Science.gov

Sample records for electrical transport properties

  1. Controlling the Electrical Transport Properties of Nanocontacts to Nanowires.

    PubMed

    Lord, Alex M; Maffeis, Thierry G; Kryvchenkova, Olga; Cobley, Richard J; Kalna, Karol; Kepaptsoglou, Despoina M; Ramasse, Quentin M; Walton, Alex S; Ward, Michael B; Köble, Jürgen; Wilks, Steve P

    2015-07-08

    The ability to control the properties of electrical contacts to nanostructures is essential to realize operational nanodevices. Here, we show that the electrical behavior of the nanocontacts between free-standing ZnO nanowires and the catalytic Au particle used for their growth can switch from Schottky to Ohmic depending on the size of the Au particles in relation to the cross-sectional width of the ZnO nanowires. We observe a distinct Schottky to Ohmic transition in transport behavior at an Au to nanowire diameter ratio of 0.6. The current-voltage electrical measurements performed with a multiprobe instrument are explained using 3-D self-consistent electrostatic and transport simulations revealing that tunneling at the contact edge is the dominant carrier transport mechanism for these nanoscale contacts. The results are applicable to other nanowire materials such as Si, GaAs, and InAs when the effects of surface charge and contact size are considered.

  2. Electrical transport and thermoelectric properties of boron carbide nanowires.

    PubMed

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-07

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200-450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  3. The electrical transport properties of liquid Rb using pseudopotential theory

    SciTech Connect

    Patel, A. B. Bhatt, N. K. Thakore, B. Y. Jani, A. R.; Vyas, P. R.

    2014-04-24

    Certain electric transport properties of liquid Rb are reported. The electrical resistivity is calculated by using the self-consistent approximation as suggested by Ferraz and March. The pseudopotential due to Hasegawa et al for full electron-ion interaction, which is valid for all electrons and contains the repulsive delta function due to achieve the necessary s-pseudisation was used for the calculation. Temperature dependence of structure factor is considered through temperature dependent potential parameter in the pair potential. Finally, thermo-electric power and thermal conductivity are obtained. The outcome of the present study is discussed in light of other such results, and confirms the applicability of pseudopotential at very high temperature via temperature dependent pair potential.

  4. Electrical transport and thermoelectric properties of boron carbide nanowires

    NASA Astrophysics Data System (ADS)

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-01

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200–450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  5. Electrical Properties

    NASA Astrophysics Data System (ADS)

    Schumacher, Bernd; Bach, Heinz-Gunter; Spitzer, Petra; Obrzut, Jan

    Electronic materials - conductors, insulators, semiconductors - play an important role in today's technology. They constitute "electrical and electronic devices", such as radio, television, telephone, electric light, electromotors, computers, etc. From a materials science point of view, the electrical properties of materials characterize two basic processes: electrical energy conduction (and dissipation) and electrical energy storage. Electrical conductivity describes the ability of a material to transport charge through the process of conduction, normalized by geometry. Electrical dissipation comes as the result of charge transport or conduction. Dissipation or energy loss results from the conversion of electrical energy to thermal energy (Joule heating) through momentum transfer during collisions as the charges move.

  6. Electrical Properties

    NASA Astrophysics Data System (ADS)

    Schumacher, Bernd; Bach, Heinz-Gunter; Spitzer, Petra; Obrzut, Jan; Seitz, Steffen

    Electronic materials - conductors, insulators, semiconductors - play an important role in today's technology. They constitute electrical and electronic devices, such as radio, television, telephone, electric light, electromotors, computers, etc. From a materials science point of view, the electrical properties of materials characterize two basic processes: electrical energy conduction (and dissipation) and electrical energy storage. Electrical conductivity describes the ability of a material to transport charge through the process of conduction, normalized by geometry. Electrical dissipation comes as the result of charge transport or conduction. Dissipation or energy loss results from the conversion of electrical energy to thermal energy (Joule heating) through momentum transfer during collisions as the charges move.

  7. Electrical transport properties of ultrathin superconducting Pb films.

    NASA Astrophysics Data System (ADS)

    Panguluri, R. P.; Ozer, M. M.; Thompson, J. R.; Weitering, H. H.; Nadgorny, B. E.

    2007-03-01

    We present electrical transport properties of metallic ultra thin epitaxially grown Pb (111) films on Si (111) substrate. We observed a reduced superconducting transition temperature from bulk Pb using electrical resistivity measurements and deduced the temperature dependence of out-of-plane critical magnetic fields from the sheet resistance R as a function of the applied magnetic field. These results are consistent with M. M. Ozer et al.,^1 obtained by magnetic techniques. We identified the mean field critical temperature and current densities from I-V curves in zero magnetic field. We explored the possible presence of Kosterlitz-Thouless transition (TKT) in this system. We discuss these results based on the Ginzburg-Landau Coloumb-Gas (GLCG) model for 2D vortex fluctuations. 1. M. M. Ozer, J. R. Thompson, and H. H. Weitering, Nature Physics, 2, 173 (2006).

  8. Electrical Transport Properties of Carbon Nanotube Metal-Semiconductor Heterojunction

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-10-01

    Carbon nanotubes (CNTs) have been proved to have promising applicability in various fields of science and technology. Their fascinating mechanical, electrical, thermal, optical properties have caught the attention of today’s world. We have discussed here the great possibility of using CNTs in electronic devices. CNTs can be both metallic and semiconducting depending on their chirality. When two CNTs of different chirality are joined together via topological defects, they may acquire rectifying diode property. We have joined two tubes of different chiralities through circumferential Stone-Wales defects and calculated their density of states by nearest neighbor tight binding approximation. Transmission function is also calculated to analyze whether the junctions can be used as electronic devices. Different heterojunctions are modeled and analyzed in this study. Internal stresses in the heterojunctions are also calculated by molecular dynamics simulation.

  9. The effect of electron induced hydrogenation of graphene on its electrical transport properties

    SciTech Connect

    Woo, Sung Oh; Teizer, Winfried

    2013-07-22

    We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman “D” band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

  10. Electrical transport properties in Co nanocluster-assembled granular film

    NASA Astrophysics Data System (ADS)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T < T min ), the barrier between adjacent nanoclusters governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  11. Crystal growth and electrical transport properties of niobium and tantalum monopnictide and dipnictide semimetals

    NASA Astrophysics Data System (ADS)

    Lu, Hong; Jia, Shuang

    2017-06-01

    The discovery of the first Weyl semimetal tantalum monoarsenide has greatly promoted physical research on the niobium and tantalum pnictide compounds. Crystallizing into the NbAs- and OsGe2-type structures, these mono- and di-pnictide semimetals manifest exotic electrical transport properties in magnetic field, which only occur in their single-crystalline forms. All the unusual electrical properties correspond to their poor carriers, which are indeed vulnerable to various crystal defects. In this review article, we present a comprehensive comparison of the crystal growth and electrical transport properties of the two semimetal families. We then discuss in detail the possible characteristic transport features, such as the chiral anomaly of Weyl quasiparticles. We emphasize the importance of crystal growth and sample manipulation for exploring the unique topological properties of Weyl semimetals in the future.

  12. Electrical Transport Properties of Polyaniline Containing HCl, CuCl2 and Multiwall Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Meikap, A. K.

    2011-07-01

    Electrical transport properties of hydrochloric acid (HCl) doped polyaniline (PANI) and composite of PANI with Copper Chloride (CuCl2) and multiwall Carbon Nanotube (MWNT) was measured within a temperature range 77⩽T⩽300 K in presence and in absence of a magnetic field up to 1Tesla. The electrical transport properties can be explained by the variable range hopping (VRH) theory. All the samples have shown negative d.c magnetoconductivity at the room temperature but PANI-HCl sample has shown a transition from positive to negative magnetoconductivity as the temperature is increased.

  13. Electrical Transport Properties of Polymorphic MoS2.

    PubMed

    Kim, Jun Suk; Kim, Jaesu; Zhao, Jiong; Kim, Sungho; Lee, Jin Hee; Jin, Youngjo; Choi, Homin; Moon, Byoung Hee; Bae, Jung Jun; Lee, Young Hee; Lim, Seong Chu

    2016-08-23

    The engineering of polymorphs in two-dimensional layered materials has recently attracted significant interest. Although the semiconducting (2H) and metallic (1T) phases are known to be stable in thin-film MoTe2, semiconducting 2H-MoS2 is locally converted into metallic 1T-MoS2 through chemical lithiation. In this paper, we describe the observation of the 2H, 1T, and 1T' phases coexisting in Li-treated MoS2, which result in unusual transport phenomena. Although multiphase MoS2 shows no transistor-gating response, the channel resistance decreases in proportion to the temperature, similar to the behavior of a typical semiconductor. Transmission electron microscopy images clearly show that the 1T and 1T' phases are randomly distributed and intervened with 2H-MoS2, which is referred to as the 1T and 1T' puddling phenomenon. The resistance curve fits well with 2D-variable range-hopping transport behavior, where electrons hop over 1T domains that are bounded by semiconducting 2H phases. However, near 30 K, electrons hop over charge puddles. The large temperature coefficient of resistance (TCR) of multiphase MoS2, -2.0 × 10(-2) K(-1) at 300 K, allows for efficient IR detection at room temperature by means of the photothermal effect.

  14. Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires.

    PubMed

    Lord, Alex M; Ramasse, Quentin M; Kepaptsoglou, Despoina M; Evans, Jonathan E; Davies, Philip R; Ward, Michael B; Wilks, Steve P

    2017-02-08

    Selecting the electrical properties of nanomaterials is essential if their potential as manufacturable devices is to be reached. Here, we show that the addition or removal of native semiconductor material at the edge of a nanocontact can be used to determine the electrical transport properties of metal-nanowire interfaces. While the transport properties of as-grown Au nanocatalyst contacts to semiconductor nanowires are well-studied, there are few techniques that have been explored to modify the electrical behavior. In this work, we use an iterative analytical process that directly correlates multiprobe transport measurements with subsequent aberration-corrected scanning transmission electron microscopy to study the effects of chemical processes that create structural changes at the contact interface edge. A strong metal-support interaction that encapsulates the Au nanocontacts over time, adding ZnO material to the edge region, gives rise to ohmic transport behavior due to the enhanced quantum-mechanical tunneling path. Removal of the extraneous material at the Au-nanowire interface eliminates the edge-tunneling path, producing a range of transport behavior that is dependent on the final interface quality. These results demonstrate chemically driven processes that can be factored into nanowire-device design to select the final properties.

  15. Crystal structure and electrical transport properties of single layered perovskite LaSrCoO4

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul; Shukla, D. K.; Rahman, F.; Majid, S.; Tarachand; Okram, G. S.; Phase, D. M.

    2016-10-01

    We present here investigations on the influence of structure on electrical transport properties of polycrystalline LaSrCoO4 that is single layered perovskite with K2NiF4 type structure synthesized using solid state reaction route. Using Reitveld refinement of X-ray diffraction (XRD) data, it is found that the sample is in single phase with tetragonal structure (space group I4/mmm). Electrical resistivity performed in the temperature range 140-300K shows semiconducting character of the sample. Considerable contrasts in the Co-O bond length is associated with the intermediate spin (IS) state of Co ion that correlates the structural and transport properties. Detailed analysis indicates that the temperature dependent electrical resistivity follows the three-dimensional variable range hopping (VRH) model in low temperature region below 225K. The high temperature (225-300K) resistivity data has been found to follow the thermally activated behaviour.

  16. Electrical transport properties of microcrystalline silicon grown by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pinto, Nicola; Ficcadenti, Marco; Morresi, Lorenzo; Murri, Roberto; Ambrosone, Giuseppina; Coscia, Ubaldo

    2004-12-01

    The dark conductivity and Hall mobility of hydrogenated silicon films deposited varying the silane concentration f =SiH4/(SiH4+H2) in a conventional plasma enhanced chemical vapor deposition system have been investigated as a function of temperature, taking into account their structural properties. The electrical properties have been studied in terms of a structural two-phase model. A clear transition from the electrical transport governed by a crystalline phase, in the range 1%⩽f⩽3%, to that controlled by an amorphous phase, for f >3%, has been evidenced. Some metastable effects of the dark conductivity have been noticed.

  17. Structure-dependent optical and electrical transport properties of nanostructured Al-doped ZnO.

    PubMed

    Gondoni, P; Ghidelli, M; Di Fonzo, F; Carminati, M; Russo, V; Li Bassi, A; Casari, C S

    2012-09-14

    The structure-property relation of nanostructured Al-doped ZnO thin films has been investigated in detail through a systematic variation of structure and morphology, with particular emphasis on how they affect optical and electrical properties. A variety of structures, ranging from compact polycrystalline films to mesoporous, hierarchically organized cluster assemblies, are grown by pulsed laser deposition at room temperature at different oxygen pressures. We investigate the dependence of functional properties on structure and morphology and show how the correlation between electrical and optical properties can be studied to evaluate energy gap, conduction band effective mass and transport mechanisms. Understanding these properties opens up opportunities for specific applications in photovoltaic devices, where optimized combinations of conductivity, transparency and light scattering are required.

  18. Electrical and thermal transport properties of layered Bi2YO4Cu2Se2

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Pei, Yanling; Chang, Cheng; Zhang, Xiao; Tan, Xing; Ye, Xinxin; Gong, Shengkai; Lin, Yuanhua; He, Jiaqing; Zhao, Li-Dong

    2016-07-01

    Bi2YO4Cu2Se2 possesses a low thermal conductivity and high electrical conductivity at room temperature, which was considered as a potential thermoelectric material. In this work, we have investigated the electrical and thermal transport properties of Bi2YO4Cu2Se2 system in the temperature range from 300 K to 873 K. We found that the total thermal conductivity decreases from 1.8 W m-1 K-1 to 0.9 W m-1 K-1, and the electrical conductivity decreases from 850 S/cm to 163 S/cm in the measured temperature range. To investigate how potential of Bi2YO4Cu2Se2 system, we prepared the heavily Iodine doped samples to counter-dope intrinsically high carrier concentration and improve the electrical transport properties. Interestingly, the Seebeck coefficient could be enhanced to +80 μV/K at 873 K, meanwhile, we found that a low thermal conductivity of 0.7 W m-1 K-1 could be achieved. The intrinsically low thermal conductivity in this system is related to the low elastic properties, such as Young's modulus of 70-72 GPa, and Grüneisen parameters of 1.55-1.71. The low thermal conductivity makes Bi2YO4Cu2Se2 system to be a potential thermoelectric material, the ZT value 0.06 at 873 K was obtained, a higher performance is expected by optimizing electrical transport properties through selecting suitable dopants, modifying band structures or by further reducing thermal conductivity through nanostructuring etc.

  19. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires.

    PubMed

    Fu, Mengqi; Tang, Zhiqiang; Li, Xing; Ning, Zhiyuan; Pan, Dong; Zhao, Jianhua; Wei, Xianlong; Chen, Qing

    2016-04-13

    We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs.

  20. Electrical transport properties of Co-based skutterudites filled with Ag and Au

    NASA Astrophysics Data System (ADS)

    Stoica, Maria; Lo, Cynthia S.

    2012-09-01

    This work presents theoretical calculations of the electrical transport properties of the Ag, Au, and La fractionally filled bulk skutterudites: CoSb3, CoAs3, and CoP3. Density functional theory, along with projector augmented wave potentials, was used to calculate bulk band structures and partial density of states. The Seebeck coefficient (S), electrical conductivity (σ), and power factor (S2σ) were calculated as a function of temperature and filling fraction using the momentum matrix method along the entire first Brillouin zone. Calculated trends in the electrical transport properties agree with previously published experimental measurements for p-type unfilled and La-filled CoSb3. The calculated S and σ values for the Ag- and Au-filled compounds indicate that the most promising electronic properties are exhibited by p-type Au0.125(CoSb3)4, Au0.25(CoSb3)4, and Au(CoSb3)4. Au is therefore recommended as a promising filler for improved thermoelectric properties in cobalt antimonides. Ag is also a good filler for cobalt phosphides; the creation of a negative indirect band gap is observed in Ag(CoP3)4, which indicates semimetallic behavior, so this compound may possibly exhibit lower thermal conductivity than metallic CoP3. Finally, we recommend future directions for improving the thermoelectric figure of merit of these materials.

  1. Dielectric, electrical transport and magnetic properties of Er3+substituted nanocrystalline cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Kakade, S. G.; Kambale, R. C.; Kolekar, Y. D.; Ramana, C. V.

    2016-11-01

    Erbium substituted cobalt ferrite (CoFe2-xErxO4; x=0.0-0.2, referred to CFEO) materials were synthesized by sol-gel auto-combustion method. The effect of erbium (Er3+) substitution on the crystal structure, dielectric, electrical transport and magnetic properties of cobalt ferrite is evaluated. CoFe2-xErxO4 ceramics exhibit the spinel cubic structure without any impurity phase for x≤0.10 whereas formation of the ErFeO3 orthoferrite secondary phase was observed for x≥0.15. All the CFEO samples demonstrate the typical hysteresis (M-H) behavior with a decrease in magnetization as a function of Er content due to weak superexchange interaction. The frequency (f) dependent dielectric constant (ε‧) revealed the usual dielectric dispersion. The ε‧-f dispersion (f=20 Hz to 1 MHz) fits to the modified Debye's function with more than one ion contributing to the relaxation. The relaxation time and spread factor derived are ∼10-4 s and ∼0.61(±0.04), respectively. Electrical and dielectric studies indicate that ε‧ increases and the dc electrical resistivity decreases as a function of Er content (x≤0.15). Complex impedance analyses confirm only the grain interior contribution to the conduction process. Temperature dependent electrical transport and room temperature ac conductivity (σac) analyses indicate the semiconducting nature and small polaron hopping.

  2. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Liu, Zhibo; Wen, Jinxiu; Gao, Yang; Ren, Xibiao; Chen, Huanjun; Jin, Chuanhong; Ma, Xiu-Liang; Xu, Ningsheng; Cheng, Hui-Ming; Ren, Wencai

    2017-02-01

    Understanding the influence of grain boundaries (GBs) on the electrical and thermal transport properties of graphene films is essentially important for electronic, optoelectronic and thermoelectric applications. Here we report a segregation-adsorption chemical vapour deposition method to grow well-stitched high-quality monolayer graphene films with a tunable uniform grain size from ~200 nm to ~1 μm, by using a Pt substrate with medium carbon solubility, which enables the determination of the scaling laws of thermal and electrical conductivities as a function of grain size. We found that the thermal conductivity of graphene films dramatically decreases with decreasing grain size by a small thermal boundary conductance of ~3.8 × 109 W m-2 K-1, while the electrical conductivity slowly decreases with an extraordinarily small GB transport gap of ~0.01 eV and resistivity of ~0.3 kΩ μm. Moreover, the changes in both the thermal and electrical conductivities with grain size change are greater than those of typical semiconducting thermoelectric materials.

  3. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering

    PubMed Central

    Ma, Teng; Liu, Zhibo; Wen, Jinxiu; Gao, Yang; Ren, Xibiao; Chen, Huanjun; Jin, Chuanhong; Ma, Xiu-Liang; Xu, Ningsheng; Cheng, Hui-Ming; Ren, Wencai

    2017-01-01

    Understanding the influence of grain boundaries (GBs) on the electrical and thermal transport properties of graphene films is essentially important for electronic, optoelectronic and thermoelectric applications. Here we report a segregation–adsorption chemical vapour deposition method to grow well-stitched high-quality monolayer graphene films with a tunable uniform grain size from ∼200 nm to ∼1 μm, by using a Pt substrate with medium carbon solubility, which enables the determination of the scaling laws of thermal and electrical conductivities as a function of grain size. We found that the thermal conductivity of graphene films dramatically decreases with decreasing grain size by a small thermal boundary conductance of ∼3.8 × 109 W m−2 K−1, while the electrical conductivity slowly decreases with an extraordinarily small GB transport gap of ∼0.01 eV and resistivity of ∼0.3 kΩ μm. Moreover, the changes in both the thermal and electrical conductivities with grain size change are greater than those of typical semiconducting thermoelectric materials. PMID:28205514

  4. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering.

    PubMed

    Ma, Teng; Liu, Zhibo; Wen, Jinxiu; Gao, Yang; Ren, Xibiao; Chen, Huanjun; Jin, Chuanhong; Ma, Xiu-Liang; Xu, Ningsheng; Cheng, Hui-Ming; Ren, Wencai

    2017-02-16

    Understanding the influence of grain boundaries (GBs) on the electrical and thermal transport properties of graphene films is essentially important for electronic, optoelectronic and thermoelectric applications. Here we report a segregation-adsorption chemical vapour deposition method to grow well-stitched high-quality monolayer graphene films with a tunable uniform grain size from ∼200 nm to ∼1 μm, by using a Pt substrate with medium carbon solubility, which enables the determination of the scaling laws of thermal and electrical conductivities as a function of grain size. We found that the thermal conductivity of graphene films dramatically decreases with decreasing grain size by a small thermal boundary conductance of ∼3.8 × 10(9) W m(-2) K(-1), while the electrical conductivity slowly decreases with an extraordinarily small GB transport gap of ∼0.01 eV and resistivity of ∼0.3 kΩ μm. Moreover, the changes in both the thermal and electrical conductivities with grain size change are greater than those of typical semiconducting thermoelectric materials.

  5. Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys

    SciTech Connect

    Thakore, B. Y.; Khambholja, S. G.; Bhatt, N. K.; Jani, A. R.; Suthar, P. H.; Gajjar, P. N.

    2011-12-12

    The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni{sub 10}Cr{sub 90} and Co{sub 20}Cr{sub 80} alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function are in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.

  6. Effects of Ordered Stacking Faults on Electrical Transport Properties in Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Collette, Marc; Moutanabbir, Oussama; Champagne, Alexandre

    Lattice defects in silicon nanowires (SiNWs) allow the exploration of the fundamental physics governing transport mechanisms. We study charge transport in SiNW transistors with stacking faults in the 3C sequence, producing local hexagonal ordering. This structure leads to polytype SiNWs with distinct properties for novel applications in thermoelectronics. Since charge carrier and phonon behavior depend on crystal structure, these planar defects affect the transport properties of the nanowire. We grow our SiNWs using a VLS method, with stacking faults induced during growth. Structural characterization of each SiNW is done with Raman spectroscopy to quantify hexagonality. Individual nanowires are located and contacted using different metals to understand the Schottky barrier of the contacts at the SiNWs. We suspend 2 μm-long SiNW devices using a wet oxide etch to uncouple the SiNW from the substrate. We study the electrical properties by I-V measurements across the FET device while modulating the applied back gate voltage. Our initial data show that the presence of stacking faults causes an increase in resistivity by two orders of magnitude, thus greatly hindering charge transport through the SiNW.

  7. Electrical Transport Properties of Mn doped Bi2Se3 Thin Films

    NASA Astrophysics Data System (ADS)

    Babakiray, Sercan; Johnson, Trent; Borisov, Pavel; Lederman, David

    2015-03-01

    Magnetic impurity doping in topological insulators manifest itself with a gap opening in the Dirac cone as a result of breaking the time reversal symmetry. Moreover, the magnetic impurities affect the structural and quantum transport properties of topological insulators by increasing the disorder and by changing the bulk charge carrier type, charge carrier density and Hall mobility. Here, we investigated the effect of Mn doping on the structural and electrical transport properties of Bi2-xMnxSe3 thin films which are 12 quintuple layers thick and grown on Al2O3 (0001) single crystal substrates via molecular beam epitaxy (MBE). Hikami-Larkin-Nagaoka (HLN) formalism was used to study the weak antilocalization (WAL). Increasing Mn doping concentration was found to increase the bulk charge carrier density and to decrease the Hall mobility. A decrease was also observed in the phase coherence length related to WAL as a function of Mn content x. Values of another WAL parameter, the pre-factor alpha, showed that the top and bottom surfaces were coupled through the bulk conducting channels. The temperature dependence of phase coherence length indicated the electrical transport was dominated by 2D electron-electron scattering for the undoped, and by bulk weak localization effects for the Mn doped samples, respectively.

  8. The influence of stoichiometry on electrical properties of silicon carbide grown by physical vapor transport process

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    The purposes of this thesis were to investigate the influence of the vapor phase stoichiometry in the ambient on electrical properties of silicon carbide grown by physical vapor transport (PVT) process in order to provide a better understanding of the nature of the compensation mechanisms in semi-insulating SiC crystals. Standard PVT and hydrogen-assisted PVT processes have been used to grow SiC single crystals. Chemical elemental analysis, contactless resistivity mapping (COREMA), temperature dependent Hall measurements (TDH), deep level transient spectroscopy (DLTS), and minority diffusion length measurements were performed to characterize the properties of SiC wafers. The nitrogen contamination, the net carrier concentrations, and the concentrations of the major deep traps in the undoped and nitrogen-doped SiC crystals were found to substantially decrease during the standard PVT growth when moving from seed to tail of the crystal. Addition of hydrogen to the growth ambient changed all the properties in the same direction. As a consequence of the doping and deep traps variations, the electrical properties including resistivity, Fermi energy, and minority carrier lifetime continuously changed during the growth. The results of the hydrogen-assisted PVT growth and the virtual reactor growth modeling indicated that the electrical properties change as a function of stoichiometry in the vapor phase, and the carbon transport efficiency can be enhanced by the reactions of hydrogen with the SiC charge material and the graphite parts of the crucible. Thermodynamic calculation of the vapor phase stoichiometry and the studies of the properties of H2-assisted PVT-grown crystals have shown that hydrogen can be used as a key factor controlling the vapor phase stoichiometry in the PVT process; in this manner the purity, electrical uniformities and the yield of the semi-insulating wafers can be improved to a great extent. The electron mobility values were found unusually low in

  9. Thermal and electrical transport properties of polyvinyl alcohol and bismuth ferrite nanocomposites film

    NASA Astrophysics Data System (ADS)

    Rana, Dhiraj Kumar; Kundu, Shovan Kumar; Basu, Soumen

    2017-05-01

    The pure phase Bismuth ferrite (BFO) nanomaterial calcined at 500°C for 2hr. is synthesized by sol-gel method. From the TEM micrograph analysis the average particle size of BFO is calculated as 37nm. The polyvinyl alcohol (PVA) and PVA-BFO (2wt%) composites films are synthesized by drop casting method. The thermal stability of the composites films is increased with adding BFO 2wt% in PVA matrix and which is observed by TGA curve analysis. The variation of real part of dielectric constant and the ac electrical conductivity with frequency range 20Hz to 1MHz at different temperature range from 30°C to 130°C is measured. The electrical transport properties shows the correlated barrier hopping (CBH) model and it is well fitted with the experimental data which is measured from the ac conductivity plot.

  10. Synergistically tuning the electrical and thermal transport properties of CdO:Cu thermoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Fu, Guangsheng; Gao, Linjie; Liu, Ran; Zha, Xinyu; Wang, Jianglong; Wang, Shufang

    2017-07-01

    The thermoelectric performance of CdO ceramics was optimized by synergistically tuning their electrical and thermal transport properties via Cu doping. The introduction of Cu led to an increase in carrier concentration and mobility simultaneously for samples with Cu content less than 3%. An improvement in power factor was obtained due to decreased electrical resistivity and a moderate Seebeck coefficient. A small amount of Cu doping was also verified to be effective in suppressing the heat transfer of CdO ceramics owing to the enhanced phonon scattering from point defects and grain boundaries. Benefiting from the increase in power factor and decrease in thermal conductivity, enhanced ZT values were achieved in all doped samples, indicating that Cu doping is an effective strategy to promote the thermoelectric performance of CdO ceramics.

  11. Electrical transport properties of amorphous Ni32Pd53P15 alloy

    NASA Astrophysics Data System (ADS)

    Prakruti, Chaudhari; Joshi, R. H.; Bhatt, N. K.; Thakore, B. Y.

    2015-08-01

    A ternary alloy containing nickel, palladium and phosphorous in amorphous form has been studied. The electrical transport properties viz. electrical resistivity, thermoelectrical power (TEP), thermal conductivity are computed using our recently proposed potential. In the present work, five screening functions have been employed to incorporate the exchange and correlation effects. The theoretical structure factors due to hard core fluid theory have been used in the calculations. The liquid alloy is studied as a function of its composition at temperature 294 K. The partial structure factors of the compound-forming Ni32Pd53P15 ternary alloy has been calculated by considering Hoshino's m-component hard-sphere mixture, which is based on Percus-Yevic equation of Hiroike.

  12. Structural and electrical transport properties of Mn-doped nanocrystalline SrCoO3

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Meenakshi, Mahato, Rabindra Nath

    2017-07-01

    We have investigated the structural and electrical transport properties of nanocrystalline SrCo0.95Mn0.05O3-δ sample synthesized by the sol-gel method. The powder X-ray diffraction patterns show that sample has hexagonal crystal structure at room temperature. The temperature dependence of electrical resistivity data shows the insulating behavior below 100 K. Above 100 K, the sample shows the semiconducting-like behavior. At the high-temperature region 180 K - 300 K, the electrical transport behavior is dominated by the Mott's variable range hoping (VRH) conduction mechanism and the VRH fitted data shows the density of states in the vicinity of Fermi energy, N (EF) ˜ 15.624 × 1018 ev-1cm-3 which is comparable to other semiconducting oxide materials. Field dependence magnetoresistance (MR) data shows the negative MR of 2.7% at room temperature for the field change of 3 T. The experimental result reveals the suitability of the magnetic compound for the memory devices near room temperature.

  13. Electrical and thermal transport property studies of high-temperature thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Bates, J. L.

    1984-12-01

    High-temperature materials that exhibit small polaron conduction appear to exhibit the highest figures of merit. A thermoelectric model based on small polaron transport has been developed. The model predicts that broad-band semiconductors with small polarons hopping along inequivalent sites of distorted sublattices can result in increases in both the electrical conductivity and the Seeback coefficient with increasing temperature without significant increases in thermal conductivity. High figures of merit (ZT), greater than 1 at 1000K, that increase with increasing temperatures are predicted. The model is being applied to the divalent metal containing (Y,LA)Cr0(3) systems with an ABO(3) perovskite structure. Transport properties have been determined for various doping elements and for different compositions. These data are being used for the evaluation of this model.

  14. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan D.; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-02-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  15. Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Rong; Ahktar, Meysam; Alruqi, Adel; Dharmasena, Ruchira; Jasinski, Jacek B.; Thantirige, Rukshan M.; Sumanasekera, Gamini U.

    2017-05-01

    In this work, we report the electrical transport properties of uniform and vertically oriented graphene (graphene nanowalls) directly synthesized on multiple substrates including glass, Si/SiO2 wafers, and copper foils using radio-frequency plasma enhanced chemical vapor deposition (PECVD) with methane (CH4) as the precursor at relatively low temperatures. The temperature for optimum growth was established with the aid of transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. This approach offers means for low-cost graphene nanowalls growth on an arbitrary substrate with the added advantage of transfer-free device fabrication. The temperature dependence of the electrical transport properties (resistivity and thermopower) were studied in the temperature range, 30-300 K and analyzed with a combination of 2D-variable range hopping (VRH) and thermally activated (TA) conduction mechanisms. An anomalous temperature dependence of the thermopower was observed for all the samples and explained with a combination of a diffusion term having a linear temperature dependence plus a term with an inverse temperature dependence.

  16. Characterization of the Hole Transport and Electrical Properties in the Small-Molecule Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, L. G.; Zhu, J. J.; Liu, X. L.; Cheng, L. F.

    2017-06-01

    In this paper, we investigate the hole transport and electrical properties in a small-molecule organic material N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), which is frequently used in organic light-emitting diodes. It is shown that the thickness-dependent current density versus voltage (J-V) characteristics of sandwich-type NPB-based hole-only devices cannot be described well using the conventional mobility model without carrier density or electric field dependence. However, a consistent and excellent description of the thickness-dependent and temperature-dependent J-V characteristics of NPB hole-only devices can be obtained with a single set of parameters by using our recently introduced improved model that take into account the temperature, carrier density, and electric field dependence of the mobility. For the small-molecule organic semiconductor studied, we find that the width of the Gaussian distribution of density of states σ and the lattice constant a are similar to the values reported for conjugated polymers. Furthermore, we show that the boundary carrier density has an important effect on the J-V characteristics. Both the maximum of carrier density and the minimum of electric field appear near the interface of NPB hole-only devices.

  17. Characterization of the Hole Transport and Electrical Properties in the Small-Molecule Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, L. G.; Zhu, J. J.; Liu, X. L.; Cheng, L. F.

    2017-10-01

    In this paper, we investigate the hole transport and electrical properties in a small-molecule organic material N, N'-bis(1-naphthyl)- N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), which is frequently used in organic light-emitting diodes. It is shown that the thickness-dependent current density versus voltage ( J- V) characteristics of sandwich-type NPB-based hole-only devices cannot be described well using the conventional mobility model without carrier density or electric field dependence. However, a consistent and excellent description of the thickness-dependent and temperature-dependent J- V characteristics of NPB hole-only devices can be obtained with a single set of parameters by using our recently introduced improved model that take into account the temperature, carrier density, and electric field dependence of the mobility. For the small-molecule organic semiconductor studied, we find that the width of the Gaussian distribution of density of states σ and the lattice constant a are similar to the values reported for conjugated polymers. Furthermore, we show that the boundary carrier density has an important effect on the J- V characteristics. Both the maximum of carrier density and the minimum of electric field appear near the interface of NPB hole-only devices.

  18. Effect of morphology on the electrical transport properties of polyaniline films for electronic applications

    SciTech Connect

    Hardaker, S.S.; Eaiprasertsak, K.; Yon, J.; Gregory, R.V.; Tessema, G.X.

    1998-07-01

    Although it is well known that the oxidation state of polyaniline is an important characteristic, there are few reports of its influence on the development of morphology and electrical properties in fibers and films. In this work, differential scanning calorimetry is used in conjunction with measurements of temperature dependence of conductivity and thermoelectric power to elucidate the intimate relationship between structure and properties. By increasing the amount of chemical reduction of polyaniline solutions, films are repaired which exhibit a thermal transition between 300 and 385 C, indicative of melting. Increasing the chemical reduction also increases the conductivity of iodine doped films. The most reduced film exhibited a semiconductor transport mechanism, while the other films could be modeled with a quasi-one dimensional variable range hopping mechanism. The temperature dependence of conductivity also showed increasing order for increasing reduction, consistent with the DSC results.

  19. Electrical transport and magnetic properties of epitaxial LSMO films grown on STO substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Zhao, Yuelei; Su, Tang; Song, Qi; Han, Wei; Shi, Jing

    2015-03-01

    La0.7Sr0.3MnO3 (LSMO) is a very attractive material for spintronics due to its half-metallic ferromagnetic properties. The LSMO films are epitaxially grown on STO (100) substrates using pulsed laser deposition. The effects of substrate temperature, laser power, oxygen pressure, and annealing on the LSMO growth are systematically investigated by the reflection high energy electron diffraction and atomic force microscopy. Under the optimized growth condition, we have achieved atomically flat LSMO thin films with a wide terrace width of more than 5 micro-meters. The electrical transport properties of LSMO thin films of various thicknesses ranging from 8 to 20 monolayers are studied by measuring the resistivity as a function of temperature. We find that the growth condition plays an important role in the critical film thickness for the metal-insulator transition and the Curie temperature. The Ministry of Science and Technology of China.

  20. Electrical transport properties of potassium germanide tungstates (K10Ge18WO4): A theoretical study

    NASA Astrophysics Data System (ADS)

    Azam, Sikander; Reshak, A. H.

    2014-06-01

    The total and partial density of states, electronic charge density and optical properties of the monoclinic structure K10Ge18WO4 compound have been investigated using a full relativistic version of the full-potential augmented plane-wave method based on the density functional theory, within local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA). Density of states discloses the semiconductor nature of the calculated compound. There exists a strong hybridization between K-p and K-s, W-d and O-p, W-f and K-p. The analysis of the chemical bonding shows that the bonding possesses strong covalent nature. The dielectric optical properties were also calculated and discussed in detail. The electrical transport coefficients of the under observation compound have been investigated using the density functional theory calculation within EVGGA.

  1. Hole electrical transporting properties in organic-Si Schottky solar cell

    NASA Astrophysics Data System (ADS)

    Shen, Xiaojuan; Zhu, Yawen; Song, Tao; Lee, Shuit-Tong; Sun, Baoquan

    2013-07-01

    In this work we investigated the hole electrical transporting properties effect on the organic-Si hybrid Schottky solar cells. By changing the post-annealing atmosphere of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) film, the power conversion efficiencies of the Schottky Si/PEDOT:PSS cell boosted from 6.40% in air to 9.33% in nitrogen. Current-voltage, capacitance-voltage, external quantum efficiency, and transient photovoltage measurements illustrated that the enhanced power conversion efficiency of the cell was ascribed to the increase in both conductivity and work function (WP) of PEDOT:PSS film. The increased conductivity reduced the series resistance (RS) within the cell, and the higher WP generated the larger built-in potential (Vbi) which resulted in the improvement of the open-circuit voltage. In addition, the decreased RS and enlarged Vbi were beneficial for the efficient charge transport/collection, contributing to the enhancement of the fill factor. Our results indicated that the conductivity as well as the WP of the hole transporting layer played an important role in the organic-Si Schottky solar cell.

  2. Structural, dynamic, and transport properties of concentrated aqueous sodium chloride solutions under an external static electric field.

    PubMed

    Ren, Gan; Shi, Rui; Wang, Yanting

    2014-04-24

    In the absence of an external electric field, it has already been known that ion clusters are formed instantaneously in moderately concentrated ionic solutions. In this work, we use molecular dynamics (MD) simulations to investigate the changes of structural, dynamic, and transport properties in a sodium chloride solution under an external electric field from the ion cluster perspective. Our MD simulation results indicate that, with a strong external electric field E (≥0.1 V/nm) applied, ion clusters become smaller and less net charged, and the structures and dynamics as well as transport properties of the ion solution become anisotropic. The influence of the cluster structure and shell structure to transport properties was analyzed and the Einstein relation was found invalid in this system.

  3. Effect of ambient on electrical transport properties of ultra-thin Au nanowires

    NASA Astrophysics Data System (ADS)

    Amin, Kazi Rafsanjani; Kundu, Subhajit; Biswas, Sangram; Roy, Ahin; Singh, Abhishek Kumar; Ravishankar, N.; Bid, Aveek

    2016-12-01

    In this letter we present systematic studies of the dynamics of surface adsorption of various chemicals on ultra-thin single crystalline gold nanowires (AuNW) through sensitive resistance fluctuation spectroscopy measurements coupled with ab initio simulations. We show that, contrary to expectations, the adsorption of common chemicals like methanol and acetone has a profound impact on the electrical transport properties of the AuNW. Our measurements and subsequent calculations establish conclusively that in AuNW, semiconductor-like sensitivity to the ambient arises because of changes induced in its local density of states by the surface adsorbed molecules. The extreme sensitivity of the resistance fluctuations of the AuNW to ambient suggests their possible use as solid-state sensors.

  4. Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods

    SciTech Connect

    Qi, X.; Lin, Y.S.; Swartz, S.L.

    2000-03-01

    Dense perovskite-structured membranes with desired composition of La{sub 0.8}Sr{sub 0.2}Co{sub 0.6}Fe{sub 0.4}O{sub 3{minus}{delta}} (LSCF) were prepared from powders produced by four different methods. LSCF powders prepared by citrate, solid-state, and spray-pyrolysis methods had compositions close to the desired stoichiometry with a slight difference in cobalt concentration, whereas coprecipitated powders had a large strontium deficiency. The membrane composition was a determining factor that affected the electronic conductivity and therefore oxygen permeability. The membrane with a large strontium deficiency had much lower electronic conductivity and oxygen permeability (ionic conductivity) than the other three membranes with compositions close to the desired stoichiometry. The electronic conductivity of membranes prepared from citrate, solid-state, and spray-pyrolysis methods increases with the cobalt concentration of the membrane. For the three membranes with similar composition, the activation energy of oxygen flux decreases with increasing grain size. Oxygen pressure dependency of oxygen vacancy concentration is also influenced by the membrane microstructure and composition. LSCF membranes with same composition and similar microstructure should have similar electric and oxygen transport properties.

  5. Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, G.; Gupta, K.; Meikap, A. K.; Babu, R.; Blau, W. J.

    2011-02-01

    The dc and ac electrical transport property of polyvinyl alcohol-multiwall carbon nanotubes composites has been investigated within a temperature range 77≤T≤300 K and in the frequency range 20 Hz-1 MHz in presence as well as in absence of a transverse magnetic field up to 1 T. The dc conductivity follows variable range hopping model. The magnetoconductivity of the samples changes a sign from positive to negative with an increase in temperature which can be interpreted by the dominancy of the quantum interference effect over the wave function shrinkage effect. The ac conductivity follows a power law whereas the temperature dependence of frequency exponent s can be explained by correlated barrier hopping model. The dielectric behavior of the samples has been governed by the grain and grain boundary resistance and capacitance. The ac conductivity reduces with the application of magnetic field. Although the theoretical model to explain it, is still lacking, we may conclude that this is due to the increase in grain and grain boundary resistance by the application of magnetic field.

  6. Anisotropy of electrical and magnetic transport properties of epitaxial SrRuO3 thin films

    NASA Astrophysics Data System (ADS)

    Ning, X. K.; Wang, Z. J.; Zhang, Z. D.

    2015-03-01

    SrRuO3 (SRO) thin films with different thickness (2-70 nm) have been grown on (001), (110), and (111) SrTiO3 substrates. The (001)-SRO films (2-8 nm) exhibited smooth flat surfaces whereas the (110)- and (111)-SRO films featured a faceted island structure. Room temperature resistivity and residual resistivity are the lowest for the (111)-SRO films (30-70 nm). Over all thicknesses, we observed enhanced magnetization in the (111)-SRO films (˜4 μB/Ru) compared with that for the (001)- and (110)-SRO films (˜2 μB/Ru and ˜3 μB/Ru, respectively), suggesting a low-spin state t2g(3↑,1↓), high-spin state t2g(3↑)eg(1↑), and mixed low- and high-spin states for the (001)-, (111)-, and (110)-SRO films, respectively. The dependence of resistivity on temperatures near TC follows a power law with exponent β = 0.312 and β = 0.363 for the (110)- and (111)-SRO films, respectively. These critical exponents are consistent with magnetic data with scaling law M = C (TC - T)β. At low temperatures, dM/dT and dρ/dT show a linear relationship in the temperature range for the Fermi liquid. These results suggest that the intrinsic electrical and magnetic transport properties are coupled.

  7. Electrical transport properties of single undoped and n-type doped InN nanowires.

    PubMed

    Richter, T; Lüth, H; Schäpers, Th; Meijers, R; Jeganathan, K; Estévez Hernández, S; Calarco, R; Marso, M

    2009-10-07

    Electrical transport properties of undoped and n-type doped InN nanowires grown by molecular beam epitaxy were studied by current-voltage and back-gate field-effect transistor measurements. The current-voltage characteristics show ohmic behavior in the temperature range between 4 and 300 K. Down to about 120 K a linear decrease in resistance with temperature is observed. The investigation of a large number of nanowires revealed for undoped as well as doped wires an approximately linear relation between the normalized conductance and diameter for wires with a diameter below 100 nm. This shows that the main conduction takes place in the tubular surface accumulation layer of the wires. In contrast, for doped wires with a diameter larger than 100 nm a quadratic dependence of conduction on the diameter was found, which is attributed to bulk conductance as the main contribution. The successful doping of the wires is confirmed by an enhanced conduction and by the results of the back-gate field-effect transistor measurements.

  8. Size-dependent electrical transport properties in Co nanocluster-assembled granular films.

    PubMed

    Zhang, Q F; Wang, X Z; Wang, L S; Zheng, H F; Lin, L; Xie, J; Liu, X; Qiu, Y L; Chen, Y Z; Peng, D L

    2017-09-15

    A series of Co nanocluster-assembled films with cluster sizes ranging from 4.5 nm to 14.7 nm were prepared by the plasma-gas-condensation method. The size-dependent electrical transport properties were systematically investigated. Both of the longitudinal resistivity ([Formula: see text]) and saturated anomalous Hall resistivity ([Formula: see text]) continuously increased with the decrease of the cluster sizes (d). The [Formula: see text] firstly increased and then decreased with increasing the temperature for all samples, which could be well described by involving the thermally fluctuation-induced tunneling (FIT) process and scattering. The tunneling effect was verified to result in the invalidation of classical anomalous Hall effect (AHE) scaling relation. After deducting the contribution from tunneling effect to [Formula: see text], the AHE scaling relation between [Formula: see text] and the scattering resistivity ([Formula: see text]) by varying the temperature was reconstructed. The value of scaling exponent γ increased with increasing Co cluster sizes. The size dependence of γ might be qualitatively interpreted by the interface and surface-induced spin flip scattering. We also determined the scaling relation between [Formula: see text] and [Formula: see text] at 5 K by changing the Co cluster sizes, and a large value of γ = 3.6 was obtained which might be ascribed to the surface and interfacial scattering.

  9. Electrolyte dependence of transport properties of SrTiO3 electric double layer transistors

    NASA Astrophysics Data System (ADS)

    Sato, Yohei; Doi, Kiyomasa; Katayama, Yumiko; Ueno, Kazunori

    2017-05-01

    We report the electrolyte dependence of the transport properties of SrTiO3 electric double layer transistors (EDLTs). Ionic liquids such as 1-ethyl-3-methylimidazolium (EMIM) bis(trifluoromethylsulfonyl)imide (TFSI), EMIM dicyanamide (DCA), N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium (DEME) TFSI, and DEME tetrafluoroborate (BF4), and polymer electrolytes such as poly(ethylene oxide) (PEO):CsClO4, were used as the electrolytes. All the devices showed metal-insulator transition with a threshold carrier density of 1 × 1013 cm-2. The maximum carrier density was also limited to below 1.6 × 1014 cm-2 for all the devices. On the other hand, the electron mobility at low temperature varied with the cation of the electrolyte and the gating temperature. The EDLT with the ionic liquid EMIM-DCA, which gated at room temperature, showed the highest mobility of 2,600 cm2 V-1 s-1 at 2 K. The observed electrolyte dependence of the SrTiO3 channel mobility is attributed to the change in the surface scattering rate by the adsorbed cations and spatial homogeneity of the cations in the electrolyte.

  10. The microstructure and electrical transport properties of immiscible copper-niobium alloy thin films

    SciTech Connect

    Banerjee, Rajarshi; Bose, Sangita; Ayyub, Pushan; Genc, Arda

    2008-02-01

    Mutually immiscible in the solid state, copper and niobium exhibit a relatively strong clustering (phase separating) tendency in the liquid state and can therefore only be alloyed in a highly metastable form: for example, by vapor quenching. We have deposited metastable Cu-Nb alloy thin films with nominal compositions ranging from 5 to 90 at. % Nb by magnetron cosputtering. The microstructure of these films depends strongly on the composition and ranges from coarse-grained solid solutions for Cu-rich and Nb-rich compositions to phase-separated amorphous mixtures when the two elements are in comparable amounts. The crystalline Cu- or Nb-rich compositions exhibit positive temperature coefficients of resistivity (TCR) with the Cu-90 at. % Nb film exhibiting a superconducting transition with (T{sub C}){sub onset}{approx}4.5 K. The amorphous films show high room temperature resistivity, a negative TCR, and composition dependent superconducting transitions. We investigate the relation between the microstructure, phase stability, and the electrical transport properties.

  11. Electrical transport properties of single-crystal CaB6,SrB6 , and BaB6

    NASA Astrophysics Data System (ADS)

    Stankiewicz, Jolanta; Rosa, Priscila F. S.; Schlottmann, Pedro; Fisk, Zachary

    2016-09-01

    The electrical resistivity and Hall effect of alkaline-earth-metal hexaboride single crystals are measured as a function of temperature, hydrostatic pressure, and magnetic field. The transport properties vary weakly with the external parameters and are modeled in terms of intrinsic variable-valence defects. These defects can stay either in (1) delocalized shallow levels or in (2) localized levels resonant with the conduction band, which can be neutral or negatively charged. Satisfactory agreement is obtained for electronic transport properties in a broad temperature and pressure range, although fitting the magnetoresistance is less straightforward and a combination of various mechanisms is needed to explain the field and temperature dependences.

  12. Cellular Automata Simulations of Thermal and Electrical Transport Properties of Thin-Film Polymer/CNTs Nanocomposites

    NASA Astrophysics Data System (ADS)

    Casey, Alex; Iannacchione, Germano; Georgiev, Georgi; Cebe, Peggy

    2014-03-01

    A computational algorithm has been developed to simulate the transport properties of oriented and un-oriented thin film nanocomposites of isotactic Polypropylene (iPP) and carbon nanotubes (CNT) with increasing CNT concentration. Our goal is to be able to design materials with optimal properties using simulations. We use cellular automata approach in Matlab simulation environment. The percolation threshold is reproduced in the simulations, matching experimental data. Upon percolation, the thermal transport in the films increases sharply, more so for the electrical than for the thermal conductivity, due to the larger difference in the electric conductivities of the CNTs and the polymer. To verify the simulation, the thin-film samples were sheared in the melt at 200 C at 1 Hz in a Linkan microscope shearing hot stage. The thermal and electrical conductivity measurements were performed on the same cell arrangement with the transport perpendicular to the thin-film plane using a DC method. The thermal and electrical conductivity are higher for the un-sheared as compared to the sheared samples with stronger temperature dependence for the latter as compared to the former. Our cellular automata simulations provide information about the microstructure-macroscopic property relation in the thin film nanocomposites and can be extended to simulations of other important materials.

  13. AC electrical transport properties and current-voltage hysteresis behavior of PVA-CNT nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, Amit Kumar; Sinha, Subhojyoti; Meikap, Ajit Kumar

    2015-06-01

    Polyvinyl alcohol (PVA) - Carbon nanotube (CNT) composite has been prepared and its electric modulus, ac conductivity, impedance spectroscopy and current-voltage characteristics have been studied, at and above room temperature, to understand the prevailing charge transport mechanism. Non-Debye type relaxation behavior was observed with activation energy of 1.27 eV whereas correlated barrier hopping was found to be the dominant charge transport mechanism with maximum barrier height of 48.7 meV above room temperature. The sample, under ±80 V applied voltage, exhibits hysteresis behavior in its current - voltage characteristics.

  14. Epitaxial growth and electrical transport properties of Cr{sub 2}GeC thin films

    SciTech Connect

    Eklund, Per; Bugnet, Matthieu; Mauchamp, Vincent; Dubois, Sylvain; Tromas, Christophe; Jaouen, Michel; Cabioc'h, Thierry; Jensen, Jens; Piraux, Luc; Gence, Loiek

    2011-08-15

    Cr{sub 2}GeC thin films were grown by magnetron sputtering from elemental targets. Phase-pure Cr{sub 2}GeC was grown directly onto Al{sub 2}O{sub 3}(0001) at temperatures of 700-800 deg. C. These films have an epitaxial component with the well-known epitaxial relationship Cr{sub 2}GeC(0001)//Al{sub 2}O{sub 3}(0001) and Cr{sub 2}GeC(1120)//Al{sub 2}O{sub 3}(1100) or Cr{sub 2}GeC(1120)//Al{sub 2}O{sub 3}(1210). There is also a large secondary grain population with (1013) orientation. Deposition onto Al{sub 2}O{sub 3}(0001) with a TiN(111) seed layer and onto MgO(111) yielded growth of globally epitaxial Cr{sub 2}GeC(0001) with a virtually negligible (1013) contribution. In contrast to the films deposited at 700-800 deg. C, the ones grown at 500-600 deg. C are polycrystalline Cr{sub 2}GeC with (1010)-dominated orientation; they also exhibit surface segregations of Ge as a consequence of fast Ge diffusion rates along the basal planes. The room-temperature resistivity of our samples is 53-66 {mu}{Omega}cm. Temperature-dependent resistivity measurements from 15-295 K show that electron-phonon coupling is important and likely anisotropic, which emphasizes that the electrical transport properties cannot be understood in terms of ground state electronic structure calculations only.

  15. Electrical transport properties in Fe-Cr nanocluster-assembled granular films

    NASA Astrophysics Data System (ADS)

    Wang, Xiong-Zhi; Wang, Lai-Sen; Zhang, Qin-Fu; Liu, Xiang; Xie, Jia; Su, A.-Mei; Zheng, Hong-Fei; Peng, Dong-Liang

    2017-09-01

    The Fe100-xCrx nanocluster-assembled granular films with Cr atomic fraction (x) ranging from 0 to 100 were fabricated by using a plasma-gas-condensation cluster deposition system. The TEM characterization revealed that the uniform Fe clusters were coated with a Cr layer to form a Fe-Cr core-shell structure. Then, the as-prepared Fe100-xCrx nanoclusters were randomly assembled into a granular film in vacuum environments with increasing the deposition time. Because of the competition between interfacial resistance and shunting effect of Cr layer, the room temperature resistivity of the Fe100-xCrx nanocluster-assembled granular films first increased and then decreased with increasing the Cr atomic fraction (x), and revealed a maximum of 2 × 104 μΩ cm at x = 26 at.%. The temperature-dependent longitudinal resistivity (ρxx), magnetoresistance (MR) effect and anomalous Hall effect (AHE) of these Fe100-xCrx nanocluster-assembled granular films were also studied systematically. As the x increased from 0 to 100, the ρxx of all samples firstly decreased and then increased with increasing the measuring temperature. The dependence of ρxx on temperature could be well addressed by a mechanism incorporated for the fluctuation-induced-tunneling (FIT) conduction process and temperature-dependent scattering effect. It was found that the anomalous Hall effect (AHE) had no legible scaling relation in Fe100-xCrx nanocluster-assembled granular films. However, after deducting the contribution of tunneling effect, the scaling relation was unambiguous. Additionally, the Fe100-xCrx nanocluster-assembled granular films revealed a small negative magnetoresistance (MR), which decreased with the increase of x. The detailed physical mechanism of the electrical transport properties in these Fe100-xCrx nanocluster-assembled granular films was also studied.

  16. Electrical and Thermal Transport Properties of Bi2Sr2Co2O9-δ Single Crystals and Thin Films

    NASA Astrophysics Data System (ADS)

    Diao, Zhenyu; Lee, H. N.; Chisholm, M.; Jin, Rongying

    2012-02-01

    Layered Bi2Sr2Co2O9-δ possesses rich physical properties, promising for thermoelectric applications. We have successfully synthesized Bi2Sr2Co2O9-δ in both single crystal and epitaxial thin film forms by applying various oxygen pressures. We found that their electrical and thermal transport properties are sensitive to the oxygen content, suggesting that the oxidation state of Co plays an important role in thermoelectric properties. Comparison of power factor between single crystals and thin films will be presented.

  17. Electric modulus formalism and electrical transport property of ball mill synthesized nanocrystalline Mn doped ZrO2 solid solution

    NASA Astrophysics Data System (ADS)

    Saha, S.; Nandy, A.; Meikap, A. K.; Pradhan, S. K.

    2015-12-01

    Here we report the formation of Mn doped nanocrystalline ZrO2 solid solution synthesized by high energy ball-milling method and the transport mechanism in the temperature range 298 Kelectrical study shows the dc conductivity enhances as the doping percentage increases. Complex electric modulus study shows low frequency region approaches to ideal Debye type behaviour while the high frequency side deviates. Alternating current conductivity is found to follow the power law σ'(f,T)∝fsTn. A transformation from small polaron hopping to correlated barrier hopping has been observed from the temperature dependence frequency exponent study. The contribution of grain boundary resistance is found to be dominating over the grain resistance in the ac conduction process.

  18. Electrical transport properties of (La,Pr,Ca)MnO3 nanowires investigated using terahertz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, T. V. A.; Hattori, A. N.; Nagai, M.; Nakamura, T.; Ashida, M.; Tanaka, H.

    2016-03-01

    The electrical transport properties of a 100-nm-width (La,Pr,Ca)MnO3 nanowire sample were investigated using terahertz (THz) time domain spectroscopy. When the electric field of incident THz pulses was parallel to the nanowires, we obtained their intrinsic THz conductivity. The temperature-dependent dc conductivity and metallic fraction were simultaneously estimated by analyzing the THz conductivity using a metal-insulator composite model. The evaluated dc conductivity closely reproduced that measured by electrical probe measurement. The metallic fraction showed the evolution of electric domains from the metallic state at temperatures below 100 K to the insulating state at temperatures above 150 K through a coexistence region, which was in consistence with the phase-separated scenario.

  19. Electrical Transport through Organic Molecules

    NASA Astrophysics Data System (ADS)

    Lau, C. N.; Chang, Shun-Chi; Williams, Stan

    2003-03-01

    We investigate electrical transport properties of single organic molecules using electromigration break junctions[1]. A self-assembled monolayer of various organic molecules such as 1,4-di(phenylethynyl-4'-methanethiol)benzene was grown on narrow metal wires, and single or a few molecules were incorporated into the junctions which were created by applying a large voltage and breaking the wires. The transport properties of these molecules were then measured at low temperatures. Latest experimental results will be discussed. [1] Park, J. et al, Nature, 417, 722 (2002); Liang W. et al, Nature, 417, 725 (2002).

