Sample records for electrical wave propagation

  1. Influence of bias electric field on elastic waves propagation in piezoelectric layered structures.

    PubMed

    Burkov, S I; Zolotova, O P; Sorokin, B P

    2013-08-01

    Theoretical and computer investigations of acoustic wave propagation in piezoelectric layered structures, subjected to the dc electric field influence have been fulfilled. Analysis of the dispersive parameters of elastic waves propagation in the BGO/fused silica and fused silica/LiNbO3 piezoelectric layered structures for a number of variants of dc electric field application has been executed. Transformation of bulk acoustic wave into SAW type mode under the dc electric field influence has been found. Possibility to control the permission or prohibition of the wave propagation by the dc electric field application and the appropriate choice of the layer and substrate materials has been discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Control of wave propagation in a biological excitable medium by an external electric field.

    PubMed

    Sebestikova, Lenka; Slamova, Elena; Sevcikova, Hana

    2005-03-01

    We present an experimental evidence of effects of external electric fields (EFs) on the velocity of pulse waves propagating in a biological excitable medium. The excitable medium used is formed by a layer of starving cells of Dictyostelium discoideum through which the waves of increased concentration of cAMP propagate by reaction-diffusion mechanism. External dc EFs of low intensities (up to 5 V/cm) are shown to speed up the propagation of cAMP waves towards the positive electrode and slow it down towards the negative electrode. Electric fields were also found to support an emergence of new centers, emitting cAMP waves, in front of cAMP waves propagating towards the negative electrode.

  3. All electrical propagating spin wave spectroscopy with broadband wavevector capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciubotaru, F., E-mail: Florin.Ciubotaru@imec.be; KU Leuven, Departement Electrotechniek; Devolder, T.

    2016-07-04

    We developed an all electrical experiment to perform the broadband phase-resolved spectroscopy of propagating spin waves in micrometer sized thin magnetic stripes. The magnetostatic surface spin waves are excited and detected by scaled down to 125 nm wide inductive antennas, which award ultra broadband wavevector capability. The wavevector selection can be done by applying an excitation frequency above the ferromagnetic resonance. Wavevector demultiplexing is done at the spin wave detector thanks to the rotation of the spin wave phase upon propagation. A simple model accounts for the main features of the apparatus transfer functions. Our approach opens an avenue for themore » all electrical study of wavevector-dependent spin wave properties including dispersion spectra or non-reciprocal propagation.« less

  4. Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.

    PubMed

    Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A

    2016-08-01

    Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.

  5. Propagation behavior of two transverse surface waves in a three-layer piezoelectric/piezomagnetic structure

    NASA Astrophysics Data System (ADS)

    Nie, Guoquan; Liu, Jinxi; Liu, Xianglin

    2017-10-01

    Propagation of transverse surface waves in a three-layer system consisting of a piezoelectric/piezomagnetic (PE/PM) bi-layer bonded on an elastic half-space is theoretically investigated in this paper. Dispersion relations and mode shapes for transverse surface waves are obtained in closed form under electrically open and shorted boundary conditions at the upper surface. Two transverse surface waves related both to Love-type wave and Bleustein-Gulyaev (B-G) type wave propagating in corresponding three-layer structure are discussed through numerically solving the derived dispersion equation. The results show that Love-type wave possesses the property of multiple modes, it can exist all of the values of wavenumber for every selected thickness ratios regardless of the electrical boundary conditions. The presence of PM interlayer makes the phase velocity of Love-type wave decrease. There exist two modes allowing the propagation of B-G type wave under electrically shorted circuit, while only one mode appears in the case of electrically open circuit. The modes of B-G type wave are combinations of partly normal dispersion and partly anomalous dispersion whether the electrically open or shorted. The existence range of mode for electrically open case is greatly related to the thickness ratios, with the thickness of PM interlayer increasing the wavenumber range for existence of B-G type wave quickly shortened. When the thickness ratio is large enough, the wavenumber range of the second mode for electrically shorted circuit is extremely narrow which can be used to remove as an undesired mode. The propagation behaviors and mode shapes of transverse surface waves can be regulated by the modification of the thickness of PM interlayer. The obtained results provide a theoretical prediction and basis for applications of PE-PM composites and acoustic wave devices.

  6. A two dimension model of the uterine electrical wave propagation.

    PubMed

    Rihana, S; Lefrançois, E; Marque, C

    2007-01-01

    The uterus, usually quiescent during pregnancy, exhibits forceful contractions at term leading to delivery. These contractions are caused by the synchronized propagation of electrical waves from the pacemaker cells to its neighbors inducing the whole coordinated contraction of the uterus wall leading to labor. In a previous work, we simulate the electrical activity of a single uterine cell by a set of ordinary differential equations. Then, this model has been used to simulate the electrical activity propagation. In the present work, the uterine cell tissue is assumed to have uniform and isotropic propagation, and constant electrical membrane properties. The stability of the numerical solution imposes the choice of a critical temporal step. A wave starts at a pacemaker cell; this electrical activity is initiated by the injection of an external stimulation current to the cell membrane. We observe synchronous wave propagation for axial resistance values around 0.5 GOmega or less and propoagation blocking for values greater than 0.7 GOmega. We compute the conduction velocity of the excitation, for different axial resistance values, and obtain a velocity about 10 cm/sec, approaching the one described by the literature for the rat at end of term.

  7. Manipulating Traveling Brain Waves with Electric Fields: From Theory to Experiment.

    NASA Astrophysics Data System (ADS)

    Gluckman, Bruce J.

    2004-03-01

    Activity waves in disinhibited neocortical slices have been used as a biological model for epileptic seizure propagation [1]. Such waves have been mathematically modeled with integro-differential equations [2] representing non-local reaction diffusion dynamics of an excitable medium with an excitability threshold. Stability and propagation speed of traveling pulse solutions depend strongly on the threshold in the following manner: propagation speed should decrease with increased threshold over a finite range, beyond which the waves become unstable. Because populations of neurons can be polarized with an applied electric field that effectively shifts their threshold for action potential initiation [3], we predicted, and have experimentally verified, that electric fields could be used globally or locally to speed up, slow down and even block wave propagation. [1] Telfeian and Conners, Epilepsia, 40, 1499-1506, 1999. [2] Pinto and Ermentrout, SIAM J. App. Math, 62, 206-225, 2001. [3] Gluckman, et. al. J Neurophysiol. 76, 4202-5, 1996.

  8. Modified fundamental Airy wave.

    PubMed

    Seshadri, S R

    2014-01-01

    The propagation characteristics of the fundamental Airy wave are obtained; the intensity distribution is the same as that for a point electric dipole situated at the origin and oriented normal to the propagation direction. The propagation characteristics of the modified fundamental Airy wave are determined. These characteristics are the same as those for the fundamental Gaussian wave provided that an equivalent waist is identified for the Airy wave. In general, the waves are localized spatially with the peak in the propagation direction.

  9. Nonlinear physics of electrical wave propagation in the heart: a review

    NASA Astrophysics Data System (ADS)

    Alonso, Sergio; Bär, Markus; Echebarria, Blas

    2016-09-01

    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.

  10. Elastic guided wave propagation in electrical cables.

    PubMed

    Mateo, Carlos; Talavera, Juan A; Muñoz, Antonio

    2007-07-01

    This article analyzes the propagation modes of ultrasound waves inside an electrical cable in order to assess its behavior as an acoustic transmission channel. A theoretical model for propagation of elastic waves in electric power cables is presented. The power cables are represented as viscoelastic-layered cylindrical structures with a copper core and a dielectric cover. The model equations then have been applied and numerically resolved for this and other known structures such as solid and hollow cylinders. The results are compared with available data from other models. Several experimental measures were carried out and were compared with results from the numerical simulations. Experimental and simulated results showed a significant difference between elastic wave attenuation inside standard versus bare, low-voltage power cables.

  11. Study of diffusion of wave packets in a square lattice under external fields along the discrete nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    de Brito, P. E.; Nazareno, H. N.

    2012-09-01

    The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.

  12. Can Neural Activity Propagate by Endogenous Electrical Field?

    PubMed Central

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic transmission, gap junction, or diffusion. The results indicate that electric fields (ephaptic effects) are capable of mediating propagation of self-regenerating neural waves. This novel mechanism coupling cell-by-volume conduction could be involved in other types of propagating neural signals, such as slow-wave sleep, sharp hippocampal waves, theta waves, or seizures. PMID:26631463

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.

    Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the ''kink'' and ''sausage'' flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating alongmore » the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity.« less

  14. An Evaluation of a Numerical Prediction Method for Electric Field Strength of Low Frequency Radio Waves based on Wave-Hop Ionospheric Propagation

    NASA Astrophysics Data System (ADS)

    Kitauchi, H.; Nozaki, K.; Ito, H.; Kondo, T.; Tsuchiya, S.; Imamura, K.; Nagatsuma, T.; Ishii, M.

    2014-12-01

    We present our recent efforts on an evaluation of the numerical prediction method of electric field strength for ionospheric propagation of low frequency (LF) radio waves based on a wave-hop propagation theory described in Section 2.4 of Recommendation ITU-R P.684-6 (2012), "Prediction of field strength at frequencies below about 150 kHz," made by International Telecommunication Union Radiocommunication Sector (ITU-R). As part of the Japanese Antarctic Research Expedition (JARE), we conduct on-board measurements of the electric field strengths and phases of LF 40 kHz and 60 kHz of radio signals (call sign JJY) continuously along both the ways between Tokyo, Japan and Syowa Station, the Japanese Antarctic station, at 69° 00' S, 39° 35' E on East Ongul Island, Lützow-Holm Bay, East Antarctica. The measurements are made by a newly developed, highly sensitive receiving system installed on board the Japanese Antarctic research vessel (RV) Shirase. We obtained new data sets of the electric field strength up to approximately 13,000-14,000 km propagation of LF JJY 40 kHz and 60 kHz radio waves by utilizing a newly developed, highly sensitive receiving system, comprised of an orthogonally crossed double-loop antenna and digital-signal-processing lock-in amplifiers, on board RV Shirase during the 55th JARE from November 2013 to April 2014. We have made comparisons between those on-board measurements and the numerical predictions of field strength for long-range propagation of low frequency radio waves based on a wave-hop propagation theory described in Section 2.4 of Recommendation ITU-R P.684-6 (2012) to show that our results qualitatively support the recommended wave-hop theory for the great-circle paths approximately 7,000-8,000 km and 13,000-14,000 km propagations.

  15. Ionizing potential waves and high-voltage breakdown streamers.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  16. Effect of the secondary process on mass point vibration velocity propagation in magneto-acoustic tomography and magneto-acousto-electrical tomography.

    PubMed

    Sun, Zhishen; Liu, Guoqiang; Guo, Liang; Xia, Hui; Wang, Xinli

    2016-04-29

    As two of the new biological electrical impedance tomography (EIT), magneto-acoustic tomography (MAT) and magneto-acousto-electrical tomography (MAET) achieve both the high contrast property of EIT and the high spatial resolution property of sonography through combining EIT and sonography. As both MAT and MAET contain a uniform magnetic field, vibration and electrical current density, there is a secondary process both in MAT and in MAET, which is MAET and MAT respectively. To analyze the effect of the secondary process on mass point vibration velocity (MPVV) propagation in MAT and MAET. By analyzing the total force to the sample, the wave equations of MPVV in MAT and MAET - when the secondary processes were considered - were derived. The expression of the attenuation constant in the wave number was derived in the case that the mass point vibration velocity propagates in the form of cylindrical wave and plane wave. Attenuations of propagation of the MPVV in several samples were quantified. Attenuations of the MPVV after propagating for 1 mm in copper or aluminum foil, and for 5 cm in gel phantom or biological soft tissue were less than 1%. Attenuations of the MPVV in MAT and MAET due to the secondary processes are relatively minor, and effects of the secondary processes on MPVV propagation in MAT and MAET can be ignored.

  17. High-Resolution Large-Field-of-View Ultrasound Breast Imager

    DTIC Science & Technology

    2012-06-01

    plane waves all having the same wave vector magnitude 0k but propagating in different directions . This observation forms the mathematical basis of the...origin of the object Fourier space and is oriented opposite the propagation direction of the probing plane wave field. Moreover, the 43 radius of...in water. Each element was electrically tuned to match to the 50-Ohm impedance of an RF Amplifier powered by a 4.0 MHz electrical signal from a

  18. Antenna Construction & Propagation of Radio Waves, 5-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of five individualized, self-paced chapters dealing with antenna construction and propagation of radio waves. Covered in the individual lessons are the following topics: basic electricity; antenna transmission-line fundamentals; quarter-wave antennas, half-wave antennas, and associated radio…

  19. Laser mode conversion into a surface plasma wave in a metal coated optical fiber

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Kumar, Gagan; Tripathi, V. K.

    2006-07-01

    An optical fiber, coated with thin metal film, supports two distinct kinds of waves, viz., body waves that propagate through the fiber as transverse magnetic (TM) and transverse electric modes, and surface plasma waves that propagate on metal free space interface. When the metal has a ripple of suitable wave number q, a body wave of frequency ω and propagation constant kz induces a current at ω ,kz+q in the ripple region that resonantly derives a surface plasma wave. When the metal surface has metallic particles attached to it and molecules are adsorbed on them, the surface plasma wave undergoes surface enhanced Raman scattering with them. The scattered signals propagate backward as a TM body wave and can be detected.

  20. Observation of Schumann Resonances in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Freudenreich, Henry

    2011-01-01

    The surface of the Earth and the lower edge of the ionosphere define a cavity in which electromagnetic waves propagate. When the cavity is excited by broadband electromagnetic sources, e.g., lightning, a resonant state can develop provided the average equatorial circumference is approximately equal to an integral number of wavelengths of the electromagnetic waves. This phenomenon, known as Schumann resonance, corresponds to electromagnetic oscillations of the surface-ionosphere cavity, and has been used extensively to investigate atmospheric electricity. Using measurements from the Communications/Navigation Outage Forecasting System (C/NOFS) satellite, we report, for the first time, Schumann resonance signatures detected well beyond the upper boundary of the cavity. These results offer new means for investigating atmospheric electricity, tropospheric-ionospheric coupling mechanisms related to lightning activity, and wave propagation in the ionosphere. The detection of Schumann resonances in the ionosphere calls for revisions to the existing models of extremely low frequency wave propagation in the surface-ionosphere cavity. Additionally, these measurements suggest new remote sensing capabilities for investigating atmospheric electricity at other planets.

  1. THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.

    PubMed

    Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2013-09-15

    We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.

  2. Genetic Elimination of GABAergic Neurotransmission Reveals Two Distinct Pacemakers for Spontaneous Waves of Activity in the Developing Mouse Cortex

    PubMed Central

    Easton, Curtis R.; Weir, Keiko; Scott, Adina; Moen, Samantha P.; Barger, Zeke; Folch, Albert; Hevner, Robert F.

    2014-01-01

    Many structures of the mammalian CNS generate propagating waves of electrical activity early in development. These waves are essential to CNS development, mediating a variety of developmental processes, such as axonal outgrowth and pathfinding, synaptogenesis, and the maturation of ion channel and receptor properties. In the mouse cerebral cortex, waves of activity occur between embryonic day 18 and postnatal day 8 and originate in pacemaker circuits in the septal nucleus and the piriform cortex. Here we show that genetic knock-out of the major synthetic enzyme for GABA, GAD67, selectively eliminates the picrotoxin-sensitive fraction of these waves. The waves that remain in the GAD67 knock-out have a much higher probability of propagating into the dorsal neocortex, as do the picrotoxin-resistant fraction of waves in controls. Field potential recordings at the point of wave initiation reveal different electrical signatures for GABAergic and glutamatergic waves. These data indicate that: (1) there are separate GABAergic and glutamatergic pacemaker circuits within the piriform cortex, each of which can initiate waves of activity; (2) the glutamatergic pacemaker initiates waves that preferentially propagate into the neocortex; and (3) the initial appearance of the glutamatergic pacemaker does not require preceding GABAergic waves. In the absence of GAD67, the electrical activity underlying glutamatergic waves shows greatly increased tendency to burst, indicating that GABAergic inputs inhibit the glutamatergic pacemaker, even at stages when GABAergic pacemaker circuitry can itself initiate waves. PMID:24623764

  3. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  4. An FMM-FFT Accelerated SIE Simulator for Analyzing EM Wave Propagation in Mine Environments Loaded With Conductors

    PubMed Central

    Sheng, Weitian; Zhou, Chenming; Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2018-01-01

    A fast and memory efficient three-dimensional full-wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field surface integral equations (SIEs) to account for scattering from mine walls and conductors, respectively. During the iterative solution of the system of SIEs, the simulator uses a fast multipole method-fast Fourier transform (FMM-FFT) scheme to reduce CPU and memory requirements. The memory requirement is further reduced by compressing large data structures via singular value and Tucker decompositions. The efficiency, accuracy, and real-world applicability of the simulator are demonstrated through characterization of EM wave propagation in electrically large mine tunnels/galleries loaded with conducting cables and mine carts. PMID:29726545

  5. The Extended Parabolic Equation Method and Implication of Results for Atmospheric Millimeter-Wave and Optical Propagation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the -correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  6. Asymmetry in the Farley-Buneman dispersion relation caused by parallel electric fields

    NASA Astrophysics Data System (ADS)

    Forsythe, Victoriya V.; Makarevich, Roman A.

    2016-11-01

    An implicit assumption utilized in studies of E region plasma waves generated by the Farley-Buneman instability (FBI) is that the FBI dispersion relation and its solutions for the growth rate and phase velocity are perfectly symmetric with respect to the reversal of the wave propagation component parallel to the magnetic field. In the present study, a recently derived general dispersion relation that describes fundamental plasma instabilities in the lower ionosphere including FBI is considered and it is demonstrated that the dispersion relation is symmetric only for background electric fields that are perfectly perpendicular to the magnetic field. It is shown that parallel electric fields result in significant differences between the growth rates and phase velocities for propagation of parallel components of opposite signs. These differences are evaluated using numerical solutions of the general dispersion relation and shown to exhibit an approximately linear relationship with the parallel electric field near the E region peak altitude of 110 km. An analytic expression for the differences is also derived from an approximate version of the dispersion relation, with comparisons between numerical and analytic results agreeing near 110 km. It is further demonstrated that parallel electric fields do not change the overall symmetry when the full 3-D wave propagation vector is reversed, with no symmetry seen when either the perpendicular or parallel component is reversed. The present results indicate that moderate-to-strong parallel electric fields of 0.1-1.0 mV/m can result in experimentally measurable differences between the characteristics of plasma waves with parallel propagation components of opposite polarity.

  7. Three-dimensional Fréchet sensitivity kernels for electromagnetic wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, C. E.; Johnson, T. C.; Odom, R. I.

    2015-08-28

    Electromagnetic imaging methods are useful tools for monitoring subsurface changes in pore-fluid content and the associated changes in electrical permittivity and conductivity. The most common method for georadar tomography uses a high frequency ray-theoretic approximation that is valid when material variations are sufficiently small relative to the wavelength of the propagating wave. Georadar methods, however, often utilize electromagnetic waves that propagate within heterogeneous media at frequencies where ray theory may not be applicable. In this paper we describe the 3-D Fréchet sensitivity kernels for EM wave propagation. Various data functional types are formulated that consider all three components of themore » electric wavefield and incorporate near-, intermediate-, and far-field contributions. We show that EM waves exhibit substantial variations for different relative source-receiver component orientations. The 3-D sensitivities also illustrate out-of-plane effects that are not captured in 2-D sensitivity kernels and can influence results obtained using 2-D inversion methods to image structures that are in reality 3-D.« less

  8. Jet formation at the interaction of localized waves on the free surface of dielectric liquid in a tangential electric field

    NASA Astrophysics Data System (ADS)

    Kochurin, E. A.; Zubarev, N. M.

    2018-01-01

    Nonlinear dynamics of the free surface of finite depth non-conducting fluid with high dielectric constant subjected to a strong horizontal electric field is considered. Using the conformal transformation of the region occupied by the fluid into a strip, the process of interaction of counter-propagating waves is numerically simulated. The nonlinear solitary waves on the surface can separately propagate along or against the direction of electric field without distortion. At the same time, the shape of the oppositely traveling waves can be distorted as the result of their interaction. In the problem under study, the nonlinearity leads to increasing the wave amplitudes and the duration of their interaction. This effect is inversely proportional to the fluid depth. In the shallow water limit, the tendency to the formation of a vertical liquid jet is observed.

  9. Nonlinear Electron Acoustic Waves in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Dillard, C. S.; Vasko, I.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    The Van Allen Probes observe intense broad-band electrostatic wave activity in the inner magnetosphere. The high-resolution electric field measurements show that these broad-band wave activity is made of large-amplitude electrostatic solitary waves propagating generally along the background magnetic field with velocities of a few thousands km/s. There are generally two types of the observed solitary waves. The solitary waves with the bipolar parallel electric field are interpreted as electron phase space holes, while the nature of solitary waves with asymmetric parallel electric field has remained puzzling. In the present work we show that asymmetric solitary waves propagate with velocities (1000-5000 km/s) and have spatial scales (100 m-1 km) similar to those for electron-acoustic waves existing due to two temperature electron population. Through the numerical fluid simulation we show that the spikes are produced from the initially harmonic electron-acoustic perturbation due to the nonlinear steepening. Through the analysis of the modified KdV equation we show that the steepening is arrested at some moment by the collisionless Landau dissipation and results in formation of the observed asymmetric spikes (shocklets).

  10. The power flow angle of acoustic waves in thin piezoelectric plates.

    PubMed

    Kuznetsova, Iren E; Zaitsev, Boris D; Teplykh, Andrei A; Joshi, Shrinivas G; Kuznetsova, Anastasia S

    2008-09-01

    The curves of slowness and power flow angle (PFA) of quasi-antisymmetric (A(0)) and quasi-symmetric (S(0)) Lamb waves as well as quasi-shear-horizontal (SH(0)) acoustic waves in thin plates of lithium niobate and potassium niobate of X-,Y-, and Z-cuts for various propagation directions and the influence of electrical shorting of one plate surface on these curves and PFA have been theoretically investigated. It has been found that the group velocity of such waves does not coincide with the phase velocity for the most directions of propagation. It has been also shown that S(0) and SH(0) wave are characterized by record high values of PFA and its change due to electrical shorting of the plate surface in comparison with surface and bulk acoustic waves in the same material. The most interesting results have been verified by experiment. As a whole, the results obtained may be useful for development of various devices for signal processing, for example, electrically controlled acoustic switchers.

  11. Early network activity propagates bidirectionally between hippocampus and cortex.

    PubMed

    Barger, Zeke; Easton, Curtis R; Neuzil, Kevin E; Moody, William J

    2016-06-01

    Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory-driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high-speed Ca(2+) imaging to resolve the spatiotemporal dynamics of wave propagation in parasagittal mouse brain slices, we show that the hippocampus can act as an additional source of neocortical waves. Some waves that originate in the hippocampus remain restricted to that structure, while others pause at the hippocampus-neocortex boundary and then propagate into the neocortex. Blocking GABAergic neurotransmission decreases the likelihood of wave propagation into neocortex, whereas blocking glutamatergic neurotransmission eliminates spontaneous and evoked hippocampal waves. A subset of hippocampal and cortical waves trigger Ca(2+) waves in astrocytic networks after a brief delay. Hippocampal waves accompanied by Ca(2+) elevation in astrocytes are more likely to propagate into the neocortex. Finally, we show that two structures in our preparation that initiate waves-the hippocampus and the piriform cortex-can be electrically stimulated to initiate propagating waves at lower thresholds than the neocortex, indicating that the intrinsic circuit properties of those regions are responsible for their pacemaker function. © 2015 Wiley Periodicals, Inc.

  12. Propagation of large-amplitude waves on dielectric liquid sheets in a tangential electric field: exact solutions in three-dimensional geometry.

    PubMed

    Zubarev, Nikolay M; Zubareva, Olga V

    2010-10-01

    Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.

  13. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  14. An Operator Method for Field Moments from the Extended Parabolic Wave Equation and Analytical Solutions of the First and Second Moments for Atmospheric Electromagnetic Wave Propagation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  15. Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation

    PubMed Central

    Bradshaw, L. A.; Cheng, L. K.; Richards, W. O.; Pullan, A. J.

    2009-01-01

    The magnetogastrogram records clinically relevant parameters of the electrical slow wave of the stomach noninvasively. Besides slow wave frequency, gastric slow wave propagation velocity is a potentially useful clinical indicator of the state of health of gastric tissue, but it is a difficult parameter to determine from noninvasive bioelectric or biomagnetic measurements. We present a method for computing the surface current density (SCD) from multichannel magnetogastrogram recordings that allows computation of the propagation velocity of the gastric slow wave. A moving dipole source model with hypothetical as well as realistic biomagnetometer parameters demonstrates that while a relatively sparse array of magnetometer sensors is sufficient to compute a single average propagation velocity, more detailed information about spatial variations in propagation velocity requires higher density magnetometer arrays. Finally, the method is validated with simultaneous MGG and serosal EMG measurements in a porcine subject. PMID:19403355

  16. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  17. Electron acceleration by inertial Alfven waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, B.J.; Lysak, R.L.

    1996-03-01

    Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when themore » transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.« less

  18. Ballistic pulse propagation in quantum wire waveguides: Toward localization and control of electron wave packets in space and time

    NASA Astrophysics Data System (ADS)

    Hayata, K.; Tsuji, Y.; Koshiba, M.

    1992-10-01

    A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.

  19. Oblique propagating electromagnetic ion - Cyclotron instability with A.C. field in outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Singh, Vikrant; Rani, Anju; Varughese, George; Singh, K. M.

    2018-05-01

    In the present paper Oblique propagating electromagnetic ion-cyclotron wave has been analyzed for anisotropic multi ion plasma (H+, He+, O+ ions) in earth magnetosphere for the Dione shell of L=7 i.e., the outer radiation belt of the magnetosphere for Loss-cone distribution function with a spectral index j in the presence of A.C. electric field. Detail for particle trajectories and dispersion relation has been derived by using the method of characteristic solution on the basis of wave particle interaction and transformation of energy. Results for the growth rate have been calculated numerically for various parameters and have been compared for different ions present in magnetosphere. It has been found that for studying the wave over wider spectrum, anisotropy for different values of j should be taken. The effect of frequency of A.C. electric field and angle which propagation vector make with magnetic field, on growth rate has been explained.

  20. Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2017-01-01

    Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.

  1. Electric field studies: TLE-induced waveforms and ground conductivity impact on electric field propagation

    NASA Astrophysics Data System (ADS)

    Farges, Thomas; Garcia, Geraldine; Blanc, Elisabeth

    2010-05-01

    We review in this paper main results obtained from electric field (from VLF to HF) measurement campaigns realized by CEA in the framework of the Eurosprite program [Neubert et al., 2005, 2008] from 2003 to 2009 in France in different configurations. Two main topics have been studied: sprite or elve induced phenomena (radiation or perturbation) and wave propagation. Using a network of 4 stations, VLF radiations from sprite have been successfully located at 10 km from the sprite parent lightning, in agreement with possible sprite location, generally displaced from the parent lightning. The MF (300 kHz - 3 MHz) source bursts were identified simultaneously with the occurrence of sprites observed with cameras [Farges et al., 2004; Neubert et al., 2008]. These observations are compared to recent broadband measurements, assumed to be due to relativistic electron beam radiation related to sprites [Fullekrug et al., 2009]. Recently, in 2009, with a new instrumentation, an ELF tail has been clearly measured after the lightning waveform, while sprites were observed at about 500 km from our station. This ELF tail is usually observed at distances higher than thousand km and is associated to sprite generation. This opens the capacity to measure the charge moment of the parent-lightning, using such measurement close to the source. Farges et al. [2007] showed that just after a lightning return stroke, a strong transient attenuation is very frequently observed in the MF waves of radio transmissions. They showed that this perturbation is due to heating of the lower ionosphere by the lightning-induced EMP during few milliseconds. These perturbations are then the MF radio signature of the lightning EMP effects on the lower ionosphere, in the same way as elves correspond to their optical signature. The experiment also provided the electric field waveforms directly associated to elves, while lightning were not detected by Météorage. Many of them present a double peak feature. The propagation of the electromagnetic waves generated by lightning has also been studied in the frequency range 1 kHz-1MHz at distances lower than 1000 km from the lightning source. A propagation model has been developed to determine the ground waves which propagate in a homogenous medium using the analytical expression given by Maclean and Wu [1993]. This approach takes into account the electric finite conductivity and the fact that the Earth is spherical, which allow us to deal with over-the-horizon propagation. We installed in 2008 four stations which were more or less aligned - the maximum distance between two stations was about 870 km. Two stations were located close to the Mediterranean Sea and the two others inside the continent, at the centre of France. This station distribution and the observation period (from August to December) allowed statistical and physical studies, such as the influence of the electric conductivity on wave propagation. Comparison of electric field spectra, measured after propagation only over sea and only over ground, showed clearly the effects of ground conductivity on propagation. Comparison between observations and modelling has been used to evaluate the ground conductivity. In the future we will implement the sky-wave inside our model and validate it with the database.

