies... of loan documents between the Rural Utilities Service (RUS) and its electric borrowers. Unless prior... construction and improvement of electric facilities. Requirements relating to RUS approval of plans and...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General § 1726.10 Introduction. The policies... of loan documents between the Rural Utilities Service (RUS) and its electric borrowers. Unless prior... construction and improvement of electric facilities. Requirements relating to RUS approval of plans and...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES General § 1726.10 Introduction. The policies... of loan documents between the Rural Utilities Service (RUS) and its electric borrowers. Unless prior... construction and improvement of electric facilities. Requirements relating to RUS approval of plans and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of an electrical protective device, based upon its required and intended application, to safely... Health Administration which describe and illustrate the complete assembly of electrical machinery or... phase. An unintentional connection between an electric circuit and the grounding system. Low voltage. Up...
Heat engine generator control system
Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.
1998-05-12
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.
Heat engine generator control system
Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph
1998-01-01
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, J.I.; Reddoch, T.W.
1988-02-01
Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbinesmore » is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.« less
Experimental galvanic anode for cathodic protection of Bridge A12112
DOT National Transportation Integrated Search
2010-11-01
Cathodic Protection (CP) has been used by MoDOT for more than 30 years to stop : corrosion of reinforced concrete bridge decks. These systems require power from local electrical : connections. A galvanic system uses the difference in electrical poten...
The all electric airplane-benefits and challenges
NASA Technical Reports Server (NTRS)
Spitzer, C. R.; Hood, R. V.
1982-01-01
The all electric aircraft considered in the present investigation is an aircraft which has digital flight crucial controls, electromechanical actuators, and electrical secondary power. There are no hydraulic or pneumatic systems. The characteristics of an all electric aircraft are related to reduced acquisition cost, reduced weight, reduced fuel consumption, increased reliability, reduced support equipment, simpler maintenance, an expanded flight envelope, and improved survivability. An additional benefit is the dramatically increased design flexibility and mission adaptability. However, the implementation of the all electric aircraft concept requires the resolution of a number of major technology issues. Issues in the digital flight controls area are related to achieving the required levels of safety and reliability in a cost effective manner. Other challenges which have to be met are concerned with electromechanical actuators, environmental control and ice protection systems, and engine technology.
Power processing and control requirements of dispersed solar thermal electric generation systems
NASA Technical Reports Server (NTRS)
Das, R. L.
1980-01-01
Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.
HTS machines as enabling technology for all-electric airborne vehicles
NASA Astrophysics Data System (ADS)
Masson, P. J.; Brown, G. V.; Soban, D. S.; Luongo, C. A.
2007-08-01
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel withmore » the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)« less
NASA Technical Reports Server (NTRS)
Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest
1991-01-01
The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.
10 CFR 205.303 - Required exhibits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Application for Authorization to Transmit Electric Energy... used for the generation and transmission of the electric energy to be exported. The detailed map shall...
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
46 CFR 111.30-19 - Buses and wiring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1965-04-30
The manual serves as a guide to the important factors to consider in establishing a small-scale community electric system. Financial requirements include labor costs, machinery, equipment, utilities and administrative costs, raw materials (for diesel fuel to run the generators). Tables on cost estimates are given, with a blank column for actual cost statements; the summary provides questions that will help the planner decide what is necessary for setting up the plant and whether the requirements can be met.
46 CFR 111.10-9 - Ship's service supply transformers; two required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Ship's service supply transformers; two required. 111.10... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-9 Ship's service supply transformers; two required. If transformers are used to supply the ship's service distribution system required by...
46 CFR 111.10-9 - Ship's service supply transformers; two required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Ship's service supply transformers; two required. 111.10... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-9 Ship's service supply transformers; two required. If transformers are used to supply the ship's service distribution system required by...
46 CFR 111.10-9 - Ship's service supply transformers; two required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Ship's service supply transformers; two required. 111.10... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-9 Ship's service supply transformers; two required. If transformers are used to supply the ship's service distribution system required by...
46 CFR 111.10-9 - Ship's service supply transformers; two required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ship's service supply transformers; two required. 111.10... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-9 Ship's service supply transformers; two required. If transformers are used to supply the ship's service distribution system required by...
46 CFR 111.10-9 - Ship's service supply transformers; two required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Ship's service supply transformers; two required. 111.10... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-9 Ship's service supply transformers; two required. If transformers are used to supply the ship's service distribution system required by...
A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems
NASA Technical Reports Server (NTRS)
Dietz, Anthony
2014-01-01
Hybrid turboelectric aircraft-with gas turbines driving electric generators connected to electric propulsion motors-have the potential to transform aircraft design. Decoupling power generation from propulsion enables innovative aircraft designs, such as blended-wing bodies, with distributed propulsion. These hybrid turboelectric aircraft have the potential to significantly reduce emissions, decrease fuel burn, and reduce noise, all of which are required to make air transportation growth projections sustainable. The power density requirements for these electric machines can only be achieved with superconductors, which in turn require lightweight, high-capacity cryocoolers.
Advanced electric propulsion system concept for electric vehicles
NASA Technical Reports Server (NTRS)
Raynard, A. E.; Forbes, F. E.
1979-01-01
Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.
The electric rail gun for space propulsion
NASA Technical Reports Server (NTRS)
Bauer, D. P.; Barber, J. P.; Vahlberg, C. J.
1981-01-01
An analytic feasibility investigation of an electric propulsion concept for space application is described. In this concept, quasistatic thrust due to inertial reaction to repetitively accelerated pellets by an electric rail gun is used to propel a spacecraft. The study encompasses the major subsystems required in an electric rail gun propulsion system. The mass, performance, and configuration of each subsystem are described. Based on an analytic model of the system mass and performance, the electric rail gun mission performance as a reusable orbital transfer vehicle (OTV) is analyzed and compared to a 30 cm ion thruster system (BIMOD) and a chemical propulsion system (IUS) for payloads with masses of 1150 kg and 2300 kg. For system power levels in the range from 25 kW(e) to 100 kW(e) an electric rail gun OTV is more attractive than a BIMOD system for low Earth orbit to geosynchronous orbit transfer durations in the range from 20 to 120 days.
The creation of high-temperature superconducting cables of megawatt range in Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.
Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and developmentmore » of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.« less
The creation of high-temperature superconducting cables of megawatt range in Russia
NASA Astrophysics Data System (ADS)
Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.
2015-12-01
Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.
Space Station solar water heater
NASA Technical Reports Server (NTRS)
Horan, D. C.; Somers, Richard E.; Haynes, R. D.
1990-01-01
The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.
46 CFR 76.05-1 - Fire detecting systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fitted with an automatic sprinkling system, except in relatively incombustible spaces. 2 Sprinkler heads....1 Offices, lockers, and isolated storerooms Electric, pneumatic, or automatic sprinkling1 Do.1 Public spaces None required with 20-minute patrol. Electric, pneumatic, or automatic sprinkling with 1...
46 CFR 76.05-1 - Fire detecting systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... fitted with an automatic sprinkling system, except in relatively incombustible spaces. 2 Sprinkler heads....1 Offices, lockers, and isolated storerooms Electric, pneumatic, or automatic sprinkling1 Do.1 Public spaces None required with 20-minute patrol. Electric, pneumatic, or automatic sprinkling with 1...
Automated Ground Umbilical Systems (AGUS) Project
NASA Technical Reports Server (NTRS)
Gosselin, Armand M.
2007-01-01
All space vehicles require ground umbilical systems for servicing. Servicing requirements can include, but are not limited to, electrical power and control, propellant loading and venting, pneumatic system supply, hazard gas detection and purging as well as systems checkout capabilities. Of the various types of umbilicals, all require several common subsystems. These typically include an alignment system, mating and locking system, fluid connectors, electrical connectors and control !checkout systems. These systems have been designed to various levels of detail based on the needs for manual and/or automation requirements. The Automated Ground Umbilical Systems (AGUS) project is a multi-phase initiative to develop design performance requirements and concepts for launch system umbilicals. The automation aspect minimizes operational time and labor in ground umbilical processing while maintaining reliability. This current phase of the project reviews the design, development, testing and operations of ground umbilicals built for the Saturn, Shuttle, X-33 and Atlas V programs. Based on the design and operations lessons learned from these systems, umbilicals can be optimized for specific applications. The product of this study is a document containing details of existing systems and requirements for future automated umbilical systems with emphasis on design-for-operations (DFO).