  20. Composition and electric field effects on the transport properties of Bi doped chalcogenide glasses thin films

    NASA Astrophysics Data System (ADS)

    Hafiz, M. M.; Othman, A. A.; Elnahass, M. M.; Al-Motasem, A. T.

    2007-03-01

    The temperature dependence of the DC electrical conductivity σDC was measured in the temperature range from 300-500 K. It was found that there are double activation energies, E σ, for Ge 20Se 80-xBi x ( x=0, 2.5 and 5 at%) films, while there is single activation energy for Ge 20Se 72.5Bi 7.5. when incorporation of Bi=7.5 at%, the pre-exponential value σ0 decreases by about six order of magnitude, the activation energy in the extended states E σ decreases from 0.96 to 0.09 eV. Also the effect of applied electric field was studied and observed that, activation energy in high temperature region increases with increasing electric field; this behavior can be understood assuming that the contribution to the conductivity activation process is due to conduction in the extended states and also due to hopping in the localized states. With the increasing electric field, as former process, which is having high activation energy, becomes more predominant due to the dumping of the carriers in the extended states, the effective activation energy of the system increases, in spite of the fact that the activation energy of the extended states conduction may remain constant. Finally, the electrical data suggests that the addition of bismuth produces localized states near the conduction band edge so that the electrical transport is due to hopping of electrons after being excited into localized states at the conduction band edge.

  1. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires.

    PubMed

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current-voltage (I-V) characteristics show two distinct power law regions from 360 down to 60 K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100 K, and the corresponding carrier mobility, trap energy, and trap concentration are also obtained. However, the I-V data exhibit some features of the Coulomb blockade effect below 80 K.

  2. Solvation structure and transport properties of alkali cations in dimethyl sulfoxide under exogenous static electric fields

    SciTech Connect

    Kerisit, Sebastien; Vijayakumar, M. E-mail: karl.mueller@pnnl.gov; Han, Kee Sung; Mueller, Karl T. E-mail: karl.mueller@pnnl.gov

    2015-06-14

    A combination of molecular dynamics simulations and pulsed field gradient nuclear magnetic resonance spectroscopy is used to investigate the role of exogenous electric fields on the solvation structure and dynamics of alkali ions in dimethyl sulfoxide (DMSO) and as a function of temperature. Good agreement was obtained, for select alkali ions in the absence of an electric field, between calculated and experimentally determined diffusion coefficients normalized to that of pure DMSO. Our results indicate that temperatures of up to 400 K and external electric fields of up to 1 V nm{sup −1} have minimal effects on the solvation structure of the smaller alkali cations (Li{sup +} and Na{sup +}) due to their relatively strong ion-solvent interactions, whereas the solvation structures of the larger alkali cations (K{sup +}, Rb{sup +}, and Cs{sup +}) are significantly affected. In addition, although the DMSO exchange dynamics in the first solvation shell differ markedly for the two groups, the drift velocities and mobilities are not significantly affected by the nature of the alkali ion. Overall, although exogenous electric fields induce a drift displacement, their presence does not significantly affect the random diffusive displacement of the alkali ions in DMSO. System temperature is found to have generally a stronger influence on dynamical properties, such as the DMSO exchange dynamics and the ion mobilities, than the presence of electric fields.

  3. Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

    PubMed Central

    Robaschik, Peter; Siles, Pablo F; Bülz, Daniel; Richter, Peter; Monecke, Manuel; Fronk, Michael; Klyatskaya, Svetlana; Grimm, Daniel; Schmidt, Oliver G; Ruben, Mario; Zahn, Dietrich R T

    2014-01-01

    Summary The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I–V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFM-based electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution. PMID:25551034

  4. Fabrication and electrical transport properties of binary Co-Si nanostructures prepared by focused electron beam-induced deposition

    SciTech Connect

    Porrati, F.; Huth, M.; Kaempken, B.; Terfort, A.

    2013-02-07

    CoSi-C binary alloys have been fabricated by focused electron beam-induced deposition by the simultaneous use of dicobaltoctacarbonyl, Co{sub 2}(CO){sub 8}, and neopentasilane, Si{sub 5}H{sub 12}, as precursor gases. By varying the relative flux of the precursors, alloys with variable chemical composition are obtained, as shown by energy dispersive x-ray analysis. Room temperature electrical resistivity measurements strongly indicate the formation of cobalt silicide and cobalt disilicide nanoclusters embedded in a carbonaceous matrix. Temperature-dependent electrical conductivity measurements show that the transport properties are governed by electron tunneling between neighboring CoSi or CoSi{sub 2} nanoclusters. In particular, by varying the metal content of the alloy, the electrical conductivity can be finely tuned from the insulating regime into the quasi-metallic tunneling coupling regime.

  5. Fabrication and electrical transport properties of binary Co-Si nanostructures prepared by focused electron beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Porrati, F.; Kämpken, B.; Terfort, A.; Huth, M.

    2013-02-01

    CoSi-C binary alloys have been fabricated by focused electron beam-induced deposition by the simultaneous use of dicobaltoctacarbonyl, Co2(CO)8, and neopentasilane, Si5H12, as precursor gases. By varying the relative flux of the precursors, alloys with variable chemical composition are obtained, as shown by energy dispersive x-ray analysis. Room temperature electrical resistivity measurements strongly indicate the formation of cobalt silicide and cobalt disilicide nanoclusters embedded in a carbonaceous matrix. Temperature-dependent electrical conductivity measurements show that the transport properties are governed by electron tunneling between neighboring CoSi or CoSi2 nanoclusters. In particular, by varying the metal content of the alloy, the electrical conductivity can be finely tuned from the insulating regime into the quasi-metallic tunneling coupling regime.

  6. Structural and electrical transport properties of proficient Ba-Pb nanoferrites

    NASA Astrophysics Data System (ADS)

    Haq, A.; Anis-ur-Rehman, M.; Malik, Muhammad Ali

    2012-03-01

    The excellent combination of magnetic and dielectric properties of hexaferrites makes these materials suitable for use in high-frequency applications. Ba-Pb nanocrystalline ferrites having the general formula Ba1-xPbxFe12O19 (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were prepared by the co-precipitation method. X-ray powder diffraction (XRD) patterns of all prepared samples indicated the formation of the required phase. The crystallite size, lattice parameters and porosities of samples were measured from XRD data. Scanning electron microscopy was carried out to observe the morphology of the synthesized Ba-Pb ferrites. Temperature-dependent dc electrical resistivity, dielectric constant, dielectric loss tangent and the ac electrical conductivity of nanocrystalline Ba ferrites were investigated as a function of frequency and Pb concentration. The effect of Pb doping on dielectric and electric properties of Ba nanoferrites was explained on the basis of cation distribution in the crystal structure.

  7. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles

    SciTech Connect

    Yu, Seungho; Kaviany, Massoud

    2014-02-14

    Using ab initio molecular dynamics, the atomic structure and transport properties of eutectic Ga-In and Ga-In-Sn are investigated. The Kubo-Greenwood (K-G) and the Ziman-Faber (Z-F) formulations and the Wiedemann-Franz (W-F) law are used for the electrical and electronic thermal conductivity. The species diffusivity and the viscosity are also predicted using the mean square displacement and the Stokes-Einstein (S-E) relation. Alloying Ga causes more disordered structure, i.e., broadening the atomic distance near the In and Sn atoms, which reduces the transport properties and the melting temperature. The K-G treatment shows excellent agreement with the experimental results while Z-F treatment formula slightly overestimates the electrical conductivity. The predicted thermal conductivity also shows good agreement with the experiments. The species diffusivity and the viscosity are slightly reduced by the alloying of Ga with In and Sn atoms. Good agreements are found with available experimental results and new predicted transport-property results are provided.

  8. Electrical transport properties of single-crystal CaB6,SrB6 , and BaB6

    DOE PAGES

    Stankiewicz, Jolanta; Rosa, Priscila F. S.; Schlottmann, Pedro; ...

    2016-09-22

    We measure the electrical resistivity and Hall effect of alkaline-earth-metal hexaboride single crystals as a function of temperature, hydrostatic pressure, and magnetic field. The transport properties vary weakly with the external parameters and are modeled in terms of intrinsic variable-valence defects. These defects can stay either in (1) delocalized shallow levels or in (2) localized levels resonant with the conduction band, which can be neutral or negatively charged. Satisfactory agreement is obtained for electronic transport properties in a broad temperature and pressure range, though fitting the magnetoresistance is less straightforward and a combination of various mechanisms is needed to explainmore » the field and temperature dependences.« less

  9. Investigation of structural and electrical transport properties in Ti doped Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Bhatti, Imtiaz Noor; Pramanik, A. K.

    2016-05-01

    Effects of Ti substitution at Ir-site on structural and electrical properties are studies in Sr2IrO4. Structural investigation has been done using x-ray powder diffraction and allied Rietveld analysis for all the samples. While there is no structural phase transition but the lattice parameters evolve with Ti doping. Resistivity measurements show an insulating behavior for all the samples. Data show resistivity increases drastically with Ti doping. The increase in resistivity is understood to arise due to dilution of Ir-O-Ir network as well as tuning of electronic correlation effect.

  10. Electrical transport and thermochromic properties of polyaniline/chitosan/Co3O4 ternary nano composite

    NASA Astrophysics Data System (ADS)

    V, Mini; Kamath, Archana; S, Raghu; Chapi, Sharanappa; H, Devendrappa

    2015-06-01

    A new Polyaniline/ chitosan/ Co3O4 (CPAESCO) ternary nanocomposite is prepared by in situ oxidation polymerization of aniline in the presence of (NH4)2S2O8, chitosan and Co3O4. The Structural, Thermal, Optical and Electrical features of Polyaniline (PANI), Polyaniline/ chitosan (CPANI) and CPAESCO were analyzed using FT-IR, TGA, UV-vis analysis and Impedance spectroscopy by varying temperature. The results show that the introduction of the Co3O4 nanoparticles into CPANI matrix enhanced its properties. Mott's parameters show 3D -VRH Type conduction in it.

  11. Intrinsic Defect Engineering of Cuprous Oxide to Enhance Electrical Transport Properties for Photovoltaic Applications

    SciTech Connect

    Lloyd, Michael A.; Siah, Sin-Cheng; Brandt, Riley E.; Serdy, James; Johnston, Steve W.; Lee, Yun Seog; Buonassisi, Tonio

    2014-06-08

    Intrinsic point-defect species in cuprous oxide films are manipulated based on their thermodynamic properties via the implementation of a controlled annealing process. A wide range of electrical properties is demonstrated, with a window suitable for high-quality solar cell devices. A variation of carrier concentration over two orders of magnitude is demonstrated. Minority carrier lifetime is investigated by means of microwave photoconductance decay measurements, demonstrating a strong correlation with carrier concentration. Spectrally resolved photoluminescence yields are analyzed to provide insight into lifetime limiting mechanisms as a function of Cu2O processing parameters. Hall measurements of carrier mobility and concentration are taken at room temperature to provide insight into the effect of these processing conditions on net ionized defect concentration.

  12. Low temperature electrical transport properties in p-SnSe single crystals

    NASA Astrophysics Data System (ADS)

    Sumesh, C. K.; Patel, M.; Patel, K. D.; Solanki, G. K.; Pathak, V. M.; Srivastav, R.

    2011-01-01

    The electronic transport properties of p-type tin selenide (SnSe) grown by direct vapor transport (DVT) technique were investigated via Hall effect in the temperature range 40 < T < 300 K. The temperature dependence of conductivity revealed the existence of impurity energy level in the band gap of the crystal. The temperature dependence of the carrier concentration was analyzed using the single-donor - single-acceptor model. The Hall mobility increases by decreasing temperature up to 120 K and then decreases along with temperature. The observed temperature dependant mobility in the temperature range 120 < T < 300 K and 40 < T < 120 K was found to be limited by homopolar and ionized impurity mode scatterings respectively.

  13. Electrical Transport Experiments at High Pressure

    SciTech Connect

    Weir, S

    2009-02-11

    High-pressure electrical measurements have a long history of use in the study of materials under ultra-high pressures. In recent years, electrical transport experiments have played a key role in the study of many interesting high pressure phenomena including pressure-induced superconductivity, insulator-to-metal transitions, and quantum critical behavior. High-pressure electrical transport experiments also play an important function in geophysics and the study of the Earth's interior. Besides electrical conductivity measurements, electrical transport experiments also encompass techniques for the study of the optoelectronic and thermoelectric properties of materials under high pressures. In addition, electrical transport techniques, i.e., the ability to extend electrically conductive wires from outside instrumentation into the high pressure sample chamber have been utilized to perform other types of experiments as well, such as high-pressure magnetic susceptibility and de Haas-van Alphen Fermi surface experiments. Finally, electrical transport techniques have also been utilized for delivering significant amounts of electrical power to high pressure samples, for the purpose of performing high-pressure and -temperature experiments. Thus, not only do high-pressure electrical transport experiments provide much interesting and valuable data on the physical properties of materials extreme compression, but the underlying high-pressure electrical transport techniques can be used in a number of ways to develop additional diagnostic techniques and to advance high pressure capabilities.

  14. Transport Properties of Bulk Thermoelectrics An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    SciTech Connect

    Wang, Hsin; Porter, Wallace D; Bottner, Harold; Konig, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolett, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Partricia; Sharp, Jeff; Lo, Jason; Keinke, Holger; Kiss, Laszlo I.

    2013-01-01

    Recent research and development of high temperature thermoelectric materials has demonstrated great potential of converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as an important area for improving energy efficiency. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is Part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main focuses in Part I are on two electronic transport properties: Seebeck coefficient and electrical resistivity.

  15. Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Porter, Wallace D.; Böttner, Harald; König, Jan; Chen, Lidong; Bai, Shengqiang; Tritt, Terry M.; Mayolet, Alex; Senawiratne, Jayantha; Smith, Charlene; Harris, Fred; Gilbert, Patricia; Sharp, Jeff W.; Lo, Jason; Kleinke, Holger; Kiss, Laszlo

    2013-04-01

    Recent research and development of high-temperature thermoelectric materials has demonstrated great potential for converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air-conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The dimensionless figure of merit, ZT, still needs to be improved from the current value of 1.0 to 1.5 to above 2.0 to be competitive with other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods, and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as a key component for improving energy efficiency. The International Energy Agency (IEA) group under the Implementing Agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main foci in part I are the measurement of two electronic transport properties: Seebeck coefficient and electrical resistivity.

  16. Structural, optical, and electrical-transport properties of Al-P-O inorganic layer coated on flexible stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Kim, Moojin; Min, Jinhyuk; Kwak, Yongsu; Kim, Doori; Kim, Kyoung-Bo; Song, Jonghyun

    2017-03-01

    We coated inorganic layer containing oxygen, aluminium, phosphorus, and negligible sodium (APO) on stainless steel (STS) by using slot-die coating method and studied its application prospects as a substrate for flexible devices. The APO layer was compositionally uniform in overall area with an amorphous crystal structure. Surface morphology characterization of STS exhibited an improved flatness after the APO layer coating process. The optical property characterization of the APO film carried out by measuring optical reflectance spectrum and refractive index. We also investigated the electrical-transport mechanism in the APO layer. These experimental observations imply the possibility of potential application of APO-STS as a substrate for flexible devices.

  17. Structural, electrical and transport properties of yttrium-doped proton-conducting strontium cerates

    NASA Astrophysics Data System (ADS)

    Pasierb, P.; Wierzbicka, M.; Komornicki, S.; Rekas, M.

    Series of SrCe 1- xY xO 3- δ solid solutions with x varying between 0 and 0.2 were prepared by solid-state reaction method. XRD results revealed that samples with 0 ≤ x < 0.1 (SrCe 1- xY xO 3- δ) are homogenous perovskite phases, while the samples with higher concentration of yttrium contain admixture of other phase (identified as Sr 2CeO 4). According to SEM observations the samples were dense with uniform grain sizes within 3-5 μm. Impedance spectroscopic investigations revealed a strong influence of Y concentration on electrical properties of SrCe 1- xY xO 3- δ. The activation energies of the total electrical conductivity as well as grain boundary and bulk components have been determined. Mixed ionic-electronic conductivity in studied materials at experimental conditions has been observed. Potentiometric measurements of EMF versus temperature of solid cells containing studied materials as solid electrolytes were performed in order to determine ionic transference numbers versus temperature.

  18. Ce Core-Level Spectroscopy, and Magnetic and Electrical Transport Properties of Lightly Ce-Doped YCoO3

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshihiko; Koike, Tsuyoshi; Okawa, Mario; Takayanagi, Ryohei; Takei, Shohei; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Yasui, Akira; Ikenaga, Eiji; Saitoh, Tomohiko; Asai, Kichizo

    2016-11-01

    We have investigated the Ce and Co core level spectroscopy, and the magnetic and electrical transport properties of lightly Ce-doped YCoO3. We have successfully synthesized single-phase Y1-xCexCoO3 for 0.0 ≤ x ≤ 0.1 by the sol-gel method. Hard X-ray photoelectron and X-ray absorption spectroscopy experiments reveal that the introduced Ce ions are tetravalent, which is considered to be the first case of electron doping into bulk trivalent Co oxides with perovskite RECoO3 (RE: rare-earth element or Y) caused by RE site substitution. The magnitude of the effective magnetic moment peff obtained from the temperature dependence of magnetic susceptibility χ(T) at higher temperatures is close to that for high-spin Co2+ introduced by the Ce doping, implying that the electrons doped into the Co site induce Co2+ with a high-spin state. For x = 0.1, ferromagnetic ordering is observed below about 7 K. Electrical transport properties such as resistivity and thermoelectric power show that negative electron-like carriers are introduced by Ce substitution.

  19. Centimeter-long Ta3N5 nanobelts: synthesis, electrical transport, and photoconductive properties

    NASA Astrophysics Data System (ADS)

    Wu, X. C.; Tao, Y. R.; Li, L.; Bando, Y.; Golberg, D.

    2013-05-01

    Centimeter-long Ta3N5 nanobelts were synthesized by a reaction of centimeter-long TaS3 nanobelt templates with flowing NH3 at 800 °C for 2 h. The nanobelts have cross-sections of about 50 × 100 nm2, and lengths up to 0.5 cm. A field effect transistor (FET) made of a single Ta3N5 nanobelt was fabricated on silica/silicon substrate. The electric transport of the individual nanobelt revealed that the nanobelt is a semiconductor with a room-temperature resistivity of 11.88 Ω m, and can be fitted well with an empirical formula ρ = 10831 exp(-T/43.8) - 22.6, where ρ is resistivity (Ω m) and T is absolute temperature (K). The FET showed decent photoconductive performance under light irradiation in the range 250-630 nm. The photocurrent increased by nearly 10 times the dark current under 450 nm light irradiation at an applied voltage of 5.0 V.

  20. Temperature-dependent electrical transport properties of (Au/Ni)/n-GaN Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Dogan, Hulya; Elagoz, Sezai

    2014-09-01

    The temperature-dependent electrical properties of (Au/Ni)/n-GaN Schottky barrier diodes (SBDs)have been investigated in the wide temperature range of 40-400 K. The analysis of the main electrical characteristics such as zero-bias barrier height (ΦB0), ideality factor (n) and series resistance (Rs) were found strongly temperature dependent. Such behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution (GD) of barrier heights (BHs) at the interface. It is evident that the diode parameters such as zero-bias barrier height increases and the ideality factor decreases with increasing temperature. The values of series resistance that are obtained from Cheung's method are decreasing with increasing temperature. The temperature dependence of Schottky barrier height (SBD) and ideality factor (n) are explained by invoking three sets of Gaussian distribution of (SBH) in the temperature ranges of 280-400 K, 120-260 K and 40-100 K, respectively. (Au/Ni)/n-GaN Schottky barrier diode have been shown a Gaussian distribution giving mean BHs (ΦbarB0) of 1.167, 0.652 and 0.356 eV and standard deviation σs of 0.178, 0.087 and 0.133 V for the three temperature regions. A modified ln(I0/T2)-q2σ2/2k2T2 vs. 1/kT plot have given ΦbarB0 and A* as 1.173 eV and 34.750 A/cm2 K2, 0.671 eV and 26.293 A/cm2 K2, 0.354 eV and 10.199 A/cm2 K2, respectively.

  1. Charge-spin-coupled electrical transport properties in EuMoO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    Fujita, T. C.; Kozuka, Y.; Seki, H.; Kawasaki, M.

    2013-05-01

    We investigate the structural and electrical properties of perovskite oxide superlattices composed of a ferromagnetic metal, EuMoO3, and a paramagnetic insulator, SrTiO3, grown on GdScO3 (110) substrates by pulsed laser deposition. The results of x-ray diffraction show that the superlattices are formed as designed, while considerable interface roughening is recognized by high-resolution scanning transmission electron microscopy. In the transport properties, the temperature dependence of resistivity changes from metallic to insulating behaviors on reducing the thickness of EuMoO3. An anomalous Hall effect emerges in metallic superlattices, and its amplitude clearly corresponds to conductivity. Negative magnetoresistance is observed in all superlattices and is more pronounced in the insulating superlattices. These results indicate the existence of spin-canted and low-conductivity dead layers near the heterointerfaces due to the suppressed exchange coupling between electrons and local Eu 4f7 spins.

  2. The influence of hydrogen on the chemical, mechanical, optical/electronic, and electrical transport properties of amorphous hydrogenated boron carbide

    NASA Astrophysics Data System (ADS)

    Nordell, Bradley J.; Karki, Sudarshan; Nguyen, Thuong D.; Rulis, Paul; Caruso, A. N.; Purohit, Sudhaunshu S.; Li, Han; King, Sean W.; Dutta, Dhanadeep; Gidley, David; Lanford, William A.; Paquette, Michelle M.

    2015-07-01

    Because of its high electrical resistivity, low dielectric constant (κ), high thermal neutron capture cross section, and robust chemical, thermal, and mechanical properties, amorphous hydrogenated boron carbide (a-BxC:Hy) has garnered interest as a material for low-κ dielectric and solid-state neutron detection applications. Herein, we investigate the relationships between chemical structure (atomic concentration B, C, H, and O), physical/mechanical properties (density, porosity, hardness, and Young's modulus), electronic structure [band gap, Urbach energy (EU), and Tauc parameter (B1/2)], optical/dielectric properties (frequency-dependent dielectric constant), and electrical transport properties (resistivity and leakage current) through the analysis of a large series of a-BxC:Hy thin films grown by plasma-enhanced chemical vapor deposition from ortho-carborane. The resulting films exhibit a wide range of properties including H concentration from 10% to 45%, density from 0.9 to 2.3 g/cm3, Young's modulus from 10 to 340 GPa, band gap from 1.7 to 3.8 eV, Urbach energy from 0.1 to 0.7 eV, dielectric constant from 3.1 to 7.6, and electrical resistivity from 1010 to 1015 Ω cm. Hydrogen concentration is found to correlate directly with thin-film density, and both are used to map and explain the other material properties. Hardness and Young's modulus exhibit a direct power law relationship with density above ˜1.3 g/cm3 (or below ˜35% H), below which they plateau, providing evidence for a rigidity percolation threshold. An increase in band gap and decrease in dielectric constant with increasing H concentration are explained by a decrease in network connectivity as well as mass/electron density. An increase in disorder, as measured by the parameters EU and B1/2, with increasing H concentration is explained by the release of strain in the network and associated decrease in structural disorder. All of these correlations in a-BxC:Hy are found to be very similar to those

  3. Electrical transport properties of Mn-Ni-Zn ferrite using complex impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Azizar Rahman, M.; Hossain, A. K. M. Akther

    2014-02-01

    Polycrystalline Mn0.45Ni0.05Zn0.50Fe2O4 was prepared by a standard solid state reaction technique. We report the electrical properties of this ferrite using ac impedance spectroscopy as a function of frequency (20 Hz-10 MHz) at different temperatures (50-350 °C). X-ray diffraction patterns reveal the formation of cubic spinel structure. Complex impedance analysis has been used to separate the grain and grain boundary resistance of this ferrite. The variation of grain and grain boundary conductivities with temperature confirms semiconducting behavior. The dielectric permittivity shows dielectric dispersion at lower frequency and reveals that it has almost the same value on the high-frequency side. The non-coincidence of peaks corresponding to modulus and impedance indicates deviation from Debye-type relaxation. A similar value of activation energy is obtained from impedance and modulus spectra, indicating that charge carriers overcome the same energy barrier during relaxation. Electron hopping is responsible for ac conduction in this ferrite. The electron hopping shifts toward higher frequency with increasing temperature, below which the conductivity is frequency independent. The frequency-independent ac conductivity has been observed at and above 300 °C in the frequency range 20 Hz-1 MHz. This frequency-independent ac conductivity is due to the long-range movement of the mobile charge carriers.

  4. Electricity as Transportation ``Fuel''

    NASA Astrophysics Data System (ADS)

    Tamor, Michael

    2013-04-01

    The personal automobile is a surprisingly efficient device, but its place in a sustainable transportation future hinges on its ability use a sustainable fuel. While electricity is widely expected to be such a ``fuel,'' the viability of electric vehicles rests on the validity of three assumptions. First, that the emissions from generation will be significantly lower than those from competing chemical fuels whether `renewable' or fossil. Second, that advances in battery technology will deliver adequate range and durability at an affordable cost. Third, that most customers will accept any functional limitations intrinsic to electrochemical energy storage. While the first two are subjects of active research and vigorous policy debate, the third is treated virtually as a given. Popular statements to the effect that ``because 70% of all daily travel is accomplished in less than 100 miles, mass deployment of 100 mile EVs will electrify 70% of all travel'' are based on collections of one-day travel reports such as the National Household Travel Survey, and so effectively ignore the complexities of individual needs. We have analyzed the day-to-day variations of individual vehicle usage in multiple regions and draw very different conclusions. Most significant is that limited EV range results in a level of inconvenience that is likely to be unacceptable to the vast majority of vehicle owners, and for those who would accept that inconvenience, battery costs must be absurdly low to achieve any economic payback. In contrast, the plug-in hybrid (PHEV) does not suffer range limitations and delivers economic payback for most users at realistic battery costs. More importantly, these findings appear to be universal in developed nations, with labor market population density being a powerful predictor of personal vehicle usage. This ``scalable city'' hypothesis may prove to a powerful predictor of the evolution of transportation in the large cities of the developing world.

  5. Photo-electrical and transport properties of hydrothermal ZnO

    SciTech Connect

    Onufrijevs, P. Medvid, A.; Jarašiūnas, K.; Korsaks, V.; Mironova-Ulmane, N.; Zubkins, M.; Mimura, H.

    2016-04-07

    We performed the studies of optical, photoelectric, and transport properties of a hydrothermal bulk n-type ZnO crystal by using the contactless optical techniques: photoluminescence, light-induced transient grating, and differential reflectivity. Optical studies revealed bound exciton and defect-related transitions between the donor states (at ∼60 meV and ∼240 meV below the conduction band) and the deep acceptor states (at 0.52 eV above the valence band). The acceptor state was ascribed to V{sub Zn}, and its thermal activation energy of 0.43 eV was determined. A low value of carrier diffusion coefficient (∼0.1 cm{sup 2}/s) at low excitations and temperatures up to 800 K was attributed to impact the recharged deep acceptors. Electron and hole mobilities of 140 and ∼80 cm{sup 2}/Vs, correspondently, were determined at room temperature. The decrease of carrier lifetime with excitation was ascribed to increasing rate of radiative recombination at low temperatures and nonradiative recombination above the room temperature.

  6. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    SciTech Connect

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  7. Electrical transport properties of small diameter single-walled carbon nanotubes aligned on ST-cut quartz substrates

    PubMed Central

    2014-01-01

    A method is introduced to isolate and measure the electrical transport properties of individual single-walled carbon nanotubes (SWNTs) aligned on an ST-cut quartz, from room temperature down to 2 K. The diameter and chirality of the measured SWNTs are accurately defined from Raman spectroscopy and atomic force microscopy (AFM). A significant up-shift in the G-band of the resonance Raman spectra of the SWNTs is observed, which increases with increasing SWNTs diameter, and indicates a strong interaction with the quartz substrate. A semiconducting SWNT, with diameter 0.84 nm, shows Tomonaga-Luttinger liquid and Coulomb blockade behaviors at low temperatures. Another semiconducting SWNT, with a thinner diameter of 0.68 nm, exhibits a transition from the semiconducting state to an insulating state at low temperatures. These results elucidate some of the electrical properties of SWNTs in this unique configuration and help pave the way towards prospective device applications. PMID:25170326

  8. Electrical transport and thermal properties of ferromagnetic shape memory alloy Ni 49.4Mn 30Ga 20.6

    NASA Astrophysics Data System (ADS)

    Li, Guang; Liu, Yong; Ngoi, B. K. A.

    2006-08-01

    The electrical transport and thermal properties of the ferromagnetic shape memory alloy Ni 49.4Mn 30Ga 20.6 are measured. Near around the starting point from austenite to martensite transition, the temperature ( T) dependence of resistance for the sample shows a clear jump due to a great scattering mechanism introduced by the transformation resulting in many interfaces during the process. T-dependent curve of the thermoelectric power ( S) of the sample shows linear dependence below martensitic transformation temperature with its absolute value decreasing during cooling. The absolute value of S tends to reach at a maximum at the martensitic transformation which is reflected by ∂S/>∂T˜0. This may be related to the changes of the density of states near the phase transformation and the corresponding scattering introduced.

  9. Effect of Y-doping on the electrical transport properties of nanocrystalline BiFeO3

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Basu, S.; Chakraborty, G.; Pal, M.

    2012-07-01

    Effect of yttrium doping on the electrical transport properties of sol-gel prepare nanocrystalline BiFeO3 was investigated. A comprehensive state-of-the art sophisticated instruments like x-ray diffraction, differential thermal analyzer, field emission scanning electron microscope, and HRTEM were utilized to characterize the BiFeO3 nanoparticles. It was observed that the values of dc activation energy calculated from Arrhenius relation increase with increase of yttrium content. The variation of ac conductivity with frequency and temperature exhibits a correlated barrier hopping conduction mechanism. The dielectric permittivity of the sample reveals an increasing tendency with the concentration of yttrium and depends on both the grain and the interfacial grain boundary resistance. The activation energies for the dielectric relaxation estimated from the modulus spectra were found to be reasonably good agreement with those obtained from dc conductivity study.

  10. Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC (0001) substrate by H intercalation

    SciTech Connect

    Yu, Cui; Liu, Qingbin; Li, Jia; Lu, Weili; He, Zezhao; Cai, Shujun; Feng, Zhihong

    2014-11-03

    We investigate the temperature dependent electrical transport properties of quasi-free standing bilayer graphene on 4H-SiC (0001) substrate. Three groups of monolayer epitaxial graphene and corresponding quasi-free standing bilayer graphene with different crystal quality and layer number homogeneity are prepared. Raman spectroscopy and atomic-force microscopy are used to obtain their morphologies and layer number, and verify the complete translation of buffer layer into graphene. The highest room temperature mobility reaches 3700 cm{sup 2}/V·s for the quasi-free standing graphene. The scattering mechanism analysis shows that poor crystal quality and layer number inhomogeneity introduce stronger interacting of SiC substrate to the graphene layer and more impurities, which limit the carrier mobility of the quasi-free standing bilayer graphene samples.

  11. The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons

    NASA Astrophysics Data System (ADS)

    Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang

    2017-06-01

    The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner.

  12. Direct current and alternating current electrical transport properties of regioregular poly[3-(4-alkoxyphenyl)-thiophenes

    NASA Astrophysics Data System (ADS)

    Barra, M.; Biasiucci, M.; Cassinese, A.; D'Angelo, P.; Barone, A. C.; Carella, A.; Roviello, A.

    2007-11-01

    In this paper, the direct current and alternating current (ac) electrical transport properties of doped and undoped regioregular poly[3-(4-alkoxyphenyl)-thiophenes], where the alkoxy groups are O-(CH2)n-1CH3 with n =1,4,6, and 8, have been investigated. The films have been synthesized by an experimental procedure based on the oxidation of 3-(4-alkoxylphenyl)-thiophenes with molecular oxygen in presence of VO(acac)2, as the catalyst. Unlike other examples reported in the literature, this approach allows obtaining well structured spin-coated films without the necessity of further processes, such as annealing or exposition to solvent vapors. Direct current-voltage measurements, performed in planar and transverse configuration on 1 μm thick films, show both ohmic and space charge limited current behavior, at low and high applied fields, respectively. Due to the film ordered structure, a significant electrical anisotropy was found. In order to deeply investigate the basic conduction mechanisms, ac measurements have been also carried out in the frequency range between 100 Hz and 100 kHz. Finally, direct current and alternating current conductivity temperature dependence is discussed in the framework of thermally activated hopping and tunneling models.

  13. The Distribution Function and Transport Properties of Charged Particles in Strong, Crossed Electric and Magnetic fields

    DTIC Science & Technology

    2007-10-11

    kernels of the obtained system of the integro - differential equations . Our work on the project was proceeded during 11 Quarters, the Quarter 12 being...was created to solve a system of the integro - differential equations involv- ing the ion interaction with the electric field as well as the magnetic one...corresponds to the differential (left) side of the Boltzmann equation . When there is not any external force, this operator was studied in [16]. In the presence

  14. The influence of hydrogen on the chemical, mechanical, optical/electronic, and electrical transport properties of amorphous hydrogenated boron carbide

    SciTech Connect

    Nordell, Bradley J.; Karki, Sudarshan; Nguyen, Thuong D.; Rulis, Paul; Caruso, A. N.; Paquette, Michelle M.; Purohit, Sudhaunshu S.; Li, Han; King, Sean W.; Dutta, Dhanadeep; Gidley, David; Lanford, William A.

    2015-07-21

    Because of its high electrical resistivity, low dielectric constant (κ), high thermal neutron capture cross section, and robust chemical, thermal, and mechanical properties, amorphous hydrogenated boron carbide (a-B{sub x}C:H{sub y}) has garnered interest as a material for low-κ dielectric and solid-state neutron detection applications. Herein, we investigate the relationships between chemical structure (atomic concentration B, C, H, and O), physical/mechanical properties (density, porosity, hardness, and Young's modulus), electronic structure [band gap, Urbach energy (E{sub U}), and Tauc parameter (B{sup 1/2})], optical/dielectric properties (frequency-dependent dielectric constant), and electrical transport properties (resistivity and leakage current) through the analysis of a large series of a-B{sub x}C:H{sub y} thin films grown by plasma-enhanced chemical vapor deposition from ortho-carborane. The resulting films exhibit a wide range of properties including H concentration from 10% to 45%, density from 0.9 to 2.3 g/cm{sup 3}, Young's modulus from 10 to 340 GPa, band gap from 1.7 to 3.8 eV, Urbach energy from 0.1 to 0.7 eV, dielectric constant from 3.1 to 7.6, and electrical resistivity from 10{sup 10} to 10{sup 15} Ω cm. Hydrogen concentration is found to correlate directly with thin-film density, and both are used to map and explain the other material properties. Hardness and Young's modulus exhibit a direct power law relationship with density above ∼1.3 g/cm{sup 3} (or below ∼35% H), below which they plateau, providing evidence for a rigidity percolation threshold. An increase in band gap and decrease in dielectric constant with increasing H concentration are explained by a decrease in network connectivity as well as mass/electron density. An increase in disorder, as measured by the parameters E{sub U} and B{sup 1/2}, with increasing H concentration is explained by the release of strain in the network and associated decrease in structural

  15. Electrical transport properties and current density - voltage characteristic of PVA-Ag nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Dutta, B.; Sinha, S.; Mukherjee, A.; Basu, S.; Meikap, A. K.

    2016-05-01

    Silver (Ag) nanoparticle and Polyvinyl alcohol (PVA) - Silver (Ag) composite have been prepared and its dielectric constant, ac conductivity, and current density-voltage characteristics have been studied, at and above room temperature. Here correlated barrier hopping found to be the dominant charge transport mechanism with maximum barrier height of 0.11 eV. The sample, under ±5 V applied voltage, show back to back Schottky diode behaviour.

  16. Extreme Chemical Disorder and the Electrical Transport Properties of Concentrated Solid Solution Alloys: From Binaries to High Entropy Alloys Replace this text with your abstract title

    NASA Astrophysics Data System (ADS)

    Stocks, G. Malcolm; Samolyuk, German; Khan, Suffian; Daene, Markus; Wimmer, Sebastian; Sales, Brian; Bei, Hongbin; Jin, Ke

    We present the results of experimental and theoretical studies of electrical transport properties of a family of 2, 3, 4 and 5-component concentrated solid solution alloys (CSA) comprising subsets of the 3d- and 4d-transition metal elements Cr, Mn, Fe, Co, Ni and Pd. Many of this family of CSA show unusual mechanical, magnetic and transport properties as well as indications of increased radiation resistance that are clearly related to the underlying chemical disorder. Here we show the results of calculations of the electrical transport properties that are based on the ab initio Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) method for treating the effect of substitutional disorder, and necessary configurational averaging, on the underlying electronic structure. We compare calculated residual (T =0K) resistivities to corresponding experimental measurements and relate the variations in residual resistivity, which span almost two orders of magnitude, to the underlying electron structure.

  17. Anomalous Solute Transport in Saturated Porous Media: Linking Transport Model Parameters to Electrical and Nuclear Magnetic Resonance Properties

    NASA Astrophysics Data System (ADS)

    Swanson, R. D.; Binley, A. M.; Keating, K.; France, S.; Osterman, G. K.; Day-Lewis, F. D.; Singha, K.

    2013-12-01

    The advection-dispersion equation fails to describe non-Fickian solute transport in saturated porous media, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with solute exchange between the domains; consequently, the DDMT model can produce a better fit to breakthrough curves (BTCs) in systems defined by more- and less-mobile components. However, direct experimental estimation of DDMT model parameters such as rate of exchange and the mobile and less-mobile porosities remains elusive. Consequently, model parameters are often calculated purely as a model fitting exercise. There is a clear need for material characterization techniques that can offer some insight into the pore space geometrical arrangement, particularly if such techniques can be extended to the field scale. Here, we interpret static direct-current (DC) resistivity, complex resistivity (CR) and nuclear magnetic resonance (NMR) geophysical measurements in the characterization of mass transfer parameters. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant intragranular porosity, along with glass beads as a control. We explore the relation between geophysical and DDMT parameters in conjunction with supporting material characterization methods. Our results reveal how these geophysical measurements can offer some insight into the pore structures controlling the observed anomalous transport behavior.

  18. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    PubMed

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.

  19. Electrical transport properties and interaction of heteropolyacid in N,N-dimethylformamide by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Zhao, Kongshuang; Wu, Lixin

    2014-08-01

    We present a dielectric spectroscopy study on binary electrolyte solutions composed of N,N-Dimethylformamide (DMF) and heteropolyacid (HPA). The HPA is composed of H+ and Keggin polyoxometalate anion, [XW12O40]n-(X = P, Si, with n = 3, 4). Conductivity was used to calculate the transport parameters such as diffusion coefficient and hydrodynamic radius of polyoxometalate (POM) anions. The hydrodynamic radius of P12W403- and Si12W404- are 5.552 Å and 5.526 Å, respectively, indicating that these POM anions remain unsolvated in DMF. The temperature dependences of conductivity obeyed the Arrhenius equation, suggesting that the activation energy of proton conduction process is independent with temperature. The calculated activation energy shows that the conduction process follows Grotthuss mechanism, i.e., proton is transported by hydrogen bond between DMF molecules. One dielectric relaxation observed around 10 MHz is considered to be associated with the POM-DMFH+ ion-pairs formed by POM and protonated DMF. The interaction between anion and cation in POM-DMFH+ ion-pairs are explained theoretically based on the Bruggeman's mixture theories and dipole rotation model. From this, the distance between POM and DMFH+ are estimated as about 1.1 nm.

  20. Electrical transport properties and interaction of heteropolyacid in N,N-dimethylformamide by dielectric spectroscopy

    SciTech Connect

    Wang, Juan; Zhao, Kongshuang; Wu, Lixin

    2014-08-07

    We present a dielectric spectroscopy study on binary electrolyte solutions composed of N,N-Dimethylformamide (DMF) and heteropolyacid (HPA). The HPA is composed of H{sup +} and Keggin polyoxometalate anion, [XW{sub 12}O{sub 40}]{sup n−}(X = P, Si, with n = 3, 4). Conductivity was used to calculate the transport parameters such as diffusion coefficient and hydrodynamic radius of polyoxometalate (POM) anions. The hydrodynamic radius of P{sub 12}W{sub 40}{sup 3−} and Si{sub 12}W{sub 40}{sup 4−} are 5.552 Å and 5.526 Å, respectively, indicating that these POM anions remain unsolvated in DMF. The temperature dependences of conductivity obeyed the Arrhenius equation, suggesting that the activation energy of proton conduction process is independent with temperature. The calculated activation energy shows that the conduction process follows Grotthuss mechanism, i.e., proton is transported by hydrogen bond between DMF molecules. One dielectric relaxation observed around 10 MHz is considered to be associated with the POM-DMFH{sup +} ion-pairs formed by POM and protonated DMF. The interaction between anion and cation in POM-DMFH{sup +} ion-pairs are explained theoretically based on the Bruggeman's mixture theories and dipole rotation model. From this, the distance between POM and DMFH{sup +} are estimated as about 1.1 nm.

  1. Calculations of electrical transport properties of liquid metals at high pressures

    NASA Technical Reports Server (NTRS)

    Evans, R.; Jain, A.

    1972-01-01

    It is shown how the usual nearly-free-electron model for the electrical resistivity of simple liquid metals can be extended to the case of liquid transition metals such as iron. A simple prescription is given for calculating the resistivity at different densities and temperatures. As an application and example of the method, calculations on liquid iron at different densities were carried out and the resistivity of molten iron in the earth's outer core is estimated. The effects of alloying iron with other elements are also considered. The calculated conductivity of the outer core is well within the limit required for the dynamo model of the geomagnetic field and agrees well with some recent shock wave data.

  2. Calculations of electrical transport properties of liquid metals at high pressures

    NASA Technical Reports Server (NTRS)

    Evans, R.; Jain, A.

    1972-01-01

    It is shown how the usual nearly-free-electron model for the electrical resistivity of simple liquid metals can be extended to the case of liquid transition metals such as iron. A simple prescription is given for calculating the resistivity at different densities and temperatures. As an application and example of the method, calculations on liquid iron at different densities were carried out and the resistivity of molten iron in the earth's outer core is estimated. The effects of alloying iron with other elements are also considered. The calculated conductivity of the outer core is well within the limit required for the dynamo model of the geomagnetic field and agrees well with some recent shock wave data.

  3. Device fabrication and dc electrical transport properties of barium manganite nanofibers (BMO-NFs)

    NASA Astrophysics Data System (ADS)

    Hayat, Khizar; Javid Iqbal, M.; Rasool, Kamran; Iqbal, Yaseen

    2014-11-01

    Barium manganite nanofibers were synthesized using electrospinning technique. X-ray diffraction revealed the formation of single phase BaMnO3 nanofibers. Scanning electron microscopy revealed the formation of uniform composite and porous BaMnO3 nanofibers with an average diameter of ∼130 nm and <100 nm at 100 °C and 600 °C, respectively. Temperature dependent dc transport study of BMO-NFs device showed three distinct regions. The dominant conduction mechanism was space charge limited current with an exponential distribution of traps. The trap density was calculated to be 5.78 × 109 cm-3 using the cross-over voltage. These results provide new paradigm for developing nanofibers devices that may ultimately contribute to nanotechnology.

  4. Fabrication and electrical transport properties of embedded graphite microwires in a diamond matrix

    NASA Astrophysics Data System (ADS)

    Barzola-Quiquia, J.; Lühmann, T.; Wunderlich, R.; Stiller, M.; Zoraghi, M.; Meijer, J.; Esquinazi, P.; Böttner, J.; Estrela-Lopis, I.

    2017-04-01

    Micrometer width and nanometer thick wires with different shapes were produced ≈ 3~μ m below the surface of a diamond crystal using a microbeam of He+ ions with 1.8 MeV energy. Initial samples are amorphous and after annealing at T≈ 1475 K, the wires crystallized into graphite-like structures, according to confocal Raman spectroscopy measurements. The electrical resistivity at room temperature is only one order of magnitude larger than the in-plane resistivity of highly oriented pyrolytic bulk graphite and shows a small resistivity ratio (ρ ≤ft(2~\\text{K}\\right)/ρ ≤ft(315~\\text{K}\\right)≈ 1.275 ). A small negative magnetoresistance below T  =  200 K was measured and can be well understood taking spin-dependent scattering processes into account. The used method provides the means to design and produce millimeter to micrometer sized conducting circuits with arbitrary shape embedded in a diamond matrix.

  5. Electrical transport properties of (BN)-rich hexagonal (BN)C semiconductor alloys

    SciTech Connect

    Uddin, M. R.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.; Ziemer, K. S.

    2014-08-15

    The layer structured hexagonal boron nitride carbon semiconductor alloys, h-(BN)C, offer the unique abilities of bandgap engineering (from 0 for graphite to ∼6.4 eV for h-BN) and electrical conductivity control (from semi-metal for graphite to insulator for undoped h-BN) through alloying and have the potential to complement III-nitride wide bandgap semiconductors and carbon based nanostructured materials. Epilayers of (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys were synthesized by metal-organic chemical vapor deposition (MOCVD) on (0001) sapphire substrates. Hall-effect measurements revealed that homogeneous (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys are naturally n-type. For alloys with x = 0.032, an electron mobility of about 20 cm{sup 2}/Vs at 650 °K was measured. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition and analyze chemical bonding states. Both composition and chemical bonding analysis confirm the formation of alloys. XPS results indicate that the carbon concentration in the alloys increases almost linearly with the flow rate of the carbon precursor (propane (C{sub 3}H{sub 8})) employed during the epilayer growth. XPS chemical bonding analysis showed that these MOCVD grown alloys possess more C-N bonds than C-B bonds, which possibly renders the undoped h-(BN){sub 1-x}(C{sub 2}){sub x} alloys n-type and corroborates the Hall-effect measurement results.

  6. Application of light scattering in studies of transport, thermodynamics, light absorption, and electric properties of single droplets

    NASA Astrophysics Data System (ADS)

    Tu, Haohua

    2001-12-01

    A variety of subjects related to an isolated microdroplet, including precise optical measurement, fundamental light scattering theory, in situ droplet spectroscopy, transport mechanism, solution thermodynamics, and electrical stability, have been studied. A technique based on optical resonance alignment is developed to automate the measurement of the optical parameters for a single component droplet. The technique is able to determine the size and refractive index of the droplet with an accuracy of 1 part in 10000, and is also applicable to multicomponent droplets undergoing various physical changes with tolerable degradation of accuracy or automation. By examining the finest details of optical resonances, Mie's light scattering theory is proved to be valid except for a constant background broadening deviation. The effect of eccentricity on light scattering of a layered droplet is first observed. By preparing a concentrically layered droplet, rigorous experimental verification is presented for Aden-Kerker light scattering theory of a concentric sphere. Novel computational technique is developed to identify optical resonances and locate their positions for a concentric sphere of specific properties. A unique technique based on accurate measurement of the imaginary refractive index of a droplet is developed for in situ determination of the concentrations of absorptive chemical species inside the droplet. The effects of Stefan flow, non-isothermal effect, unsteady state behavior, unstationary mechanism, and internal transport on the function of droplet size versus time of a relatively nonvolatile droplet have been proved unimportant. Remarkable accuracy of the asymptotic model based on Maxwell's diffusion controlled theory is justified both theoretically and experimentally. Particular evaporation characteristics are observed for several layered droplets. Explicit as well as implicit methods based on resonance alignment have been developed to determine the activity

  7. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions

    DOE PAGES

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; ...

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuningmore » the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  8. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions

    SciTech Connect

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam Justin; Ivanov, Ilia N.; Ward, Thomas Zac; Rack, Philip D.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  9. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    NASA Astrophysics Data System (ADS)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-06-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  10. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions.

    PubMed

    Stanford, Michael G; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R; Mandrus, David G; Duscher, Gerd; Rondinone, Adam J; Ivanov, Ilia N; Ward, T Zac; Rack, Philip D

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  11. Anisotropy of electrical and magnetic transport properties of epitaxial SrRuO{sub 3} thin films

    SciTech Connect

    Ning, X. K.; Wang, Z. J. Zhang, Z. D.

    2015-03-07

    SrRuO{sub 3} (SRO) thin films with different thickness (2–70 nm) have been grown on (001), (110), and (111) SrTiO{sub 3} substrates. The (001)-SRO films (2–8 nm) exhibited smooth flat surfaces whereas the (110)- and (111)-SRO films featured a faceted island structure. Room temperature resistivity and residual resistivity are the lowest for the (111)-SRO films (30–70 nm). Over all thicknesses, we observed enhanced magnetization in the (111)-SRO films (∼4 μ{sub B}/Ru) compared with that for the (001)- and (110)-SRO films (∼2 μ{sub B}/Ru and ∼3 μ{sub B}/Ru, respectively), suggesting a low-spin state t{sub 2g}(3↑,1↓), high-spin state t{sub 2g}(3↑)e{sub g}(1↑), and mixed low- and high-spin states for the (001)-, (111)-, and (110)-SRO films, respectively. The dependence of resistivity on temperatures near T{sub C} follows a power law with exponent β = 0.312 and β = 0.363 for the (110)- and (111)-SRO films, respectively. These critical exponents are consistent with magnetic data with scaling law M = C (T{sub C} − T){sup β}. At low temperatures, dM/dT and dρ/dT show a linear relationship in the temperature range for the Fermi liquid. These results suggest that the intrinsic electrical and magnetic transport properties are coupled.

  12. B12P2: Improved epitaxial growth and evaluation of a irradiation on its electrical transport properties

    NASA Astrophysics Data System (ADS)

    Frye, Clint D.

    The wide bandgap (3.35 eV) semiconductor icosahedral boron phosphide (B12P2) has been reported to self-heal from radiation damage from ? particles (electrons) with energies up to 400 keV by demonstrating no lattice damage using transmission electron microscopy. This property could be exploited to create radioisotope batteries-semiconductor devices that directly convert the decay energy from a radioisotope to electricity. Such devices potentially have enormous power densities and decades-long lifetimes. To date, the radiation hardness of B12P2 has not been characterized by electrical measurements nor have B12P2 radioisotope batteries been realized. Therefore, this study was undertaken to evaluate the radiation hardness of B12P2 after improving its epitaxial growth, developing ohmic electrical contacts, and reducing the residual impurities. Subsequently, the effects of radiation from a radioisotope on the electrical transport properties of B12P2 were tested. B12P2 was grown epitaxially on 4H-SiC by chemical vapor deposition (CVD) over the temperature range of 1250-1450 °C using B2H6 and PH3 precursor gases in a H 2 carrier gas. The epitaxial relationship between B12P 2 and 4HSiC was (0001)B12P2[1?100]B12P 2 ||(0001)4H-SiC[1?100]4H-SiC using hexagonal indices (or (111)B 12P2[1?21]B12P2 ||(0001)4H-SiC[1?100]4H-SiC using rhombohedral indices for B12P2). X-ray diffraction (XRD) rocking curve measurements (assessing the crystal quality) about the B12P2 (0003) peak were minimized at 1300 °C indicating it was the optimum growth temperature studied. By miscutting the (0001) 4H-SiC substrate 4° to the (1100) plane, B12P 2 rotational twinning, a type of crystal defect, was strongly suppressed to a twin density of <1% in comparison to a standard miscut to the (11 20) plane which resulted in a twin density of 30%. Cr/Pt (500/1000 A) and Ni/Au (1000/1000 A) ohmic contacts to B12P2 were developed. Ni/Au contacts annealed at 500 °C for 30 s in Ar proved to be the best contact

  13. Electrical Transport Properties of Single Crystalline β-Zn4Sb3 Prepared by α-Sn Flux Method

    NASA Astrophysics Data System (ADS)

    Liu, Hong-xia; Deng, Shu-ping; Shen, Lan-xian; Wang, Jin-song; Cheng, Feng; Deng, Shu-kang

    2017-05-01

    In this study, p-type single crystalline β-Zn4Sb3 thermoelectric materials with space group R {\\bar{3}} c were successfully prepared using the α-Sn flux method based on the stoichiometric ratios of Zn4+ x Sb3Sn3 ( x = 0, 0.2, 0.4, 0.6). All the crystal sizes were more than 5 mm. The prepared samples had high density and no microcracks. The powder x-ray diffraction patterns showed that all the samples were single phase. All single-crystal samples possessed good electrical transport performance. Compared with polycrystalline β-Zn4Sb3, the carrier mobility of the single crystals were significantly improved. Moreover, excess Zn improved the Seebeck coefficient of the material. The electrical conductivities of the samples were comparable with those obtained by the β-Sn flux method, whereas the Seebeck coefficient declined on the whole and the intrinsic conduction temperature decreased. The power factor of the sample with x = 0.2 is 0.82 × 10-3 W m-1 K-2 at 635 K, which exhibited the best electrical transport performance.

  14. Transport Properties in Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre

    2016-09-01

    At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.

  15. Dependence of electrical transport properties of CaO(CaMnO3)m (m = 1, 2, 3, ∞) thermoelectric oxides on lattice periodicity

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Andrei; Amouyal, Yaron

    2017-02-01

    The electrical transport properties of CaO(CaMnO3)m (m = 1, 2, 3, ∞) compounds are studied applying the density functional theory (DFT) in terms of band structure at the vicinity of the Fermi level (EF). It is shown that the total density of states (DOS) values at EF increase with increase in the m-values, which implies an increase in the electrical conductivity, σ, with increasing m-values, in full accordance with experimental results. Additionally, the calculated values of the relative slopes of the DOS at EF correlate with the experimentally measured Seebeck coefficients. The electrical conductivity and Seebeck coefficients were calculated in the framework of the Boltzmann transport theory applying the constant relaxation time approximation. By the analysis of experimental and calculated σ(Τ) dependences, the electronic relaxation time and mean free path values were estimated. It is shown that the electrical transport is dominated by electron scattering on the boundaries between perovskite (CaMnO3) and Ca oxide (CaO) layers inside the crystal lattice.

  16. Studies on charge collection and transport properties on semi-insulating materials in the presence of a non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Zanichelli, Massimiliano; Pavesi, Maura; Marchini, Laura; Zappettini, Andrea

    2012-07-01

    II-VI semiconductors obtain a real interest in the scientific community for their wide applications in several fields: from optoelectronic and solar cell technology to applications as radiation detectors. The charge collection efficiency (C.C.E.) - i.e. the ratio between the photo-generated charge and the charge collected by the electrodes - is closely related both to the material transport properties and to the internal electric field. It could be exploited to study the transport parameters of these materials and the electric field profile inside the devices under irradiation. Under opportune conditions, C.C.E., as a function of applied bias, should follow Hecht or Many's equation, depending on the penetration length of incident radiation. A central requirement in both these models is a uniform internal electric field but in real devices this condition is seldom satisfied due to the presence of spatial charge, as demonstrated by Pockels measurements and bad photocurrent curve fitting. The authors, starting from the Ramo-Shockley theorem and assuming a linear shape of the electric field, present a new model to describe the C.C.E. as a function of applied bias, with the mobility life-time product μτ and the field slope as parameters. This model, with respect to the previous ones, gives information also about the internal electric field profile and, despite its simplicity, it seems to be a good approximation in several cases, as shown by the experimental analyses reported here.

  17. Transport properties of ions

    NASA Technical Reports Server (NTRS)

    Biolsi, Louis; Biolsi, David

    1987-01-01

    The strong long-range interactions between (among) charged species require the inclusion of higher order contributions to the transport properties (viscosity, thermal conductivity, diffusion) of ionized gases than are required for neutral gases. These higher order contributions have been rewritten so that they are given in terms of universal functions which can be tabulated. Tables which provide for the rapid calculation of some higher order contributions to the transport properties of both ions and electrons are given. Some results which are useful for calculating the higher order contributions to the transport properties of mixtures of ions are also given. These results are applied to the ionic species in air at high temperatures.