  2. Influence of crystal quality on the excitation and propagation of surface and bulk acoustic waves in polycrystalline AlN films.

    PubMed

    Clement, Marta; Olivares, Jimena; Capilla, Jose; Sangrador, Jesús; Iborra, Enrique

    2012-01-01

    We investigate the excitation and propagation of acoustic waves in polycrystalline aluminum nitride films along the directions parallel and normal to the c-axis. Longitudinal and transverse propagations are assessed through the frequency response of surface acoustic wave and bulk acoustic wave devices fabricated on films of different crystal qualities. The crystalline properties significantly affect the electromechanical coupling factors and acoustic properties of the piezoelectric layers. The presence of misoriented grains produces an overall decrease of the piezoelectric activity, degrading more severely the excitation and propagation of waves traveling transversally to the c-axis. It is suggested that the presence of such crystalline defects in c-axis-oriented films reduces the mechanical coherence between grains and hinders the transverse deformation of the film when the electric field is applied parallel to the surface. © 2012 IEEE

  3. Love waves in functionally graded piezoelectric materials by stiffness matrix method.

    PubMed

    Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi

    2011-04-01

    A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Transient Electromagnetic Wave Propagation in a Plasma Waveguide

    DTIC Science & Technology

    2011-10-24

    dielectric. The calculation of the propagation characteristics is based upon tangential continuity of the electric and magnetic field components...filament as a time-dependent resistance , we have determined the electron density, the kinetic parameters for electron attachment and recombination, and...wall conductivity simplifies the imposition of the boundary conditions. The tangential component of the electric field and the normal component of the

  5. Detecting the propagation effect of terahertz wave inside the two-color femtosecond laser filament in the air

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Zhang, X.; Li, S.; Liu, C.; Chen, Y.; Peng, Y.; Zhu, Y.

    2018-03-01

    In this work, to decide the existence of terahertz (THz) wave propagation effect, THz pulses emitted from a blocked two-color femtosecond laser filament with variable length were recorded by a standard electric-optic sampling setup. The phenomenon of temporal advance of the THz waveform's peak with the increasing filament length has been observed. Together with another method of knife-edge measurement which aims at directly retrieving the THz beam diameter, both the experimental approaches have efficiently indicated the same filament range within which THz wave propagated inside the plasma column. At last, a preliminary two-dimensional near-field scanning imaging of the THz spot inside the cross section of the filament has been suggested as the third way to determine the issue of THz wave propagation effect.

  6. Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.

    PubMed

    Kourakis, I; Shukla, P K

    2005-07-01

    We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.

  7. Capillary wave propagation during the delamination of graphene by the precursor films in electro-elasto-capillarity

    PubMed Central

    Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu

    2012-01-01

    Molecular dynamics simulations were carried out to explore the capillary wave propagation induced by the competition between one upper precursor film (PF) on the graphene and one lower PF on the substrate in electro-elasto-capillarity (EEC). During the wave propagation, the graphene was gradually delaminated from the substrate by the lower PF. The physics of the capillary wave was explored by the molecular kinetic theory. Besides, the dispersion relation of the wave was obtained theoretically. The theory showed that the wave was controlled by the driving work difference of the two PFs. Simulating the EEC process under different electric field intensities (E), the wave velocity was found insensitive to E. We hope this research could expand our knowledge on the wetting, electrowetting and EEC. As a potential application, the electrowetting of the PF between the graphene and the substrate is a promising candidate for delaminating graphene from substrate. PMID:23226593

  8. Electric Field Effects in Self-Propagating High-Temperature Synthesis under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Frederick, D. M.; Shaw, B. D.; Munir, Z. A.

    2003-01-01

    Self-propagating high-temperature synthesis (SHS) has been used to form many materials. SHS generally involves mixing reactants together (e.g., metal powders) and igniting the mixture such that a combustion (deflagration) wave passes though the mixture. The imposition of an electric field (AC or DC) across SHS reactants has been shown to have a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product . The use of an electric field with SHS has been termed "field-assisted SHS". Combustion wave velocities and temperatures are directly affected by the field, which is typically perpendicular to the average wave velocity. The degree of activation by the field (e.g., combustion rate) is related to the current density distribution within the sample, and is therefore related to the temperature-dependent spatial distribution of the effective electrical conductivity of reactants and products. Furthermore, the field can influence other important SHS-related phenomena including capillary flow, mass-transport in porous media, and Marangoni flows. These phenomena are influenced by gravity in conventional SHS processes (i.e., without electric fields). As a result the influence of the field on SHS under reduced gravity is expected to be different than under normal gravity. It is also known that heat loss rates from samples, which can depend significantly on gravity, can influence final products in SHS. This research program is focused on studying field-assisted SHS under reduced gravity conditions. The broad objective of this research program is to understand the role of an electric field in SHS reactions under conditions where gravity-related effects are suppressed. The research will allow increased understanding of fundamental aspects of field-assisted SHS processes as well as synthesis of materials that cannot be formed in normal gravity.

  9. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    NASA Astrophysics Data System (ADS)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  10. Low frequency piezoresonance defined dynamic control of terahertz wave propagation.

    PubMed

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan

    2016-11-30

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO 3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  11. Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level

    ERIC Educational Resources Information Center

    Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.

    2010-01-01

    A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…

  12. Experimental study of an adaptive elastic metamaterial controlled by electric circuits

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Chen, Y. Y.; Barnhart, M. V.; Hu, G. K.; Sun, C. T.; Huang, G. L.

    2016-01-01

    The ability to control elastic wave propagation at a deep subwavelength scale makes locally resonant elastic metamaterials very relevant. A number of abilities have been demonstrated such as frequency filtering, wave guiding, and negative refraction. Unfortunately, few metamaterials develop into practical devices due to their lack of tunability for specific frequencies. With the help of multi-physics numerical modeling, experimental validation of an adaptive elastic metamaterial integrated with shunted piezoelectric patches has been performed in a deep subwavelength scale. The tunable bandgap capacity, as high as 45%, is physically realized by using both hardening and softening shunted circuits. It is also demonstrated that the effective mass density of the metamaterial can be fully tailored by adjusting parameters of the shunted electric circuits. Finally, to illustrate a practical application, transient wave propagation tests of the adaptive metamaterial subjected to impact loads are conducted to validate their tunable wave mitigation abilities in real-time.

  13. Steering of SH wave propagation in electrorheological elastomer with a structured meta-slab by tunable phase discontinuities

    NASA Astrophysics Data System (ADS)

    Xu, Yanlong; Li, Yi; Cao, Liyun; Yang, Zhichun; Zhou, Xiaoling

    2017-09-01

    The generalized Snell's law (GSL) with phase discontinuity proposed based on the concept of a metasurface, which can be used to control arbitrarily the reflection and refraction of waves, attracts a growing attention in these years. The concept of abnormally deflecting the incident wave has been applied to the elastic field very recently. However, most of the studies on metasurfaces are based on passive materials, which restricts the frequency or the deflected angles always working in a single state. Here, we steer elastic SH wave propagation in an electrorheological (ER) elastomer with a structured meta-slab composed of geometrically periodic wave guides by exposing the slab to the programmed electric fields. The dependence of phase velocities of SH waves on the applied electric fields can make the phase shift under the form of a special function along the slab, which will control the refraction angles of the transmitted SH waves by the GSL. Accordingly we design the meta-slab theoretically and conduct corresponding numerical simulations. The results demonstrate that the structured meta-slab under the programmed external electric fields can deflect SH wave flexibly with tunable refraction angles and working frequencies, and can focus SH wave with tunable focal lengths. The present study will broaden the scope of applying adaptive materials to design metasurfaces with tunability.

  14. Propagating Neural Source Revealed by Doppler Shift of Population Spiking Frequency

    PubMed Central

    Zhang, Mingming; Shivacharan, Rajat S.; Chiang, Chia-Chu; Gonzalez-Reyes, Luis E.

    2016-01-01

    Electrical activity in the brain during normal and abnormal function is associated with propagating waves of various speeds and directions. It is unclear how both fast and slow traveling waves with sometime opposite directions can coexist in the same neural tissue. By recording population spikes simultaneously throughout the unfolded rodent hippocampus with a penetrating microelectrode array, we have shown that fast and slow waves are causally related, so a slowly moving neural source generates fast-propagating waves at ∼0.12 m/s. The source of the fast population spikes is limited in space and moving at ∼0.016 m/s based on both direct and Doppler measurements among 36 different spiking trains among eight different hippocampi. The fact that the source is itself moving can account for the surprising direction reversal of the wave. Therefore, these results indicate that a small neural focus can move and that this phenomenon could explain the apparent wave reflection at tissue edges or multiple foci observed at different locations in neural tissue. SIGNIFICANCE STATEMENT The use of novel techniques with an unfolded hippocampus and penetrating microelectrode array to record and analyze neural activity has revealed the existence of a source of neural signals that propagates throughout the hippocampus. The source itself is electrically silent, but its location can be inferred by building isochrone maps of population spikes that the source generates. The movement of the source can also be tracked by observing the Doppler frequency shift of these spikes. These results have general implications for how neural signals are generated and propagated in the hippocampus; moreover, they have important implications for the understanding of seizure generation and foci localization. PMID:27013678

  15. Nonlinear waves in electron-positron-ion plasmas including charge separation

    NASA Astrophysics Data System (ADS)

    Mugemana, A.; Moolla, S.; Lazarus, I. J.

    2017-02-01

    Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.

  16. Defects formation and wave emitting from defects in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni

    2016-05-01

    Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.

  17. Robustness of free and pinned spiral waves against breakup by electrical forcing in excitable chemical media.

    PubMed

    Phantu, Metinee; Sutthiopad, Malee; Luengviriya, Jiraporn; Müller, Stefan C; Luengviriya, Chaiya

    2017-04-01

    We present an investigation on the breakup of free and pinned spiral waves under an applied electrical current in the Belousov-Zhabotinsky reaction. Spiral fronts propagating towards the negative electrode are decelerated. A breakup of the spiral waves occurs when some segments of the fronts are stopped by a sufficiently strong electrical current. In the absence of obstacles (i.e., free spiral waves), the critical value of the electrical current for the wave breakup increases with the excitability of the medium. For spiral waves pinned to circular obstacles, the critical electrical current increases with the obstacle diameter. Analysis of spiral dynamics shows that the enhancement of the robustness against the breakup of both free and pinned spiral waves is originated by the increment of wave speed when either the excitability is strengthened or the obstacle size is enlarged. The experimental findings are reproduced by numerical simulations using the Oregonator model. In addition, the simulations reveal that the robustness against the forced breakup increases with the activator level in both cases of free and pinned spiral waves.

  18. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    PubMed

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  19. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method

    PubMed Central

    Korvink, Jan G.

    2016-01-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766

  20. GPS Observations of Medium-Scale Traveling Ionospheric Disturbances over New Zealand

    NASA Astrophysics Data System (ADS)

    Otsuka, Y.; Lee, C.; Shiokawa, K.; Tsugawa, T.; Nishioka, M.

    2014-12-01

    Using the GPS data obtained from dual-frequency GPS receivers in New Zealand, we have made two-dimensional maps of total electron content (TEC) in 2012 in order to reveal statistical characteristics of MSTIDs at mid-latitudes in southern hemisphere. As of 2012, approximately 40 GPS receivers are in operation in New Zealand. We found that most of the MSITDs over New Zealand propagate northwestward during nighttime in summer and northeastward during daytime in winter. The propagation direction of the nighttime MSTIDs is consistent with the theory that polarization electric fields play an important role in the generating MSTIDs. Because the daytime MSTIDs propagate equatorward, we can speculate that they could be caused by atmospheric gravity waves in the thermosphere. The propagation direction of the daytime MSTIDs also has an eastward component in addition to the equatorward component. This feature is consistent with the daytime MSTIDs observed at mid-latitudes in both northern and southern hemispheres. By carrying out model calculations, we have shown that the eastward component of the MSTID propagation direction during daytime is attributed to an interaction of gravity waves to the background neutral winds. Because most of the daytime MSTIDs appear before 14 LT, the background neutral winds could blow westward. According to the dispersion relation for atmospheric gravity waves, vertical wavelength of the gravity waves becomes larger when the gravity wave propagates in the direction opposite to the background winds. Consequently, the gravity waves having an eastward component of the propagation direction could cause larger amplitude of TEC variations compared to the gravity waves propagating westward. This could be a reason why the propagation direction of the dime MSTIDs has an eastward component.

  1. Characterization of electrophysiological propagation by multichannel sensors

    PubMed Central

    Bradshaw, L. Alan; Kim, Juliana H.; Somarajan, Suseela; Richards, William O.; Cheng, Leo K.

    2016-01-01

    Objective The propagation of electrophysiological activity measured by multichannel devices could have significant clinical implications. Gastric slow waves normally propagate along longitudinal paths that are evident in recordings of serosal potentials and transcutaneous magnetic fields. We employed a realistic model of gastric slow wave activity to simulate the transabdominal magnetogastrogram (MGG) recorded in a multichannel biomagnetometer and to determine characteristics of electrophysiological propagation from MGG measurements. Methods Using MGG simulations of slow wave sources in a realistic abdomen (both superficial and deep sources) and in a horizontally-layered volume conductor, we compared two analytic methods (Second Order Blind Identification, SOBI and Surface Current Density, SCD) that allow quantitative characterization of slow wave propagation. We also evaluated the performance of the methods with simulated experimental noise. The methods were also validated in an experimental animal model. Results Mean square errors in position estimates were within 2 cm of the correct position, and average propagation velocities within 2 mm/s of the actual velocities. SOBI propagation analysis outperformed the SCD method for dipoles in the superficial and horizontal layer models with and without additive noise. The SCD method gave better estimates for deep sources, but did not handle additive noise as well as SOBI. Conclusion SOBI-MGG and SCD-MGG were used to quantify slow wave propagation in a realistic abdomen model of gastric electrical activity. Significance These methods could be generalized to any propagating electrophysiological activity detected by multichannel sensor arrays. PMID:26595907

  2. Hybridization bandgap induced by an electrical resonance in piezoelectric metamaterial plates

    NASA Astrophysics Data System (ADS)

    Kherraz, N.; Haumesser, L.; Levassort, F.; Benard, P.; Morvan, B.

    2018-03-01

    We demonstrate numerically and experimentally the opening of a locally resonant bandgap in an active phononic crystal (PC) made of a homogeneous piezoelectric plate covered by a 1D periodic array of thin electrodes connected to inductive shunts. The application of periodic electrical boundary conditions (EBCs) enables an at will tailoring of the dispersion properties of the PC plate, thus leading to a control of the dispersion of the propagating guided elastic waves in the plate. Depending on the nature of the EBCs, several bandgaps open up, the most important being a Hybridization Bandgap (HBG) in the subwavelength regime. The PC behaves as a locally resonant metamaterial. The HBG originates from the interaction of propagating elastic waves (Lamb modes) with an electrical resonant mode whose dispersion can be effectively described through an equivalent transmission line model.

  3. Influence of January 2009 stratospheric warming on HF radio wave propagation in the low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Kotova, Darya; Klimenko, Maksim; Klimenko, Vladimir; Zaharov, Veniamin; Bessarab, Fedor; Korenkov, Yuriy

    2016-12-01

    We have considered the influence of the January 23-27, 2009 sudden stratospheric warming (SSW) event on HF radio wave propagation in the equatorial ionosphere. This event took place during extremely low solar and geomagnetic activity. We use the simulation results obtained with the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) for simulating environmental changes during the SSW event. We both qualitatively and quantitatively reproduced total electron content disturbances obtained from global ground network receiver observations of GPS navigation satellite signals, by setting an additional electric potential and TIME-GCM model output at a height of 80 km. In order to study the influence of this SSW event on HF radio wave propagation and attenuation, we used the numerical model of radio wave propagation based on geometrical optics approximation. It is shown that the sudden stratospheric warming leads to radio signal attenuation and deterioration of radio communication in the daytime equatorial ionosphere.

  4. Influence of vegetable cover on propagation of electromagnetic waves with wavelength longer than 100 m

    NASA Astrophysics Data System (ADS)

    Egorov, V. A.; Makarov, G. I.

    2006-12-01

    [1] The influence of vegetable cover on propagation ofelectromagnetic waves in the Earth-ionosphere wave channel isstudied in the scope of the model of a homogeneous isotropic``forest layer'' with effective value of the dielectric permeabilityɛf=1.2 and electric conductivityσf (t oC)depending on theenvironmental temperature according to the results obtained in thispaper. It is shown that the character of the electromagnetic fieldbehavior in the presence of large forests is of a well-pronouncedseasonal character additionally complicated by the diurnalvariations of the field depending on the environmental temperaturevariations.

  5. Propagation characteristics of dust-acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-08-01

    The experimental observation of the self-excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion-dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  6. Transfer function of multimode fiber links using an electric field propagation model: Application to Radio over Fibre Systems.

    PubMed

    Gasulla, I; Capmany, J

    2006-10-02

    We present a closed-form expression for the evaluation of the transfer function of a multimode fiber (MMF) link based on the electric field propagation model. After validating the result we investigate the potential for broadband transmission in regions far from baseband. We find that MMFs offer the potential for broadband ROF transmission in the microwave and millimetre wave regions in short and middle reach distances.

  7. Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations.

    PubMed

    Xu, Shuwei; Porsezian, K; He, Jingsong; Cheng, Yi

    2013-12-01

    The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.

  8. Role of lower hybrid waves in ion heating at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Greco, A.; Artemyev, A.; Zimbardo, G.; Angelopoulos, V.; Runov, A.

    2017-05-01

    One of the important sources of hot ions in the magnetotail is the bursty bulk flows propagating away from the reconnection region and heating the ambient plasma. Charged particles interact with nonlinear magnetic field pulses (dipolarization fronts, DFs) embedded into these flows. The convection electric fields associated with DF propagation are known to reflect and accelerate ambient ions. Moreover, a wide range of waves is observed within/near these fronts, the electric field fluctuations being dominated by the lower hybrid drift (LHD) instability. Here we investigate the potential role of these waves in the further acceleration of ambient ions. We use a LHD wave emission profile superimposed on the leading edge of a two-dimensional model profile of a DF and a test particle approach. We show that LHD waves with realistic amplitudes can significantly increase the upper limit of energies gained by ions. Wave-particle interaction near the front is more effective in producing superthermal ions than in increasing the flux of thermal ions. Comparison of test particle simulations and Time History of Events and Macroscale Interactions during Substorms observations show that ion acceleration by LHD waves is more important for slower DFs.

  9. Unidirectional THz radiation propagation in BiFeO3

    NASA Astrophysics Data System (ADS)

    Room, Toomas

    The mutual coupling between magnetism and electricity present in many multiferroic materials permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to write a magnetic state current-free by an electric voltage would provide a huge technological advantage. However, ME coupling changes the low energy electrodynamics of these materials in unprecedented way - optical ME effects give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. The transparent direction can be switched with dc magnetic or electric field, thus opening up new possibilities to manipulate the propagation of electromagnetic waves in multiferroic materials. We studied the unidirectional transmission of THz radiation in BiFeO3 crystals, the unique multiferroic compound offering a real potential for room temperature applications. The electrodynamics of BiFeO3 at 1THz and below is dominated by the spin wave modes of cycloidal spin order. We found that the optical magnetoelectric effect generated by spin waves in BiFeO3 is robust enough to cause considerable nonreciprocal directional dichroism in the GHz-THz range even at room temperature. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our work demonstrates that the nonreciprocal directional dichroism spectra of low energy excitations and their theoretical analysis provide microscopic model of ME couplings in multiferroic materials. Recent THz spectroscopy studies of multiferroic materials are an important step toward the realization of optical diodes, devices which transmit light in one but not in the opposite direction.

  10. Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladii, O.; Henry, Y.; Bailleul, M.

    2016-05-16

    We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3 × 10{sup 11} A/m{sup 2} in Pt. This change is attributed to the spin transfer torque induced by the spin Hall effect and corresponds to an effective spin Hall angle of 0.13, which is among the highest values reported so far. The spin Hall effect thus appears as an efficient way of amplifying/attenuating propagating spin waves.

  11. Electrodynamics of ionospheric weather over low latitudes

    NASA Astrophysics Data System (ADS)

    Abdu, Mangalathayil Ali

    2016-12-01

    The dynamic state of the ionosphere at low latitudes is largely controlled by electric fields originating from dynamo actions by atmospheric waves propagating from below and the solar wind-magnetosphere interaction from above. These electric fields cause structuring of the ionosphere in wide ranging spatial and temporal scales that impact on space-based communication and navigation systems constituting an important segment of our technology-based day-to-day lives. The largest of the ionosphere structures, the equatorial ionization anomaly, with global maximum of plasma densities can cause propagation delays on the GNSS signals. The sunset electrodynamics is responsible for the generation of plasma bubble wide spectrum irregularities that can cause scintillation or even disruptions of satellite communication/navigation signals. Driven basically by upward propagating tides, these electric fields can suffer significant modulations from perturbation winds due to gravity waves, planetary/Kelvin waves, and non-migrating tides, as recent observational and modeling results have demonstrated. The changing state of the plasma distribution arising from these highly variable electric fields constitutes an important component of the ionospheric weather disturbances. Another, often dominating, component arises from solar disturbances when coronal mass ejection (CME) interaction with the earth's magnetosphere results in energy transport to low latitudes in the form of storm time prompt penetration electric fields and thermospheric disturbance winds. As a result, drastic modifications can occur in the form of layer restructuring (Es-, F3 layers etc.), large total electron content (TEC) enhancements, equatorial ionization anomaly (EIA) latitudinal expansion/contraction, anomalous polarization electric fields/vertical drifts, enhanced growth/suppression of plasma structuring, etc. A brief review of our current understanding of the ionospheric weather variations and the electrodynamic processes underlying them and some outstanding questions will be presented in this paper.

  12. Adiabatic description of superfocusing of femtosecond plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Golovinski, P. A.; Manuylovich, E. S.; Astapenko, V. A.

    2018-05-01

    A surface plasmon polariton is a collective oscillation of free electrons at a metal-dielectric interface. As wave phenomena, surface plasmon polaritons can be focused with the use of an appropriate excitation geometry of metal structures. In the adiabatic approximation, we demonstrate a possibility to control nanoscale short pulse superfocusing based on generation of a radially polarized surface plasmon polariton mode of a conical metal needle in view of wave reflection. The results of numerical simulations of femtosecond pulse propagation along a nanoneedle are discussed. The space-time evolution of a pulse for the near field strongly depends on a linear chirp of an initial laser pulse, which can partially compensate wave dispersion. The field distribution is calculated for different metals, chirp parameters, cone opening angles and propagation distances. The electric field near a sharp tip is described as a field of a fictitious time-dependent electric dipole located at the tip apex.

  13. Hybrid dispersive media with controllable wave propagation: A new take on smart materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergamini, Andrea E., E-mail: andrea.bergamini@empa.ch; Zündel, Manuel; Flores Parra, Edgar A.

    In this paper, we report on the wave transmission characteristics of a hybrid one dimensional (1D) medium. The hybrid characteristic is the result of the coupling between a 1D mechanical waveguide in the form of an elastic beam, supporting the propagation of transverse waves and a discrete electrical transmission line, consisting of a series of inductors connected to ground through capacitors. The capacitors correspond to a periodic array of piezoelectric patches that are bonded to the beam and that couple the two waveguides. The coupling leads to a hybrid medium that is characterized by a coincidence condition for the frequency/wavenumbermore » value corresponding to the intersection of the branches of the two waveguides. In the frequency range centered at coincidence, the hybrid medium features strong attenuation of wave motion as a result of the energy transfer towards the electrical transmission line. This energy transfer, and the ensuing attenuation of wave motion, is alike the one obtained through internal resonating units of the kind commonly used in metamaterials. However, the distinct shape of the dispersion curves suggests how this energy transfer is not the result of a resonance and is therefore fundamentally different. This paper presents the numerical investigation of the wave propagation in the considered media, it illustrates experimental evidence of wave transmission characteristics and compares the performance of the considered configuration with that of internal resonating metamaterials. In addition, the ability to conveniently tune the dispersion properties of the electrical transmission line is exploited to adapt the periodicity of the domain and to investigate diatomic periodic configurations that are characterized by a richer dispersion spectrum and broader bandwidth of wave attenuation at coincidence. The medium consisting of mechanical, piezoelectric, and analog electronic elements can be easily interfaced to digital devices to offer a novel approach to smart materials.« less

  14. On Acceptable Exposures to Short Pulses of Electromagnetic Fields

    DTIC Science & Technology

    2015-09-01

    in the comparisons given in this report, the electric and magnetic field strengths are assumed to be related as for a propagating wave . In the...adequacy of current standards is far from a settled issue. 15. SUBJECT TERMS International Commission on Non- Ionizing Radiation Protection, Institute...a source, the electric and magnetic fields are approximately related to each other in the same way as in a radiating wave far from the source. That

  15. Nonlinear electrostatic solitary waves in electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Lazarus, I. J.; Bharuthram, R.; Moolla, S.; Singh, S. V.; Lakhina, G. S.

    2016-02-01

    The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a magnetized four component two-temperature electron-positron plasma. Fluid theory is used to derive a set of nonlinear equations for the ESWs, which propagate obliquely to an external magnetic field. The electric field structures are examined for various plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms. It is found that an increase in the densities of the electrons and positrons strengthen the nonlinearity while the periodicity and nonlinearity of the wave increases as the cool-to-hot temperature ratio increases. Our results could be useful in understanding nonlinear propagation of waves in astrophysical environments and related laboratory experiments.

  16. Excitation of helicons by current antennas

    NASA Astrophysics Data System (ADS)

    Gospodchikov, E. D.; Timofeev, A. V.

    2017-06-01

    Depending on the angle θ between the wave vector and the magnetic field, helicons are conventionally divided into two branches: proper helicons (H mode), propagating at small θ, and Trivelpiece-Gould waves (TG mode), propagating at large θ. The latter are close to potential waves and have a significant electric component along the external magnetic field. It is believed that it is these waves that provide electron heating in helicon discharges. There is also commonly believed that current antennas, widely used to ignite helicon discharges, excite essentially nonpotential H modes, which then transform into TG modes due to plasma inhomogeneity. In this work, it is demonstrated that electromagnetic energy can also be efficiently introduced in plasma by means of TG modes.

  17. Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays

    NASA Astrophysics Data System (ADS)

    Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong

    2018-03-01

    We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).