A flight simulator control system using electric torque motors
NASA Technical Reports Server (NTRS)
Musick, R. O.; Wagner, C. A.
1975-01-01
Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.
Electric propulsion system for wheeled vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, J.A.
1981-11-03
An electric propulsion system for a wheeled vehicle has a generator and motor connected to a drive shaft and an electrical system for charging a battery during all conditions of power transfer from the wheels of the vehicle to the generator to minimize energy required for propulsion. A variable speed power coupling unit connecting the motor to the drive shaft has sprockets revolving about a belt connected sun sprocket with speed control effected by varying the rate of satellite sprocket rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touati, Said; Chennai, Salim; Souli, Aissa
The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how wellmore » a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)« less
NASA Astrophysics Data System (ADS)
Shimada, Takae; Kawasaki, Norihiro; Ueda, Yuzuru; Sugihara, Hiroyuki; Kurokawa, Kosuke
This paper aims to clarify the battery capacity required by a residential area with densely grid-connected photovoltaic (PV) systems. This paper proposes a planning method of tomorrow's grid-connection power from/to the external electric power system by using demand power forecasting and insolation forecasting for PV power predictions, and defines a operation method of the electricity storage device to control the grid-connection power as planned. A residential area consisting of 389 houses consuming 2390 MWh/year of electricity with 2390kW PV systems is simulated based on measured data and actual forecasts. The simulation results show that 8.3MWh of battery capacity is required in the conditions of half-hour planning and 1% or less of planning error ratio and PV output limiting loss ratio. The results also show that existing technologies of forecasting reduce required battery capacity to 49%, and increase the allowable installing PV amount to 210%.
A modular Space Station/Base electrical power system - Requirements and design study.
NASA Technical Reports Server (NTRS)
Eliason, J. T.; Adkisson, W. B.
1972-01-01
The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.
Conceptual design of an advanced Stirling conversion system for terrestrial power generation
NASA Technical Reports Server (NTRS)
1988-01-01
A free piston Stirling engine coupled to an electric generator or alternator with a nominal kWe power output absorbing thermal energy from a nominal 100 square meter parabolic solar collector and supplying electric power to a utility grid was identified. The results of the conceptual design study of an Advanced Stirling Conversion System (ASCS) were documented. The objectives are as follows: define the ASCS configuration; provide a manufacturability and cost evaluation; predict ASCS performance over the range of solar input required to produce power; estimate system and major component weights; define engine and electrical power condidtioning control requirements; and define key technology needs not ready by the late 1980s in meeting efficiency, life, cost, and with goalds for the ASCS.
MW-Class Electric Propulsion System Designs
NASA Technical Reports Server (NTRS)
LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador
2011-01-01
Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary results of the COMPASS MW-class electric propulsion power system study are reported, and discussion is provided on how the analysis might be used to guide future technology investments as NASA moves to more capable high power in-space propulsion systems.
Monitoring of electric-cardio signals based on DSP
NASA Astrophysics Data System (ADS)
Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang
2008-10-01
Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.
10 CFR 205.328 - Environmental requirements for Presidential Permits-Alternative 1.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions... Facilities for Transmission of Electric Energy at International Boundaries § 205.328 Environmental...
Toward an electrical power utility for space exploration
NASA Technical Reports Server (NTRS)
Bercaw, Robert W.
1989-01-01
Future electrical power requirements for space exploration are discussed. Megawatts of power with enough reliability for multi-year missions and with enough flexibility to adapt to needs unanticipated at design time are some of the criteria which space power systems must be able to meet. The reasons for considering the power management and distribution in the various systems, from a total mission perspective rather than simply extrapolating current spacecraft design practice, are discussed. A utility approach to electric power integrating requirements from a broad selection of current development programs, with studies in which both space and terrestrial technologies are conceptually applied to exploration mission scenarios, is described.
NASA Technical Reports Server (NTRS)
1977-01-01
The best estimates of space transportation requirements for cargo launch vehicles, personnel launch carriers, high thrust orbit transfer, and electric orbit transfer systems are discussed, along with the rationale for each.
Megawatt level electric propulsion perspectives
NASA Technical Reports Server (NTRS)
Jahn, Robert G.; Kelly, Arnold J.
1987-01-01
For long range space missions, deliverable payload fraction is an inverse exponential function of the propellant exhaust velocity or specific impulse of the propulsion system. The exhaust velocity of chemical systems are limited by their combustion chemistry and heat transfer to a few km/s. Nuclear rockets may achieve double this range, but are still heat transfer limited and ponderous to develop. Various electric propulsion systems can achieve exhaust velocities in the 10 km/s range, at considerably lower thrust densities, but require an external electrical power source. A general overview is provided of the currently available electric propulsion systems from the perspective of their characteristics as a terminal load for space nuclear systems. A summary of the available electric propulsion options is shown and generally characterized in the power vs. exhaust velocity plot. There are 3 general classes of electric thruster devices: neutral gas heaters, plasma devices, and space charge limited electrostatic or ion thrusters.
Systems Engineering of Electric and Hybrid Vehicles
NASA Technical Reports Server (NTRS)
Kurtz, D. W.; Levin, R. R.
1986-01-01
Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.
46 CFR 76.05-1 - Fire detecting systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... required.1 Open decks or enclosed promenades None required None required. Service spaces: Galleys None... dioxide or clean agent system as described in 46 CFR subpart 95.16 or foam.4 Internal combustion or gas... CFR subpart 95.16.5 Electric propulsive motors or generators of open type None required None required...
46 CFR 76.05-1 - Fire detecting systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... required.1 Open decks or enclosed promenades None required None required. Service spaces: Galleys None... dioxide or clean agent system as described in 46 CFR subpart 95.16 or foam.4 Internal combustion or gas... CFR subpart 95.16.5 Electric propulsive motors or generators of open type None required None required...
46 CFR 76.05-1 - Fire detecting systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... required.1 Open decks or enclosed promenades None required None required. Service spaces: Galleys None... dioxide or clean agent system as described in 46 CFR subpart 95.16 or foam.4 Internal combustion or gas... CFR subpart 95.16.5 Electric propulsive motors or generators of open type None required None required...
46 CFR 111.01-17 - Voltage and frequency variations.
Code of Federal Regulations, 2013 CFR
2013-10-01
....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated frequency...
46 CFR 111.01-17 - Voltage and frequency variations.
Code of Federal Regulations, 2010 CFR
2010-10-01
....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated frequency...
46 CFR 111.01-17 - Voltage and frequency variations.
Code of Federal Regulations, 2011 CFR
2011-10-01
....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated frequency...
46 CFR 111.01-17 - Voltage and frequency variations.
Code of Federal Regulations, 2012 CFR
2012-10-01
....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated frequency...
46 CFR 111.01-17 - Voltage and frequency variations.
Code of Federal Regulations, 2014 CFR
2014-10-01
....01-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-17 Voltage and frequency variations. Unless otherwise stated, electrical equipment must function at variations of at least ±5 percent of rated frequency...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Appliances. 111.77-3 Section 111.77-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Appliances and Appliance Circuits § 111.77-3 Appliances. All electrical appliances, including, but...
... 85-95% pure oxygen. The concentrator runs on electricity or a battery. A concentrator for home usually ... systems deliver 100% oxygen, and do not require electricity. A small canister can be filled from the ...
Integrated thermal management of a hybrid electric vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traci, R.M.; Acebal, R.; Mohler, T.