  18. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  19. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  20. Electrical and thermal transport properties of layered Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2}

    SciTech Connect

    Xiao, Yu; Pei, Yanling; Chang, Cheng; Zhang, Xiao; Tan, Xing; Ye, Xinxin; Gong, Shengkai; Lin, Yuanhua; He, Jiaqing; Zhao, Li-Dong

    2016-07-15

    Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2} possesses a low thermal conductivity and high electrical conductivity at room temperature, which was considered as a potential thermoelectric material. In this work, we have investigated the electrical and thermal transport properties of Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2} system in the temperature range from 300 K to 873 K. We found that the total thermal conductivity decreases from ~1.8 W m{sup −1} K{sup −1} to ~0.9 W m{sup −1} K{sup −1}, and the electrical conductivity decreases from ~850 S/cm to ~163 S/cm in the measured temperature range. To investigate how potential of Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2} system, we prepared the heavily Iodine doped samples to counter-dope intrinsically high carrier concentration and improve the electrical transport properties. Interestingly, the Seebeck coefficient could be enhanced to ~+80 μV/K at 873 K, meanwhile, we found that a low thermal conductivity of ~0.7 W m{sup −1} K{sup −1} could be achieved. The intrinsically low thermal conductivity in this system is related to the low elastic properties, such as Young's modulus of 70–72 GPa, and Grüneisen parameters of 1.55–1.71. The low thermal conductivity makes Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2} system to be a potential thermoelectric material, the ZT value ~0.06 at 873 K was obtained, a higher performance is expected by optimizing electrical transport properties through selecting suitable dopants, modifying band structures or by further reducing thermal conductivity through nanostructuring etc. - Highlights: • The total thermal conductivity decreases from 1.8 to 0.9 Wm{sup –1}K{sup –1} at 300–873K. • The electrical conductivity decreased from 850 to 163 S/cm at 300–873K. • The Seebeck coefficients were enhanced through heavily Iodine doping. • The ZT ~0.06 at 873K suggests that Bi{sub 2}YO{sub 4}Cu{sub 2}Se{sub 2} systems are potential thermoelectrical materials.

  1. Investigation of structural and electrical transport properties in Ti doped Sr{sub 2}IrO{sub 4}

    SciTech Connect

    Bhatti, Imtiaz Noor Pramanik, A. K.

    2016-05-23

    Effects of Ti substitution at Ir-site on structural and electrical properties are studies in Sr{sub 2}IrO{sub 4}. Structural investigation has been done using x-ray powder diffraction and allied Rietveld analysis for all the samples. While there is no structural phase transition but the lattice parameters evolve with Ti doping. Resistivity measurements show an insulating behavior for all the samples. Data show resistivity increases drastically with Ti doping. The increase in resistivity is understood to arise due to dilution of Ir-O-Ir network as well as tuning of electronic correlation effect.

  2. Pulsed laser-induced oxygen deficiency at TiO{sub 2} surface: Anomalous structure and electrical transport properties

    SciTech Connect

    Nakajima, Tomohiko; Tsuchiya, Tetsuo; Kumagai, Toshiya

    2009-09-15

    We have studied pulsed laser-induced oxygen deficiencies at rutile TiO{sub 2} surfaces. The crystal surface was successfully reduced by excimer laser irradiation, and an oxygen-deficient TiO{sub 2-{delta}} layer with 160 nm thickness was formed by means of ArF laser irradiation at 140 mJ/cm{sup 2} for 2000 pulses. The TiO{sub 2-{delta}} layer fundamentally maintained a rutile structure, though this structure was distorted by many stacking faults caused by the large oxygen deficiency. The electrical resistivity of the obtained TiO{sub 2-{delta}} layer exhibited unconventional metallic behavior with hysteresis. A metal-insulator transition occurred at 42 K, and the electrical resistivity exceeded 10{sup 4} OMEGA cm below 42 K. This metal-insulator transition could be caused by bipolaronic ordering derived from Ti-Ti pairings that formed along the stacking faults. The constant magnetization behavior observed below 42 K is consistent with the bipolaronic scenario that has been observed previously for Ti{sub 4}O{sub 7}. These peculiar electrical properties are strongly linked to the oxygen-deficient crystal structure, which contains many stacking faults formed by instantaneous heating during excimer laser irradiation. - Graphical abstract: A pulsed laser-irradiated TiO{sub 2-{delta}} substrate showed an unconventional metallic phase, with hysteresis over a wide range of temperatures and a metal-insulator transition at 42 K.

  3. Modeling Electrical Transport through Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Qi, Jianqing

    Nucleic acids play a vital role in many biological systems and activities. In recent years, engineers and scientists have been interested in studying their electrical properties. The motivation for these studies stems from the following facts: (1) the bases, which form the building blocks of nucleic acids, have unique ionization potentials. Further, nucleic acids are one of the few nanomaterials that can be reproducibly manufactured with a high degree of accuracy (though admittedly their placement at desired locations remains a challenge). As a result, designed strands with specific sequences may offer unique device properties; (2) electrical methods offer potential for sequencing nucleic acids based on a single molecule; (3) electrical methods for disease detection based on the current flowing through nucleic acids are beginning to be demonstrated. While experiments in the above mentioned areas is promising, a deeper understanding of the electrical current flow through the nucleic acids needs to be developed. The modeling of current flowing in these molecules is complex because: (1) they are based on atomic scale contacts between nucleic acids and metal, which cannot be reproducibly built; (2) the conductivity of nucleic acids is easily influenced by the environment, which is constantly changing; and (3) the nucleic acids by themselves are floppy. This thesis focuses on the modeling of electrical transport through nucleic acids that are connected to two metal electrodes at nanoscale. We first develop a decoherent transport model for the double-stranded helix based on the Landauer-Buttiker framework. This model is rationalized by comparison with an experiment that measured the conductance of four different DNA strands. The developed model is then used to study the: (1) potential to make barriers and wells for quantum transport using specifically engineered sequences; (2) change in the electrical properties of a specific DNA strand with and without methylation; (3

  4. Theoretical investigation on local structure and transport properties of NaFsbnd AlF3 molten salts under electric field environment

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-08-01

    The effect of electric field and molecular ratio CR (NaF/AlF3) on basic structure and transport properties of NaFsbnd AlF3 molten salts were investigated by molecular dynamics simulations with the Buckingham potential model. The [AlF6]3- groups are the dominant specie in NaFsbnd AlF3 molten salts at CR ≥ 2.6, and followed by the [AlF5]2- groups, while CR ≤ 2.4, [AlF5]2- groups are the protagonists up to 40%. In NaFsbnd AlF3 system, with the increase of CR, the proportion of Fb decreases slightly and the percentage of Ff increases dramatically. The Alsbnd F bonds have ionic characters as well as partial covalently characters due to the hybridization of F-2p and Al-3s, 3p orbitals. The order of ion diffusion ability follows as Na+ > F- > Al3+. Adding more NaF can break some F bridges of structure networks and decrease the polymerization degree of NaFsbnd AlF3 molten salts, the viscosity reduces and ionic conductivity increases as a consequence. The calculated results of ionic conductivity are in agreement with the experimental results. Electric field has no significant impact on the local structure characters, while transport properties are not. The change of CR (NaF/AlF3) can significantly affect these characters of both the structure and transport.

  5. Effect of particle size on magnetic and electric transport properties of La(0.67)Sr(0.33)MnO3 coatings.

    PubMed

    Zhou, Yu; Zhu, Xinde; Li, Shengli

    2015-12-14

    A systematic study of polycrystalline La0.67Sr0.33MnO3 (LSMO) manganite coatings has been undertaken to analyse the effect of various particle sizes on the magnetic and electric transport properties. In order to acquire a series of samples with different particle sizes, the samples were prepared by a sol-gel method and were subjected to annealing at four different temperatures. With decreasing particle sizes, the magnetization decreases while the coercivity increases, which is attributed to the magnetically disordered surface layer. More attractively, the electrical transport properties can be systematically manipulated by particle sizes and so can the low field magnetoresistance (LFMR) values. Emphasis is placed on how the particle size affects the temperature dependence of resistivity, and three conduction models are explored to describe the transport behaviours in three temperature regions. A minimum resistivity is observed in the low temperature region in the presence and absence of a magnetic field, which can be mainly explained as due to the intergranular spin polarized tunneling (ISPT) through the grain boundaries (GBs) in polycrystalline materials.

  6. Magnetic, specific heat and electrical transport properties of oxygen-deficient nanosized rutile TiO2‑δ

    NASA Astrophysics Data System (ADS)

    Tran, Vinh Hung; Thi Quynh Hoa, Nguyen

    2017-03-01

    An oxygen-deficient nanosized {{TiO}}2-δ , δ ∼ 0.7 sample was synthesized by a solvothermal method, and was characterized to have both ∼3 nm amorphous solid and ∼36–46 nm diameter rutile nanowires. Physical properties of the sample were investigated by measuring magnetic, specific heat, electrical resistance and magnetoresitance properties. DC magnetization M(H) data confirm ferromagnetic behavior previously reported for undoped TiO2. Furthermore, M(T) dependence follows the power-law relation M{(T)\\propto (1-T/{T}C)}β in the near-critical regime, yielding Curie temperature {T}C ∼ 415 K and critical exponent β = 0.2. Moreover, our results of AC magnetic susceptibility measurements suggest an additional phase transition at {T}* ∼ 310 K, presumably due to spin orientation. The metallic-like electrical resistance exhibits a distinct drop below {T}* with a strong thermal hysteresis in the temperature range 225–275 K. Specific heat in the temperature range 20–300 K is well described by the sum of contributions from acoustic phonons with Debye temperature 605 K and optical phonons with Einstein temperature 113 K. Below 10 K the specific heat divulges a large excess, which can be interpreted as an additional contribution originating from soft potentials.

  7. A comparable study of structural and electrical transport properties of Al and Cu nanowires using first-principle calculations

    SciTech Connect

    Gao, N.; Li, J. C. E-mail: jiangq@jlu.edu.cn; Jiang, Q. E-mail: jiangq@jlu.edu.cn

    2013-12-23

    The structural and quantum transport properties of Al and Cu nanowires with diameters up to 3.6 nm are studied using density functional theory combined with Landauer formalism. Contrary to the classical electronic behavior, the conductance of Al wires is larger than that of Cu. This is mainly attributed to the larger contribution of conductance channels from Al-3p, which is determined by the chemical nature. Meanwhile, the stronger axial contraction of Al wires plays a minor role to conductance. This makes Al wires possible candidate interconnects in integrated circuits.

  8. B12P2: Improved Epitaxial Growth and Evaluation of Alpha Irradiation on its Electrical Transport Properties

    SciTech Connect

    Frye, Clint D.

    2016-10-17

    The wide bandgap (3.35 eV) semiconductor icosahedral boron phosphide (B12P2) has been reported to self-heal from radiation damage from β particles (electrons) with energies up to 400 keV by demonstrating no lattice damage using transmission electron microscopy. This property could be exploited to create radioisotope batteries–semiconductor devices that directly convert the decay energy from a radioisotope to electricity. Such devices potentially have enormous power densities and decades-long lifetimes. To date, the radiation hardness of B12P2 has not been characterized by electrical measurements nor have B12P2 radioisotope batteries been realized. Therefore, this study was undertaken to evaluate the radiation hardness of B12P2 after improving its epitaxial growth, developing ohmic electrical contacts, and reducing the residual impurities. Subsequently, the effects of radiation from a radioisotope on the electrical transport properties of B12P2 were tested.

  9. Transport properties and electrical device characteristics with the TiMeS computational platform: Application in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Sharma, D.; Ansari, L.; Feldman, B.; Iakovidis, M.; Greer, J. C.; Fagas, G.

    2013-05-01

    Nanoelectronics requires the development of a priori technology evaluation for materials and device design that takes into account quantum physical effects and the explicit chemical nature at the atomic scale. Here, we present a cross-platform quantum transport computation tool. Using first-principles electronic structure, it allows for flexible and efficient calculations of materials transport properties and realistic device simulations to extract current-voltage and transfer characteristics. We apply this computational method to the calculation of the mean free path in silicon nanowires with dopant and surface oxygen impurities. The dependence of transport on basis set is established, with the optimized double zeta polarized basis giving a reasonable compromise between converged results and efficiency. The current-voltage characteristics of ultrascaled (3 nm length) nanowire-based transistors with p-i-p and p-n-p doping profiles are also investigated. It is found that charge self-consistency affects the device characteristics more significantly than the choice of the basis set. These devices yield source-drain tunneling currents in the range of 0.5 nA (p-n-p junction) to 2 nA (p-i-p junction), implying that junctioned transistor designs at these length scales would likely fail to keep carriers out of the channel in the off-state.

  10. Sintering temperature effect on electric transport properties and magnetoresistance of La{sub 0.67}Ca{sub 0.33}MnO{sub 3}

    SciTech Connect

    Ramadhan, M. R.; Kurniawan, B. Manaf, A.; Pratama, R.; Nanto, D.; Saptari, S. A.; Imaduddin, A.

    2016-04-19

    A compound of La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) is known as a famous colossal magnetoresistance material. Many studies have been carried in order to get more information about the electric and magnetic characteristic of the sample. The effect of two different sintering temperatures on manganite material La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) which prepared by solid state reaction, has been investigated in order to find the relations between the sintering temperature and the manganite’s electric transport properties. Characterization using X-Ray Diffractometer shows that the two samples have a single phase pattern. However, from the resistivity measurement both samples show a different value, but similar behavior. The resistivity reach maximum value in specific temperature T{sub p}, before it decreases once again to its lowest value in low temperature region.

  11. Temperature-Dependent Electrical Properties and Carrier Transport Mechanisms of TMAH-Treated Ni/Au/Al2O3/GaN MIS Diode

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Puneetha, Peddathimula; Reddy, V. Rajagopal; Lee, Jung-Hee; Jeong, Seong-Hoon; Park, Chinho

    2016-11-01

    The temperature-dependent electrical properties and carrier transport mechanisms of tetramethylammonium hydroxide (TMAH)-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes have been investigated by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements. The experimental results reveal that the barrier height ( I- V) increases whereas the ideality factor decreases with increasing temperature. The TMAH-treated Ni/Au/Al2O3/GaN MIS diode showed nonideal behaviors which indicate the presence of a nonuniform distribution of interface states ( N SS) and effect of series resistance ( R S). The obtained R S and N SS were found to decrease with increasing temperature. Furthermore, it was found that different transport mechanisms dominated in the TMAH-treated Ni/Au/Al2O3/GaN MIS diode. At 150 K to 250 K, Poole-Frenkel emission (PFE) was found to be responsible for the reverse leakage, while Schottky emission (SE) was the dominant mechanism at high electric fields in the temperature range from 300 K to 400 K. Feasible energy band diagrams and possible carrier transport mechanisms for the TMAH-treated Ni/Au/Al2O3/GaN MIS diode are discussed based on PFE and SE.

  12. Thermal Stability and Electrical Transport Properties of Single-Crystalline β-Zn4Sb3 Co-doped by Ga/Sn

    NASA Astrophysics Data System (ADS)

    Deng, Shuping; Tang, Yu; Li, Decong; Liu, Hongxia; Chen, Zhong; Shen, Lanxian; Deng, Shukang

    2017-08-01

    In this study, Ga/Sn co-doped single-crystal β-Zn4Sb3 were prepared by a Sn-flux method based on stoichiometric ratios of Zn4-x Sb3Ga x Sn3 (x = 0, 0.25, 0.5, 0.6 and 0.75). The effect of Ga/Sn co-doping on the thermal stability and electrical transport properties of the obtained samples were investigated. All the prepared samples exhibit p-type conduction, and carrier concentration varies from 4.71 × 1019 cm-3 to 10.44 × 1019 cm-3, while carrier mobility changes from 34.2 cm2 V-1 s-1 to 68.9 cm2 V-1 s-1 at room temperature. Structure analysis indicates that all samples are β-Zn4Sb3 with space group R\\bar{3}c . Thermal analysis results show that the Ga/Sn co-doped samples possess an excellent thermal stability. The results of crystal compositions indicate that both Ga and Sn atoms tend to replace Zn atoms, and the electrical transport properties of the samples were optimized by co-doping Ga and Sn. Meanwhile, the calculated values of the carrier effective mass, band gap and relaxation time agree with the result obtained from a band structure calculation. Consequently, the sample with Ga initial content x = 0.5 possesses excellent electrical properties, which obtains a maximal power factor of 1.56 × 10-3 W m-1 K-2 at 450 K.

  13. Reversible modulation of electric transport properties by oxygen absorption and releasing on Nb:SrTiO{sub 3} surface

    SciTech Connect

    Lu, H. X.; Liu, Y. B.; Chen, Y. S. Wang, J.; Shen, B. G.; Sun, J. R.

    2014-11-07

    Pt Schottky contacts on (001)-orientated Nb-doped SrTiO{sub 3} (NSTO) in both ambient air and vacuum were investigated by the conductive atomic force microscope. The co-existed TiO{sub 2} and SrO termination layers were identified on the terrace-structured NSTO surface, where the former possessed a higher forward current than the latter. In ambient air, the barrier height of Pt/NSTO Schottky junction exhibited periodical variation with cyclic terrace plane and step sites, whereas it became homogeneous in ambient vacuum. We suggested that the oxygen absorption and releasing of surface dangling bonds were the origin for reversible changes in transport properties, which indicates a feasible approach for the surface modulation and band structure tailoring of NSTO based heterojunctions.

  14. Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials

    NASA Astrophysics Data System (ADS)

    Guadagno, Liberata; Naddeo, Carlo; Raimondo, Marialuigia; Barra, Giuseppina; Vertuccio, Luigi; Russo, Salvatore; Lafdi, Khalid; Tucci, Vincenzo; Spinelli, Giovanni; Lamberti, Patrizia

    2017-03-01

    The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.

  15. Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric p-Type Polycrystalline SnSe.

    PubMed

    Wei, Tian-Ran; Tan, Gangjian; Zhang, Xiaomi; Wu, Chao-Feng; Li, Jing-Feng; Dravid, Vinayak P; Snyder, G Jeffrey; Kanatzidis, Mercouri G

    2016-07-20

    Recent findings about ultrahigh thermoelectric performance in SnSe single crystals have stimulated related research on this simple binary compound, which is focused mostly on its polycrystalline counterparts, and particularly on electrical property enhancement by effective doping. This work systematically investigated the thermoelectric properties of polycrystalline SnSe doped with three alkali metals (Li, Na, and K). It is found that Na has the best doping efficiency, leading to an increase in hole concentration from 3.2 × 10(17) to 4.4 × 10(19) cm(-3) at room temperature, accompanied by a drop in Seebeck coefficient from 480 to 142 μV/K. An equivalent single parabolic band model was found adequate to capture the variation tendency of Seebeck coefficient with doping levels within a wide range. A mixed scattering of carriers by acoustic phonons and grain boundaries is suitable for numerically understanding the temperature-dependence of carrier mobility. A maximum ZT of ∼0.8 was achieved in 1% Na- or K-doped SnSe at 800 K. Possible strategies to improve the mobility and ZT of polycrystals were also proposed.

  16. Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials.

    PubMed

    Guadagno, Liberata; Naddeo, Carlo; Raimondo, Marialuigia; Barra, Giuseppina; Vertuccio, Luigi; Russo, Salvatore; Lafdi, Khalid; Tucci, Vincenzo; Spinelli, Giovanni; Lamberti, Patrizia

    2017-03-03

    The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.

  17. A new multicomponent salt of imidazole and tetrabromoterepthalic acid: Structural, optical, thermal, electrical transport properties and antibacterial activity along with Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Dey, Sanjoy Kumar; Saha, Rajat; Singha, Soumen; Biswas, Susobhan; Layek, Animesh; Middya, Somnath; Ray, Partha Pratim; Bandhyopadhyay, Debasis; Kumar, Sanjay

    2015-06-01

    Herein, we report the structural, optical, thermal and electrical transport properties of a new multicomponent salt (TBTA2-)·2(IM+)·(water) [TBTA-IM] of tetrabromoterepthalic acid (TBTA) with imidazole (IM). The crystal structure of TBTA-IM is determined by both the single crystal and powder X-ray diffraction techniques. The structural analysis has revealed that the supramolecular charge assisted O-⋯Hsbnd N+ hydrogen bonding and Br⋯π interactions play the most vital role in formation of this multicomponent supramolecular assembly. The Hirshfeld surface analysis has been carried out to investigate supramolecular interactions and associated 2D fingerprint plots reveal the relative contribution of these interactions in the crystal structure quantitatively. According to theoretical analysis the HOMO-LUMO energy gap of the salt is 2.92 eV. The salt has been characterized by IR, UV-vis and photoluminescence spectroscopic studies. It shows direct optical transition with band gaps of 4.1 eV, which indicates that the salt is insulating in nature. The photoluminescence spectrum of the salt is significantly different from that of TBTA. Further, a comparative study on the antibacterial activity of the salt with respect to imidazole, Gatifloxacin and Ciprofloxacin has been performed. Moreover, the current-voltage (I-V) characteristic of ITO/TBTA-IM/Al sandwich structure exhibits good rectifying property and the electron tunneling process governs the electrical transport mechanism of the device.

  18. Electrical transport in a microdevice chain

    NASA Astrophysics Data System (ADS)

    Sinkkonen, J.; Eränen, S.

    A simple transport theory of a one-dimensional chain of small devices is presented. The chain is comprised of potential barriers connected by short conductors. Electrical transport through the barriers is described in terms of the quantum reflection and transmission coefficients. The conductors, which are longer than the de Broglie wavelength but eventually shorter than the mean tree path, are discussed within the Boltzmann transport theory. By fitting the solutions of the Boltzmann equation with the boundary conditions imposed by reflection and transmission at barriers a complete solution for the chain can be obtained. As an application, the two-barrier structure is studied in detail. As an function of the conductor length the current shows interference type resonances associated with scattering damped multiple reflections. The properties of the ballistic transistor are determined from the model.

  19. Structure and electrical and transport properties of cation-deficient samples of perovskite ferrocuprates RBaCuFeO5 + δ ( R = Y, La)

    NASA Astrophysics Data System (ADS)

    Klyndyuk, A. I.; Chizhova, E. A.

    2008-04-01

    The structure, thermal expansion, and electrical properties of cation-deficient ferrocuprates RBaCuFeO5 + δ ( R = Y, La), which are p-type semiconductors, are investigated. The linear thermal expansion coefficient of the yttrium-barium ferrocuprate decreases upon formation of vacancies in the A sublattice (Y, Ba), while the unit cell parameters remain practically unchanged upon the formation of vacancies in different sublattices (Y, Ba, Cu/Fe) of the crystal structure. From analyzing the results of the thermopower measurements, it is assumed that the YBaCuFeO5 + δ ferrocuprate is actually a “nanocomposite” consisting of nanoregions of the Y2Cu2O5 and BaFeO3 - δ phases. The lanthanum deficiency brings about an increase in the LaBaCuFeO5 + δ unit cell while leaving very nearly unaffected its linear thermal expansion coefficient and electrical properties. The formation of cation vacancies in extended [Ba(Cu,Fe)2O5] blocks of the LaBaCuFeO5 + δ phase gives rise to tetragonal distortion of its cubic structure, a decrease in the linear thermal expansion coefficient, and an increase in the electrical resistivity of the samples, the latter resulting primarily from an increase in the carrier transport energy in (Cu,Fe)O2 layers of LaBaCuFeO5 + δ.

  20. The low temperature specific heat and electrical transport, magnetic properties of Pr0.65Ca0.35MnO3

    NASA Astrophysics Data System (ADS)

    Han, Zhiyong

    2017-02-01

    The magnetic properties, electrical transport properties, and low temperature specific heat of polycrystalline perovskite manganese oxide Pr0.65Ca0.35MnO3 have been investigated experimentally. It is found that there exists cluster glass state in the sample at low temperature besides the antiferromagnetic insulating state. With the increase of magnetic field, antiferromagnetic insulating state converts to ferromagnetic metal state and the Debye temperature decreases gradually. In addition, the low temperature electron specific heat in zero magnetic field is obviously larger than that of ordinary rare-earth manganites oxide and this phenomenon is related to the itinerant electrons in ferromagnetic cluster state and the disorder in Pr0.65Ca0.35MnO3.

  1. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Electronic Transport Calculations Using Maximally-Localized Wannier Functions

    NASA Astrophysics Data System (ADS)

    Wang, Neng-Ping

    2011-01-01

    I present a method to calculate the ballistic transport properties of atomic-scale structures under bias. The electronic structure of the system is calculated using the Kohn-Sham scheme of density functional theory (DFT). The DFT eigenvectors are then transformed into a set of maximally localized Wannier functions (MLWFs) [N. Marzari and D. Vanderbilt, Phys. Rev. B 56 (1997) 12847]. The MLWFs are used as a minimal basis set to obtain the Hamitonian matrices of the scattering region and the adjacent leads, which are needed for transport calculation using the nonequilibrium Green's function formalism. The coupling of the scattering region to the semi-infinite leads is described by the self-energies of the leads. Using the nonequilibrium Green's function method, one calculates self-consistently the charge distribution of the system under bias and evaluates the transmission and current through the system. To solve the Poisson equation within the scheme of MLWFs I introduce a computationally efficient method. The method is applied to a molecular hydrogen contact in two transition metal monatomic wires (Cu and Pt). It is found that for Pt the I-V characteristics is approximately linear dependence, however, for Cu the I-V characteristics manifests a linear dependence at low bias voltages and exhibits apparent nonlinearity at higher bias voltages. I have also calculated the transmission in the zero bias voltage limit for a single CO molecule adsorbed on Cu and Pt monatomic wires. While a chemical scissor effect occurs for the Cu monatomic wire with an adsorbed CO molecule, it is absent for the Pt monatomic wire due to the contribution of d-orbitals at the Fermi energy.

  2. Electrical properties and carrier transport mechanisms of n-ZnO/SiOx/n-Si isotype heterojunctions with native or thermal oxide interlayers

    NASA Astrophysics Data System (ADS)

    Song, Dengyuan; Guo, Baozeng

    2009-01-01

    N-type ZnO/SiOx/n-type crystalline silicon isotype heterojunctions (HJs) have been prepared by magnetron sputtering. Native and thermal oxides were employed as the interlayer between the Si substrate and the ZnO film. Transmission electron microscopy and x-ray photoelectron spectroscopy revealed that an oxide layer was inserted in the HJ interface, with thickness of ~1.2 nm (native oxide) and ~2.0 nm (thermal oxide). Atomic force microscopy and x-ray diffraction spectroscopy showed that the ZnO film on the Si substrate consists of tightly packed grains with sizes in the range 50-150 nm and is c-axis preferred orientation. The electrical properties were characterized by current-voltage (I-V), capacitance-voltage (C-V) and current-voltage-temperature (I-V-T) measurements. By a comparison of the HJ properties, the n-ZnO/thermal oxide/n-Si HJs show improved electrical properties, with a fairly low leakage current and high rectification ratio, although the series resistance increased. Studies of fitting the I-V-T measurement data suggest that the tunnelling process is a dominant current transport mechanism for the n-ZnO/native or thermal oxide/n-Si HJs at an intermediate voltage range.

  3. Prediction of hydraulic and electrical transport properties of sandstone with multiscale lattice Boltzmann/finite element simulation on microtomographic images

    NASA Astrophysics Data System (ADS)

    Wong, T.; Sun, W.

    2012-12-01

    Microcomputed tomography can be used to characterize the geometry of the pore space of a sedimentary rock, with resolution that is sufficiently refined for the realistic simulation of physical properties based on the 3D image. Significant advances have been made on the characterization of pore size distribution and connectivity, development of techniques such as lattice Boltzmann method to simulate permeability, and its upscaling. Sun, Andrade and Rudnicki (2011) recently introduced a multiscale method that dynamically links these three aspects, which were often treated separately in previous computational schemes. In this study, we improve the efficiency of this multiscale method by introducing a flood-fill algorithm to determine connectivity of the pores, followed by a multiscale lattice Boltzmann/finite element calculation to obtain homogenized effective anisotropic permeability. The improved multiscale method also includes new capacity to consistently determine electrical conductivity and formation factor from CT images. Furthermore, we also introduce a level set based method that transforms pore geometry to finite element mesh and thus enables direct simulation of pore-scale flow with finite element method. When applied to the microCT data acquired by Lindquist et al. (2000) for four Fontainebleau sandstone samples with porosities ranging from 7.5% to 22%, this multiscale method has proved to be computationally efficient and our simulations has provided new insights into the relation among permeability, pore geometry and connectivity.

  4. Nanoparticle transport effect on magnetohydrodynamic mixed convection of electrically conductive nanofluids in micro-annuli with temperature-dependent thermophysical properties

    NASA Astrophysics Data System (ADS)

    Malvandi, A.; Moshizi, S. A.; Ganji, D. D.

    2017-04-01

    This is a numerical investigation of nanoparticle transport effect on magnetohydrodynamic mixed convective heat transfer of electrically conductive nanofluids in micro-annuli with temperature-dependent thermophysical properties. The modified Buongiorno's non-homogeneous model is applied for the nanoparticle-fluid suspension to simulate the migration of nanoparticles into the base fluid, originating from the thermophoresis (nanoparticle migration because of temperature gradient) and Brownian motion (nanoparticle slip velocity because of concentration gradient). Due to surface roughness at the solid-fluid interface in micro-annuli, the wall surfaces are subjected to a linear slip condition to assess the non-equilibrium region near the interface. The fluid flow has been assumed to be fully developed, and the governing equations including continuity, momentum, energy, and nanoparticle transport equation are reduced to a system of ordinary differential equations, before they have been solved numerically. The results are presented with and without considering the dependency of thermophysical properties upon the temperature. It is indicated that ignoring the temperature dependency of thermophysical properties does not significantly affect the flow fields and heat transfer behavior of nanofluids, but it changes the relative magnitudes. Furthermore, in the presence of magnetic field, smaller nanoparticles are more appropriate than larger ones.

  5. ELECTRICAL PROPERTIES OF FOODS

    USDA-ARS?s Scientific Manuscript database

    Foods, especially liquid foods, conduct electricity. Unlike in metals, the charge carriers in foods are ions, instead of electrons. Under normal applications, ions carry the charges as the mass of ions moves along the electrical field. The concentration and mobility of ions determine the electrical ...

  6. Microscopic structure and electrical transport property of sputter-deposited amorphous indium-gallium-zinc oxide semiconductor films

    NASA Astrophysics Data System (ADS)

    Yabuta, H.; Kaji, N.; Shimada, M.; Aiba, T.; Takada, K.; Omura, H.; Mukaide, T.; Hirosawa, I.; Koganezawa, T.; Kumomi, H.

    2014-06-01

    We report on microscopic structures and electrical and optical properties of sputter-deposited amorphous indium-gallium-zinc oxide (a-IGZO) films. From electron microscopy observations and an x-ray small angle scattering analysis, it has been confirmed that the sputtered a-IGZO films consist of a columnar structure. However, krypton gas adsorption measurement revealed that boundaries of the columnar grains are not open-pores. The conductivity of the sputter-deposited a-IGZO films shows a change as large as seven orders of magnitude depending on post-annealing atmosphere; it is increased by N2-annealing and decreased by O2-annealing reversibly, at a temperature as low as 300°C. This large variation in conductivity is attributed to thermionic emission of carrier electrons through potential barriers at the grain boundaries, because temperature dependences of the carrier density and the Hall mobility exhibit thermal activation behaviours. The optical band-gap energy of the a-IGZO films changes between before and after annealing, but is independent of the annealing atmosphere, in contrast to the noticeable dependence of conductivity described above. For exploring other possibilities of a-IGZO, we formed multilayer films with an artificial periodic lattice structure consisting of amorphous InO, GaO, and ZnO layers, as an imitation of the layer-structured InGaZnO4 homologous phase. The hall mobility of the multilayer films was almost constant for thicknesses of the constituent layer between 1 and 6 Å, suggesting rather small contribution of lateral two-dimensional conduction It increased with increasing the thickness in the range from 6 to 15 Å, perhaps owing to an enhancement of two-dimensional conduction in InO layers.

  7. Electric field manipulation of magnetic and transport properties in SrRuO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure

    PubMed Central

    Zhou, W. P.; Li, Q.; Xiong, Y. Q.; Zhang, Q. M.; Wang, D. H.; Cao, Q. Q.; Lv, L. Y.; Du, Y. W.

    2014-01-01

    The electric field manipulation of magnetic properties is currently of great interest for the opportunities provided in low-energy-consuming spintronics devices. Here, we report the effect of electric field on magnetic and transport properties of the ferromagnetic SrRuO3 film which is epitaxially grown on Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric substrate. With the application of electric field on the substrate, the magnetization, Curie temperature and resistivity of SrRuO3 are effectively modified. The mechanism of the electric field manipulation of these properties is ascribed to the rotations of RuO6 oxygen octahedra caused by the electric-field-induced strain, which changes the overlap and hybridization between the Ru 4d orbitals and O 2p orbitals, resulting in the modification of the magnetic and electronic properties. PMID:25384967

  8. Electric field manipulation of magnetic and transport properties in SrRuO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure.

    PubMed

    Zhou, W P; Li, Q; Xiong, Y Q; Zhang, Q M; Wang, D H; Cao, Q Q; Lv, L Y; Du, Y W

    2014-11-11

    The electric field manipulation of magnetic properties is currently of great interest for the opportunities provided in low-energy-consuming spintronics devices. Here, we report the effect of electric field on magnetic and transport properties of the ferromagnetic SrRuO(3) film which is epitaxially grown on Pb(Mg(1/3)Nb(2/3))O3-PbTiO(3) ferroelectric substrate. With the application of electric field on the substrate, the magnetization, Curie temperature and resistivity of SrRuO(3) are effectively modified. The mechanism of the electric field manipulation of these properties is ascribed to the rotations of RuO6 oxygen octahedra caused by the electric-field-induced strain, which changes the overlap and hybridization between the Ru 4d orbitals and O 2p orbitals, resulting in the modification of the magnetic and electronic properties.

  9. Anisotropic electrical transport properties of a two-dimensional electron gas at SrTiO3-LaAlO3 interfaces

    SciTech Connect

    Brinks, Peter; Siemons, Wolter; Kleibeuker, Josee; Koster, Gertjan; Rijnders, Guus; Huijben, Mark

    2011-01-01

    Experimental evidence of strong in-plane anisotropy in electrical properties of the confined electron gas at the SrTiO{sub 3}-LaAlO{sub 3} interface on top of (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 3}){sub 0.7} substrates is provided by detailed transport measurements. Structured measurement geometries in multiple directions are used to show dependence of the sheet resistance with the in-plane angle {theta}, which is fitted with a sine function with a period of 180{sup o}. The carrier density remains constant and a directional dependence of the carrier mobility of more than one order of magnitude is determined with respect to the orientation of the unit cell height steps present at the SrTiO{sub 3}-LaAlO{sub 3} interface.

  10. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-01

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (˜1020 cm-3). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  11. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    SciTech Connect

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-07

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  12. Electrical transport properties of single wall carbon nanotube/polyurethane composite based field effect transistors fabricated by UV-assisted direct-writing technology

    NASA Astrophysics Data System (ADS)

    Aïssa, B.; Therriault, D.; Farahani, R. D.; Lebel, L. L.; El Khakani, M. A.

    2012-03-01

    We report on the fabrication and transport properties of single-walled carbon nanotube (SWCNT)/polyurethane (PU) nanocomposite microfiber-based field effect transistors (FETs). UV-assisted direct-writing technology was used, and microfibers consisting of cylindrical micro-rods, having different diameters and various SWCNT loads, were fabricated directly onto SiO2/Si substrates in a FET scheme. The room temperature dc electrical conductivities of these microfibers were shown to increase with respect to the SWCNT concentrations in the nanocomposite, and were about ten orders of magnitude higher than that of the pure polyurethane, when the SWCNT load ranged from 0.1 to 2.5 wt% only. Our results show that for SWCNT loads ≤ 1.5 wt%, all the microfibers behave as a FET with p-type transport. The resulting FET exhibited excellent performance, with an Ion/Ioff ratio of 105 and a maximum on-state current (Ion) exceeding 70 µA. Correlations between the FET performance, SWCNTs concentration, and the microfiber diameters are also discussed.

  13. Electrical transport properties of single wall carbon nanotube/polyurethane composite based field effect transistors fabricated by UV-assisted direct-writing technology.

    PubMed

    Aïssa, B; Therriault, D; Farahani, R D; Lebel, L L; El Khakani, M A

    2012-03-23

    We report on the fabrication and transport properties of single-walled carbon nanotube (SWCNT)/polyurethane (PU) nanocomposite microfiber-based field effect transistors (FETs). UV-assisted direct-writing technology was used, and microfibers consisting of cylindrical micro-rods, having different diameters and various SWCNT loads, were fabricated directly onto SiO₂/Si substrates in a FET scheme. The room temperature dc electrical conductivities of these microfibers were shown to increase with respect to the SWCNT concentrations in the nanocomposite, and were about ten orders of magnitude higher than that of the pure polyurethane, when the SWCNT load ranged from 0.1 to 2.5 wt% only. Our results show that for SWCNT loads ≤ 1.5 wt%, all the microfibers behave as a FET with p-type transport. The resulting FET exhibited excellent performance, with an I(on)/I(off) ratio of 10⁵ and a maximum on-state current (I(on)) exceeding 70 µA. Correlations between the FET performance, SWCNTs concentration, and the microfiber diameters are also discussed.

  14. Electrical Transport in Semiconductor Nanoparticle Arrays: Conductivity, Sensing and Modeling

    NASA Astrophysics Data System (ADS)

    Hartner, Sonja; Schwesig, Dominik; Plümel, Ingo; Wolf, Dietrich E.; Lorke, Axel; Wiggers, Hartmut

    Electrical properties of nanoparticle ensembles are dominated by interparticle transport processes, mainly due to particle-particle and particle-contact interactions. This makes their electrical properties dependent on the network properties such as porosity and particle size and is a main prerequisite for solid- state gas sensors, as the surrounding gas atmosphere influences the depletion layer surrounding each particle. Different kinds of nanoparticle arrays such as pressed pellets, printed layer, and thin films prepared by molecular beam-assisted deposition are characterized with respect to their electrical transport properties. Experimental results are shown for the electrical and sensing properties of several metal oxide nanoparticle ensembles and the influence of porosity is investigated during compaction of nanoparticle powders exposed to an external force. A model describing these properties is developed and it is shown that for a given material only porosity, geometry, and particle size influence the overall electrical properties. The model developed for the description of current transport in particulate matter can also be utilized to describe current-assisted sintering.

  15. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field

    SciTech Connect

    Ilyasov, V. V. E-mail: chuongnguyen11@gmail.com; Meshi, B. C.; Nguyen, V. C. E-mail: chuongnguyen11@gmail.com; Ershov, I. V.; Nguyen, D. C.

    2014-07-07

    The paper presents the results of ab initio study of the opportunities for tuning the band structure, magnetic and transport properties of zigzag graphene nanoribbon (8-ZGNR) on hexagonal boron nitride (h-BN(0001)) semiconductor heterostructure by transverse electric field (E{sub ext}). This study was performed within the framework of the density functional theory (DFT) using Grimme's (DFT-D2) scheme. We established the critical values of E{sub ext} for the 8-ZGNR/h-BN(0001) heterostructure, thereby providing for semiconductor-halfmetal transition in one of electron spin configurations. This study also showed that the degeneration in energy of the localized edge states is removed when E{sub ext} is applied. In ZGNR/h-BN (0001) heterostructure, value of the splitting energy was higher than one in ZGNRs without substrate. We determined the effect of low E{sub ext} applied to the 8-ZGNR/h-BN (0001) semiconductor heterostructure on the preserved local magnetic moment (LMM) (0.3μ{sub B}) of edge carbon atoms. The transport properties of the 8-ZGNR/h-BN(0001) semiconductor heterostructure can be controlled using E{sub ext}. In particular, at a critical value of the positive potential, the electron mobility can increase to 7× 10{sup 5} cm{sup 2}/V s or remain at zero in the spin-up and spin-down electron subsystems, respectively. We established that magnetic moments (MMs), band gaps, and carrier mobility can be altered using E{sub ext}. These abilities enable the use of 8-ZGNR/h-BN(0001) semiconductor heterostructure in spintronics.

  16. Enhanced electrical property of Ni-doped CoOx hole transport layer for inverted perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Aibin; Lei, Lei; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Cao, Xun; Jin, Ping

    2017-05-01

    Ultrathin Ni doped CoOx films were prepared by direct current co-sputtering at room temperature as inorganic hole transport materials for inverted perovskite solar cells. P-type doping was designed to adjust the valence band position of CoOx to match the that of CH3NH3PbI3, which would effectively eliminate the interface barrier. Moreover, the hole extraction ability would be enhanced and the power conversion efficiency of the devices hence increased from 3.68% to 9.60%. The optimized performance was also accompanied by decent stability as a result of its intrinsic stability.

  17. Enhanced electrical property of Ni-doped CoOx hole transport layer for inverted perovskite solar cells.

    PubMed

    Huang, Aibin; Lei, Lei; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Cao, Xun; Jin, Ping

    2017-05-19

    Ultrathin Ni doped CoOx films were prepared by direct current co-sputtering at room temperature as inorganic hole transport materials for inverted perovskite solar cells. P-type doping was designed to adjust the valence band position of CoOx to match the that of CH3NH3PbI3, which would effectively eliminate the interface barrier. Moreover, the hole extraction ability would be enhanced and the power conversion efficiency of the devices hence increased from 3.68% to 9.60%. The optimized performance was also accompanied by decent stability as a result of its intrinsic stability.

  18. Physical properties of electricity.

    PubMed

    Thomson, Angus J M

    2013-01-01

    Electricity is the flow of electrons through a conductor. The amount of current (amps) is related to the voltage (volts) pushing the electrons and the degree of resistance to flow (ohms). During their flow around a circuit, electrons can be used to create a number of useful byproducts such as heat and light. As electrons flow, they alter the charge of the matter they flow through, which may also generate electromagnetic effects.

  19. Effective Transport Properties

    NASA Astrophysics Data System (ADS)

    Mauri, Roberto

    In this chapter we study a particular case of multiphase systems, namely two-phase materials in which one of the phases is randomly dispersed in the other, so that the composite can be viewed on a macroscale as an effective continuum, with well defined properties. In general, the theoretical determination of the parameter for an effective medium requires, as a rule, the solution of a corresponding transport problem at the microscale, which takes into account the morphology of the system and its evolution. As the mathematical problem is well-posed on a microscale, this can be accomplished using, for example, the multiple scale approach shown in Chap. 11 ; however, the task requires massive computations and is therefore difficult to implement from the practical standpoint. Here, instead, we focus on a deterministic approach to the problem, where the geometry and spatial configuration of the particles comprising the included phase are given and the solution to the microscale problem is therefore sought analytically. As examples, we study the effective thermal conductivity of solid reinforced materials (Sect. 10.1), the effective viscosity of non-colloidal suspensions (Sect. 10.2), the effective permeability of porous materials (10.3) and the effective self- and gradient diffusivities of colloidal suspensions (Sect. 10.4). Then, in Sect. 10.5, an alternative dynamic definition of the transport coefficients is considered, which can also serve as a basis to determine the effective properties of complex systems.

  20. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Transport Through a Precessing Spin Coupled to Noncollinearly Polarized Ferromagnetic Leads

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Chao; Xin, Zi-Hua; Feng, Li-Ya

    2010-02-01

    The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation reveals that when the precessing angle takes θ < π/2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes 0, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel.

  1. Electrical transport properties of ReS2 with polymer electrolyte gating in the high-doping limit

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Dmitry; Allain, Adrien; Pasquier, Diego; Dumcenco, Dumitru; Ho, Ching-Hwa; Huang, Ying-Sheng; Yazyev, Oleg; Kis, Andras

    Two-dimensional (2D) materials have emerged as promising candidates for future electronic applications. Among them, transition metal dichalcogenides (TMDs) demonstrate not only potential as ultrathin transistor channel material, but also intriguing spin and valley physics, which in principle could allow new types of devices and circuits. Here we report on the first study of two-dimensional anisotropic ReS2 at high doping levels, enabled by polymer electrolyte gating. Significantly increasing the doping level using electrolyte instead of standard solid gate, we measured an unusual modulation of the conductivity at high carrier densities in monolayer ReS2. In the case of thicker flakes, the effect is milder and an insulator-metal-insulator sequence with increasing doping is observed. Transport measurements provide the evidence of major influence of ionic disorder. Furthermore, we discuss possible band structure effects.

  2. Modeling skull electrical properties

    PubMed Central

    Sadleir, R. J.; Argibay, A.

    2008-01-01

    Accurate representations and measurements of skull electrical conductivity are essential in developing appropriate forward models for applications such as inverse EEG or Electrical Impedance Tomography of the head. Because of its layered structure, it is often assumed that skull is anisotropic, with an anisotropy ratio around 10. However, no detailed investigation of skull anisotropy has been performed. In this paper we investigate four-electrode measurements of conductivities and their relation to tissue anisotropy ratio (ratio of tangential to radial conductivity) in layered or anisotropic biological samples similar to bone. It is shown here that typical values for the thicknesses and radial conductivities of individual skull layers produce tissue with much smaller anisotropy ratios than 10. Moreover, we show that there are very significant differences between the field patterns formed in a three-layered isotropic structure plausible for bone, and those formed assuming that bone is homogeneous and anisotropic.We performed a measurement of conductivity using an electrode configuration sensitive to the distinction between three-layered and homogeneous anisotropic composition and found results consistent with the sample being three-layered. We recommend that the skull be more appropriately represented as three isotropic layers than as homogeneous and anisotropic. PMID:17629793

  3. Modeling skull electrical properties.

    PubMed

    Sadleir, R J; Argibay, A

    2007-10-01

    Accurate representations and measurements of skull electrical conductivity are essential in developing appropriate forward models for applications such as inverse EEG or Electrical Impedance Tomography of the head. Because of its layered structure, it is often assumed that skull is anisotropic, with an anisotropy ratio around 10. However, no detailed investigation of skull anisotropy has been performed. In this paper we investigate four-electrode measurements of conductivities and their relation to tissue anisotropy ratio (ratio of tangential to radial conductivity) in layered or anisotropic biological samples similar to bone. It is shown here that typical values for the thicknesses and radial conductivities of individual skull layers produce tissue with much smaller anisotropy ratios than 10. Moreover, we show that there are very significant differences between the field patterns formed in a three-layered isotropic structure plausible for bone, and those formed assuming that bone is homogeneous and anisotropic. We performed a measurement of conductivity using an electrode configuration sensitive to the distinction between three-layered and homogeneous anisotropic composition and found results consistent with the sample being three-layered. We recommend that the skull be more appropriately represented as three isotropic layers than as homogeneous and anisotropic.

  4. Role of self-assembled monolayer passivation in electrical transport properties and flicker noise of nanowire transistors.

    PubMed

    Kim, Seongmin; Carpenter, Patrick D; Jean, Rand K; Chen, Haitian; Zhou, Chongwu; Ju, Sanghyun; Janes, David B

    2012-08-28

    Semiconductor nanowires have achieved great attention for integration in next-generation electronics. However, for nanowires with diameters comparable to the Debye length, which would generally be required for one-dimensional operation, surface states degrade the device performance and increase the low-frequency noise. In this study, single In(2)O(3) nanowire transistors were fabricated and characterized before and after surface passivation with a self-assembled monolayer of 1-octadecanethiol (ODT). Electrical characterization of the transistors shows that device performance can be enhanced upon ODT passivation, exhibiting steep subthreshold slope (~64 mV/dec), near zero threshold voltage (~0.6 V), high mobility (~624 cm(2)/V·s), and high on-currents (~40 μA). X-ray photoelectron spectroscopy studies of the ODT-passivated nanowires indicate that the molecules are bound to In(2)O(3) nanowires through the thiol linkages. Device simulations using a rectangular geometry to represent the nanowire indicate that the improvement in subthreshold slope and positive shift in threshold voltage can be explained in terms of reduced interface trap density and changes in fixed charge density. Flicker (low-frequency, 1/f) noise measurements show that the noise amplitude is reduced following passivation. The interface trap density before and after ODT passivation is profiled throughout the band gap energy using the subthreshold current-voltage characteristics and is compared to the values extracted from the low-frequency noise measurements. The results indicate that self-assembled monolayer passivation is a promising optimization technology for the realization of low-power, low-noise, and fast-switching applications such as logic, memory, and display circuitry.

  5. Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy

    SciTech Connect

    Park, Jeong Young; Qi, Yabing; Ashby, Paul D.; Hendriksen, Bas L.M.; Salmeron, Miquel

    2009-02-06

    The correlation between molecular conductivity and mechanical properties (molecular deformation and frictional responses) of hexadecylsilane self-assembled monolayers was studied with conductive probe atomic force microscopy/friction force microscopy in ultrahigh vacuum. Current and friction were measured as a function of applied pressure, simultaneously, while imaging the topography of self-assembled monolayer molecule islands and silicon surfaces covered with a thin oxide layer. Friction images reveal lower friction over the molecules forming islands than over the bare silicon surface, indicating the lubricating functionality of alkylsilane molecules. By measuring the tunneling current change due to changing of the height of the molecular islands by tilting the molecules under pressure from the tip, we obtained an effective conductance decay constant ({beta}) of 0.52/{angstrom}.

  6. Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP

    NASA Astrophysics Data System (ADS)

    Shanthi Latha, K.; Rajagopal Reddy, V.

    2017-02-01

    The electrical and transport properties of a fabricated bilayer Ru/Cr/n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/n-InP SDs irrespective of annealing temperatures.

  7. Structural, magnetic and electrical transport properties in electron-doped La0.85Hf0.15MnO3 epitaxial film

    NASA Astrophysics Data System (ADS)

    Han, Li-an; Ma, Zi-wei; Zhu, Hua-ze; Chen, Chang-le; Zhang, Tao

    2017-03-01

    Using a pulsed laser deposition method, the electron-doped La0.85Hf0.15MnO3 (LHMO) film with the thickness of 90 nm was epitaxially grown on LaAlO3 (001) single crystal substrate. The structural, magnetic and electrical transport properties of the film have been studied comprehensively. The X-ray diffraction patterns confirm that LHMO film is of single phase, good quality and c axis orientation. The film undergoes a ferromagnetic-like ordering to paramagnetic states at T C =280 K. Moreover, a spin glass behavior observed in the film may be attributed to the strain effects. Using the percolation theory, we have analyzed the resistivity data ρ (T) of the film and given an excellent fit in the whole temperature range. Particularly, large temperature coefficient of resistance of 11.27% K- 1 has been discovered near sub-room-temperature, indicating that LHMO film could be useful for bolometric applications.

  8. Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP

    NASA Astrophysics Data System (ADS)

    Shanthi Latha, K.; Rajagopal Reddy, V.

    2017-07-01

    The electrical and transport properties of a fabricated bilayer Ru/Cr/ n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/ n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/ n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/ n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/ n-InP SDs irrespective of annealing temperatures.

  9. Large-scale synthesis and electrical transport properties of single-crystalline SmB6 nanowires

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Peng, Yuehua; Yin, Yanling; Zhou, Weichang; Zhou, Fang; Liu, Chang; Liu, Guangtong; Sun, Lianfeng; Tang, Dongsheng

    2016-07-01

    Topological Kondo insulator samarium hexaboride (SmB6) nanowires, with diameters of 60-150 nm and lengths up to 1-5 μm, were successfully synthesized in large scale by chemical vapor deposition using BCl3 and SmCl3 as precursors at 1070 °C. Transmission electron microscopy observation and selected area electron diffraction analysis indicate that SmB6 nanowires are single-crystalline and grow in a preferred direction of [1 0 0]. It also indicates that the growth of SmB6 nanowires might be governed by a vapor-solid mechanism. Conventional four-terminal resistance measurements show that the resistance of an SmB6 nanowire increases with decreasing temperature, but saturates at temperatures less than 10 K, which might be attributed to a true topological insulator with a metallic surface and fully insulating bulk states. Resistance measurements also indicate that the contribution of surface states to conductance in the SmB6 nanowire is enhanced remarkably; therefore the high-quality single-crystalline SmB6 nanowires with large surface-to-bulk ratio might be the best candidate for investigating the topological properties of this material.

  10. Electrical Transport Properties of Epitaxial and Granular Oriented Yttrium BARIUM(2) COPPER(3) OXYGEN(7-DELTA) Thin Films

    NASA Astrophysics Data System (ADS)

    Jones, Edwin Clay

    1992-01-01

    Strong correlations between the Hall coefficient R_{H}, the transition temperature T_{c}, and the critical current density J_{c} were established in a series of epitaxial YBa_2Cu_3O_ {7-delta} thin films as a function of oxygen deficiency delta. Steady increases in R_{H} with delta suggests that dexoygenation reduces the density of states which, according to BCS theory, should lead to corresponding decreases in T_ {c}. In contrast, two well known plateaus occurring at 90K and 60K were observed in T _{c} vs. delta . Others have ascribed these plateaus to either electronic phenomena or oxygen clustering. We find that in the 90K plateau, the critical current density J _{c}(delta ,H = 0) decreased with delta and extrapolates toward zero at the edge of the plateau, while the relative field dependence of J_ {c}(delta,H) is independent of delta. Furthermore, a fluctuation analysis of the resistive transitions indicates a constant upper critical field B_{ c2}(0) = 110T across this plateau. These observations suggest that the oxygen clustering/percolation scenario occurs on the 90K plateau. Moreover, computer simulations showed this oxygen clustering/percolation picture to be a plausible explanation for the occasional observation of a sign reversal of R _{H} near T _{c}. For large oxygen deficiencies (delta > 0.5) and for the granular oriented YBa_2Cu_3O _{7-delta} thin films, rapid decreases in J_{c} with applied field were observed which is reminiscent of the conventional granular alloys. In addition, the self -field critical current densities J_{c} behaved as SNS weak link systems in a Josephson mixed state. In sum, due to the short coherence length xi in these materials, many properties formerly believed to be "intrinsic" in nature are apparently "extrinsic" in nature.

  11. Electrical properties of complex tungsten bronze ceramics

    NASA Astrophysics Data System (ADS)

    Padhee, R.; Das, Piyush R.

    2014-09-01

    This paper highlights the electrical properties of two new complex tungsten bronze ceramics (K2Pb2Eu2W2Ti4Nb4O30 and K2Pb2Pr2W2Ti4Nb4O30) which were prepared by high temperature mixed oxide method. Variation of impedance parameters with temperature (27-500 °C) and frequency (1 kHz to 5 MHz) shows the grain and grain boundary effects in the samples. The variation of dielectric parameters with frequency is also studied. The ac conductivity variation with temperature clearly exhibits that the materials have thermally activated transport properties of Arrhenius type.

  12. Effect of sintering conditions on the electrical-transport properties of the SrZrO3-based protonic ceramic electrolyser membrane

    NASA Astrophysics Data System (ADS)

    Heras-Juaristi, Gemma; Pérez-Coll, Domingo; Mather, Glenn C.

    2016-11-01

    The effects of sintering temperature and addition of 4 mol.% ZnO as sintering additive on the crystal structure, microstructure and electrical properties of SrZr0.9Y0.1O3-δ are reported. The presence of ZnO as sintering aid brings about high densification at 1300 °C (relative density ∼97%); gas-tightness is not achieved for ZnO-free samples sintered below 1600 °C. Bulk conductivity (σB) is considerably higher in wet and dry O2 on doping with ZnO, but only slight variations of σB with sintering temperature are observed for the Zn-containing phases. Similarly, the apparent grain-boundary conductivities are much greater for the Zn-doped samples. The grain-boundary volume and accompanying resistances are much reduced on sintering at 1500 °C with ZnO addition in comparison to Zn-modified samples sintered below 1500 °C, with only minor changes in grain-boundary relaxation frequency observed. Conversely, in comparison to the undoped sample with sintering temperature of 1600 °C, there is an enormous improvement in the specific grain-boundary conductivity of two orders of magnitude for the ZnO-containing samples. Analysis on the basis of the core space-charge-layer model relates the enhancement of the grain-boundary transport to a higher concentration of charge carriers in the space-charge layer and associated lower potential barrier heights.

  13. Transport properties of alumina nanofluids.

    PubMed

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  14. Thermal and Electrical Transport in Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth

    This dissertation presents a study of thermal and electrical transport phenomena in heterostructures of transition metal oxides, with specific interest in understanding and tailoring thermoelectricity in these systems. Thermoelectric energy conversion is a promising method for waste heat recovery and the efficiency of such an engine is directly related to a material dependent figure of merit, Z, given as S2sigma/kappa, where S is thermopower and sigma and kappa are electrical and thermal conductivity respectively. Achieving large figure of merit has been hampered by the coupling between these three thermoelectric coefficients, and the primary aim of this study is to understand the nature of thermoelectricity in complex oxides and identify mechanisms which can allow tuning of one or more thermoelectric coefficients in a favorable manner. Unlike the heavily studied conventional thermoelectric semiconductors, transition metals based complex oxides show conduction band characteristics dominated by d-bands, with much larger effective masses and varying degrees of electron correlations. These systems provide for exotic thermoelectric effects which are typically not explained by conventional theories and hence provide an ideal platform for exploring the limits of thermoelectricity. Meanwhile, oxides are composed of earth abundant elements and have excellent high temperature stability, thus providing compelling technological possibilities for thermoelectrics based power generation. In this dissertation, we address specific aspects of thermoelectricity in model complex oxide systems such as perovskite titanates and layered cobaltates to understand thermal and thermoelectric behavior and explore the tunability of thermoelectricity in these systems. The demonstration of band engineering as a viable method to tune physical properties of materials is explored. The model system used for this case is strontium titanate, where two dopants such as La on the Sr-site and oxygen

  15. Electrical and Thermal Transport in Inhomogeneous Luttinger Liquids

    SciTech Connect

    DeGottardi, Wade; Matveev, K. A.