  18. Electric dipole radiation at VLF in a uniform warm magneto-plasma.

    NASA Technical Reports Server (NTRS)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    Use of a linear full electromagnetic wave theory to calculate the input impedance of an electric antenna embedded in a uniform, lossless, unbounded warm magnetoplasma, which is assumed to consist of warm electrons and cold ions. In calculating the dipole radiation resistance for the thermal modes and the thermally modified whistler mode the analysis includes the finite temperature only for the electrons. In deriving the formal solution of the warm plasma dipole input impedance a full-wave analysis is used and two antenna orientations are considered, parallel and perpendicular to the static magnetic field. A general dispersion equation governing the modes of propagation is derived and a detailed analysis is made of the propagation characteristics of these modes.

  19. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.

    PubMed

    Angeli, T R; Du, P; Paskaranandavadivel, N; Sathar, S; Hall, A; Asirvatham, S J; Farrugia, G; Windsor, J A; Cheng, L K; O'Grady, G

    2017-05-01

    Gastric motility is coordinated by bioelectrical slow waves, and gastric dysrhythmias are reported in motility disorders. High-resolution (HR) mapping has advanced the accurate assessment of gastric dysrhythmias, offering promise as a diagnostic technique. However, HR mapping has been restricted to invasive surgical serosal access. This study investigates the feasibility of HR mapping from the gastric mucosal surface. Experiments were conducted in vivo in 14 weaner pigs. Reference serosal recordings were performed with flexible-printed-circuit (FPC) arrays (128-192 electrodes). Mucosal recordings were performed by two methods: (i) FPC array aligned directly opposite the serosal array, and (ii) cardiac mapping catheter modified for gastric mucosal recordings. Slow-wave propagation and morphology characteristics were quantified and compared between simultaneous serosal and mucosal recordings. Slow-wave activity was consistently recorded from the mucosal surface from both electrode arrays. Mucosally recorded slow-wave propagation was consistent with reference serosal activation pattern, frequency (P≥.3), and velocity (P≥.4). However, mucosally recorded slow-wave morphology exhibited reduced amplitude (65-72% reduced, P<.001) and wider downstroke width (18-31% wider, P≤.02), compared to serosal data. Dysrhythmias were successfully mapped and classified from the mucosal surface, accorded with serosal data, and were consistent with known dysrhythmic mechanisms in the porcine model. High-resolution gastric electrical mapping was achieved from the mucosal surface, and demonstrated consistent propagation characteristics with serosal data. However, mucosal signal morphology was attenuated, demonstrating necessity for optimized electrode designs and analytical algorithms. This study demonstrates feasibility of endoscopic HR mapping, providing a foundation for advancement of minimally invasive spatiotemporal gastric mapping as a clinical and scientific tool. © 2016 John Wiley & Sons Ltd.

  20. Waves on Reissner’s membrane: a mechanism for the propagation of otoacoustic emissions from the cochlea

    PubMed Central

    Reichenbach, Tobias; Stefanovic, Aleksandra; Nin, Fumiaki; Hudspeth, A. J.

    2012-01-01

    Summary Sound is detected and converted into electrical signals within the ear. The cochlea not only acts as a passive detector of sound, however, but can also produce tones itself. These otoacoustic emissions are a striking manifestation of the cochlea’s mechanical active process. A controversy remains of how these mechanical signals propagate back to the middle ear, from which they are emitted as sound. Here we combine theoretical and experimental studies to show that mechanical signals can be transmitted by waves on Reissner’s membrane, an elastic structure within the cochea. We develop a theory for wave propagation on Reissner’s membrane and its role in otoacoustic emissions. Employing a scanning laser interferometer, we measure traveling waves on Reissner’s membrane in the gerbil, guinea pig, and chinchilla. The results accord with the theory and thus support a role for Reissner’s membrane in otoacoustic emissions. PMID:22580949

  1. Electrical equivalent circuit for microstrip micro-plasma: control of EM propagation and numerical simulations.

    PubMed

    Mohamad, Almustafa; Tân-Hoa, Vuong; Jacques, David

    2012-01-01

    An approach to determine an equivalent electrical circuit of a micro planar discharge on a microstrip printed circuit is reported. The micro discharge is used to realize a dynamic microwave switching circuit. This approach is based on the measurement of the discharge current and the transmission coefficient for a given frequency 2.45 GHz. Numerical methods like FEM can be used to study the effect of plasma parameters on the propagation of electromagnetic waves through a microstrip printed circuit. Plasma behaves as flexible elements that can change its electrical proprieties such as conductivity.

  2. Nonlinear electric field structures in the inner magnetosphere

    DOE PAGES

    Malaspina, D. M.; Andersson, L.; Ergun, R. E.; ...

    2014-08-28

    Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combinedmore » with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.« less

  3. Electric Field Imaging Project

    NASA Technical Reports Server (NTRS)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  4. Ion temperature effects on magnetotail Alfvén wave propagation and electron energization: ION TEMPERATURE EFFECTS ON ALFVÉN WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2015-07-01

    A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which alsomore » implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.« less

  5. Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture.

    PubMed

    Pravdin, Sergey F; Dierckx, Hans; Katsnelson, Leonid B; Solovyova, Olga; Markhasin, Vladimir S; Panfilov, Alexander V

    2014-01-01

    We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.

  6. Nonlinear Right-Hand Polarized Wave in Plasma in the Electron Cyclotron Resonance Region

    NASA Astrophysics Data System (ADS)

    Krasovitskiy, V. B.; Turikov, V. A.

    2018-05-01

    The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.

  7. Interaction of excitable waves emitted from two defects by pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Zhang, Han; Qiao, Li-Yan; Liang, Hong; Sun, Wei-Gang

    2018-01-01

    In response to a pulsed electric field, spatial distributed heterogeneities in excitable media can serve as nucleation sites for the generation of intramural electrical waves, a phenomenon called as ;wave emission from heterogeneities; (WEH effect). Heterogeneities in cardiac tissue strongly influence each other in the WEH effect. We study the WEH effect in a medium possessing two defects. The role of two defects and their interaction by pulsed DC electric fields (DEF) and rotating electric fields (REF) are investigated. The direction of the applied electric field plays a major role not only in the minimum electrical field necessary to originate wave propagation, but also in the degree of influences of nearby defects. The distance between two defects, i.e. the density of defects, also play an important role in the WEH effect. Generally, the REF is better than the DEF when pulsed electric fields are applied. These results may contribute to the improved application of WEH, especially in older patients with fibrosis and scarring, which are accompanied by a higher incidence of conductivity discontinuities.

  8. All-Electrical Measurement of Interfacial Dzyaloshinskii-Moriya Interaction Using Collective Spin-Wave Dynamics.

    PubMed

    Lee, Jong Min; Jang, Chaun; Min, Byoung-Chul; Lee, Seo-Won; Lee, Kyung-Jin; Chang, Joonyeon

    2016-01-13

    Dzyaloshinskii-Moriya interaction (DMI), which arises from the broken inversion symmetry and spin-orbit coupling, is of prime interest as it leads to a stabilization of chiral magnetic order and provides an efficient manipulation of magnetic nanostructures. Here, we report all-electrical measurement of DMI using propagating spin wave spectroscopy based on the collective spin wave with a well-defined wave vector. We observe a substantial frequency shift of spin waves depending on the spin chirality in Pt/Co/MgO structures. After subtracting the contribution from other sources to the frequency shift, it is possible to quantify the DMI energy in Pt/Co/MgO systems. The result reveals that the DMI in Pt/Co/MgO originates from the interfaces, and the sign of DMI corresponds to the inversion asymmetry of the film structures. The electrical excitation and detection of spin waves and the influence of interfacial DMI on the collective spin-wave dynamics will pave the way to the emerging field of spin-wave logic devices.

  9. Review of the role of dielectric anisotropy in Dyakonov surface-wave propagation

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R., II; Polo, John A., Jr.; Lakhtakia, Akhlesh

    2008-08-01

    Surface waves (SWs) are localized waves that travel along the planar interface between two different mediums when certain dispersion relations are satisfied. If both mediums have purely dielectric constitutive properties, the characteristics of SW propagation are determined by the anisotropy of both mediums. Surface waves are then called Dyakonov SWs (DSWs), after Dyakonov who theoretically established the possibility of SW propagation at the planar interface of an isotropic dielectric and a positive uniaxial dielectric. Since then, DSW propagation guided by interfaces between a variety of dielectrics has been studied. With an isotropic dielectric on one side, the dielectric on the other side of the interface can be not only positive uniaxial but also biaxial. DSW propagation can also occur along an interface between two uniaxial or biaxial dielectrics that are twisted about a common axis with respect to each other but are otherwise identical. Recently, DSW propagation has been studied taking (i) uniaxial dielectrics such as calomel and dioptase crystals; (ii) biaxial dielectrics such as hemimorphite, crocoite, tellurite, witherite, and cerussite; and (iii) electro-optic materials such as potassium niobate. With materials that are significantly anisotropic, the angular regime of directions for DSW propagation turns out to be narrow. In the case of naturally occurring crystals, one has to accept the narrow angular existence domain (AED). However, exploiting the Pockels effect not only facilitates dynamic electrical control of DSW propagation, but also widens the AED for DSW propagation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Mangilal, E-mail: mangilal@ipr.res.in; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085; Mukherjee, S.

    The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a resultmore » of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.« less

  11. Analyses of electron runaway in front of the negative streamer channel

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Neubert, T.; Chanrion, O.

    2017-08-01

    X-ray and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper, which allows the electric field to reach magnitudes, required for a generation of significant RE fluxes and associated bremsstrahlung, when the ionization wave propagates in a narrow, ionized channel created by a previous streamer. Under such conditions we compute the production rate of REs per unit streamer length as a function of the streamer velocity and predict that, once a streamer is formed with the electric field capable of producing REs ahead of the streamer front, the ionization induced by the REs is capable of creating an ionized channel that allows for self-sustained propagation of the RE-emitting ionization wave independent of the initial electron concentration. Thus, the streamer coronas of the leaders are probable sources of REs producing the observed high-energy radiation. To prove these predictions, new simulations are planned, which would show explicitly that the preionization in front of the channel via REs will lead to the ionization wave propagation self-consistent with RE generation.

  12. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge.

    PubMed

    Claverie, A; Deroy, J; Boustie, M; Avrillaud, G; Chuvatin, A; Mazanchenko, E; Demol, G; Dramane, B

    2014-06-01

    High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation.

  13. Short wavelength ion waves upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Gurnett, D. A.

    1984-01-01

    The identification and explanation of short wavelength antenna interference effects observed in spacecraft plasma wave data have provided an important new method of determining limits on the wavelength, direction of propagation, and Doppler shift of short wavelength electrostatic waves. Using the ISEE-1 wideband electric field data, antenna interference effects have been identified in the ion waves upstream of the earth's bow shock. This identification implies that wavelengths of the upstream ion waves are shorter than the antenna length. The interference effects also provide new measurements of the direction of propagation of the ion waves. The new measurements show that the wave vectors of the ion waves are not parallel to the interplanetary magnetic field (IMF) as previously reported. The direction of propagation does not appear to be controlled by the IMF. In addition, analysis of the Doppler shift of the short wavelength ion waves has provided a measurement of the dispersion relation. The upper limit of the rest frame frequency was found to be on the order of the ion plasma frequency. At this frequency, the wavelength is on the order of a few times the Debye length. The results of this study now provide strong evidence that the ion waves in the upstream region are Doppler-shifted ion acoustic waves. Previously announced in STAR as N83-36328

  14. In-situ Measurements of the Direction of Propagation of Pump Waves

    NASA Astrophysics Data System (ADS)

    James, H. G.; Bernhardt, P. A.; Leyser, T.; Siefring, C. L.

    2017-12-01

    In the course of an experiment to modify the ionosphere, the direction of pump wave propagation is affected by density gradients in the horizontal and vertical directions, fundamentally affecting wave-energy transport. Horizontal gradients on various scales may await a modification attempt as a preexisting state of the ionosphere and/or be changed by the deposition of heater radio-frequency energy. In the results from the Radio Receiver Instrument (RRI) in the enhanced Polar Outflow Probe (e-POP), we have recorded on the order of 100 flights over ionospheric heaters revealing a variety of processes that high-frequency pump waves experience in the ionosphere. E-POP flies on the Canadian satellite CASSIOPE in an elliptic (320 x 1400 km), highly-inclined (81°) orbit. High frequency measurements have been/are being made near SPEAR, HAARP, Sura, EISCAT Heating and Arecibo. Electromagnetic waves from ground-based heaters are detected by the two, orthogonal, 6-m dipoles on the RRI. The high input impedance of the RRI means that the dipoles act as voltage probes, from which the electric field of incoming waves can be simply computed. When combined with cold-magnetoplasma electric-field theory, the relationship of voltages on the two orthogonal dipoles is used to deduce the direction of arrival of an incoming wave in three dimensions. We illustrate the technique by its application to analysis of signals from different transmitters. These results show a variety of pump-wave propagation directions, indicating the complexity of density structure within which modification might take place. Such complexity illustrates the importance of three-dimensional models of density in the vicinity of modification.

  15. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.

  16. Direct multiple path magnetospheric propagation - A fundamental property of nonducted VLF waves

    NASA Technical Reports Server (NTRS)

    Sonwalkar, V. S.; Bell, T. F.; Helliwell, R. A.; Inan, U. S.

    1984-01-01

    An elongation of 20-200 ms, attributed to closely spaced multiple propagation paths between the satellite and the ground, is noted in well defined pulses observed by the ISEE 1 satellite in nonducted whistler mode signals from the Siple Station VLF transmitter. Electric field measurements show a 2 to 10 dB amplitude variation in the observed amplitude fading pattern which is also consistent with direct multiple path propagation. The results obtained for two cases, one outside and one inside the plasmapause, establish that the direct signals transmitted from the ground arrive almost simultaneously at any point in the magnetosphere along two or more closely spaced direct ray paths. It is also shown that multiple paths can be explained by assuming field-aligned irregularities, and the implications of these results for nonducted wave-particle interaction in the magnetosphere are discussed. For reasonable parameters of nonducted, multiple path propagation, a cyclotron-resonant electron will experience a wave Doppler broadening of a few tens to a few hundreds of Hz.

  17. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    PubMed

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A TE-mode accelerator

    NASA Astrophysics Data System (ADS)

    Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.

    1987-04-01

    An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.

  19. Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling

    NASA Technical Reports Server (NTRS)

    Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.

    2011-01-01

    The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.

  20. Archaeological Graves Revealing By Means of Seismic-electric Effect

    NASA Astrophysics Data System (ADS)

    Boulytchov, A.

    [a4paper,12pt]article english Seismic-electric effect was applied in field to forecast subsurface archaeological cul- tural objects. A source of seismic waves were repeated blows of a heavy hammer or powerful signals of magnetostrictive installation. Main frequency used was 500 Hz. Passed a soil layer and reached a second boundary between upper clayey-sand sedi- ments and archaeological object, the seismic wave caused electromagnetic fields on the both boundaries what in general is due to dipole charge separation owe to an im- balance of streaming currents induced by the seismic wave on opposite sides of a boundary interface. According to theoretical works of Pride the electromagnetic field appears on a boundary between two layers with different physical properties in the time of seismic wave propagation. Electric responses of electromagnetic fields were measured on a surface by pair of grounded dipole antennas or by one pivot and a long wire antenna acting as a capacitive pickup. The arrival times of first series of responses correspond to the time of seismic wave propagation from a source to a boundary between soil and clayey-sand layers. The arrival times of second row of responses correspond to the time of seismic wave way from a source to a boundary of clayey-sand layer with the archaeological object. The method depths successfully investigated were between 0.5-10 m. Similar electromagnetic field on another type of geological structure was also revealed by Mikhailov et al., Massachusetts, but their signals registered from two frontiers were too faint and not evident in comparing with ours ones that occurred to be perfect and clear. Seismic-electric method field experi- ments were successfully provided for the first time on archaeological objects.

  1. Research in space physics at the University of Iowa, 1982

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.; Frank, L. A.; Gurnett, D. A.; Shawhan, S. D.; Robison, E. D.; Robertson, T. D.

    1983-01-01

    The energetic particles and the electric, magnetic, and electromagnetic fields associated with the Earth, the Sun, the Moon, the planets, comets, and the interplanetary medium are examined. Matters under current investigation are following: energetic particles trapped in the Earth's magnetic field, origin and propagation of very low frequency radio waves and electrostatic, the magnetospheres of Jupiter, Saturn and prospectively Uranus and Neptune, diffusion of energetic particles in Saturn's magnetosphere, radio emissions from Jupiter and Saturn, solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays, interplanetary propagation and acceleration of energetic particles, the theory of wave phenomena in turbulent plasmas, and basic wave-particle-chemical processes in the ionospheric plasma.

  2. Geometrical enhancement of the electric field: Application of fractional calculus in nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Baskin, E.; Iomin, A.

    2011-12-01

    We developed an analytical approach, for a wave propagation in metal-dielectric nanostructures in the quasi-static limit. This consideration establishes a link between fractional geometry of the nanostructure and fractional integro-differentiation. The method is based on fractional calculus and permits to obtain analytical expressions for the electric-field enhancement.

  3. A terahertz in-line polarization converter based on through-via connected double layer slot structures

    PubMed Central

    Woo, Jeong Min; Hussain, Sajid; Jang, Jae-Hyung

    2017-01-01

    A terahertz (THz) in-line polarization converter that yields a polarization conversion ratio as high as 99.9% is demonstrated at 1 THz. It has double-layer slot structures oriented in orthogonal directions that are electrically connected by 1/8-wavelngth-long through-via holes beside the slot structures. The slots on the front metal-plane respond to the incident THz wave with polarization orthogonal to the slots and generates a circulating surface current around the slots. The surface current propagates along a pair of through-via holes that function as a two-wire transmission line. The propagating current generates a surface current around the backside slot structures oriented orthogonal to the slot structures on the front metal layer. The circulating current generates a terahertz wave polarized orthogonal to the backside slot structures and the 90° polarization conversion is completed. The re-radiating THz wave with 90° converted polarization propagates in the same direction as the incident THz wave. PMID:28211498

  4. Analytical modeling of a sandwiched plate piezoelectric transformer-based acoustic-electric transmission channel.

    PubMed

    Lawry, Tristan J; Wilt, Kyle R; Scarton, Henry A; Saulnier, Gary J

    2012-11-01

    The linear propagation of electromagnetic and dilatational waves through a sandwiched plate piezoelectric transformer (SPPT)-based acoustic-electric transmission channel is modeled using the transfer matrix method with mixed-domain two-port ABCD parameters. This SPPT structure is of great interest because it has been explored in recent years as a mechanism for wireless transmission of electrical signals through solid metallic barriers using ultrasound. The model we present is developed to allow for accurate channel performance prediction while greatly reducing the computational complexity associated with 2- and 3-dimensional finite element analysis. As a result, the model primarily considers 1-dimensional wave propagation; however, approximate solutions for higher-dimensional phenomena (e.g., diffraction in the SPPT's metallic core layer) are also incorporated. The model is then assessed by comparing it to the measured wideband frequency response of a physical SPPT-based channel from our previous work. Very strong agreement between the modeled and measured data is observed, confirming the accuracy and utility of the presented model.

  5. Electrical Wave Propagation in an Anisotropic Model of the Left Ventricle Based on Analytical Description of Cardiac Architecture

    PubMed Central

    Pravdin, Sergey F.; Dierckx, Hans; Katsnelson, Leonid B.; Solovyova, Olga; Markhasin, Vladimir S.; Panfilov, Alexander V.

    2014-01-01

    We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher–Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation. PMID:24817308

  6. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Vadim C. Mushtak (1947-2013)

    NASA Astrophysics Data System (ADS)

    Williams, E.; Mushtak, N.; Temidis, E.; Galyuk, Y. P.; Nickolaenko, A. P.

    2014-05-01

    Vadim Constantinovich Mushtak, renowned for his work in radio physics and atmospheric electricity, died on 25 September 2013 in an automobile accident in Walker Valley, N.Y. He was 65. Vadim was a world expert in extremely low frequency (ELF) wave propagation and the Earth's naturally occurring Schumann resonances (SR)—quasi-standing electromagnetic waves trapped in the Earth-ionosphere cavity.

  8. High-frequency modulation of ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  9. Laboratory studies of near-grazing impulsive sound propagating over rough water.

    PubMed

    Qin, Qin; Lukaschuk, Sergei; Attenborough, Keith

    2008-08-01

    Acoustic impulses due to an electrical spark source (main acoustic energy near 15 kHz) have been measured after propagating near to the water surface in a shallow container resting on a vibrating platform. Control of the platform vibration enabled control of water wave amplitudes. Analysis of the results reveals systematic variations in the received acoustic waveforms as the mean trough-to-crest water wave amplitude is increased up to 7 mm. The amplitudes of the peaks corresponding to specular reflections are reduced and the variability in the tails of the waveforms is increased.

  10. A class of invisible inhomogeneous media and the control of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Vial, B.; Liu, Y.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.

    2016-12-01

    We propose a general method to arbitrarily manipulate an electromagnetic wave propagating in a two-dimensional medium, without introducing any scattering. This leads to a whole class of isotropic spatially varying permittivity and permeability profiles that are invisible while shaping the field magnitude and/or phase. In addition, we propose a metamaterial structure working in the infrared that demonstrates deep subwavelength control of the electric field amplitude and strong reduction of the scattering. This work offers an alternative strategy to achieve invisibility with isotropic materials and paves the way for tailoring the propagation of light at the nanoscale.

  11. Mean dyadic Green's function for a two layer random medium

    NASA Technical Reports Server (NTRS)

    Zuniga, M. A.

    1981-01-01

    The mean dyadic Green's function for a two-layer random medium with arbitrary three-dimensional correlation functions has been obtained with the zeroth-order solution to the Dyson equation by applying the nonlinear approximation. The propagation of the coherent wave in the random medium is similar to that in an anisotropic medium with different propagation constants for the characteristic transverse electric and transverse magnetic polarizations. In the limit of a laminar structure, two propagation constants for each polarization are found to exist.

  12. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjouy, C., E-mail: cyril.desjouy@gmail.com; Ollivier, S.; Dragna, D.

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – alsomore » called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.« less

  13. Nonlinear equations of motion for Landau resonance interactions with a whistler mode wave

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Tkalcevic, S.

    1982-01-01

    A simple set of equations is presented for the description of the cyclotron averaged motion of Landau resonant particles in a whistler mode wave propagating at an angle to the static magnetic field. A comparison is conducted of the wave magnetic field and electric field effects for the parameters of the magnetosphere, and the parameter ranges for which the wave magnetic field effects would be negligible are determined. It is shown that the effect of the wave magnetic field can be neglected for low pitch angles, high normal wave angles, and/or high normalized wave frequencies.

  14. The control of ultrasonic transmission by the metamaterials structure of electrorheological fluid and metal foam

    NASA Astrophysics Data System (ADS)

    Li, Linlin; Wang, Mingzhong; Wang, Jiahui; Zhao, Xiaopeng

    2017-11-01

    A metamaterial structure formed by foamed metal and starch and oil-based electrorheological (ER) fluid is designed in this paper. Experiments show that the metamaterial structure exhibits a regulation effect on the amplitude and phase of the transmitted waves of 35-80 kHz ultra-wideband ultrasonic waves in water. With the increase of the electric field, the transmission amplitude and phase of the ultrasonic wave increases, whereas the control ability of the same gradient electric field decreases. The amplitude of the transmission controlled by the metamaterial structure and electric field increases at first, and then decreases with the increase in volume fraction of the ER fluid. Thus, it is thought that the interaction between the microstructure produced by the rheological properties of the ER fluid and the porous foam metal affects the propagation of the acoustic wave.

  15. Perfect Surface Wave Cloaks

    NASA Astrophysics Data System (ADS)

    Mitchell-Thomas, R. C.; McManus, T. M.; Quevedo-Teruel, O.; Horsley, S. A. R.; Hao, Y.

    2013-11-01

    This Letter presents a method for making an uneven surface behave as a flat surface. This allows an object to be concealed (cloaked) under an uneven portion of the surface, without disturbing the wave propagation on the surface. The cloaks proposed in this Letter achieve perfect cloaking that only relies upon isotropic radially dependent refractive index profiles, contrary to those previously published. In addition, these cloaks are very thin, just a fraction of a wavelength in thickness, yet can conceal electrically large objects. While this paper focuses on cloaking electromagnetic surface waves, the theory is also valid for other types of surface waves. The performance of these cloaks is simulated using dielectric filled waveguide geometries, and the curvature of the surface is shown to be rendered invisible, hiding any object positioned underneath. Finally, a transformation of the required dielectric slab permittivity was performed for surface wave propagation, demonstrating the practical applicability of this technique.

  16. Fundamental understanding of wave generation and reception using d(36) type piezoelectric transducers.

    PubMed

    Zhou, Wensong; Li, Hui; Yuan, Fuh-Gwo

    2015-03-01

    A new piezoelectric wafer made from a PMN-PT single crystal with dominant piezoelectric coefficient d36 is proposed to generate and detect guided waves on isotropic plates. The in-plane shear coupled with electric field arising from the piezoelectric coefficient is not usually present for conventional piezoelectric wafers, such as lead zirconate titanate (PZT). The direct piezoelectric effect of coefficient d36 indicates that under external in-plane shear stress the charge is induced on a face perpendicular to the poled z-direction. On thin plates, this type of piezoelectric wafer will generate shear horizontal (SH) waves in two orthogonal wave propagation directions as well as two Lamb wave modes in other wave propagation directions. Finite element analyses are employed to explore the wave disturbance in terms of time-varying displacements excited by the d36 wafer in different directions of wave propagation to understand all the guided wave modes accurately. Experiments are conducted to examine the voltage responses received by this type of wafer, and also investigate results of tuning frequency and effects of d31 piezoelectric coefficient, which is intentionally ignored in the finite element analysis. All results demonstrate the main features and utility of proposed d36 piezoelectric wafer for guided wave generation and detection in structural health monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Current-induced modulation of backward spin-waves in metallic microstructures

    NASA Astrophysics Data System (ADS)

    Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji

    2017-03-01

    We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.

  18. Amplitude variations during SIDs in 10.2 and 13.6 kHz waves propagating long distances in the subionospheric waveguide - Theoretical interpretation

    NASA Astrophysics Data System (ADS)

    Charcosset, G.; Tixier, M.

    1981-12-01

    During sudden ionospheric disturbances (SIDs), vertical electric field amplitude variations of waves emitted at 10.2 and 13.6 kHz in Norway and Liberia and observed in France were found to result in a regular decrease at the former wavelength and more complex behavior at the latter, where amplitude behavior depends on the importance of the SID. A theoretical interpretation employing a waveguide mode hypothesis of long distance wave propagation is presented, in which it is assumed that the D-region ionization enhancement produced by the solar X-ray flux during SID can be represented by a decrease of the waveguide height in which the shape of the density profile remains unchanged.

  19. Planetary Wave-Tide Interactions in Atmosphere-Ionosphere Coupling, Xiaoli Zhang, Jeffrey M. Forbes, Astrid Maute, and Maura E. Hagan

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Forbes, J. M.; Maute, A. I.

    2017-12-01

    Planetary Wave-Tide Interactions in Atmosphere-Ionosphere Coupling Xiaoli Zhang, Jeffrey M. Forbes, Astrid Maute, and Maura E. Hagan The existence of secondary waves in the mesosphere and thermosphere due to nonlinear interactions between atmospheric tides and longer-period waves have been revealed in both satellite data and in the National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The longer-period waves include the quasi-2-day and 6-day westward-propagating "normal modes" of the atmosphere, and eastward-propagating ultra-fast Kelvin waves with periods between 2 and 4 days. The secondary waves add to both the temporal and longitude variability of the atmosphere beyond that associated with the linear superposition of the interacting waves, thus adding "complexity" to the system. Based on our knowledge of the processes governing atmosphere-ionosphere interactions, similar revelations are expected to occur in electric fields, vertical plasma drifts and F-region electron densities. Towards this end, examples of such ionospheric manifestations of wave-wave interactions in TIE-GCM simulations will be presented.