1999-01-01
A thermal management methodology, based on the Vehicle Integrated Thermal Management Analysis Code (VITMAC), has been developed for a notional vehicle employing the All-Electric Combat Vehicle (AECV) concept. AECV uses a prime power source, such as a diesel, to provide mechanical energy which is converted to electrical energy and stored in a central energy storage system consisting of flywheels, batteries and/or capacitors. The combination of prime power and stored energy powers the vehicle drive system and also advanced weapons subsystems such as an ETC or EM gun, electrically driven lasers, an EM armor system and an active suspension. Every majormore » system is electrically driven with energy reclamation when possible from braking and gun recoil. Thermal management of such a complicated energy transfer and utilization system is a major design consideration due to the substantial heat rejection requirements. In the present paper, an overall integrated thermal management system (TMS) is described which accounts for energy losses from each subsystem component, accepts the heat using multiple coolant loops and expels the heat from the vehicle. VITMAC simulations are used to design the TMS and to demonstrate that a conventional TMS approach is capable of successfully handling vehicle heat rejection requirements under stressing operational conditions.« less
46 CFR 111.33-3 - Nameplate data.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Nameplate data. 111.33-3 Section 111.33-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-3 Nameplate data. (a) Each semiconductor rectifier...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false General. 111.33-1 Section 111.33-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-1 General. This subpart is applicable to all power...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false General. 111.33-1 Section 111.33-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-1 General. This subpart is applicable to all power...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false General. 111.33-1 Section 111.33-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-1 General. This subpart is applicable to all power...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false General. 111.33-1 Section 111.33-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-1 General. This subpart is applicable to all power...
46 CFR 111.33-3 - Nameplate data.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Nameplate data. 111.33-3 Section 111.33-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-3 Nameplate data. (a) Each semiconductor rectifier...
46 CFR 111.33-3 - Nameplate data.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Nameplate data. 111.33-3 Section 111.33-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-3 Nameplate data. (a) Each semiconductor rectifier...
46 CFR 111.99-1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Applicability. 111.99-1 Section 111.99-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fire Door Holding and Release Systems § 111.99-1 Applicability. This subpart applies to fire door...
46 CFR 111.99-1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Applicability. 111.99-1 Section 111.99-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fire Door Holding and Release Systems § 111.99-1 Applicability. This subpart applies to fire door...
46 CFR 111.99-1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Applicability. 111.99-1 Section 111.99-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fire Door Holding and Release Systems § 111.99-1 Applicability. This subpart applies to fire door...
46 CFR 111.99-1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Applicability. 111.99-1 Section 111.99-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fire Door Holding and Release Systems § 111.99-1 Applicability. This subpart applies to fire door...
46 CFR 111.99-1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Applicability. 111.99-1 Section 111.99-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fire Door Holding and Release Systems § 111.99-1 Applicability. This subpart applies to fire door...
46 CFR 111.99-3 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Definitions. 111.99-3 Section 111.99-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Fire Door Holding and Release Systems § 111.99-3 Definitions. As used in this subpart— Central...
46 CFR 111.33-3 - Nameplate data.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Nameplate data. 111.33-3 Section 111.33-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-3 Nameplate data. (a) Each semiconductor rectifier...
46 CFR 111.33-3 - Nameplate data.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Nameplate data. 111.33-3 Section 111.33-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-3 Nameplate data. (a) Each semiconductor rectifier...
Solar Electric Power System Analyses for Mars Surface Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Kohout, Lisa L.
1999-01-01
The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.
Design of bipolar, flowing-electrolyte zinc-bromine electric-vehicle battery systems
NASA Astrophysics Data System (ADS)
Malachesky, P. A.; Bellows, R. J.; Einstein, H. E.; Grimes, P. G.; Newby, K.; Young, A.
1983-01-01
The integration of bipolar, flowing electrolyte zinc-bromine technology into a viable electric vehicle battery system requires careful analysis of the requirements placed on the battery system by the EV power train. In addition to the basic requirement of an appropriate battery voltage and power density, overall battery system energy efficiency must also be considered and parasitic losses from auxiliaries such as pumps and shunt current protection minimized. An analysis of the influence of these various factors on zinc-bromine EV battery system design has been carried out for two types of EV propulsion systems. The first of these is a nominal 100V dc system, while the second is a high voltage (200V dc) system as might be used with an advanced design ac propulsion system. Battery performance was calculated using an experimentally determined relationship which expresses battery voltage as a function of current density and state-of-charge.
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1990-01-01
To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.
Gelled-electrolyte batteries for electric vehicles
NASA Astrophysics Data System (ADS)
Tuphorn, Hans
Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.
NASA Technical Reports Server (NTRS)
Rogers, J. P.; Cureton, K. L.; Olsen, J. R.
1994-01-01
Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.
MSFC Skylab electrical power systems mission evaluation
NASA Technical Reports Server (NTRS)
Woosley, A. P.
1974-01-01
The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.
Method of electric powertrain matching for battery-powered electric cars
NASA Astrophysics Data System (ADS)
Ning, Guobao; Xiong, Lu; Zhang, Lijun; Yu, Zhuoping
2013-05-01
The current match method of electric powertrain still makes use of longitudinal dynamics, which can't realize maximum capacity for on-board energy storage unit and can't reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can't reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.
Electrical power technology for robotic planetary rovers
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.
1993-01-01
Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.
49 CFR 579.21 - Reporting requirements for manufacturers of 5,000 or more light vehicles annually.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., 05 parking brake, 06 engine and engine cooling system, 07 fuel system, 10 power train, 11 electrical... model, the model year, the type, the platform, the fuel and/or propulsion system type coded as follows: CNG (compressed natural gas), CIF (compression ignition fuel), EBP (electric battery power), FCP (fuel...
Application of field-modulated generator systems to dispersed solar thermal electric generation
NASA Technical Reports Server (NTRS)
Ramakumar, R.
1979-01-01
The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.
NASA Astrophysics Data System (ADS)
Trowler, Derik Wesley
The research objective of this study was to develop a sizing method for community energy storage systems with emphasis on preventing distribution transformer overloading due to plug-in electric vehicle charging. The method as developed showed the formulation of a diversified load profile based upon residential load data for several customers on the American Electric Power system. Once a load profile was obtained, plug-in electric vehicle charging scenarios which were based upon expected adoption and charging trends were superimposed on the load profile to show situations where transformers (in particular 25 kVA, 50 kVA, and 100 kVA) would be overloaded during peak hours. Once the total load profiles were derived, the energy and power requirements of community energy storage systems were calculated for a number of scenarios with different combinations of numbers of homes and plug-in electric vehicles. The results were recorded and illustrated into charts so that one could determine the minimum size per application. Other topics that were covered in this thesis were the state of the art and future trends in plug-in electric vehicle and battery chemistry adoption and development. The goal of the literature review was to confirm the already suspected notion that Li-ion batteries are best suited and soon to be most cost-effective solution for applications requiring small, efficient, reliable, and light-weight battery systems such as plug-in electric vehicles and community energy storage systems. This thesis also includes a chapter showing system modeling in MATLAB/SimulinkRTM. All in all, this thesis covers a wide variety of considerations involved in the designing and deploying of community energy storage systems intended to mitigate the effects of distribution transformer overloading.
Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.
ABSTRACT Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electricity, heat, and cooling power to buildings and industrial processes directly onsite, while significantly increasing energy efficiency, security of energy supply, and grid independence. Fruit, vegetable, dairy and meat processing industries with simultaneous requirements for heat, steam, chilling and electricity, are well suited for the use of such systems to supply base-load electrical demand or as peak reducing generators with heat recovery in the forms of hot water, steam and/or chilled water. This paper documents results and analysis from a pilot project to evaluate opportunities formore » energy, emission, and cost for CCHP-DG and energy storage systems installed onsite at food processing facilities. It was found that a dairy processing plant purchasing 15,000 MWh of electricity will need to purchase 450 MWh with the integration of a 1.1 MW CCHP system. Here, the natural gas to be purchased increased from 190,000 MMBtu to 255,000 MMBtu given the fuel requirements of the CCHP system. CCHP systems lower emissions, however, in the Pacific Northwest the high percentage of hydro-power results in CO2 emissions from CCHP were higher than that attributed to the electric utility/regional energy mix. The value of this paper is in promoting and educating financial decision makers to seriously consider CCHP systems when building or upgrading facilities. The distributed generation aspect can reduce utility costs for industrial facilities and show non-wires solution benefits to delay or eliminate the need for upgrades to local electric transmission and distribution systems.« less
Study of advanced electric propulsion system concept using a flywheel for electric vehicles
NASA Technical Reports Server (NTRS)
Younger, F. C.; Lackner, H.
1979-01-01
Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.