    2015-06-12

    In this paper, we study the transport properties of long quantum wires by generalizing the Luttinger liquid approach to allow for the finite lifetime of the bosonic excitations. Our theory accounts for long-range disorder and strong electron interactions, both of which are common features of experiments with quantum wires. We obtain the electrical and thermal resistances and thermoelectric properties of such quantum wires and find a strong deviation from perfect conductance quantization. Finally, we cast our results in terms of the thermal conductivity and bulk viscosity of the electron liquid and give the temperature scale above which the transport can be described by classical hydrodynamics.

  16. Electrical Properties of Cu Nanowires

    DTIC Science & Technology

    2008-08-01

    attributed to the surface and size effects based on the further demonstrative analysis . I. INTRODUCTION Electrical properties of metallic nanowires...Walter, R. M. Penner, H. Liu, K. H. Ng, M. P. Zach, and F. Favier, "Sensors from electrodeposited metal nanowires," Surface And Interface Analysis , vol...and G. Dumpich, "Influence of the electron beam on electromigration measurements within a scanning electron microscope," Applied Physics Letters

  17. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Spin-Polarized Transport through a Quantum Dot Coupled to Ferromagnetic Leads and a Mesoscopic Ring

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Wu, Shao-Quan

    2010-02-01

    Using an equation of motion technique, we investigate the spin-polarized transport through a quantum dot coupled to ferromagnetic leads and a mesoscopic ring by the Anderson Hamiltonian. We analyze the transmission probability of this system in both the equilibrium and nonequilibrium cases, and our results reveal that the transport properties show some noticeable characteristics depending upon the spin-polarized strength p, the magnetic flux Φ and the number of lattice sites NR in the mesoscopic ring. These effects might have some potential applications in spintronics.

  18. Low-frequency electrical properties.

    USGS Publications Warehouse

    Olhoeft, G.R.

    1985-01-01

    In the interpretation of induced polarization data, it is commonly assumed that metallic mineral polarization dominantly or solely causes the observed response. However, at low frequencies, there is a variety of active chemical processes which involve the movement or transfer of electrical charge. Measurements of electrical properties at low frequencies (such as induced polarization) observe such movement of charge and thus monitor many geochemical processes at a distance. Examples in which this has been done include oxidation-reduction of metallic minerals such as sulfides, cation exchange on clays, and a variety of clay-organic reactions relevant to problems in toxic waste disposal and petroleum exploration. By using both the frequency dependence and nonlinear character of the complex resistivity spectrum, these reactions may be distinguished from each other and from barren or reactionless materials.-Author

  19. Computing Thermodynamic And Transport Properties

    NASA Technical Reports Server (NTRS)

    Mcbride, B.; Gordon, Sanford

    1993-01-01

    CET89 calculates compositions in chemical equilibrium and properties of mixtures of any chemical system for which thermodynamic data available. Provides following options: obtains chemical-equilibrium compositions and corresponding thermodynamic mixture properties for assigned thermodynamic states; calculates dilute-gas transport properties of complex chemical mixtures; obtains Chapman-Jouguet detonation properties for gaseous mixtures; calculates properties of incident and reflected shocks in terms of assigned velocities; and calculates theoretical performance of rocket for both equilibrium and frozen compositions during expansion. Rocket performance based on optional models of finite or infinite area combustor.

  20. Computing Thermodynamic And Transport Properties

    NASA Technical Reports Server (NTRS)

    Mcbride, B.; Gordon, Sanford

    1993-01-01

    CET89 calculates compositions in chemical equilibrium and properties of mixtures of any chemical system for which thermodynamic data available. Provides following options: obtains chemical-equilibrium compositions and corresponding thermodynamic mixture properties for assigned thermodynamic states; calculates dilute-gas transport properties of complex chemical mixtures; obtains Chapman-Jouguet detonation properties for gaseous mixtures; calculates properties of incident and reflected shocks in terms of assigned velocities; and calculates theoretical performance of rocket for both equilibrium and frozen compositions during expansion. Rocket performance based on optional models of finite or infinite area combustor.

  1. Future drive: Electric vehicles and sustainable transportation

    SciTech Connect

    Sperling, D.

    1996-07-01

    This book discusses the future of electric vehicles by starting with two premises: (1) improvements in the environmental and economic performance of our transportation systems are being overwhelmed by rapid increases in the number of people, cars, and miles traveled, and (2) when we shape our transportation future, we must respect peoples` preferred mode of travel, the private car. An assessment of developing technologies is presented along with the key issues of how new automotive technologies should be integrated into our lives and what types of regulatory reform would facilitate needed changes.

  2. Solar electric propulsion for Mars transport vehicles

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  3. Simulation of Electrical Transport in Rocks under Mechanical Action

    NASA Astrophysics Data System (ADS)

    Salgueiro da Silva, M. A.; Seixas, T. M.

    2015-12-01

    Rock's electrical properties can be changed by mechanical action, especially when deformation is accompanied by micro-fracturing processes. Knowing how electrical charge is generated in inelastically deformed rocks, the nature and properties of the generated charge carriers, and their spatial distribution and propagation is crucial to gain insight into the origin of seismo-electromagnetic signals. In this work, we describe briefly a model for the numerical simulation of electrical transport in rocks under mechanical action, assuming that high and low mobility charge carriers of opposite signs can be simultaneously generated by micro-fracturing processes and recombine, diffuse and drift across the sample rock. The electrical behavior can then be described using an adaptation of the formalism applied to semiconductors. We provide simulation results on a one-dimensional lattice using finite-difference discretization. Our results show that a large mobility contrast among charge carriers allows charge separation inside the deformation region, which leads to the formation of charged layers of alternate signs. Inside these layers, rapid electric field variations are observed which can lead to the emission of electromagnetic radiation. With proper positioning of current electrodes inside the deformation region, it is possible to collect electrical current even without any applied voltage. We discuss our results in the light of available experimental results on the generation of electrical and electromagnetic signals in deformed rocks.

  4. Electrical transport properties of Fe 3- xCr xO 4 ferrite films on MgO (0 0 1) grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, D. S.; Chern, G.

    2012-02-01

    In this report, we fabricated a series of Fe 3- xCr xO 4(0≦x≦2) films by plasma-oxygen-assisted molecular beam epitaxy (MBE) and did structural and electrical characterizations of these films. These films show textured single phase quality and the lattice parameters are consistent with those of the bulk at low Cr composition ( x<0.9). However, the lattice parameters show severe deviation from the bulk value in the intermediate region of 0.9≦x≦1.5 and no diffraction can be resolved at x∼2. These discrepancies may be attributed to the cation distributions and the instability of spinal structure as Cr concentration becomes dominant. The resistivity presents a typical Arrhenius temperature dependence with ρ= ρ0 exp ( Ep/ kBT) indicating that the transport is due to a hopping mechanism. The prefactor ρ0 increases in Fe 3- xCr xO 4, at smaller x but tends to level out for x>1, suggesting that Cr 3+ ions may start to replace Fe 3+ ions at the A site in the high x region. The activation energy of electrical hopping gradually increases at low Cr concentration but abruptly rises to ∼110 meV at x>0.9, suggesting a crossover from electron-hopping mediated transport to a thermally activated band gap excitation.

  5. Electrical and Mechanical Properties of Graphene

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Graphene is an exciting new atomically-thin two-dimensional (2D) system of carbon atoms organized in a hexagonal lattice structure. This "wonder material" has been extensively studied in the last few years since it's first isolation in 2004. Its rapid rise to popularity in scientific and technological communities can be attributed to a number of its exceptional properties. In this thesis I will present several topics including fabrication of graphene devices, electrical and mechanical properties of graphene. I will start with a brief introduction of electronic transport in nanosclae system including quantum Hall effect, followed by a discussion of fundamental electrical and mechanical properties of graphene. Next I will describe how graphene devices are produced: from the famous "mechnical exfoliation" to our innovative "scratching exfoliation" method, together with the traditional lithography fabrication for graphene devices. We also developed a lithography-free technique for making electrical contacts to suspended graphene devices. Most of the suspended devices presented in this thesis are fabricated by this technique. Graphene has remarkable electrical properties thanks to its crystal and band structures. In Chapter 3, I will first focus on proximity-induced superconductivity in graphene Josephson transistors. In this section we investigate electronic transport in single layer graphene coupled to superconducting electrodes. We observe significant suppression in the critical current I c and large variation in the product IcR n in comparison to theoretic prediction; both phenomena can be satisfactorily accounted for by premature switching in underdamped Josephson junctions. Another focus of our studies is quantum Hall effect and many body physics in graphene in suspended bilayer and trilayer graphene. We demonstrate that symmetry breaking of the first 3 Landau levels and fractional quantum Hall states are observed in both bilayer and trilayer suspended graphene

  6. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Wave-Vector and Temperature-Dependent Electron Transport in a Magnetic Nanostructure Modulated by Bias

    NASA Astrophysics Data System (ADS)

    Lu, Jian-Duo; Li, Yun-Bao; Wang, Yu-Hua; Hou, Yang-Lai

    2010-08-01

    We theoretically investigate the wave-vector and temperature-dependent electron transport in a magnetic nanostructure modulated by an applied bias. The large spin-polarization can be achieved in such a device, and the degree of spin-polarization strongly depends on the transverse wave-vector and the temperature. These interesting properties may be helpful to spin-polarize electrons into semiconductors, and this device may be used as a spin filter.

  7. Transport properties of uranium dioxide

    SciTech Connect

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the transport properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, measurements of thermal diffusivity and emissivity have been made. In addition to incorporating this new data, new equations have been derived to fit the thermal diffusivity and thermal conductivity data. This analysis is consistent with the analysis of enthalpy and heat capacity. A new form of equation for the emissivity is also given. The present report comprises the transport part of the UO/sub 2/ portion of section A of the planned complete revision of Properties for LMFBR Safety Analysis.

  8. Electrical transport in thin films of copper silicide

    NASA Astrophysics Data System (ADS)

    Aboelfotoh, M. O.; Krusin-Elbaum, L.

    1991-09-01

    Electrical properties of thin films of η'-Cu3Si phase with a tetragonal crystal structure are reported on. Electrical transport in these films is found to be very sensitive to oxygen exposure. Cu3Si reacts with oxygen at room temperature to form both Si and Cu oxides, resulting in high-room-temperature (˜60 μΩ cm) and even nonmetallic resistivity. This behavior is contrasted with that of low-resistivity (˜5 μΩ cm at room temperature) Cu3Ge, which is inert in an oxygen environment.

  9. Electric Properties of Semiconductor Nanopillars

    NASA Astrophysics Data System (ADS)

    Bartsch, Th.; Sonnenberg, D.; Strelow, Ch.; Heyn, Ch.; Hansen, W.

    2014-06-01

    We studied the electrical transport through epitaxial, 8 nm long and about 100 nm diameter, GaAs pillars. They are fabricated with molecular beam epitaxy using a self-assembling method called local droplet etching. The nanopillars are embedded in an AlGaAs tunneling barrier between two epitaxial GaAs layers. Because of the epitaxial growth, the pillars are connected to these GaAs layers without additional interfaces. They thus can be considered as electronic point contacts between three-dimensional electron reservoirs. Voltage-current characteristics of the structures feature a characteristic asymmetry that is not observed in reference samples. Furthermore, the behavior of the resistance in magnetic fields applied parallel and perpendicular to the current direction is compared for samples with and without pillars. Clear differences are found that are associated with current-carrying states in the pillars.

  10. Hybrid Electric Propulsion Technologies for Commercial Transports

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  11. Local structural distortion and electrical transport properties of Bi(Ni1/2Ti1/2)O3 perovskite under high pressure

    DOE PAGES

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; ...

    2015-12-16

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. We find, consistent withmore » PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.« less

  12. Local structural distortion and electrical transport properties of Bi(Ni1/2Ti1/2)O3 perovskite under high pressure

    PubMed Central

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu-Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng

    2015-01-01

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa. PMID:26671171

  13. Transport properties in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Biolsi, L., Jr.

    1979-01-01

    The computer program used to obtain transport properties for the Hulburt-Hirschfelder potential was tested. Transport properties for the C-C interaction were calculated. Rough estimates for transport properties for the important ablation species were obtained as well as estimates of transport properties for some of the species associated with photochemical smog. The results are discussed.

  14. From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: influence of percolation on the electrical transport properties.

    PubMed

    Bauer, D; Youssef, S; Han, M; Bekri, S; Rosenberg, E; Fleury, M; Vizika, O

    2011-07-01

    Standard reservoir evaluations are based on Archie's law relating the average water saturation to the average electrical resistivity by R(ind) = S(w)(-2). However, especially in the case of complex heterogeneous carbonates, deviation from Archie's law is observed and generally attributed to factors affecting the percolation or disconnectedness of the different phases (wetting films, microporosity, macropores) assuring electrical conductance. Pore-network models (PNM's) in combination with high-resolution computed microtomography (μ-CT) constitute a very effective tool to investigate the influence of the geometry and topology of the porous media on the spatial distribution of the conductive phase, and therefore on the shape of the resistivity index curve. An extended version of the classical PNM applicable to dual-porosity systems is presented. It combines the classical pore-network modeling applied on the macroporous space with the macroscopic properties of the microporous phase, supposing that the two pore systems act in parallel. Three-dimensional images provide information on the connectedness of the microporous phase, which is then included in the simulations. Electrical behavior of sandstone and two carbonates presenting distinct resistivity index curves were simulated and compared to measurements. Both Archie and "non-Archie" behavior were correctly reproduced, and the curve shape was explained considering percolation of the different phases.

  15. Neoclassical transport properties and their limits in NSTX

    NASA Astrophysics Data System (ADS)

    Houlberg, W. A.; Strand, P. I.; Shaing, K. C.

    2001-10-01

    The low aspect ratio and low toroidal field of NSTX enhance its neoclassical transport properties, but also push the limits of standard neoclassical models. Particle and energy transport, plasma rotation, the radial electric field, and bootstrap current are examined for typical NSTX discharges. Regimes of inward and outward impurity transport driven by a combination of the inductive electric field (Ware pinch), inward transport on the deuterium density gradient, and outward transport on the ion temperature gradient are identified. Orbit losses and atomic physics effects near the plasma boundary lead to modifications in the bootstrap current and impurity transport properties in the H-mode pedestal. Potato orbit effects near the axis, included as a viscosity modification, can enhance the ion energy transport, but are reduced by orbit squeezing. The low aspect ratio and high beta of NSTX plasmas provide a critical test of the limits of neoclassical theory.

  16. Electrical transport properties of CoMn0.2-xGaxFe1.8O4 ferrites using complex impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsay, Chien-Yie; Lin, Yi-Hsiang; Wang, Yao-Ming; Chang, Horng-Yi; Lei, Chien-Ming; Jen, Shien-Uang

    2016-05-01

    In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2-xGaxFe1.8O4 (x=0, 0.1, and 0.2) prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z') and the imaginary part (Z") of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb) also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb) significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.

  17. Electric transport in three-dimensional skyrmion/monopole crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Mishchenko, Andrey S.; De Filippis, Giulio; Nagaosa, Naoto

    2016-11-01

    We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by skyrmion strings. This spin structure is proposed for MnGe based on neutron scattering experiments as well as Lorentz transmission electron microscopy observations. Equipped with a sophisticated spectral analysis method, we adopt the finite temperature Green's function technique to calculate the longitudinal dc electric transport in such a system. We consider conduction electrons interacting with spin waves of the topologically nontrivial spin texture, wherein fluctuations of monopolar emergent magnetic fields enter. We study in detail the behavior of electric resistivity under the influence of temperature, external magnetic field, and a characteristic monopole motion, especially a novel magnetoresistivity effect describing the latest experimental observations in MnGe, wherein a topological phase transition signifying strong correlations is identified.

  18. Temperature dependent electrical transport of disordered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Muchharla, Baleeswaraiah; Narayanan, T. N.; Balakrishnan, Kaushik; Ajayan, Pulickel M.; Talapatra, Saikat

    2014-06-01

    We report on the simple route for the synthesis of chemically reduced graphene oxide (rGO) using ascorbic acid (a green chemical) as a reducing agent. Temperature-dependent electrical transport properties of rGO thin films have been studied in a wide range (50 K T 400 K) of temperature. Electrical conduction in rGO thin films was displayed in two different temperature regimes. At higher temperatures, Arrhenius-like temperature dependence of resistance was observed indicating a band gap dominating transport behavior. At lower temperatures, the rGO sample showed a conduction mechanism consistent with Mott's two-dimensional variable range hopping (2D-VRH). An unsaturated negative magnetoresistance (MR) was observed up to 3 T field. A decrease in negative MR at high temperatures is attributed to the phonon scattering of charge carriers.

  19. Effect of gamma ray irradiation on the structural and electrical transport properties of PrFe{sub 1−x}Mn{sub x}O{sub 3}

    SciTech Connect

    Sultan, Khalid Ikram, M.; Asokan, K.

    2014-04-24

    The effect of gamma ray irradiation on the structural and transport properties of polycrystalline bulk samples of PrFe{sub 1−x}Mn{sub x}O{sub 3} (x = 0.0, 0.1, 0.5) were investigated. The samples were synthesized by solid state reaction method and exposed to {sup 60}Co gamma radiation to accumulated dose of 625 KGy. From the Raman study, the modes exhibit a blue shift with broadening of spectral features in the irradiated samples. The dielectric constant (ε′) was also studied as a function of frequency. The dielectric constant and ac conductivity increases with Mn doping but decrease on irradiation. Exposure to gamma radiation results in substantial modification in the physical properties of these compounds.

  20. Transport Properties for Combustion Modeling

    SciTech Connect

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  1. Electrical properties of bone. A review.

    PubMed

    Singh, S; Saha, S

    1984-06-01

    A review of the available data on the electrical properties (resistance, capacitance, dielectric constant, dielectric loss factor, and dissipation factor, etc.) of whole as well as standardized bone specimens suggest that impedance was lowest in the longitudinal direction and highest in the radial direction. This is further evidence of the anisotropic nature of bone. The electrical properties of fully hydrated bone were significantly different from those of dry and partially wet bone and these properties were highly frequency-dependent. Other variables that influence the electrical properties, such as moisture content, principles and methods of measurement, temperature, and pH and conductivity of the immersing fluid, etc., have also been reviewed. Delineation of these variables is important in reporting test results on the electrical properties of bone; only then can the data on different electrical properties of bone reported by various authors be compared. Future research is needed to characterize the effect of age, microstructure, mineral content, and various disease processes on the electrical properties of bone. Such information may lead to new insight on the role of electrical properties on bone remodeling. An understanding of the electrical behavior of bone is also important for the design of electrical stimulation devices and their proper use for maximum osteogenic effect.

  2. Transport properties of ceramic composites

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1996-08-01

    Instrumentation and procedures have been completed for measurement of gas permeability and mass diffusivity of fiber preforms and porous materials. Results are reported for composites reinforced with Nicalon fiber in cloth lay-up and 3-D weave and with Nextel fiber in multi-layer braid. Measured permeability values range from near 100 to less than 0.1 darcies. Mass diffusivity is reported as a structure factor relating the diffusion through the porous material to that in free space. This measure is independent of the diffusing species and depends only on the pore structure of the material. Measurements are compared to predictions of a node-bond model for gas transport. Model parameters adjusted to match measured transport properties relate to physical microstructure features of the different architectures. Combination of this transport model with the CVI process model offers a predictive method to evaluate the densification behavior of various fiber preforms.

  3. Transport properties of quark and gluon plasmas

    SciTech Connect

    Heiselberg, H.

    1993-12-01

    The kinetic properties of relativistic quark-gluon and electron-photon plasmas are described in the weak coupling limit. The troublesome Rutherford divergence at small scattering angles is screened by Debye screening for the longitudinal or electric part of the interactions. The transverse or magnetic part of the interactions is effectively screened by Landau damping of the virtual photons and gluons transferred in the QED and QCD interactions respectively. Including screening a number of transport coefficients for QCD and QED plasmas can be calculated to leading order in the interaction strength, including rates of momentum and thermal relaxation, electrical conductivity, viscosities, flavor and spin diffusion of both high temperature and degenerate plasmas. Damping of quarks and gluons as well as color diffusion in quark-gluon plasmas is, however, shown not to be sufficiently screened and the rates depends on an infrared cut-off of order the ``magnetic mass,`` m{sub mag} {approximately} g{sup 2}T.

  4. Electrical and Thermal Transport in Inhomogeneous Luttinger Liquids

    DOE PAGES

    DeGottardi, Wade; Matveev, K. A.

    2015-06-12

    In this paper, we study the transport properties of long quantum wires by generalizing the Luttinger liquid approach to allow for the finite lifetime of the bosonic excitations. Our theory accounts for long-range disorder and strong electron interactions, both of which are common features of experiments with quantum wires. We obtain the electrical and thermal resistances and thermoelectric properties of such quantum wires and find a strong deviation from perfect conductance quantization. Finally, we cast our results in terms of the thermal conductivity and bulk viscosity of the electron liquid and give the temperature scale above which the transport canmore » be described by classical hydrodynamics.« less

  5. Magnetism, half-metallicity and electrical transport properties of V- and Cr-doped semiconductor SnTe: A theoretical study

    SciTech Connect

    Liu, Y.; Bose, S. K.; Kudrnovský, J.

    2013-12-07

    This work presents results for the electronic structure, magnetic properties, and electrical resistivity of the semiconductor SnTe doped with 3d transition metals V and Cr. From the standpoint of potential application in spintronics, we look for half-metallic states and analyze their properties in both rock salt and zinc blende structures using ab initio electronic structure methods. In both cases, it is the Sn-sublattice that is doped with the transition metals, as has been the case with experiments performed so far. We find four half-metallic compounds at their optimized cell volumes. Results of exchange interactions and the Curie temperature are presented and analyzed for all the relevant cases. Resistivity calculation based on Kubo-Greenwood formalism shows that the resistivities of these alloys due to transition metal doping of the Sn-sublattice may vary, in most cases, from typical liquid metal or metallic glass value to 2–3 times higher. 25% V-doping of the Sn-sublattice in the rock salt structure gives a very high resistivity, which can be traced to high values of the lattice parameter resulting in drastically reduced hopping or diffusivity of the states at the Fermi level.

  6. Electrical properties of dry rocks

    NASA Technical Reports Server (NTRS)

    Morrison, H.

    1973-01-01

    The mechanism by which atmospheric moisture affects the conductivity and dielectric constant of rock specimens was studied in time and frequency domains. It is suggested that adsorbed water molecules alter the surface conductivity in a manner similar to that observed in semiconductors and insulators. Powdered basalts show a low-frequency dispersion produced by the atmospheric moisture remaining in the pore system of the sample in a high vacuum; this effect is attributed to isolated adsorption centers. Simulated lunar permafrost at 100 K and a vacuum of 10 to the -8th power torr together with data on lunar samples contaminated with atmospheric moisture and the dielectric properties of ice at various temperatures indicate that, if permafrost exists in the moon it should present a relaxation peak at approximately 300 Hz; for temperatures up to 263 K it may go up to 20 KHz. It is concluded that in order to have electrical steady state conditions in rock samples it is necessary to have volume charge accumulations at interfaces within the sample and at the electrode sample interface. A method for measuring heterogeneous dielectrics with non-negligible ohmic and dielectric conductivities is proposed and experimentally verified.

  7. Electrical properties of spherical syncytia.

    PubMed Central

    Eisenberg, R S; Barcilon, V; Mathias, R T

    1979-01-01

    Syncytial tissues consist of many cells whose intracellular spaces are electrically coupled one to another. Such tissues typically include narrow, tortuous extracellular space and often have specialized membranes at their outer surface. We derive differential equations to describe the potentials induced when a sinusoidal or steady current is applied to the intracellular space with a microelectrode. We derive solutions for spherical preparations with isotropic properties or with a particular anisotropy in effective extracellular and intracellular resistivities. Solutions are presented in an approximate form with a simple physical interpretation. The leading term in the intracellular potential describes an "isopotential" cell in which there is no spatial variation of intracellular potential. The leading term in the extracellular potential, and thus the potential across the inner membranes, varies with radial position, even at zero frequency. The next term of the potentials describes the direct effects of the point source of current and, for the parameters given here, acts as a series resistance producing a large local potential drop essentially independent of frequency. A lumped equivalent circuit describes the "low frequency" behavior of the syncytium, and a distributed circuit gives a reasonably accurate general description. Graphs of the spatial variation and frequency dependence of intracellular, extracellular, and transmembrane potential are given, the response to sinusoidal currents is used to calculate numerically the response to a step function of current. PMID:262383

  8. Transport properties in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Biolsi, L., Jr.

    1979-01-01

    Activities reported include: (1) testing of the computer program used to obtain transport properties for the Hulburt-Hirschfelder potential; (2) calculation of transport properties for the C2-C interaction; (3) preliminary calculations for the C2-C2 interaction; (4) calculation of transport properties for the C2H-He interaction; (5) consideration of the effect of inelastic collisions on the transport properties; and (6) the use of the Hulburt-Hirschfelder potential to model ion-atom interactions.

  9. Electrical transport engineering of semiconductor superlattice structures

    NASA Astrophysics Data System (ADS)

    Shokri, Aliasghar

    2014-04-01

    We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig-Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.

  10. Electrical properties of carbon nanotube FETs

    NASA Astrophysics Data System (ADS)

    Mizutani, T.; Ohno, Y.; Kishimoto, S.

    2008-08-01

    The electrical properties of carbon nanotube FETs (CNTFETs) have been studied in detail. The conduction type of the CNTFETs was dependent on the work function of the contact metal, which suggests that Fermi level pinning at the metal/nanotube interface is not strong. Based on the two-probe and four-probe resistance measurements, it has been shown that the carrier transport at the contact is explained by the edge contact model even in the diffusive regime. The chemical doping using F4TCNQ was effective in reducing not only the channel resistance but also the contact resistance. In the CNTFETs fabricated using plasma-enhanced (PE) CVD-grown nanotubes, the drain current of the most of the devices could be modulated by the gate voltage with small OFF current suggesting the preferential growth of the nanotubes with semiconducting behavior. Multichannel top-gate CNTFETs with horizontally-aligned nanotubes as channels have been successfully fabricated using CNT growth on the ST-cut quartz substrate, arc-discharge plasma deposition of the catalyst metal, and ALD gate insulator deposition. The devices show normally-on and n-type conduction property with a relatively-high ON current of 13 mA/mm. CNTFETs with nanotube network have also been fabricated by direct growth on the SiO2/Si substrate using grid-inserted PECVD and using catalyst formed on the channel area of the FETs. The uniformity of the electrical properties of the network channel CNTFETs were very good. Finally, it has been shown that the surface potential profile measurement based on the electrostatic force detection in the scanning probe microscopy was effective in studying the behavior of the CNTFETs such as the transient behavior and the effect of the defects.

  11. Transport properties in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Biolsi, L., Jr.

    1978-01-01

    The calculation of transport properties near the surface of a probe entering the atmosphere of Jupiter is discussed for (1) transport properties in the pure Jovian atmosphere, (2) transport properties for collisions between monatomic carbon atoms, including the effect of excited electronic states, (3) transport properties at the boundaries for mixing of the pure Jovian atmosphere and the atmosphere due to the injection of gaseous ablation products, and (4) transport properties for interactions involving some of the molecular ablation products. The transport properties were calculated using the kinetic theory of gases. Transport collision integrals were calculated for only a limited set of empirical and semiempirical interaction potentials. Since the accuracy of the fit of these empirical potentials to the true potential usually determines the accuracy of the calculation of the transport properties, the various interaction potentials used in these calculations are discussed.

  12. Electrical Properties of Reactive Liquid Crystal Semiconductors

    NASA Astrophysics Data System (ADS)

    McCulloch, Iain; Coelle, Michael; Genevicius, Kristijonas; Hamilton, Rick; Heckmeier, Michael; Heeney, Martin; Kreouzis, Theo; Shkunov, Maxim; Zhang, Weimin

    2008-01-01

    Fabrication of display products by low cost printing technologies such as ink jet, gravure offset lithography and flexography requires solution processable semiconductors for the backplane electronics. The products will typically be of lower performance than polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal displays (AMLCD's), and flexible organic light-emitting diode (OLED) displays. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes the initial evaluation of reactive mesogen semiconductors, which can polymerise within mesophase temperatures, “freezing in” the order in crosslinked domains. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed to facilitate charge transport and provide good oxidative stability, were prepared and their liquid crystalline properties evaluated. Both time-of-flight and field effect transistor devices were prepared and their electrical characterisation reported.

  13. Synthesis, crystal structure, electrical properties, and sodium transport pathways of the new arsenate Na4Co7(AsO4)6

    NASA Astrophysics Data System (ADS)

    Ben Smida, Youssef; Marzouki, Riadh; Georges, Samuel; Kutteh, Ramzi; Avdeev, Maxim; Guesmi, Abderrahmen; Zid, Mohamed Faouzi

    2016-07-01

    A new sodium cobalt (II) arsenate Na4Co7(AsO4)6 has been synthesized by a solid-state reaction and its crystal structure determined from single crystal X-ray diffraction data. It crystallizes in the monoclinic system, space group C2/m, with a=10.7098(9) Å, b=14.7837(9) Å, c=6.6845(7) Å, and β=105.545(9)°. The structure is described as a three-dimensional framework built up of corner-edge sharing CoO6, CoO4 and AsO4 polyhedra, with interconnecting channels along [100] in which the Na+ cations are located. The densest ceramics with relative density of 94% was obtained by ball milling and optimization of sintering temperature, and its microstructure characterized by scanning electron microscopy. The electrical properties of the ceramics were studied over a temperature interval from 280 °C to 560 °C using the complex impedance spectroscopy over the range of 13 MHz-5 Hz. The ionic bulk conductivity value of the sample at 360 °C is 2.51 10-5 S cm-1 and the measured activation energy is Ea=1 eV. The sodium migration pathways in the crystal structure were investigated computationally using the bond valence site energy (BVSE) model and classical molecular dynamics (MD) simulations.

  14. Electrical transport properties and modelling of electrostrictive resonance phenomena in Ba2/3Sr1/3TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Ghalem, A.; Huitema, L.; Crunteanu, A.; Rammal, M.; Trupina, L.; Nedelcu, L.; Banciu, M. G.; Dutheil, P.; Constantinescu, C.; Marchet, P.; Dumas-Bouchiat, F.; Champeaux, C.

    2016-11-01

    We present the conduction mechanisms of Ba2/3Sr1/3TiO3 thin films integrated in metal-insulator-metal (MIM) capacitors and the modelling of the frequency-dependent electrostrictive resonances (in the 100 MHz-10 GHz domain) induced in the devices upon applying different voltage biases. Au/BST/Ir MIM structures on MgO substrates have been fabricated and, depending on their specific polarization, we highlighted different conduction mechanisms in the devices. Depending on the dc bias polarity, the conduction current across the material shows a space-charge-limited-current behavior under negative polarization, whereas under positive bias, the conduction obeys an electrode-limited Schottky-type law at the Au/BST interface. The application of an electric field on the device induces the onset of acoustic resonances related to electrostrictive phenomena in the ferroelectric material. We modeled these acoustic resonances over a wide frequency range, by using a modified Lakin model, which takes into account the dispersions of acoustic properties near the lower electrode/thin film interface.

  15. Charge Transport Properties in Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Moog, Mark; Tsui, Frank; Vonwald, Ian; You, Wei

    Electrical transport properties in poly(3-methyl)thiophene (P3MT) brushes have been studied. The P3MT brushes correspond to a new type of surface-tethered, vertically oriented conjugated molecular wires, sandwiched between two metallic electrodes to form the electrode-molecule-electrode (EME) devices. P3MT is a highly conjugated polymer, a ''workhorse'' material for organic electronics and photonics. The P3MT brushes were grown on ITO surfaces with controlled length (between 2 and 100 nm). The top electrodes were transfer-printed Au films with lateral dimensions between 200 nm and 50 μm. I-V and differential conductance measurements were performed using conductive AFM and 4-terminal techniques. Tunneling and field-emission measurements in EME devices with molecular lengths < 5 nm show HOMO mediated direct hole tunneling with energy barriers of 0.3 and 0.5 eV at the respective interfaces with ITO and Au. The transport properties in longer brushes are indicative of the two quasi-Ohmic interfaces with a characteristic offset in the conductance minimum of 0.12 V biased toward the ITO. Temperature dependent parameters have been examined at various molecular lengths. The drift mobility and the interplay between intra- and intermolecular transport have been investigated.

  16. Electrical Transport in Thin Films of Doped Silicon Nanocrystals

    NASA Astrophysics Data System (ADS)

    Chen, Ting

    Colloidal semiconductor nanocrystals (NCs) have shown great potential for thin-film optoelectronics, such as solar cells and light emitting diodes (LEDs), due to their size-tunable electronic properties and solution processability. Significant progress has been made in developing synthetic methods to prepare high quality NCs, achieving controllable doping, and integrating NCs into high performance electronic devices. Most electronic applications rely on the electrical conduction through NC films, therefore, fundamental understanding of the carrier transport in NC films is required to further improve device performance and provide guide for future device design. My research is inspired by the successful achievement of a highly efficient LED with hydrosilylated Si NCs as the emissive layer. To better understand the electrical conduction in the Si NC system, a systematic study of the temperature and electric-field dependence of the film conductivity is performed. It shows that the conductivity of the Si NC film is limited by the ionization of rare NCs containing donor impurities and the carrier transport follows nearest neighbor hopping. The Si NCs are inherently doped with a very small concentration of impurities, about 1 donor per 1000 NCs. This is also the first study of carrier transport in a lightly doped NC system, and results obtained in this work can apply to other NC materials as well. The organic ligands used to passivate NC surface are necessary to achieve strong photoluminescence, however, they inhibit the carrier transport due to the resulting large tunneling barrier between neighboring NCs. The localization length estimated from the temperature data in the high electric field regime is about 1 nm. In addition, the activation energy required for conduction also depends on the surrounding medium of NCs, the electrical conduction can be improved by reducing the activation energy through engineering of the matrix of NC arrays. Doping is critical to enable

  17. Research and development of electric vehicles for clean transportation.

    PubMed

    Wada, Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied.

  18. Electrical Properties of Thin Films of Alumina.

    DTIC Science & Technology

    The report consists of a literature survey on the electrical properties of alumina and aluminum oxide thin films . A bibliographic listing of reports is included along with abstracts from most of them.

  19. The charge and spin transport properties in hexagonal silicene nanorings

    NASA Astrophysics Data System (ADS)

    Xu, N.; Zhang, H. Y.; Wu, X. Q.; Chen, Q.; Ding, J. W.

    2017-09-01

    Based on the tight-binding model, charge and spin transport properties of hexagonal silicene rings are investigated within the nonequilibrium Green’s function technique. The effects of external electric, magnetic and exchange fields are taken into account. The calculated results reveal that the hexagonal silicene nanorings act as a controllable spin filter. The near-perfect spin polarization can be achieved by adjusting the electric, magnetic and exchange fields. The calculated results offer new possibilities for silicene ring based spin nanodevices.

  20. Influence of Oxidation on Electrical Properties of Compacted Cu Nanopowders

    NASA Astrophysics Data System (ADS)

    Nadutov, Volodymyr; Perekos, Anatoliy; Kokorin, Volodymyr; Konoplyuk, Sergiy; Kabantsev, Taras

    2016-10-01

    The phase composition and electrical transport properties of Cu powder obtained by electric spark dispersion and the pellets manufactured from this powder were studied by X-ray phase analysis and electric resistance measurements. The compacted powders were annealed in pure Ar atmosphere. It was shown that electrical resistance of the compacted Cu specimens essentially depends on the annealing temperature. In particular, the electrical resistance of the pellet after annealing at 873 K decreases on heating at low temperatures (semiconducting mechanism). As the temperature is increased, semiconducting behavior of resistivity is altered for metallic one. This change of conductivity type is ascribed to formation of metallic oxide and modification of its content during annealing.

  1. Influence of Oxidation on Electrical Properties of Compacted Cu Nanopowders.

    PubMed

    Nadutov, Volodymyr; Perekos, Anatoliy; Kokorin, Volodymyr; Konoplyuk, Sergiy; Kabantsev, Taras

    2016-12-01

    The phase composition and electrical transport properties of Cu powder obtained by electric spark dispersion and the pellets manufactured from this powder were studied by X-ray phase analysis and electric resistance measurements. The compacted powders were annealed in pure Ar atmosphere. It was shown that electrical resistance of the compacted Cu specimens essentially depends on the annealing temperature. In particular, the electrical resistance of the pellet after annealing at 873 K decreases on heating at low temperatures (semiconducting mechanism). As the temperature is increased, semiconducting behavior of resistivity is altered for metallic one. This change of conductivity type is ascribed to formation of metallic oxide and modification of its content during annealing.

  2. The Electrical Property of Matter.

    ERIC Educational Resources Information Center

    DeMeo, Stephen; Lythcott, Jean

    2001-01-01

    Describes a demonstration of static charge using balloons and crystals to illustrate the electrical nature of matter. Building on the classic physics demonstration that uses pieces of paper and a plastic rod, this approach adds a new dimension of chemistry. Offers suggestions for how to discuss the observed phenomenon. (DLH)

  3. The Electrical Property of Matter.

    ERIC Educational Resources Information Center

    DeMeo, Stephen; Lythcott, Jean

    2001-01-01

    Describes a demonstration of static charge using balloons and crystals to illustrate the electrical nature of matter. Building on the classic physics demonstration that uses pieces of paper and a plastic rod, this approach adds a new dimension of chemistry. Offers suggestions for how to discuss the observed phenomenon. (DLH)

  4. Transport properties of ceramic composites

    SciTech Connect

    Starr, T.L.

    1995-08-01

    This project involves experimental and modeling investigation of the transport properties of chemical vapor infiltration (CVI) preforms and densified composites, with particular emphasis on gas permeability and mass diffusivity. The results of this work will be useful both for on-going CVI process development and for evaluation and optimization of composite materials for fossil energy applications. With preforms made with 500 filaments/tow Nicalon at 40 vol% fiber loading, permeability values are similar for square-weave cloth layup and 3-D weave at low density. At greater densification the 3-D weave permeability is lower and approaches zero with significantly more closed porosity than the cloth layup. For filament wound preforms we were unable to make reliable measurements with the available materials. A model for gas transport in these materials utilizes percolation theory concepts. The ultimate achievable density is related to the closing of a continuous gas path through the preform. As the density approaches this limit the gas permeability and diffusivity vanish exponentially. The value of this limit is controlled primarily by the preform fiber architecture. The observed difference between the cloth layup and 3-D weave materials is due to the larger pores at tow crossing points found in the 3-D weave.

  5. Optical and electrical properties of nanostructured metallic electrical contacts

    NASA Astrophysics Data System (ADS)

    Toranzos, Victor J.; Ortiz, Guillermo P.; Mochán, W. Luis; Zerbino, Jorge O.

    2017-01-01

    We study the optical and electrical properties of silver films with a graded thickness obtained through metallic evaporation in vacuum on a tilted substrate to evaluate their use as semitransparent electrical contacts. We measure their ellipsometric coefficients, optical transmissions and electrical conductivity for different widths, and we employ an efficient recursive method to calculate their macroscopic dielectric function, their optical properties and their microscopic electric fields. The topology of very thin films corresponds to disconnected islands, while very wide films are simply connected. For intermediate widths the film becomes semicontinuous, multiply connected, and its microscopic electric field develops hotspots at optical resonances which appear near the percolation threshold of the conducting phase, yielding large ohmic losses that increase the absorptance above that of a corresponding homogeneous film. Optimizing the thickness of the film to maximize its transmittance above the percolation threshold of the conductive phase we obtained a film with transmittance T  =  0.41 and a sheet resistance Rs\\text{max}≈ 2.7 Ω . We also analyze the observed emission frequency shift of porous silicon electroluminescent devices when Ag films are used as solid electrical contacts in replacement of electrolytic ones.

  6. Electrical properties with relaxation through human blood

    PubMed Central

    Abdalla, S.; Al-ameer, S. S.; Al-Magaishi, S. H.

    2010-01-01

    The present work aims to study the effects of the blood-microstructure on the electrical conduction from two different but correlated properties: Electrical and mechanical (viscosity), and to derive useful parameters for the evaluation of electrical conduction as a function of the blood viscosity. ac-conductivity and dielectric constant of normal and diabetic blood are measured in the frequency range 10 kHz–1 MHz at the room temperature. An empirical relation relating the resistivity and viscosity of the blood has been presented. The results show that a microfluidic device is a viable and simple solution for determination of electrical and rheological behaviors of blood samples. PMID:20686650

  7. Electronic transition and electrical transport properties of delafossite CuCr1-xMgxO2 (0 ≤ x ≤ 12%) films prepared by the sol-gel method: A composition dependence study

    NASA Astrophysics Data System (ADS)

    Han, M. J.; Duan, Z. H.; Zhang, J. Z.; Zhang, S.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2013-10-01

    Highly transparent CuCr1-xMgxO2 (0 ≤ x ≤ 12%) films were prepared on (001) sapphire substrates by sol-gel method. The microstructure, phonon modes, optical band gap, and electrical transport properties have been systematically discussed. It was found that Mg-doping improved the crystal quality and enhanced the (00l) preferred orientation. The spectral transmittance of films approaches about 70%-75% in the visible-near-infrared wavelength region. With increasing Mg-composition, the optical band gap first declines and climbs up due to the band gap renormalization and Burstein-Moss effect. The direct and indirect band gaps of CuCr0.94Mg0.06O2 film are 3.00 and 2.56 eV, respectively. In addition, it shows a crossover from the thermal activation behavior to that of three-dimensional variable range hopping from temperature-dependent electrical conductivity. The crossover temperature decreases with increasing Mg-doping composition, which can be ascribed to the change of spin-charge coupling between the hole and the local spin at Cr site. It should be noted that the electrical conductivity of CuCr1-xMgxO2 films becomes larger with increasing x value. The highest electrical conductivity of 3.85 S cm-1 at room temperature for x = 12% is four-order magnitude larger than that (8.81 × 10-4 S cm-1) for pure CuCrO2 film. The high spectral transmittance and larger conductivity indicate that Mg-doped CuCrO2 films are promising for optoelectronic device applications.

  8. Magnetic and electrical properties of Martian particles

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.

    1991-01-01

    The only determinations of the magnetic properties of Martian materials come from experiments on the two Viking Landers. The results suggest Martian soil containing 1 to 10 percent of a highly magnetic phase. Though the magnetic phase mineral was not conclusively identified, the predominate interpretation is that the magnetic phase is probably maghemite. The electrical properties of the surface of Mars were only measured remotely by observations with Earth based radar, microwave radiometry, and inference from radio-occultation of Mars orbiting spacecraft. No direct measurements of electrical properties on Martian materials have been performed.

  9. Study on the electrical transport properties of La2/3Ba1/3MnO3:Ag0.04/LaAlO3 (001) films

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Zhao, Shuang; Zhang, Shao-Chun

    2017-01-01

    La2/3Ba1/3MnO3: wt%Agx (LBMO:Agx, x=0.04) films were prepared on single crystalline (001)-orientated LaAlO3 substrates by pulsed laser deposition technique. All the samples show along the (00l) orientation in rhombohedral structure with R3c space group. The surface roughness (Ra), insulator-metal transition temperature (Tp) and resistivity at Tp (ρTp) of the LBMO:Ag0.04 films reached optimal values of 3.29 nm, 288 K and 0.033 Ω cm at 740 °C, respectively. The improvement of electrical transport properties in the films are attributed to the optimal growth temperature and Ag-doping improve the microstructure of the surfaces, grain boundaries (GBs) in connectivity and better crystallization. In addition, the electrical conduction behaviors can be well fitted with the grain/domain boundary, electron-electron and magnon scattering mechanisms in the ferromagnetic metallic region (TTp).

  10. Anisotropic electrical and lattice transport properties of ordered quaternary phases Cr2TiAlC2 and Mo2TiAlC2: A first principles study

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Ding, Y. C.; Xiao, B.; Cheng, Y. H.

    2016-11-01

    Electrical conductivities of Cr2TiAlC2 and Mo2TiAlC2 in a and c directions are calculated from semi-classic Boltzmann transport theory. The values are found to be σa = 5.68 ×105 S /m (6.56 ×105 S /m) and σc = 2.15 ×105 S /m (2.69 ×105 S /m) for Cr2TiAlC2 (Mo2TiAlC2) at 300 K. Using the phonon-mode Debye temperature and Slack-model, the lattice thermal conductivities in the two directions are also evaluated, and the values are κa = 18.71 W /m K (16.11 W/m K) and κc = 0.48 W /m K (0.25 W /m K) for Cr2TiAlC2 (Mo2TiAlC2) at room temperature. The anisotropy in lattice thermal conductivity is found to be stronger than that of electrical conductivity. The predicted Seebeck coefficients and thermoelectric figure of merit (ZT) indicate that they are poor thermoelectric materials. Due to the relatively high conductivities, they might be used to fabricate high temperature conductive components in aerospace industry. In addition, our results in a direction have the direct implications for the relevant properties of MXenes (Cr2TiC2 and Mo2TiC2), produced from their bulk phases.

  11. Understanding electrical-thermal transport characteristics of organic semiconductors: Violation of Wiedemann-Franz law

    NASA Astrophysics Data System (ADS)

    Lu, Nianduan; Li, Ling; Gao, Nan; Liu, Ming

    2016-11-01

    Organic semiconductors exhibit plenty of attractive properties for use as thermoelectric elements. A comprehensive understanding for the electrical-thermal transport characteristics is crucial to design and fabricate the thermoelectric device. We proposed a theoretical model to investigate the electrical conductivity and the electronic thermal conductivity of organic semiconductors based on the hopping transport mechanism. The electrical-thermal transport characteristics of organic semiconductors have been analyzed in detail and compared with the experimental results and Monte Carlo simulation. The Wiedemann-Franz law, connecting the electronic thermal conductivity to the electrical conductivity of organic semiconductors, is generally found to be strongly violated under the effect of temperature, carrier concentration, energetic disorder and electric field.

  12. Compositional control of electrical transport properties in the new series of defect thiospinels, Ga{sub 1-x}Ge{sub x}V{sub 4}S{sub 8-{delta}} (0<=x<=1)

    SciTech Connect

    Szkoda, Iwona; Vaqueiro, Paz; McDowall, Andrew; Powell, Anthony V.; Ritter, Clemens

    2009-10-15

    A new series of non-stoichiometric sulfides Ga{sub 1-x}Ge{sub x}V{sub 4}S{sub 8-{delta}} (0<=x<=1; delta<=0.23) has been synthesized at high temperatures by heating stoichiometric mixtures of the elements in sealed quartz tubes. The samples have been characterized by powder X-ray diffraction, SQUID magnetometry and electrical transport-property measurements. Structural analysis reveals that a solid solution is formed throughout this composition range, whilst thermogravimetric data reveal sulfur deficiency of up to 2.9% in the quaternary phases. Magnetic measurements suggest that the ferromagnetic behavior of the end-member phase GaV{sub 4}S{sub 8} is retained at x<=0.7; samples in this composition range showing a marked increase in magnetization at low temperatures. By contrast Ga{sub 0.25}Ge{sub 0.75}V{sub 4}S{sub 8-{delta}} appears to undergo antiferromagnetic ordering at ca. 15 K. All materials with xnot =1 are n-type semiconductors whose resistivity falls by almost six orders of magnitude with decreasing Ga content, whilst the end-member phase GeV{sub 4}S{sub 8-{delta}} is a p-type semiconductor. The results demonstrate that the physical properties are determined principally by the degree of electron filling of narrow-band states arising from intracluster V-V interactions. - Graphical abstract: Chemical substitution and sulfur non-stoichiometry produce dramatic changes in the transport properties of defect thiospinels Ga{sub 1-x}Ge{sub x}V{sub 4}S{sub 8-{delta}}.

  13. Baseline tests of the Volkswagen transporter electric delivery van

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.; Mcbrien, E. F.; Bozek, J. M.; Gourash, F.

    1978-01-01

    The Volkswagen Transporter, an electric delivery van, was tested as part of an Energy Research and Development Administration (ERDA) project to characterize the state of the art of electric vehicles. The Volkswagen Transporter is a standard Volkswagen van that has been converted to an electric vehicle. It is powered by a 144-volt traction battery. A direct current (dc) chopper controller, actuated by a conventional accelerator pedal, regulates the voltage or power applied to the 16-kilowatt (21-hp) motor. The braking system uses conventional hydraulic braking in combination with an electric regenerative braking system. The Volkswagen vehicle performance test results are presented.

  14. Neoclassical Radial Electric Field and Transport with Finite Orbits

    SciTech Connect

    Wang, W. X.; Hinton, F. L.; Wong, S. K.

    2001-07-30

    Neoclassical transport in a toroidal plasma with finite ion orbits is studied, including for the first time the self-consistent radial electric field. Using a low-noise {delta}f particle simulation, we demonstrate that a deep electric-field well develops in a region with a steep density gradient, because of the self-collision--driven ion flux. We find that the electric field agrees with the standard neoclassical expression, when the toroidal rotation is zero, even for a steep density gradient. Ion thermal transport is modified by the electric-field well in a way which is consistent with the orbit squeezing effect, but smoothed by the finite orbits.

  15. Preparation of ferroelectric field effect transistor based on sustainable strongly correlated (Fe,Zn)3O4 oxide semiconductor and their electrical transport properties

    NASA Astrophysics Data System (ADS)

    Takaobushi, Junichi; Kanki, Teruo; Kawai, Tomoji; Tanaka, Hidekazu

    2011-03-01

    We have constructed a field effect transistor structure composed of the sustainable oxide semiconductor (Fe,Zn)3O4 with high Curie temperature and ferroelectric Pb(Zr,Ti)O3. Electric field control of (Fe2.5Zn0.5)O4 channel resistance was achieved in the heterostructures though modulation of their carrier concentration. The results will lead to the significant development of sustainable oxide semiconductor spintronics devices working at room temperature.

  16. Electrical properties of single CdTe nanowires.

    PubMed

    Matei, Elena; Florica, Camelia; Costas, Andreea; Toimil-Molares, María Eugenia; Enculescu, Ionut

    2015-01-01

    Ion track, nanoporous membranes were employed as templates for the preparation of CdTe nanowires. For this purpose, electrochemical deposition from a bath containing Cd and Te ions was employed. This process leads to high aspect ratio CdTe nanowires, which were harvested and placed on a substrate with lithographically patterned, interdigitated electrodes. Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were performed on these individual nanowires. The influence of a bottom gate was investigated and it was found that surface passivation leads to improved transport properties.

  17. Electrical properties of single CdTe nanowires

    PubMed Central

    Matei, Elena; Florica, Camelia; Costas, Andreea; Toimil-Molares, María Eugenia

    2015-01-01

    Summary Ion track, nanoporous membranes were employed as templates for the preparation of CdTe nanowires. For this purpose, electrochemical deposition from a bath containing Cd and Te ions was employed. This process leads to high aspect ratio CdTe nanowires, which were harvested and placed on a substrate with lithographically patterned, interdigitated electrodes. Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were performed on these individual nanowires. The influence of a bottom gate was investigated and it was found that surface passivation leads to improved transport properties. PMID:25821685

  18. Electric field influence on electronic transport in a periodic DNA molecules

    NASA Astrophysics Data System (ADS)

    Rahmani, F.; Yudiarsah, E.

    2017-07-01

    There are many factors that change the structure of DNA, and at the end, will affect electronic transport in DNA molecules. From the previous study, we know that electrical current will increase for the higher electric field. The study is focused particularly on electric field influence for charge transport properties of poly(dG)-poly(dC) DNA molecules that are presented in terms of transmission probabilities of electron flow. We calculate transmission probabilities using transfer matrix and scattering matrix method with varying voltages and twisting motion frequencies. The result shows that the extended states shift to lower energy and the extended state band widen as voltage increasing.

  19. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  20. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  1. Electrical transport properties of In-doped Ce(1-x)In(x)O(2-delta) (x = 0.1; 0.2).

    PubMed

    Bhella, Surinderjit Singh; Kuti, Lisa M; Li, Qin; Thangadurai, Venkataraman

    2009-11-21

    We report the synthesis and electrical conductivity of fluorite-type Ce(1-x)In(x)O(2-delta) (x = 0.1; 0.2) in air, dry Ar, N(2) and H(2) in the temperature range of 300-800 degrees C. We have employed a new CO(2) capture technique to prepare the "metastable" fluorite-related structure Ce(1-x)In(x)O(2-delta) from the corresponding In-doped Ba-containing perovskite of the nominal chemical formula BaCe(1-x)In(x)O(3-delta) at 800 degrees C. The amount of CO(2) gained per ceramic gram was found to be consistent with the formation of BaCO(3), confirming the complete leaching of Ba in BaCe(1-x)In(x)O(3-delta). The CO(2) capture efficiency was found to be in the range of 90-99% at 800 degrees C, which is significantly higher than those of well-known low-temperature CO(2) absorbing materials, including Li(2)O, Li(6)Zr(2)O(7), Li(1.8)Na(0.2)ZrO(3) and LiNaZrO(3). Powder X-ray diffraction (PXRD) and energy dispersive X-ray analysis (EDAX) confirmed the perovskite into fluorite structural transformation reaction. The AC impedance study showed a clear intercept to the real axis at the low-frequency over the investigated temperatures in all the atmospheres, indicating a non-blocking nature of electrode (Pt) and electrolyte interface. The constant phase element (CPE) value was found to be in the order of 10(-10) F in air, N(2) and Ar for high-frequency part of the semicircle due to bulk contribution, and about two orders of magnitude lower values were observed for the low-frequency semicircle which may correspond to grain-boundary effect. The 20 mol% In-doped CeO(2) exhibits a total electrical conductivity of about 4 x 10(-6) S/cm at 600 degrees C in Ar, while in H(2) an about four orders of magnitude higher electrical conductivity of 3 x 10(-2) S/cm was observed. The activation energy for electrical conductivity was found to be 1.36 eV in Ar, 1.43 eV in N(2), 1.34 eV in H(2), and 1.1 eV in air for Ce(0.8)In(0.2)O(1.9).

  2. Electron transport in argon in crossed electric and magnetic fields

    PubMed

    Ness; Makabe

    2000-09-01

    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field.

  3. Transport properties of fission product vapors

    SciTech Connect

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors.

  4. Electrical properties of dislocations in III-Nitrides

    SciTech Connect

    Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A.

    2014-02-21

    Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.

  5. Review on measurement techniques of transport properties of nanowires.

    PubMed

    Rojo, Miguel Muñoz; Calero, Olga Caballero; Lopeandia, A F; Rodriguez-Viejo, J; Martín-Gonzalez, Marisol

    2013-12-07

    Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown.

  6. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Spin-dependent electron transport of a waveguide with Rashba spin-orbit coupling in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Xiao, Xian-Bo; Li, Xiao-Mao; Chen, Yu-Guang

    2009-12-01

    We investigate theoretically the spin-dependent electron transport in a straight waveguide with Rashba spin-orbit coupling (SOC) under the irradiation of a transversely polarized electromagnetic (EM) field. Spin-dependent electron conductance and spin polarization are calculated as functions of the emitting energy of electrons or the strength of the EM field by adopting the mode matching approach. It is shown that the spin polarization can be manipulated by external parameters when the strength of Rashba SOC is strong. Furthermore, a sharp step structure is found to exist in the total electron conductance. These results can be understood by the nontrivial Rashba subbands intermixing and the electron intersubband transition when a finite-range transversely polarized EM field irradiates a straight waveguide.

  7. Investigation on the electrical transport properties of highly (00l)-textured Sb2Te3 films deposited by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangpeng; Zeng, Zhigang; Shen, Chao; Zhang, Ziqiang; Wang, Zhichong; Lin, Cong; Hu, Zhiyu

    2014-01-01

    Highly (00l)-textured antimony telluride films were fabricated using molecular beam epitaxy (MBE) on Si (111) substrate at 280 °C. X-ray diffraction analysis implying the samples have good crystalline quality, simultaneously, the grain sizes coarsening with increasing thickness. The results of Hall coefficient measurement demonstrated that the carrier concentration and mobility are strongly affected by grain boundaries and microcrystalline internal defects. It was found that the grain boundaries play a primary factor influencing the carrier concentration in thinner film. At room temperature, the results in a maximum mobility value of 305 cm2/Vs for 121-nm-thick film, and the electrical conductivity increased from 425.7 S/cm to 1036 S/cm as the thickness varied from 28 nm to 121 nm. In the range of room temperature to 150 °C, the resistivity almost linearly increased with increasing temperature. This may be explained by low concentration of impurities or defects and shallow impurity band. For difference thickness films, temperature coefficients of resistivity are substantially equal, and the values are about 3 ˜ 4 μΩ ṡcm/K.