  20. Faraday rotation of Automatic Dependent Surveillance Broadcast (ADS-B) signals as a method of ionospheric characterization

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Kabin, K.; Noel, J. M. A.

    2017-12-01

    Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices which are installed on most commercial aircraft. These radio waves can be detected by satellites in low earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this work we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick model.

  1. Parametric study of electromagnetic waves propagating in absorbing curved S ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1989-01-01

    A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.

  2. Numerical Modeling of Electroacoustic Logging Including Joule Heating

    NASA Astrophysics Data System (ADS)

    Plyushchenkov, Boris D.; Nikitin, Anatoly A.; Turchaninov, Victor I.

    It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.

  3. One-dimensional pressure transfer models for acoustic-electric transmission channels

    NASA Astrophysics Data System (ADS)

    Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.

    2015-09-01

    A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.

  4. Open-orbit theory of photoionization microscopy on nonhydrogenic atoms

    NASA Astrophysics Data System (ADS)

    Liu, F. L.; Zhao, L. B.

    2017-04-01

    Semiclassical open-orbit theory (OOT), previously developed to study photoionization of hydrogenic atoms in a uniform electric field [L. B. Zhao and J. B. Delos, Phys. Rev. A 81, 053417 (2010), 10.1103/PhysRevA.81.053417], has been generalized to describe the propagation of outgoing electron waves to macroscopic distances from a nonhydrogenic atomic source. The generalized OOT has been applied to calculate spatial distributions of electron probability densities and current densities, produced due to photoionization for lithium in a uniform electric field. The obtained results are compared with those from the fully quantum-mechanical coupled-channel theory (CCT). The excellent agreement between the CCT and OOT confirms the reliability of the generalized OOT. Comparison is also made with theoretical calculations from the wave-packet propagation technique and the recent photoionization microscopy experiment. The existing difference between theory and experiment is discussed.

  5. Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis

    NASA Astrophysics Data System (ADS)

    Ventura, Daniel Rodrigues; de Carvalho, Paulo Simeão; Dias, Marco Adriano

    2017-04-01

    The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be formed by an elastic deformation, a variation of pressure, changes in the intensity of electric or magnetic fields, a propagation of a temperature variation, or other disturbances. Moreover, a wave can be categorized as pulsed or periodic. Most importantly, conditions can be set such that waves interfere with one another, resulting in standing waves. These have many applications in technology, although they are not always readily identified and/or understood by all students. In this work, we use a simple setup including a low-cost constant spring, such as a Slinky, and the free software Tracker for video analysis. We show they can be very useful for the teaching of mechanical wave propagation and the analysis of harmonics in standing waves.

  6. Schumann Resonances on Mars - a Two-layer Ground Case

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, J.; Kulak, A.; Mlynarczyk, J.

    2012-04-01

    Schumann resonances (SR) are global resonances of electromagnetic waves in the range of extremely low frequencies (ELF) propagating in a cavity formed by a planetary surface and a lower ionosphere. SR are induced by electrical discharges, which on Earth are associated mainly with lightning. They were predicted by Winfried Otto Schumann in 1952. SR are supposed to occur on Mars, although many properties of the Martian environment are still unknown. One of the most important problems in modeling SR on Mars is to estimate electrical properties of the Martian ground and their influence on ELF waves propagation. The Martian crust is composed mainly of basaltic materials. Water, which causes significant increase in electrical conductivity of rocks, does not exist in liquid state at the surface of Mars. Therefore the Martian ground is believed to be a low conductive one. However, it is possible that some liquid water may be present at various depths below the surface. In our previous study we have developed an analytical model, based on the characteristic electric and magnetic altitudes' formalism, that has allowed us to take into consideration the Martian ground. Using this new model, we found that basaltic ground of low conductivity greatly influenced the SR parameters. In this work, we carried out simulations in order to characterize an influence of vertical changes in ground properties on the parameters of the Martian ground-ionosphere waveguide. We have considered several cases of a two-layer ground, in which the lower layer was of higher conductivity than the upper one. The obtained results indicate how the SR parameters depend on electrical conductivity, permittivity, and depth of the layers. The results also point out the importance of studying SR on Mars and the need for further research in propagation of ELF waves in the Martian environment. SR can be used as a remote sensing tool for exploration of the Martian crust. Furthermore, they can be especially useful for groundwater detection.

  7. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  8. Nonlinear interaction of an intense radio wave with ionospheric D/E layer plasma

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Agarwal, Sujeet Kumar

    2018-05-01

    This paper considers the nonlinear interaction of an intense electromagnetic wave with the D/E layer plasma in the ionosphere. A simultaneous solution of the electromagnetic wave equation and the equations describing the kinetics of D/E layer plasma is obtained; the phenomenon of ohmic heating of electrons by the electric field of the wave causes enhanced collision frequency and ionization of neutral species. Electron temperature dependent recombination of electrons with ions, electron attachment to O 2 molecules, and detachment of electrons from O2 - ions has also been taken into account. The dependence of the plasma parameters on the square of the electric vector of the wave E0 2 has been evaluated for three ionospheric heights (viz., 90, 100, and 110 km) corresponding to the mid-latitude mid-day ionosphere and discussed; these results are used to investigate the horizontal propagation of an intense radio wave at these heights.

  9. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    PubMed Central

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694

  10. Mechanical signaling coordinates the embryonic heartbeat.

    PubMed

    Chiou, Kevin K; Rocks, Jason W; Chen, Christina Yingxian; Cho, Sangkyun; Merkus, Koen E; Rajaratnam, Anjali; Robison, Patrick; Tewari, Manorama; Vogel, Kenneth; Majkut, Stephanie F; Prosser, Benjamin L; Discher, Dennis E; Liu, Andrea J

    2016-08-09

    In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts-consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats.

  11. Nonlinear regime of electrostatic waves propagation in presence of electron-electron collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2015-04-15

    The effects are presented of including electron-electron collisions in self-consistent Eulerian simulations of electrostatic wave propagation in nonlinear regime. The electron-electron collisions are approximately modeled through the full three-dimensional Dougherty collisional operator [J. P. Dougherty, Phys. Fluids 7, 1788 (1964)]; this allows the elimination of unphysical byproducts due to reduced dimensionality in velocity space. The effects of non-zero collisionality are discussed in the nonlinear regime of the symmetric bump-on-tail instability and in the propagation of the so-called kinetic electrostatic electron nonlinear (KEEN) waves [T. W. Johnston et al., Phys. Plasmas 16, 042105 (2009)]. For both cases, it is shown howmore » collisions work to destroy the phase-space structures created by particle trapping effects and to damp the wave amplitude, as the system returns to the thermal equilibrium. In particular, for the case of the KEEN waves, once collisions have smoothed out the trapped particle population which sustains the KEEN fluctuations, additional oscillations at the Langmuir frequency are observed on the fundamental electric field spectral component, whose amplitude decays in time at the usual collisionless linear Landau damping rate.« less

  12. Measuring the electric activity of chick embryos heart through 16 bit audio card monitored by the Goldwavetm software

    NASA Astrophysics Data System (ADS)

    Silva, Dilson; Cortez, Celia Martins

    2015-12-01

    In the present work we used a high-resolution, low-cost apparatus capable of detecting waves fit inside the sound bandwidth, and the software package GoldwaveTM for graphical display, processing and monitoring the signals, to study aspects of the electric heart activity of early avian embryos, specifically at the 18th Hamburger & Hamilton stage of the embryo development. The species used was the domestic chick (Gallus gallus), and we carried out 23 experiments in which cardiographic spectra of QRS complex waves representing the propagation of depolarization waves through ventricles was recorded using microprobes and reference electrodes directly on the embryos. The results show that technique using 16 bit audio card monitored by the GoldwaveTM software was efficient to study signal aspects of heart electric activity of early avian embryos.

  13. Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries

    NASA Astrophysics Data System (ADS)

    Kumar Singh, Abhishek; Kumar, Santan; Kumari, Richa

    2018-03-01

    The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.

  14. Electrically Tuneable EBG Integrated Circuits

    DTIC Science & Technology

    2013-12-01

    Surface Wave Propagation Along a Modulated Microstrip -Line-Based High Impedance Surface,‖ IEEE Trans. Antennas and Propagat., Vol. 56, No. 8, August...Heimlich, “Reconfigurable half- width microstrip leaky-wave antenna for fixed-frequency beam scanning”, Proceedings of 7th IEEE European Conference...patches, the structure would be an ideal microstrip configuration. Tuning is accomplished by using a pair of RF/microwave switches at opposite ends

  15. Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure.

    PubMed

    Pang, Yu; Liu, Yu-Shan; Liu, Jin-Xi; Feng, Wen-Jie

    2016-04-01

    In this paper, SH bulk/surface waves propagating in the corresponding infinite/semi-infinite piezoelectric (PE)/piezomagnetic (PM) and PM/PE periodically layered composites are investigated by two methods, the stiffness matrix method and the transfer matrix method. For a semi-infinite PE/PM or PM/PE medium, the free surface is parallel to the layer interface. Both PE and PM materials are assumed to be transversely isotropic solids. Dispersion equations are derived by the stiffness/transfer matrix methods, respectively. The effects of electric-magnetic (ME) boundary conditions at the free surface and the layer thickness ratios on dispersion curves are considered in detail. Numerical examples show that the results calculated by the two methods are the same. The dispersion curves of SH surface waves are below the bulk bands or inside the frequency gaps. The ratio of the layer thickness has an important effect not only on the bulk bands but also on the dispersion curves of SH surface waves. Electric and magnetic boundary conditions, respectively, determine the dispersion curves of SH surface waves for the PE/PM and PM/PE semi-infinite structures. The band structures of SH bulk waves are consistent for the PE/PM and PM/PE structures, however, the dispersive behaviors of SH surface waves are indeed different for the two composites. The realization of the above-mentioned characteristics of SH waves will make it possible to design PE/PM acoustic wave devices with periodical structures and achieve the better performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Study of Ionosphere-Magnetosphere Coupling Using Whistler Data (P51)

    NASA Astrophysics Data System (ADS)

    Singh, S.; Singh, R. P.; Singh, L.

    2006-11-01

    singh_shubha@yahoo.co.in singhshubhadhu@gmail.com The VLF waves observed at the ground stations are used for probing the ionosphere/magnetosphere parameters. The probing principle depends on the analysis of dispersion produced in the whistler mode waves during their propagation from the source to the observation point. Dispersion depends on the distribution of plasma particles and ambient magnetic field along the path of propagation. Specifically, we derive the information about the equatorial electron density, total electron content in a flux tube, equatorial east-west electric field, transport of electron flux from one region to the other, electron temperature etc. The transport of flux and electric fields are essentially involved in the study of coupling of the ionosphere and magnetosphere. In the present paper, we shall report the analysis of whistler data recorded at Varanasi and Jammu. The analysis shows that the analyzed whistlers from both the stations belong to mid-high latitudes contrary to the belief that they were low latitude phenomena. Further, there is no correspondence between the dispersion and derived L-value for the path of propagation. This leads to the requirement of detailed study of VLF wave propagation in the inhomogeneous ionosphere-magnetosphere system. The electron density and the total electron content in a flux tube derived from whistler measurements at Varanasi and Jammu are approximately one order of magnitude smaller than the previously reported data from the whistler measurements at mid- high latitudes. However, their variation with L-value has the same nature. The time development of the content of flux is evaluated which could easily explain the reported flux transport during the study of coupling of ionosphere to the magnetosphere. We have also evaluated electric field, which compares well with the previously reported value. These results clearly indicate that the VLF wave propagation at low latitude and their diagnostic properties require much more attention both from the point of view of data collection and theoretical formulation. Efforts should be made in this direction to study the latitudinal/ longitudinal distribution of electron density and its long-term variations using a network of stations equipped with identical equipments spread over a range of latitudes and longitudes. The collected data will be useful in the study of coupling of ionosphere and magnetosphere.

  17. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.

    PubMed

    Wang, Xiang-Hua; Yin, Wen-Yan; Chen, Zhi Zhang David

    2013-09-09

    The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.

  18. Experimental and Automated Analysis Techniques for High-resolution Electrical Mapping of Small Intestine Slow Wave Activity

    PubMed Central

    Angeli, Timothy R; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; Du, Peng; Pullan, Andrew J; Bissett, Ian P

    2013-01-01

    Background/Aims Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity. Methods Recordings were obtained from along the porcine small intestine using flexible printed circuit board arrays (256 electrodes; 4 mm spacing). Filtering options were compared, and analysis was automated through adaptations of the falling-edge variable-threshold (FEVT) algorithm and graphical visualization tools. Results A Savitzky-Golay filter was chosen with polynomial-order 9 and window size 1.7 seconds, which maintained 94% of slow wave amplitude, 57% of gradient and achieved a noise correction ratio of 0.083. Optimized FEVT parameters achieved 87% sensitivity and 90% positive-predictive value. Automated activation mapping and animation successfully revealed slow wave propagation patterns, and frequency, velocity, and amplitude were calculated and compared at 5 locations along the intestine (16.4 ± 0.3 cpm, 13.4 ± 1.7 mm/sec, and 43 ± 6 µV, respectively, in the proximal jejunum). Conclusions The methods developed and validated here will greatly assist small intestine HR mapping, and will enable experimental and translational work to evaluate small intestine motility in health and disease. PMID:23667749

  19. Polarization resolved electric field measurements on plasma bullets in N2 using four-wave mixing

    NASA Astrophysics Data System (ADS)

    van der Schans, Marc; Boehm, Patrick; Nijdam, Sander; Ijzerman, Wilbert; Czarnetzki, Uwe

    2016-09-01

    Atmospheric pressure plasma jets generated by kHz AC or pulsed DC voltages typically consist of discrete guided ionization waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated using the four-wave mixing method. In this diagnostic two laser beams, where one is Stokes shifted from the other, non-linearly interact with the N2 molecules and the bullet's electric field. As a result of the interaction a coherent anti-Stokes Raman scattered (CARS) beam and an infrared beam are generated from which the electric field can be determined. Compared to emission-based methods, this technique has the advantage of being able to also probe the electric field in regions around the plasma bullet where no photons are emitted. The four-wave mixing method and its analysis have been adapted to work with the non-uniform electric field of plasma bullets. In addition, an ex-situ calibration procedure using an electrode geometry different from the discharge geometry has been developed. An experimentally obtained radial profile of the axial electric field component of a plasma bullet in N2 is presented. The position of this profile is related to the location of the propagating bullet from temporally resolved images.

  20. Electrical modulation and switching of transverse acoustic phonons

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  1. Low frequency electric field variations during HF transmissions on a mother-daughter rocket

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Maynard, M. C.; Holtet, J. A.; Karlsen, N. O.; Egeland, A.; Moe, T. E.; Troim, J.

    1977-01-01

    HF wave propagation experiments were conducted on Mother-Daughter rockets in the polar ionosphere. Swept frequency transmissions from the Mother, nominally covering the range from 0.5 to 5 MHz in both CW and pulse modes, are received by the Daughter. In the most recent rocket of the series, the Mother also contained an AC electric field spectrometer covering the frequency range from 10 Hz to 100 kHz in four decade bands. The low frequency response of the ionosphere with respect to waves emitted from the onboard HF transmitter is examined.

  2. Faraday Rotation of Automatic Dependent Surveillance-Broadcast (ADS-B) Signals as a Method of Ionospheric Characterization

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Kabin, K.; Noël, J.-M.

    2017-10-01

    Radio waves propagating through plasma in the Earth's ambient magnetic field experience Faraday rotation; the plane of the electric field of a linearly polarized wave changes as a function of the distance travelled through a plasma. Linearly polarized radio waves at 1090 MHz frequency are emitted by Automatic Dependent Surveillance Broadcast (ADS-B) devices that are installed on most commercial aircraft. These radio waves can be detected by satellites in low Earth orbits, and the change of the polarization angle caused by propagation through the terrestrial ionosphere can be measured. In this manuscript we discuss how these measurements can be used to characterize the ionospheric conditions. In the present study, we compute the amount of Faraday rotation from a prescribed total electron content value and two of the profile parameters of the NeQuick ionospheric model.

  3. Experimental validation of ultrasonic guided modes in electrical cables by optical interferometry.

    PubMed

    Mateo, Carlos; de Espinosa, Francisco Montero; Gómez-Ullate, Yago; Talavera, Juan A

    2008-03-01

    In this work, the dispersion curves of elastic waves propagating in electrical cables and in bare copper wires are obtained theoretically and validated experimentally. The theoretical model, based on Gazis equations formulated according to the global matrix methodology, is resolved numerically. Viscoelasticity and attenuation are modeled theoretically using the Kelvin-Voigt model. Experimental tests are carried out using interferometry. There is good agreement between the simulations and the experiments despite the peculiarities of electrical cables.

  4. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Luyi

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstrationmore » and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s -1.« less

  5. The structure of a magnetic-field front propagating non-diffusively in low-resistivity multi-species plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, B.; Doron, R., E-mail: ramy.doron@weizmann.ac.il; Maron, Y.

    2016-04-15

    We report on the first experimental verification of the traveling-wave-like picture of a magnetic-field and an associated electric potential hill propagating non-diffusively in low resistivity plasma. High spatial resolution spectroscopic method, developed here, allowed for obtaining the detailed shape of the propagating magnetic-field front. The measurements demonstrated that the ion separation, previously claimed, results from the reflection of the higher charge-to-mass ratio ions from the propagating potential hill and from climbing the hill by the lower charge-to-mass ratio ions. This ion dynamics is found to be consistent with the observed electron density evolution.

  6. Overvoltage effect on electrical discharge type in medium-conductivity water in inhomogeneous pulsed electric field

    NASA Astrophysics Data System (ADS)

    Panov, V. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Son, E. E.

    2018-01-01

    The transition between thermal and streamer discharges has been observed experimentally in water solution with conductivity 100 μS/cm applying positive voltage pulses to pin-to-rod electrodes. The transition happens at five-fold pulse amplitude. Considering streamer propagation as an ionization wave helped to establish relation between the parameters governing transition from one to another discharge mechanism.

  7. Electron wind in strong wave guide fields

    NASA Astrophysics Data System (ADS)

    Krienen, F.

    1985-03-01

    The X-ray activity observed near highly powered waveguide structures is usually caused by local electric discharges originating from discontinuities such as couplers, tuners or bends. In traveling waves electrons move in the direction of the power flow. Seed electrons can multipactor in a traveling wave, the moving charge pattern is different from the multipactor in a resonant structure and is self-extinguishing. The charge density in the wave guide will modify impedance and propagation constant of the wave guide. The radiation level inside the output wave guide of the SLAC, 50 MW, S-band, klystron is estimated. Possible contributions of radiation to window failure are discussed.

  8. Geophysical remote sensing of water reservoirs suitable for desalinization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra

    2009-12-01

    In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at amore » lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics problems that has application beyond the present use. A limited field experiment was conducted to assess the seismo-electric effect. Due to a variety of problems, the observation of the electric field due to a seismic source is not definitive.« less

  9. Design of a tunable graphene plasmonic-on-white graphene switch at infrared range

    NASA Astrophysics Data System (ADS)

    Farmani, Ali; Zarifkar, Abbas; Sheikhi, Mohammad H.; Miri, Mehdi

    2017-12-01

    A tunable Y-branch graphene plasmonic switch operating at the wavelength of 1.55 μm is proposed in which graphene is placed on white graphene. The switch structure is investigated analytically and numerically by the finite difference time domain method. The graphene plasmonic switch considered here supports both transverse magnetic and transverse electric graphene plasmons whose propagation characteristics can be controlled by modulating the external electric field and the temperature of graphene. Our calculations show that by strong coupling between the incident waves and the graphene plasmons of the structure, a high polarization extinction ratio of 45 dB and relatively large bandwidth of 150 nm around the central wavelength of 1.55 μm are achievable. Furthermore, the application of white graphene as the substrate of graphene decreases the propagation loss of the graphene plasmons and the required applied electric field. It is also shown that the propagation mode of the graphene plasmons can be tuned by changing the temperature and the calculated threshold temperature is 650 K.

  10. 2D Electrically Tuneable EBG Integrated Circuits

    DTIC Science & Technology

    2014-04-01

    Controlling the Bandlimits of TE-Surface Wave Propagation Along a Modulated Microstrip -Line-Based High Impedance Surface,‖ IEEE Trans. Antennas and Propagat...Esselle, L. Matekovits, M. Heimlich, “Reconfigurable half- width microstrip leaky-wave antenna for fixed-frequency beam scanning”, Proceedings of 7th...EBG effect (Figure 1). In the absence of the patches, the structure would be an ideal microstrip configuration. Tuning is accomplished by using a

  11. Propagation of Love waves with surface effects in an electrically-shorted piezoelectric nanofilm on a half-space elastic substrate.

    PubMed

    Zhang, Sijia; Gu, Bin; Zhang, Hongbin; Feng, Xi-Qiao; Pan, Rongying; Alamusi; Hu, Ning

    2016-03-01

    The propagation of Love waves in the structure consisting of a nanosized piezoelectric film and a semi-infinite elastic substrate is investigated in the present paper with the consideration of surface effects. In our analysis, surface effects are taken into account in terms of the surface elasticity theory and the electrically-shorted conditions are adopted on the free surface of the piezoelectric film and the interface between the film and the substrate. This work focuses on the new features in the dispersion relations of different modes due to surface effects. It is found that with the existence of surface effects, the frequency dispersion of Love waves shows the distinct dependence on the thickness and the surface constants when the film thickness reduces to nanometers. In general, phase velocities of all dispersion modes increase with the decrease of the film thickness and the increase of the surface constants. However, surface effects play different functions in the frequency dispersions of different modes, especially for the first mode dispersion. Moreover, different forms of Love waves are observed in the first mode dispersion, depending on the presence of the surface effects on the surface and the interface. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Material parameter determination from scattering measurements

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.; Peters, L., Jr.

    1988-01-01

    The electrical, macroscopic performance of isotropic material can generally be described through their constitutive scalar parameters, permittivity and permeability which are symbolically represented by epsilon and mu, respectively. These parameters relate the electric and magnetic flux densities to the electric and magnetic fields through the following relationships: (1) D=epsilonE; and (2) B=muH. It is through these parameters that the interaction of electromagnetic waves with material can be quantized in terms of reflection and transmission coefficients, and propagation and attenuation factors.

  13. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology

    PubMed Central

    Tse, Gary; Lai, Eric Tsz Him; Yeo, Jie Ming; Tse, Vivian; Wong, Sunny Hei

    2016-01-01

    The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field. PMID:27303305

  14. The influence of polarization on millimeter wave propagation through rain

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1974-01-01

    The influence of polarization on millimeter wave propagation through rain is investigated. The experimental equipment consisted of a 1.43 km line-of-sight path with 4-foot diameter dual-polarized parabolic reflector antennas at each end. Linearly polarized 17.65 GHz signals were transmitted with the electric field vectors at plus 45 degrees and minus 45 degrees from the vertical. These polarizations were initially chosen to maximize the measured depolarization at any given rainfall rate. Later it was discovered that the cross polarization levels measured with plus or minus 45 degree linearly polarized signals are theoretically the least sensitive to variations in drop canting angle and this choice of polarization reduces the scatter in the data.

  15. An Apparatus for Monitoring the Health of Electrical Cables

    NASA Technical Reports Server (NTRS)

    Pai, Devdas M.; Tatum, Paul; Pace, Rachel

    2004-01-01

    As with most elements of infrastructure, electrical wiring is innocuous; usually hidden away and unnoticed until it fails. Failure of infrastructure, however, sometimes leads to serious health and safety hazards. Electrical wiring fails when the polymeric (usually rubber) insulation material that sheathes the conductor gets embrittled with age from exposure to pressure, temperature or radiation cycling or when the insulation gets removed by the chafing of wires against each other. Miles of such wiring can be found in typical aircraft, with significant lengths of the wiring immersed in aviation fuel - a recipe for an explosion if a spark were to occur. Diagnosing the health of wiring is thus an important aspect of monitoring the health of aging aircraft. Stress wave propagation through wiring affords a quick and non-invasive method for health monitoring. The extent to which a stress wave propagating through the cable core gets attenuated depends on the condition of the surrounding insulation. When the insulation is in good condition - supple and pliable, there is more damping or attenuation of the waveform. As the insulation gets embrittled and cracked, the attenuation is likely to reduce and the waveform of the propagating stress wave is likely to change. The monitoring of these changes provides a potential tool to evaluate wiring or cabling in service that is not accessible for visual inspection. This experiment has been designed for use in an introductory mechanical or materials engineering instrumentation lab. Initial setup (after procuring all the materials) should take the lab instructor about 4 hours. A single measurement can be initiated and saved to disk in less than 3 minutes, allowing for all the students in a typical lab section to take their own data rather than share a single set of data for the entire class.

  16. Wave Coupling between the Lower and Middle Thermosphere as Viewed from Quasi-Sun-Synchronous Satellites

    NASA Astrophysics Data System (ADS)

    Gasperini, Federico

    In a society increasingly dependent on space technology, space weather has become a prominent scientific paradigm. In the last decade evidence has shown that terrestrial weather significantly influences space weather. Periodic absorption of solar radiation in local time and longitude by tropospheric water vapor and stratospheric ozone as well as latent heat release in clouds generate a spatially- and temporally-evolving spectrum of global-scale atmospheric waves (i.e., tides, planetary waves and Kelvin waves). A subset of these waves propagates vertically, evolving with height due to wave-mean flow, wave-wave, and wave-plasma interactions, and driving electric fields of tidal origin in the dynamo region. While considerable improvements have been made on the understanding of MLT dynamics, driven in part by the development and deployment of new instruments and techniques, relatively little is known about the coupling of waves in the 120-300 km `thermospheric gap' between satellite remote-sensing and in-situ wave diagnostics. The dissertation herein reveals vertical wave coupling in this height region and quantifies its role in determining thermospheric variability. This objective is accomplished employing quasi-Sun-synchronous satellite measurements (i.e., TIMED, CHAMP, and GOCE) and state-of-the-art numerical modeling simulations (i.e., TIME-GCM/MERRA). Evidence is found for the vertical propagation from the lower to the middle thermosphere of the eastward propagating diurnal tide with zonal wave number 3 (DE3) and the 3-day ultra-fast Kelvin wave (UFKW), two major global-scale atmospheric oscillations of tropospheric origin. These waves are shown to nonlinearly interact and produce secondary waves responsible for significant longitudinal and day-to-day variability. For solar and geomagnetic quiet conditions, atmospheric waves are found to be responsible for up to 60% of the total variability, demonstrating lower atmosphere coupling as a key contributor to thermosphere weather, at least in the absence of major solar-driven variability. Additionally, background atmospheric conditions (i.e., dissipation and zonal mean winds) and found to significantly impact the latitudinal-temporal evolution of upward propagating waves.

  17. Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions

    PubMed Central

    He, W.; Ren, T.