46 CFR 111.91-1 - Power, control, and interlock circuits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...
46 CFR 111.91-1 - Power, control, and interlock circuits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...
46 CFR 111.91-1 - Power, control, and interlock circuits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...
46 CFR 111.91-1 - Power, control, and interlock circuits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...
46 CFR 111.91-1 - Power, control, and interlock circuits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...
46 CFR 111.105-41 - Battery rooms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Battery rooms. 111.105-41 Section 111.105-41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-41 Battery rooms. Each electrical installation in a battery room...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false General. 111.01-1 Section 111.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-1 General. (a) Electric installations on vessels must ensure: (1) Maintenance of services...
46 CFR 111.01-9 - Degrees of protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Degrees of protection. 111.01-9 Section 111.01-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-9 Degrees of protection. (a) Interior electrical equipment exposed...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false General. 111.01-1 Section 111.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-1 General. (a) Electric installations on vessels must ensure: (1) Maintenance of services...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-20
... for Locating People Using Electricity Dependent Medical Equipment During Public Health Emergencies... People Using Electricity Dependent Medical Equipment During Public Health Emergencies'' Ideation... people get the necessary help as quickly as possible. Submissions can be existing applications, or...
46 CFR 111.105-41 - Battery rooms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Battery rooms. 111.105-41 Section 111.105-41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-41 Battery rooms. Each electrical installation in a battery room...
46 CFR 111.105-41 - Battery rooms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Battery rooms. 111.105-41 Section 111.105-41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-41 Battery rooms. Each electrical installation in a battery room...
46 CFR 111.105-41 - Battery rooms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Battery rooms. 111.105-41 Section 111.105-41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-41 Battery rooms. Each electrical installation in a battery room...
46 CFR 111.105-41 - Battery rooms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Battery rooms. 111.105-41 Section 111.105-41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-41 Battery rooms. Each electrical installation in a battery room...
Electric and Hybrid Vehicle Technology: TOPTEC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance ofmore » today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.« less
Electric and Hybrid Vehicle Technology: TOPTEC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance ofmore » today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.« less
Electric and hybrid vehicle technology: TOPTEC
NASA Astrophysics Data System (ADS)
Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.
46 CFR 111.33-7 - Alarms and shutdowns.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...
46 CFR 111.33-7 - Alarms and shutdowns.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...
46 CFR 111.33-7 - Alarms and shutdowns.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...
46 CFR 111.33-7 - Alarms and shutdowns.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...
46 CFR 28.375 - Emergency source of electrical power.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...
46 CFR 28.375 - Emergency source of electrical power.
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...
46 CFR 28.375 - Emergency source of electrical power.
Code of Federal Regulations, 2012 CFR
2012-10-01
... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...
46 CFR 28.375 - Emergency source of electrical power.
Code of Federal Regulations, 2013 CFR
2013-10-01
... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...
46 CFR 28.375 - Emergency source of electrical power.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for Vessels Which Have Their Keel Laid or Are at a Similar... systems; (3) Bilge pumps; (4) Fire protection and detection systems, including fire pumps; (5... (11.0 meters) in length need only supply communication equipment by an emergency source of electrical...
Water Use in the US Electric Power Sector: Energy Systems ...
This presentation reviews the water demands of long-range electricity scenarios. It addresses questions such as: What are the aggregate water requirements of the U.S. electric power sector? How could water requirements evolve under different long-range regional generation mixes? It also looks at research addressing the electricity generation water demand from a life cycle perspective, such as water use for the fuel cycle (natural gas, coal, uranium, etc.) and water use for the materials/equipment/manufacturing of new power plants. The presentation is part of panel session on the Water-Energy Nexus at the World Energy Engineering Congress
Advanced secondary power system for transport aircraft
NASA Technical Reports Server (NTRS)
Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.
1985-01-01
A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.
Nuclear electric power for multimegawatt orbit transfer vehicles
NASA Astrophysics Data System (ADS)
Casagrande, R. D.
Multimegawatt nuclear propulsion is an attractive option for orbit transfer vehicles. The masses of these platforms are expected to exceed the capability of a single launch from Earth necessitating assembly in space in a parking orbit. The OTV would transfer the platform from the parking orbit to the operational orbit and then return for the next mission. Electric propulsion is advantageous because of the high specific impulse achieved by the technology, 1000 to 5000 s and beyond, to reduce the propellant required. Nuclear power is attractive as the power system because of the weight savings over solar systems in the multimegawatt regime, and multimegawatts of power are required. A conceptual diagram is shown of an OTV with a command control module using electric thrusters powered from an SP-100 class nuclear reactor power system.
Modelling of auctioning mechanism for solar photovoltaic capacity
NASA Astrophysics Data System (ADS)
Poullikkas, Andreas
2016-10-01
In this work, a modified optimisation model for the integration of renewable energy sources for power-generation (RES-E) technologies in power-generation systems on a unit commitment basis is developed. The purpose of the modified optimisation procedure is to account for RES-E capacity auctions for different solar photovoltaic (PV) capacity electricity prices. The optimisation model developed uses a genetic algorithm (GA) technique for the calculation of the required RES-E levy (or green tax) in the electricity bills. Also, the procedure enables the estimation of the level of the adequate (or eligible) feed-in-tariff to be offered to future RES-E systems, which do not participate in the capacity auctioning procedure. In order to demonstrate the applicability of the optimisation procedure developed the case of PV capacity auctioning for commercial systems is examined. The results indicated that the required green tax, in order to promote the use of RES-E technologies, which is charged to the electricity customers through their electricity bills, is reduced with the reduction in the final auctioning price. This has a significant effect related to the reduction of electricity bills.
46 CFR 28.845 - General requirements for electrical systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... liquids. If electrical equipment, such as lighting, is necessary in these spaces, it must be explosion-proof or intrinsically safe. (d) Explosion-proof and intrinsically safe equipment must meet the...
46 CFR 28.845 - General requirements for electrical systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... liquids. If electrical equipment, such as lighting, is necessary in these spaces, it must be explosion-proof or intrinsically safe. (d) Explosion-proof and intrinsically safe equipment must meet the...
Energy: Education and Industry Changes for a New Era Utilization System Modifications.
ERIC Educational Resources Information Center
Dille, Earl K.; Dreifke, Gerald E.
This paper provides data and opinions on long- and short-term challenges and changes required to meet the human resource and educational needs in a nuclear electric era as seen from a utility company's point of view. In particular, statements on engineering education curriculum, statistics on certain future manpower requirements, electric utility…
2013-04-12
DTL-38999 Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect (Bayonet, Threaded , and Breach Coupling), Environment Resistant ...186 Table 1160-1. Resistance Tolerance and Required Derating...For MIL-DTL-5015 Connector, Electrical, Circular Threaded , AN Type, General Specification for MIL-H-6088G(1) Heat Treatment of Aluminum Alloys
A research program to assess the impact of the electromagnetic pulse on electric power systems
NASA Astrophysics Data System (ADS)
McConnell, B. W.; Barnes, P. R.
A strong electromagnetic pulse (EMP) with an electric-field component on the order of tens of kilovolts per meter is produced by a nuclear detonation in or above the atmosphere. This paper presents an overview and a summary of the results to date of a program formulated to address the research and development of technologies and systems required to assess and reduce the impact of EMP on electric power systems. The technologies and systems being considered include simulation models, methods of assessment, definition of required experiments and data, development of protective hardware, and the creation or revision of operating and control procedures. Results to date include the development of relatively simple unclassified EMP environment models, the development of methods for extending EMP coupling models to the large transmission and distribution network associated with the electric power system, and the performance of a parametric study of HEMP induced surges using an appropriate EMP environment. An experiment to investigate the effect of corona on the coupling of EMP to conductors has been defined and has been performed in an EMP simulator. Experiments to determine the response of key components to simulated EMP surges and an investigation of the impact of steep-front, short-duration impulse on a selected number of the insulation systems used in electric power systems apparatus are being performed.
Electric Propulsion Applications and Impacts
NASA Technical Reports Server (NTRS)
Curran, Frank M.; Wickenheiser, Timothy J.
1996-01-01
Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.
Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.
Cables and connectors for Large Space System Technology (LSST)
NASA Technical Reports Server (NTRS)
Dunbar, W. G.