  8. In-plane Thermal and Electrical Transport Through Single-walled Carbon Nanotube Thin Films

    NASA Astrophysics Data System (ADS)

    Ferguson, A. J.; Avery, A. D.; Mistry, K. S.; Zink, B. L.; Olsen, M. L.; Parilla, P. A.; Blackburn, J. L.

    2014-03-01

    Recent advances in both chemical processing and fabrication techniques have enabled the development of a variety of new nanostructured materials for energy conversion technologies. Single-walled carbon nanotube (SWNT) networks may enable a number of cost-effective energy technologies, including transparent conductors for photovoltaics and thermoelectric composites. For such applications, a fundamental understanding of the physics governing their thermal and electrical properties is needed. Transport in SWNT networks is highly anisotropic; therefore the ability to measure the in-plane transport, both thermal and electrical, for these systems is extremely important. In this talk, we discuss the dispersion of highly enriched semiconducting SWNTs in organic solvents and deposition techniques optimized to enable measurements of in-plane transport of uniform thin films. We present results from in-plane thermal and electrical measurements as well as optical properties of SWNT:polymer thin films. Finally, we discuss the application of these results to developing nanocomposite films optimized for thermoelectric applications.

  9. Electrically tunable transport in the antiferromagnetic Mott insulator Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Wang, C.; Seinige, H.; Cao, G.; Zhou, J.-S.; Goodenough, J. B.; Tsoi, M.

    2015-09-01

    Electronic transport properties of the antiferromagnetic Mott insulator S r2Ir O4 have been investigated under extremely high electric biases. Using nanoscale contacts, we apply electric fields up to a few MV/m to a single crystal of S r2Ir O4 and observe a continuous reduction in the material's resistivity with increasing bias, characterized by a reduction in the transport activation energy by as much as 16 % . Temperature-dependent resistivity measurements provide a means to unambiguously retrieve the bias dependence of the activation energy from the Arrhenius plots at different biases. We further demonstrate the feasibility of reversible resistive switching induced by the electric bias, which is of interest for the emerging field of antiferromagnetic spintronics. Our findings demonstrate the potential of electrical means for tuning electronic properties in 5 d transition-metal oxides and suggest a promising path towards development of next-generation functional devices.

  10. Central role of the observable electric potential in transport equations.

    PubMed

    Garrido, J; Compañ, V; López, M L

    2001-07-01

    Nonequilibrium systems are usually studied in the framework of transport equations that involve the true electric potential (TEP), a nonobservable variable. Nevertheless another electric potential, the observable electric potential (OEP), may be defined to construct a useful set of transport equations. In this paper several basic characteristics of the OEP are deduced and emphasized: (i) the OEP distribution depends on thermodynamic state of the solution, (ii) the observable equations have a reference value for all other transport equations, (iii) the bridge that connects the OEP with a certain TEP is usually defined by the ion activity coefficient, (iv) the electric charge density is a nonobservable variable, and (v) the OEP formulation constitutes a natural model for studying the fluxes in membrane systems.

  11. The effect of magnetization and electric polarization on the anomalous transport coefficients of a chiral fluid

    NASA Astrophysics Data System (ADS)

    Sadooghi, N.; Tabatabaee, S. M. A.

    2017-05-01

    The effects of finite magnetization and electric polarization on dissipative and non-dissipative (anomalous) transport coefficients of a chiral fluid are studied. First, using the second law of thermodynamics as well as Onsager’s time-reversal symmetry principle, the complete set of dissipative transport coefficients of this medium is derived. It is shown that the properties of the resulting shear and bulk viscosities are mainly affected by the anisotropy induced by external electric and magnetic fields. Then, using the fact that the anomaly induced currents do not contribute to entropy production, the corresponding algebro-differential equations to non-dissipative anomalous transport coefficients are derived in a certain derivative expansion. The solutions of these equations show that, within this approximation, anomalous transport coefficients are, in particular, given in terms of the electric susceptibility of the medium.

  12. Electrical Transport in Thin Film Systems for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Huang, Bingyuan

    Many energy conversion technologies rely on the function and properties of thin films. In many cases, the fundamental physics underlying the structure-property-performance interrelationship is not completely understood. So it is not possible to fully exploit the true capabilities of these systems. Therefore, investigating and understanding such interrelationships in different systems is of both scientific and technological importance. In this dissertation, both conjugated polymer systems for photovoltaic application and strained silicon system for thermoelectric application are investigated in order to develop a clearer understanding of the effect of film thickness and microstructural features on electrical transport. Morphological features such as domain size, phase purity are investigated in the polymers in order to understand the effects on charge mobility, recombination and further on device performance. With regard to silicon, the effects of lattice strain on electrical conductivity and thermopower are studied. The out-of-plane hole mobility was investigated in regioregular P3HT thin films. It was shown that the hole mobilities monotonically increased an order of magnitude when film thickness increased from 80 nm to 700 nm. Based on X-ray diffraction, spectroscopic ellipsometry and simulations, this thickness-dependent mobility is associated with substrate induced anisotropies of the P3HT film structure. The role of microstructural features on the performance characteristics of the archetypal P3HT:PCBM (1:1) bulk heterojunction solar cell was investigated. It is demonstrated that small domain sizes and correspondingly large interfacial areas accommodated a high initial carrier density. However in these materials, non-geminate recombination of carriers could be significant, leading to low open circuit voltages and low fill factors. The purity of the domains also influenced the charge carrier mobilities and non-germinate recombination. One important finding from

  13. Effects of Pressure and Electrical Charge on Macromolecular Transport Across Bovine Lens Basement Membrane

    PubMed Central

    Ferrell, Nicholas; Cameron, Kathleen O.; Groszek, Joseph J.; Hofmann, Christina L.; Li, Lingyan; Smith, Ross A.; Bian, Aihua; Shintani, Ayumi; Zydney, Andrew L.; Fissell, William H.

    2013-01-01

    Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems. PMID:23561524

  14. Electrical-transport, magnetoresistance and magnetic properties of La0.7Ca0.3MnO3 and La0.7Ca0.24Sr0.06MnO3 single crystals

    NASA Astrophysics Data System (ADS)

    Tank, Tejas M.; Bodhaye, Ashish; Mukovskii, Ya. M.; Sanyal, S. P.

    2015-06-01

    We report the electrical-transport, magnetoresistance and magnetic properties of the hole doped La0.7Ca0.3MnO3 (LCMO) and La0.7Ca0.24Sr0.06MnO3 (LCSMO) single crystals. It was prepared using floating zone technique. The resistivity data shows the metal to insulator transition (TMI) occurs at 211 K along c-axis and TMI = 185 K the ab-plane for LCMO and TMI = 290 K along the c-axis and TMI = 280 K along the ab-plane for LCSMO single crystals. It is observed that the TMI is higher along the c-axis as compared to that in the ab-plane, consequently signifying more favorable hoping of electrons is along the c-axis. The ac-susceptibility measurement shows that this material exhibits ferromagnetic to paramagnetic transition temperature (TC) at 206 K for LCMO and TC = 277 K for LCSMO single crystals. For magnetic memory device application point of view, the sample shows the maximum MR of 98% for LCMO and 80% for LCSMO single crystals at 8T applied magnetic field. Doping small amount of Sr (0.06%) reveals that the electronic and magnetic phase transition in CMR single crystal increases substantially and useful for device application. This is first time such type of comparative study in these manganite single crystals.

  15. Effect of Doping with Substituent Bi Atoms on the Electrical Transport Properties of a Bi0.4Sb1.6Te3 Film Fabricated by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Zhichong; Zhang, Xiangpeng; Wu, Yigui; Hu, Zhiyu

    2015-10-01

    A highly crystalline Bi0.4Sb1.6Te3 film was fabricated on a Si substrate by molecular beam epitaxy (MBE) at a substrate temperature of 280°C. On the basis of study of x-ray diffraction patterns and high-resolution transmission electron microscopy lattice fringes it was inferred that Bi atoms were successfully incorporated into Sb lattice sites, forming substituent Bi impurities. Reduction of the carrier concentration was ascribed to the increased resistance to formation of antisite defects when Sb was substituted by Bi. The reduced mobility was a result of enhanced grain boundary scattering and attraction by substituent Bi atoms. Analysis of temperature-dependent electrical transport properties revealed that introduction of Bi atoms resulted in deeper energy level impurities in the Bi0.4Sb1.6Te3 film and higher activation energy (43.2 meV) than the normal value at room temperature, leading to semiconductor characteristics of the film in the temperature range -50°C to 150°C.

  16. Effect of laser energy on the electrical transport properties of La0.67Ca0.33MnO3:Ag0.2 films by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Zhang, Yalin; Chen, Qingming; Jin, Fei; Chen, Xiaohui; Li, Zhiyu; Li, Di; Zhang, Hui

    2017-09-01

    La0.67Ca0.33MnO3 (LCMO):Ag0.2 films were grown on LaAlO3 (LAO) substrates ( 100) by pulsed laser deposition (PLD) technique with various incident laser energies. The surface morphologies and the thicknesses of the films were studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The crystal structures were analyzed by X-ray, diffraction (XRD), and the temperature dependence of the resistivity ( ρ- T) of the films was studied by the standard four-probe method. It can be found that the crystal quality, surface morphology, metal-insulator transition temperature ( T p), and temperature coefficient of resistance (TCR) of the LCMO:Ag0.2 films are changed with various laser energy. The highest T p 287 K is obtained with 300 mJ laser energy; meanwhile, the optimal TCR 13.5% K-1 is achieved. The results suggest that the electrical transport properties of LCMO:Ag0.2 films are affected by the interface-induced compressive stress, the oxygen balance, and the double exchange between Mn3+-O-Mn4+.

  17. Dual Transport Properties of Anion Exchanger 1

    PubMed Central

    Barneaud-Rocca, Damien; Borgese, Franck; Guizouarn, Hélène

    2011-01-01

    Previous results suggested that specific point mutations in human anion exchanger 1 (AE1) convert the electroneutral anion exchanger into a monovalent cation conductance. In the present study, the transport site for anion exchange and for the cation leak has been studied by cysteine scanning mutagenesis and sulfhydryl reagent chemistry. Moreover, the role of some highly conserved amino acids within members of the SLC4 family to which AE1 belongs has been assessed in AE1 transport properties. The results suggest that the same transport site within the AE1 spanning domain is involved in anion exchange or in cation transport. A functioning mechanism for this transport site is proposed according to transport properties of the different studied point mutations of AE1. PMID:21257764

  18. Electrical transport and thermoelectric properties of Ni-doped perovskite-type YCo1-x NixO3 (0 <= x <= 0.07) prepared by sol-gel process

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Hai-Jin; Zhang, Qing; Li, Yong; Liu, Hou-Tong

    2013-05-01

    Electrical transport and thermoelectric properties of Ni-doped YCo1-xNixO3(0 <= x <= 0.07), prepared by using the sol-gel process, are investigated in a temperature range from 100 to 780 K. The results show that with the increase of Ni doping content, the values of DC resistivity of YCo1-xNixO3 decrease, but carrier concentration increases. The temperature dependences of the resistivity for YCo1-xNixO3 are found to follow a relation of ln ρ ∝ 1/T in a low-temperature range (LTR) (T < ~ 304 K for x = 0; ~ 230 K < T < ~ 500 K for x = 0.02, 0.05, and 0.07) and high-temperature range (HTR) (T > ~ 655 K for all compounds), respectively. The estimated apparent activation energies for conduction Ea1 in LRT and Ea2 in HTR are both found to decrease monotonically with doping content increasing. At very low temperatures (T < ~230 K), Mott's law is observed for YCo1—xNixO3 (x >= 0.02), indicating that considerable localized states form in the heavy doping compounds. Although the Seebeck coefficient of the compound decreases after Ni doping, the power factor of YCo1-xNixO3 is enhanced remarkably in a temperature range from 300 to 740 K, i.e., a 6-fold increase is achieved at 500 K for YCo0.98Ni0.02O3, indicating that the high-temperature thermoelectric property of YCoO3 can be improved by partial substitution of Ni for Co.

  19. Electrical properties of seafloor massive sulfides

    NASA Astrophysics Data System (ADS)

    Spagnoli, Giovanni; Hannington, Mark; Bairlein, Katharina; Hördt, Andreas; Jegen, Marion; Petersen, Sven; Laurila, Tea

    2016-06-01

    Seafloor massive sulfide (SMS) deposits are increasingly seen as important marine metal resources for the future. A growing number of industrialized nations are involved in the surveying and sampling of such deposits by drilling. Drill ships are expensive and their availability can be limited; seabed drill rigs are a cost-effective alternative and more suitable for obtaining cores for resource evaluation. In order to achieve the objectives of resource evaluations, details are required of the geological, mineralogical, and physical properties of the polymetallic deposits and their host rocks. Electrical properties of the deposits and their ore minerals are distinct from their unmineralized host rocks. Therefore, the use of electrical methods to detect SMS while drilling and recovering drill cores could decrease the costs and accelerate offshore operations by limiting the amount of drilling in unmineralized material. This paper presents new data regarding the electrical properties of SMS cores that can be used in that assessment. Frequency-dependent complex electrical resistivity in the frequency range between 0.002 and 100 Hz was examined in order to potentially discriminate between different types of fresh rocks, alteration and mineralization. Forty mini-cores of SMS and unmineralized host rocks were tested in the laboratory, originating from different tectonic settings such as the intermediate-spreading ridges of the Galapagos and Axial Seamount, and the Pacmanus back-arc basin. The results indicate that there is a clear potential to distinguish between mineralized and non-mineralized samples, with some evidence that even different types of mineralization can be discriminated. This could be achieved using resistivity magnitude alone with appropriate rig-mounted electrical sensors. Exploiting the frequency-dependent behavior of resistivity might amplify the differences and further improve the rock characterization.

  20. Research on lunar materials. [optical, chemical, and electrical properties

    NASA Technical Reports Server (NTRS)

    Gold, T.

    1978-01-01

    Abstracts of 14 research reports relating to investigations of lunar samples are presented. The principal topics covered include: (1) optical properties of surface and core samples; (2) chemical composition of the surface layers of lunar grains: Auger electron spectroscopy of lunar soil and ground rock samples; (3) high frequency electrical properties of lunar soil and rock samples and their relevance for the interpretation of lunar radar observations; (4) the electrostatic dust transport process; (5) secondary electron emission characteristics of lunar soil samples and their relevance to the dust transportation process; (6) grain size distribution in surface soil and core samples; and (7) the optical and chemical effects of simulated solar wind (2keV proton and a particle radiation) on lunar material.

  1. Charge carrier transport properties in layer structured hexagonal boron nitride

    SciTech Connect

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2014-10-15

    Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (~ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T{sub 0}){sup −α} with α = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm{sup -1}), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  2. Antifungal Properties of Electrically Generated Metallic Ions

    PubMed Central

    Berger, T. J.; Spadaro, J. A.; Bierman, Richard; Chapin, S. E.; Becker, R. O.

    1976-01-01

    A qualitative and quantitative investigation was undertaken to study the susceptibility of unicellular eucaryotic organisms (yeasts) to metallic cations generated by low levels of direct current. Results were characteristic of effects obtained previously using clinical and standard bacteria test organisms. The present study demonstrated that anodic silver (Ag+) at low direct currents had inhibitory and fungicidal properties. Broth dilution susceptibility tests were made on several species of Candida and one species of Torulopsis. Growth in all isolates was inhibited by concentrations of electrically generated silver ions between 0.5 and 4.7 μg/ml, and silver exhibited fungicidal properties at concentrations as low as 1.9 μg/ml. The inhibitory and fungicidal concentrations of electrically generated silver ions are lower than those reported for other silver compounds. Images PMID:1034467

  3. Electrical properties of epoxies and film resistors

    NASA Technical Reports Server (NTRS)

    Sergent, J. E.

    1976-01-01

    The reliability of hybrid microcircuits has been enhanced in recent years by the use of organic adhesives as a replacement for solder and eutectics. The epoxies have been the most effective and widely used material for this application. Methods for measuring the electrical and mechanical properties of epoxies are developed. Data are given for selected conductive adhesives at high and low frequencies. The temperature coefficients of resistance of thick film resistors are presented.

  4. [Measuring the electricity frequency properties of blood].

    PubMed

    Huang, Hua; Hu, Maoqing; Chen, Huaiqing; Yuan, Zirun; Tong, Shan; Luo, An

    2005-04-01

    In order to understand the electricity frequency specialties of blood, we have developed a wide frequency electricity characteristic testing system and used it to test the amplitude frequency property and phase frequency property of the blood in different states and constituents at 1 Hz to 20 MHz. Further analysis on the results of tests helped us know some important properties of blood at even more microcosmic levels from a new angle. Meanwhile, some problems and considerations on the improvement of the electricity model of biotic tissue and blood were pointed out. (1) From 1 Hz to 5 KHz, the impedance of blood descended 99%. (2) Simple equivalent circuit of resistance and capacitance must be used in series equivalent but not in usual parallel connection equivalent. (3) Experiment indicated, equivalent circuits of blood need more analysis, because simple equivalent circuit of resistance and capacitance is liable to gross error. (4) When the three element model is used for measuring the resistance of inside liquid, capacitance of cell membrane and the resistance of outside liquid of blood, the three testing frequencies must be very similar.

  5. Intercomponent momentum transport and electrical conductivity of collisionless plasma

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    Based on the Lenard-Balescu equation, the interaction integral for the intercomponent momentum transfer in a two-component, collisionless plasma is evaluated in closed form. The distribution functions of the electrons and ions are represented in the form of nonisothermal, displaced Maxwellians corresponding to the 5-moment approximation. As an application, the transport of electrical current in an electric field is discussed for infrasonic up to sonic electron-ion drift velocities.

  6. Intercomponent momentum transport and electrical conductivity of collisionless plasma

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    Based on the Lenard-Balescu equation, the interaction integral for the intercomponent momentum transfer in a two-component, collisionless plasma is evaluated in closed form. The distribution functions of the electrons and ions are represented in the form of nonisothermal, displaced Maxwellians corresponding to the 5-moment approximation. As an application, the transport of electrical current in an electric field is discussed for infrasonic up to sonic electron-ion drift velocities.

  7. Enhanced electrical properties of vertically aligned carbon nanotube-epoxy nanocomposites with high packing density

    PubMed Central

    2012-01-01

    During their synthesis, multi-walled carbon nanotubes can be aligned and impregnated in a polymer matrix to form an electrically conductive and flexible nanocomposite with high backing density. The material exhibits the highest reported electrical conductivity of CNT-epoxy composites (350 S/m). Here, we show how conductive atomic force microscopy can be used to study the electrical transport mechanism in order to explain the enhanced electrical properties of the composite. The high spatial resolution and versatility of the technique allows us to further decouple the two main contributions to the electrical transport: (1) the intrinsic resistance of the tube and (2) the tunneling resistance due to nanoscale gaps occurring between the epoxy-coated tubes along the composite. The results show that the material behaves as a conductive polymer, and the electrical transport is governed by electron tunneling at interconnecting CNT-polymer junctions. We also point out the theoretical formulation of the nanoscale electrical transport between the AFM tip and the sample in order to derive both the composite conductivity and the CNT intrinsic properties. The enhanced electrical properties of the composite are attributed to high degree of alignment, the CNT purity, and the large tube diameter which lead to low junction resistance. By controlling the tube diameter and using other polymers, the nanocomposite electrical conductivity can be improved. PMID:23158381

  8. Electrical properties of epoxies used in hybrid microelectronics

    NASA Technical Reports Server (NTRS)

    Stout, C. W.

    1976-01-01

    The electrical properties and basic characteristics of the structure of conductive epoxies were studied. The results of the experimental work performed to measure the electrical properties of epoxies are presented.

  9. Calculating Theromodynamic And Transport Properties Of Fluids

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Klem, Mark D.

    1987-01-01

    Computer program incorporates van der Waals equation and correction tables. FLUID program developed to calculate thermodynamic and transport properties of pure fluids in both liquid and gas phases. Properties calculated by use of simple gas model, empirical corrections, and efficient numerical interpolation scheme. Produces results that agree very well with measured values. Much faster than older, more complex programs developed for same purpose.

  10. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective

    NASA Astrophysics Data System (ADS)

    Yang, Jiong; Xi, Lili; Qiu, Wujie; Wu, Lihua; Shi, Xun; Chen, Lidong; Yang, Jihui; Zhang, Wenqing; Uher, Ctirad; Singh, David J.

    2016-02-01

    During the last two decades, we have witnessed great progress in research on thermoelectrics. There are two primary focuses. One is the fundamental understanding of electrical and thermal transport, enabled by the interplay of theory and experiment; the other is the substantial enhancement of the performance of various thermoelectric materials, through synergistic optimisation of those intercorrelated transport parameters. Here we review some of the successful strategies for tuning electrical and thermal transport. For electrical transport, we start from the classical but still very active strategy of tuning band degeneracy (or band convergence), then discuss the engineering of carrier scattering, and finally address the concept of conduction channels and conductive networks that emerge in complex thermoelectric materials. For thermal transport, we summarise the approaches for studying thermal transport based on phonon-phonon interactions valid for conventional solids, as well as some quantitative efforts for nanostructures. We also discuss the thermal transport in complex materials with chemical-bond hierarchy, in which a portion of the atoms (or subunits) are weakly bonded to the rest of the structure, leading to an intrinsic manifestation of part-crystalline part-liquid state at elevated temperatures. In this review, we provide a summary of achievements made in recent studies of thermoelectric transport properties, and demonstrate how they have led to improvements in thermoelectric performance by the integration of modern theory and experiment, and point out some challenges and possible directions.

  11. Electronic structure and electrical transport in ternary Al-Mg-B films prepared by magnetron sputtering

    SciTech Connect

    Yan, C.; Qian, J. C.; He, B.; Ng, T. W.; Zhang, W. J.; Bello, I.; Jha, S. K.; Zhou, Z. F.; Li, K. Y.; Klemberg-Sapieha, J. E.; Martinu, L.

    2013-03-25

    Nanostructured ternary Al-Mg-B films possess high hardness and corrosion resistance. In the present work, we study their electronic structure and electrical transport. The films exhibit semiconducting characteristics with an indirect optical-bandgap of 0.50 eV, as deduced from the Tauc plots, and a semiconductor behavior with a Fermi level of {approx}0.24 eV below the conduction band. Four-probe and Hall measurements indicated a high electrical conductivity and p-type carrier mobility, suggesting that the electrical transport is mainly due to hole conduction. Their electrical properties are explained in terms of the film nanocomposite microstructure consisting of an amorphous B-rich matrix containing AlMgB{sub 14} nanoparticles.

  12. Photoinduced Charge Transport in a BHJ Solar Cell Controlled by an External Electric Field

    PubMed Central

    Li, Yongqing; Feng, Yanting; Sun, Mengtao

    2015-01-01

    This study investigated theoretical photoinduced charge transport in a bulk heterojunction (BHJ) solar cell controlled by an external electric field. Our method for visualizing charge difference density identified the excited state properties of photoinduced charge transfer, and the charge transfer excited states were distinguished from local excited states during electronic transitions. Furthermore, the calculated rates for the charge transfer revealed that the charge transfer was strongly influenced by the external electric field. The external electric field accelerated the rate of charge transfer by up to one order when charge recombination was significantly restrained. Our research demonstrated that photoinduced charge transport controlled by an external electric field in a BHJ solar cell is efficient, and the exciton dissociation is not the limiting factor in organic solar cells.Our research should aid in the rational design of a novel conjugated system of organic solar cells. PMID:26353997

  13. Transport Properties of Earth's Core

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.; Zhang, P.; Xu, J.

    2016-12-01

    One of the most important parameters governing the original heat that drives all processes in the Earth is the thermal conductivity of Earth's core. Heat is transferred through the core by convection and conduction, and the convective component provides energy to drive the geodynamo. Sha and Cohen (2011) found that the electrical conductivity of solid hcp-iron was much higher than had been assumed by geophysicists, based on electronic structure computations for electron-phonon scattering (e-p) within density functional theory [1]. Thermal conductivity is related to electrical conductivity through the empirical Wiedmann-Franz law of 1853 [2]. Pozzo et al. [3] found that the high electrical conductivity of liquid iron alloys was too high for conventional dynamo models to work—there simply is not enough energy, so O'Rourke and Stevenson proposed a model driven by participation of Mg from the core [4], supported by recent experients [5]. Recent measurements by Ohta et al. show even lower resistivities than predicted by DFT e-p, and invoked a saturation model to account for this, [6] whereas, Konopkova et al. found thermal conductivities consistent with earlier geophysical estimates. [7] We are using first-principles methods, including dynamical mean field theory for electron-electron scattering, and highly converged e-p computations, and find evidence for strong anisotropy in solid hcp-Fe that may help explain some experimental results. The current status of the field will be discussed along with our recent results. This work is supported by the ERC Advanced grant ToMCaT, the NSF, and the Carnegie Institution for Science.[1] X. Sha and R. E. Cohen, J.Phys.: Condens.Matter 23, 075401 (2011).[2] R. Franz and G. Wiedemann, Annalen Physik 165, 497 (1853).[3] M. Pozzo, C. Davies, D. Gubbins, and D. Alfe, Nature 485, 355 (2012).[4] J. G. O'Rourke and D. J. Stevenson, Nature 529, 387 (2016).[5] J. Badro, J. Siebert, and F. Nimmo, Nature (2016).[6] K. Ohta, Y. Kuwayama, K

  14. Variable range hopping electric and thermoelectric transport in anisotropic black phosphorus

    NASA Astrophysics Data System (ADS)

    Liu, Huili; Sung Choe, Hwan; Chen, Yabin; Suh, Joonki; Ko, Changhyun; Tongay, Sefaattin; Wu, Junqiao

    2017-09-01

    Black phosphorus (BP) is a layered semiconductor with a high mobility of up to ˜1000 cm2 V-1 s-1 and a narrow bandgap of ˜0.3 eV, and shows potential applications in thermoelectrics. In stark contrast to most other layered materials, electrical and thermoelectric properties in the basal plane of BP are highly anisotropic. To elucidate the mechanism for such anisotropy, we fabricated BP nanoribbons (˜100 nm thick) along the armchair and zigzag directions, and measured the transport properties. It is found that both the electrical conductivity and Seebeck coefficient increase with temperature, a behavior contradictory to that of traditional semiconductors. The three-dimensional variable range hopping model is adopted to analyze this abnormal temperature dependency of electrical conductivity and Seebeck coefficient. The hopping transport of the BP nanoribbons, attributed to high density of trap states in the samples, provides a fundamental understanding of the anisotropic BP for potential thermoelectric applications.

  15. Growth and electrical properties of zinc oxide nanowires.

    PubMed

    Zhang, Zengxing; Zhao, Yuanchun; Sun, Lianfeng; Liu, Dongfang; Shen, Jun; Zhou, Weiya; Luo, Qiang; Jin, Aizi; Yang, Haifang; Gu, Changzhi; Xie, Sishen

    2009-02-01

    Zinc oxide nanowires were grown on molybdenum grids with a simple chemical vapor transport and deposition method through thermal evaporation of zinc powder at a temperature of 600 degrees C. These nanowires are 20-50 nm in diameter and over ten microns in length. High resolution transmission electron microscopy studies show that the as-grown nanowires are single crystal of wurtzite structure and grow along the (0001) direction. The growth process was explained with a vapor-solid mechanism under zinc-rich conditions. We further patterned electrodes on individual ZnO nanowires by e-beam lithography and studied thier electrical properties.

  16. Quantum-walk transport properties on graphene structures

    NASA Astrophysics Data System (ADS)

    Bougroura, Hamza; Aissaoui, Habib; Chancellor, Nicholas; Kendon, Viv

    2016-12-01

    We present numerical studies of quantum walks on C60 and related graphene structures to investigate their transport properties. Also known as a honeycomb lattice, the lattice formed by carbon atoms in the graphene phase can be rolled up to form nanotubes of various dimensions. Graphene nanotubes have many important applications, some of which rely on their unusual electrical conductivity and related properties. Quantum walks on graphs provide an abstract setting in which to study such transport properties independent of the other chemical and physical properties of a physical substance. They can thus be used to further the understanding of mechanisms behind such properties. We find that nanotube structures are significantly more efficient in transporting a quantum walk than cycles of equivalent size, provided the symmetry of the structure is respected in how they are used. We find faster transport on zigzag nanotubes compared to armchair nanotubes, which is unexpected given that for the actual materials the armchair nanotube is metallic, while the zigzag is semiconducting.

  17. Electrical properties of polycrystalline methane hydrate

    USGS Publications Warehouse

    Du Frane, W. L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J.

    2011-01-01

    Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution and complement other resource assessment techniques, particularly seismic methods. To fully utilize EM results requires knowledge of the electrical properties of individual phases and mixing relations, yet little is known about the electrical properties of gas hydrates. We developed a pressure cell to synthesize gas hydrate while simultaneously measuring in situ frequency-dependent electrical conductivity (σ). Synthesis of methane (CH4) hydrate was verified by thermal monitoring and by post run cryogenic scanning electron microscope imaging. Impedance spectra (20 Hz to 2 MHz) were collected before and after synthesis of polycrystalline CH4 hydrate from polycrystalline ice and used to calculate σ. We determined the σ of CH4 hydrate to be 5 × 10−5 S/m at 0°C with activation energy (Ea) of 30.6 kJ/mol (−15 to 15°C). After dissociation back into ice, σ measurements of samples increased by a factor of ~4 and Ea increased by ~50%, similar to the starting ice samples.

  18. Electrical and carrier transport properties of the Au/Y2O3/n-GaN metal-insulator-semiconductor (MIS) diode with rare-earth oxide interlayer

    NASA Astrophysics Data System (ADS)

    Venkata Prasad, C.; Rajagopal Reddy, V.; Choi, Chel-Jong

    2017-04-01

    The electrical and transport properties of rare-earth Y2O3 on n-type GaN with Au electrode have been investigated by current-voltage and capacitance-voltage techniques at room temperature. The Au/Y2O3/n-GaN metal-insulator-semiconductor (MIS) diode shows a good rectification behavior compared to the Au/n-GaN metal-semiconductor (MS) diode. Statistical analysis showed that a mean barrier height (BH) and ideality factor are 0.78 eV and 1.93, and 0.96 eV and 2.09 for the Au/n-GaN MS and Au/Y2O3/n-GaN MIS diodes, respectively. Results indicate that the high BH is obtained for the MIS diode compared to the MS diode. The BH, ideality factor and series resistance are also estimated by Cheung's function and Norde method. From the forward current-voltage data, the interface state density ( N SS) is estimated for both the MS and MIS Schottky diodes, and found that the estimated N SS is lower for the MIS diode compared to the MS diode. The results reveal that the introduction of Y2O3 interlayer facilitated the reduction of N SS of the Au/n-GaN interface. Experimental results suggest that the Poole-Frenkel emission is a dominant conduction mechanism in the reverse bias region of both Au/n-GaN MS and Au/Y2O3/n-GaN MIS diodes.

  19. Optical and electrical properties of silicon nanopillars

    SciTech Connect

    Golobokova, L. S. Nastaushev, Yu. V.; Dultsev, F. N.; Kryzhanovskaya, N. V.; Moiseev, E. I.; Kozhukhov, A. S.; Latyshev, A. V.

    2015-07-15

    The electrical and optical properties of silicon nanopillars (Si NPs) are studied. Electron-beam lithography and reactive ion etching are used for the formation of ordered Si-NP arrays. The Si NPs with a diameter from 60 to 340 nm and a height from 218 to 685 nm are formed. The Si NPs are coated with a TiON{sup x} layer with a thickness of 8 nm for chemical and electrical passivation of the surface. Scanning electron microscopy and atomic-force microscopy are used to characterize the obtained structures. The Si-NP arrays acquire various colors when exposed to “bright-field” illumination. The spectra of reflection from the Si-NP arrays in the wavelength range 500–1150 nm are obtained.

  20. Transport properties of graphene and its application

    NASA Astrophysics Data System (ADS)

    Lu, Jianming

    This thesis focuses on the transport properties of graphene, a new emerging atomically thin, two-dimensional material, with and without the application of a magnetic field. Because of its high mobility, graphene is a promising candidate for Extraordinary Magnetoresistance (EMR) devices. The magnetoresistance of an EMR device arises mainly from its geometry rather than the intrinsic response of the material itself to an applied magnetic field. As a result, the geometric parameters play an important role in its performance. Experiments employing various combinations of geometric parameters and graphene of different quality levels were conducted to determine the optimal results. We found that the optimized parameters vary for different applied magnetic fields. In a magnetic field of 9 Tesla, magnetoresistance up to 55,000% was observed. In addition, Finite Element Analysis (FEA) simulations are used to complement the experiments and explain the measured magnetoresistance. The excellent agreement between the simulations and experimental results indicates that theoretical simulation can be used as a convenient method to explore EMR devices with alternative geometries or materials. The anomalous quantum Hall effect is one of the most exciting properties of graphene. The observation of the v=0 state above a critical magnetic field is closely related to the quality of the graphene, where a higher quality reduces the critical field needed. With our high quality graphene sample, the critical field is reduced to 6.75 Tesla. Moreover, from 6.75 T to 9T, the resistance at the cross point of the metal-insulator transition (MIT) is very close to h/2e2, which resembles the case of a disordered two-dimensional electron gas (2DEG) and may indicate a similar physical mechanism. In addition to the magnetotransport measurements, the current saturation of graphene in a high electric field is studied both theoretically and experimentally. This thesis focuses primarily on bilayer graphene

  1. Temperature effects on electrical transport in semiconducting nanoporous carbon nanowires

    NASA Astrophysics Data System (ADS)

    Samuel, B. A.; Rajagopalan, R.; Foley, H. C.; Haque, M. A.

    2008-07-01

    In this paper we report on the effect of temperature on the electrical conductivity of amorphous and nanoporous (pores size around 0.5 nm) carbon nanowires. Poly(furfuryl alcohol) nanowires with diameter varying from 150 to 250 nm were synthesized by a template-based technique and upon pyrolysis yielded amorphous carbon nanowires with nanosized pores in them. We observed significant (as high as 700%) decrease in electrical resistance when the nanowire surface temperature was increased from room temperature to 160 °C. On the basis of the experimental and microscopy evidence, we infer a thermally activated carrier transport mechanism to be the primary electrical transport mechanism, at elevated temperatures, in these semiconducting, amorphous, and nanoporous carbon nanowires.

  2. Electrical Power Systems for NASA's Space Transportation Program

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  3. Transport Properties in Cold Dense Quark Matter

    NASA Astrophysics Data System (ADS)

    Braby, Matt; Schaefer, Thomas; Chao, Jingyi; Alford, Mark; Mahmoodifar, Simin

    2010-02-01

    We have calculated several transport properties of the low energy degrees of freedom of the color-flavor locked phase in dense quark matter. The low energy degrees of freedom are the superfluid phonon and the meson octet of which the lightest excitation is the kaon. In some choices of the parameters, the kaon can condense. The basis of the calculation is a matching of kinetic theory and hydrodynamics to extract the transport properties and calculating the appropriate scattering rates for each process. From this, we have calculated the bulk viscosity of condensed and massive kaons, the shear viscosity of condensed kaons, and the thermal conductivity of the superfluid phonons and massive kaons. We present the results and analyze how these transport properties could affect observables in compact stars. )

  4. Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method

    SciTech Connect

    Porytsky, P.; Krivtsun, I.; Demchenko, V.; Reisgen, U.; Mokrov, O.; Zabirov, A.; Gorchakov, S.; Timofeev, A.; Uhrlandt, D.

    2013-02-15

    Transport properties (thermal conductivity, viscosity, and electrical conductivity) for multicomponent Ar-Fe thermal plasmas at atmospheric pressure have been determined by means of two different methods. The transport coefficients set based on Grad's method is compared with the data obtained when using the Chapman-Enskog's method. Results from both applied methods are in good agreement. It is shown that the Grad method is suitable for the determination of transport properties of the thermal plasmas.

  5. Temperature Dependent Electrical Properties of PZT Wafer

    NASA Astrophysics Data System (ADS)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  6. Electrical, optical and dielectric properties of HCl doped polyaniline nanorods

    NASA Astrophysics Data System (ADS)

    Chutia, P.; Kumar, A.

    2014-03-01

    In this report we have investigated the optical, electrical and dielectric properties of HCl doped polyaniline nanorods synthesized by the interfacial polymerization technique. High resolution transmission electron microscope (HRTEM) micrographs confirm the formation of nanorods. X-ray diffraction pattern shows the semicrystalline nature of polyaniline nanorods with a diameter distribution in the range of 10-22 nm. The chemical and electronic structures of the polyaniline nanorods are investigated by micro-Raman and UV-vis spectroscopy. Dielectric relaxation spectroscopy has been applied to study the dielectric permittivity, modulus formalism and ac conductivity as a function of frequency and temperature. The ac conductivity follows a power law with frequency. The variation of frequency exponent with temperature suggests that the correlated barrier hopping is the dominant charge transport mechanism. The existence of both polaron and bipolaron in the transport mechanism has been confirmed from the binding energy calculations.

  7. Electrical and optical properties of carbon films

    NASA Astrophysics Data System (ADS)

    Kulkarni, Pranita

    the morphology and graphitic cluster sizes that were obtained from Raman scattering. To enable the development of future devices based on nanostructured carbon films, four metals (Zr, Ti, Cu, and Pt) with substantially different work functions and catalytic activity were deposited on pyrolyzed PAN-b-PBA films. All metals formed ohmic contacts to the films in the 'as-deposited' state with contact resistances of the order of 105 O. The ohmicity of all metals and the modulation of the pseudo-gap with graphitic cluster sizes were explained using the simple single-orbital tight-binding calculations for nanometer-sized graphitic clusters. Unlike most inorganic single-crystal semiconductors but commonly observed in organic or nanocrystalline materials, our modeling of resistivity-temperature measurements showed that variable-range-hopping (VRH) was the dominant current transport mechanism in the films up to room-temperature with a crossover from Mott-VRH to Efros-Skhlovskii-VRH at temperatures below 100 K. Specific contact resistivity values for all metal-copolymer (PAN-b-PBA)-derived films pyrolyzed at 600°C increased with increasing work function of the metal, suggesting that the films are n-type; this conclusion agrees with the n-type result obtained from the Hall-effect measurements. Nanocrystalline diamond (NCD) films have a variety of potential applications, including optical windows, Schottky diodes, and electron emitting surfaces for field emission displays. In this study Zr, Ti, Cu and Pt on intrinsic and lightly sulfur-doped (n-type) NCD films were characterized electrically and photoelectrically. All metals showed linear (ohmic) current-voltage characteristics in the as-deposited state. The Schottky barrier heights (phiB) at the metal-film interface were investigated using x-ray and ultra-violet photoelectron spectroscopy. The undoped NCD films exhibited a negative electron affinity and a band gap of 5.0 +/- 0.4 eV. The phiB were calculated based on this band gap

  8. Electrical and thermal transport measurements on nano-structured materials

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Wei

    This thesis discusses electrical and thermal transport measurements on C60, carbon nanotubes, and boron-nitride nanotubes. Chapter 1 describes the anomalous resistivity behavior of Ag films on C60 crystals. The correlation of the resistivity anomaly and the structural phase transition is established. Chapter 2 gives an introduction to the physical properties and the synthesis methods of carbon and boron nitride nanotubes. Chapter 3 shows two different approaches on chemical functionalization of boron-nitride nanotubes. Chapter 4 gives the theoretical background of thermal conductivity, especially for nano-structured materials. A summary of theoretical and experimental works on the thermal conductivity of nanotubes is given. Chapter 5 discusses the experimental results of thermal conductivity of nanotube mats. An absolute value of the thermal conductivity of boron nitride nanotubes is bracketed and can be compared to the results of the following chapters on individual nanotubes. Chapter 6 describes the experimental methods of measuring thermal conductivity of individual nanotubes. Chapter 7 shows the 2 temperature dependent thermal conductivity and thermopower of individual nanotubes. Chapter 8 discusses the isotope effect and the diameter dependence of the thermal conductivity of nanotubes. In chapter 9, it is shown that the thermal conductivity of nanotubes is robust against electron irradiation and structural deformation. Importantly, the observation challenges current understandings on the thermal transport of nano-structured materials. In chapter 10, it is shown that it is possible to reversibly tune the thermal conductivity of a multiwalled nanotube by controllably sliding the outer-shells against inner cores. Chapter 11 describes a thermal rectifier by engineering the mass distribution along a nanotube. The observed non-zero thermal rectification effect provides strong evidence for solitons in nanotubes. The soliton model also coherently explains many

  9. Electrical properties of epoxy/silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Boudefel, A.

    2006-01-01

    We investigated the electrical properties of nanocomposites made of epoxy resin filled with 70-nm-sized silver particles. These composites were studied for the fabrication of integrated capacitors in electronics packaging. The dc conductivity was studied as a function of the filler concentration and as a function of temperature. We also studied the ac conductivity and the permittivity in the 10-1-105 Hz range as a function of the filler concentration. Experimental properties were analyzed using standard percolation theories. The dc conductivity varies as (φ-φc)t, where φ is the filler concentration, φc is the percolation threshold, and t is the dc critical exponent. A very low percolation threshold is obtained (φc=1%) which is believed to be related to a segregated distribution of the fillers in the epoxy matrix. We also measured a very high dc critical exponent (t=5) probably related to the interparticle electrical contact. A universal scaling law is observed for σ(ω) and ɛ(ω). Above a cutoff frequency (ωc, which scales with the dc conductivity as ωc~σdcq) the conductivity and the permittivity follow the universal power laws (σ~ωu and V~ω-v) with critical exponents taking nonstandard values (q=0.83-0.98, u=0.79, and v=0.03).

  10. Modeling the interaction of electric current and tissue: importance of accounting for time varying electric properties.

    PubMed

    Evans, Daniel J; Manwaring, Mark L

    2007-01-01

    Time varying computer models of the interaction of electric current and tissue are very valuable in helping to understand the complexity of the human body and biological tissue. The electrical properties of tissue, permittivity and conductivity, are vital to accurately modeling the interaction of the human tissue with electric current. Past models have represented the electric properties of the tissue as constant or temperature dependent. This paper presents time dependent electric properties that change as a result of tissue damage, temperature, blood flow, blood vessels, and tissue property. Six models are compared to emphasize the importance of accounting for these different tissue properties in the computer model. In particular, incorporating the time varying nature of the electric properties of human tissue into the model leads to a significant increase in tissue damage. An important feature of the model is the feedback loop created between the electric properties, tissue damage, and temperature.

  11. Electrical and Thermal Properties of Mixed Conductors and Superconductors

    NASA Astrophysics Data System (ADS)

    Thomas, Joyce Albritton

    1995-01-01

    The electrical and thermal properties of three types of electronic materials have been analyzed. Variable -temperature conductivity and thermoelectric power were measured on the following materials: rm V _2O_5 polymer electrolyte nanocomposites, oxygen-deficient rm YBa_2Cu_3O _{x} single crystals, and quaternary chalcogenides, rm K_2Cu_2CeS _4 and rm CsCuCeS_3. Theoretical models were employed to advance the understanding of the conduction mechanisms present in these materials. The sol-gel process has been used to intercalate rm V_2O_5 xerogels with the polymer electrolyte, oxymethylene linked poly(ethylene oxide)-lithium triflate ((a-PEO)_ {n}(LiCF_3SO _3)). The molar ratios of vanadium and lithium to ethylene oxide were varied to examine the effect on the charge transport properties. The V^ {+4} concentration was also increased in an effort to enhance the electrical properties. The conductivity and thermoelectric power data measured parallel to the planes exhibited semiconductor behavior. The thermoelectric power was negative, indicating electrons as the majority charge carriers. Both the conductivity and thermoelectric power data fit a variable-range hopping transport model. Thermoelectric power measurements were performed on various stoichiometries of twinned, rm YBa_2Cu_3O_{x} single crystals. The data were collected along both the ab-plane and c-axis directions to investigate the anisotropic properties of these materials. Several crystals were reoxygenated to either the same x values or different x values. The reoxygenation study was conducted to extend the knowledge of the effect of oxygen content on transport behavior. Theoretical models previously described in the literature were used to examine the conduction mechanisms in the rm YBa_2Cu_3O_{x} single crystals. The quaternary chalcogenides, rm K_2Cu_2CeS_4 and CsCuCeS _3, were also investigated. The amount of Cu present was found to have an effect on the crystal structure of both materials. As a result

  12. Electronic transport properties in graphene oxide frameworks

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Cruz-Silva, E.; Meunier, V.

    2014-02-01

    The electronic transport properties in multiterminal graphene oxide framework (GOF) materials are investigated using a combination of theoretical and computational methods. GOFs make up four-terminal [origin=c]90H-shaped GNR-L-GNR junctions where sandwiched boronic acid molecules (L) are covalently linked to two graphene nanoribbons (GNRs) of different edge chiralities. The transport properties are governed by both tunneling and quasiresonant regimes. We determine how the presence of linker molecules affects the transport properties and establish that the through-molecule transport properties can be tuned by varying the chemical composition of the pillar molecules but are not significantly modified when changing the type of electrodes from zigzag GNRs to armchair GNRs. In addition, we find that in multilinker systems containing two parallel molecules in the device area, the coupling between the molecules can lead to both constructive and destructive quantum interferences. We also examine the inability of the classical Kirchhoff's superposition law to account for electron flow in multilinker GOF nanonetworks.

  13. Thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1980-01-01

    Computer program subroutine FLUID calculates thermodynamic and transport properties of pure fluids in liquid, gas, or two-phase (liquid/gas) conditions. Program determines thermodynamic state from assigned values for temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy.

  14. Electrical and structural properties of chemically modified graphene sheets

    NASA Astrophysics Data System (ADS)

    Dikin, Dmitriy A.; Jung, Inhwa; Ruoff, Rodney S.

    2009-03-01

    The chemical exfoliation of graphite through oxidation and then dispersion in a solvent is one of the methods of achieving scalable production of single graphene sheets. We use this method for making chemically modified graphene (CMG) sheets with tunable electronic properties, which can be placed flat on any surface or dispersed in various matrices. CMG sheets share some similarities with pristine graphene and with carbon nanotubes, e.g. tunable electron- and hole-type conductivity is observed in single CMG sheets just above the percolation threshold. CMGs may also be considered as a template for a bottom up development of a new class of materials. We have performed electrical measurements of individual CMG sheets and will discuss their electronic properties and the possible mechanisms of the charge transport in relation to their atomic structure and chemical composition.

  15. Operation regimes and electrical transport of steep slope Schottky Si-FinFETs

    NASA Astrophysics Data System (ADS)

    Jeon, Dae-Young; Zhang, Jian; Trommer, Jens; Park, So Jeong; Gaillardon, Pierre-Emmanuel; De Micheli, Giovanni; Mikolajick, Thomas; Weber, Walter M.

    2017-02-01

    In the quest for energy efficient circuits, considerable focus has been given to steep slope and polarity-controllable devices, targeting low supply voltages and reduction of transistor count. The recently proposed concept of the three-independent gated Si-FinFETs with Schottky-barriers (SBs) has proven to bring both functionalities even in a single device. However, the complex combination of transport properties including Schottky emission and weak impact ionization as well as the body effect makes the design of such devices challenging. In this work, we perform a deep electrical characterization analysis to visualize and decouple the different operation regimes and electrical properties of the SB Si-FinFETs using a graphical transport map. From these, we give important guidelines for the design of future devices.

  16. Electrical properties and magnetic response of cobalt germanosilicide nanowires.

    PubMed

    Tsai, Chun-I; Wang, Chiu-Yen; Tang, Jianshi; Hung, Min-Hsiu; Wang, Kang L; Chen, Lih-Juann

    2011-12-27

    The effects of partial substitution of Ge for Si in cobalt germanosilicide (CoSi(1-x)Ge(x) and Co(2)Si(1-x)Ge(x)) nanowires (NWs) on the electrical transport, magnetic properties, and magnetoresistance (MR) have been investigated. Cobalt germanosilicide NWs were synthesized by a spontaneous chemical vapor transport growth method. The Ge concentration can be selectively controlled from 0 to 15% and 0-50% for CoSi(1-x)Ge(x) and Co(2)Si(1-x)Ge(x) NWs, respectively, by varying the reaction temperature. Electrical measurements showed that the resistivities of CoSi(1-x)Ge(x) NWs are 90, 60, 30, and 23 μΩ-cm for x = 0, 0.01, 0.05, and 0.15, respectively. Therefore, the electrical resistivity of CoSi(1-x)Ge(x) NWs was found to decrease significantly with an increasing Ge concentration, which is believed to be a result of the band gap narrowing. On the other hand, the Co(2)Si(1-x)Ge(x) (x ≤ 0.5) NWs exhibited ferromagnetism at 300 K, which is attributed to the uncoordinated Co atoms on the NW surface and spin-glass behavior at low temperature. The highest MR response of Co(2)Si(1-x)Ge(x) NWs occurred at x = 0.5, where a MR ratio of 11.7% can be obtained at 10-25 K with a magnetic field of 8 T. The enhanced physical properties of cobalt germanosilicide NWs with Ge substitution shall lead to promising application in the fabrication of nanodevices, including spintronics and serving as the gate and interconnect material.

  17. Properties of interfaces and transport across them.

    PubMed

    Cabezas, H

    2000-01-01

    Much of the biological activity in cell cytoplasm occurs in compartments some of which may be formed, as suggested in this book, by phase separation, and many of the functions of such compartments depend on the transport or exchange of molecules across interfaces. Thus a fundamentally based discussion of the properties of phases, interfaces, and diffusive transport across interfaces has been given to further elucidate these phenomena. An operational criterion for the width of interfaces is given in terms of molecular and physical arguments, and the properties of molecules inside phases and interfaces are discussed in terms of molecular arguments. In general, the properties of the interface become important when the molecules diffusing across are smaller than the width of the interface. Equilibrium partitioning, Donnan phenomena, and electrochemical potentials at interfaces are also discussed in detail. The mathematical expressions for modeling transport across interfaces are discussed in detail. These describe a practical and detailed model for transport across interfaces. For molecules smaller than the width of the interface, this includes a detailed model for diffusion inside the interface. Last, the question of the time scale for phase formation and equilibration in biological systems is discussed.

  18. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    USGS Publications Warehouse

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  19. Transport properties in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Biolsi, L.

    1978-01-01

    Transport properties in a Jupiter-like atmosphere (89 mol % hydrogen and 11 mol % helium) are obtained by using the method of the kinetic theory of gases. The transport collision integrals are calculated by fitting various two-body semiempirical interaction potentials for which the collision integrals are tabulated to ab initio quantum mechanical calculations of the two-body interactions. The collision integrals are used to calculate the binary diffusion coefficients, viscosity, and 'total' thermal conductivity of the pure gases and the gas mixtures at 1-atm pressure from 1000 K to 25,000 K.

  20. Engineering electrical properties of graphene: chemical approaches

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee

    2015-12-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.

  1. Localization and electrical transport in onion-like carbon based composites

    NASA Astrophysics Data System (ADS)

    Macutkevic, J.; Adomavicius, R.; Krotkus, A.; Banys, J.; Kuznetsov, V.; Moseenkov, S.; Romanenko, A.; Shenderova, O.

    2012-05-01

    Electrical transport properties of onion-like carbon (OLC) based composites over a wide (20 Hz-4 THz) frequency range are reported. The dependencies of dc conductivity on temperature can be approximated by the Mott law for one-dimensional variable range hopping below 130 K and by the typical law for fluctuation induced tunneling within the range of 130-300 K. The critical frequency at low temperatures also decreases according to the Mott law for one-dimensional variable range hopping. It was demonstrated that OLC annealing temperature plays a high role on the dielectric and electrical properties of composites at low temperatures. In the terahertz frequency range, the main contribution to the complex electrical conductivity is due to the phonon contribution while the contribution from hopping conduction vanishes at these frequencies.

  2. Physical and Optical Polarizability and Transport Properties of Bismuthate Glasses

    NASA Astrophysics Data System (ADS)

    Bale, Shashidhar; Rahman, Syed

    Bismuth-based glasses containing ZnO, B2O3 and Li2O are investigated through different physical, polarizability and transport properties. Raman spectroscopy reveals that these glasses are built from [BiO3] and [BiO6] units. Zinc in tetrahedral form is also observed. Density and glass transition temperature increase with the bismuth content. The refractive index, oxide ion polarizability and optical basicity also increase with the Bi2O3 content, whereas the interaction parameter decreases. The DC electrical conductivity increases and the activation energy decreases with the increase in the Li2O content.

  3. Spatially resolved imaging of opto-electrical property variations

    DOEpatents

    Nikiforov, Maxim; Darling, Seth B; Suzer, Ozgun; Guest, Jeffrey; Roelofs, Andreas

    2014-09-16

    Systems and methods for opto electric properties are provided. A light source illuminates a sample. A reference detector senses light from the light source. A sample detector receives light from the sample. A positioning fixture allows for relative positioning of the sample or the light source with respect to each other. An electrical signal device measures the electrical properties of the sample. The reference detector, sample detector and electrical signal device provide information that may be processed to determine opto-electric properties of the same.

  4. Optical contactless measurement of semiconductor thermoelectric transport properties (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gibelli, Francois; Lombez, Laurent; Guillemoles, Jean-François

    2017-04-01

    In view of the combinatorial approach to discovery of new thermoelectric materials, it is highly desirable to have fast measurement techniques, if possible with capabilities to access local fluctuations or gradients in material properties. Using the generalized Planck& #39;s law of radiation [1] for fitting the photoluminescence spectra is the most appropriate technique to access the quasi Fermi level splitting and the temperature of the carriers in a semiconductor. These two parameters enable to determine Seebeck coefficients for the material as a new photo-Seebeck effect [2]. The absolutely calibrated photoluminescence intensity profile[3] with the spatial coordinates combined with Callen coupled transport equations and with the kinetic expression of the transport parameters under the relaxation time approximation enable us to determine: the Seebeck coefficient, the electrical conductivity, the thermal electron and hole conductivity, the mobilities, the diffusion coefficients and the heat transferred from the carriers to the lattice. All these parameters can be obtained either for electrons or for holes[4], even simultaneously, for intrinsic semiconductor in ambipolar regime. The method has been applied to a multi-quantum well structure of InGaAsP. Since the luminescence comes from the wells, this method enables to access the transport properties in the plane of the wells inside the whole structure. Since photoluminescence does not require p-n junction nor high electrical conductivities for the measurement, this optical contactless measurement technique of thermoelectrinc transport parameters involving quasi-equilibrium carriers enables to access properties inside a given layer of the whole structure or in materials with very low conductivities. We will also show the perspectives offered for the research of new thermoelectric materials. [1] Würfel, J. Phys. C : Solid State Phys., 1982 [2] Gibelli et al., Phys. Rev. Appl., 5 (2) 2016 Tauc, Czech J Phys, 1955 [3

  5. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1

    PubMed Central

    El-Naggar, Mohamed Y.; Wanger, Greg; Leung, Kar Man; Yuzvinsky, Thomas D.; Southam, Gordon; Yang, Jun; Lau, Woon Ming; Nealson, Kenneth H.; Gorby, Yuri A.

    2010-01-01

    Bacterial nanowires are extracellular appendages that have been suggested as pathways for electron transport in phylogenetically diverse microorganisms, including dissimilatory metal-reducing bacteria and photosynthetic cyanobacteria. However, there has been no evidence presented to demonstrate electron transport along the length of bacterial nanowires. Here we report electron transport measurements along individually addressed bacterial nanowires derived from electron-acceptor–limited cultures of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. Transport along the bacterial nanowires was independently evaluated by two techniques: (i) nanofabricated electrodes patterned on top of individual nanowires, and (ii) conducting probe atomic force microscopy at various points along a single nanowire bridging a metallic electrode and the conductive atomic force microscopy tip. The S. oneidensis MR-1 nanowires were found to be electrically conductive along micrometer-length scales with electron transport rates up to 109/s at 100 mV of applied bias and a measured resistivity on the order of 1 Ω·cm. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA produce appendages that are morphologically consistent with bacterial nanowires, but were found to be nonconductive. The measurements reported here allow for bacterial nanowires to serve as a viable microbial strategy for extracellular electron transport. PMID:20937892

  6. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Grain Size Effect on Electrical Conductivity and Giant Magnetoresistance of Bulk Magnetic Polycrystals

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhu, Lin-Li; Zheng, Xiao-Jing

    2009-11-01

    By solving the Boltzmann transport equation and considering the spin-dependent grain boundary scattering, the distribution of electrons in grains and the electrical transport properties in the applied magnetic field are studied. With regard to the dominant influence of grain boundary scattering which is taken as a boundary condition for the electrical transport, the grain size-dependent electrical conductivity is investigated. In addition, the reorientation of the relative magnetization between grains brings the change of the electron spin when the magnetonanocrystalline material is subjected to the magnetic field, resulting in the remarkable giant magnetoresistance effect.