    2013-01-01

    To understand how the inner ear-generated sound, i.e., otoacoustic emission, exits the cochlea, we created a sound source electrically in the second turn and measured basilar membrane vibrations at two longitudinal locations in the first turn in living gerbil cochleae using a laser interferometer. For a given longitudinal location, electrically evoked basilar membrane vibrations showed the same tuning and phase lag as those induced by sounds. For a given frequency, the phase measured at a basal location led that at a more apical location, indicating that either an electrical or an acoustical stimulus evoked a forward travelling wave. Under postmortem conditions, the electrically evoked emissions showed no significant change while the basilar membrane vibration nearly disappeared. The current data indicate that basilar membrane vibration was not involved in the backward propagation of otoacoustic emissions and that sounds exit the cochlea probably through alternative media, such as cochlear fluids. PMID:23695199

  18. A full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for nonsmooth electromagnetic fields in waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan Kai; Cai Wei; Ji Xia

    2008-07-20

    In this paper, we propose a new full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) to accurately handle the discontinuities in electromagnetic fields associated with wave propagations in inhomogeneous optical waveguides. The numerical method is a combination of the traditional beam propagation method (BPM) with a newly developed generalized discontinuous Galerkin (GDG) method [K. Fan, W. Cai, X. Ji, A generalized discontinuous Galerkin method (GDG) for Schroedinger equations with nonsmooth solutions, J. Comput. Phys. 227 (2008) 2387-2410]. The GDG method is based on a reformulation, using distributional variables to account for solution jumps across material interfaces, of Schroedinger equationsmore » resulting from paraxial approximations of vector Helmholtz equations. Four versions of the GDG-BPM are obtained for either the electric or magnetic field components. Modeling of wave propagations in various optical fibers using the full vectorial GDG-BPM is included. Numerical results validate the high order accuracy and the flexibility of the method for various types of interface jump conditions.« less

  19. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    NASA Astrophysics Data System (ADS)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus, J. Geophys. Res. Space Physics, 122, 324-339, doi:10.1002/2016JA023429.

  20. Propagation of Axisymmetric Electroelastic Waves in a Hollow Layered Cylinder Under Mechanical Excitation

    NASA Astrophysics Data System (ADS)

    Grigorenko, A. Ya.; Loza, I. A.

    2017-09-01

    The problem on propagation of axisymmetric electroelastic waves in a hollow layered cylinder made of metallic and radially polarized piezoceramic layers is solved. The lateral surfaces of the cylinder are free of electrodes. The outside surface is free of mechanical loads, while the inside one undergoes harmonically varying pressure Pe. The problem was solved with a numerical-analytical method. By representing the components of the stress tensor, displacement vectors, electric-flux density, and electrostatic potential by traveling waves, the original electroelastic problem in partial derivatives is reduced to an inhomogeneous boundary-value problem for ordinary differential equations. To solve the problem, the stable numerical discrete-orthogonalization method is used. The results of the kinematic analysis of the layered cylinder both with metallic and piezoceramic (PZT 4) layers are presented. The numerical results are analyzed.

  1. Large Amplitude Whistler Waves and Electron Acceleration in the Earth's Radiation Belts: A Review of STEREO and Wind Observations

    NASA Technical Reports Server (NTRS)

    Cattell, Cynthia; Breneman, A.; Goetz, K.; Kellogg, P.; Kersten, K.; Wygant, J.; Wilson, L. B., III; Looper, Mark D.; Blake, J. Bernard; Roth, I.

    2012-01-01

    One of the critical problems for understanding the dynamics of Earth's radiation belts is determining the physical processes that energize and scatter relativistic electrons. We review measurements from the Wind/Waves and STEREO S/Waves waveform capture instruments of large amplitude whistler-mode waves. These observations have provided strong evidence that large amplitude (100s mV/m) whistler-mode waves are common during magnetically active periods. The large amplitude whistlers have characteristics that are different from typical chorus. They are usually nondispersive and obliquely propagating, with a large longitudinal electric field and significant parallel electric field. We will also review comparisons of STEREO and Wind wave observations with SAMPEX observations of electron microbursts. Simulations show that the waves can result in energization by many MeV and/or scattering by large angles during a single wave packet encounter due to coherent, nonlinear processes including trapping. The experimental observations combined with simulations suggest that quasilinear theoretical models of electron energization and scattering via small-amplitude waves, with timescales of hours to days, may be inadequate for understanding radiation belt dynamics.

  2. Morphing structures and signal transduction in Mimosa pudica L. induced by localized thermal stress.

    PubMed

    Volkov, Alexander G; O'Neal, Lawrence; Volkova, Maia I; Markin, Vladislav S

    2013-10-15

    Leaf movements in Mimosa pudica, are in response to thermal stress, touch, and light or darkness, appear to be regulated by electrical, hydrodynamical, and chemical signal transduction. The pulvinus of the M. pudica shows elastic properties. We have found that the movements of the petiole, or pinnules, are accompanied by a change of the pulvinus morphing structures. After brief flaming of a pinna, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of electrolytes between these parts of the pulvinus; as a result of these changes the petiole falls. During the relaxation of the petiole, the process goes in the opposite direction. Ion and water channel blockers, uncouplers as well as anesthetic agents diethyl ether or chloroform decrease the speed of alert wave propagation along the plant. Brief flaming of a pinna induces bidirectional propagation of electrical signal in pulvini. Transduction of electrical signals along a pulvinus induces generation of an action potential in perpendicular direction between extensor and flexor sides of a pulvinus. Inhibition of signal transduction and mechanical responses in M. pudica by volatile anesthetic agents chloroform or by blockers of voltage gated ion channels shows that the generation and propagation of electrical signals is a primary effect responsible for turgor change and propagation of an excitation. There is an electrical coupling in a pulvinus similar to the electrical synapse in the animal nerves. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Spatial Light Modulators with Arbitrary Quantum Wells Profiles

    DTIC Science & Technology

    1993-09-27

    phase change in the 1.152Pm wave propagating through the waveguide and appears as an optically bistable intensity signal normal to the control beam ...electrical bistability of a SEED was integrated with a phase modulator to produce optical bistability in an all- optical switch. A control wavelength of...received attention for its use in electrically-addressable spatial light intensity modulator arrays due to its potentially high contrast ratio, large

  4. Mechanical signaling coordinates the embryonic heartbeat

    PubMed Central

    Chiou, Kevin K.; Rocks, Jason W.; Chen, Christina Yingxian; Cho, Sangkyun; Merkus, Koen E.; Rajaratnam, Anjali; Robison, Patrick; Tewari, Manorama; Vogel, Kenneth; Majkut, Stephanie F.; Prosser, Benjamin L.; Discher, Dennis E.; Liu, Andrea J.

    2016-01-01

    In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts—consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats. PMID:27457951

  5. Laser-excited pulse propagation in a crystallized complex plasma

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Nunomura, S.; Goree, J.

    2000-10-01

    A complex plasma, so-called in analogy with complex fluids, is an ionized gas containing small solid particles. This medium is also called a dusty plasma. The particles acquire a large negative electric charge. In an experiment, polymer microspheres were shaken into a parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, and were arranged in a hexagonal lattice. They were imaged using a video camera to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. By modulating an argon laser beam directed tangentially at the lattice, we launched a pulsed wave in the lattice. We evaluated the pulse shape and propagation speed, while varying the pulse power and duration. This allowed a test for dispersion and nonlinearity, as well as a test of whether the pulse has the properties of a shock.

  6. Solitons induced by alternating electric fields in surface-stabilized ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeżewski, W.; Kuczyński, W.; Hoffmann, J.

    2011-04-01

    Propagation of solitary waves activated in thin ferroelectric liquid crystal cells under external, sinusoidally alternating electric fields is investigated using the electro-optic technique. It is shown that solitons give contributions only to the loss component of the response spectrum, within rather narrow ranges of frequencies and in sufficiently strong fields. The limit frequency, at which the amplitude of the velocity of the solitary waves is greatest, is found to be related to material constants of liquid crystals. Measuring this threshold frequency provides the capability to determine the elastic constant of surface stabilized liquid crystalline materials in the bookshelf or chevron layer geometries.

  7. An integrated and highly sensitive ultrafast acoustoelectric imaging system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Dansette, Pierre-Marc; Tanter, Mickaël; Pernot, Mathieu; Provost, Jean

    2017-07-01

    Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium’s electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave based approach provides a highly flexible trade-off between frame rate, resolution and contrast. In conclusion, the UAI system shows promise for non-invasive, direct and accurate real-time imaging of electrical activation in vivo.

  8. Electromagnetic Ion Cyclotron Waves in the High Altitude Cusp: Polar Observations

    NASA Technical Reports Server (NTRS)

    Le, Guan; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow band waves at frequencies approximately 0.2 to 3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency, and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both lefthanded and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  9. Electromagnetic Ion Cyclotron Waves in the High-Altitude Cusp: Polar Observations

    NASA Technical Reports Server (NTRS)

    Le, G.; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.

    2005-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow-band waves at frequencies approx. 0.2-3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both left-handed and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle, and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  10. Electromagnetic coupling and array packing induce exchange of dominance on complex modes in 3D periodic arrays of spheres with large permittivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Capolino, Filippo

    In this study, we investigate the effect on wave propagation of array packing and electromagnetic coupling between spheres in a three-dimensional (3D) lattice of microspheres with large permittivity that exhibit strong magnetic polarizability. We report on the complex wavenumber of Bloch waves in the lattice when each sphere is assumed to possess both electric and magnetic dipoles and full electromagnetic coupling is accounted for. While for small material-filling fractions we always determine one dominant mode with low attenuation constant, the same does not happen for large filling fractions, when electromagnetic coupling is included. In the latter case we peculiarly observemore » two dominant modes with low attenuation constant, dominant in different frequency ranges. The filling fraction threshold for which two dominant modes appear varies for different metamaterial constituents, as proven by considering spheres made by either titanium dioxide or lead telluride. As further confirmation of our findings, we retrieve the complex propagation constant of the dominant mode(s) via a field fitting procedure employing two sets of waves (direct and reflected) pertaining to two distinct modes, strengthening the presence of the two distinct dominant modes for increasing filling fractions. However, given that one mode only, with transverse polarization, at any given frequency, is dominant and able to propagate inside the lattice, we are able to accurately treat the metamaterial that is known to exhibit artificial magnetism as a homogeneous material with effective parameters, such as the refractive index. Results clearly show that the account of both electric and magnetic scattering processes in evaluating all electromagnetic intersphere couplings is essential for a proper description of the electromagnetic propagation in lattices.« less

  11. Electromagnetic coupling and array packing induce exchange of dominance on complex modes in 3D periodic arrays of spheres with large permittivity

    DOE PAGES

    Campione, Salvatore; Capolino, Filippo

    2016-01-25

    In this study, we investigate the effect on wave propagation of array packing and electromagnetic coupling between spheres in a three-dimensional (3D) lattice of microspheres with large permittivity that exhibit strong magnetic polarizability. We report on the complex wavenumber of Bloch waves in the lattice when each sphere is assumed to possess both electric and magnetic dipoles and full electromagnetic coupling is accounted for. While for small material-filling fractions we always determine one dominant mode with low attenuation constant, the same does not happen for large filling fractions, when electromagnetic coupling is included. In the latter case we peculiarly observemore » two dominant modes with low attenuation constant, dominant in different frequency ranges. The filling fraction threshold for which two dominant modes appear varies for different metamaterial constituents, as proven by considering spheres made by either titanium dioxide or lead telluride. As further confirmation of our findings, we retrieve the complex propagation constant of the dominant mode(s) via a field fitting procedure employing two sets of waves (direct and reflected) pertaining to two distinct modes, strengthening the presence of the two distinct dominant modes for increasing filling fractions. However, given that one mode only, with transverse polarization, at any given frequency, is dominant and able to propagate inside the lattice, we are able to accurately treat the metamaterial that is known to exhibit artificial magnetism as a homogeneous material with effective parameters, such as the refractive index. Results clearly show that the account of both electric and magnetic scattering processes in evaluating all electromagnetic intersphere couplings is essential for a proper description of the electromagnetic propagation in lattices.« less

  12. Diffusion in plasma: The Hall effect, compositional waves, and chemical spots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urpin, V., E-mail: Vadim.urpin@uv.es

    2017-03-15

    Diffusion caused by a combined influence of the electric current and Hall effect is considered, and it is argued that such diffusion can form inhomogeneities of a chemical composition in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type of waves in which the impurity number density oscillates alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure.

  13. Dispersion relation of a surface wave at a rough metal-air interface

    DOE PAGES

    Kotelnikov, Igor; Stupakov, Gennady

    2016-11-28

    Here, we derived a dispersion relation of a surface wave at a rough metal-air interface. In contrast to previous publications, we assumed that an intrinsic surface impedance due to a finite electric conductivity of the metal can be of the same order as the roughness-induced impedance. We then applied our results to the analysis of a long-standing problem of the discrepancy between the experimental data on the propagation of surface waves in the terahertz range of frequencies and the classical Drude theory.

  14. Explosion suppression system

    DOEpatents

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  15. ELECTRIC CURRENT FILAMENTATION AT A NON-POTENTIAL MAGNETIC NULL-POINT DUE TO PRESSURE PERTURBATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelínek, P.; Karlický, M.; Murawski, K., E-mail: pjelinek@prf.jcu.cz

    2015-10-20

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with amore » plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.« less

  16. Electromagnetic interference and shielding: An introduction (revised version of 1991-23)

    NASA Astrophysics Data System (ADS)

    Dehoop, A. T.; Quak, D.

    The basic equations of the electromagnetic field are summarized as far as they are needed in the theory of electromagnetic interference and shielding. Through the analysis of the planar electric current emitter, the propagation coefficient, attenuation coefficient, phase coefficient, wave-speed, wavelength, wave impedance, wave admittance, and power flow density of a wave are introduced. Next, the shielding effectiveness of a shielding plate and the shielding effectiveness of a shielding parallel-plate box are determined. In the latter, particular attention is given to the occurrence of internal resonance effects, which may degrade the shielding effectiveness. Further, a survey of some fundamental properties of a system of low frequency, multiconductor transmission lines is given. For a three conductor system with a plane of symmetry, the decomposition into the common mode and the differential mode of operation is discussed. Finally, expressions for the voltages and electric currents induced by external sources along a single transmission line are derived.

  17. Measurements of the parallel wavenumber of lower hybrid waves in the scrape-off layer of a high-density tokamak

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Wallace, G. M.; Shinya, T.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Takase, Y.; Wukitch, S.

    2016-05-01

    In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k|| increases for the fixed launched k||, and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k|| are observed in the spectrally broadened wave components, as compared to the measured k|| at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k|| resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.

  18. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  19. Analysis of Electric Field Propagation in Anisotropically Absorbing and Reflecting Waveplates

    NASA Astrophysics Data System (ADS)

    Carnio, B. N.; Elezzabi, A. Y.

    2018-04-01

    Analytical expressions are derived for half-wave plates (HWPs) and quarter-wave plates (QWPs) based on uniaxial crystals. This general analysis describes the behavior of anisotropically absorbing and reflecting waveplates across the electromagnetic spectrum, which allows for correction to the commonly used equations determined assuming isotropic absorptions and reflections. This analysis is crucial to the design and implementation of HWPs and QWPs in the terahertz regime, where uniaxial crystals used for waveplates are highly birefringent and anisotropically absorbing. The derived HWP equations describe the rotation of linearly polarized light by an arbitrary angle, whereas the QWP analysis focuses on manipulating a linearly polarized electric field to obtain any ellipticity. The HWP and QWP losses are characterized by determining equations for the total electric field magnitude transmitted through these phase-retarding elements.

  20. Rayleigh wave behavior in functionally graded magneto-electro-elastic material

    NASA Astrophysics Data System (ADS)

    Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben

    2017-12-01

    Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.

  1. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, L. C. C.; Yahya, N.; Daud, H.

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMSmore » with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.« less

  2. The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite

    NASA Astrophysics Data System (ADS)

    Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ozaki, Mitsunori; Matsuda, Shoya; Imachi, Tomohiko; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Katoh, Yuto; Ota, Mamoru; Shoji, Masafumi; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    The Exploration of energization and Radiation in Geospace (ERG) project aims to study acceleration and loss mechanisms of relativistic electrons around the Earth. The Arase (ERG) satellite was launched on December 20, 2016, to explore in the heart of the Earth's radiation belt. In the present paper, we introduce the specifications of the Plasma Wave Experiment (PWE) on board the Arase satellite. In the inner magnetosphere, plasma waves, such as the whistler-mode chorus, electromagnetic ion cyclotron wave, and magnetosonic wave, are expected to interact with particles over a wide energy range and contribute to high-energy particle loss and/or acceleration processes. Thermal plasma density is another key parameter because it controls the dispersion relation of plasma waves, which affects wave-particle interaction conditions and wave propagation characteristics. The DC electric field also plays an important role in controlling the global dynamics of the inner magnetosphere. The PWE, which consists of an orthogonal electric field sensor (WPT; wire probe antenna), a triaxial magnetic sensor (MSC; magnetic search coil), and receivers named electric field detector (EFD), waveform capture and onboard frequency analyzer (WFC/OFA), and high-frequency analyzer (HFA), was developed to measure the DC electric field and plasma waves in the inner magnetosphere. Using these sensors and receivers, the PWE covers a wide frequency range from DC to 10 MHz for electric fields and from a few Hz to 100 kHz for magnetic fields. We produce continuous ELF/VLF/HF range wave spectra and ELF range waveforms for 24 h each day. We also produce spectral matrices as continuous data for wave direction finding. In addition, we intermittently produce two types of waveform burst data, "chorus burst" and "EMIC burst." We also input raw waveform data into the software-type wave-particle interaction analyzer (S-WPIA), which derives direct correlation between waves and particles. Finally, we introduce our PWE observation strategy and provide some initial results.[Figure not available: see fulltext.

  3. The Application of a Massively Parallel Computer to the Simulation of Electrical Wave Propagation Phenomena in the Heart Muscle Using Simplified Models

    NASA Technical Reports Server (NTRS)

    Karpoukhin, Mikhii G.; Kogan, Boris Y.; Karplus, Walter J.

    1995-01-01

    The simulation of heart arrhythmia and fibrillation are very important and challenging tasks. The solution of these problems using sophisticated mathematical models is beyond the capabilities of modern super computers. To overcome these difficulties it is proposed to break the whole simulation problem into two tightly coupled stages: generation of the action potential using sophisticated models. and propagation of the action potential using simplified models. The well known simplified models are compared and modified to bring the rate of depolarization and action potential duration restitution closer to reality. The modified method of lines is used to parallelize the computational process. The conditions for the appearance of 2D spiral waves after the application of a premature beat and the subsequent traveling of the spiral wave inside the simulated tissue are studied.

  4. Full Wave Analysis of RF Signal Attenuation in a Lossy Cave using a High Order Time Domain Vector Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pingenot, J; Rieben, R; White, D

    2004-12-06

    We present a computational study of signal propagation and attenuation of a 200 MHz dipole antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The simulation is performed for a series of random meshes in order to generate statistical data for the propagation and attenuation properties of the cave environment. Results for the power spectral density and phase ofmore » the electric field vector components are presented and discussed.« less

  5. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation.

    PubMed

    Yu, Fajun

    2015-03-01

    We present the nonautonomous discrete bright soliton solutions and their interactions in the discrete Ablowitz-Ladik (DAL) equation with variable coefficients, which possesses complicated wave propagation in time and differs from the usual bright soliton waves. The differential-difference similarity transformation allows us to relate the discrete bright soliton solutions of the inhomogeneous DAL equation to the solutions of the homogeneous DAL equation. Propagation and interaction behaviors of the nonautonomous discrete solitons are analyzed through the one- and two-soliton solutions. We study the discrete snaking behaviors, parabolic behaviors, and interaction behaviors of the discrete solitons. In addition, the interaction management with free functions and dynamic behaviors of these solutions is investigated analytically, which have certain applications in electrical and optical systems.

  6. CRIT II electric, magnetic, and density measurements within an ionizing neutral stream

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.

    1990-01-01

    Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.

  7. Understanding the Behaviour of Infinite Ladder Circuits

    ERIC Educational Resources Information Center

    Ucak, C.; Yegin, K.

    2008-01-01

    Infinite ladder circuits are often encountered in undergraduate electrical engineering and physics curricula when dealing with series and parallel combination of impedances, as a part of filter design or wave propagation on transmission lines. The input impedance of such infinite ladder circuits is derived by assuming that the input impedance does…

  8. Effect of acute gastric dilatation on gastric myoelectic and motor activity in dogs.

    PubMed

    Hall, J A; Solie, T N; Seim, H B; Twedt, D C

    1999-05-01

    To investigate the effects of experimentally induced acute gastric dilatation on electrical and mechanical activities of the stomach in dogs. 7 healthy dogs. Electrodes and strain-gauge force transducers were implanted on the serosal surface of the antrum and pylorus. Eight days later, baseline gastric electrical and contractile activities were recorded. The dogs were anesthetized and mechanically ventilated to maintain normocapnia while the stomach was distended (intragastric pressure, 30 mm Hg) for 180 minutes, using a thin compliant bag. Gastric electrical and contractile activities were recorded again on days 1 and 10 after dilatation. Recordings were analyzed to determine gastric slow-wave frequency, slow-wave dysrhythmia, propagation velocity of slow-waves, coupling of contractions to slow waves, motility index on the basis of relative contractile amplitudes, and onset of contractions after a standardized meal. Electrical or contractile activities were not significantly different 18 hours after acute gastric dilatation (day 1). Arrhythmias were evident before and after gastric dilatation in dogs from which food was withheld and in dogs after consumption of a meal. Variables for assessing gastric electrical and contractile activities were unaffected 18 hours after acute gastric dilatation. Analysis of results of this study indicated that altered electrical and contractile activities in dogs with short-term gastric dilatation are not likely to be secondary to the process of acute gastric dilatation.

  9. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    NASA Astrophysics Data System (ADS)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  10. Analysis of the geometric parameters of a solitary waves-based harvester to enhance its power output

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Li, Kaiyuan

    2017-07-01

    We present a harvester formed by a metamaterial, an isotropic medium bonded to the metamaterial, and a wafer-type transducer glued to the medium. The harvester conveys the distributed energy of a mechanical oscillator into a focal point where this energy is converted into electricity. The metamaterial is made with an array of granular chains that host the propagation of highly nonlinear solitary waves triggered by the impact of the oscillator. At the interface between the chains and the isotropic solid, part of the acoustic energy refracts into the solid where it triggers the vibration of the solid and coalesces at a point. Here, the transducer converts the focalized stress wave and the waves generated by the reverberation with the edges into electric potential. The effects of the harvester’s geometric parameters on the amount of electrical power that can be harvested are quantified numerically. The results demonstrate that the power output of the harvester increases a few orders of magnitude when the appropriate geometric parameters are selected.

  11. Model Investigations of Lithospheric Propagation

    DTIC Science & Technology

    1988-05-01

    along bound- aries between electrically different media. A terminated insulated antenna has been designed and tested for launching a lateral el ...formulas for El . and El_,, Radio Sci. 17, 532-538 (1982); "Correction," 19, 1422 (1984). [4]* R. W. P. King and T. T. Wu, "Lateral waves: Formulas for the...34 IEEE Trans. Geosc;. Elect. GE-17, 86-92 (3979) ..................... ............ 15 T. T. Wu and Rt. W. P. King, "Lateral waves: A new for- aula an

  12. Characterization of the in vitro propagation of epileptiform electrophysiological activity in organotypic hippocampal slice cultures coupled to 3D microelectrode arrays.

    PubMed

    Pisciotta, Marzia; Morgavi, Giovanna; Jahnsen, Henrik

    2010-10-28

    Dynamic aspects of the propagation of epileptiform activity have so far received little attention. With the aim of providing new insights about the spatial features of the propagation of epileptic seizures in the nervous system, we studied in vitro the initiation and propagation of traveling epileptiform waves of electrophysiological activity in the hippocampus by means of substrate three-dimensional microelectrode arrays (MEAs) for extracellular measurements. Pharmacologically disinhibited hippocampal slices spontaneously generate epileptiform bursts mostly originating in CA3 and propagating to CA1. Our study specifically addressed the activity-dependent changes of the propagation of traveling electrophysiological waves in organotypic hippocampal slices during epileptiform discharge and in particular our question is: what happens to the epileptic signals during their propagation through the slice? Multichannel data analysis enabled us to quantify an activity-dependent increase in the propagation velocity of spontaneous bursts. Moreover, through the evaluation of the coherence of the signals, it was possible to point out that only the lower-frequency components (<95Hz) of the electrical activity are completely coherent with respect to the activity originating in the CA3, while components at higher frequencies lose the coherence, possibly suggesting that the cellular mechanism mediating propagation of electrophysiological activity becomes ineffective for those firing rates exceeding an upper bound or that some noise of neuronal origin was added to the signal during propagation. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. An improved ray theory and transfer matrix method-based model for lightning electromagnetic pulses propagating in Earth-ionosphere waveguide and its applications

    NASA Astrophysics Data System (ADS)

    Qin, Zilong; Chen, Mingli; Zhu, Baoyou; Du, Ya-ping

    2017-01-01

    An improved ray theory and transfer matrix method-based model for a lightning electromagnetic pulse (LEMP) propagating in Earth-ionosphere waveguide (EIWG) is proposed and tested. The model involves the presentation of a lightning source, parameterization of the lower ionosphere, derivation of a transfer function representing all effects of EIWG on LEMP sky wave, and determination of attenuation mode of the LEMP ground wave. The lightning source is simplified as an electric point dipole standing on Earth surface with finite conductance. The transfer function for the sky wave is derived based on ray theory and transfer matrix method. The attenuation mode for the ground wave is solved from Fock's diffraction equations. The model is then applied to several lightning sferics observed in central China during day and night times within 1000 km. The results show that the model can precisely predict the time domain sky wave for all these observed lightning sferics. Both simulations and observations show that the lightning sferics in nighttime has a more complicated waveform than in daytime. Particularly, when a LEMP propagates from east to west (Φ = 270°) and in nighttime, its sky wave tends to be a double-peak waveform (dispersed sky wave) rather than a single peak one. Such a dispersed sky wave in nighttime may be attributed to the magneto-ionic splitting phenomenon in the lower ionosphere. The model provides us an efficient way for retrieving the electron density profile of the lower ionosphere and hence to monitor its spatial and temporal variations via lightning sferics.

  14. Electron beam-plasma interaction and electron-acoustic solitary waves in a plasma with suprathermal electrons

    NASA Astrophysics Data System (ADS)

    Danehkar, A.

    2018-06-01

    Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.

  15. Intercellular Calcium Waves in HeLa Cells Expressing GFP-labeled Connexin 43, 32, or 26

    PubMed Central

    Paemeleire, Koen; Martin, Patricia E. M.; Coleman, Sharon L.; Fogarty, Kevin E.; Carrington, Walter A.; Leybaert, Luc; Tuft, Richard A.; Evans, W. Howard; Sanderson, Michael J.

    2000-01-01

    This study was undertaken to obtain direct evidence for the involvement of gap junctions in the propagation of intercellular Ca2+ waves. Gap junction-deficient HeLa cells were transfected with plasmids encoding for green fluorescent protein (GFP) fused to the cytoplasmic carboxyl termini of connexin 43 (Cx43), 32 (Cx32), or 26 (Cx26). The subsequently expressed GFP-labeled gap junctions rendered the cells dye- and electrically coupled and were detected at the plasma membranes at points of contact between adjacent cells. To correlate the distribution of gap junctions with the changes in [Ca2+]i associated with Ca2+ waves and the distribution of the endoplasmic reticulum (ER), cells were loaded with fluorescent Ca2+-sensitive (fluo-3 and fura-2) and ER membrane (ER-Tracker) dyes. Digital high-speed microscopy was used to collect a series of image slices from which the three-dimensional distribution of the gap junctions and ER were reconstructed. Subsequently, intercellular Ca2+ waves were induced in these cells by mechanical stimulation with or without extracellular apyrase, an ATP-degrading enzyme. In untransfected HeLa cells and in the absence of apyrase, cell-to-cell propagating [Ca2+]i changes were characterized by initiating Ca2+ puffs associated with the perinuclear ER. By contrast, in Cx–GFP-transfected cells and in the presence of apyrase, [Ca2+]i changes were propagated without initiating perinuclear Ca2+ puffs and were communicated between cells at the sites of the Cx–GFP gap junctions. The efficiency of Cx expression determined the extent of Ca2+ wave propagation. These results demonstrate that intercellular Ca2+ waves may be propagated simultaneously via an extracellular pathway and an intracellular pathway through gap junctions and that one form of communication may mask the other. PMID:10793154

  16. Interrelation of soft and hard X-ray emissions during solar flares. II - Simulation model

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Dulk, G. A.; Bornmann, P. L.; Brown, J. C.