1980-01-01
The effect of the environment and extravehicular activity/remote assembly operations on the cables and connectors for spacecraft with metallic and/or nonmetallic structures was examined. Cable and connector philosophy was outlined for the electrical systems and electronic compartments which contain high-voltage, high-power electrical and electronic equipment. The influence of plasma and particulates on the system is analyzed and the effect of static buildup on the spacecraft electrical system discussed. Conceptual cable and connector designs are assessed for capability to withstand high current and high voltage without danger of arcs and electromagnetic interference. The extravehicular activites required of the space station and/or supply spacecraft crew members to join and inspect the electrical system, using manual or remote assembly construction are also considered.
Quasi-Static Electric Field Generator
NASA Technical Reports Server (NTRS)
Generazio, Edward R. (Inventor)
2017-01-01
A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Patrick; Logan, Jeffrey; Bird, Lori
This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.
46 CFR 111.01-11 - Corrosion-resistant parts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...
46 CFR 111.01-3 - Placement of equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Placement of equipment. 111.01-3 Section 111.01-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-3 Placement of equipment. (a) Electric equipment must be arranged...
46 CFR 111.01-11 - Corrosion-resistant parts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...
46 CFR 111.01-3 - Placement of equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Placement of equipment. 111.01-3 Section 111.01-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-3 Placement of equipment. (a) Electric equipment must be arranged...
46 CFR 111.01-11 - Corrosion-resistant parts.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...
46 CFR 111.01-3 - Placement of equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Placement of equipment. 111.01-3 Section 111.01-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-3 Placement of equipment. (a) Electric equipment must be arranged...
46 CFR 111.01-11 - Corrosion-resistant parts.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...
7 CFR 1717.852 - Financing purposes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... facilities, including real property, used to supply electric and/or steam power to: (i) RE Act beneficiaries... are determined by RUS to be an integral component of the borrower's system of supplying electric and... electric and/or steam power to end-user customers of the borrower; (3) Investments in a lender required of...
46 CFR 111.01-3 - Placement of equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Placement of equipment. 111.01-3 Section 111.01-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-3 Placement of equipment. (a) Electric equipment must be arranged...
46 CFR 111.01-11 - Corrosion-resistant parts.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...
46 CFR 111.01-3 - Placement of equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Placement of equipment. 111.01-3 Section 111.01-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-3 Placement of equipment. (a) Electric equipment must be arranged...
Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic
NASA Astrophysics Data System (ADS)
Xu, Huan
Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is explored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.
NASA Technical Reports Server (NTRS)
Karns, James
1993-01-01
The objective of this study was to establish the initial quantitative reliability bounds for nuclear electric propulsion systems in a manned Mars mission required to ensure crew safety and mission success. Finding the reliability bounds involves balancing top-down (mission driven) requirements and bottom-up (technology driven) capabilities. In seeking this balance we hope to accomplish the following: (1) provide design insights into the achievability of the baseline design in terms of reliability requirements, given the existing technology base; (2) suggest alternative design approaches which might enhance reliability and crew safety; and (3) indicate what technology areas require significant research and development to achieve the reliability objectives.
Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications
NASA Technical Reports Server (NTRS)
Merryman, Stephen A.; Chen, Zheng
2000-01-01
Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.
9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... manual stimulation or before the carcass chain is started in an automatic system. (c) Operation—(1... personnel, the electricity supplied to the stimulating surfaces shall be locked-off when cleaning...
49 CFR 393.23 - Power supply for lamps.
Code of Federal Regulations, 2014 CFR
2014-10-01
... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.23 Power supply for lamps. All required lamps must be powered by the electrical system of the motor vehicle with the...
Energy harvesting concepts for small electric unmanned systems
NASA Astrophysics Data System (ADS)
Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.
2004-07-01
In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.
Solar total energy project at Shenandoah, Georgia system design
NASA Technical Reports Server (NTRS)
Poche, A. J.
1980-01-01
The solar total energy system (STES) was to provide 50% of the total electrical and thermal energy requirements of the 25,000 sq ft Bleyle of America knitwear plant located at the Shenandoah Site. The system will provide 400 kilowatts electrical and 3 megawatts of thermal energy. The STES has a classical, cascaded total energy system configuration. It utilizes one hundred twenty (120), parabolic dish collectors, high temperature (750 F) trickle oil thermal energy storage and a steam turbine generator. The electrical load shaving system was designed for interconnected operation with the Georgia Power system and for operation in a stand alone mode.
Electrodynamic tethers for energy conversion
NASA Technical Reports Server (NTRS)
Nobles, W.
1986-01-01
Conductive tethers have been proposed as a new method for converting orbital mechanical energy into electrical power for use on-board a satellite (generator mode) or conversely (motor mode) as a method of providing electric propulsion using electrical energy from the satellite. The operating characteristics of such systems are functionally dependent on orbit altitude and inclination. Effects of these relationships are examined to determine acceptable regions of application. To identify system design considerations, a specific set of system performance goals and requirements are selected. The case selected is for a 25 kW auxiliary power system for use on Space Station. Appropriate system design considerations are developed, and the resulting system is described.
ERIC Educational Resources Information Center
Ontario Ministry of Skills Development, Toronto.
These training standards for fuel and electrical systems mechanics are intended to be used by apprentice/trainees, instructors, and companies in Ontario, Canada, as a blueprint for training or as a prerequisite for prerequisite for accreditation/certification. The training standards identify skills required for this occupation and its related…
Electrical insulation design requirements and reliability goals
NASA Astrophysics Data System (ADS)
Ross, R. G., Jr.
1983-11-01
The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.
MOLFLUX analysis of the SSF electrical power system contamination
NASA Technical Reports Server (NTRS)
Cognion, Rita L.
1991-01-01
The external induced contamination of Space Station Freedom's electrical power system surfaces is assessed using a molecular flow evaluation code, MOLFLUX. Outgassing rates are compared to available experimental data, and deposition to the midregion of both the solar array and the photovoltaic power module thermal control system radiator is calculated using a constant sticking coefficient. An estimate of annual deposition to the solar array due to outgassing is found to be 10 percent of the Space Station Freedom program requirement for maximum allowable deposition, while annual deposition to the radiator is approximately equal to the requirement.
Partially Turboelectric Aircraft Drive Key Performance Parameters
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Duffy, Kirsten P.; Brown, Gerald V.
2017-01-01
The purpose of this paper is to propose electric drive specific power, electric drive efficiency, and electrical propulsion fraction as the key performance parameters for a partially turboelectric aircraft power system and to investigate their impact on the overall aircraft performance. Breguet range equations for a base conventional turbofan aircraft and a partially turboelectric aircraft are found. The benefits and costs that may result from the partially turboelectric system are enumerated. A break even analysis is conducted to find the minimum allowable electric drive specific power and efficiency, for a given electrical propulsion fraction, that can preserve the range, fuel weight, operating empty weight, and payload weight of the conventional aircraft. Current and future power system performance is compared to the required performance to determine the potential benefit.
150 kW Class Solar Electric Propulsion Spacecraft Power Architecture Model
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Aulisio, Michael V.; Loop, Benjamin
2017-01-01
The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits.
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2011 CFR
2011-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs... plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. Increased recurring costs...
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2012 CFR
2012-10-01
... control equipment; engineering costs (design/path survey); installation; systems testing; FCC filing costs... plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. Increased recurring costs...
Power processing for electric propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Herron, B. G.; Gant, G. D.
1975-01-01
The potential of achieving up to 30 per cent more spacecraft payload or 50 per cent more useful operating life by the use of electric propulsion in place of conventional cold gas or hydrazine systems in science, communications, and earth applications spacecraft is a compelling reason to consider the inclusion of electric thruster systems in new spacecraft design. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. This paper will present electron bombardment ion thruster requirements; review the performance characteristics of present power processing systems; discuss design philosophies and alternatives in areas such as inverter type, arc protection, and control methods; and project future performance potentials for meeting goals in the areas of power processor weight (10 kg/kW), efficiency (approaching 92 per cent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).