  7. Connection between elastic and electrical properties of cortical bone.

    PubMed

    Gao, X; Sevostianov, I

    2016-03-21

    The paper focuses on the connection between elastic and electrical properties of cortical bone. Both these properties are governed by microstructure that consists of several pore systems filled with mechanically soft and electrically conductive tissue. Microstructural changes induced by aging, various diseases, microgravity conditions etc. lead to variation in both properties. The paper address the problem of evaluation of the changes in mechanical performance (decrease in Young׳s moduli) via monitoring electrical conductivity. The theoretical results are verified experimentally.

  8. Effect of graphene-oxide on the microstructure and charge carrier transport of polyaniline nanocomposites under low applied electric fields

    NASA Astrophysics Data System (ADS)

    Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Mombrú, Álvaro W.

    2017-01-01

    We report a study on the preparation and characterization of polyaniline-graphene oxide (PANI-GO-X) nanocomposites focusing in the study of its structure, microstructure, and correlations with electrical transport properties under low applied electric fields. X-ray diffraction analysis showed evidence of graphene oxide (GO) blending between polyaniline fibers, and according to small angle X-ray scattering, the fractal dimensionality was quasi-one dimensional for all nanocomposites. Confocal Raman spectroscopy revealed that the addition of GO leads to a notorious decrease of the polaron population of polyaniline. A significant increase in resistivity was observed for PANI-GO-X nanocomposites with respect to pure polyaniline, in agreement with the decrease in the polaron population. The electrical transport mechanism could be explained by an Arrhenius behavior at high temperatures (T > 255 K) and a broad transition with a logarithmic dependence of the activation energy with temperature for the low temperature regime (T < 255 K). Additionally, an increase in the hopping transport dimensionality from quasi-1D to quasi-3D was observed for X = 7% GO nanocomposites. The transport properties, studied after the polarization using low applied electric fields, revealed the modification of the electrical transport at low temperatures. In addition, the electrical transport of PANI-GO-X nanocomposites followed a typical ln(σ) vs E1/2 Poole-Frenkel type dependence in the presence of low applied electric fields. At low temperatures, X = 7% GO nanocomposites showed a notorious increase in the Poole-Frenkel slope at low applied electric fields with respect to pure polyaniline. The enhancement on the electric response using low applied electric fields (E ˜ 2 V/cm) could be of great interest for the development of new organic electronic devices.

  9. Dynamical properties of transportation on complex networks

    NASA Astrophysics Data System (ADS)

    Shen, Bo; Gao, Zi-You

    2008-02-01

    We study the dynamical properties of transportation considering the topology structure of networks and congestion effects, based on a proposed simple model. We analyze the behavior of the model for finding out the relationship between the properties of transportation and the structure of network. Analysis and numerical results demonstrate that the transition from free flow to congested regime can be observed for both single link load and network load, but it is discontinuous for single link and continuous for network. We also find that networks with large average degree have small average link betweenness and are more tolerant to congestion, and networks with homogeneous structure can hold more vehicles in stationary state at the subcritical region. Furthermore, by allotting capacity with different mode to links, a manner of enhancing the performance of networks is introduced, which should be helpful in the design of traffic networks.

  10. Diffusive Transport Properties Across Coupling Regimes

    NASA Astrophysics Data System (ADS)

    Dharuman, G.; Murillo, M. S.; Verboncoeur, J.; Christlieb, A.

    2014-10-01

    Transport properties are poorly known across coupling regimes, therefore understanding them is of importance for theoretical and practical reasons. A useful tool is an ultracold plasma system because of the experimental capability to tune the system to attain Coulomb coupling Γ ranging from 0.1 to 1 to 10 with the screening parameter κ ranging from 0 to 4 to 8, spanning the regions of the phase diagram from weak to moderate to strongly coupled and screened systems. Strong coupling is possible if Disorder Induced Heating is mitigated which requires a correlated initial ion state. Of particular interest is Rydberg blockaded gas of ultracold atoms where the local blockade effect results in correlations. Predictions of higher coupling in ultracold plasma created from a Rydberg blockaded gas have been reported. In this work we examine the diffusive transport properties of ultracold plasma system using molecular dynamics simulations for experimentally realizable values of Γ and κ as discussed above.

  11. Electrical properties of isotactic polypropylene loaded with carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Chipara, Mircea; Ciurea, Magdalena L.; Lozano, Karen; Aldica, Gheorghe V.; Chipara, Dorina M.; Popa, Stelian; Stavarache, Ionel

    2013-03-01

    Nanocomposites have been obtained by dispersing vapor grown carbon nanofibers (VGCNF) within isotactic polypropylene (iPP) via melt mixing. VGCNFs were purified and disentangled before blending with iPP. The mixing was performed by using HAAKE Rheomix, at 180 oC and 65 rpm for 9 minutes followed by an additional mixing at 90 rpm for 5 minutes (same temperature). The electrical properties of nanocomposites loaded with various amounts of VGCNFs (0%, 1%, 2.5%, 5%, 7.5%, 10%, 15%, and 20% wt.) have been investigated. DC electrical measurements revealed a percolation threshold at about 12 % wt. VGCNFs. The DC electrical characteristics of the nanocomposites located above the percolation threshold were investigated in detail, in a wide temperature range starting from 20 K up to about 750 K. The investigations revealed small changes of the DC conductivity within the glass and melting transition range of the polymeric matrix. The dominant charge transport mechanism below the glass transition temperature as well as between the glass and melting transition temperature is the variable range hopping. Above the melting temperature an Arrhenius like dependence of the DC conductivity was noticed.

  12. Local structural distortion and electrical transport properties of Bi(Ni1/2Ti1/2)O3 perovskite under high pressure

    SciTech Connect

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng

    2015-12-16

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. We find, consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.

  13. Surface electrical properties experiment, part 1. [for measuring lunar surface electrical properties

    NASA Technical Reports Server (NTRS)

    Kupfer, W. S. (Compiler)

    1973-01-01

    The design evolution, hardware development, and production history of the surface electrical properties (SEP) experiment are discussed. The SEP transmitter and receiver were designed to be used on the lunar surface during the Apollo 17 mission. The equipment was used to measure lunar surface electrical properties over traverses totalling more than 8 kilometers, for a duration of more than 100 minutes. A comprehensive outline of the techniques, is given along with a simplified detailed breakdown of equipment description and function to outline the principles of operation. A history of the design evolution with trade-off criteria and emphasis on changes caused by decisions reached in solving problems inherent in a fast-paced development program are presented from the viewpoint of overall design concept and in detail for each item of deliverable hardware. There is a brief account of lunar operations.

  14. Stability properties of elementary dynamic models of membrane transport.

    PubMed

    Hernández, Julio A

    2003-01-01

    Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.

  15. Optical and transport properties of dense liquid silica

    SciTech Connect

    Qi, Tingting; Millot, Marius; Kraus, Richard G.; Hamel, Sebastien; Root, Seth

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequency dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.

  16. Transport properties of polymer solutions. A comparative approach.

    PubMed Central

    Foster, K R; Cheever, E; Leonard, J B; Blum, F D

    1984-01-01

    A variety of transport properties have been measured for solutions of the water soluble polymer poly(ethylene oxide)(PEO) with molecular weights ranging from 200 to 14,000, and volume fractions ranging from 0-80%. The transport properties are thermal conductivity, electrical conductivity at audio frequencies (in solutions containing dilute electrolyte), and water self-diffusion. These data, together with dielectric relaxation data previously reported, are amenable to analysis by the same mixture theory. The ionic conductivity and water self-diffusion coefficient, but not the thermal conductivity, are substantially smaller than predicted by the Maxwell and Hanai mixture relations, calculated using the known transport properties of pure liquid water. A 25% (by volume) solution of PEO exhibits an average dielectric relaxation frequency of the suspending water of one half that of pure water, with clear evidence of a distribution of relaxation times present. The limits of the cumulative distribution of dielectric relaxation times that are consistent with the data are obtained using a linear programming technique. The application of simple mixture theory, under appropriate limiting conditions, yields hydration values for the more dilute polymer solutions that are somewhat larger than values obtained from thermodynamic measurements. PMID:6733244

  17. Predicting the transport properties of sedimentary rocks from microstructure

    SciTech Connect

    Schlueter, Erika M.

    1995-01-01

    Understanding transport properties of sedimentary rocks, including permeability, relative permeability, and electrical conductivity, is of great importance for petroleum engineering, waste isolation, environmental restoration, and other applications. These transport properties axe controlled to a great extent by the pore structure. How pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media are investigated analytically and experimentally. Hydraulic and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. Cross-sectional areas and perimeters of individual pores are estimated from two-dimensional scanning electron microscope (SEM) photomicrographs of rock sections. Results, using Berea, Boise, Massilon, and Saint-Gilles sandstones show close agreement between the predicted and measured permeabilities. Good to fair agreement is found in the case of electrical conductivity. In particular, good agreement is found for a poorly cemented rock such as Saint-Gilles sandstone, whereas the agreement is not very good for well-cemented rocks. The possible reasons for this are investigated. The surface conductance contribution of clay minerals to the overall electrical conductivity is assessed. The effect of partial hydrocarbon saturation on overall rock conductivity, and on the Archie saturation exponent, is discussed. The region of validity of the well-known Kozeny-Carman permeability formulae for consolidated porous media and their relationship to the microscopic spatial variations of channel dimensions are established. It is found that the permeabilities predicted by the Kozeny-Carman equations are valid within a factor of three of the observed values methods.

  18. Transport properties in semiconductor-gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; (Yücel) Kurt, H.; Albarzanji, A. O.; Alekperov, S. D.; Salamov, B. G.

    2009-09-01

    Nonlinear electrical transport of semi-insulating (SI) GaAs detector in semiconductor-gas discharge IR image converter (SGDIC) are studied experimentally for a wide range of the gas pressures ( p = 28-55 Torr), interelectrode distances ( d = 445-525 μm) and inner electrode diameters ( D = 12-22 mm) of photocathode. The destabilization of homogeneous state observed in a planar dc-driven structure is due to nonlinear transport properties of GaAs photocathode. Experimental investigation of electrical instability in SGDIC structure was analyzed using hysteresis, N-shaped negative differential conductivity (NDC) current voltage characteristics (CVC) and dynamic behavior of current in a wide range of feeding voltage ( U = 590-1000 V) under different IR light intensities incident on cathode material. It is established that hysteresis are related to electron capture and emission from EL2 deep center on the detector substrate. We have experimentally investigated domain velocity and electron mobility based on well-understood transferred electron effect (TEE) for abovementioned nonlinear electrical characteristics of SI GaAs. The experimental findings are in good agreement with estimated results reported by other independent authors.

  19. Applying electrical utility least-cost approach to transportation planning

    SciTech Connect

    McCoy, G.A.; Growdon, K.; Lagerberg, B.

    1994-09-01

    Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

  20. Charged Hadron Properties in Background Electric Fields

    SciTech Connect

    William Detmold, Brian C. Tiburzi, Andre Walker-Loud

    2010-02-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields.

  1. Transport Properties of Negative Ions in HBR Plasmas

    NASA Astrophysics Data System (ADS)

    Stojanovic, Vladimir; Ivanovic, Nenad; Radmilovic-Radjenovic, Marija; Raspopovic, Zoran; Bojarov, Aleksandar; Petrovic, Zoran

    2014-10-01

    Low temperature plasma in halogenated gases is standard environment for dry etching of semiconductors. Amount of negative ions in HBr plasmas determines electronegativity so modeling etching devices requires data for anion transport properties. In this work we present cross section set for Br- ions in HBr assembled by using Denpoh-Nanbu theory. The threshold energy values were calculated by known heats of formation. The calculated total cross section accounts for ion-induced-dipole and ion-permanent-dipole interaction by using the local-dipole model. The total cross section was corrected to fit the reduced mobility obtained by SACM (Statistical Adiabatic Channel Model) approximation. Existing cross section measurements were used to scale calculated cross sections. Finally, we used Monte Carlo method to determine transport parameters for Br- as a function of reduced electric fields that can be used in fluid and hybrid plasma models.

  2. The phase diagram and transport properties for hydrogen-helium fluid planets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Salpeter, E. E.

    1977-01-01

    The properties of pure hydrogen and helium are examined, taking into account metallic hydrogen, molecular hydrogen, and the molecular-metallic transition. Metallic hydrogen-helium mixtures are considered along with molecular hydrogen-helium mixtures, the total phase diagram, and minor constituents, including deuterium. The transport properties of the metallic and the molecular phase are also discussed, giving attention to electrical conductivity, thermal conductivity, viscosity, self-diffusion, interdiffusion, radiative opacity, and second-order transport coefficients.

  3. The phase diagram and transport properties for hydrogen-helium fluid planets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Salpeter, E. E.

    1977-01-01

    The properties of pure hydrogen and helium are examined, taking into account metallic hydrogen, molecular hydrogen, and the molecular-metallic transition. Metallic hydrogen-helium mixtures are considered along with molecular hydrogen-helium mixtures, the total phase diagram, and minor constituents, including deuterium. The transport properties of the metallic and the molecular phase are also discussed, giving attention to electrical conductivity, thermal conductivity, viscosity, self-diffusion, interdiffusion, radiative opacity, and second-order transport coefficients.

  4. A methodology for extracting the electrical properties of human skin.

    PubMed

    Birgersson, Ulrik; Birgersson, Erik; Nicander, Ingrid; Ollmar, Stig

    2013-06-01

    A methodology to determine dielectrical properties of human skin is presented and analyzed. In short, it is based on a mathematical model that considers the local transport of charge in the various layers of the skin, which is coupled with impedance measurements of both stripped and intact skin, an automated code generator, and an optimization algorithm. New resistivity and permittivity values for the stratum corneum soaked with physiological saline solution for 1 min and the viable skin beneath are obtained and expressed as easily accessible functions. The methodology can be extended to account for different electrode designs as well as more physical phenomena that are relevant to electrical impedance measurements of skin and their interpretation.

  5. Silicon multi-branch nanostructures for decent field emission and excellent electrical transport

    NASA Astrophysics Data System (ADS)

    Sun, Min; Gao, Yihua; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri

    2011-04-01

    We report on the synthesis, field electron emission and electric transport properties of a novel nanomaterial: ordered arrays of crystallized silicon multi-branch nanostructures. A decent field electron emission with relatively low turn-on field of 3.16 V µm - 1 and high field-enhancement factor of 1252 was received for the silicon nanobranches. The relevancies between field-emission current-voltage characteristic, turn-on field, threshold field and sample-anode distance have been thoroughly analyzed. In addition, electrical transport measurements revealed a small electrical resistance of 0.51 MΩ for as-prepared silicon nanobranches. In contrast, by improving the silicon nanobranch-electrode contact, vacuum annealing dramatically reduced the electrical resistance, by a factor approaching two, while thermal oxidation resulted in a much higher resistance due to the amorphous oxide coating of the silicon nanobranches, both of the current versus voltage curves became more linear and symmetrical, and the transport stability was obviously improved.

  6. Fuel cells for electric utility and transportation applications

    SciTech Connect

    Srinivasan, S.

    1980-01-01

    This review article presents: the current status and expected progress status of the fuel cell research and development programs in the USA, electrochemical problem areas, techno-economic assessments of fuel cells for electric and/or gas utilities and for transportation, and other candidate fuel cells and their applications. For electric and/or gas utility applications, the most likely candidates are phosphoric, molten carbonate, and solid electrolyte fuel cells. The first will be coupled with a reformer (to convert natural gas, petroleum-derived, or biomass fuels to hydrogen), while the second and third will be linked with a coal gasifier. A fuel cell/battery hybrid power source is an attractive option for electric vehicles with projected performance characteristics approaching those for internal combustion or diesel engine powered vehicles. For this application, with coal-derived methanol as the fuel, a fuel cell with an acid electrolyte (phosphoric, solid polymer electrolyte or super acid) is essential; with pure hydrogen (obtained by splitting of water using nuclear, solar or hydroelectric energy), alkaline fuel cells show promise. A fuel cell researcher's dream is the development of a high performance direct methanol-air fuel cell as a power plant for electric vehicles. For long or intermittent duty cycle load leveling, regenerative hydrogen-halogen fuel cells exhibit desirable characteristics.

  7. Charged Polymers Transport under Applied Electric Fields in Periodic Channels

    PubMed Central

    Nedelcu, Sorin; Sommer, Jens-Uwe

    2013-01-01

    By molecular dynamics simulations, we investigated the transport of charged polymers in applied electric fields in confining environments, which were straight cylinders of uniform or non-uniform diameter. In the simulations, the solvent was modeled explicitly and, also, the counterions and coions of added salt. The electrophoretic velocities of charged chains in relation to electrolyte friction, hydrodynamic effects due to the solvent, and surface friction were calculated. We found that the velocities were higher if counterions were moved away from the polymeric domain, which led to a decrease in hydrodynamic friction. The topology of the surface played a key role in retarding the motion of the polyelectrolyte and, even more so, in the presence of transverse electric fields. The present study showed that a possible way of improving separation resolution is by controlling the motion of counterions or electrolyte friction effects. PMID:28811419

  8. Measurement of Transport Properties of Aerosolized Nanomaterials

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 – 400 nm. Principal component analysis of the obtained airborne particle

  9. Measurement of Transport Properties of Aerosolized Nanomaterials.

    PubMed

    Ku, Bon Ki; Kulkarni, Pramod

    2015-12-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 - 400 nm. Principal component analysis of the obtained airborne particle

  10. Processing, electrical and microwave properties of sputtered Tl-Ca-Ba-Cu-O superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    A reproducible fabrication process has been established for TlCaBaCuO thin films on LaAlO3 substrates by RF magnetron sputtering and post-deposition processing methods. Electrical transport properties of the thin films were measured on patterned four-probe test devices. Microwave properties of the films were obtained from unloaded Q measurements of all-superconducting ring resonators. This paper describes the processing, electrical and microwave properties of Tl2Ca1Ba2Cu2O(x) 2122-plane phase thin films.

  11. First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene

    NASA Astrophysics Data System (ADS)

    D'Souza, Ransell; Mukherjee, Sugata

    2017-02-01

    We report the transport properties of monolayer and bilayer graphene from first-principles calculations and Boltzmann transport theory (BTE). Our resistivity studies on monolayer graphene show Bloch-Grüneisen behavior in a certain range of chemical potentials. By substituting boron nitride in place of a carbon dimer of graphene, we predict a twofold increase in the Seebeck coefficient. A similar increase in the Seebeck coefficient for bilayer graphene under the influence of a small electric field ˜0.3 eV has been observed in our calculations. Graphene with impurities shows a systematic decrease of electrical conductivity and mobility. We have also calculated the lattice thermal conductivities of monolayer graphene and bilayer graphene using phonon BTE which show excellent agreement with experimental data available in the temperature range 300-700 K.

  12. Modeling of electrical transport in Zinc Oxide varistors

    NASA Astrophysics Data System (ADS)

    Bavelis, K.; Gjonaj, E.; Weiland, T.

    2014-11-01

    The electrical transport in zinc oxide (ZnO) varistors is analyzed using microstructural material modeling. The fully three dimensional current distribution is computed by means of a nonlinear equivalent circuit model representing the assembly of current carrying grains and grain boundaries of the material. The investigation focuses on the phenomenon of current filamentation due to inhomogeneities of the varistor microstructure. Numerical results highlight the importance of 3-D percolation effects in the modeling of varistor currents as well as that of the grain bulk resistivity which so far has been neglected in previous studies.

  13. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  14. Annealing effects on the structural and electrical transport properties of n-type Bi 2Te 2.7Se 0.3 thin films deposited by flash evaporation

    NASA Astrophysics Data System (ADS)

    Duan, Xingkai; Jiang, Yuezhen

    2010-10-01

    N-type Bi 2Te 2.7Se 0.3 thermoelectric thin films with thickness 800 nm have been deposited on glass substrates by flash evaporation method at 473 K. Annealing effects on the thermoelectric properties of Bi 2Te 2.7Se 0.3 thin films were examined in the temperature range 373-573 K. The structures, morphology and chemical composition of the thin films were characterized by X-ray diffraction, field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Thermoelectric properties of the thin films have been evaluated by measurements of the electrical resistivity and Seebeck coefficient at 300 K. The Hall coefficients were measured at room temperature by the Van der Pauw method. The carrier concentration and mobility were calculated from the Hall coefficient. The films thickness of the annealed samples was measured by ellipsometer. When annealed at 473 K, the electrical resistivity and Seebeck coefficient are 2.7 mΩ cm and -180 μV/K, respectively. The maximum of thermoelectric power factor is enhanced to 12 μW/cm K 2.

  15. High pressure electrical transport behavior in organic semiconductor pentacene

    NASA Astrophysics Data System (ADS)

    Wang, Qinglin; Zhang, Haiwa; Zhang, Yan; Liu, Cailong; Han, Yonghao; Ma, Yanzhang; Gao, Chunxiao

    2014-10-01

    The high pressure electrical transport behavior of pentacene has been investigated by alternating current impedance techniques and direct current resistivity measurement in a diamond anvil cell (DAC). The resistance decreases with increasing pressure below 17.4 GPa, while it increases above 17.4 GPa, which is caused by the transition of pentacene from an ordered state to the disordered state under higher pressure. From the Raman spectra under various pressures, pentacene becomes amorphous above 17.3 GPa, which is consistent with the impedance results. The charge transport operates in the hopping regime with charges jumping between interacting molecules, and the hopping mechanisms are related to the vibration modes. Above 17.4 GPa, the pressure dependence of the relaxation activation energy is 21.7 meV/GPa and pentacene keeps semiconductor characteristics up to 28.3 GPa.

  16. Electrical Transport in Ultra-Short Atomically Thin Devices

    NASA Astrophysics Data System (ADS)

    Boland, Mathias; Farrokhi, M. Javad; Nasseri, Mohsen; Strachan, Douglas

    Ultra-short nanoscale devices that incorporate atomically-thin materials have the potential to be the smallest electronics. These materials represent the ultimate size-scaling in the vertical dimension and could be ideal as channel, electrode, and dielectric materials for a variety of applications - especially for ultrafast electronics. Such extremely-scaled devices can show unique transport characteristics that depended sensitively on their atomic-scale configurations. Here we report several atomically-thin ultra-short device schemes we have been developing which includes those consisting of single and bilayer graphene channels. Electrical transport measurements show very unique characteristics between these ultra-short devices that are highly sensitive to the atomic layer number. This sensitivity suggests that these ultra-short devices are strongly dependent on the unique chiral nature of the charge carriers in these atomically-thin channel materials.

  17. Assessing Electrolyte Transport Properties with Molecular Dynamics

    DOE PAGES

    Jones, R. E.; Ward, D. K.; Gittleson, F. S.; ...

    2017-04-15

    Here in this work we use estimates of ionic transport properties obtained from molecular dynamics to rank lithium electrolytes of different compositions. We develop linear response methods to obtain the Onsager diffusivity matrix for all chemical species, its Fickian counterpart, and the mobilities of the ionic species. We apply these methods to the well-studied propylene carbonate/ethylene carbonate solvent with dissolved LiBF4 and O2. The results show that, over a range of lithium concentrations and carbonate mixtures, trends in the transport coefficients can be identified and optimal electrolytes can be selected for experimental focus; however, refinement of these estimation techniques ismore » necessary for a reliable ranking of a large set of electrolytes.« less

  18. Transport and magnetic properties of CMR manganites with antidot arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Du, Kai; Niu, Jiebin; Wei, Wengang; Chen, Jinjie; Yin, Lifeng; Shen, Jian

    2014-03-01

    We fabricated and characterized a series of manganites thin film samples with different densities of antidots. With increasing antidot density, the samples show higher MIT temperature and lower resistivity under zero and low magnetic fields. These differences become smaller and finally vanished when the magnetic field is large enough to melt the charge ordered phase in the system, which is expected in our theoretical explanations. We believe that emerging edge states at the ring of antidotes play a significant role for observed metal-insulator transition and electrical transport properties, which are of great importance of real storage and sensor device design. Magnetic property measurements and theoretical simulation also support the conclusion. These results open up new ways to control and tune the strongly correlated oxides without introduce any new material or field.

  19. Predicting the transport properties of sedimentary rocks from microgeometry

    SciTech Connect

    Schlueter, E.M.

    1993-01-01

    We investigate through analysis and experiment how pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media. Our approach is to measure fluid permeability and electrical conductivity of rock samples using single and multiple fluid phases that can be frozen in place (wetting and nonwetting) over a range of pore pressures. These experiments are analyzed in terms of the microphysics and microchemistry of the processes involved to provide a theoretical basis for the macroscopic constitutive relationships between fluid-flow and geophysical properties that we develop. The purpose of these experiments and their analyses is to advance the understanding of the mechanisms and factors that control fluid transport in porous media. This understanding is important in characterizing porous media properties and heterogeneities before simulating and monitoring the progress of complex flow processes at the field scale in permeable media.

  20. Predicting the transport properties of sedimentary rocks from microgeometry

    SciTech Connect

    Schlueter, E.M.

    1995-02-01

    The author investigates through analysis and experiment how pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media. The approach is to measure fluid permeability and electrical conductivity of rock samples using single and multiple fluid phases that can be frozen in place (wetting and nonwetting) over a range of pore pressures. These experiments are analyzed in terms of the microphysics and microchemistry of the processes involved to provide a theoretical basis for the macroscopic constitutive relationships between fluid-flow and geophysical properties that the authors develop. The purpose of these experiments and their analyses is to advance the understanding of the mechanisms and factors that control fluid transport in porous media. This understanding is important in characterizing porous media properties and heterogeneities before simulating and monitoring the progress of complex flow processes at the field scale in permeable media.

  1. Control of photon transport properties in nanocomposite nanowires

    NASA Astrophysics Data System (ADS)

    Moffa, M.; Fasano, V.; Camposeo, A.; Persano, L.; Pisignano, D.

    2016-02-01

    Active nanowires and nanofibers can be realized by the electric-field induced stretching of polymer solutions with sufficient molecular entanglements. The resulting nanomaterials are attracting an increasing attention in view of their application in a wide variety of fields, including optoelectronics, photonics, energy harvesting, nanoelectronics, and microelectromechanical systems. Realizing nanocomposite nanofibers is especially interesting in this respect. In particular, methods suitable for embedding inorganic nanocrystals in electrified jets and then in active fiber systems allow for controlling light-scattering and refractive index properties in the realized fibrous materials. We here report on the design, realization, and morphological and spectroscopic characterization of new species of active, composite nanowires and nanofibers for nanophotonics. We focus on the properties of light-confinement and photon transport along the nanowire longitudinal axis, and on how these depend on nanoparticle incorporation. Optical losses mechanisms and their influence on device design and performances are also presented and discussed.

  2. Transport properties of multigrained nanocomposites with imperfect interfaces

    NASA Astrophysics Data System (ADS)

    Palla, Pier Luca; Giordano, Stefano

    2016-11-01

    Multigrained or polycrystalline composite materials have attracted a considerable attention due to their potential applications as advanced materials with outstanding thermal, mechanical, and electromagnetic properties. When the grains' morphology is displayed at the nanoscopic scale, the presence of imperfect interfaces plays a central role in determining the effective transport properties. Therefore, we develop here a self-consistent effective medium theory able to evaluate the influence of real contacts between the different phases of multigrained composite materials. This approach takes into account the classical interface schemes that have been introduced in literature, namely, the low and the high conducting interface models. The theoretical results have been compared with numerical and experimental data concerning the thermal conductivity of ( 1 - x ) Si : x Ge mixtures and the electrical conductivity of ( 1 - x ) Li 2 O : x B 2 O 3 composites.

  3. Experimental analysis of electrical properties of composite materials

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Rovnaník, P.; Černý, R.

    2017-02-01

    Dry cement-based composites are electrically non-conductive materials that behave in electric field like dielectrics. However, a relatively low amount of electrically conductive admixture significantly increases the electrical conductivity which extends applicability of such materials in practice. Therefore, they can be used as self-monitoring sensors controlling development of cracks; as sensors monitoring moisture content or when treated by an external electrical voltage as heat sources used for deicing of material's surface layer. Alkali-activated aluminosilicates (AAA), as competing materials to cement-based materials, are intensively investigated in the present due to their superior durability and environmental impact. Whereas the electrical properties of AAA are similar to those cement-based, they can be enhanced in the same way. In both cases, it is crucial to find a reasonable amount of electrically conductive phase to design composites with a sufficient electrical conductivity at an affordable price. In this paper, electrical properties of composites based on AAA binder and electrically conductive admixture represented by carbon nanotubes (CNT) are investigated. Measurements of electrical properties are carried out by means of 2-probes DC technique on nine types of samples; reference sample without the conductive phase and samples with CNT admixture in amount of 0.1 % - 2.5 % by vol. A significant increase of the electrical conductivity starts from the amount of 0.5 % CNT admixture and in case of 2.5 % CNT is about three orders of magnitude higher compared to the reference sample.

  4. Evaluation of all-electric secondary power for transport aircraft

    NASA Technical Reports Server (NTRS)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  5. Role of inter-tube coupling and quantum interference on electrical transport in carbon nanotube junctions

    NASA Astrophysics Data System (ADS)

    Tripathy, Srijeet; Bhattacharyya, Tarun Kanti

    2016-09-01

    Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.

  6. Electrical-stress-induced transport and surface potential characterizations of metal/ TiO 2/metal planar junctions

    NASA Astrophysics Data System (ADS)

    Kim, Haeri; Kim, Dong-Wook

    2011-03-01

    Electric-field-induced resistive switching (RS) phenomena in metal oxides have attracted considerable research interest due to their potential use in nonvolatile memory device applications. Intensive investigations have revealed that coupled electron ion dynamics play a key role the RS mechanism. Metal/single crystal junction can be an ideal model system to study how the ionic drift and diffusion can affect the resistance. We investigated transport and local electrical properties of Pt/ Ti O2 single crystal/Ti planar junctions with micron- sized gaps between the electrodes. Scanning Kelvin probe microscopy (SKPM) showed that negative (positive) electrical stress to the Pt electrodes significantly reduced (hardly affected) the Pt/ Ti O2 contact resistance. The SKPM results also revealed that the electrical stress caused alteration of the local work function of Ti O2 . The comparative investigations of the transport and SKPM results suggested that the electrical stress induced redistribution of ions, resulting in the change of the junction resistance.

  7. Electrical and optoelectronic properties of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoming

    Electrical and optoelectronic properties of bulk semiconductor materials have been extensively explored in last century. However, when reduced to one-dimensional and two-dimensional, many semiconductors start to show unique electrical and optoelectronic behaviors. In this dissertation, electrical and optoelectronic properties of one-dimensional (nanowires) and two-dimensional semiconductor materials are investigated by various techniques, including scanning photocurrent microscopy, scanning Kelvin probe microscopy, Raman spectroscopy, photoluminescence, and finite-element simulations. In our work, gate-tunable photocurrent in ZnO nanowires has been observed under optical excitation in the visible regime, which originates from the nanowire/substrate interface states. This gate tunability in the visible regime can be used to enhance the photon absorption efficiency, and suppress the undesirable visible-light photodetection in ZnO-based solar cells. The power conversion efficiency of CuInSe2/CdS core-shell nanowire solar cells has been investigated. The highest power conversion efficiency per unit area/volume is achieved with core diameter of 50 nm and the thinnest shell thickness. The existence of the optimal geometrical parameters is due to a combined effect of optical resonances and carrier transport/dynamics. Significant current crowding in two-dimensional black phosphorus field-effect transistors has been found, which has been significantly underestimated by the commonly used transmission-line model. This current crowding can lead to Joule heating close to the contacts. New van der Waals metal-semiconductor junctions have been mechanically constructed and systematically studied. The photocurrent on junction area has been demonstrated to originate from the photothermal effect rather than the photovoltaic effect. Our findings suggest that a reasonable control of interface/surface state properties can enable new and beneficial functionalities in nanostructures. We

  8. Advanced Hall Electric Propulsion for Future In-space Transportation

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    2001-01-01

    The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 sec specific impulse regime. It provides greater thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when compared to that technology in Earth orbit applications. The technology in the far term, by adding a second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion engine and necessary for deep space applications. The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant system. The technology is operational and commercially available at the 1.5 kW power level and 5 kW application is underway. NASA is looking toward 10 kW and eventually 50 kW-class engines for ambitious space transportation applications. The former allows launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation human Mars missions.

  9. Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites

    NASA Astrophysics Data System (ADS)

    Ou, Tianji; Yan, Jiejuan; Xiao, Chuanhai; Shen, Wenshu; Liu, Cailong; Liu, Xizhe; Han, Yonghao; Ma, Yanzhang; Gao, Chunxiao

    2016-06-01

    Recent scientific advances on organic-inorganic hybrid perovskites are mainly focused on the improvement of power conversion efficiency. So far, how compression tunes their electronic and structural properties remains less understood. By combining in situ photocurrent, impedance spectroscopy, and X-ray diffraction (XRD) measurements, we have studied the electrical transport and structural properties of compressed CH3NH3PbI3 (MAPbI3) nanorods. The visible light response of MAPbI3 remains robust below 3 GPa while it is suppressed when it becomes amorphous. Pressure-induced electrical transport properties of MAPbI3 including resistance, relaxation frequency, and relative permittivity have been investigated under pressure up to 8.5 GPa by in situ impedance spectroscopy measurements. These results indicate that the discontinuous changes of these physical parameters occur around the structural phase transition pressure. The XRD studies of MAPbI3 under high pressure up to 20.9 GPa show that a phase transformation below 0.7 GPa, could be attributed to the tilting and distortion of PbI6 octahedra. And pressure-induced amorphization is reversible at a low density amorphous state but irreversible at a relatively higher density state. Furthermore, the MAPbI3 nanorods crush into nanopieces around 0.9 GPa which helps us to explain why the mixed phase of tetragonal and orthorhombic was observed at 0.5 GPa. The pressure modulated changes of electrical transport and visible light response properties open up a new approach for exploring CH3NH3PbI3-based photo-electronic applications.Recent scientific advances on organic-inorganic hybrid perovskites are mainly focused on the improvement of power conversion efficiency. So far, how compression tunes their electronic and structural properties remains less understood. By combining in situ photocurrent, impedance spectroscopy, and X-ray diffraction (XRD) measurements, we have studied the electrical transport and structural properties of

  10. Redox-gated electron transport in electrically wired ferrocene molecules

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaoyin; Brune, Daniel; He, Jin; Lindsay, Stuart; Gorman, Christopher B.; Tao, Nongjian

    2006-07-01

    We have synthesized cysteamine-terminated ferrocene molecules and determined the dependence of the electron transport properties of the molecules on their redox states by measuring the current through the molecules as a function of the electrode potential. The current fluctuates over a large range, but its average value increases with the potential. We attribute the current fluctuation and its increase with the potential to the switching of the molecules from low-conductance reduced state to high-conductance oxidized state.

  11. Universality of the electrical transport in granular metals

    PubMed Central

    Bakkali, Hicham; Dominguez, Manuel; Batlle, Xavier; Labarta, Amílcar

    2016-01-01

    The universality of the ac electrical transport in granular metals has been scarcely studied and the actual mechanisms involved in the scaling laws are not well understood. Previous works have reported on the scaling of capacitance and dielectric loss at different temperatures in Co-ZrO2 granular metals. However, the characteristic frequency used to scale the conductivity spectra has not been discussed, yet. This report provides unambiguous evidence of the universal relaxation behavior of Pd-ZrO2 granular thin films over wide frequency (11 Hz–2 MHz) and temperature ranges (40–180 K) by means of Impedance Spectroscopy. The frequency dependence of the imaginary parts of both the impedance Z″ and electrical modulus M″ exhibit respective peaks at frequencies ωmax that follow a thermal activation law, ωmax ∝ exp(T1/2). Moreover, the real part of electrical conductivity σ′ follows the Jonscher’s universal power law, while the onset of the conductivity dispersion also corresponds to ωmax. Interestingly enough, ωmax can be used as the scaling parameter for Z″, M″ and σ′, such that the corresponding spectra collapse onto single master curves. All in all, these facts show that the Time-Temperature Superposition Principle holds for the ac conductance of granular metals, in which both electron tunneling and capacitive paths among particles compete, exhibiting a well-characterized universal behavior. PMID:27411671

  12. Universality of the electrical transport in granular metals.

    PubMed

    Bakkali, Hicham; Dominguez, Manuel; Batlle, Xavier; Labarta, Amílcar

    2016-07-14

    The universality of the ac electrical transport in granular metals has been scarcely studied and the actual mechanisms involved in the scaling laws are not well understood. Previous works have reported on the scaling of capacitance and dielectric loss at different temperatures in Co-ZrO2 granular metals. However, the characteristic frequency used to scale the conductivity spectra has not been discussed, yet. This report provides unambiguous evidence of the universal relaxation behavior of Pd-ZrO2 granular thin films over wide frequency (11 Hz-2 MHz) and temperature ranges (40-180 K) by means of Impedance Spectroscopy. The frequency dependence of the imaginary parts of both the impedance Z″ and electrical modulus M″ exhibit respective peaks at frequencies ωmax that follow a thermal activation law, ωmax ∝ exp(T(1/2)). Moreover, the real part of electrical conductivity σ' follows the Jonscher's universal power law, while the onset of the conductivity dispersion also corresponds to ωmax. Interestingly enough, ωmax can be used as the scaling parameter for Z″, M″ and σ', such that the corresponding spectra collapse onto single master curves. All in all, these facts show that the Time-Temperature Superposition Principle holds for the ac conductance of granular metals, in which both electron tunneling and capacitive paths among particles compete, exhibiting a well-characterized universal behavior.

  13. Conceptual design of hybrid-electric transport aircraft

    NASA Astrophysics Data System (ADS)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  14. Thermodynamic and transport properties of dense hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Reinholz, Heidi; Redmer, Ronald; Nagel, Stefan

    1995-11-01

    Thermodynamic and transport properties of dense plasmas are expressed by Green's functions within a consistent quantum statistical approach. The equation of state for hydrogen plasma is evaluated within a generalized Beth-Uhlenbeck approach utilizing a quasiparticle picture for the one- and two-particle states. Taking into account also further clusters such as dimers and molecular ions, the stability behavior of the thermodynamic functions is studied with respect to the hypothetical plasma phase transition. The electrical and thermal conductivity, as well as the thermopower, are then calculated within the linear response theory as given by Zubarev. Especially, the effects of arbitrary degeneracy, ion-ion structure factor, screening, and of partial ionization are studied. The interactions between the various species are treated on the T matrix level. The numerical results interpolate between the Spitzer theory for fully ionized, nondegenerate plasmas and the Ziman theory for metallic densities. The plasma phase transition is accompanied by a metal-nonmetal transition, which is characterized by drastic changes of the electronic properties, as can be deduced from the behavior of the transport properties.

  15. Electrical properties of epoxy resin based nano-composites

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Paranthaman, Mariappan Parans; Aytug, Tolga; Sathyamurthy, Srivatsan; More, Karren Leslie; Li, Jing; Goyal, Amit

    2007-01-01

    We investigate the electrical properties of composite materials prepared as nano and sub-micro scale metal-oxide particles embedded in a commercial resin. The filler particles are barium titanate and calcium copper titanate. The physical and structural characteristics of constituents and the fabricated composites are reported. The electrical characterization of the composite samples are performed with the time- and frequency-domain dielectric spectroscopy techniques. The electrical breakdown strength of samples with nano and sub-micron size particles have better electrical insulation properties than the unfilled resin.

  16. Electrical properties of methane hydrate + sediment mixtures

    NASA Astrophysics Data System (ADS)

    Du Frane, W. L.; Stern, L. A.; Constable, S.; Weitemeyer, K. A.; Roberts, J. J.

    2011-12-01

    Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution, which complements seismic and other existing resource assessment techniques. Full utilization of EM results requires knowledge of the electrical properties of gas hydrates, mixed phases, and mixing relations. We developed a pressure cell to synthesize gas hydrate while measuring in situ frequency-dependent impedance (Z) and electrical conductivity (σ). Starting samples consisted of either (1) granular ice ( 200 microns grain size) packed to about 25% intergranular porosity, (2) granular ice uniformly mixed with quartz sand (OK#1, 125±50 micron grain size) in various proportions, or (3) ice uniformly mixed with silica glass beads (115±10 micron diameter). The ice was then fully reacted into methane (CH4) hydrate by applying CH4 pore pressure during temperature cycling above and below the ice/water phase boundary. Sediment distribution and grain-scale characterization were determined by post run cryogenic scanning electron microscopy and confirmed no migration of the sediment phase during reaction. Z and σ were measured in samples after hydrate synthesis from -15 to 15 °C, and after dissociation of hydrate into ice from -15 to -2 °C. We determined the σ of unmixed CH4 hydrate to be 10^1.5S/m*exp{(30.6kJ/mol)/RT} and 10^5.0S/m*exp{(45.3kJ/mol)/RT} after dissociation to unmixed ice. For the mixed samples the overall σ measured included significant contribution by surface σ along weathered surfaces of sediments. Samples containing < 30 vol% sand had poorly connected sediment below the percolation threshold, resulting in only a slight increase of up to 0.3 log units in σ and little change in activation energy (Ea) compared to unmixed samples. Conversely, samples containing 47 vol% sand had interconnected sediment above the percolation threshold, with a large increase of 0.7-1.2 log units in σ and a large 80% decrease in Ea. Glass beads

  17. Temperature dependence of the electrical properties of hydrogen titanate nanotubes

    SciTech Connect

    Alves, Diego C. B.; Brandão, Frederico D.; Krambrock, Klaus; Ferlauto, Andre S.; Fonseca, Fabio C.

    2014-11-14

    The temperature dependence of the electrical properties of hydrogen-rich titanate nanotubes (H-TNTs) in the 90–270 °C range was investigated by impedance spectroscopy. Three types of dominant conduction were found which depend on the previous thermal treatment of the samples. For untreated samples, at low temperatures (T < 100 °C), electrical conductivity is relatively high (>10{sup −4} S/cm at T ≈ 90 °C) and is dominated by protonic transport within structural water molecules. For thermal annealing in inert atmosphere up to 150 °C, water molecules are released from the nanotube structure resulting in a dehydrated H{sub 2}Ti{sub 3}O{sub 7} phase. Such phase has a low, thermally-dependent, electrical conductivity (10{sup −8} S/cm at T ≈ 90 °C) with activation energy of 0.68 eV. For samples annealed up to 260 °C, loss of OH groups, and consequent generation of oxygen vacancies, occurs that result in the non-stoichiometric H{sub 2(1−z)}Ti{sub 3}O{sub 7−z} phase. This phase has much higher conductivity (10{sup −5} S/cm at T ≈ 90 °C) and lower associated activation energy (0.40 eV). The generation of oxygen vacancies is confirmed by electron paramagnetic resonance measurements at room temperature, which revealed the presence of single-electron-trapped oxygen vacancies. The activation energy value found is consistent with the thermal ionization energy of the oxygen vacancies. Such defect formation represents the initial stage of the phase transformation from titanate to TiO{sub 2} (B). X-ray diffraction and Raman spectroscopy measurements also support such interpretation.

  18. Electrical properties of self-assembled carbon networks

    NASA Astrophysics Data System (ADS)

    Govor, L. V.; Goldbach, M.; Bashmakov, I. A.; Butylina, I. B.; Parisi, J.

    2000-07-01

    In the past years, the interest in the physics of mesoscopic device structures has increased as the patterning of such systems became more and more applicable. Mesoscopic structures uncover new physics since size effects play an important role. For patterning, self-organizing processes are promising, but they can also bear difficulties. Self-organization phenomena are, however, interesting from a physical point of view and offer cheap possibilities for production purposes. But they are not totally regular, and one process is restrained to a limited number of structures and materials. For the understanding of the electrical behavior of these mesoscopic structures, the form and the slight variation of one from the other have to be taken into account as well as the material properties. In this paper, we present an electrical characterization of carbon networks produced by a self-organizing process. The net structure consists of hexagonal basis cells with a diameter of about 1 μm and the dimensions of the interconnections of about 100 nm. We find that in the temperature range from 4.2 to 150 K, the specific resistivity ρ depends on temperature T as ρ(T)~T-0.3 exp([T0/T]1/p) and the transport mechanism, therefore, is variable range hopping. For 4.2 Kelectric field.

  19. Structural, electrical and thermoelectric properties of chromium silicate thin films

    NASA Astrophysics Data System (ADS)

    Abd El Qader, Makram

    2011-12-01

    Thermoelectric devices can generate electrical power as a result of their ability to produce electrical currents in the presence of thermal gradients. They can also produce refrigerative cooling when electrical power is supplied to them. Among the potential semiconducting silicides, CrSi 2 is attractive because of its high thermal and chemical stability and its potential for thermoelectric application. CrSi2/SiO2 thin-film structures were prepared using RF sputtering. As deposited and annealed (300°C to 600°C) thin films were characterized for their structural, electrical, and thermoelectric transport properties. As-sputtered CrSi 2 film is amorphous at room temperature and crystallizes around 300°C independent of thickness. Resistivity of the as-deposited 1im films is 1.20 mO-cm, whereas, the annealed films were not electrically conducting as a result of the formation of cracks in the film. The measured Seebeck voltage of the 1im films is markedly enhanced upon annealing and reaches a value of 81muV/K; close to that of bulk CrSi2. The 0.1mum-thick film exhibit an increase in the resistivity up to 0.9mO-cm upon annealing at 300°C, which drops for higher temperature anneals. This behavior is not well-understood. The Seebeck voltages of the 0.1mum thin films increase with annealing temperatures, reaching a maximum value of 62muV/K. Thermoelectric power factors for 0.1 mum thin films exhibit a similar behavior to that of the Seebeck coefficients; increasing with temperature and reaching a plateau value of 10-3 W/(K2 m) at around 400°C to 450°C. These results suggest that annealed thin films of thicknesses in the range of 0.1mum are more suitable for device applications when glass substrates are employed. In order a deposit ternary and higher order alloys, a three gun sputtering system was designed, built and tested for its level of vacuum levels and cleanliness. The tests showed that the three-gun sputtering system is of vacuum levels of 10-9 Torr and shows

  20. Electrical transport anisotropy of uniaxial polycrystalline samples and the effective medium approximation: An application to HTS

    NASA Astrophysics Data System (ADS)

    Cruz-García, A.; Muné, P.

    2016-08-01

    In this paper we have applied the effective medium approximation (EMA) to a polycrystalline sample made up of uniaxial crystallites with similar behavior to the high critical temperature superconductors (HTS) at the normal state (σab ≫ σc). As a result the dependence of the anisotropy parameter at the level of the sample, μ =σx /σz , on orientation probability of the grains' a-axes along a certain preferential direction, γxa is obtained. The intrinsic and shape anisotropy parameters of the crystallites constitute input data. In addition, the dependence of the orientation factor, f, which has been introduced in current models on the transport properties of HTS, is calculated as a function of γxa. These results offer a tool to interpret electrical transport measurements at normal state in granular uniaxial superconducting materials with certain texture degree, by means of the correlation between microstructure and electrical transport properties. Moreover, the comparison between the model and some experimental data suggests the presence of intragranular planar defects in the polycrystalline superconductors. They may affect the measurement of paracoherent resistivity and consequently the determination of f mainly in Bi based samples.

  1. Electrical transport properties of single-crystal CaB6,SrB6 , and BaB6

    SciTech Connect

    Stankiewicz, Jolanta; Rosa, Priscila F. S.; Schlottmann, Pedro; Fisk, Zachary

    2016-09-22

    We measure the electrical resistivity and Hall effect of alkaline-earth-metal hexaboride single crystals as a function of temperature, hydrostatic pressure, and magnetic field. The transport properties vary weakly with the external parameters and are modeled in terms of intrinsic variable-valence defects. These defects can stay either in (1) delocalized shallow levels or in (2) localized levels resonant with the conduction band, which can be neutral or negatively charged. Satisfactory agreement is obtained for electronic transport properties in a broad temperature and pressure range, though fitting the magnetoresistance is less straightforward and a combination of various mechanisms is needed to explain the field and temperature dependences.

  2. Ab initio study of the electronic and transport properties of waved graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Hammouri, Mahmoud; Vasiliev, Igor

    2017-05-01

    We apply the nonequilibrium Green's function method based on density functional theory to investigate the electronic and transport properties of waved zigzag and armchair graphene nanoribbons. Our calculations show that out-of-plane mechanical deformations have a strong influence on the band structures and transport characteristics of graphene nanoribbons. The computed I-V curves demonstrate that the electrical conductance of graphene nanoribbons is significantly affected by deformations. The relationship between the conductance and the compression ratio is found to be sensitive to the type of the nanoribbon. The results of our study indicate the possibility of mechanical control of the electronic and transport properties of graphene nanoribbons.

  3. Electrical properties and transport mechanisms of Au/Ba0.6Sr0.4TiO3/GaN metal-insulator-semiconductor (MIS) diode at high temperature range

    NASA Astrophysics Data System (ADS)

    Rajagopal Reddy, V.

    2016-05-01

    The electrical and transport mechanisms of a fabricated Au/Ba0.6Sr0.4TiO3 (BST)/GaN metal-insulator-semiconductor (MIS) diode have been studied in the temperature range of 280-430 K by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements. The barrier heights (BHs) of the Au/BST/GaN MIS diode are found to be 0.85 eV ( I- V)/1.35 ( C- V) at 280 K and 1.14 eV ( I- V)/1.17 ( C- V) at 430 K. The series resistance ( R S) values determined by Cheung's functions are in good agreement with each other. The difference between BHs estimated by I- V and C- V methods are also discussed. Results show that the estimated interface state density ( N SS) of MIS diode decreases with an increase in temperature. Observations have indicated that the BH increases whereas ideality factor R S and N SS decreases with increasing temperature. Results have demonstrated that the reverse leakage current is dominated by Poole-Frenkel emission at temperatures of 280-340 K and by Schottky emission at temperatures of 370-430 K. It is also noted that there is a transition of the conduction mechanism in Au/BST/GaN MIS diode from Poole-Frenkel to Schottky emission at temperatures of 340-370 K.

  4. Elastic and transport properties in polycrystals of crackedgrains: Cross-property relations and microstructure

    SciTech Connect

    Berryman, J.G.

    2007-10-02

    Some arguments of Bristow (1960) concerning the effects of cracks on elastic and transport (i.e., electrical or thermal conduction) properties of cold-worked metals are reexamined. The discussion is posed in terms of a modern understanding of bounds and estimates for physical properties of polycrystals--in contrast to Bristow's approach using simple mixture theory. One type of specialized result emphasized here is the cross-property estimates and bounds that can be obtained using the methods presented. Our results ultimately agree with those of Bristow, i.e., confirming that microcracking is not likely to be the main cause of the observed elastic behavior of cold-worked metals. However, it also becomes clear that the mixture theory approach to the analysis is too simple and that crack-crack interactions are necessary for proper quantitative study of Bristow's problem.

  5. Resilient design of recharging station networks for electric transportation vehicles

    SciTech Connect

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  6. Fuel cells for electric utility and transportation applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.

    1980-04-01

    The status of fuel cell development is reviewed. For terrestrial electric utility applications, the most promising are phosphoric acid, molten carbonate and solid electrolyte fuel cells. The first will be coupled with a reformer (to convert natural gas, petroleum derived and biomass fuels to hydrogen) while the second and third with a coal gasifier. As ground transportation power sources, the promising systems are phosphoric (or alternate acid) and alkaline electrolyte fuel cells. In the first case, methanol is most attractive while in the second, it will be hydrogen stored as a compressed gas or as a hydride. A technoeconomic assessment of a 'Regenerative Hydrogen-Halogen Energy Storage System' demonstrates the prospects of its use for load leveling when coupled with nuclear, solar or wind power plants.

  7. Electrical transport in three-dimensional cubic Skyrmion crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Nagaosa, Naoto

    2015-03-01

    Two-dimensional magnetic Skyrmions have been well confirmed via various experimental techniques in the bulk or on epitaxial thin films. Besides, a topologically nontrivial three-dimensional cubic Skyrmion crystal in the bulk, which is essentially a hedgehog-antihedgehog pair texture predicted theoretically, has also been tentatively observed. Equipped with a sophisticated spectral analysis program, we adopt Matsubara Green's function technique to study electrical transport, especially diagonal conductivity, in such system. We consider conduction electrons interacting with spinwaves via the strong Hund's rule coupling, wherein fluctuation of monopolar emergent electromagnetic field exits within adiabatic approximation. We describe in detail the influence of temperature and Skyrmion number on both dc and ac conductivities. Possible deviation from Fermi liquid behavior will also be discussed.

  8. Electrical transport and thermometry of electroformed titanium dioxide memristive switches

    NASA Astrophysics Data System (ADS)

    Borghetti, Julien; Strukov, Dmitri B.; Pickett, Matthew D.; Yang, J. Joshua; Stewart, Duncan R.; Williams, R. Stanley

    2009-12-01

    We investigated the electrical transport of electroformed titanium dioxide memristive switches from liquid helium to room temperatures in order to better understand their internal states. After electroforming, we observed a continuous transition between two distinct limiting behaviors: a nearly Ohmic "ON"-state and an "OFF"-state characterized by conduction through a barrier. We interpret our data in terms of a model in which the electroforming step creates a conducting channel that does not completely bridge the metal contacts on the titanium dioxide film. The switching then occurs as a result of voltage-induced changes in the oxygen vacancy concentration in the gap between the tip of the channel and the adjacent metal contact. We used the metallic resistivity of the conduction channel as an in situ thermometer to measure the local device temperature, thus revealing an important implicit state variable.

  9. Optical absorption and electrical transport in hybrid TiO2 and polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhou, Xi-Song; Li, Zheng; Wang, Ning; Lin, Yuan-Hua; Nan, Ce-Wen

    2006-06-01

    Hybrid nanofilms of poly(2-methoxy-5-ethylhexyloxy-1,4-phenylene)vinylene (MEH-PPV) and anatase-TiO2 nanoparticles were prepared. The results showed that the optical absorption spectra and electrical transport properties of the TiO2/MEH-PPV nanocomposite films were strongly dependent on the particle size and concentration of TiO2 nanoparticles in the hybrid films. In comparison with pure TiO2 nanofilms, the hybrid TiO2/MEH-PPV films presented a shift of the absorption edge to the lower-energy region, and an obvious nonlinear current-voltage characteristic.

  10. Transmission electron microscopy and electrical transport investigations performed on the same single-walled carbon nanotube

    SciTech Connect

    Philipp, G.; Burghard, M.; Roth, S.

    1998-08-11

    Electrical transport measurements and high resolution transmission electron microscopy performed on the same (rope of) single-walled carbon nanotube(s) (SWCNTs) allow to establish links between structural and electronic properties of the tubes. The tubes are deposited on electron transparent ultrathin Si{sub 3}N{sub 4}-membranes bearing Cr/AuPd-electrodes defined by electron beam lithography. TEM-micrographs of the setup reveal mostly ropes consisting of 2-3 tubes which also appear on a scanning force microscope image of the same area. A current-voltage trace of the ropes at 4.2 K is also presented.

  11. Magnetic Superatom Assemblies and their Transport Properties

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Ulises Reveles, J.; Mendel, V.; Reber, A.; Khanna, Shiv

    2012-02-01

    We had recently shown that magnetic superatoms can be formed by embedding 3d transition metal atoms in metallic clusters of otherwise non-magnetic elements. The hybridization between the localized exchange split atomic orbitals in 3d elements with superatomic orbitals can help stabilize the magnetic state. Through first principles studies on the electronic structure and magnetic moment of MgnTM (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) clusters, we had identified Mg8Fe to be a stable magnetic superatom. In this work, we will present our investigations on the magnetic properties of the assemblies of such superatoms and the nature of electronic transport through such assemblies with various electrodes. The effects of the contact geometry and gate voltage on the conductance are also studied.

  12. Transport Properties of the CEBAF Cavity

    SciTech Connect

    Li, Zenghai; Bisognano, Joseph; Yunn, Byunn C

    1993-05-17

    The transport properties of the CEBAF 5-cell cavity are studied. The 3-D cavity fields are calculated by use of the 3-D program MAFIA and are incorporated in a modified PARMELA. Numerical simulation results show that the cavity has finite dipole, quadrupole and skew quadrupole field components, which are due to the asymmetric field in the fundamental and the higher-order-mode couplers. The azimuthal focusing of the cavity disappears for high energy particles as 1/gamma^2. The dependence on the initial energy and cavity phase is given. The cavity-steering effects were measured on the CEBAF 45 MeV injector and are in good agreement with the numerical simulation.