    1991-01-01

    Two-dimensional electrostatic particle simulations are presented which incorporate the effect of quasi-static electric fields on particle dynamics as well as effects associated with wave-particle interactions induced by the accelerated particles. The properties of the soft and hard X-ray and microwave emissions from such systems are examined. In particular, it is shown that acceleration by quasi-static electric fields and heating via wave-particle interactions produces electron distributions with a broken-power law, similar to those inferred from hard X-ray spectra. Also, heating of the ambient plasma gives rise to a region of hot plasma propagating down to the chromosphere at about the ion sound speed.

  17. Modeling underwater noise propagation from marine hydrokinetic power devices through a time-domain, velocity-pressure solution

    DOE PAGES

    Hafla, Erin; Johnson, Erick; Johnson, C. Nathan; ...

    2018-06-01

    Marine hydrokinetic (MHK) devices generate electricity from the motion of tidal and ocean currents, as well as ocean waves, to provide an additional source of renewable energy available to the United States. These devices are a source of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines that mandate a maximum amount of noise that may be generated. In the absence of measured levels from in situ deployments, a model for predicting the propagation of sound from an array of MHK sources in a real environment is essential. A set of coupled, linearized velocity-pressure equations in the time-domainmore » are derived and presented in this paper, which are an alternative solution to the Helmholtz and wave equation methods traditionally employed. Discretizing these equations on a three-dimensional (3D), finite-difference grid ultimately permits a finite number of complex sources and spatially varying sound speeds, bathymetry, and bed composition. The solution to this system of equations has been parallelized in an acoustic-wave propagation package developed at Sandia National Labs, called Paracousti. This work presents the broadband sound pressure levels from a single source in two-dimensional (2D) ideal and Pekeris wave-guides and in a 3D domain with a sloping boundary. Furthermore, the paper concludes with demonstration of Paracousti for an array of MHK sources in a simple wave-guide.« less

  18. Modeling underwater noise propagation from marine hydrokinetic power devices through a time-domain, velocity-pressure solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafla, Erin; Johnson, Erick; Johnson, C. Nathan

    Marine hydrokinetic (MHK) devices generate electricity from the motion of tidal and ocean currents, as well as ocean waves, to provide an additional source of renewable energy available to the United States. These devices are a source of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines that mandate a maximum amount of noise that may be generated. In the absence of measured levels from in situ deployments, a model for predicting the propagation of sound from an array of MHK sources in a real environment is essential. A set of coupled, linearized velocity-pressure equations in the time-domainmore » are derived and presented in this paper, which are an alternative solution to the Helmholtz and wave equation methods traditionally employed. Discretizing these equations on a three-dimensional (3D), finite-difference grid ultimately permits a finite number of complex sources and spatially varying sound speeds, bathymetry, and bed composition. The solution to this system of equations has been parallelized in an acoustic-wave propagation package developed at Sandia National Labs, called Paracousti. This work presents the broadband sound pressure levels from a single source in two-dimensional (2D) ideal and Pekeris wave-guides and in a 3D domain with a sloping boundary. Furthermore, the paper concludes with demonstration of Paracousti for an array of MHK sources in a simple wave-guide.« less

  19. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  20. Open Boundary Particle-in-Cell Simulation of Dipolarization Front Propagation

    NASA Technical Reports Server (NTRS)

    Klimas, Alex; Hwang, Kyoung-Joo; Vinas, Adolfo F.; Goldstein, Melvyn L.

    2014-01-01

    First results are presented from an ongoing open boundary 2-1/2D particle-in-cell simulation study of dipolarization front (DF) propagation in Earth's magnetotail. At this stage, this study is focused on the compression, or pileup, region preceding the DF current sheet. We find that the earthward acceleration of the plasma in this region is in general agreement with a recent DF force balance model. A gyrophase bunched reflected ion population at the leading edge of the pileup region is reflected by a normal electric field in the pileup region itself, rather than through an interaction with the current sheet. We discuss plasma wave activity at the leading edge of the pileup region that may be driven by gradients, or by reflected ions, or both; the mode has not been identified. The waves oscillate near but above the ion cyclotron frequency with wavelength several ion inertial lengths. We show that the waves oscillate primarily in the perpendicular magnetic field components, do not propagate along the background magnetic field, are right handed elliptically (close to circularly) polarized, exist in a region of high electron and ion beta, and are stationary in the plasma frame moving earthward. We discuss the possibility that the waves are present in plasma sheet data, but have not, thus far, been discovered.

  1. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress.

    PubMed

    Evans, Matthew J; Choi, Won-Gyu; Gilroy, Simon; Morris, Richard J

    2016-07-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  3. Modulational Instability in a Pair of Non-identical Coupled Nonlinear Electrical Transmission Lines

    NASA Astrophysics Data System (ADS)

    Eric, Tala-Tebue; Aurelien, Kenfack-Jiotsa; Marius Hervé, Tatchou-Ntemfack; Timoléon Crépin, Kofané

    2013-07-01

    In this work, we investigate the dynamics of modulated waves non-identical coupled nonlinear transmission lines. Traditional methods for avoiding mode mixing in identical coupled nonlinear electrical lines consist of adding the same number of linear inductors in each branch. Adding linear inductors in a single line leads to asymmetric coupled nonlinear electrical transmission lines which propagate the signal and the mode mixing. On one hand, the difference between the two lines induced the fission for only one mode of propagation. This fission is influenced by the amplitude of the signal and the amount of the input energy as well; it also narrows the width of the input pulse soliton, leading to a possible increasing of the bit rate. On the other hand, the dissymmetry of the two lines converts the network into a good amplifier for the ω_ mode which corresponds to the regime admitting low frequencies.

  4. Excitation of propagating spin waves by pure spin current

    NASA Astrophysics Data System (ADS)

    Demokritov, Sergej

    Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.

  5. Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design

    NASA Astrophysics Data System (ADS)

    Wang, X. S.; Zhang, H. W.; Wang, X. R.

    2018-02-01

    Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.

  6. Low-intensity electric fields induce two distinct response components in neocortical neuronal populations

    PubMed Central

    Xu, Weifeng; Wolff, Brian S.

    2014-01-01

    Low-intensity alternating electric fields applied to the scalp are capable of modulating cortical activity and brain functions, but the underlying mechanisms remain largely unknown. Here, we report two distinct components of voltage-sensitive dye signals induced by low-intensity, alternating electric fields in rodent cortical slices: a “passive component,” which corresponds to membrane potential changes directly induced by the electric field; and an “active component,” which is a widespread depolarization that is dependent on excitatory synaptic transmission. The passive component is stationary, with amplitude and phase accurately reflecting the cortical cytoarchitecture. In contrast, the active component is initiated from a local “hot spot” of activity and spreads to a large population as a propagating wave with rich local dynamics. The propagation of the active component may play a role in modulating large-scale cortical activity by spreading a low level of excitation from a small initiation point to a vast neuronal population. PMID:25122710

  7. Temporal evolution of circularly polarized dispersive Alfvén wave and effect on solar wind turbulence

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Sharma, R. P.; Gaur, Nidhi

    2016-01-01

    Space provides a vast medium to study turbulence and is accessible to detailed in situ measurements. Alfvén waves (AW) are ubiquitous in space and a main component of magnetohydrodynamic turbulence in heliosphere. The wave interaction with the density fluctuations is considered to be an important driver of nonlinear processes in space plasmas. Present study involves the nonlinear coupling, on the account of the ponderomotive nonlinearity, of the parallel propagating circularly polarized dispersive Alfvén wave (DAW) with the density fluctuations associated with magnetosonic wave propagating in the direction perpendicular to ambient magnetic field. The localization of DAW electric field intensity and the corresponding power spectra has been studied for the case of solar wind at 1 A.U. A breakpoint in power spectrum is seen around ion inertial length and spectra goes steeper at smaller scales which is consistent with the observations reported by CLUSTER in context of solar wind turbulence. Thus nonlinear interaction of DAW with transverse fluctuations causes the transfer of wave energy from larger scales to the smaller scales and may contribute in providing the energy needed to accelerate the solar wind.

  8. Rogue wave triggered at a critical frequency of a nonlinear resonant medium.

    PubMed

    He, Jingsong; Xu, Shuwei; Porsezian, K; Cheng, Yi; Dinda, P Tchofo

    2016-06-01

    We consider a two-level atomic system interacting with an electromagnetic field controlled in amplitude and frequency by a high intensity laser. We show that the amplitude of the induced electric field admits an envelope profile corresponding to a breather soliton. We demonstrate that this soliton can propagate with any frequency shift with respect to that of the control laser, except a critical frequency, at which the system undergoes a structural discontinuity that transforms the breather in a rogue wave. A mechanism of generation of rogue waves by means of an intense laser field is thus revealed.

  9. Rocket observations of the precipitation of electrons by ground VLF transmitters

    NASA Technical Reports Server (NTRS)

    Arnoldy, Roger L.; Kintner, Paul M.

    1989-01-01

    Recent results obtained with electric and magnetic receivers aboard a NASA sounding rocket launched on July 31, 1987 are presented which relate multiple electron spectral peaks observed in the bounce loss cone fluxes to the resonant interaction of electrons with VLF waves from ground transmitters. The correlation of transmitter signals passing through the ionosphere with the precipitated electrons was investigated. The analysis of these in situ wave and particle data addresses the propagation of waves through the ionosphere, and, through an application of the resonant theory, enables an estimation of the cold plasma density in the interaction region.

  10. Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa

    2005-12-15

    A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into 'bidirectional propagation equations' which are derived directly from Maxwell's equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schroedinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, bothmore » theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6 MW. It is demonstrated that the carrier envelope phase (CEP) causes the difference on the temporal electric-field profile and the intensity spectrum for the initial peak power of the order of megawatts. At the propagation distance longer than the coherence length for third-order harmonics, the difference grows in the spectral components around the third-order and higher-order harmonics. The CEP can be a sensitive marker to monitor the evolution of nonlinear optical process by a few-optical-cycle electric-field wave-packet source.« less

  11. Quasicrystalline structures and uses thereof

    DOEpatents

    Steinhardt, Paul J; Chaikin, Paul Michael; Man, Weining

    2013-12-03

    This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.

  12. Quasicrystalline structures and uses thereof

    DOEpatents

    Steinhardt, Paul Joseph [Princeton, NJ; Chaikin, Paul Michael [New York, NY; Man, Weining [San Francisco, CA

    2011-11-22

    This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating in multiple directions.

  13. Quasicrystalline structures and uses thereof

    DOEpatents

    Steinhardt, Paul Joseph; Chaikin, Paul Michael; Man, Weining

    2017-02-14

    This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.

  14. A computer program to evaluate optical systems

    NASA Technical Reports Server (NTRS)

    Innes, D.

    1972-01-01

    A computer program is used to evaluate a 25.4 cm X-ray telescope at a field angle of 20 minutes of arc by geometrical analysis. The object is regarded as a point source of electromagnetic radiation, and the optical surfaces are treated as boundary conditions in the solution of the electromagnetic wave propagation equation. The electric field distribution is then determined in the region of the image and the intensity distribution inferred. A comparison of wave analysis results and photographs taken through the telescope shows excellent agreement.

  15. Interplay between Rashba interaction and electromagnetic field in the edge states of a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Dolcini, Fabrizio

    2017-02-01

    The effects of Rashba interaction and electromagnetic field on the edge states of a two-dimensional topological insulator are investigated in a nonperturbative way. We show that the electron dynamics is equivalent to a problem of massless Dirac fermions propagating with an inhomogeneous velocity, enhanced by the Rashba profile with respect to the bare Fermi value vF. Despite the inelastic and time-reversal breaking processes induced by the electromagnetic field, no backscattering occurs without interaction. The photoexcited electron densities are explicitly obtained in terms of the electric field and the Rashba interaction, and are shown to fulfill generalized chiral anomaly equations. The case of a Gaussian electromagnetic pulse is analyzed in detail. When the photoexcitation occurs far from the Rashba region, the latter effectively acts as a "superluminal gate" boosting the photoexcited wave packet outside the light-cone determined by vF. In contrast, for an electric pulse overlapping the Rashba region, the emerging wave packets are squeezed in a manner that depends on the overlap area. The electron-electron interaction effects are also discussed, for both intraspin and interspin density-density coupling. The results suggest that Rashba interaction, often considered as an unwanted disorder effect, may be exploited to tailor the shape and the propagation time of photoexcited spin-polarized wave packets.

  16. VHF Electrical Properties of Frozen Ground Near Point Barrow, Alaska,

    DTIC Science & Technology

    1981-06-01

    depth. When temperature is depressed even further, the freez - 3. RFI does not require the ground to be disturbed ing of any remaining adsorbed water will...sky wave Seattle, Washington, at 18.6 kHz. Both instruments propagating from a distant or local transmitter to use a small ferrite -loaded coil to

  17. Impact of Type II Spicules in the Corona: Simulations and Synthetic Observables

    NASA Astrophysics Data System (ADS)

    Martínez-Sykora, Juan; De Pontieu, Bart; De Moortel, Ineke; Hansteen, Viggo H.; Carlsson, Mats

    2018-06-01

    The role of type II spicules in the corona has been a much debated topic in recent years. This paper aims to shed light on the impact of type II spicules in the corona using novel 2.5D radiative MHD simulations, including ion–neutral interaction effects with the Bifrost code. We find that the formation of simulated type II spicules, driven by the release of magnetic tension, impacts the corona in various manners. Associated with the formation of spicules, the corona exhibits (1) magneto-acoustic shocks and flows, which supply mass to coronal loops, and (2) transversal magnetic waves and electric currents that propagate at Alfvén speeds. The transversal waves and electric currents, generated by the spicule’s driver and lasting for many minutes, are dissipated and heat the associated loop. These complex interactions in the corona can be connected with blueshifted secondary components in coronal spectral lines (red–blue asymmetries) observed with Hinode/EIS and SOHO/SUMER, as well as the EUV counterpart of type II spicules and propagating coronal disturbances observed with the 171 Å and 193 Å SDO/AIA channels.

  18. Nonlinear electromagnetic propagation in ionosphere: Inclusion of electron temperature dependence of the collision parameter (δ)

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Verma, R. K.

    2018-02-01

    In this paper, the authors have taken into account the electron temperature dependence of δ, the fraction of excess energy of an electron over that of a neutral particle which is exchanged in an elastic collision. The dependence of electron temperature, electron collision frequency, and refractive index/absorption coefficient, corresponding to different frequencies, on the intensity of the wave (specifically square of the amplitude of electric vector) at heights of 90 km, 100 km, and 110 km in the ionosphere, has been evaluated. The results have been discussed and graphically illustrated. The derived dependence of n and k on Eo 2 has been used to study the nonlinear horizontal propagation of electromagnetic waves at the heights of 90 km, 100 km, and 110 km in the ionosphere.

  19. The Properties of Large Amplitude Whistler Mode Waves in the Magnetosphere: Propagation and Relationship with Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Wygant, J. R.; Goetz, K.; Breneman, A.; Kersten, K.

    2011-01-01

    Wepresent resultsof a studyof the characteristicsof very large amplitude whistler mode waves inside the terrestrial magnetosphere at radial distances of less than 15 RE using waveform capture data from the Wind spacecraft. We observed 247 whistler mode waves with at least one electric field component (105/247 had !80 mV/m peak!to!peak amplitudes) and 66 whistler mode waves with at least one search coil magnetic field component (38/66 had !0.8 nT peak!to!peak amplitudes). Wave vectors determined from events with three magnetic field components indicate that 30/46 propagate within 20 of the ambient magnetic field, though some are more oblique (up to "50 ). No relationship was observed between wave normal angle and GSM latitude. 162/247 of the large amplitude whistler mode waves were observed during magnetically active periods (AE > 200 nT). 217 out of 247 total whistler mode waves examined were observed inside the radiation belts. We present a waveform capture with the largest whistler wave magnetic field amplitude (^8 nT peak!to!peak) ever reported in the radiation belts. The estimated Poynting flux magnitude associated with this wave is ^300 mW/m2, roughly four orders of magnitude above estimates from previous satellite measurements. Such large Poynting flux values are consistent with rapid energization of electrons.

  20. Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer

    NASA Astrophysics Data System (ADS)

    Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and antenna impedance measurement of the wire-probe antennas along the orbit. We utilize the results obtained using the SWCAL function when we calibrate the spectra and waveforms obtained by the PWE.[Figure not available: see fulltext.

  1. Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2009-01-01

    Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.

  2. Charge Generation and Propagation in Igneous Rocks

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    2000-01-01

    Resistivity changes, ground potentials, electromagnetic (EM) and luminous signals prior to or during earthquakes have been reported, in addition to ground uplift and tilt, and to changes in the seismic wave propagation parameters. However, no physical model exists that ties these diverse phenomena together. Through time-resolved impacts experiments it has been observed that, when igneous rocks (gabbro, diorite, granite) are impacted at low velocities (approx. 100 m/sec), highly mobile electronic charge carriers are generated, spreading from a small volume near the impact point, causing electric potentials, EM and light emission. The rock becomes momentarily conductive. When impacted at higher velocities (approx. 1.5 km/sec), the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. At the same time, the rock volume is filled with mobile charge carriers, and a positive surface potential is registered. During the next 1-2 msec the surface potential oscillates, due to electron injection from ground. These observations are consistent with positive holes, e.g. defect electrons in the O(2-) sublattice, that can travel via the O 2p-dominated valence band of the silicate minerals at the speed of a phonon-mediated charge transfer. Before activation, the positive hole charge carriers lay dormant in form of positive hole pairs, PHP, electrically inactive, chemically equivalent to peroxy links in the structures of constituent minerals. PHPs are introduced by way of hydroxyl (O3Si-OH) incorporated into nominally anhydrous minerals when they crystallize in water-laden environments. Given that sound waves of even relatively low intensity appear to cause PHPs dissociation, thus generating mobile positive holes, it is proposed that microfracturing during rock deformation cause PHP dissociation. Depending on where and how much the rock volume is stressed, the positive holes are expected to form fluctuating charge clouds in the earthquake source region that may account for earthquake-related electrical phenomena and the reported low frequency EM signals.

  3. Wave number determination of Pc 1-2 mantle waves considering He++ ions: A Cluster study

    NASA Astrophysics Data System (ADS)

    Grison, B.; Escoubet, C. P.; Santolík, O.; Cornilleau-Wehrlin, N.; Khotyaintsev, Y.

    2014-09-01

    The present case study concerns narrowband electromagnetic emission detected in the distant cusp region simultaneously with upgoing plasma flows. The wave properties match the usual properties of the Pc 1-2 mantle waves: small angle between the wave vector and the magnetic field line, left-hand polarization, and propagation toward the ionosphere. We report here the first direct wave vector measurement of these waves (about 1.2 × 10- 2 rad/km) through multi spacecraft analysis using the three magnetic components and, at the same time, through single spacecraft analysis based on the refractive index analysis using the three magnetic components and two electric components. The refractive index analysis offers a simple way to estimate wave numbers in this frequency range. Numerical calculations are performed under the observed plasma conditions. The obtained results show that the ion distribution functions are unstable to ion cyclotron instability at the observed wave vector value, due to the large ion temperature anisotropy. We thus show that these electromagnetic ion cyclotron (EMIC) waves are amplified in the distant cusp region. The Poynting flux of the waves is counterstreaming with respect to the plasma flow. This sense of propagation is consistent with the time necessary to amplify the emissions to the observed level. We point out the role of the wave damping at the He++ gyrofrequency to explain that such waves cannot be observed from the ground at the cusp foot print location.

  4. Compact terahertz wave polarization beam splitter using photonic crystal.

    PubMed

    Mo, Guo-Qiang; Li, Jiu-Sheng

    2016-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of a terahertz wave polarization state exhibits tremendous potential in developing applications of terahertz science and technology. We propose an approach to efficiently split transverse-electric and transverse-magnetic polarized terahertz waves into different propagation directions over the frequency range from 0.9998 to 1.0007 THz. Both the plane wave expansion method and the finite-difference time-domain method are used to calculate and analyze the transmission characteristics of the proposed device. The present device is very compact and the total size is 1.02  mm×0.99  mm. This polarization beam splitter performance indicates that the structure has a potential application for forthcoming terahertz-wave integrated circuit fields.

  5. Constitutive restrictions for deformable simple media that are heat conducting and electrically polarizable

    NASA Astrophysics Data System (ADS)

    Montanaro, Adriano

    2017-07-01

    We present the constitutive restrictions for a deformable simple medium that is heat conducting, electrically polarizable and interacting with the electric field, either of elastic type or with a fading memory. The used theory is an extension of the well known Green-Naghdi thermo-mechanical theories of continua, mainly devoted to thermoelastic bodies or rigid conductors. Hence the theory that is used here is based on an entropy balance law rather than an entropy imbalance, uses the notion of thermal displacement, and predicts heat propagation by thermal waves at finite speed.

  6. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations

    NASA Astrophysics Data System (ADS)

    Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.

    2012-08-01

    This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the streamer dynamics in a classical corona discharge, it is shown that under the same gas composition the plasma jet ionization waves propagate with a lower velocity (about 5 times), and have a higher diameter (at least 10 times) and a lower plasma density (at least 100 times).

  7. Observations of whistler mode waves in the Jovian system and their consequences for the onboard processing within the RPWI instrument for JUICE

    NASA Astrophysics Data System (ADS)

    Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.

    2013-09-01

    Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms

  8. The influence of an external electric field on the propagation of light waves in cholesteric liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Aksenova, E. V.; Karetnikov, A. A.; Kovshik, A. P.; Krainyukov, E. S.; Svanidze, A. V.

    2017-05-01

    The specific features of light transmission in a cholesteric liquid crystal (LC) cell with a director rotated by 90° have been investigated. In this structure, where a light wave is incident at a large angle with respect to the LC surface, the light is reflected (refracted) in the LC layer near the opposite boundary. It is shown that the application of an electric field changes the character of extraordinary wave refraction, as a result of which light starts passing through a cell. The transmission threshold voltage is determined, and its dependence on the angle of incidence of light is obtained. The dependence of the transmitted-light intensity on the voltage across the cell is obtained as well. The same dependences are also derived by numerical calculations with allowance for the turning points and extinction.

  9. Laser-excited pulses in a crystallized dusty plasma

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Nunomura, S.; Goree, J.

    2000-10-01

    A dusty plasma is an ionized gas containing small particles of solid matter. These particles acquire a large negative electric charge. Polymer microspheres were shaken into a capacitively-coupled parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, arranged in a hexagonal lattice. They were imaged using a video camera, to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. There are several ways these waves can be excited, including applying a force from the radiation pressure of a laser beam. By chopping an argon laser beam that is directed at the lattice, it is possible to launch a pulsed wave in the lattice. We evaluate the pulse's shape and propagation speed, and test whether it has the properties of a shock.

  10. Effect of the architecture of the left ventricle on the speed of the excitation wave in muscle fibers

    NASA Astrophysics Data System (ADS)

    Nezlobinsky, T. V.; Pravdin, S. F.; Katsnelson, L. B.; Solovyova, O. E.

    2016-07-01

    It is known that preferential paths for the propagation of an electrical excitation wave in the human ventricular myocardium are associated with muscle fibers in tissue. The speed of the excitation wave along a fiber is several times higher than that across the direction of the fiber. To estimate the effect of the architecture and anisotropy of the myocardium of the left ventricle on the process of its electrical activation, we have studied the relation between the speed of the electrical excitation wave in a one-dimensional isolated myocardial fiber consisting of sequentially coupled cardiomyocytes and in an identical fiber located in the wall of a threedimensional anatomical model of the left ventricle. It has been shown that the speed of a wavefront along the fiber in the three-dimensional myocardial tissue is much higher than that in the one-dimensional fiber. The acceleration of the signal is due to the rotation of directions of fibers in the wall and to the position of the excitation wavefront with respect to the direction of this fiber. The observed phenomenon is caused by the approach of the excitable tissue with rotational anisotropy in its properties to a pseudoisotropic tissue.

  11. Real-time measurement of biomagnetic vector fields in functional syncytium using amorphous metal.

    PubMed

    Nakayama, Shinsuke; Uchiyama, Tusyoshi

    2015-03-06

    Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current.

  12. Real-time Measurement of Biomagnetic Vector Fields in Functional Syncytium Using Amorphous Metal

    NASA Astrophysics Data System (ADS)

    Nakayama, Shinsuke; Uchiyama, Tusyoshi

    2015-03-01

    Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current.

  13. Heterogeneity and nearest-neighbor coupling can explain small-worldness and wave properties in pancreatic islets

    NASA Astrophysics Data System (ADS)

    Cappon, Giacomo; Pedersen, Morten Gram

    2016-05-01

    Many multicellular systems consist of coupled cells that work as a syncytium. The pancreatic islet of Langerhans is a well-studied example of such a microorgan. The islets are responsible for secretion of glucose-regulating hormones, mainly glucagon and insulin, which are released in distinct pulses. In order to observe pulsatile insulin secretion from the β-cells within the islets, the cellular responses must be synchronized. It is now well established that gap junctions provide the electrical nearest-neighbor coupling that allows excitation waves to spread across islets to synchronize the β-cell population. Surprisingly, functional coupling analysis of calcium responses in β-cells shows small-world properties, i.e., a high degree of local coupling with a few long-range "short-cut" connections that reduce the average path-length greatly. Here, we investigate how such long-range functional coupling can appear as a result of heterogeneity, nearest-neighbor coupling, and wave propagation. Heterogeneity is also able to explain a set of experimentally observed synchronization and wave properties without introducing all-or-none cell coupling and percolation theory. Our theoretical results highlight how local biological coupling can give rise to functional small-world properties via heterogeneity and wave propagation.

  14. Transmural Ultrasound-based Visualization of Patterns of Action Potential Wave Propagation in Cardiac Tissue

    PubMed Central

    Luther, Stefan; Singh, Rupinder; Gilmour, Robert F.

    2010-01-01

    The pattern of action potential propagation during various tachyarrhythmias is strongly suspected to be composed of multiple re-entrant waves, but has never been imaged in detail deep within myocardial tissue. An understanding of the nature and dynamics of these waves is important in the development of appropriate electrical or pharmacological treatments for these pathological conditions. We propose a new imaging modality that uses ultrasound to visualize the patterns of propagation of these waves through the mechanical deformations they induce. The new method would have the distinct advantage of being able to visualize these waves deep within cardiac tissue. In this article, we describe one step that would be necessary in this imaging process—the conversion of these deformations into the action potential induced active stresses that produced them. We demonstrate that, because the active stress induced by an action potential is, to a good approximation, only nonzero along the local fiber direction, the problem in our case is actually overdetermined, allowing us to obtain a complete solution. Use of two- rather than three-dimensional displacement data, noise in these displacements, and/or errors in the measurements of the fiber orientations all produce substantial but acceptable errors in the solution. We conclude that the reconstruction of action potential-induced active stress from the deformation it causes appears possible, and that, therefore, the path is open to the development of the new imaging modality. PMID:20499183

  15. Magnetic hyperbolic optical metamaterials

    DOE PAGES

    Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; ...

    2016-04-13

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This then restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolicmore » dispersion in three-dimensional metamaterials. We also measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. These findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.« less

  16. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Deng, Qian; Liang, Xu; Shen, Shengping

    2017-08-01

    In this paper, a phenomenon of polarization introduced by shock waves is experimentally studied. Although this phenomenon has been reported previously in the community of physics, this is the first time to link it to flexoelectricity, the coupling between electric polarization and strain gradients in dielectrics. As the shock waves propagate in a dielectric material, electric polarization is thought to be induced by the strain gradient at the shock front. First, we control the first-order hydrogen gas gun to impact and generate shock waves in unpolarized bulk barium titanate (BT) samples. Then, a high-precision oscilloscope is used to measure the voltage generated by the flexoelectric effect. Based on experimental results, strain elastic wave theory, and flexoelectric theory, a longitudinal flexoelectric coefficient of the bulk BT sample is calculated to be μ 11 = 17.33 × 10 - 6 C/m, which is in accord with the published transverse flexoelectric coefficient. This method effectively suppresses the majority of drawbacks in the quasi-static and low frequency dynamic techniques and provides more reliable results of flexoelectric behaviors.