SOSPAC- SOLAR SPACE POWER ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1994-01-01
The Solar Space Power Analysis Code, SOSPAC, was developed to examine the solar thermal and photovoltaic power generation options available for a satellite or spacecraft in low earth orbit. SOSPAC is a preliminary systems analysis tool and enables the engineer to compare the areas, weights, and costs of several candidate electric and thermal power systems. The configurations studied include photovoltaic arrays and parabolic dish systems to produce electricity only, and in various combinations to provide both thermal and electric power. SOSPAC has been used for comparison and parametric studies of proposed power systems for the NASA Space Station. The initial requirements are projected to be about 40 kW of electrical power, and a similar amount of thermal power with temperatures above 1000 degrees Centigrade. For objects in low earth orbit, the aerodynamic drag caused by suitably large photovoltaic arrays is very substantial. Smaller parabolic dishes can provide thermal energy at a collection efficiency of about 80%, but at increased cost. SOSPAC allows an analysis of cost and performance factors of five hybrid power generating systems. Input includes electrical and thermal power requirements, sun and shade durations for the satellite, and unit weight and cost for subsystems and components. Performance equations of the five configurations are derived, and the output tabulates total weights of the power plant assemblies, area of the arrays, efficiencies, and costs. SOSPAC is written in FORTRAN IV for batch execution and has been implemented on an IBM PC computer operating under DOS with a central memory requirement of approximately 60K of 8 bit bytes. This program was developed in 1985.
System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration
NASA Technical Reports Server (NTRS)
Lawton, R. M.
1996-01-01
Demonstration of required safety margins on critical electrical/electronic circuits in large complex systems has become an implementation and cost problem. These margins are the difference between the activation level of the circuit and the electrical noise on the circuit in the actual operating environment. This document discusses the origin of the requirement and gives a detailed process flow for the identification of the system electromagnetic compatibility (EMC) critical circuit list. The process flow discusses the roles of engineering disciplines such as systems engineering, safety, and EMC. Design and analysis guidelines are provided to assist the designer in assuring the system design has a high probability of meeting the margin requirements. Examples of approaches used on actual programs (Skylab and Space Shuttle Solid Rocket Booster) are provided to show how variations of the approach can be used successfully.
The MOD-OA 200 kilowatt wind turbine generator design and analysis report
NASA Astrophysics Data System (ADS)
Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-08-01
The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.
The MOD-OA 200 kilowatt wind turbine generator design and analysis report
NASA Technical Reports Server (NTRS)
Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-01-01
The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.
Hawaii electric system reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva Monroy, Cesar Augusto; Loose, Verne William
2012-09-01
This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and formore » application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.« less
Hawaii Electric System Reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loose, Verne William; Silva Monroy, Cesar Augusto
2012-08-01
This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers’ views of reliability “worth” and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and formore » application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers’ views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.« less
Biomechanical Evaluation of an Electric Power-Assisted Bicycle by a Musculoskeletal Model
NASA Astrophysics Data System (ADS)
Takehara, Shoichiro; Murakami, Musashi; Hase, Kazunori
In this study, we construct an evaluation system for the muscular activity of the lower limbs when a human pedals an electric power-assisted bicycle. The evaluation system is composed of an electric power-assisted bicycle, a numerical simulator and a motion capture system. The electric power-assisted bicycle in this study has a pedal with an attached force sensor. The numerical simulator for pedaling motion is a musculoskeletal model of a human. The motion capture system measures the joint angles of the lower limb. We examine the influence of the electric power-assisted force on each muscle of the human trunk and legs. First, an experiment of pedaling motion is performed. Then, the musculoskeletal model is calculated by using the experimental data. We discuss the influence on each muscle by electric power-assist. It is found that the muscular activity is decreased by the electric power-assist bicycle, and the reduction of the muscular force required for pedaling motion was quantitatively shown for every muscle.
Analytical study of electrical disconnect system for use on manned and unmanned missions
NASA Technical Reports Server (NTRS)
Rosener, A. A.; Lenda, J. A.; Trummer, R. O.
1976-01-01
The objective of this contract is to establish an optimum electrical disconnect system design(s) for use on manned and unmanned missions. The purpose of the disconnect system is to electrically mate and demate the spacecraft to subsystem module interfaces to accomplish orbital operations. The results of Task 1 and Task 2 of the effort are presented. Task 1 involves the definition of the functional, operational, and environmental requirements for the connector system to support the leading prototype candidate concepts. Task 2 involves the documentation review and survey of available existing connector designs.
46 CFR 111.05-3 - Design, construction, and installation; general.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Design, construction, and installation; general. 111.05-3 Section 111.05-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-3 Design, construction, and...
46 CFR 111.05-3 - Design, construction, and installation; general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Design, construction, and installation; general. 111.05-3 Section 111.05-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-3 Design, construction, and...
A Self-Instructional System in Electricity.
ERIC Educational Resources Information Center
Greene, Mark M.; And Others
A self-instructional system is presented designed to teach high school students fundamental concepts of electricity and how they are applied in daily life. In six lessons, the student attends to a self-paced slide and tape presentation and makes written responses in the workbooks. A supplementary application problem, requiring the assembly of some…
Manned spacecraft electrical power systems
NASA Technical Reports Server (NTRS)
Simon, William E.; Nored, Donald L.
1987-01-01
A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.
NASA Astrophysics Data System (ADS)
Nored, Donald L.
Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.
NASA Technical Reports Server (NTRS)
Nored, Donald L.
1990-01-01
Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.
A review of electric propulsion systems and mission applications
NASA Technical Reports Server (NTRS)
Vondra, R.; Nock, K.; Jones, R.
1984-01-01
The satisfaction of growing demands for access to space resources will require new developments related to advanced propulsion and power technologies. A key technology in this context is concerned with the utilization of electric propulsion. A brief review of the current state of development of electric propulsion systems on an international basis is provided, taking into account advances in the USSR, the U.S., Japan, West Germany, China and Brazil. The present investigation, however, is mainly concerned with the U.S. program. The three basic types of electric thrusters are considered along with the intrinsic differences between chemical and electric propulsion, the resistojet, the augmented hydrazine thruster, the arcjet, the ion auxiliary propulsion system flight test, the pulsed plasma thruster, magnetoplasmadynamic propulsion, a pulsed inductive thruster, and rail accelerators. Attention is also given to the applications of electric propulsion.
NASA Technical Reports Server (NTRS)
Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.
1985-01-01
As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.
Photochemically Etched Construction Technology Developed for Digital Xenon Feed Systems
NASA Technical Reports Server (NTRS)
Otsap, Ben; Cardin, Joseph; Verhey, Timothy R.; Rawlin, Vincent K.; Mueller, Juergen; Aadlund, Randall; Kay, Robert; Andrews, Michael
2005-01-01
Electric propulsion systems are quickly emerging as attractive options for primary propulsion in low Earth orbit, in geosynchronous orbit, and on interplanetary spacecraft. The driving force behind the acceptance of these systems is the substantial reduction in the propellant mass that can be realized. Unfortunately, system designers are often forced to utilize components designed for chemical propellants in their electric systems. Although functionally acceptable, these relatively large, heavy components are designed for the higher pressures and mass flow rates required by chemical systems. To fully realize the benefits of electric propulsion, researchers must develop components that are optimized for the low flow rates, critical leakage needs, low pressures, and limited budgets of these emerging systems.
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2014 CFR
2014-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2013 CFR
2013-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
47 CFR 24.243 - The cost-sharing formula.
Code of Federal Regulations, 2011 CFR
2011-10-01
...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...
46 CFR 71.65-5 - Plans and specifications required for new construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... dioxide, foam, and sprinkling systems. (7) Supervised Patrol Route. (e) Marine engineering. (1) For plans required for marine engineering equipment and systems, see subchapter F (Marine Engineering) of this... equipment and systems, see subchapter J (Electrical Engineering) of this chapter. (2) [Reserved] (g...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... hydraulic pump electrical motor connector internal arcing, resulting in: --Either false hydraulic system... uncontrolled fire. In order to protect the hydraulic pump electrical motor connectors against fluid ingress... hydraulic pump electrical motor malfunction, this AD requires modification of the three hydraulic pump...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... hydraulic pump electrical motor connector internal arcing, resulting in: --Either false hydraulic system... uncontrolled fire. In order to protect the hydraulic pump electrical motor connectors against fluid ingress... hydraulic pump electrical motor malfunction, this AD requires modification of the three hydraulic pump...