  13. Thermoelectric transport properties in magnetically ordered crystals.

    PubMed

    Grimmer, Hans

    2017-07-01

    The forms of the tensors describing thermoelectric transport properties in magnetically ordered crystals are given for frequently used orientations of the 122 space-time point groups up to second order in an applied magnetic field. It is shown which forms are interchanged for the point groups of the hexagonal crystal family by two different conventions for the connection between the Hermann-Mauguin symbol and the orientation of the Cartesian coordinate system. The forms are given in Nye notation, which conspicuously shows how the forms for different point groups are related. It is shown that the measurable effects in magnetically ordered crystals can be decomposed into an effect occurring in all crystals and one coming from the magnetic ordering. Errors in the literature are pointed out.

  14. Transport properties of epitaxial lift off films

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Young, P. G.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    Transport properties of epitaxially lifted-off (ELO) films were characterized using conductivity, Hall, and Shubnikov-de Haas measurements. A 10-15 percent increase in the 2D electron gas concentration was observed in these films as compared with adjacent conventional samples. We believe this result to be caused by a backgating effect produced by a charge build up at the interface of the ELO film and the quartz substrate. This increase results in a substantial decrease in the quantum lifetime in the ELO samples, by 17-30 percent, but without a degradation in carrier mobility. Under persistent photoconductivity, only one subband was populated in the conventional structure, while in the ELO films the population of the second subband was clearly visible. However, the increase of the second subband concentration with increasing excitation is substantially smaller than anticipated due to screening of the backgating effect.

  15. 76 FR 4724 - Emerson Transportation Division, a Division of Emerson Electric, Including Workers Located...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ..., Including Workers Located Throughout the United States; Bridgeton, MO; Amended Certification Regarding... Emerson Transportation Division, a division of Emerson Electric, including workers located throughout...

  16. Electronic Properties of Bilayer Graphene Strongly Coupled to Interlayer Stacking and an External Electric Field

    NASA Astrophysics Data System (ADS)

    Park, Changwon; Ryou, Junga; Hong, Suklyun; Sumpter, Bobby G.; Kim, Gunn; Yoon, Mina

    2015-07-01

    Bilayer graphene (BLG) with a tunable band gap appears interesting as an alternative to graphene for practical applications; thus, its transport properties are being actively pursued. Using density functional theory and perturbation analysis, we investigated, under an external electric field, the electronic properties of BLG in various stackings relevant to recently observed complex structures. We established the first phase diagram summarizing the stacking-dependent gap openings of BLG for a given field. We further identified high-density midgap states, localized on grain boundaries, even under a strong field, which can considerably reduce the overall transport gap.

  17. Surface electrical properties experiment, part 1. [flown on Apollo 17

    NASA Technical Reports Server (NTRS)

    Strangway, D. W.; Annan, A. P.; Redman, J. D.; Rossiter, J. R.; Rylaarsdam, J. A.; Watts, R. D.

    1974-01-01

    The work is reported which was performed on the Surface Electrical Properties Experiment Data Acquisition System. Areas discussed include: data handling and processing, installation and external signal application, operation of the equipment, and digital output. Detailed circuit descriptions are included.

  18. Incoherence-coherence crossover and low-temperature Fermi-liquid-like behavior in AFe2As2 (A  =  K, Rb, Cs): evidence from electrical transport properties

    NASA Astrophysics Data System (ADS)

    Xiang, Z. J.; Wang, N. Z.; Wang, A. F.; Zhao, D.; Sun, Z. L.; Luo, X. G.; Wu, T.; Chen, X. H.

    2016-10-01

    We study the normal-state transport properties of AFe2As2 (A  =  K, Rb and Cs) single crystals using Hall coefficient, resistivity and magnetoresistance (MR) measurements. In all three materials, the Hall coefficient R H shows a strong temperature dependence, which is typical for multi-band systems. In particular, R H develops an upturn below a characteristic temperature {{T}\\ast} , which is in agreement with the incoherence-coherence crossover reported in recent nuclear magnetic resonance studies. A Fermi-liquid-like state, characterized by T 2 behavior of the resistivity and a positive orbital MR obeying Kohler’s rule, emerges below T FL  ˜0.4 ~{{T}\\ast} . The superconducting transition temperature T c experiences a simultaneous suppression with {{T}\\ast} and T FL as the alkali ion’s radius increases from A  =  K to A  =  Cs, suggesting that the unconventional superconductivity in the AFe2As2 series is related to the strength of the electronic coherence. A phase diagram, similar to that in the heavy fermion Kondo lattice system, is obtained. Based on all the experimental evidence, we argue that the physical properties of this family of heavily hole-doped Fe-based superconductors are controlled by the hybridization between itinerant carriers and localized orbitals, and the Kondo scenario could be effective in such a case.

  19. Convective transport of electric charge within the planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, Giles; Silva, Hugo; Silgado, Rui; Melgao, Marta

    2017-04-01

    Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also of major importance in determining the electrical charge structure of the lower atmosphere. This paper presents rare experimental measurements of vertical profiles of charge measured during fair weather conditions by specially instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. Space charge was measured directly using a sensitive electrometer, rather than the conventional method of deriving it from electric field measurements. The high frequency of balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller levels of charge (up to 20pC m-3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was much more complex, showing a dependence on lofting of surface aerosol due to daytime convection. This produced charge up to 92pC m-3 up to 500m above the surface. The diurnal variation in the integrated column of charge above the measurement site was also found to track closely with the diurnal variation in near surface charge as measured by an electric field mill at the same site, confirming the importance of the link between surface charge generation processes and aloft. Co-located lidar backscatter measurements were also made during the measurement campaign and will be discussed here in the context of the effect of aerosol on the vertical charge profile.

  20. Effect of temperature-dependent electrical conductivity on transport processes in magnetosolidmechanics

    NASA Technical Reports Server (NTRS)

    Craig, G. T.; Arnas, O. A.

    1975-01-01

    The effect of temperature-dependent electrical conductivity on transport processes for a solid block is analyzed on the basis of a one-dimensional steady-state model under specified thermal boundary conditions. Assumptions are that the solid has an infinitely segmented electrode configuration, the magnetic field (By) may be resolved into a constant applied field and an induced field, the gradient of the electrochemical potential is equal to the electrostatic potential, a constant potential difference is applied externally across each pair of opposite electrodes, and all material properties except electrical conductivity are constant. Conductivity is expressed in normalized form in terms of a baseline conductivity and a constant for the material. The application of the assumptions of the model to the general phenomenological relations yields the governing equations. Solution of these equations gives the distribution of temperature, electric current density, and magnetic field strength along the length of the solid. It is shown that significant differences exist between the case for constant electrical conductivity and the case where electrical conductivity is temperature dependent.

  1. Electrical properties of granite with implications for the lower crust.

    USGS Publications Warehouse

    Olhoeft, G.R.

    1981-01-01

    The electrical properties of granite appear to be dominantly controlled by the amount of free water in the granite and by temperature. Minor contributions to the electrical properties are provided by hydrostatic and lithostatic pressure, structurally bound water, oxygen fugacity, and other parameters. The effect of sulphur fugacity may be important but is experimentally unconfirmed. In addition to changing the magnitude of electrical properties, the amount and chemistry of water in granite significantly changes the temperature dependence of the electrical properties. With increasing temperature, changes in water content retain large, but lessened, effects on electrical properties. Near room temperature, a monolayer of water will decrease the electrical resistivity by an order of magnitude. Several weight-percent water may decrease the electrical resistivity by as much as nine orders of magnitude and decrease the thermal activation energy by a factor of five. At elevated temperatures just below granitic melting, a few weight-percent water may still decrease the resistivity by as much as 3 orders of magnitude and the activation energy by a factor of two.-Author

  2. High pressure apparatus for transport properties study in high magnetic field

    SciTech Connect

    Alsmadi, A. M.; Nakotte, H.; Honda, F.; Sechovsky, V.; Mikulina, O.; Kamarad, J.; Lacerda, A. H.

    2002-01-01

    We have designed a high pressure apparatus for measuring electrical-transport properties at low temperatures, high magnetic field and hydrostatic pressure up to 10 kbar. Details of the high-pressure cell and an exemplary study on UNiAI are described and discussed briefly.

  3. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    SciTech Connect

    Cressault, Y.

    2015-05-15

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas.

  4. Thermal to electricity conversion using thermal magnetic properties

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  5. Chemical and electrical properties of cavities in silicon and germanium

    SciTech Connect

    Myers, S.M.; Follstaedt, D.M.; Petersen, G.A.; Seager, C.H.; Stein, H.J.; Wampler, W.R.

    1994-12-31

    Cavities were formed in Si and Ge by He ion implantation and annealing, and resultant chemical and electrical properties were investigated. The dissociation energies for Si-H and Ge-H surface monohydride bonds were determined, showing that H chemisorption on Si is energetically stable with respect H{sub 2} gas whereas H chemisorption on Ge is not. Cavity walls in Si were found to trap transition metals strongly, suggesting application to impurity gettering in devices. Measurement and modeling of cavity electrical properties elucidated surface electronic states and indicated a potential for controlled electrical isolation in devices. 35 refs.

  6. Versatile variable temperature insert at the DEIMOS beamline for in situ electrical transport measurements.

    PubMed

    Joly, L; Muller, B; Sternitzky, E; Faullumel, J G; Boulard, A; Otero, E; Choueikani, F; Kappler, J P; Studniarek, M; Bowen, M; Ohresser, P

    2016-05-01

    The design and the first experiments are described of a versatile cryogenic insert used for its electrical transport capabilities. The insert is designed for the cryomagnet installed on the DEIMOS beamline at the SOLEIL synchrotron dedicated to magnetic characterizations through X-ray absorption spectroscopy (XAS) measurements. This development was spurred by the multifunctional properties of novel materials such as multiferroics, in which, for example, the magnetic and electrical orders are intertwined and may be probed using XAS. The insert thus enables XAS to in situ probe this interplay. The implementation of redundant wiring and careful shielding also enables studies on operating electronic devices. Measurements on magnetic tunnel junctions illustrate the potential of the equipment toward XAS studies of in operando electronic devices.

  7. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces

    NASA Astrophysics Data System (ADS)

    Ding, Mengning; He, Qiyuan; Wang, Gongming; Cheng, Hung-Chieh; Huang, Yu; Duan, Xiangfeng

    2015-08-01

    In situ monitoring electrochemical interfaces is crucial for fundamental understanding and continued optimization of electrocatalysts. Conventional spectroscopic techniques are generally difficult to implement for in situ electrochemical studies. Here we report an on-chip electrical transport spectroscopy approach for directly probing the electrochemical surfaces of metallic nanocatalysts in action. With a four-electrode device configuration, we demonstrate that the electrical properties of ultrafine platinum nanowires are highly sensitive and selective to the electrochemical surface states, enabling a nanoelectronic signalling pathway that reveals electrochemical interface information during in-device cyclic voltammetry. Our results not only show a high degree of consistency with generally accepted conclusions in platinum electrochemistry but also offer important insights on various practically important electrochemical reactions. This study defines a nanoelectronic strategy for in situ electrochemical surface studies with high surface sensitivity and surface specificity.

  8. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces

    PubMed Central

    Ding, Mengning; He, Qiyuan; Wang, Gongming; Cheng, Hung-Chieh; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    In situ monitoring electrochemical interfaces is crucial for fundamental understanding and continued optimization of electrocatalysts. Conventional spectroscopic techniques are generally difficult to implement for in situ electrochemical studies. Here we report an on-chip electrical transport spectroscopy approach for directly probing the electrochemical surfaces of metallic nanocatalysts in action. With a four-electrode device configuration, we demonstrate that the electrical properties of ultrafine platinum nanowires are highly sensitive and selective to the electrochemical surface states, enabling a nanoelectronic signalling pathway that reveals electrochemical interface information during in-device cyclic voltammetry. Our results not only show a high degree of consistency with generally accepted conclusions in platinum electrochemistry but also offer important insights on various practically important electrochemical reactions. This study defines a nanoelectronic strategy for in situ electrochemical surface studies with high surface sensitivity and surface specificity. PMID:26245937

  9. Transport properties of ribbon-shaped carbon fibers: Property-structure relationship

    NASA Astrophysics Data System (ADS)

    Gallego, Nidia Constanza

    Mesophase pitch-based carbon fibers are an ideal material for applications in which high rates of heat dissipation and low mass are required. Unfortunately, the high cost of current commercial high thermal conductivity mesophase pitch-based carbon fibers has limited their use in high volume applications. Understanding how the structure develops during the fiber formation process and how this structure relates to the final fiber properties is the way to optimizing the fiber properties while reducing the processing costs. Ribbon-shaped fibers have been developed at Clemson University and are being evaluated as a low-cost high thermal conductivity alternative fiber to traditional round-shaped fibers. However, the characterization of the thermal transport properties of carbon fibers is a difficult and time-consuming process. The objectives of this study were to evaluate the transport (both thermal and electronic) properties of ribbon-shaped fibers produced from an AR mesophase at different processing conditions, to characterize the structure of these fibers, to study their structure-property relationships, and to develop a model capable of estimating the thermal conductivity of carbon fibers based upon their structural parameters. For this purpose, several sets of ribbon fibers were produced from an AR mesophase at different spinning temperatures and shear rates and heat treated at a final temperature of 2400°C. The electrical resistivities, magnetoresistances and thermal conductivities of these fibers were measured and the structural parameters were determined with x-ray techniques. Two approaches (a short-fiber composite, and a periodic composite) were utilized to model the relationship between the structure of the fiber and its thermal conductivity. The results of this study confirmed that ribbon-shaped fibers develop excellent transport properties at lower graphitization temperatures than those used commercially for round-shaped fibers. Additionally, for the first

  10. Electrical properties of epoxy resin based nano-composites

    NASA Astrophysics Data System (ADS)

    Tuncer, Enis; Sauers, Isidor; James, D. Randy; Ellis, Alvin R.; Parans Paranthaman, M.; Aytug, Tolga; Sathyamurthy, Srivatsan; More, Karren L.; Li, Jing; Goyal, Amit

    2007-01-01

    We investigate the electrical properties of composite materials prepared as nano- and sub-micron-scale metal-oxide particles embedded in a commercial resin. The filler particles are barium titanate and calcium copper titanate. The physical and structural characteristics of the constituents and the fabricated composites are reported. Electrical characterization of the composite samples is performed using time- and frequency-domain dielectric spectroscopy techniques. The electrical breakdown strength of samples with nano- and sub-micron-sized particles have better electrical insulation properties than the unfilled resin. The start-up funding for the research was provided by the US Department of Energy, Office of Electricity Delivery and Energy Reliability, and follow-on funding was continued by the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy under Contract No. DE-AC05-00OR22725 (D06-100).

  11. Electrical properties of commercial sheet insulation materials for cryogenic applications

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Pace, Marshall O

    2008-01-01

    Dielectric properties of electrical insulation materials are needed for low-temperature power applications. Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. In this work we report the dielectric properties of some commercially available materials in sheet form. The selected materials are polypropylene laminated paper from Sumitomo Electric U.S.A., Inc., porous polyethylene (Tyvek\\texttrademark) from Dupont, and polyamide paper (Nomex\\texttrademark) from Dupont. The dielectric properties are characterized with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 50 to 300 K. The dielectric breakdown characteristics of the materials are measured in a liquid nitrogen bath at atmospheric pressure.

  12. Transport properties of supercooled confined water

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Branca, C.; Broccio, M.; Corsaro, C.; Gonzalez-Segredo, N.; Spooren, J.; Stanley, H. E.; Chen, S.-H.

    2008-07-01

    This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.

  13. Effect of interfacial properties on polymer-nanocrystal thermoelectric transport.

    PubMed

    Coates, Nelson E; Yee, Shannon K; McCulloch, Bryan; See, Kevin C; Majumdar, Arun; Segalman, Rachel A; Urban, Jeffrey J

    2013-03-20

    The electrical behavior of a conducting-polymer/inorganic-nanowire composite is explained with a model in which carrier transport occurs predominantly through a highly conductive volume of polymer that exists at the polymer-nanowire interface. This result highlights the importance of controlling nanoscale interfaces for thermoelectric materials, and provides a general route for improving carrier transport in organic/inorganic composites.

  14. Magnetic, specific heat and electrical transport properties of Frank-Kasper cage compounds RTM2Al20 [R  =  Eu, Gd and La; TM  =  V, Ti

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ramesh; Nair, Harikrishnan S.; Christian, Reinke; Thamizhavel, A.; Strydom, André M.

    2016-11-01

    Single crystals of Frank-Kasper compounds RTM2Al20 (R  =  Eu, Gd and La; TM  =  V and Ti) were grown by self-flux method and their physical properties were investigated through magnetization (M), magnetic susceptibility (χ), specific heat (C P) and electrical resistivity (ρ) measurements. Powder x-ray diffraction studies and structural analysis showed that these compounds crystallize in the cubic crystal structure with the space group Fd\\bar{3}m . The magnetic susceptibility for the compounds EuTi2Al20 and GdTi2Al20 showed a sudden jump below the Néel temperature T N indicative of plausible double magnetic transition. Specific heat (C P) and electrical resistivity (ρ) measurements also confirm the first-order magnetic transition (FOMT) and possible double magnetic transitions. Temperature variation of heat capacity showed a sharp phase transition and huge C P value for the (Eu/Gd)Ti2Al20 compounds’ full width at half-maximum (FWHM) (<0.2 K) which is reminiscent of a first-order phase transition and a unique attribute among RTM2Al20 compounds. In contrast, linear variation of C P is observed in the ordered state for (Eu/Gd)V2Al20 compounds suggesting a λ-type transition. We observed clear anomaly between heating and cooling cycle in temperature-time relaxation curve for the compounds GdTi2Al20 (2.38 K) and EuTi2Al20 (3.2 K) which is indicating a thermal arrest due to the latent heat. The temperature variation of S mag for GdTi2Al20 saturates to a value 0.95R\\ln 8 while the other magnetic systems exhibited still lower entropy saturation values in the high temperature limit. ≤ft({{C}\\text{P}}-γ T\\right)/{{T}3} versus T plot showed a maximum near 27 K for all the compounds indicating the presence of low frequency Einstein modes of vibrations. Resistivity measurements showed that all the samples behave as normal Fermi liquid type compounds and ρ (T) due to electron-phonon scattering follows Bloch-Grüneisen-Mott relation in the

  15. Magnetic, specific heat and electrical transport properties of Frank-Kasper cage compounds RTM2Al20 [R  =  Eu, Gd and La; TM  =  V, Ti].

    PubMed

    Ramesh Kumar, K; Nair, Harikrishnan S; Christian, Reinke; Thamizhavel, A; Strydom, André M

    2016-11-02

    Single crystals of Frank-Kasper compounds RTM2Al20 (R  =  Eu, Gd and La; TM  =  V and Ti) were grown by self-flux method and their physical properties were investigated through magnetization (M), magnetic susceptibility (χ), specific heat (C P) and electrical resistivity (ρ) measurements. Powder x-ray diffraction studies and structural analysis showed that these compounds crystallize in the cubic crystal structure with the space group [Formula: see text]. The magnetic susceptibility for the compounds EuTi2Al20 and GdTi2Al20 showed a sudden jump below the Néel temperature T N indicative of plausible double magnetic transition. Specific heat (C P) and electrical resistivity (ρ) measurements also confirm the first-order magnetic transition (FOMT) and possible double magnetic transitions. Temperature variation of heat capacity showed a sharp phase transition and huge C P value for the (Eu/Gd)Ti2Al20 compounds' full width at half-maximum (FWHM) (<0.2 K) which is reminiscent of a first-order phase transition and a unique attribute among RTM2Al20 compounds. In contrast, linear variation of C P is observed in the ordered state for (Eu/Gd)V2Al20 compounds suggesting a λ-type transition. We observed clear anomaly between heating and cooling cycle in temperature-time relaxation curve for the compounds GdTi2Al20 (2.38 K) and EuTi2Al20 (3.2 K) which is indicating a thermal arrest due to the latent heat. The temperature variation of S mag for GdTi2Al20 saturates to a value [Formula: see text] while the other magnetic systems exhibited still lower entropy saturation values in the high temperature limit. [Formula: see text] versus T plot showed a maximum near 27 K for all the compounds indicating the presence of low frequency Einstein modes of vibrations. Resistivity measurements showed that all the samples behave as normal Fermi liquid type compounds and [Formula: see text] due to electron-phonon scattering follows Bloch-Grüneisen-Mott relation in

  16. Magneto-transport properties of PbSe single crystals

    NASA Astrophysics Data System (ADS)

    Anand, Naween; Martin, Catalin; Gu, Genda; Tanner, David

    PbSe is a low-gap semiconductor with excellent infrared photodetection properties. Here we report our high magnetic field and low temperature electrical properties measurement performed on a moderately doped PbSe single crystals with p-type bulk carrier density of around 1×1018 cm-3. Longitudinal resistance (Rxx) and Hall resistance (Rxy) were simultaneously measured between 0 T and 18 T, and at temperatures between 0.8 K and 25 K, show quantum oscillations above 6 T. The quantum oscillation frequency is ~15 T, giving an estimate for the carrier density of each L pocket in the BZ participating in these oscillations. The effective mass of the free carriers is estimated from the temperature dependence of oscillation amplitudes. Measurements as the magnetic fields is rotated reveal the magneto-transport properties of a 3D-like fermi surface. Dingle temperature and free carrier scattering rate has been estimated and compared to optical measurements. Optical measurements also show a low frequency phonon mode around 45 cm-1 and bandgap of around 0.2 eV along with other interband electronic transitions.

  17. Variation in the electrical properties of ion beam irradiated cadmium selenate nanowires

    SciTech Connect

    Chauhan, R. P. Narula, Chetna; Panchal, Suresh

    2016-05-23

    The key feature of nanowires consists in the pronounced change in properties induced by the low dimensionality and high surface to volume ratio. The study of electrical transport properties of nanowires is important for electronic device applications. Energetic ions create changes, which may be structural or chemical, in a material along their track and these changes might alter the material’s properties. The demand of the modern technology is to understand the effect of radiation on the different properties of the material for its further applications. The present study is on the high-energy Nickel ion beam (160 MeV Ni{sup +12}) induced modifications in the electrical and structural properties of the cadmium selenate nanowires. An enhancement in the electrical conductivity of irradiated wires was observed as the ion fluence was increased especially in the forward I–V characteristics. The creation of defects by ion irradiation and the synergy of the ions during their passage in the sample with the intrinsic charge carriers may be responsible for the variation in the transport properties of the irradiated nanowires.

  18. Electrical transport mechanisms in three dimensional ensembles of silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Balberg, I.

    2011-09-01

    In this review, we try to derive a comprehensive understanding of the transport mechanisms in three dimensional ensembles of Si quantum dots (QDs) that are embedded in an insulating matrix. This understanding is based on our systematic electrical measurements as a function of the density of Si nanocrystallites as well as on a critical examination of the available literature. We conclude that in ensembles of low density QDs, the conduction is controlled by quantum confinement and Coulomb blockade effects while in the high density regime, the system behaves as a simple disordered semiconductor. In between these extremes, the transport is determined by the clustering of the QDs. In view of the clustering, two types of transitions in the electrical and optical properties of the system are identified. In order to understand them, we introduce the concept of "touching." The application of this concept enables us to suggest that the first transition is a local carrier deconfinement transition, at which the concentration of the non "touching" QDs reaches its maximum, and that the other transition is associated with the onset of percolation in a continuous disordered network of "touching" QDs. It is hoped that our conclusions for the entire possible density range will provide guidance for the discussion and understanding of the transport in ensembles of semiconductor QDs in general and in ensembles of Si and Ge QDs in particular.

  19. Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport.

    PubMed

    Zhang, Mei; Wu, Juanxia; Zhu, Yiming; Dumcenco, Dumitru O; Hong, Jinhua; Mao, Nannan; Deng, Shibin; Chen, Yanfeng; Yang, Yanlian; Jin, Chuanhong; Chaki, Sunil H; Huang, Ying-Sheng; Zhang, Jin; Xie, Liming

    2014-07-22

    Two-dimensional transition-metal dichalcogenide alloys have attracted intense attention due to their tunable band gaps. In the present work, photoluminescence, Raman scattering, and electrical transport properties of monolayer and few-layer molybdenum tungsten diselenide alloys (Mo1-xWxSe2, 0 ≤ x ≤ 1) are systematically investigated. The strong photoluminescence emissions from Mo1-xWxSe2 monolayers indicate composition-tunable direct band gaps (from 1.56 to 1.65 eV), while weak and broad emissions from the bilayers indicate indirect band gaps. The first-order Raman modes are assigned by polarized Raman spectroscopy. Second-order Raman modes are assigned according to its frequencies. As composition changes in Mo1-xWxSe2 monolayers and few layers, the out-of-plane A1g mode showed one-mode behavior, while B2g(1) (only observed in few layers), in-plane E2g(1), and all observed second-order Raman modes showed two-mode behaviors. Electrical transport measurement revealed n-type semiconducting transport behavior with a high on/off ratio (>10(5)) for Mo1-xWxSe2 monolayers.

  20. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.

    PubMed

    Itkis, Mikhail E; Pekker, Aron; Tian, Xiaojuan; Bekyarova, Elena; Haddon, Robert C

    2015-08-18

    Single-walled carbon nanotube (SWNT) thin films provide a unique platform for the development of electronic and photonic devices because they combine the advantages of the outstanding physical properties of individual SWNTs with the capabilities of large area thin film manufacturing and patterning technologies. Flexible SWNT thin film based field-effect transistors, sensors, detectors, photovoltaic cells, and light emitting diodes have been already demonstrated, and SWNT thin film transparent, conductive coatings for large area displays and smart windows are under development. While chirally pure SWNTs are not yet commercially available, the marketing of semiconducting (SC) and metallic (MT) SWNTs has facilitated progress toward applications by making available materials of consistent electronic structure. Nevertheless the electrical transport properties of networks of separated SWNTs are inferior to those of individual SWNTs. In particular, for semiconducting SWNTs, which are the subject of this Account, the electrical transport drastically differs from the behavior of traditional semiconductors: for example, the bandgap of germanium (E = 0.66 eV) roughly matches that of individual SC-SWNTs of diameter 1.5 nm, but in the range 300-100 K, the intrinsic carrier concentration in Ge decreases by more than 10 orders of magnitude while the conductivity of a typical SC-SWNT network decreases by less than a factor of 4. Clearly this weak modulation of the conductivity hinders the application of SC-SWNT films as field effect transistors and photodetectors, and it is the purpose of this Account to analyze the mechanism of the electrical transport leading to the unusually weak temperature dependence of the electrical conductivity of such networks. Extrinsic factors such as the contribution of residual amounts of MT-SWNTs arising from incomplete separation and doping of SWNTs are evaluated. However, the observed temperature dependence of the conductivity indicates the

  1. The Elusive Memristor: Properties of Basic Electrical Circuits

    ERIC Educational Resources Information Center

    Joglekar, Yogesh N.; Wolf, Stephen J.

    2009-01-01

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge "q" and the magnetic flux [phi] in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of…

  2. The Elusive Memristor: Properties of Basic Electrical Circuits

    ERIC Educational Resources Information Center

    Joglekar, Yogesh N.; Wolf, Stephen J.

    2009-01-01

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge "q" and the magnetic flux [phi] in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of…

  3. Percolating silicon nanowire networks with highly reproducible electrical properties.

    PubMed

    Serre, Pauline; Mongillo, Massimo; Periwal, Priyanka; Baron, Thierry; Ternon, Céline

    2015-01-09

    Here, we report the morphological and electrical properties of self-assembled silicon nanowires networks, also called Si nanonets. At the macroscopic scale, the nanonets involve several millions of nanowires. So, the observed properties should result from large scale statistical averaging, minimizing thus the discrepancies that occur from one nanowire to another. Using a standard filtration procedure, the so-obtained Si nanonets are highly reproducible in terms of their morphology, with a Si nanowire density precisely controlled during the nanonet elaboration. In contrast to individual Si nanowires, the electrical properties of Si nanonets are highly consistent, as demonstrated here by the similar electrical properties obtained in hundreds of Si nanonet-based devices. The evolution of the Si nanonet conductance with Si nanowire density demonstrates that Si nanonets behave like standard percolating media despite the presence of numerous nanowire-nanowire intersecting junctions into the nanonets and the native oxide shell surrounding the Si nanowires. Moreover, when silicon oxidation is prevented or controlled, the electrical properties of Si nanonets are stable over many months. As a consequence, Si nanowire-based nanonets constitute a promising flexible material with stable and reproducible electrical properties at the macroscopic scale while being composed of nanoscale components, which confirms the Si nanonet potential for a wide range of applications including flexible electronic, sensing and photovoltaic applications.

  4. Investigation of Thermal and Electrical Properties for Conductive Polymer Composites

    NASA Astrophysics Data System (ADS)

    Juwhari, Hassan K.; Abuobaid, Ahmad; Zihlif, Awwad M.; Elimat, Ziad M.

    2017-10-01

    This study addresses the effects of temperature ranging from 300 K to 400 K on thermal ( κ) and electrical ( σ) conductivities, and Lorenz number ( L) for different conductive polymeric composites (CPCs), as tailoring the ratios between both conductivities of the composites can be influential in the design optimization of certain thermo-electronic devices. Both κ and σ were found to have either a linear or a nonlinear (2nd and 3rd degree polynomial function) increasing behavior with increased temperatures, depending on the conduction mechanism occurring in the composite systems studied. Temperature-dependent behavior of L tends to show decreasing trends above 300 K, where at 300 K the highest and the lowest values were found to be 3 × 103 W Ω/K2 for CPCs containing iron particles and 3 × 10-2 W Ω/K2 for CPCs-containing carbon fibers respectively. Overall, temperature-dependent behavior of κ/ σ and L can be controlled by heterogeneous structures produced via mechanical-molding-compression. These structures are mainly responsible for energy-transfer processes or transport properties that take place by electrons and phonons in the CPCs' bulks. Hence, the outcome is considered significant in the development process of high performing materials for the thermo-electronic industry.

  5. Surface electric properties of emulsions of apolar reagents

    SciTech Connect

    Baichenko, A.A.; Baran, A.A.

    1986-09-01

    This article presents the results of studies of surface electric properties of kerosene and AAR-2 (apolar aromatized reagent) emulsons in water, which can be used in coal slime flotation, in presence of various salts and high-molecular flocculants. The data obtained were compared with the effect of electrolytes on the surface electric properties of a model emulsion of heptane in water stabilized by sodium hapthenate. The studies indicate that similarity of changes in the electrokinetic properties of various emulsions in presence of electrolytes and flocculants.

  6. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, M. N.; Alshareef, H. N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258-133 S cm-1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8-3.2 me), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  7. Magnetic and transport properties of PrRhSi3.

    PubMed

    Anand, V K; Adroja, D T; Hillier, A D

    2013-05-15

    We have investigated the magnetic and transport properties of a noncentrosymmetric compound PrRhSi3 by dc magnetic susceptibility χ(T), isothermal magnetization M(H), thermoremanent magnetization M(t), specific heat Cp(T), electrical resistivity ρ(T,H) and muon spin relaxation (μSR) measurements. At low fields χ(T) shows two anomalies near 15 and 7 K with an irreversibility between ZFC and FC data below 15 K. In contrast, no anomaly is observed in Cp(T) or ρ(T) data. M(H) data at 2 K exhibit very sharp increase below 0.5 T and a weak hysteresis. M(t) exhibits very slow relaxation, typical for a spin-glass system. Even though the absence of any anomaly in Cp(T) is consistent with the spin-glass type behavior, there is no obvious origin of spin-glass behavior in this structurally well ordered compound. The crystal electric field (CEF) analysis of Cp(T) data indicates a CEF-split singlet ground state lying below a doublet at 81(1) K and a quasi-triplet at 152(2) K. The ρ(T) data indicate a metallic behavior, and ρ(H) exhibits a very high positive magnetoresistance, as high as ~300% in 9 T at 2 K. No long range magnetic order or spin-glass behavior was detected in a μSR experiment down to 1.2 K.

  8. Electrical and thermal properties of graphite/polyaniline composites

    SciTech Connect

    Bourdo, Shawn E.; Warford, Brock A.; Viswanathan, Tito

    2012-12-15

    A composite of a carbon allotrope (graphite) and an inherently conducting polymer, polyaniline (PANI), has been prepared that exhibits an electrical conductivity greater than either of the two components. An almost 2-fold increase in the bulk conductivity occurs when only a small mass fraction of polyaniline exists in the composite (91% graphite/ 9% polyaniline, by mass). This increase in dc electrical conductivity is curious since in most cases a composite material will exhibit a conductivity somewhere between the two individual components, unless a modification to the electronic nature of the material occurs. In order to elucidate the fundamental electrical properties of the composite we have performed variable temperature conductivity measurements to better understand the nature of conduction in these materials. The results from these studies suggest a change in the mechanism of conduction as the amount of polyaniline is increased in the composite. Along with superior electrical properties, the composites exhibit an increase in thermal stability as compared to the graphite. - Graphical abstract: (Left) Room temperature electrical conductivity of G-PANI composites at different mass ratios. (Right) Electrical conductivity of G-PANI composites at temperatures from 5 K to 300 K. Highlights: Black-Right-Pointing-Pointer Composites of graphite and polyaniline have been synthesized with unique electrical and thermal properties. Black-Right-Pointing-Pointer Certain G-PANI composites are more conductive and more thermally stable than graphite alone. Black-Right-Pointing-Pointer G-PANI composites exhibit a larger conductivity ratio with respect to temperature than graphite alone.

  9. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  10. Transport in polymer-gel composites: theoretical methodology and response to an electric field

    NASA Astrophysics Data System (ADS)

    Hill, Reghan J.

    2006-03-01

    A theoretical model of electromigrative, diffusive and convective transport in polymer-gel composites is presented. Bulk properties are derived from the standard electrokinetic model with an impenetrable charged sphere embedded in an electrolyte-saturated Brinkman medium. Because the microstructure can be carefully controlled, these materials are promising candidates for enhanced gel-electrophoresis, chemical sensing, drug delivery, and microfluidic pumping technologies. The methodology provides solutions for situations where perturbations from equilibrium are induced by gradients of electrostatic potential, concentration and pressure. While the volume fraction of the inclusions should be small, Maxwell's well-known theory of conduction suggests that the model may also be accurate at moderate volume fractions. In this work, the theory is used to compute ion fluxes, electrical current density, and convective flow driven by an electric field applied to an homogeneous composite. The electric-field-induced (electro-osmotic) flow is a sensitive indicator of the inclusion zeta-potential and size, electrolyte concentration, and Darcy permeability of the gel, while the electrical conductivity is usually independent of the polymer gel and is relatively insensitive to characteristics of the inclusions and electrolyte.

  11. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    PubMed

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

  12. Viscosity and electric properties of water aerosols

    NASA Astrophysics Data System (ADS)

    Shavlov, A. V.; Sokolov, I. V.; Dzhumandzhi, V. A.

    2016-09-01

    The flow of water mist in a narrow duct has been studied experimentally. The profile of the velocity of drops has been measured, and the viscosity of the mist has been calculated using the Navier-Stokes equation. It has been found that at low gradients of the rate of shear the viscosity of the mist can exceed that of clean air by tens and even hundreds of times. The electric charge of the drops has been measured. It has been found that the viscosity of the mist differs from that of clean air at gradients of the rate of shear that are less than the frequency of the establishment of electric equilibrium between the drops. A comparative analysis of the viscosities of the mist and a drop cluster has been carried out, and the dependence of the viscosity of the water aerosol on the radius and the charge of the drops has been predicted. The possible role of aerosols that contain submicron drops in the known "clear air turbulence" problem has been shown.

  13. Electrical Properties of PVDF Based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Contreras, Jerry; Foltz, Heinrich D.; Duan, Yuping; Hhuq, Hasina F.; Tidrow, Steven C.; Chipara, Mircea

    2015-03-01

    Nanocomposites based on polyvinylidene fluoride (PVDF) have been obtained by melt mixing, loading the polymeric matrix with various weight fraction (between 0 % to 40 %) of different fillers (multiwalled carbon nanotubes, carbon nanofibers, and barium titanate). Pellets of nanocomposites have been obtained by hot pressing at about 175 oC. Copper contacts have been deposited on the as obtained pellets and the electrical features have been measured by using the two point technique. PVDF is a semicrystalline ferroelectric and piezoelectric polymer with a glass transition temperature of -35 oC and a melting temperature of about 175 oC. Electrical measurements have been performed in a wide range of frequencies starting from dc to ac (up to about 250 MHz). The dependence of the resistivity and dielectric constant on frequency and temperature (between -50 oC to 150 oC) was investigated in detail. Supplementary DSC, WAXS, and Raman data provided detailed information regarding the effect of fillers on phase transitions (glass, crystallization, and melting) and crystalline composition/structure of these nanocomposites.

  14. Electrical and galvanomagnetic properties of cadmium telluride films synthesized under highly nonequilibrium conditions

    SciTech Connect

    Belyaev, A. P. Rubets, V. P.; Antipov, V. V.; Grishin, V. V.

    2008-11-15

    The results of experimental studies of electrical and galvanomagnetic properties of CdTe films synthesized under highly nonequilibrium conditions via vapor condensation on a substrate cooled with liquid nitrogen are reported. The temperature dependences of dark conductivity, current-voltage characteristics with and without illumination, temperature dependences of the Hall coefficient R{sub H} and effective Hall mobility {mu}{sub H} in the planar geometry, and dark current-voltage characteristics in the sandwich geometry are reported. Anisotropy of conductivity is revealed. It is shown that the electrical and galvanomagnetic properties of the films are consistently described by a percolation model of charge transport, according to which, at high temperatures, the charge transport takes place over the percolation level of the valence band, and at low temperatures, over the percolation level of the impurity band.

  15. Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys

    NASA Astrophysics Data System (ADS)

    Calderón, Jorge A.; Mesa, F.; Dussan, A.

    2017-02-01

    We studied the electrical, magnetic, and transport properties of (GaMn)Sb thin films fabricated by the direct current magnetron co-sputtering method. Using X-ray powder diffraction measurements, we identified the presence of ferrimagnetic (Mn2Sb) and ferromagnetic (Mn2Sb2) phases within the films. We also measured the magnetization of the films versus an applied magnetic field as well as their hysteresis curves at room temperature. We determined the electrical and transport properties of the films through temperature-dependent resistivity measurements using the Van Der Pauw method. The main contribution to the transport process was variable range hopping. Hopping parameters were calculated using percolation theory and refined using the diffusional model. In addition, we determined that all samples had p type semiconductor behavior, that there was an increase in the density of localized states near the Fermi level, and that the binary magnetic phases influenced the electrical properties and transport mechanisms.

  16. Band bending and electrical transport at chemically modified silicon surfaces

    NASA Astrophysics Data System (ADS)

    Lopinski, Greg; Ward, Tim; Hul'Ko, Oleksa; Boukherroub, Rabah

    2002-03-01

    High resolution electron energy loss spectroscopy (HREELS) and electrical transport measurements have been used to investigate how various chemical modifications give rise to band bending and alter the conductivity of Si(111) surfaces. HREELS is a sensitive probe of band bending through observations of the low frequency free carrier plasmon mode. For hydrogen terminated surfaces, prepared by the standard etch in ammonium flouride, HREELS measurements on both n and n+ substrates are consistent with nearly flat bands. Chlorination of these surfaces results in substantial upward band bending due to the strong electron withdrawing nature of the chlorine, driving the surface into inversion. The presence of this inversion layer on high resistivity n-type samples is observed through a substantial enhancement of the surface conductivity (relative to the H-terminated surface), as well as through broadening of the quasi-elastic peak in the HREELS measurements. We have also begun to examine organically modified silicon surfaces, prepared by various wet chemical reactions with the H-terminated surface. Decyl modified Si(111) surfaces are seen to exhibit a small degree of band bending, attributed to extrinsic defect states cause by a small degree of oxidation accompanying the modification reaction. The prospects of using conductivity as an in-situ monitor of the rate of these reactions will be discussed.

  17. Electrical properties of multiwalled carbon nanotube reinforced fused silica composites.

    PubMed

    Xiang, Changshu; Pan, Yubai; Liu, Xuejian; Shi, Xiaomei; Sun, Xingwei; Guo, Jingkun

    2006-12-01

    Multiwalled carbon nanotube (MWCNT)-fused silica composite powders were synthesized by solgel method and dense bulk composites were successfully fabricated via hot-pressing. This composite was characterized by XRD, HRTEM, and FESEM. MWCNTs in the hot-pressed composites are in their integrity observed by HRTEM. The electrical properties of MWCNT-fused silica composites were measured and analyzed. The electrical resistivity was found to decrease with the increase in the amount of the MWCNT loading in the composite. When the volume percentage of the MWCNTs increased to 5 vol%, the electrical resistivity of the composite is 24.99 omega cm, which is a decrease of twelve orders of value over that of pure fused silica matrix. The electrical resistivity further decreases to 1.742 omega. cm as the concentration of the MWCNTs increased to 10 vol%. The dielectric properties of the composites were also measured at the frequency ranging from 12.4 to 17.8 GHz (Ku band) at room temperature. The experimental results reveal that the dielectric properties are extremely sensitive to the volume percentage of the MWCNTs, and the permittivities, especially the imaginary permittivities, increase dramatically with the increase in the concentration of the MWCNTs. The improvement of dielectric properties in high frequency region mainly originates from the greatly increasing electrical properties of the composite.

  18. Optical and electrical properties of bi-layers organic devices

    NASA Astrophysics Data System (ADS)

    Trad, Hager; Rouis, Ahlem; Davenas, Jöel; Majdoub, Mustapha

    2014-10-01

    The influence of interfacial charges on the device characteristics of bi-layers structure LEDs with poly[5-methoxy-2-octyloxy-1,4-phenylenevinylene] (MO-PPV) as active polymer layer is investigated. The concept to improve device performance is presented using: a diacetate cellulose (DAC) and a new synthetized 5-{2-(2-chloroethoxy)ethoxy}-2-{(E)-(2-pyridyl)azo}phenol (PDEG) components. The DAC and mixed (DAC+PDEG) layers were inserted between indium tin oxide (ITO) and MO-PPV polymer. The optical properties (UV-Vis) of MO-PPV, PDEG and mixed (DAC+PDEG) in solutions were studied and compared to those on thin films. Detailed current-voltage measurements of the bi-layers devices showed improvements of the threshold voltage (Vth) of the ITO/(DAC+PDEG)/MO-PPV/Al device attributed to the enhancement of carriers injection and transport resulted from the modified electrode structures. Conduction mechanisms of structure LEDs were matched with space-charge-limited current (SCLC) one. The impedance spectra for all devices can be discussed in terms of an equivalent circuit model designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The ITO/(DAC+PDEG)/MO-PPV/Al device showed the lowest impedance attributed to the removal of contaminants and to changes in the work function of ITO. The frequency-dependent electrical properties of the ITO/(DAC+PDEG)/MO-PPV/Al structure is analyzed by impedance spectroscopy as function of bias. We have extracted numerical values of the equivalent circuit model parameters by fitting experimental data. Their evolution with bias voltages has shown that the SCLC mechanism is characterized by an exponential trap distribution.

  19. Local electric conductive property of Si nanowire models

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Senami, Masato; Tachibana, Akitomo

    2012-12-01

    Local electric conductive properties of Si nanowire models are investigated by using two local electric conductivity tensors, {{σ }limits^{leftrArr }}_{ext}(r) and {{σ }limits^{leftrArr }}_{int}(r), defined in Rigged QED. It is emphasized that {{σ }limits^{leftrArr }}_{int}(r) is defined as the response of electric current to the actual electric field at a specific point and does not have corresponding macroscopic physical quantity. For the Si nanowire models, there are regions which show complicated response of electric current density to electric field, in particular, opposite and rotational ones. Local conductivities are considered to be available for the study of a negative differential resistance (NDR), which may be related to this opposite response. It is found that {{σ }limits^{leftrArr }}_{int}(r) shows quite different pattern from {{σ }limits^{leftrArr }}_{ext}(r), local electric conductivity defined for the external electric field. The effects of impurities are also studied by using the model including a Ge atom, in terms of the local response to electric field. It is found that the difference from the pristine model is found mainly around the Ge atom.

  20. [The dynamic electrical properties of human skin].

    PubMed

    Shlunt, V Kh

    1997-01-01

    The paper deals with the electrophysical properties of the human skin and presents ample data of the studies measuring the volt-ampere characteristics of the skin. Experimental findings are interpreted by taking into account the electrophysical behaviour of the semiconductor condensed media.

  1. Synthesis and electrical properties of PANI-CNT-CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Goswami, M.; Mukherjee, A.; Ghosh, R.; Meikap, A. K.

    2016-05-01

    Polyaniline-CNT-CdS nanocomposite has been synthesized by the chemical oxidative polymerization reaction. The particle size of nanocomposites lies in between 2.7 to 4.8 nm. I-V characteristics of the nanocomposite shows a non linear behaviour. The dc electrical transport property of Polyaniline-CNT-CdS nanocomposites has been investigated within a temperature range 77≤T≤300K. The dc conductivity follows 3D variable range hopping (VRH) model.

  2. Morphological and electrical properties of SnS:Bi thin films

    NASA Astrophysics Data System (ADS)

    Calderón, C.; Banguero, E.; Gordillo, G.

    2014-04-01

    This work presents results regarding the influence of the Bi content on the morphology and electrical transport properties of SnS:Bi thin films grown by sulfurization of the metallic precursors on a soda-lime glass substrate. The SnS:Bi films were characterized through atomic force microscopy and electrical conductivity measurements. The results showed that the Bi content affects the grain size and roughness of the SnS:Bi films. The grain size affects the carrier mobility and therefore the electrical conductivity at room temperature. Measurements of conductivity as a function of temperature, carried out in the range between 90K and 630K, revealed the electrical transport in SnS:Bi thin films is affected by two different mechanisms: at temperatures greater than 350K, the conductivity is predominantly affected by free carrier transport in extended states of the conduction/valence band, whereas at temperatures below 350K the conductivity is mainly determined by the variable range hopping transport mechanism.

  3. Determination of the individual electrical and transport properties of the plasmalemma and the tonoplast of the giant marine alga Ventricaria ventricosa by means of the integrated perfusion/charge-pulse technique: evidence for a multifolded tonoplast.

    PubMed

    Ryser, C; Wang, J; Mimietz, S; Zimmermann, U

    1999-03-15

    The charge-pulse relaxation spectrum of nonperfused and perfused (turgescent) cells of the giant marine alga Ventricaria ventricosa showed two main exponential decays with time constants of approximately 0.1 msec and 10 msec, respectively, when the cells were bathed in artificial sea water (pH 8). Variation of the external pH did not change the relaxation pattern (in contrast to other giant marine algae). Addition of nystatin (a membrane-impermeable and pore-forming antibiotic) to the vacuolar perfusion solution resulted in the disappearance of the slow exponential, whereas external nystatin decreased dramatically the time constant of the fast one. This indicated (by analogy to corresponding experiments with Valonia utricularis, J. Wang, I. Spiess, C. Ryser, U. Zimmermann, J. Membrane Biol. 157: 311-321, 1997) that the fast relaxation must be assigned to the RC-properties of the plasmalemma and the slow one to those of the tonoplast. Consistent with this, external variation of [K+]o or of [Cl-]o as well as external addition of K+- or Cl--channel/carrier inhibitors (TEA, Ba2+, DIDS) affected only the fast relaxation, but not the slow one. In contrast, addition of these inhibitors to the vacuolar perfusion solution had no measurable effect on the charge-pulse relaxation spectrum. The analysis of the data in terms of the "two membrane model" showed that K+- and (to a smaller extent) Cl--conducting elements dominated the plasmalemma conductance. The analysis of the charge-pulse relaxation spectra also yielded the following area-specific data for the capacitance and the conductance for the plasmalemma and tonoplast (by assuming that both membranes have a planar surface): (plasmalemma) Cp = 0.82 * 10(-2) F m-2, Rp = 1.69 * 10(-2) Omega m2, Gp = 5.9 * 10(4) mS m-2, (tonoplast) Ct = 7. 1 * 10(-2) F m-2, Rt = 14.9 * 10(-2) Omega m2 and Gt = 0.67 * 10(4) mS m-2. The electrical data for the tonoplast show that (in contrast to the literature) the area-specific membrane

  4. Controlling thermal and electrical properties of graphene by strain-engineering its flexural phonons

    NASA Astrophysics Data System (ADS)

    Conley, Hiram; Nicholl, Ryan; Bolotin, Kirill

    2014-03-01

    We explore the effects of flexural phonons on the thermal and electrical properties of graphene. To control the amplitude of flexural phonons, we developed a technique to engineer uniform mechanical strain between 0 and 1% in suspended graphene. We determine the level of strain, thermal conductivity and carrier mobility of graphene through a combination of mechanical resonance and electrical transport measurements. Depending on strain, we find significant changes in the thermal expansion coefficient, thermal conductivity, and carrier mobility of suspended graphene. These changes are consistent with the expected contribution of flexural phonons.

  5. Influence of dopant concentration on the electrical properties of the CdSe-PMMA nanocomposite

    SciTech Connect

    Kaur, Ramneek; Tripathi, S. K. E-mail: surya-tr@yahoo.com

    2016-05-06

    This paper reports the synthesis and electrical characterization of CdSe-PMMA nanocomposite. CdSe-PMMA nanocomposite has been prepared by ex-situ technique through chemical route. The influence of three different Ag doping concentrations on the electrical properties has been studied in the temperature range ∼ 303-353 K. Transmission electron micrograph reveals the spherical morphology of the CdSe nanoparticles and their proper dispersion in the PMMA matrix. The electrical conduction of the polymer nanocomposites is through thermally activated process with single activation energy. With Ag doping, initially the activation energy increases upto 0.2 % Ag doping concentration but with further increase in Ag concentration, it decreases. This behavior has been discussed on the basis of randomly oriented grain boundaries and defect states. Thus, the results indicate that the transport properties of the polymer nanocomposites can be tailored by controlled doping concentration.

  6. Electrical properties of a new sulfur-containing polymer for optoelectronic application

    NASA Astrophysics Data System (ADS)

    ElAkemi, ElMehdi; Jaballah, Nejmeddine; Ouada, Hafedh Ben; Majdoub, Mustapha

    2015-06-01

    An original polythiophene derivative was characterized to develop the optoelectronic properties of sulfur-containing π-conjugated polymer. The optical properties of the polymer were investigated by UV-visible absorption spectroscopy and atomic force microscopy. Investigations of the electrical characteristics of polymer diodes are reported. We present current-voltage characteristics and impedance spectroscopy measurements performed on partially sulfur-containing thin films in sandwich structure ITO/sulfur-containing polymer/Al. The conduction mechanisms in these layers are identified to be a space-charge-limited current. The AC electrical transport of the sulfur-containing polymer is studied as a function of frequency (100 Hz-10 MHz) and temperature in impedance spectroscopy analyses. We interpreted Cole-Cole plots in terms of the equivalent circuit model as a single parallel resistance and a capacitance network in series with a relatively small resistance. The evolution of the electrical parameters deduced from fitting of the experimental data is discussed.

  7. Effect of structure and size on the electrical properties of nanocrystalline WO3 films.

    PubMed

    Vemuri, R S; Bharathi, K Kamala; Gullapalli, S K; Ramana, C V

    2010-09-01

    Nanocrystalline WO3 films were grown by reactive magnetron sputter-deposition by varying the substrate temperature in the range of 303(RT)-673 K. The structure and electrical transport properties of WO3 films were evaluated using X-ray diffraction and dc electrical conductivity measurements. The effect of ultramicrostructure and grain-size was significant on the electrical properties of WO3 films. DC conductivity variation of the WO3 films measured in the temperature range of 120-300 K reveals their semiconducting nature. The temperature dependent electrical conductivity curves exhibit two distinct regions indicative of two different types of electrical transport mechanisms. Analysis of the conductivity indicates that the small polaron and variable-range-hopping mechanisms are operative in 180-300 K and 120-180 K temperature regions, respectively. The density of localized states at the Fermi level, N(EF), has been calculated and it was found to be ∼1×10(19) eV(-1) cm(-3) for all the films.

  8. Integrative Modeling of Electrical Properties of Pacemaker Cardiac Cells

    NASA Astrophysics Data System (ADS)

    Grigoriev, M.; Babich, L.

    2016-06-01

    This work represents modeling of electrical properties of pacemaker (sinus) cardiac cells. Special attention is paid to electrical potential arising from transmembrane current of Na+, K+ and Ca2+ ions. This potential is calculated using the NaCaX model. In this respect, molar concentration of ions in the intercellular space which is calculated on the basis of the GENTEX model is essential. Combined use of two different models allows referring this approach to integrative modeling.

  9. Pore-scale heterogeneity, energy dissipation and the transport properties of rocks

    SciTech Connect

    Bernabe, Y.; Revil, A.

    1995-06-15

    The authors construct model systems to study pore scale conductivity, by making the models from an array of spheres, tubes, and cracks with different dimensions. They vary the conductivity of this system by changing the sizes and distributions of the different pore elements. To determine the transport properties of this model system, they equated the sum of the energy lost at each pore junction, to the total energy lost in the array, for either fluid or electrical conduction through the array. The authors argue that this model conduction system should be applicable to study conductivity through rock, and allow one to learn more about transport properties of rock.

  10. Case Study: Transportation Initiative Incorporates Alternative Fuels and Electric Vehicles

    EPA Pesticide Factsheets

    James A. Lovell Federal Health Care Center in North Chicago, Illinois, reduced greenhouse gases by incorporating electric vehicles and alternative fuels into fleet operations. Lovell FHCC increased its electric fleet by 200 in one year.

  11. Electronic properties of nanoentities revealed by electrically driven rotation

    PubMed Central

    Fan, D. L.; Zhu, Frank Q.; Xu, Xiaobin; Cammarata, Robert C.; Chien, C. L.

    2012-01-01

    Direct electric measurement via small contacting pads on individual quasi-one-dimensional nanoentities, such as nanowires and carbon nanotubes, are usually required to access its electronic properties. We show in this work that 1D nanoentities in suspension can be driven to rotation by AC electric fields. The chirality of the resultantrotation unambiguously reveals whether the nanoentities are metal, semiconductor, or insulator due to the dependence of the Clausius–Mossotti factor on the material conductivity and frequency. This contactless method provides rapid and parallel identification of the electrical characteristics of 1D nanoentities. PMID:22645373

  12. Electrical properties of air in the Carlsbad Caverns

    SciTech Connect

    Wilkening, M.; Romero, V.

    1980-01-01

    Radon 222 and its daughter product concentrations in the Carlsbad Caverns are higher than in outdoor air by a factor of several hundred. The effects of the radiation from these substances on the electrical properties of air in the cave have been studied. The rate of ion-pair production, the ion density, and the electrical conductivity are much higher in the Cave than in outdoor air. The mobility of the ions is less than outdoors due to the high humidity and low condensation nuclei concentration. A small net space charge produces a barely detectable electric field of the order of one percent of the earth's fair weather field.

  13. TOPAZ-2 single-cell TFE electric insulation properties study

    SciTech Connect

    Vasilchenko, A.V.; Izhvanov, O.L.

    1996-03-01

    TOPAZ-II single cell thermoinic fuel element (TFE) electric insulation parameters under testing with electric heating were measured. TFE electric design schematic, experimental procedure and measurements results are described. Collector resistance was measured in helium at 420{endash}890 K. Metal ceramic ceals insulation properties were measured in vacuum P=10{sup {minus}4} Pa and in cesium vapor P=10{sup {minus}1}{minus}260 Pa, at 420{endash}730 K. Results of separate TFE are compared with the data; that were measured during nuclear power system (NPS) Ya-21U test. Based upon this data NPS power losses were estimated. {copyright} {ital 1996 American Institute of Physics.}

  14. Effects of an external electric field on electronic states and transport of a Bi2Se3 thin film

    NASA Astrophysics Data System (ADS)

    Liu, Genhua; Zhou, Benliang; Zhou, Guanghui

    2016-10-01

    We study the electronic band structure, density distribution, and electronic transport of surface states in a Bi2Se3 thin film. By using the four-band model, it is demonstrated that an appropriate external electric field can eliminate the coupling between the top and bottom surface states of the film, and contribute to the realization of the quantum spin Hall effects. However, a sufficient high electric field may destroy the property of the surface states. Using the scattering matrix approach, we further study theoretically the spin-dependent electron transport of a Bi2Se3 thin-film junction. Interestingly, a transverse electric field can switch on/off the spin-up or -down electronic channel of the surface states in the junction.

  15. Nanoscale electrical properties of epitaxial Cu3Ge film.

    PubMed

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-07-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu.

  16. Nanoscale electrical properties of epitaxial Cu3Ge film

    PubMed Central

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-01-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu. PMID:27363582

  17. Neoclassical Transport Properties of Tokamak Plasmas

    SciTech Connect

    Weyssow, B.