  17. Love-type waves in functionally graded piezoelectric material (FGPM) sandwiched between initially stressed layer and elastic substrate

    NASA Astrophysics Data System (ADS)

    Saroj, Pradeep K.; Sahu, S. A.; Chaudhary, S.; Chattopadhyay, A.

    2015-10-01

    This paper investigates the propagation behavior of Love-type surface waves in three-layered composite structure with initial stress. The composite structure has been taken in such a way that a functionally graded piezoelectric material (FGPM) layer is bonded between initially stressed piezoelectric upper layer and an elastic substrate. Using the method of separation of variables, frequency equation for the considered wave has been established in the form of determinant for electrical open and short cases on free surface. The bisection method iteration technique has been used to find the roots of the dispersion relations which give the modes for electrical open and short cases. The effects of gradient variation of material constant and initial stress on the phase velocity of surface waves are discussed. Dependence of thickness on each parameter of the study has been shown explicitly. Study has been also done to show the existence of cut-off frequency. Graphical representation has been done to exhibit the findings. The obtained results are significant for the investigation and characterization of Love-type waves in FGPM-layered media.

  18. Anatomical and spiral wave reentry in a simplified model for atrial electrophysiology.

    PubMed

    Richter, Yvonne; Lind, Pedro G; Seemann, Gunnar; Maass, Philipp

    2017-04-21

    For modeling the propagation of action potentials in the human atria, various models have been developed in the past, which take into account in detail the influence of the numerous ionic currents flowing through the cell membrane. Aiming at a simplified description, the Bueno-Orovio-Cherry-Fenton (BOCF) model for electric wave propagation in the ventricle has been adapted recently to atrial physiology. Here, we study this adapted BOCF (aBOCF) model with respect to its capability to accurately generate spatio-temporal excitation patterns found in anatomical and spiral wave reentry. To this end, we compare results of the aBOCF model with the more detailed one proposed by Courtemanche, Ramirez and Nattel (CRN model). We find that characteristic features of the reentrant excitation patterns seen in the CRN model are well captured by the aBOCF model. This opens the possibility to study origins of atrial fibrillation based on a simplified but still reliable description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Simulations of wave propagation and disorder in 3D non-close-packed colloidal photonic crystals with low refractive index contrast.

    PubMed

    Glushko, O; Meisels, R; Kuchar, F

    2010-03-29

    The plane-wave expansion method (PWEM), the multiple-scattering method (MSM) and the 3D finite-difference time-domain method (FDTD) are applied for simulations of propagation of electromagnetic waves through 3D colloidal photonic crystals. The system investigated is not a "usual" artificial opal with close-packed fcc lattice but a dilute bcc structure which occurs due to long-range repulsive interaction between electrically charged colloidal particles during the growth process. The basic optical properties of non-close-packed colloidal PhCs are explored by examining the band structure and reflection spectra for a bcc lattice of silica spheres in an aqueous medium. Finite size effects and correspondence between the Bragg model, band structure and reflection spectra are discussed. The effects of size, positional and missing-spheres disorder are investigated. In addition, by analyzing the results of experimental work we show that the fabricated structures have reduced plane-to-plane distance probably due to the effect of gravity during growth.

  20. The Coherer: With Simple Demonstrations of the Generation, Propagation and Detection of Radio Waves

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    A coherer is a bistable device based on metal filings loosely confined between solid metal electrodes. This granular material normally exhibits a very high electrical resistance (tens of kilohms), but passage of the high-frequency current generated by reception of a radio signal causes it to "cohere" into a comparatively low resistance condition…

  1. The Scattering of Partially Coherent Electromagnetic Beam Illumination from Statistically Rough Surfaces

    DTIC Science & Technology

    2014-06-19

    scattering research performed by the radio - frequency /microwave and visible/near-infrared communities for synthetic aperture radar and remote...Rough Surfaces with Arbitrary Slope and Frequency ,” IEEE Trans. Antennas Propag. 28, 11 - 21 (1980). 76. E. Bahar, “Full-Wave Solutions for the...equations ..................................................................................... 11 2.2.1 Electric-field integral equations

  2. From core to coax: extending core RF modelling to include SOL, Antenna, and PFC

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Syun'ichi

    2017-10-01

    A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL), and core propagation. Traditionally, core RF wave propagation and antenna coupling has been calculated separately both using rather simplified SOL plasmas. The new approach, instead, allows capturing wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss, as well as investigating far and near field impurity generation from RF sheaths and a breakdown issue from antenna electric fields. Our approach combines the field solutions obtained from a core spectral code with a hot plasma dielectric and an edge FEM code using a cold plasma approximation via surface admittance-like matrix. Our approach was verified using the TORIC core ICRF spectral code and the commercial COMSOL FEM package, and was extended to 3D torus using open-source scalable MFEM library. The simulation result revealed that as the core wave damping gets weaker, the wave absorption in edge could become non-negligible. Three dimensional capabilities with non axisymmetric edge are being applied to study the antenna characteristic difference between the field aligned and toroidally aligned antennas on Alcator C-Mod, as well as the surface wave excitation on NSTX-U. Work supported by the U.S. DoE, OFES, using User Facility Alcator C-Mod, DE-FC02-99ER54512 and Contract No. DE-FC02-01ER54648.

  3. Dynamic Stark spectroscopic measurements of microwave electric fields inside the plasma near a high-power antenna.

    PubMed

    Klepper, C C; Isler, R C; Hillairet, J; Martin, E H; Colas, L; Ekedahl, A; Goniche, M; Harris, J H; Hillis, D L; Panayotis, S; Pegourié, B; Lotte, Ph; Colledani, G; Martin, V

    2013-05-24

    Fully dynamic Stark effect visible spectroscopy was used for the first time to directly measure the local rf electric field in the boundary plasma near a high-power antenna in high-performance, magnetically confined, fusion energy experiment. The measurement was performed in the superconducting tokamak Tore Supra, in the near field of a 1–3 MW, lower-hybrid, 3.7 GHz wave-launch antenna, and combined with modeling of neutral atom transport to estimate the local rf electric field amplitude (as low as 1–2 kV/cm) and direction in this region. The measurement was then shown to be consistent with the predicted values from a 2D full-wave propagation model. Notably the measurement confirmed that the electric field direction deviates substantially from the direction in which it is launched by the waveguides as it penetrates only a few cm radially inward into the plasma from the waveguides, consistent with the model.

  4. Whistler mode waves in the Jovian magnetosheath

    NASA Technical Reports Server (NTRS)

    Lin, Naiguo; Kellogg, P. J.; Thiessen, J. P.; Lengyel-Frey, D.; Tsurutani, B. T.; Phillips, J. L.

    1994-01-01

    During the Ulysses flyby of Jupiter in February 1992, the spacecraft traversed the Jovian magnetosheath for a few hours during the inbound pass and for aa few days during the outbound pass. Burstlike electomagnetic waves at frequencies of approximately 0.1-0.4 of the local electron cyclotron frequency have been observed by the Unified Radio and Plasma Wave (URAP) experiement. The waves were more often observed in the regions which were probably the outer or the middle magnetosheath, especially near the bow shock, and rarely seen in the magnetosphere/magnetosheath boundary layer. The propagation angles of the waves are estimated by comparing the measurements of the wave electric and magnetic fields in the spacecraft spin plane with the corresponding values calculated using the cold plasma dispersion relation under local field and plasma conditions. It is found that the waves propagate obliquely with wave angles between approximately 30 deg and 50 deg. These waves are likely to be the whistler mode waves which are excited by suprathermal electrons with a few hundred eV and a slight anisotropy (T(sub perp)/T(sub parallel) approximately 1.1-1.5). They are probably similar in nature to the lion roars observed in the Earth's magnetosheath. Signature of coupling between the mirror and the whistler mode have also been observed. The plasma conditions which favor the excitation of the whistler mode instability during the wave events exists as observed by the plasma experiement of Ulysses.

  5. Using 3D Simulation of Elastic Wave Propagation in Laplace Domain for Electromagnetic-Seismic Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Newman, G. A.

    2010-12-01

    Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.

  6. Multiple scattering of broadband terahertz pulses

    NASA Astrophysics Data System (ADS)

    Pearce, Jeremiah Glen

    Propagation of single-cycle terahertz (THz) pulses through a random medium leads to dramatic amplitude and phase variations of the electric field because of multiple scattering. We present the first set of experiments that investigate the propagation of THz pulses through scattering media. The scattering of short pulses is a relevant subject to many communities in science and engineering, because the properties of multiply scattered or diffuse waves provide insights into the characteristics of the random medium. For example, the depolarization of diffuse waves has been used to form images of objects embedded in inhomogeneous media. Most of the previous scattering experiments have used narrowband optical radiation where measurements are limited to time averaged intensities or autocorrelation quantities, which contain no phase information of the pulses. In the experiments presented here, a terahertz time-domain spectrometer (THz-TDS) is used. A THz-TDS propagates single-cycle sub-picosecond pulses with bandwidths of over 1 THz into free space. The THz-TDS is a unique tool to study such phenomena, because it provides access to both the intensity and phase of those pulses through direct measurement of the temporal electric field. Because of the broad bandwidth and linear phase of the pulses, it is possible to simultaneously study Rayleigh scattering and the short wavelength limit in a single measurement. We study the diffusion of broadband single-cycle THz pulses by propagating the pulses through a highly scattering medium. Using the THz-TDS, time-domain measurements provide information on the statistics of both the amplitude and phase of the diffusive waves. We develop a theoretical description, suitable for broadband radiation, which accurately describes the experimental results. We measure the time evolution of the degree of polarization, and directly correlate it with the single-scattering regime in the time domain. Measurements of the evolution of the temporal phase of the radiation demonstrate that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect distinguishes photons that have been scattered only a few times from those that are propagating diffusively.

  7. Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.

    2004-01-01

    Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

  8. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.

    PubMed

    Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi

    2008-11-01

    In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.

  9. Nonlinear longitudinal resonance interaction of energetic charged particles and VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Tkalcevic, S.

    1982-01-01

    The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.

  10. Modal analysis and cut-off conditions of multichannel surface-acoustic-waveguide structures.

    PubMed

    Griffel, G; Golan, G; Ruschin, S; Seidman, A; Croitoru, N

    1988-01-01

    Multichannel guides for surface acoustic waves can improve the efficiency of SAW (surface acoustic-wave) devices significantly. Focusing, steering, and modulating the propagating acoustical modes can be achieved similarly to optical waveguided devices. A general formulation is presented for the analysis of the lateral waveguiding properties of Rayleigh modes in surfaces loaded with deposited strips of different materials. General expressions are obtained for the number of modes and cutoff conditions in these structures. As examples of applications, a simple directional coupler and an electrically controlled coupler are proposed.

  11. On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients

    NASA Astrophysics Data System (ADS)

    Raza, Nauman; Murtaza, Isma Ghulam; Sial, Sultan; Younis, Muhammad

    2018-07-01

    The article studies the dynamics of solitons in electrical microtubule ? model, which describes the propagation of waves in nonlinear dynamical system. Microtubules are not only a passive support of a cell but also they have highly dynamic structures involved in cell motility, intracellular transport and signaling. The underlying model has been considered with constant and variable coefficients of time function. The solitary wave ansatz has been applied successfully to extract these solitons. The corresponding integrability criteria, also known as constraint conditions, naturally emerge from the analysis of these models.

  12. Electromagnetic fields in curved spacetimes

    NASA Astrophysics Data System (ADS)

    Tsagas, Christos G.

    2005-01-01

    We consider the evolution of electromagnetic fields in curved spacetimes and calculate the exact wave equations for the associated electric and magnetic components. Our analysis is fully covariant, applies to a general spacetime and isolates all the sources that affect the propagation of these waves. Among others, we explicitly show how the different components of the gravitational field act as driving sources of electromagnetic disturbances. When applied to perturbed Friedmann Robertson Walker cosmologies, our results argue for a superadiabatic-type amplification of large-scale cosmological magnetic fields in Friedmann models with open spatial curvature.

  13. Application of Wave Distribution Function Method to the ERG/PWE Data

    NASA Astrophysics Data System (ADS)

    Ota, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Matsuoka, A.; Hikishima, M.; Kasaba, Y.; Ozaki, M.; Yagitani, S.; Tsuchiya, F.; Kumamoto, A.

    2017-12-01

    The ERG (Arase) satellite was launched on 20 December 2016 to study acceleration and loss mechanisms of relativistic electrons in the Earth's magnetosphere. The Plasma Wave Experiment (PWE), which is one of the science instruments on board the ERG satellite, measures electric field and magnetic field. The PWE consists of three sub-systems; EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer).The OFA/WFC measures electromagnetic field spectra and raw waveforms in the frequency range from few Hz to 20 kHz. The OFA produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectral matrix), and OFA-COMPLEX (complex spectrum). The OFA-MATRIX measures ensemble averaged complex cross-spectra of two electric field components, and of three magnetic field components. The OFA-COMPLEX measures instantaneous complex spectra of electric and magnetic fields. These data are produced every 8 seconds in the nominal mode, and it can be used for polarization analysis and wave propagation direction finding.In general, spectral matrix composed by cross-spectra of observed signals is used for direction finding, and many algorithms have been proposed. For example, Means method and SVD method can be applied on the assumption that the spectral matrix is consists of a single plane wave, while wave distribution function (WDF) method is applicable even to the data in which multiple numbers of plane waves are simultaneously included. In this presentation, we introduce the results when the WDF method is applied to the ERG/PWE data.

  14. Finite difference time domain analysis of chirped dielectric gratings

    NASA Technical Reports Server (NTRS)

    Hochmuth, Diane H.; Johnson, Eric G.

    1993-01-01

    The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.

  15. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    NASA Astrophysics Data System (ADS)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  16. An experimental test of the 'transmission-line model' of electromagnetic radiation from triggered lightning return strokes

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Idone, V. P.; Orville, R. E.; Leteinturier, C.; Eybert-Berard, A.

    1988-01-01

    Peak currents, two-dimensional average propagation speeds, and electric field waveforms for a number of subsequent return strikes in rocket-triggered lightning flashes were measured in order to test the 'transmission-line model' of return-stroke radiation of Uman and McLain (1970). Reasonable agreement is found between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. A modification of the model is proposed in which two wave fronts travel upward and downward away from a junction point a short distance above the ground.

  17. An experimental test of the 'transmission-line model' of electromagnetic radiation from triggered lightning return strokes

    NASA Astrophysics Data System (ADS)

    Willett, J. C.; Idone, V. P.; Orville, R. E.; Leteinturier, C.; Eybert-Berard, A.

    1988-04-01

    Peak currents, two-dimensional average propagation speeds, and electric field waveforms for a number of subsequent return strikes in rocket-triggered lightning flashes were measured in order to test the 'transmission-line model' of return-stroke radiation of Uman and McLain (1970). Reasonable agreement is found between the propagation speeds measured with the streak camera and those deduced from the transmission-line model. A modification of the model is proposed in which two wave fronts travel upward and downward away from a junction point a short distance above the ground.

  18. Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    2011-05-01

    A planar sheet immersed in an electrically polar liquid like water can propel itself by means of a plane wave charge density propagating in the sheet. The corresponding running electric wave polarizes the fluid and causes an electrical torque density to act on the fluid. The sheet is convected by the fluid motion resulting from the conversion of rotational particle motion, generated by the torque density, into translational fluid motion by the mechanism of friction and spin diffusion. Similarly, a planar sheet immersed in a magnetic ferrofluid can propel itself by means of a plane wave current density in the sheet and the torque density acting on the fluid corresponding to the running wave magnetic field and magnetization. The effect is studied on the basis of the micropolar fluid equations of motion and Maxwell’s equations of electrostatics or magnetostatics, respectively. An analytic expression is derived for the velocity of the sheet by perturbation theory to second order in powers of the amplitude of the driving charge or current density. Under the assumption that the equilibrium magnetic equation of state may be used in linearized form and that higher harmonics than the first may be neglected, a set of self-consistent integral equations is derived which can be solved numerically by iteration. In typical situations the second-order perturbation theory turns out to be quite accurate.

  19. Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.

    PubMed

    Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham

    2016-11-01

    Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.

  20. Visual Stimuli Induce Waves of Electrical Activity in Turtle Cortex

    NASA Astrophysics Data System (ADS)

    Prechtl, J. C.; Cohen, L. B.; Pesaran, B.; Mitra, P. P.; Kleinfeld, D.

    1997-07-01

    The computations involved in the processing of a visual scene invariably involve the interactions among neurons throughout all of visual cortex. One hypothesis is that the timing of neuronal activity, as well as the amplitude of activity, provides a means to encode features of objects. The experimental data from studies on cat [Gray, C. M., Konig, P., Engel, A. K. & Singer, W. (1989) Nature (London) 338, 334-337] support a view in which only synchronous (no phase lags) activity carries information about the visual scene. In contrast, theoretical studies suggest, on the one hand, the utility of multiple phases within a population of neurons as a means to encode independent visual features and, on the other hand, the likely existence of timing differences solely on the basis of network dynamics. Here we use widefield imaging in conjunction with voltage-sensitive dyes to record electrical activity from the virtually intact, unanesthetized turtle brain. Our data consist of single-trial measurements. We analyze our data in the frequency domain to isolate coherent events that lie in different frequency bands. Low frequency oscillations (<5 Hz) are seen in both ongoing activity and activity induced by visual stimuli. These oscillations propagate parallel to the afferent input. Higher frequency activity, with spectral peaks near 10 and 20 Hz, is seen solely in response to stimulation. This activity consists of plane waves and spiral-like waves, as well as more complex patterns. The plane waves have an average phase gradient of ≈ π /2 radians/mm and propagate orthogonally to the low frequency waves. Our results show that large-scale differences in neuronal timing are present and persistent during visual processing.

  1. Detection of direct and indirect noise generated by synthetic hot spots in a duct

    NASA Astrophysics Data System (ADS)

    De Domenico, Francesca; Rolland, Erwan O.; Hochgreb, Simone

    2017-04-01

    Sound waves in a combustor are generated from fluctuations in the heat release rate (direct noise) or the acceleration of entropy, vorticity or compositional perturbations through nozzles or turbine guide vanes (indirect or entropy noise). These sound waves are transmitted downstream as well as reflected upstream of the acceleration point, contributing to the overall noise emissions, or triggering combustion instabilities. Previous experiments attempted to isolate indirect noise by generating thermoacoustic hot spots electrically and measuring the transmitted acoustic waves, yet there are no measurements on the backward propagating entropy and acoustic waves. This work presents the first measurements which clearly separate the direct and indirect noise contributions to pressure fluctuations upstream of the acceleration point. Synthetic entropy spots are produced by unsteady electrical heating of a grid of thin wires located in a tube. Compression waves (direct noise) are generated from this heating process. The hot spots are then advected with the mean flow and finally accelerated through an orifice plate located at the end of the tube, producing a strong acoustic signature which propagates upstream (indirect noise). The convective time is selected to be longer than the heating pulse length, in order to obtain a clear time separation between direct and indirect noise in the overall pressure trace. The contribution of indirect noise to the overall noise is shown to be non-negligible either in subsonic or sonic throat conditions. However, the absolute amplitude of direct noise is larger than the corresponding fraction of indirect noise, explaining the difficulty in clearly identifying the two contributions when they are merged. Further, the work shows the importance of using appropriate pressure transducer instrumentation and correcting for the respective transfer functions in order to account for low frequency effects in the determination of pressure fluctuations.

  2. Visual stimuli induce waves of electrical activity in turtle cortex

    PubMed Central

    Prechtl, J. C.; Cohen, L. B.; Pesaran, B.; Mitra, P. P.; Kleinfeld, D.

    1997-01-01

    The computations involved in the processing of a visual scene invariably involve the interactions among neurons throughout all of visual cortex. One hypothesis is that the timing of neuronal activity, as well as the amplitude of activity, provides a means to encode features of objects. The experimental data from studies on cat [Gray, C. M., Konig, P., Engel, A. K. & Singer, W. (1989) Nature (London) 338, 334–337] support a view in which only synchronous (no phase lags) activity carries information about the visual scene. In contrast, theoretical studies suggest, on the one hand, the utility of multiple phases within a population of neurons as a means to encode independent visual features and, on the other hand, the likely existence of timing differences solely on the basis of network dynamics. Here we use widefield imaging in conjunction with voltage-sensitive dyes to record electrical activity from the virtually intact, unanesthetized turtle brain. Our data consist of single-trial measurements. We analyze our data in the frequency domain to isolate coherent events that lie in different frequency bands. Low frequency oscillations (<5 Hz) are seen in both ongoing activity and activity induced by visual stimuli. These oscillations propagate parallel to the afferent input. Higher frequency activity, with spectral peaks near 10 and 20 Hz, is seen solely in response to stimulation. This activity consists of plane waves and spiral-like waves, as well as more complex patterns. The plane waves have an average phase gradient of ≈π/2 radians/mm and propagate orthogonally to the low frequency waves. Our results show that large-scale differences in neuronal timing are present and persistent during visual processing. PMID:9207142

  3. The effect of target materials on the propagation of atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Ji, Longfei; Yan, Wen; Xia, Yang; Liu, Dongping

    2018-05-01

    The current study is focused on the effect of target materials (quartz plate, copper sheet, and quartz plate with a grounded copper sheet on the back) on the propagation of atmospheric-pressure helium plasma jets. The dynamics of ionization waves (IWs) and the relative amount of reactive oxygen species (OH and O) in the IW front were compared by using spatial and temporal images and relative optical emission spectroscopy. Our measurements show that the targets can significantly affect the propagation and intensity of the IWs. In addition, strong OH emission lines were detected when the IWs impinged upon the damp surface. Numerical simulations have been carried out to explain the experimental observation. The propagation velocity of IWs predicted by the simulation was in good agreement with the experimental results. Simulation results suggest that the density and velocity of IWs mainly depend on the electric field between the high voltage electrode tip and the target. Analysis indicates that the targets could change the electric field distribution between the high voltage electrode and targets and thus affect the dynamics and the density of the IWs, the generation of reactive oxygen species, and the corresponding sterilization efficiency.

  4. Magnetosheath lion roars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, E.J.; Tsurutani, B.T.

    1976-05-01

    Lion roars, which are intense packets of electromagnetic waves characteristically found in the magneosheath, have been studied. On the basis of these observations, several possible wave generation mechanisms are examined. Landau resonance is considered to be an unlikely source because this mechanism requires a substantial component of the wave electric field paralle to B, and the observation that the waves propagate along the ambient field is contrary to this requirement. It is not obvious that electron cyclotron resonance is responsible, because the field magnitude decreases should cause T/sub parallel//T/sub perpendicular/ to increase, and this rise could lead to wave dampingmore » rather than wave growth. A model which is consistent with all the observations of this study is a proton cyclotron overstability involving 10-keV protons streaming through the magnetosheath. It appears possible that the streaming protons could produce both the waves and the field decreases and that all three would be coincident. (AIP)« less

  5. Horizontal fields generated by return strokes

    NASA Technical Reports Server (NTRS)

    Cooray, Vernon

    1991-01-01

    Horizontal fields generated by return strokes play an important role in the interaction of lightning generated electric fields with power lines. In many of the recent investigations on the interaction of lightning electromagnetic fields with power lines, the horizontal field was calculated by employing the expression for the tilt of the electric field of a plane wave propagating over finitely conducting earth. The method is suitable for calculating horizontal fields generated by return strokes at distances as close as 200m. At these close ranges, the use of the wavetilt expression can cause large errors.

  6. Discharge dynamics of self-oriented microplasma coupling between cross adjacent cavities in micro-structure device driven by a bipolar pulse waveform

    NASA Astrophysics Data System (ADS)

    Wang, Yaogong; Zhang, Xiaoning; Liu, Lingguang; Zhou, Xuan; Liu, Chunliang; Zhang, Qiaogen

    2018-04-01

    The excitation dynamics and self-oriented plasma coupling of a micro-structure plasma device with a rectangular cross-section are investigated. The device consists of 7 × 7 microcavity arrays, which are blended into a unity by a 50 μm-thick bulk area above them. The device is operated in argon with a pressure of 200 Torr, driven by a bipolar pulse waveform of 20 kHz. The discharge evolution is characterized by means of electrical measurements and optical emission profiles. It has been found that different emission patterns are observed within microcavities. The formation of these patterns induced by the combined action between the applied electric field and surface deactivation is discussed. The microplasma distribution in some specific regions along the diagonal direction of cavities in the bulk area is observed, and self-oriented microplasma coupling is explored, while the plasma interaction occurred between cross adjacent cavities, contributed by the ionization wave propagation. The velocity of ionization wave propagation is measured to be 1.2 km/s to 3.5 km/s. The exploration of this plasma interaction in the bulk area is of value to applications in electromagnetics and signal processing.

  7. (abstract) Spacecraft Doppler Tracking with the Deep Space Network in the Search for Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Renzetti, Nicholas

    1994-01-01

    The Deep Space Network generates accurate radio science data observables for investigators who use radio links between spacecraft and the Earth to examine small changes in the phase and/or amplitude of the signal to study a wide variety of structures and phenomena in space. Several such studies are directed at aspects of the theory of general relativity such as gravitational redshift and gravitational waves. A gravitational wave is a propagating, polarized gravitational field, a ripple in the curvature of space-time. In Einstein's theory of general relativity, the waves are propagating solutions of the Einstein field equations. Their amplitudes are dimensionless strain amplitudes that change the fractional difference in distance between test masses and the rates at which separated clocks keep time. Predicted by all relativistic theories of gravity, they are extremely weak (the ratio of gravitational forces to electrical forces is about 10(sup -40)) and are generated at detectable levels only by astrophysical sources - very massive sources under violent dynamical conditions. The waves have never been detected but searches in the low-frequency band using Doppler tracking of many spacecraft have been conducted and others are being planned. Upper limits have been placed on the gravitational wave strength with the best sensitivities to date are for periodic waves being 7 x 10(sup -15).

  8. Legendre polynomial modeling for vibrations of guided Lamb waves modes in [001]c, [011]c and [111]c polarized (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (x = 0.29 and 0.33) piezoelectric plates: Physical phenomenon of multiple intertwining of An and Sn modes

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar

    2017-12-01

    Guided wave devices have recently become one of the most important applications in the industry because such waves are directly related to applications in sensor technology, chemical sensing, agricultural science, fields of bio-sensing and surface acoustic wave (SAW) devices that are used in electronic filters and signal processing. On that account, this numerical investigation aims to study the propagation behavior of guided Lamb waves in a (1-x)Pb(Mg1/3Nb2/3)O3- x PbTiO3 [PMN- x PT] ( x=0.29 or 0.33) piezoelectric single crystal plate. In fact, the PMN- xPT ( x=0.29 or 0.33) piezoelectric crystals are being polarized along [001]c, [011]c and [111]c of the cubic reference directions so that the macroscopic symmetries are tetragonal 4 mm, orthogonal mm2 and rhombohedral 3 m, respectively. Both open- and short-circuit conditions are considered. Here, the Legendre polynomial method is proposed to solve the guided Lamb waves equations. The validity of the proposed method is illustrated by comparison with the ordinary differential equation (ODE). The convergence of this method is discussed. Consequently, the converged results are obtained with very low truncation order M . This constitutes a major advantage of the present method when compared with the other matrix methods. There is cross-crossings among multiple modes for both symmetric ( Sn) and the anti-symmetric ( An) guided Lamb waves propagation. A displacement field has been illustrated to judge whether Sn and An modes cross with each other. Moreover, electric displacement, stress field and electric potential for the open-circuit case were presented for both S0 and A0 Lamb modes.