Piezoelectric-based actuators for improved tractor-trailer performance (Conference Presentation)
NASA Astrophysics Data System (ADS)
Menicovich, David; Amitay, Michael; Gallardo, Daniele
2017-04-01
The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers and to improve thermal mixing in refrigerated trailers was explored on full-scale tests. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. The actuators are operated in a closed feedback loop based on inputs received from the tractor's electronic control unit, various system components and environmental sensors. The data are collected and processed on-board and transmitted to a cloud-based data management platform for further big data analytics and diagnostics. The system functions as a smart connected product through the interchange of data between the physical truck-mounted system and its cloud platform.
Advanced-technology space station study: Summary of systems and pacing technologies
NASA Technical Reports Server (NTRS)
Butterfield, A. J.; Garn, P. A.; King, C. B.; Queijo, M. J.
1990-01-01
The principal system features defined for the Advanced Technology Space Station are summarized and the 21 pacing technologies identified during the course of the study are described. The descriptions of system configurations were extracted from four previous study reports. The technological areas focus on those systems particular to all large spacecraft which generate artificial gravity by rotation. The summary includes a listing of the functions, crew requirements and electrical power demand that led to the studied configuration. The pacing technologies include the benefits of advanced materials, in-orbit assembly requirements, stationkeeping, evaluations of electrical power generation alternates, and life support systems. The descriptions of systems show the potential for synergies and identifies the beneficial interactions that can result from technological advances.
Laser power conversion system analysis, volume 1
NASA Technical Reports Server (NTRS)
Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.
1979-01-01
The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.
Dust-Tolerant Intelligent Electrical Connection System
NASA Technical Reports Server (NTRS)
Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro
2012-01-01
Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.
Method for Predicting and Optimizing System Parameters for Electrospinning System
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor)
2011-01-01
An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.
Systems Analysis of GPS Electrical Power System Redesign
1995-12-01
Table 8 - System Efficiencies & Multipliers for Solar Direct Model (12:102; 15:864) Component Efficiency AMTEC 0.180 Receiver and Thermal Energy Storage...and low temperatures of the working fluid. Extreme high and low temperatures provide a greater efficiency , but require extensive thermal control and...direct conversion category. The Alkali Metal Thermal -to-Electric Converter ( AMTEC ) shows mass and cost savings due to efficiencies significantly higher
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Grounded distribution systems on OSVs designed to carry flammable or combustible liquids with closed-cup flashpoints not exceeding 60 °C (140 °F). 111.05-20 Section 111.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS...
Bringing Superconductor Digital Technology to the Market Place
NASA Astrophysics Data System (ADS)
Nisenoff, Martin
The unique properties of superconductivity can be exploited to provide the ultimate in electronic technology for systems such as ultra-precise analogue-to-digital and digital-to-analogue converters, precise DC and AC voltage standards, ultra high speed logic circuits and systems (both digital and hybrid analogue-digital systems), and very high throughput network routers and supercomputers which would have superior electrical performance at lower overall electrical power consumption compared to systems with comparable performance which are fabricated using conventional room temperature technologies. This potential for high performance electronics with reduced power consumption would have a positive impact on slowing the increase in the demand for electrical utility power by the information technology community on the overall electrical power grid. However, before this technology can be successfully brought to the commercial market place, there must be an aggressive investment of resources and funding to develop the required infrastructure needed to yield these high performance superconductor systems, which will be reliable and available at low cost. The author proposes that it will require a concerted effort by the superconductor and cryogenic communities to bring this technology to the commercial market place or make it available for widespread use in scientific instrumentation.
Introduction to power-frequency electric and magnetic fields.
Kaune, W T
1993-01-01
This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045
NASA Astrophysics Data System (ADS)
Kim, Chul-Ho; Lee, Kee-Man; Lee, Sang-Heon
Power train system design is one of the key R&D areas on the development process of new automobile because an optimum size of engine with adaptable power transmission which can accomplish the design requirement of new vehicle can be obtained through the system design. Especially, for the electric vehicle design, very reliable design algorithm of a power train system is required for the energy efficiency. In this study, an analytical simulation algorithm is developed to estimate driving performance of a designed power train system of an electric. The principal theory of the simulation algorithm is conservation of energy with several analytical and experimental data such as rolling resistance, aerodynamic drag, mechanical efficiency of power transmission etc. From the analytical calculation results, running resistance of a designed vehicle is obtained with the change of operating condition of the vehicle such as inclined angle of road and vehicle speed. Tractive performance of the model vehicle with a given power train system is also calculated at each gear ratio of transmission. Through analysis of these two calculation results: running resistance and tractive performance, the driving performance of a designed electric vehicle is estimated and it will be used to evaluate the adaptability of the designed power train system on the vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
The legislation on greater coal utilization before the committee includes S. 272 (requiring, to the extent practicable, electric power plants and major fuel-bearing installations to utilize fuels other than natural gas); S. 273 (requiring, to the extent practicable, new electric power plants and new major fuel-burning installations be constructed to utliize fuels other than natural gas or petroleum); and S. 977 (requiring, to the extent practicable, existing electric power plants and major fuel-burning installations to utilize fuels other than natural gas or petroleum). Statements were heard from seven senators and representatives from the following: American Electric Power Service Corp., Americanmore » Boiler Manufactures Association, National Electric Reliability Council, Virgina Electric and Power Co., Fossil Power Systems, Houston Lighting and Power Co., other electric utility industry representatives, and the Federal Energy Adminstration. Additional material from the Wall Street Journal and the Washington Post is included. (MCW)« less
29 CFR 1926.408 - Special systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926... electrical connections. The enclosure shall have provision for locking so only authorized qualified persons... as substations, trailers, cars, mobile shovels, draglines, hoists, drills, dredges, compressors...
29 CFR 1926.408 - Special systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926... electrical connections. The enclosure shall have provision for locking so only authorized qualified persons... as substations, trailers, cars, mobile shovels, draglines, hoists, drills, dredges, compressors...
29 CFR 1926.408 - Special systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926... electrical connections. The enclosure shall have provision for locking so only authorized qualified persons... as substations, trailers, cars, mobile shovels, draglines, hoists, drills, dredges, compressors...
29 CFR 1926.408 - Special systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926... electrical connections. The enclosure shall have provision for locking so only authorized qualified persons... as substations, trailers, cars, mobile shovels, draglines, hoists, drills, dredges, compressors...
29 CFR 1926.408 - Special systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Installation Safety Requirements § 1926... electrical connections. The enclosure shall have provision for locking so only authorized qualified persons... as substations, trailers, cars, mobile shovels, draglines, hoists, drills, dredges, compressors...
An integral nuclear power and propulsion system concept
NASA Astrophysics Data System (ADS)
Choong, Phillip T.; Teofilo, Vincent L.; Begg, Lester L.; Dunn, Charles; Otting, William
An integral space power concept provides both the electrical power and propulsion from a common heat source and offers superior performance capabilities over conventional orbital insertion using chemical propulsion systems. This paper describes a hybrid (bimodal) system concept based on a proven, inherently safe solid fuel form for the high temperature reactor core operation and rugged planar thermionic energy converter for long-life steady state electric power production combined with NERVA-based rocket technology for propulsion. The integral system is capable of long-life power operation and multiple propulsion operations. At an optimal thrust level, the integral system can maintain the minimal delta-V requirement while minimizing the orbital transfer time. A trade study comparing the overall benefits in placing large payloads to GEO with the nuclear electric propulsion option shows superiority of nuclear thermal propulsion. The resulting savings in orbital transfer time and the substantial reduction of overall lift requirement enables the use of low-cost launchers for several near-term military satellite missions.
Reliability as the big persuader to privatize the electrical system in Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez B., C.E.
1998-12-31
Throughout the past five years, the Venezuelan authorities, especially the Fondo de Inversiones de Venezuela (FIV), have done a major effort to privatize many of the state owned industries, among them, the electrical public utilities and some important electrical power generation plants or systems based on thermal generation. Mainly along the recent past years, black and brownouts have become more frequent in the system. In other words, system reliability has been diminishing, as a consequence of investment capital and O and M expenses have been reduced to levels below the required by the system. Public opinion is exercising pressure onmore » politicians, so signals are that Congress will probably approve during the current or beginning of next years the required laws to expedite privatization and assure incentives and guaranties to investors. This paper deals with the insides of all these aspects, and with how soon privatization will be carried out. The FIV has been committed to implement this process.« less
An expert system for simulating electric loads aboard Space Station Freedom
NASA Technical Reports Server (NTRS)
Kukich, George; Dolce, James L.