    2004-03-15

    The classical transport theory is strictly valid for a plasma in a homogeneous and stationary magnetic field. In the '60, experiments have shown that this theory does not apply as a local theory of transport in Tokamaks. It was shown that global geometric characteristics of the confining elements have a strong influence on the transport. Three regimes of collisionality are characteristic of the neoclassical transport theory: the banana regime (the electronic diffusion coefficient increases starting from zero), the plateau regime (the diffusion coefficient is almost independent of the collisionality) and the Pfirsch-Schlueter regime (the electronic diffusion coefficient again increases with the collisionality)

  18. Focused helium-ion beam irradiation effects on electrical properties of multi-layer WSe2

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Stanford, Michael; Cross, Nick; Duscher, Gerd; Mandrus, David; Rack, Philip

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving great attention due to their excellent opto-electronic properties. Tuning optical and electrical properties of mono and few layers TMDs, such as Tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to fabricate the next generation opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on structural, optical and electrical properties of few layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy and electrical measurements. By controlling the ion irradiation dose, we selectively introduced precise defects in few layer WSe2 thereby locally tuning the electrically resistivity of the material. Hole transport in the few layer WSe2 is severely affected compared to electron transport for the same dose of helium ion beam irradiation studied. Furthermore, by selectively exposing the ion beams, we demonstrate the lateral p-n junction in few layer WSe2 flakes, which constitute an important advance towards two dimensional opto-electronic devices. Materials Science and Technology Division, ORNL, Oak Ridge, TN 37831, USA.

  19. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-09-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates 1-3. Various approaches including optimizing morphology of the active layers 1, 2, introducing new materials as the donor and acceptor 3,4, new device structures such as tandem structure 5, 6 have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer 5, 7.

  20. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-03-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates [1-3]. Various approaches including optimizing morphology of the active layers [1,2], introducing new materials as the donor and acceptor [3,4], new device structures such as tandem structure [5,6] have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer [5,7].

  1. Correlation of magnetic properties with deformation in electrical steels

    NASA Astrophysics Data System (ADS)

    Papadopoulou, S.

    2016-03-01

    This paper investigates the utilization of magnetic Barkhausen Noise (MBN) and hysteresis loops methods for the non-destructive characterization of deformed electrical steel samples. For this reason electrical steel samples were subjected to uniaxial tensile tests on elastic and plastic region of deformations. Both the MBN and hysteresis loops were measured. The results shown a strong degradation of the magnetic properties on plastically strains. This was attributed to the irreversible movement of the magnetic domain walls, due to the presence of high dislocation density. The resulting magnetic properties were further evaluated by examining the microstructure of the deformed samples by using scanning electron microscopy.

  2. VHF Electrical Properties of Frozen Ground Near Point Barrow, Alaska,

    DTIC Science & Technology

    1981-06-01

    I AA103 735 C4. EIN EERHADEGNEIGLB HNVRN I 0l I At0 ELECTRICAL PROPERTIES OF FROZEN GROUND NEAR POINT AR.O, A-ETC(U) JUN 81 S A ARCONE . A J DELANEY...Aprvd o ubi elae DiubtinUliie 03,06 CRREL Report 81-13 VHF electrical properties of frozen ground near Point Barrow, Alaska * Steven A. Arcone and Allan...BARROW, ALASKA , R PIT B W A A 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(&) Steven A.\\ Arcone 1 Allan J.Pelaney 9

  3. Electrical properties and applications of carbon nanotube structures.

    PubMed

    Bandaru, Prabhakar R

    2007-01-01

    The experimentally verified electrical properties of carbon nanotube structures and manifestations in related phenomena such as thermoelectricity, superconductivity, electroluminescence, and photoconductivity are reviewed. The possibility of using naturally formed complex nanotube morphologies, such as Y-junctions, for new device architectures are then considered. Technological applications of the electrical properties of nanotube derived structures in transistor applications, high frequency nanoelectronics, field emission, and biological sensing are then outlined. The review concludes with an outlook on the technological potential of nanotubes and the need for new device architectures for nanotube systems integration.

  4. Electrical transport studies of molecular beam epitaxy grown gallium manganese arsenide epilayers and heterostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Meng

    2008-10-01

    Diluted magnetic semiconductors (DMS) grown by molecular beam epitaxy have been drawing attention in the context of emerging spintronics, which utilizes electron spins to develop devices with new functionalities. The canonical DMS---(Ga,Mn)As---has been on center stage for almost a decade, and extensive efforts have been dedicated to understanding its hole-mediated ferromagnetism, optimizing growth and annealing conditions to achieve higher-Tc, studying the magneto-transport, exploiting its abundant magnetic anisotropy, and so on. This dissertation focuses on three aspects of the study of (Ga,Mn)As: (1) Magneto-transport under hard magnetization reversal; (2) Electrical noise properties; and (3) Exchange-biasing and spin-dependent transport in (Ga,Mn)As/MnAs hybrid structures. The first chapter provides the motivation for this dissertation and introduces several aspects of the current understanding of (Ga,Mn)As. Both the theoretical models and experimentally established observations are reviewed, focusing on the magnetic and transport properties of (Ga,Mn)As epilayers. Next, the hybrid ferromagnetic metal/semiconductor heterostructures are introduced. As an excellent candidate for making these heterostructures, the semi-metal MnAs is reviewed in terms of its structural and magnetic properties, which are essential for making the exchange-biased devices described in Chapter 5 and Chapter 6. The second chapter describes the experimental techniques encompassed in the scope of this dissertation. Several important techniques, such as MBE growth, device patterning, magnetometry and transport measurements are discussed. The third chapter reports the first experiment in this dissertation, which describes the longitudinal magnetoresistance (MR) anomalies of a (Ga,Mn)As epilayer experiencing hard axis magnetization reversal in an perpendicular magnetic field. By probing the MRs for currents running along different crystallographic directions, the origins of these anomalies

  5. Electrical properties of resin monomers used in restorative dentistry

    PubMed Central

    Breschi, Marco; Fabiani, Davide; Sandrolini, Leonardo; Colonna, Martino; Sisti, Laura; Vannini, Micaela; Mazzoni, Annalisa; Ruggeri, Alessandra; Pashley, David H.; Breschi, Lorenzo

    2013-01-01

    Objectives The application of an electric field has been shown to positively influence the impregnation of the resin monomers currently used in dentin bonding systems during hybrid layer formation. This study presents an experimental characterization of the electrical properties of these monomers with the aim of both correlating them to their chemical structures and seeking an insight into the mechanisms of the monomer migration under an applied electric field. Methods Some common monomers examined were TEGDMA (triethyleneglycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate), UDMA (urethane dimethacrylate), 2-MP (bis[2-(methacryloyloxy)ethyl] phosphate, TCDM di(hydroxyethyl methacrylate) ester of 5-(2,5-dioxotetrahydrofurfuryl)-3-methyl-3-cyclohexenyl-1,2-dicarboxylic anhydride) and Bis-GMA [2,2-bis(4-2-hydroxy-3-methacryloyloxypropoxyphenyl)propane]. A customized cell produced for the measurement of the electrical properties of monomers was manufactured and electrical conductivity and permittivity of resin monomers were measured. Results The permittivity of the tested monomers is largely affected by electrical frequency. The large values of permittivity and dielectric losses observed as frequency decreased, indicate a dominant effect of ionic polarization, particularly evident in materials showing the highest conductivity. Permittivity and conductivity of the tested monomers showed a similar behavior, i.e. materials with the lowest permittivity also show small values of conductivity and vice versa. Significance The results of the present study revealed a good correlation between electrical properties and Hoy solubility parameters and, in particular, the higher the polar contribution (polar forces plus hydrogen bonding) the higher the permittivity and conductivity. The most relevant outcome of this study is that the electrophoretic mechanism prevails on the electroendoosmotic effect in determining the monomer migration under the application of electric fields

  6. Molecular Properties of Bacterial Multidrug Transporters

    PubMed Central

    Putman, Monique; van Veen, Hendrik W.; Konings, Wil N.

    2000-01-01

    One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites. PMID:11104814

  7. Thermal and electrical transport in ferromagnetic metal thin films

    NASA Astrophysics Data System (ADS)

    Avery, Azure D.

    The recent emergence of spin caloritronics has focused considerable attention on the interplay between spin, charge, and temperature gradients in magnetic materials. A reliable and energy efficient method for generating pure spin currents would signify an important step toward future spin-based nano-electronics that may offer lower power consumption and greater processing capabilities. To develop new technology using thermoelectric effects in magnetic thin films, it is essential to understand thermal and electrical transport through these films. One possible source of pure spin currents is the so-called spin Seebeck effect (SSE) in which a thermal gradient (▿T) applied to a ferromagnet is thought to produce a pure spin current detectable by measuring a transverse voltage (VT) generated by the inverse spin Hall effect. However, recent work on spin-dependent transport in thin film nanostructures supported by bulk substrates has underscored the difficulty in understanding ▿T in these systems due to uncertainty in the direction of the applied ▿T through a substrate with a thermal conductance several orders of magnitude larger than the sample conductance. These results suggest that early SSE experiments may have been strongly affected by other effects such as the anomalous Nernst effect. They may also have been affected by thermoelectric effects generated from planar thermal gradients such as the planar Nernst effect which develops a VT in a film with a planar ▿T and magnetization. In this dissertation, I introduce the concepts of thermal conductivity, the Wiedemann-Franz law, and thermoelectric effects including the Seebeck effect, the Peltier effect, and the planar Nernst effect (PNE). Next, I describe our experimental method for measuring thermal and electrical transport in non magnetic and ferromagnetic metallic thin films using suspended Si-N membrane structures. Our membrane method reduces the background thermal conductance contribution by 5 orders of

  8. Insights on the origin of the structural phase transition in BaV{sub 10}O{sub 15} from electronic structure calculations and the effect of Ti-doping on its structure and electrical transport properties

    SciTech Connect

    Bridges, C.A.; Greedan, J.E. . E-mail: greedan@mcmaster.ca; Kleinke, Holger

    2004-12-01

    Band structure calculations at the level of LMTO-ASA provide insight into the electronic structure of BaV{sub 10}O{sub 15} and the origin of the structural phase transition. A crystal orbital Hamiltonian population/integrated crystal orbital Hamiltonian population analysis provides evidence that the crystallographic phase transition is driven by V-V bond formation. As well, the energy bands near the Fermi level are very narrow, <1eV, consistent with the fact that the observed insulating behavior can be due to electron localization via either Mott-Hubbard correlation and/or Anderson disorder. The partial solid solution, BaV{sub 10-x}Ti{sub x}O{sub 15}, was examined to study the effect of Ti-doping at the V sites on the structure and electronic transport properties. In spite of the non-existence of 'BaTi{sub 10}O{sub 15}', the limiting x=8, as indicated by a monotonic increase in the cell volume and systematic changes in properties. This limit may be due to the difficulty of stabilizing Ti{sup 2+} in this structure. For x=0.5 both the first order structural phase transition and the magnetic transition at 40K are quenched. The samples obey the Curie-Weiss law to x=3 with nearly spin only effective moments along with {theta} values which range from -1090K (x=0.5) to -1629K (x=3). For x>3 a very large, {approx}2x10{sup -3}emu/mol, temperature independent (TIP) contribution dominates. Conductivity measurements on sintered, polycrystalline samples show semiconducting behavior for all compositions. Activation energies for Mott hopping derived from high temperature data range from {approx}0.1eV for x=0-1 and fall to a plateau of 0.06eV for x=3-7. Low temperature data for x=3, 5 and 7 show evidence for Mott variable range hoping (VRH) with a T1/4 law and in one case between 5 and 17K, a Efros-Shklovskii correlated hopping, T1/2 law, was seen, in sharp contrast to BaV{sub 10}O{sub 15} where only the E-S law was observed up to 75K. Seebeck coefficients are small (<35{mu

  9. Imaging spectral electrical properties of variably saturated porous media

    NASA Astrophysics Data System (ADS)

    Kelter, Matthias; Huisman, Johann A.; Kemna, Andreas; Zimmermann, Egon; Vereecken, Harry

    2013-04-01

    The spatial distribution of unsaturated hydraulic conductivity in the subsurface is of importance for hydrological modeling. Conventional methods to determine unsaturated hydraulic properties in the field are invasive and typically have a poor spatial resolution. In order to overcome these drawbacks, geophysical methods have received much attention in the last decades. Recent results of electrical impedance spectroscopy (EIS) on a range of saturated and unsaturated porous media revealed promising relationships between spectral electrical and hydraulic properties. Therefore, spectral electrical impedance tomography (EIT) is a promising method to image hydraulic properties in the subsurface. While this approach is emerging for aquifer characterization, unsaturated hydraulic properties have not yet been determined by EIT. In order to do so, a laboratory setup has been developed to perform controlled infiltration, drainage and stationary flow experiments on soil columns. A lysimeter with a height of 50 cm and a diameter of 22 cm is equipped with 40 electrodes and 4 tensiometers. An irrigation device at the top controlled by a peristaltic pump is used for a constant and homogeneous infiltration. Outflow is controlled by a suction plate at the bottom where an adjustable vacuum of up to 500 hPa can be applied. In a first measurement series, spectral EIT measurements were performed on a homogeneous sand column during stepwise drainage of the saturated porous medium using predefined pressure at the bottom. First results show that with decreasing water content the low frequency phase shift of complex electrical conductivity increases. This is consistent with previously reported EIS results. Calibrated relationships between electrical and hydraulic properties were used to convert the resulting electrical into hydraulic conductivity images.

  10. Transport and magnetic properties in topological materials

    NASA Astrophysics Data System (ADS)

    Liang, Tian

    The notion of topology has been the central topic of the condensed matter physics in recent years, ranging from 2D quantum hall (QH) and quantum spin hall (QSH) states, 3D topological insulators (TIs), topological crystalline insulators (TCIs), 3D Dirac/Weyl semimetals, and topological superconductors (TSCs) etc. The key notion of the topological materials is the bulk edge correspondence, i.e., in order to preserve the symmetry of the whole system (bulk+edge), edge states must exist to counter-compensate the broken symmetry of the bulk. Combined with the fact that the bulk is topologically protected, the edge states are robust due to the bulk edge correspondence. This leads to interesting phenomena of chiral edge states in 2D QH, helical edge states in 2D QSH, "parity anomaly'' (time reversal anomaly) in 3D TI, helical edge states in the mirror plane of TCI, chiral anomaly in Dirac/Weyl semimetals, Majorana fermions in the TSCs. Transport and magnetic properties of topological materials are investigated to yield intriguing phenomena. For 3D TI Bi1.1Sb0.9Te 2S, anomalous Hall effect (AHE) is observed, and for TCI Pb1-x SnxSe, Seebeck/Nernst measurements reveal the anomalous sign change of Nernst signals as well as the massive Dirac fermions. Ferroelectricity and pressure measurements show that TCI Pb1-xSnxTe undergoes quantum phase transition (QPT) from trivial insulator through Weyl semimetal to anomalous insulator. Dirac semimetals Cd3As2, Na 3Bi show interesting results such as the ultrahigh mobility 10 7cm2V-1s-1 protected from backscattering at zero magnetic field, as well as anomalous Nernst effect (ANE) for Cd3As2, and the negative longitudinal magnetoresistance (MR) due to chiral anomaly for Na3Bi. In-plane and out-of-plane AHE are observed for semimetal ZrTe5 by in-situ double-axes rotation measurements. For interacting system Eu2Ir2O7, full angle torque magnetometry measurements reveal the existence of orthogonal magnetization breaking the symmetry of

  11. Polymer composites with graphene nanofillers: electrical properties and applications.

    PubMed

    Tjong, Sie Chin

    2014-02-01

    Graphene with extraordinary high elastic modulus and excellent electrical conductivity has good prospects for use as the filler material for fabricating novel polymer composites designed for electrostatic discharge and EMI shielding protection, field emission, gas sensor, and fuel cell applications. Large amounts of graphene oxide (GO) can be obtained by wet chemical oxidation of graphite into a mixture of concentrated sulfuric acid, sodium nitrate and potassium permanganate. Accordingly, carbon atoms in the basal plane and edges of GO are decorated with oxygenated functional groups, forming an electrical insulator. To restore electrical conductivity, chemical reduction or thermal annealing is needed to eliminate oxygenated groups of GO. However, such treatments induce internal defects and remove oxygenated atoms of GO partially. The remnant-oxygenated groups affect electrical conductivity of graphene greatly. Nevertheless, reduced graphene oxide and thermally reduced graphene oxide are sufficiently conductive to form polymer nanocomposites at very low percolation threshold. This review provides the fundamentals and state-of-the-art developments in the fabrication methods and electrical property characterizations as well as the applications of novel graphene/polymer nanocomposites. Particular attention is paid to their processing-structural-electrical property relationships.

  12. Relating chemical structure to the mechanical and electrical properties in organic crystalline semiconductors

    NASA Astrophysics Data System (ADS)

    Reyes-Martinez, Marcos; Crosby, Alfred; Briseno, Alejandro

    2015-03-01

    The study of the physical properties of organic single crystals (OSCs) has allowed the advent of a new generation of high-performance organic electronic devices. Despite the profound knowledge of the structural and electrical properties of OSCs, there is little research on their mechanical properties and the effects of strain on their electrical properties. This presentation brings new understanding of the intrinsic mechanical properties of organic semiconductors and the effect of deformation in charge transport phenomena. We utilize rubrene single crystals as model systems. Due to the limited dimensions of crystals and the associated handling difficulty, the wrinkling instability is chosen as a metrology tool for the in-plane elastic constants. To elucidate the effects of mechanical strain on charge transport, we take advantage of wrinkling as a unique way to strain the conducting channel of field-effect transistors in a non-destructive, reversible, and predictable manner and demonstrate the mechanical modulation of field-effect mobility. Our contributions are the first to quantitatively correlate the crystal structure and the mechanical properties of OSCs, as well as the first to study their electro-mechanical behavior. They also represent a significant step forward in structure-function relationships in organic semiconductors and lay the foundation for the effective use of organic semiconductors in mechanically demanding applications such as pressure sensors and electronic skins.

  13. Surface electrical properties experiment study phase, volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The choice of an antenna for a subsurface radio sounding experiment is discussed. The radiation properties of the antennas as placed on the surface of the medium is examined. The objective of the lunar surface electrical properties experiment is described. A numerical analysis of the dielectric permittivity and magnetic permeability of a subsurface domain is developed. The application of electromagnetic field measurements between one or more transmitting antennas and a roving receiving station is explained.

  14. Apparent cooperativity of amino acid transport in Halobacterium halobium - Effect of electrical potential

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1978-01-01

    Active serine accumulation in cell envelope vesicles from Halobacterium halobium proceeds by co-transport with Na(+) and can be induced by either transmembrane electrical potential or transmembrane Na(+) concentration difference. It was shown earlier that in the former case the initial transport rate is a fourth-power function of the magnitude of the electrochemical potential difference of sodium ions, and in the latter, a second-power function. A possible interpretation of this finding is cooperativity of sodium-transporting sites in the transport carrier. When both kinds of driving force are imposed simultaneously on the vesicles, fourth-power dependence on the total potential difference of sodium ions is obtained, suggesting that the transport carrier is regulated by the electrical potential. Heat treatment of the vesicles at 48 C partially inactivates transport and abolishes this effect of the electrical potential.

  15. Theoretical studies of effects of 2D plasmonic grating on electrical properties of organic solar cells

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Choy, Wallace C. H.; Chew, Weng Cho

    2012-09-01

    Although various optical designs and physical mechanisms have been studied both experimentally and theoretically to improve the optical absorption of organic solar cells (OSCs) by incorporating metallic nanostructures, the effects of plasmonic nanostructures on the electrical properties of OSCs is still not fully understood. Hence, it is highly desirable to study the changes of electrical properties induced by plasmonic structures and the corresponding physics for OSCs. In this work, we develop a multiphysics model for plasmonic OSCs by solving the Maxwell's equations and semiconductor equations (Poisson, continuity, and drift-diffusion equations) with unified finite-difference method. Both the optical and electrical properties of OSCs incorporating a 2D metallic grating anode are investigated. For typical active polymer materials, low hole mobility, which is about one magnitude smaller than electron mobility, dominates the electrical property of OSCs. Since surface plasmon resonances excited by the metallic grating will produce concentrated near-field penetrated into the active polymer layer and decayed exponentially away from the metal-polymer interface, a significantly nonuniform and extremely high exciton generation rate is obtained near the grating. Interestingly, the reduced recombination loss and the increased open-circuit voltage can be achieved in plasmonic OSCs. The physical origin of the phenomena lies at direct hole collections to the metallic grating anode with a short transport path. In comparison with the plasmonic OSC, the hole transport in a multilayer planar OSC experiences a long transport path and time because the standard planar OSC has a high exciton generation rate at the transparent front cathode. The unveiled multiphysics is particularly helpful for designing high-performance plasmonic OSCs.

  16. Passive electrical properties of rod outer segments

    PubMed Central

    Falk, Gertrude; Fatt, P.

    1968-01-01

    1. Measurements on a packed suspension of randomly oriented, dark-adapted frog rods at frequencies of 15 c/s-0·5 Mc/s indicate a behaviour similar to that of other biological materials. 2. Results are analysed on the assumption that the low-frequency limiting resistance is determined by current flowing in the suspending medium and that, of the rods, two thirds are oriented perpendicular to the applied field and one third parallel to it. Those parallel to the field are treated as non-conductors. 3. From the high-frequency limiting resistance the conductivity of the rod interior is calculated to vary linearly with the conductivity of the medium. The slope of the relation of internal to external conductivity is 0·50 with a limiting internal conductivity (at zero external) of 280 μmho/cm. 4. On the assumption that the suspension can be represented as a single-capacitance network, the characteristic frequency of impedance is used to calculate a capacitance for the rod surface of 1·54 μF/cm2. On the assumption of a distribution in properties of the suspension according to the theory of Bruggeman, the capacitance is calculated to have a value of about one half this. 5. At frequencies below 5 kc/s the impedance locus deviates from the curve describing the behaviour at higher frequencies. It is suggested that this may involve conduction in a thin layer extending along the surface of the rod. PMID:5685292

  17. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  18. Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7.

    PubMed

    Gaultois, Michael W; Barton, Phillip T; Birkel, Christina S; Misch, Lauren M; Rodriguez, Efrain E; Stucky, Galen D; Seshadri, Ram

    2013-05-08

    Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron x-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored. Intrinsic magnetic and electrical transport properties have been measured. Ru 4d spins order antiferromagnetically at 143 K, as seen both in the susceptibility and in the specific heat, and there is a corresponding change in the electrical resistivity. The onset of a second antiferromagnetic ordering transition seen below 5 K is attributed to ordering of Nd 4f spins. Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be independent of the Ru-antisite disorder on the Nd-site. The electrical properties of Nd2Ru2O7 are presented in the light of data published on all A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi(3+) ions on the A-site play in driving metallic behaviour. High-temperature thermoelectric properties have also been measured. When considered in the context of known thermoelectric materials with useful figures-of-merit, it is clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents it from being an effective thermoelectric. A method for screening candidate thermoelectrics is suggested.

  19. Temperature effects on the electrical properties of multiphase polymer composites

    NASA Astrophysics Data System (ADS)

    De Vivo, Biagio; Guadagno, Liberata; Lamberti, Patrizia; Raimondo, Marialuigia; Spinelli, Giovanni; Tucci, Vincenzo; Vertuccio, Luigi; Vittoria, Vittoria

    2014-05-01

    A study concerning the temperature dependence of some electrical properties of multiphase nanocomposite systems based on epoxy matrix, loaded with a 1% of multi-walled carbon nanotube (MWCNT) and different amounts of Hydrotalcite clay (HT), is presented. An extensive electrical characterization in DC was carried out highlighting that, consistently with the fluctuation-induced tunneling model, the electrical resistivity of the composites are characterized by a negative temperature coefficient (NTC) since it decreases monotonically with increasing temperature in the range 30-110°C. Furthermore, current-voltage (I-V) and temperature-voltage (T-V) characteristics with a perfect linear behavior are detected. The influence of different clay content on the electrical performance of the composites is also investigated. The interesting results open a new routes for such composites due their possible applications in the field of temperature sensor.

  20. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  1. Mechanical and Electrical Properties of Cryo-worked Cu

    NASA Astrophysics Data System (ADS)

    Bettinali, Livio; Tosti, Silvano; Pizzuto, Aldo

    2014-01-01

    For manufacturing the magnets of fusion machines pure copper of both high mechanical resistance and electrical conductivity is required. Though high purity copper guarantees high electrical conductivity, its mechanical properties may be not suitable for the applications in tokamaks. In this view, a new procedure developed for obtaining high purity copper with excellent mechanical strength is described in this work. Samples of oxygen free copper (OFC) have been worked by pressing in liquid nitrogen (77 K). It has been verified that the mechanical properties of the worked metal are strongly dependent on the strain rate. Very low strain rates permitted to attain values of tensile yield strength (550 MPa) significantly higher than those obtained by traditional cold-working at room temperature (450 MPa). The electrical conductivity of the cryo-worked Cu decreases with the tensile yield strength even though the hardest samples of tensile yield strength of 550 MPa exhibit still acceptable values of conductivity (about 94 % IACS at room temperature).

  2. Preparation and electrical properties of oil-based magnetic fluids

    NASA Astrophysics Data System (ADS)

    Sartoratto, P. P. C.; Neto, A. V. S.; Lima, E. C. D.; Rodrigues de Sá, A. L. C.; Morais, P. C.

    2005-05-01

    This paper describes an improvement in the preparation of magnetic fluids for electrical transformers. The samples are based on surface-coated maghemite nanoparticles dispersed in transformer insulating oil. Colloidal stability at 90°C was higher for oleate-grafted maghemite-based magnetic fluid, whereas decanoate and dodecanoate-grafted samples were very unstable. Electrical properties were evaluated for samples containing 0.80%-0.0040% maghemite volume fractions. Relative permittivity varied from 8.8 to 2.1 and the minimum value of the loss factor was 12% for the most diluted sample. The resistivity falls in the range of 0.7-2.5×1010Ωm, whereas the ac dielectric strength varied from 70to79kV. These physical characteristics reveal remarkable step forward in the properties of the magnetic fluid samples and may result in better operation of electrical transformers.

  3. Metal nanoparticle fluids with magnetically induced electrical switching properties.

    PubMed

    Kim, Younghoon; Cho, Jinhan

    2013-06-07

    We report the successful preparation of solvent-free metal nanoparticle (NP) fluids with multiple-functionalities, such as rheological properties, magnetism, ionic conductivity, and electrical properties, allowing for facile synthesis and mass production. The gold nanoparticles (AuNPs) used in this study were synthesized using tetraoctylammonium bromide (TOABr) in toluene and then directly phase-transferred to solvent-free low-molecular-weight (Mw) imidazolium-type ionic liquid media containing thiol groups (i.e., IL-SH). Magnetic metal fluids (i.e., MIL-SH-AuNPs) were prepared by the addition of FeCl3 powder to metal fluids (i.e., IL-SH-AuNPs). These fluids showed relatively high ionic and electrical conductivities compared with those of conventional metal NP fluids based on organic ILs with high Mw. Furthermore, it was demonstrated that these fluids could be used as electric switches operated using an external magnetic field in organic media.

  4. Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory

    ERIC Educational Resources Information Center

    Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel

    2015-01-01

    Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…

  5. Mechanical, thermal, and electrical properties of selected polymers

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Schramm, R. E.; Clark, A. F.

    An extensive compilation has been completed on the mechanical, thermal, and electrical properties of six commercially available polymers. These data are discussed and summarized here as a function of temperature, radiation, and frequency. A brief description and characterization of each polymer is included.

  6. Recent Progress and Future Challenges in MR Electric Properties Tomography

    PubMed Central

    Katscher, Ulrich; Kim, Dong-Hyun

    2013-01-01

    MR Electric Properties Tomography (EPT) is a lately developed medical imaging modality capable of visualizing both conductivity and permittivity of the patient at the Larmor frequency using B1 maps. The paper discusses the development of EPT reconstructions, EPT sequences, EPT experiments, and challenging issues of EPT. PMID:23573170

  7. Graphene transport properties upon exposure to PMMA processing and heat treatments

    NASA Astrophysics Data System (ADS)

    Gammelgaard, Lene; Caridad, José M.; Cagliani, Alberto; Mackenzie, David M. A.; Petersen, Dirch H.; Booth, Timothy J.; Bøggild, Peter

    2014-12-01

    The evolution of graphene's electrical transport properties due to processing with the polymer polymethyl methacrylate (PMMA) and heat are examined in this study. The use of stencil (shadow mask) lithography enables fabrication of graphene devices without the usage of polymers, chemicals or heat, allowing us to measure the evolution of the electrical transport properties during individual processing steps from the initial as-exfoliated to the PMMA-processed graphene. Heating generally promotes the conformation of graphene to SiO2 and is found to play a major role for the electrical properties of graphene while PMMA residues are found to be surprisingly benign. In accordance with this picture, graphene devices with initially high carrier mobility tend to suffer a decrease in carrier mobility, while in contrast an improvement is observed for low carrier mobility devices. We explain this by noting that flakes conforming poorly to the substrate will have a higher carrier mobility which will however be reduced as heat treatment enhance the conformation. We finally show the electrical properties of graphene to be reversible upon heat treatments in air up to 200 °C.

  8. Electrical property sensing biopsy needle for prostate cancer detection.

    PubMed

    Mishra, V; Schned, A R; Hartov, A; Heaney, J A; Seigne, J; Halter, R J

    2013-11-01

    Significant electrical property differences have been demonstrated to exist between malignant and benign prostate tissues. We evaluated how well a custom designed clinically deployable electrical property sensing biopsy needle is able to discriminate between these tissue types in an ex vivo prostate model. An electrical impedance spectroscopy (EIS) sensing biopsy (Bx) needle was developed to record resistive (ρR) and reactive (ρX) components of electrical impedance from 100 Hz to 1 MHz. Standard twelve-core biopsy protocols were followed, in which the EIS-Bx device was used to gauge electrical properties prior to extracting tissue cores through biopsy needle firing from 36 ex vivo human prostates. Histopathological assessment of the cores was statistically compared to the impedance spectrum gauged from each core. The magnitudes of the mean resistive and reactive components were significantly higher in cancer tissues (P < 0.05). ROC curves showed that ρR at 63.09 kHz was optimal for discriminating cancer from benign tissues; this parameter had 75.4% specificity, 76.1% sensitivity, and ROC AUC of 0.779. Similarly, 251.1 kHz was optimal when using ρX to discriminate cancer from benign tissues; this parameter had a 77.9% specificity, 71.4% sensitivity, and ROC AUC of 0.79. Significant electrical property differences noted between benign and malignant prostate tissues suggest the potential efficacy an EIS-Bx device would provide for cancer detection in a clinical setting. By sensing a greater fraction of the prostate's volume in real-time, the EIS-Bx device has the potential to improve the accuracy of cancer grading and volume estimation made with current biopsy procedures. © 2013 Wiley Periodicals, Inc.

  9. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  10. Effect of Alignment on Transport Properties of Carbon Nanotube/Metallic Junctions

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min; Smits, Jan; Williams, Phillip; Harvey, Robert

    2003-01-01

    Ballistic and spin coherent transport in single walled carbon nanotubes (SWCNT) are predicted to enable high sensitivity single-nanotube devices for strain and magnetic field sensing. Based upon these phenomena, electron beam lithography procedures have been developed to study the transport properties of purified HiPCO single walled carbon nanotubes for development into sensory materials for nondestructive evaluation. Purified nanotubes are dispersed in solvent suspension and then deposited on the device substrate before metallic contacts are defined and deposited through electron beam lithography. This procedure produces randomly dispersed ropes, typically 2 - 20 nm in diameter, of single walled carbon nanotubes. Transport and scanning probe microscopy studies have shown a good correlation between the junction resistance and tube density, alignment, and contact quality. In order to improve transport properties of the junctions a technique has been developed to align and concentrate nanotubes at specific locations on the substrate surface. Lithographic techniques are used to define local areas where high frequency electric fields are to be concentrated. Application of the fields while the substrate is exposed to nanotube-containing solution results in nanotube arrays aligned with the electric field lines. A second electron beam lithography layer is then used to deposit metallic contacts across the aligned tubes. Experimental measurements are presented showing the increased tube alignment and improvement in the transport properties of the junctions.

  11. Stacking-dependent transport properties in few-layers graphene

    NASA Astrophysics Data System (ADS)

    Lima, Matheus Paes; Padilha, José Eduardo; Pontes, Renato Borges; Fazzio, Adalberto; Silva, Antônio José Roque da

    2017-01-01

    By performing ab initio electronic structure and transport calculations, we investigated the effects of the stacking order (Bernal (AB) and rhombohedral (ABC)) as well as the number of layers, in the electronic structure and charge transport of few-layers graphene (FLG). We observed that for the ABC stack the transport properties are derived from surface states close to the Fermi level connected to dispersive states with an exponential penetration towards the inner layers, whereas for the AB stacking the transport is distributed over all layers. We present a simple model for the resistances as a function of the number of layers which contemplates the different contribution of the surface and inner layers for the transport. However, even if the stackings AB and ABC present completely different electronic and transport properties, both present the same cohesive energies, showing the absence of a thermodynamical preference for a given kind of stacking.

  12. Intrinsic non-ohmic electronic transport properties of the transparent In-Zn-O compound nanobelts under ohmic contact and out of the space charge limited transport region

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Zhang, Xitian; Gao, Hong

    2016-02-01

    It is generally accepted that the nonlinear I-V characteristics for semiconductor nanostructures are mainly induced by the Schottky contacts or by the space charge limited transport mechanism. We perform I-V measurements on undoped and doped In-Zn-O compound nanobelts and confirm that their intrinsic non-ohmic transport behaviors are not caused by these mechanisms. A model based on the hopping assisted trap state electrons transport process is introduced to explain the nonlinear I-V characteristics and to extract their electrical parameters. An understanding of this trap-state influenced carrier transport can advance the progress of nanomaterials applications and enable us to distinguish their intrinsic transport behaviors from contact effects. The results also indicate that the material has good electrical properties and can be used as a potential substitute for In2O3.

  13. Correlation of normal and superconducting transport properties on textured Bi-2212 ceramic thin rods

    NASA Astrophysics Data System (ADS)

    Natividad, E.; Castro, M.; Burriel, R.; Angurel, L. A.; Díez, J. C.; Navarro, R.

    2002-07-01

    The electric and thermal properties well above and below Tc of Bi-2212 textured ceramics have been correlated through a careful analysis of the microstructure and the transport measurements. Thin rods with the same Bi-2122 stoichiometry and textured by a laser floating zone technique have been studied with that aim. By changing the growth parameters, it has been possible to produce strong changes in microstructure and critical current density, Jc, with small variations in the thermal conductivity. The existence of phase and composition gradients across the thin rods, which explains the variations of Tc, makes the relation difficult between the normal state resistivity and Jc (77 K). A simple qualitative analysis that takes into account the observed microstructure has been developed to correlate the electric transport properties in the normal and in the superconducting states.

  14. Crystallization and Transport Properties of Amorphous Cr-Si Thin Film Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Burkov, A. T.; Schumann, J.

    2014-06-01

    We studied the thermoelectric properties, crystallization, and stability of amorphous and nanocrystalline states in Cr-Si composite films. Amorphous films, prepared by magnetron sputtering, were transformed into the nanocrystalline state by annealing with in situ thermopower and electrical resistivity measurements. We have found that the amorphous state is stable in these film composites to about 550 K. Prior to crystallization, the amorphous films undergo a structural relaxation, detected by peculiarities in the temperature dependences of the transport properties, but not visible in x-ray or electron diffraction. The magnitude and temperature dependences of electrical conductivity and thermopower indicate that electron transport in the amorphous films is through extended states. The amorphous films are crystallized at annealing temperatures above 550 K into a nanocrystalline composite with an average grain size of 10-20 nm.

  15. Study of frequency- and temperature-dependent electrical transport in heavy fermion systems

    NASA Astrophysics Data System (ADS)

    Baral, P. C.

    2017-05-01

    This paper focuses on the frequency- and temperature-dependent electrical transport properties of heavy fermion (HF) systems. For this, Kondo lattice model (KLM) with Coulomb correlation between f-f electrons at the same site is considered. The Hamiltonian is treated in mean-field approximation (MFA) for the Kondo hybridization and Heisenberg-type interaction to get mean-field Hamiltonian and it is written after the Fourier transformation. The Hartree-Fock-type approximation is considered for the Coulomb repulsion between f-f electrons, the perturbed part of the Hamiltonian. The two Green’s functions for the conduction and f-electrons are calculated to define the self-energy. Then the frequency- and temperature-dependent optical conductivity and resistivity are calculated by using the Kubo’s formula within the linear dynamical response approach. They are studied by varying the model parameters. The anomalies and results obtained are compared with experimental data.

  16. Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors

    NASA Astrophysics Data System (ADS)

    Di Bartolomeo, Antonio; Genovese, Luca; Foller, Tobias; Giubileo, Filippo; Luongo, Giuseppe; Croin, Luca; Liang, Shi-Jun; Ang, L. K.; Schleberger, Marika

    2017-05-01

    We study electrical transport properties in exfoliated molybdenum disulfide (MoS2) back-gated field effect transistors at low drain bias and under different illumination intensities. It is found that photoconductive and photogating effect as well as space charge limited conduction can simultaneously occur. We point out that the photoconductivity increases logarithmically with the light intensity and can persist with a decay time longer than 104 s, due to photo-charge trapping at the MoS2/SiO2 interface and in MoS2 defects. The transfer characteristics present hysteresis that is enhanced by illumination. At low drain bias, the devices feature low contact resistance of 1.4 {{k}}{{Ω }} μ {{{m}}}-1, ON current as high as 1.25 {{nA}} μ {{{m}}}-1, 105 ON-OFF ratio, mobility of ˜1 cm2 V-1 s-1 and photoresponsivity { R} ≈ 1 {{A}} {{{W}}}-1.

  17. Topological Nanocolloids with Facile Electric Switching of Plasmonic Properties

    SciTech Connect

    Yuan, Ye; Smalyukh, Ivan I.

    2015-12-01

    Combining topology and plasmonics paradigms in nanocolloidal systems may enable new means of pre-engineering desired composite material properties. Here we design and realize orientationally ordered assemblies of noble metal nanoparticles with genus-one topology and unusual long-range ordering mediated by their interactions with the surrounding nematic fluid host. Facile electric switching of these composites is reminiscent of that of pristine liquid crystals (LCs), but provides a means of reconfiguring the nanoparticle assembly and thus also the ensuing composite medium's optical properties. Our findings may lead to formation of new molecular-colloidal soft matter phases with unusual optical properties, as well as optical metamaterials.

  18. Review on optical and electrical properties of oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Kim, Dong Lim; Kim, Hyun Jae

    2010-03-01

    Oxide semiconductors became one of the potential elements for large area electronics such as a channel for thin film transistors. Optical and electrical properties were modified by alloying or doping of several oxide materials; In2O3, ZnO, Ga2O3, and SnO2. The excellent properties achieved at the ternary or quaternary alloys could be explained by the role of each materials as a carrier controller, a conduction path, and etc. The metal oxide semiconductors were generally deposited by vacuum process but recently, alternative ways, like a sol-gel or an ink-jet printing, are suggested. In this review, diverse approaches on oxide semiconductors are shown, and an in-depth discussion of the optical and electrical properties alternation in metal oxide alloy fabricated by various methods is given.

  19. Defects and transport properties of molybdenum doped indium oxide

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Gessert, Timothy; Wood, David; Coutts, Timothy

    2004-03-01

    Mo-doped indium oxide (IMO) films were deposited using an r.f. magnetron sputtering system under various oxygen concentrations. Using the `method of four coefficients', the conductivity, Hall, Nernst, and Seebeck coefficients were measured for IMO. These coefficients can be used with solutions to the Boltzmann transport equation to extract the carrier density-of-states effective mass, the Fermi level relative to the conduction-band minimum, and an energy-dependent scattering parameter related to the scattering mechanism. We find the conduction band is parabolic with a band effective mass of ˜ 0.32 me over a carrier concentration range from 4×10^19 to 5× 10^20 cm-3, indicating that relaxation time controls mobility in IMO. Temperature-dependent Hall measurements show that phonon and ionized-impurity scattering dominate at high mobility and high carrier concentration, respectively. We will also discuss possible defects in the film using XPS and electrical property data.

  20. Molecular properties associated with transporter-mediated drug disposition.

    PubMed

    Varma, Manthena V; Lai, Yurong; El-Kattan, Ayman F

    2017-07-01

    Membrane transporters play a key role in the absorption, distribution, clearance, elimination, and transport of drugs. Understanding the drug properties and structure activity relationships (SAR) for affinity to membrane transporters is critical to optimize clearance and pharmacokinetics during drug design. To facilitate the early identification of clearance mechanism, a framework named the extended clearance classification system (ECCS) was recently introduced. Using in vitro and physicochemical properties that are readily available in early drug discovery, ECCS has been successfully applied to identify major clearance mechanism and to implicate the role of membrane transporters in determining pharmacokinetics. While the crystal structures for most of the drug transporters are currently not available, ligand-based modeling approaches that use information obtained from the structure and molecular properties of the ligands have been applied to associate the drug-related properties and transporter-mediated disposition. The approach allows prospective prediction of transporter both substrate and/or inhibitor affinity and build quantitative structure-activity relationship (QSAR) to enable early optimization of pharmacokinetics, tissue distribution and drug-drug interaction risk. Drug design applications can be further improved through uncovering transporter protein crystal structure and generation of quality data to refine and develop viable predictive models. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Computer program for calculating thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  2. A computational study of the quantum transport properties of a Cu-CNT composite.

    PubMed

    Ghorbani-Asl, Mahdi; Bristowe, Paul D; Koziol, Krzysztof

    2015-07-28

    The quantum transport properties of a Cu-CNT composite are studied using a non-equilibrium Green's function approach combined with the self-consistent-charge density-functional tight-binding method. The results show that the electrical conductance of the composite depends strongly on CNT density and alignment but more weakly on chirality. Alignment with the applied bias is preferred and the conductance of the composite increases as its mass density increases.

  3. Magnetic resonance electric property imaging of brain tissues.

    PubMed

    Zhang, Xiaotong; Zhu, Shanan; He, Bin

    2009-01-01

    The electric properties (EPs) of brain tissues, i.e., the electric conductivity and permittivity, can provide important information for diagnosis of various brain disorders. A high-field MRI system is accompanied by significant wave propagation effects, and the radio frequency (RF) radiation is dependent on EPs of the biological tissue. Based on the measurement of the active transverse magnetic component of the applied RF field (known as B1-mapping technique), we have developed a dual-excitation algorithm, which uses two sets of measured B1 data, to noninvasively reconstruct the biological tissue's electric properties. A series of computer simulations were conducted to evaluate the feasibility and performance of the proposed method on a 3-D head model within a birdcage coil and a transverse electromagnetic coil. Compared with other B1-mapping based reconstruction algorithms, our approach provides superior performance without the need for iterative computations. The present simulation results indicate good reconstruction of electric properties of brain tissues from noninvasive MRI B1 mapping.

  4. Electron transport property of tetrathiafulvalene molecule

    SciTech Connect

    Mondal, Rajkumar; Bhattacharya, Barnali; Deb, Jyotirmoy; Sarkar, Utpal

    2016-05-23

    We have investigated electron transport behavior of tetrathiafulvalene molecule connected with zigzag graphene nanoribbon (zGNR) using density functional theory combined with non-equilibrium Green’s function method. We have reported the transmission coefficient of the scattering region at different bias voltage to explain the nature of the current.

  5. PROPERTIES OF INTERFACES AND TRANSPORT ACROSS THEM

    EPA Science Inventory

    Much of the biological activity in cell cytoplasm occurs in compartments which are thought to form by phase separation, and many of the functions of these compartments occur by the transport or exchange of molecules across interfaces. Thus, a fundamentally based discussion of th...

  6. PROPERTIES OF INTERFACES AND TRANSPORT ACROSS THEM

    EPA Science Inventory

    Much of the biological activity in cell cytoplasm occurs in compartments which are thought to form by phase separation, and many of the functions of these compartments occur by the transport or exchange of molecules across interfaces. Thus, a fundamentally based discussion of th...

  7. Spin-polarized transport properties of 1,3-dimethylpropynylidene-based molecular devices

    NASA Astrophysics Data System (ADS)

    Min, Y.; Zhong, C. G.; Yao, K. L.

    2017-10-01

    Based on non-equilibrium Green's function and density functional theory, a first-principles study of the spin-polarized transport properties and magnetism of 1,3-dimethylpropynylidene molecule sandwiched in two Ag electrodes is performed. Strong spin-polarized negative differential resistance and spin filtration effect are present. We also find that the net spin moments of molecular magnet abnormally decrease driven by electric field because the molecular orbitals around Fermi level have opposite spin direction and that non-spin-polarized electrical read out of spin states for single molecular magnets is possible.

  8. Bottom-up processing and low temperature transport properties of polycrystalline SnSe

    SciTech Connect

    Ge, Zhen-Hua; Wei, Kaya; Lewis, Hutton; Martin, Joshua; Nolas, George S.

    2015-05-15

    A hydrothermal approach was employed to efficiently synthesize SnSe nanorods. The nanorods were consolidated into polycrystalline SnSe by spark plasma sintering for low temperature electrical and thermal properties characterization. The low temperature transport properties indicate semiconducting behavior with a typical dielectric temperature dependence of the thermal conductivity. The transport properties are discussed in light of the recent interest in this material for thermoelectric applications. The nanorod growth mechanism is also discussed in detail. - Graphical abstract: SnSe nanorods were synthesized by a simple hydrothermal method through a bottom-up approach. Micron sized flower-like crystals changed to nanorods with increasing hydrothermal temperature. Low temperature transport properties of polycrystalline SnSe, after SPS densification, were reported for the first time. This bottom-up synthetic approach can be used to produce phase-pure dense polycrystalline materials for thermoelectrics applications. - Highlights: • SnSe nanorods were synthesized by a simple and efficient hydrothermal approach. • The role of temperature, time and NaOH content was investigated. • SPS densification allowed for low temperature transport properties measurements. • Transport measurements indicate semiconducting behavior.

  9. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    PubMed

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  10. Thermoelectric transport properties of BaBiTe3-based materials

    NASA Astrophysics Data System (ADS)

    Zhou, Yiming; Zhao, Li-Dong

    2017-05-01

    BaBiTe3, a material with low thermal conductivity, is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. We choose two types of dopants, K and La, trying to optimize its electrical transport properties. The minority carriers, which harm the Seebeck coefficient in this system, are suppressed by La doping. With the increase of both electrical conductivity and Seebeck coefficient, the power factor of 3% La doped BaBiTe3 reaches 3.7 μW cm-1 K-2 which increased by 40% from undoped BaBiTe3. Besides high power factor, the thermal conductivity is also reduced in it. Eventually, a high ZT value, 0.25 at 473 K, for n-type BaBiTe3 is achieved in 3% La doped BaBiTe3.

  11. Enhancement of electrical properties of polyimide films by plasma treatment

    NASA Astrophysics Data System (ADS)

    Meddeb, A. Barhoumi; Ounaies, Z.; Lanagan, M.

    2016-04-01

    In this study, the effect of oxygen plasma treatment on the electrical and surface properties of polyimide, Kapton HN, film is investigated. The plasma treatment led to an increase in the oxygen presence on the polyimide surface and a marked surface hydrophilicity. The plasma treatment led to an increase in the dielectric breakdown and Weibull modulus as well as a remarkable reduction in the scatter of all electrical measurements. There is a significant reduction in the high field/high temperature leakage current after plasma treatment. These findings have important implications in the development and improvement of dielectric polymer capacitors.

  12. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    NASA Astrophysics Data System (ADS)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  13. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.

    PubMed

    Li, Dan; Jing, Wenheng; Li, Shuaiqiang; Shen, Hao; Xing, Weihong

    2015-06-03

    On the basis of biological ion channels, we constructed TiO2 membranes with rigid channels of 2.3 nm to mimic biomembranes with flexible channels; an external electric field was employed to regulate ion transport in the confined channels at a high ionic strength in the absence of electrical double layer overlap. Results show that transport rates for both Na+ and Mg2+ were decreased irrespective of the direction of the electric field. Furthermore, a voltage-gated selective ion channel was formed, the Mg2+ channel closed at -2 V, and a reversed relative electric field gradient was at the same order of the concentration gradient, whereas the Na+ with smaller Stokes radius and lower valence was less sensitive to the electric field and thus preferentially occupied and passed the channel. Thus, when an external electric field is applied, membranes with larger nanochannels have promising applications in selective separation of mixture salts at a high concentration.

  14. Electrical Properties of Sand-Clay Mixtures Containing Trichloroethylene and Ethanol

    SciTech Connect

    Roberts, J J; Wildenschild, D

    2001-12-04

    A series of laboratory experiments, including the measurement of electrical properties and permeability, were performed on carefully characterized sand-clay mixtures. Different mixtures and configurations of quartz sand and 0 to 10% Na-montmorillonite clay were investigated using solutions of NaCl, CaCl{sub 2}, and deionized water. Samples containing 10% distributed clay were also studied using fluids containing 20 and 500 ppm trichloroethylene (TCE). Electrical properties were measured at frequencies between 10{sup 6} and 10{sup -2} Hz using the four-electrode method and Ag-AgCl inner electrodes on saturated samples at room temperature and 412 kPa confining pressure, corresponding to a soil depth of 15 to 20 m. Our results show that the addition of TCE has a small effect on electrical resistivity, with resistivity increasing with the addition of TCE. The influence of TCE on the electrical properties was most prominent in plots of loss tangent as a function of frequency. A loss tangent peak occurred at {approx}200 Hz. The height of the peak and the peak frequency both decrease with the addition of TCE. Further experiments were performed on samples containing a distinct clay layer parallel to current flow. Electrical properties were measured on water saturated samples and as a mixture of ethanol and water (80:20) was flowed through the sample. Resistivity increased by about a factor of four as the ethanol mixture replaced the water solution. Non-destructive x-ray imaging of the sample at various stages of dewatering indicates a decrease in the thickness of the clay layer with increasing number of pore volumes of ethanol-water flowed. Our results showed that electrical measurements are a useful tool for characterizing porous rocks and soils and that it is feasible to remotely detect the presence and follow the transport of contaminants such as TCE in the subsurface.

  15. Electrical and dielectric properties of bovine trabecular bone--relationships with mechanical properties and mineral density.

    PubMed

    Sierpowska, J; Töyräs, J; Hakulinen, M A; Saarakkala, S; Jurvelin, J S; Lappalainen, R

    2003-03-21

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  16. Transport properties of pancreatic cancer describe gemcitabine delivery and response

    PubMed Central

    Koay, Eugene J.; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya’an; Bhosale, Priya R.; Tamm, Eric P.; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffery E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Varadhachary, Gauri R.; Ferrari, Mauro; Fleming, Jason B.

    2014-01-01

    Background. The therapeutic resistance of pancreatic ductal adenocarcinoma (PDAC) is partly ascribed to ineffective delivery of chemotherapy to cancer cells. We hypothesized that physical properties at vascular, extracellular, and cellular scales influence delivery of and response to gemcitabine-based therapy. Methods. We developed a method to measure mass transport properties during routine contrast-enhanced CT scans of individual human PDAC tumors. Additionally, we evaluated gemcitabine infusion during PDAC resection in 12 patients, measuring gemcitabine incorporation into tumor DNA and correlating its uptake with human equilibrative nucleoside transporter (hENT1) levels, stromal reaction, and CT-derived mass transport properties. We also studied associations between CT-derived transport properties and clinical outcomes in patients who received preoperative gemcitabine-based chemoradiotherapy for resectable PDAC. Results. Transport modeling of 176 CT scans illustrated striking differences in transport properties between normal pancreas and tumor, with a wide array of enhancement profiles. Reflecting the interpatient differences in contrast enhancement, resected tumors exhibited dramatic differences in gemcitabine DNA incorporation, despite similar intravascular pharmacokinetics. Gemcitabine incorporation into tumor DNA was inversely related to CT-derived transport parameters and PDAC stromal score, after accounting for hENT1 levels. Moreover, stromal score directly correlated with CT-derived parameters. Among 110 patients who received preoperative gemcitabine-based chemoradiotherapy, CT-derived parameters correlated with pathological response and survival. Conclusion. Gemcitabine incorporation into tumor DNA is highly variable and correlates with multiscale transport properties that can be derived from routine CT scans. Furthermore, pretherapy CT-derived properties correlate with clinically relevant endpoints. Trial registration. Clinicaltrials.gov NCT01276613

  17. Structural and electrical properties of silicon hyperdoped with gold

    NASA Astrophysics Data System (ADS)

    Mathews, Jay; Liu, Yining; Malladi, Girish; Efstathiadis, Harry; Warrender, Jeffrey

    Recent advances in the field of laser hyperdoping have produced a new class of materials that could lead the way to silicon-based, CMOS-compatible infrared detectors. Using the method of ion implantation followed by pulsed laser melting (II-PLM), silicon films with impurities at concentrations well above the solid solubility limit can be fabricated. Recent work has centered around Si:Au, from which prototype IR detectors have been successfully fabricated, but there are still many questions about the structural, electrical, and optical properties of this material. In order to enhance the infrared absorption and achieve high-efficiency devices, a thorough understanding of these properties is necessary, and the processes for device fabrication must be optimized. In this work, we explore the structural and electrical properties of Si:Au hyperdoped films. Si:Au films were annealed at various temperatures, and RBS channeling was used to measure the fraction of Au atoms sitting at substitutional sites. Additionally, transmission line method (TLM) and van der Pauw (VDP) test structures were fabricated in order to investigate formation of Ohmic contacts on the hyperdoped films and to study the electrical properties of Si:Au.

  18. Magnetic and electrical properties of In doped cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nongjai, Razia; Khan, Shakeel; Asokan, K.; Ahmed, Hilal; Khan, Imran

    2012-10-01

    Nanoparticles of CoFe2O4 and CoIn0.15Fe1.85O4 ferrites were prepared by citrate gel route and characterized to understand their structural, electrical, and magnetic properties. X-ray diffraction and Raman spectroscopy were used to confirm the formation of single phase cubic spinel structure. The average grain sizes from the Scherrer formula were below 50 nm. Microstructural features were obtained by scanning electron microscope and compositional analysis by energy dispersive spectroscopy. The hysteresis curve shows enhancement in coercivity while reduction in saturation magnetization with the substitution of In3+ ions. Enhancement of coercivity is attributed to the transition from multidomain to single domain nature. Electrical properties, such as dc resistivity as a function of temperature and ac conductivity as a function of frequency and temperature were studied for both the samples. The activation energy derived from the Arrhenius equation was found to increase in the doped sample. The dielectric constant (ɛ') and dielectric loss (tan δ) are also studied as a function of frequency and temperature. The variation of dielectric properties ɛ', tan δ, and ac conductivity (σac) with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe2+ and Fe3+ as well as between Co2+ and Co3+ ions at B-sites. Magnetization and electrical property study showed its dominant dependence on the grain size.

  19. Electrical Properties of Structural Components of the Crystalline Lens

    PubMed Central

    Mathias, R. T.; Rae, J. L.; Eisenberg, R. S.

    1979-01-01

    The electrical properties of the crystalline lens of the frog eye are measured with stochastic currents applied with a microelectrode near the center of the preparation and potential recorded just under the surface. The stochastic signals are decomposed by Fourier analysis into sinusoidal components, and the impedance is determined from the ratio of mean cross power to input power. The data are fit by an electrical model that includes two paths for current flow: one through the cytoplasm, gap junctions, and outer membrane; the other through inner membranes and the extracellular space between lens fibers. The electrical properties of the structures of the lens which appear as circuit components in the model are determined by the fit to the data. The resistivity of the extracellular space within the lens is comparable to the resistivity of Ringer. The outer membrane has a normal resistance of 5 kohm · cm2 but large capacitance of 10 μF/cm2, probably because it represents the properties of several layers of fibers. The inner membranes have properties reminiscent of artificial lipid bilayers: they have high membrane resistance, 2.2 megohm · cm2, and low specific capacitance, 0.8 μF/cm2. There is so much membrane within the lens, however, that the sum of the current flow across all the inner membranes is comparable to that across the outer surface. PMID:262384

  20. Magnetically Controlled Electronic Transport Properties of a Ferromagnetic Junction on the Surface of a Topological Insulator

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Qin; Wang, Rui-Qiang; Deng, Ming-Xun; Hu, Liang-Bin

    2015-06-01

    We have investigated the transport properties of the Dirac fermions through a ferromagnetic barrier junction on the surface of a strong topological insulator. The current-voltage characteristic curve and the tunneling conductance are calculated theoretically. Two interesting transport features are predicted: observable negative differential conductances and linear conductances tunable from unit to nearly zero. These features can be magnetically manipulated simply by changing the spacial orientation of the magnetization. Our results may contribute to the development of high-speed switching and functional applications or electrically controlled magnetization switching. Supported by National Natural Science Foundation of China under Grant Nos. 11174088, 11175067, 11274124