1990-01-01
Space Station Freedom will provide an infrastructure for space experimentation. This environment will feature regulated access to any resources required by an experiment. Automated systems are being developed to manage the electric power so that researchers can have the flexibility to modify their experiment plan for contingencies or for new opportunities. To define these flexible power management characteristics for Space Station Freedom, a simulation is required that captures the dynamic nature of space experimentation; namely, an investigator is allowed to restructure his experiment and to modify its execution. This changes the energy demands for the investigator's range of options. An expert system competent in the domain of cryogenic fluid management experimentation was developed. It will be used to help design and test automated power scheduling software for Freedom's electric power system. The expert system allows experiment planning and experiment simulation. The former evaluates experimental alternatives and offers advice on the details of the experiment's design. The latter provides a real-time simulation of the experiment replete with appropriate resource consumption.
The NASA Electric Propulsion Program
NASA Technical Reports Server (NTRS)
Callahan, Lisa Wood; Curran, Francis M.
1996-01-01
Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.
10 CFR 205.351 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... electric power supply system. (2) Equipment failures/system operational actions attributable to the loss of...) Loss of Firm System Loads, caused by: (1) Any load shedding actions resulting in the reduction of over... with a previous year recorded peak load of over 3000 MW are required for all such losses of firm loads...
46 CFR 112.15-1 - Temporary emergency loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
... independent batteries separately charged by solar cells). (r) Each general emergency alarm system required by... AND POWER SYSTEMS Emergency Loads § 112.15-1 Temporary emergency loads. On vessels required by § 112... the area of the water where it is to be launched. (h) Electric communication systems that are...
7 CFR 1730.26 - Certification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Operations and Maintenance Requirements § 1730.26 Certification. (a) Engineer's certification. Where provided for in the borrower's loan documents, RUS may require the borrower to provide an “Engineer's Certification” as to the condition of the borrower's system...
7 CFR 1730.26 - Certification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Operations and Maintenance Requirements § 1730.26 Certification. (a) Engineer's certification. Where provided for in the borrower's loan documents, RUS may require the borrower to provide an “Engineer's Certification” as to the condition of the borrower's system...
7 CFR 1730.26 - Certification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Operations and Maintenance Requirements § 1730.26 Certification. (a) Engineer's certification. Where provided for in the borrower's loan documents, RUS may require the borrower to provide an “Engineer's Certification” as to the condition of the borrower's system...
7 CFR 1730.26 - Certification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Operations and Maintenance Requirements § 1730.26 Certification. (a) Engineer's certification. Where provided for in the borrower's loan documents, RUS may require the borrower to provide an “Engineer's Certification” as to the condition of the borrower's system...
7 CFR 1730.26 - Certification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Operations and Maintenance Requirements § 1730.26 Certification. (a) Engineer's certification. Where provided for in the borrower's loan documents, RUS may require the borrower to provide an “Engineer's Certification” as to the condition of the borrower's system...
47 CFR 27.1164 - The cost-sharing formula.
Code of Federal Regulations, 2013 CFR
2013-10-01
...); installation; systems testing; FCC filing costs; site acquisition and civil works; zoning costs; training... upgrades for interference control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities...
NASA Astrophysics Data System (ADS)
Kost, Christoph; Friebertshäuser, Chris; Hartmann, Niklas; Fluri, Thomas; Nitz, Peter
2017-06-01
This paper analyses the role of solar technologies (CSP and PV) and their interaction in the South African electricity system by using a fundamental electricity system modelling (ENTIGRIS-SouthAfrica). The model is used to analyse the South African long-term electricity generation portfolio mix, optimized site selection and required transmission capacities until the year 2050. Hereby especially the location and grid integration of solar technology (PV and CSP) and wind power plants is analysed. This analysis is carried out by using detailed resource assessment of both technologies. A cluster approach is presented to reduce complexity by integrating the data in an optimization model.
Electrical design for origami solar panels and a small spacecraft test mission
NASA Astrophysics Data System (ADS)
Drewelow, James; Straub, Jeremy
2017-05-01
Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.
Sustainer electric propulsion system application for spacecraft attitude control
NASA Astrophysics Data System (ADS)
Obukhov, V. A.; Pokryshkin, A. I.; Popov, G. A.; Yashina, N. V.
2010-07-01
Application of electric propulsion system (EPS) requires spacecraft (SC) equipping with large solar panels (SP) for the power supply to electric propulsions. This makes the problem of EPS-equipped SC control at the insertion stage more difficult to solve than in the case of SC equipped with chemical engines, because in addition to the SC attitude control associated with the mission there appears necessity in keeping SP orientation to Sun that is necessary for generation of electric power sufficient for the operation of service systems, purpose-oriented equipment, and EPS. The theoretical study of the control problem is the most interesting for a non-coplanar transfer from high elliptic orbit (HEO) to geostationary orbit (GSO).
NASA Astrophysics Data System (ADS)
Topolsky, D. V.; Gonenko, T. V.; Khatsevskiy, V. F.
2017-10-01
The present paper discusses ways to solve the problem of enhancing operating efficiency of automated electric power supply control systems of mining companies. According to the authors, one of the ways to solve this problem is intellectualization of the electric power supply control system equipment. To enhance efficiency of electric power supply control and electricity metering, it is proposed to use specially designed digital combined instrument current and voltage transformers. This equipment conforms to IEC 61850 international standard and is adapted for integration into the digital substation structure. Tests were performed to check conformity of an experimental prototype of the digital combined instrument current and voltage transformer with IEC 61850 standard. The test results have shown that the considered equipment meets the requirements of the standard.
Design study of toroidal traction CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Raynard, A. E.; Kraus, J.; Bell, D. D.
1980-01-01
The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Tew, Roy C.; Thieme, Lanny G.
2000-01-01
The Department of Energy (DOE) and the NASA Glenn Research Center are developing a Stirling converter for an advanced radioisotope power system to provide spacecraft onboard electric power for NASA deep space missions. This high-efficiency converter is being evaluated as an alternative to replace the much lower efficiency radioisotope thermoelectric generator (RTG). The current power requirement (six years after beginning of mission (BOM) for a mission to Jupiter) is 210 W(sub e) (watts electric) to be generated by two separate power systems, one on each side of the spacecraft. Both two-converter and four-converter system designs are being considered, depending on the amount of required redundancy.
NASA Technical Reports Server (NTRS)
Daly, J. K.; Torian, J. G.
1979-01-01
An overview of studies conducted to establish the requirements for advanced subsystem analytical tools is presented. Modifications are defined for updating current computer programs used to analyze environmental control, life support, and electric power supply systems so that consumables for future advanced spacecraft may be managed.
Automotive Electrical and Electronic Systems I; Automotive Mechanics 2: 9045.03.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The automotive electrical and electronic system I course is designed as one of a group of quinmester courses offered in the field of automotive mechanics. General information will be given along with technical knowledge, basic skills, attitudes and values that are required for job entry level. The nine week (135 clock hour) course overcomes some…
Control of a solar-energy-supplied electrical-power system without intermediate circuitry
NASA Astrophysics Data System (ADS)
Leistner, K.
A computer control system is developed for electric-power systems comprising solar cells and small numbers of users with individual centrally controlled converters (and storage facilities when needed). Typical system structures are reviewed; the advantages of systems without an intermediate network are outlined; the demands on a control system in such a network (optimizing generator working point and power distribution) are defined; and a flexible modular prototype system is described in detail. A charging station for lead batteries used in electric automobiles is analyzed as an example. The power requirements of the control system (30 W for generator control and 50 W for communications and distribution control) are found to limit its use to larger networks.
Electric motorcycle charging station powered by solar energy
NASA Astrophysics Data System (ADS)
Siriwattanapong, Akarawat; Chantharasenawong, Chawin
2018-01-01
This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.