  9. The spatial distribution of VLF transmitters at topside ionosphere and the VLF-induced heating phenomena

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhao, S.; Zhou, C.

    2016-12-01

    Based on the electric field observation at VLF frequency band onboard DEMETER satellite, the spatial distribution was studied about some VLF transmitters at different latitudes on ground, as while the maximal intensity, the attenuation rate and affected areas, including NWC and GBZ with high power, and some transmitters with low radiated power. As while the full wave propagation model is used to simulate the theoretical results at topside ionosphere. The results show that, (1) the intensity of electromagnetic waves at topside ionosphere with 1000kW radiated power is higher as one or two orders of magnitude than those with 500 kW power; (2) at same station, the amplitudes in electric field are larger with high frequency signals than those lower ones at the same station; (3) at same frequency points, the ionospheric background affected strongly the waves penetrating into the ionosphere, for the intensity of same frequency signals differed apparently at different transmitters. Due to the high energy of VLF transmitters, the heating phenomena were also observed extensively at DEMETER satellite. Here the VLF-induced ionospheric heating perturbations were selected and analyzed during the solar minimum years of 2008-2009. There are three main features in VLF heating, (1) the temperature of electron and ion increased, while the electron density and O+ density at topside ionosphere decreased; (2) the low hybrid waves were excited at 10-20kHz; (3) the plasma frequency was emitted at some points around 1.92MHz; (4) the VLF induced heating phenomena were associated closely with the radiated power of transmitters, while the transmitters with power <500kW are hard to cause the ionospheric disturbances directly. Considering the propagation and heating process of VLF electromagnetic wave, these features above were discussed and compared with HF heating processes. By learning for the man-made signals propagating from ground into ionosphere, it is helpful to further understand the coupling mechanism among different earth spheres. Acknowledgement: This paper is supported by the International Cooperation Project (2014DFR21280).

  10. Thermoacoustic energy effects in electrical arcs.

    PubMed

    Capelli-Schellpfeffer, M; Miller, G H; Humilier, M

    1999-10-30

    Electrical arcs commonly occur in electrical injury incidents. Historically, safe work distances from an energized surface along with personal barrier protection have been employee safety strategies used to minimize electrical arc hazard exposures. Here, the two-dimensional computational simulation of an electrical arc explosion is reported using color graphics to depict the temperature and acoustic force propagation across the geometry of a hypothetical workroom during a time from 0 to 50 ms after the arc initiation. The theoretical results are compared to the experimental findings of staged tests involving a mannequin worker monitored for electrical current flow, temperature, and pressure, and reported data regarding neurologic injury thresholds. This report demonstrates a credible link between electrical explosions and the risk for pressure (acoustic) wave trauma. Our ultimate goal is to protect workers through the design and implementation of preventive strategies that properly account for all electrical arc-induced hazards, including electrical, thermal, and acoustic effects.

  11. Stationary propagation of a wave segment along an inhomogeneous excitable stripe

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhang, Hong; Zykov, Vladimir; Bodenschatz, Eberhard

    2014-03-01

    We report a numerical and theoretical study of an excitation wave propagating along an inhomogeneous stripe of an excitable medium. The stripe inhomogeneity is due to a jump of the propagation velocity in the direction transverse to the wave motion. Stationary propagating wave segments of rather complicated curved shapes are observed. We demonstrate that the stationary segment shape strongly depends on the initial conditions which are used to initiate the excitation wave. In a certain parameter range, the wave propagation is blocked at the inhomogeneity boundary, although the wave propagation is supported everywhere within the stripe. A free-boundary approach is applied to describe these phenomena which are important for a wide variety of applications from cardiology to information processing.

  12. Analytical and Numerical Modeling of Tsunami Wave Propagation for double layer state in Bore

    NASA Astrophysics Data System (ADS)

    Yuvaraj, V.; Rajasekaran, S.; Nagarajan, D.

    2018-04-01

    Tsunami wave enters into the river bore in the landslide. Tsunami wave propagation are described in two-layer states. The velocity and amplitude of the tsunami wave propagation are calculated using the double layer. The numerical and analytical solutions are given for the nonlinear equation of motion of the wave propagation in a bore.

  13. Dynamics of coupled mode solitons in bursting neural networks

    NASA Astrophysics Data System (ADS)

    Nfor, N. Oma; Ghomsi, P. Guemkam; Moukam Kakmeni, F. M.

    2018-02-01

    Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation. We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone modes.

  14. Dynamics of coupled mode solitons in bursting neural networks.

    PubMed

    Nfor, N Oma; Ghomsi, P Guemkam; Moukam Kakmeni, F M

    2018-02-01

    Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation. We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone modes.

  15. Limitations in the 2D description of the electromagnetic waves propagation in thin dielectric and magnetic layers

    NASA Astrophysics Data System (ADS)

    Radożycki, Tomasz; Bargieła, Piotr

    2018-07-01

    The propagation of electromagnetic waves trapped within dielectric and magnetic layers is considered. The description within the three-dimensional theory is compared to the simplified analysis in two dimensions. Two distinct media configurations of different topology are dealt with: a plane slab and a hollow cylinder. Choosing the appropriate values for the geometrical parameters (layer thickness, radius of the cylinder) and for the electromagnetic properties of the media one can trap exactly one mode corresponding to that obtained within the two-dimensional electromagnetism. However, the symmetry between electric and magnetic fields suggests, that the two versions of the simplified electromagnetism ought to be equally considered. Its usual form is incomplete to describe all modes. It is also found that there exists a domain of optimal values of parameters for which the 2D model works relatively correctly. However, in the case of a cylindrical surface we observe several differences which may be attributed to the curvature of the layer, and which exclude the propagation of evanescent modes. The two-dimensional electrodynamics, whichever form is used, turns out still too poor to describe the so-called 'hybrid modes' excited in a real layer. The obtained results can be essential for proper description of the propagating waves within thin layers for which 3D approach is not available due to mathematical complexity and reducing the layer to a lower dimensional structure seems the only possible option.

  16. Discrete Huygens’ modeling for the characterization of a sound absorbing medium

    NASA Astrophysics Data System (ADS)

    Chai, L.; Kagawa, Y.

    2007-07-01

    Based on the equivalence between the wave propagation in the electrical transmission-lines and acoustic tubes, the authors proposed the use of the transmission-line matrix modeling (TLM) for time-domain solution method of the sound field. TLM is known in electromagnetic engineering community, which is equivalent to the discrete Huygens' modeling. The wave propagation is simulated by tracing the sequences of the transmission and scattering of impulses. The theory and the demonstrated examples are presented in the references, in which a sound absorbing field was preliminarily considered to be a medium with simple acoustic resistance independent of frequency and the angle of incidence for the absorbing layer placed on the room wall surface. The present work is concerned with the time-domain response for the characterization of the sound absorbing materials. A lossy component with variable propagation velocity is introduced for sound absorbing materials to facilitate the energy consumption. The frequency characteristics of the absorption coefficient are also considered for the normal, oblique and random incidence. Some numerical demonstrations show that the present modeling provide a reasonable modeling of the homogeneous sound absorbing materials in time domain.

  17. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry.

    PubMed

    Du, Peng; Paskaranandavadivel, Niranchan; O'Grady, Greg; Tang, Shou-Jiang; Cheng, Leo K

    2015-12-01

    Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself. © The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  18. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry

    PubMed Central

    Du, Peng; Paskaranandavadivel, Niranchan; O’Grady, Greg; Tang, Shou-Jiang; Cheng, Leo K.

    2015-01-01

    Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. Main findings: (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself. PMID:25552487

  19. Comparative In Situ Measurements of Plasma Instabilities in the Equatorial and Auroral Electrojets

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.

    2008-01-01

    This presentation provides a comparison of in situ measurements of plasma instabilities gathered by rocket-borne probes in the equatorial and auroral electrojets. Specifically, using detailed measurements of the DC electric fields, current density, and plasma number density within the unstable daytime equatorial electrojet from Brazil (Guara Campaign) and in the auroral electrojet from Sweden (ERRIS Campaign), we present comparative observations and general conclusions regarding the observed physical properties of Farley-Buneman two-stream waves and large scale, gradient drift waves. The two stream observations reveal coherent-like waves propagating near the E x B direction but at reduced speeds (nearer to the presumed acoustic velocity) with wavelengths of approximately 5-10m in both the equatorial and auroral electrojet, as measured using the spaced-receiver technique. The auroral electrojet data generally shows extensions to shorter wavelengths, in concert with the fact that these waves are driven harder. With respect to gradient-drift driven waves, observations of this instability are much more pronounced in the equatorial electrojet, given the more favorable geometry for growth provided by the vertical gradient and horizontal magnetic field lines. We present new analysis of Guara rocket observations of electric field and plasma density data that reveal considerable structuring in the middle and lower portion of the electrojet (90-105 km) where the ambient plasma density gradient is unstable. Although the electric field amplitudes are largest (approximately 10-15 mV/m) in the zonal direction, considerable structure (approximately 5-10 mV/m) is also observed in the vertical electric field component as well, implying that the dominant large scale waves involve significant vertical interaction and coupling within the narrow altitude range where they are observed. Furthermore, a detailed examination of the phase of the waveforms show that on some, but not all occasions, locally enhanced eastward fields are associated with locally enhanced upwards (polarization) electric fields. The measurements are discussed in terms of theories involving the non-linear evolution and structuring of plasma waves.

  20. The relativistic feedback discharge model of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  1. Cyclic voltammetry of apple fruits: Memristors in vivo.

    PubMed

    Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Blockmon, Avery L; Reedus, Jada; Volkova, Maya I

    2016-12-01

    A memristor is a resistor with memory that exhibits a pinched hysteretic relationship in cyclic voltammetry. Recently, we have found memristors in the electrical circuitry of plants and seeds. There are no publications in literature about the possible existence of memristors and electrical differentiators in fruits. Here we found that the electrostimulation of Golden Delicious or Arkansas Black apple fruits by bipolar periodic waves induces hysteresis loops with pinched points in cyclic voltammograms at low frequencies between 0.1MHz and 1MHz. At high frequencies of 1kHz, the pinched hysteresis loop transforms to a non-pinched hysteresis loop instead of a single line I=V/R for ideal memristors because the amplitude of electrical current depends on capacitance of a fruit's tissue and electrodes, frequency and direction of scanning. Electrostimulation of electrical circuits in apple fruits by periodic voltage waves also induces electrotonic potential propagation due to cell-to-cell electrical coupling with electrical differentiators. A differentiator is an electrical circuit in which the output of the circuit is approximately directly proportional to the rate of change of the input. The information gained from electrostimulation can be used to elucidate and to observe electrochemical and electrophysiological properties of electrical circuits in fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Observation of helicon wave with m = 0 antenna in a weakly magnetized inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John

    2015-09-01

    Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.

  3. Research in space physics at the University of Iowa. [energetic particles and electric, magnetic, and electromagnetic fields

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1978-01-01

    Specific fields of current investigation by satellite observation and ground-based radio-astronomical and optical techniques are discussed. Topics include: aspects of energetic particles trapped in the earth's magnetic field and transiently present in the outer magnetosphere and the solar, interplanetary, and terrestrial phenomena associated with them; plasma flows in the magnetosphere and the ionospheric effects of particle precipitation, with corresponding studies of the magnetosphere of Jupiter, Saturn, and possibly Uranus; the origin and propagation of very low frequency radio waves in the earth's magnetosphere and ionosphere; solar particle emissions and their interplanetary propagation and acceleration; solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays; radio frequency emissions from the quintescent and flaring sun; shock waves in the interplanetary medium; radio emissions from Jupiter; and radio astronomy of pulsars, flare stars, and other stellar sources.

  4. Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave using a High Order Time Domain Vector Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pingenot, J; Rieben, R; White, D

    2005-10-31

    We present a computational study of signal propagation and attenuation of a 200 MHz planar loop antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random rough surface meshes in ordermore » to generate statistical data for the propagation and attenuation properties of the antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric field are presented and discussed.« less

  5. Solitonlike pulses along a modified Noguchi nonlinear electrical network with second-neighbor interactions: Analytical studies

    NASA Astrophysics Data System (ADS)

    Kengne, E.; Liu, W. M.

    2018-05-01

    A modified lossless nonlinear Noguchi transmission network with second-neighbor interactions is considered. In the semidiscrete limit, we apply the reductive perturbation method and show that the dynamics of modulated waves propagating through the network are governed by an NLS equation with linear external potential. Classes of exact solitonic solutions of this network equation are derived, proving possible transmission of both bright and dark solitonlike pulses through the network. The effects of both the coupling second-neighbor parameter L3 and the strength λ of the linear potential on the dynamics of modulated waves through the network are investigated. One of the main results of our work is that with the introduction of the second neighbors in the network, two solitary signals, either two bright solitary signals or one bright and one dark solitary signal, may simultaneously propagate at the same frequency through the network.

  6. Pulse generation scheme for flying electromagnetic doughnuts

    NASA Astrophysics Data System (ADS)

    Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.

    2018-05-01

    Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.

  7. Evidence for lightning on Venus

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.

    1992-01-01

    Lightning is an interesting phenomenon both for atmospheric and ionospheric science. At the Earth lightning is generated in regions where there is strong convection. Lightning also requires the generation of large charge-separation electric fields. The energy dissipated in a lightning discharge can, for example, result in chemical reactions that would not normally occur. From an ionospheric point of view, lightning generates a broad spectrum of electromagnetic radiation. This radiation can propagate through the ionosphere as whistler mode waves, and at the Earth the waves propagate to high altitudes in the plasmasphere where they can cause energetic particle precipitation. The atmosphere and ionosphere of Venus are quite different from those on the Earth, and the presence of lightning at Venus has important consequences for our knowledge of why lightning occurs and how the energy is dissipated in the atmosphere and ionosphere. As discussed here, it now appears that lightning occurs in the dusk local time sector at Venus.

  8. Reflection-refraction of attenuated waves at the interface between a thermo-poroelastic medium and a thermoelastic medium

    NASA Astrophysics Data System (ADS)

    Sharma, M. D.

    2018-07-01

    Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.

  9. Mechanisms important to later stages of streamer system development

    NASA Astrophysics Data System (ADS)

    Lehtinen, N. G.; Carlson, B.; Kochkin, P.; Østgaard, N.

    2017-12-01

    Typical streamer modeling focuses on the propagation of the streamer head and thus neglects processes such as electron detachment, electron energy relaxation, and thermalization of the electron energy distribution. These mechanisms, however, may become important at later stages of streamer system development, in particular following streamer collisions. We present a model of a later-stage streamer system development which includes these processes. A linear analysis suggests that these processes under some conditions can lead to new effects, such as excitation of waves similar to striations in the positive column of a glow discharge. Such instabilities do not occur if these mechanisms are neglected under the same conditions, although previous modeling suggested existence of wave-like phenomena during the streamer propagation [Luque et al, 2016, doi:10.1002/2015JA022234]. In the sea-level pressure air, the obtained striation-like waves may manifest as very high frequency range (>10 MHz) oscillations in plasma parameters and may have been detected in the electrode current and electromagnetic radiation measurements during laboratory spark experiments. We discuss whether the longitudinal electric field in such waves can efficiently transfer energy to charged particles, because such a process may play a role in production of x-rays.

  10. An investigation of the RCS (radar cross section) computation of grid cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabihi, Ahmad

    2014-12-10

    In this paper, the aperture of a cavity is covered by a metallic grid net. This metallic grid is to reduce RCS deduced by impinging radar ray on the aperture. A radar ray incident on a grid net installed on a cavity may create six types of propagation. 1-Incident rays entering inside the cavity and backscattered from it.2-Incidebnt rays on the grid net and created reection rays as an array of scatterers. These rays may create a wave with phase difference of 180 degree with respect to the exiting rays from the cavity.3-Incident rays on the grid net create surfacemore » currents owing on the net and make travelling waves, which regenerate the magnetic and electric fields. These fields make again propagated waves against incident ones.4-Creeping waves.5-Diffracted rays due to leading edges of net’s elements.6-Mutual impedance among elements of the net could be effective on the resultant RCS. Therefore, the author compares the effects of three out of six properties to a cavity without grid net. This comparison shows that RCS prediction of cavity having a grid net is much more reduced than that of without one.« less

  11. Latitudinal dependence on the frequency of Pi2 pulsations near the plasmapause using THEMIS satellites and Asian-Oceanian SuperDARN radars

    NASA Astrophysics Data System (ADS)

    Teramoto, Mariko; Nishitani, Nozomu; Nishimura, Yukitoshi; Nagatsuma, Tsutomu

    2016-02-01

    We herein describe a harmonic Pi2 wave that started at 09:12 UT on August 19, 2010, with data that were obtained simultaneously at 19:00-20:00 MLT by three mid-latitude Asian-Oceanian Super Dual Auroral Radar Network (SuperDARN) radars (Unwin, Tiger, and Hokkaido radars), three Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites (THEMIS A, THEMIS D, and THEMIS E), and ground-based magnetometers at low and high latitudes. All THEMIS satellites, which were located in the plasmasphere, observed Pi2 pulsations dominantly in the magnetic compressional ( B //) and electric azimuthal ( E A) components, i.e., the fast-mode component. The spectrum of Pi2 pulsations in the B // and E A components contained two spectral peaks at approximately 12 to 14 mHz ( f 1, fundamental) and 23 to 25 mHz ( f 2, second harmonic). The Poynting flux derived from the electric and magnetic fields indicated that these pulsations were waves propagating earthward and duskward. Doppler variations ( V) from the 6-s or 8-s resolution camping beams of the Tiger and Unwin SuperDARN radars, which are associated with Pi2 pulsations in the eastward electric field component in the ionosphere, observed Pi2 pulsations within and near the footprint of the plasmapause, whose location was estimated by the THEMIS satellites. The latitudinal profile of f 2 power normalized by f 1 power for Doppler velocities indicated that the enhancement of the normalized f 2 power was the largest near the plasmapause at an altitude-adjusted corrected geomagnetic (AACGM) latitude of 60° to 65°. Based on these features, we suggest that compressional waves propagate duskward away from the midnight sector, where the harmonic cavity mode is generated.

  12. Novel modeling technique for the stator of traveling wave ultrasonic motors.

    PubMed

    Pons, José L; Rodríguez, Humberto; Ceres, Ramón; Calderón, Leopoldo

    2003-11-01

    Traveling wave ultrasonic motors (TWUM) are a promising type of piezoelectric transducers, which are based on the friction transmission of mechanical propagating waves. These waves are excited on the stator by using high Q piezoelectric ceramics. This article presents a modeling strategy, which allows for a quick and precise modal and forced analysis of the stator of TWUM. First-order shear deformation laminated plate theory is applied to annular subdomains (super-elements) of the stator. In addition to shear deformations, the model takes into account the effect of rotary inertia, the stiffness contribution of the teeth, and the linear varying thickness of the stator. Moreover, the formulation considers a more realistic function for the electric field inside the piezoelectric ceramic, i.e., a linear function, instead of the generally assumed constant electric field. The Ritz method is used to find an approximated solution for the dynamic equations. Finally, the modal response is obtained and compared against the results from classical simplified models and the finite element method. Thus, the high accuracy and short computation times of the novel strategy were demonstrated.

  13. Convergence of shock waves generated by underwater electrical explosion of cylindrical wire arrays between different boundary geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanuka, D.; Zinowits, H. E.; Krasik, Ya. E.

    The results of experiments and numerical simulations of a shock wave propagating between either conical or parabolic bounding walls are presented. The shock wave was generated by a microsecond timescale underwater electrical explosion of a cylindrical wire array supplied by a current pulse having an amplitude of ∼230 kA and a rise time of ∼1 μs. It is shown that with the same energy density deposition into the exploding wire array, the shock wave converges faster between parabolic walls, and as a result, the pressure in the vicinity of convergence is ∼2.3 times higher than in the case of conical walls. Themore » results obtained are compared to those of earlier experiments [Antonov et al., Appl. Phys. Lett. 102, 124104 (2013)] with explosions of spherical wire arrays. It is shown that at a distance of ∼400 μm from the implosion origin the pressure obtained in the current experiments is higher than for the case of spherical wire arrays.« less

  14. Phononic band gap and wave propagation on polyvinylidene fluoride-based acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Oltulu, Oral; Simsek, Sevket; Mamedov, Amirullah M.; Ozbay, Ekmel

    2016-12-01

    In the present work, the acoustic band structure of a two-dimensional phononic crystal (PC) containing an organic ferroelectric (PVDF-polyvinylidene fluoride) and topological insulator (SnTe) was investigated by the plane-wave-expansion (PWE) method. Two-dimensional PC with square lattices composed of SnTe cylindrical rods embedded in the PVDF matrix is studied to find the allowed and stop bands for the waves of certain energy. Phononic band diagram ω = ω(k) for a 2D PC, in which non-dimensional frequencies ωa/2πc (c-velocity of wave) were plotted vs. the wavevector k along the Г-X-M-Г path in the square Brillouin zone shows five stop bands in the frequency range between 10 and 110 kHz. The ferroelectric properties of PVDF and the unusual properties of SnTe as a topological material give us the ability to control the wave propagation through the PC over a wide frequency range of 103-106 Hz. SnTe is a discrete component that allows conducting electricity on its surface but shows insulator properties through its bulk volume. Tin telluride is considered as an acoustic topological insulator as the extension of topological insulators into the field of "topological phononics".

  15. Electrically tunable negative refraction in core/shell-structured nanorod fluids.

    PubMed

    Su, Zhaoxian; Yin, Jianbo; Guan, Yanqing; Zhao, Xiaopeng

    2014-10-21

    We theoretically investigate optical refraction behavior in a fluid system which contains silica-coated gold nanorods dispersed in silicone oil under an external electric field. Because of the formation of a chain-like or lattice-like structure of dispersed nanorods along the electric field, the fluid shows a hyperbolic equifrequency contour characteristic and, as a result, all-angle broadband optical negative refraction for transverse magnetic wave propagation can be realized. We calculate the effective permittivity tensor of the fluid and verify the analysis using finite element simulations. We also find that the negative refractive index can vary with the electric field strength and external field distribution. Under a non-uniform external field, the gradient refraction behavior can be realized.

  16. Azimuthal propagation of storm time Pc 5 waves observed simultaneously by geostationary satellites GOES 2 and GOES 3

    NASA Astrophysics Data System (ADS)

    Lin, C. S.; Barfield, J. N.

    1985-11-01

    Storm-time Pc 5 wave events observed simultaneously by the GOES 2 and GOES 3 satellites in the afternoon sector during the 1-year interval of March 1979 to February 1980 are surveyed to learn the wave propagation. Essentially, all storm-time Pc 5 waves (approximately 93 percent) are found to propagate westward azimuthally with a velocity of 5 to 50 km/s and a wavelength of 1000 km to 9000 km (Only two of 30 events had eastward propagation, with a velocity of about 150 km/s). It is concluded that westward propagating waves are excited by ion drift instabilities associated with the ion ring current, and that the eastward propagating waves are excited by surface waves on the magnetopause through Kelvin-Helmholtz instability.

  17. Nonlinear surface waves at ferrite-metamaterial waveguide structure

    NASA Astrophysics Data System (ADS)

    Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques

    2016-09-01

    A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.

  18. Active graphene-silicon hybrid diode for terahertz waves.

    PubMed

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  19. Active graphene–silicon hybrid diode for terahertz waves

    PubMed Central

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene–silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices. PMID:25959596

  20. Geometric calculus-based postulates for the derivation and extension of the Maxwell equations

    NASA Astrophysics Data System (ADS)

    McClellan, Gene E.

    2012-09-01

    Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.

  1. Integrated coherent matter wave circuits

    DOE PAGES

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

  2. Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method.

    PubMed

    Xu, Hao; Chen, Shigao; An, Kai-Nan; Luo, Zong-Ping

    2017-10-30

    Cartilage elasticity changes with cartilage degeneration. Hence, cartilage elasticity detection might be an alternative to traditional imaging methods for the early diagnosis of osteoarthritis. Based on the wave propagation measurement, Shear wave elastography (SWE) become an emerging non-invasive elasticity detection method. The wave propagation model, which is affected by tissue shapes, is crucial for elasticity estimating in SWE. However, wave propagation model for cartilage was unclear. This study aimed to establish a wave propagation model for the cartilage-bone structure. We fabricated a cartilage-bone structure, and studied the elasticity measurement and wave propagation by experimental and numerical Lamb wave method (LWM). Results indicated the wave propagation model satisfied the lamb wave theory for two-layered structure. Moreover, a near field region, which affects wave speed measurements and whose occurrence can be prevented if the wave frequency is larger than one critical frequency, was observed. Our findings would provide a theoretical foundation for further application of LWM in elasticity measurement of cartilage in vivo. It can help the application of LWM to the diagnosis of osteoarthritis.

  3. An electrodynamic description of lightning return strokes and dart leaders: Guided wave propagation along conducting cylindrical channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovsky, J.E.

    1995-02-20

    The return-stroke breakdown pulse and the dart leader are treated as electric waves guided by conducting lightning channels; such waves are launched when current is injected into a conducting channel (producing the dart leader) or when charge on a channel begins to drain to Earth (producing the return stroke). The guided waves are self-consistent solutions to the full set of Maxwell`s equations, obeying the physical boundary conditions for cylindrical channels. These waves are shown (1) to move with velocities substantially slower than c along the channel, (2) to push current inside the lightning channel, (3) to move charge and voltagemore » along the channel, and (4) to transport energy along and into the channel via Poynting flux. The velocity of a guided wave is a function of only three parameters: the channel radius r{sub ch}, the channel temperature T, and the risetime {triangle}t of the wave front. These velocities are found to fall in the range of velocities of return strokes and of dart leaders. The dart leader and the return stroke are caused by the same type of guided electromagnetic waves: the difference in velocity is owed mostly to the difference in channel temperature. In the case of the dart leader the waves deliver Poynting flux along the outside of the channel down from a thundercloud generator to the downward-propagating wave front. At the wave front of the dart leader the delivered energy goes into heating the channel and into storage in the form of E{sup 2}/8{pi} around the newly charged channel. In the case of the return stroke the Poynting flux is localized to the vicinity of the wave front where stored energy E{sup 2}/8{pi} is delivered radially inward onto the channel to heat the channel in the propagating front. The net result of a dart leader and return stroke is that charge is moved from the cloud to the ground and that energy is moved from the cloud onto the channel. 123 refs., 11 figs., 5 tabs.« less

  4. The Potential for Ambient Plasma Wave Propulsion

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at frequencies below the ion cyclotron frequency. They have been observed in both laboratory and astrophysical settings. On Earth, they are being investigated as a possible means for plasma heating, current drive, and momentum addition in magnetic confinement fusion systems. In addition, Alfven waves have been proposed as a mechanism for acceleration of the solar wind away from the sun.

  5. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor'D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.; Yan, Ping

    2013-05-01

    The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of ˜10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.

  6. Field experiments to determine wave propagation principles and mechanical properties of snow

    NASA Astrophysics Data System (ADS)

    Simioni, Stephan; Gebhard, Felix; Dual, Jürg; Schweizer, Jürg

    2017-04-01

    To understand the release of snow avalanches by explosions one needs to know how acoustic waves travel above and within the snowpack. Hitherto, wave propagation was investigated in the laboratory with small samples or in the field in the shock wave region. We developed a measurement system and layout to derive wave attenuation in snow, wave speeds and elastic moduli on small-scale (1-2 m) field experiments to close the gap between the lab scale (0.1 m) and the scale of artificial release (10-100 m). We used solid explosives and hammer blows to create the load and accelerometers to measure the resulting wave within the snowpack. The strong attenuation we observed indicates that we measured the second longitudinal wave which propagates through the pore space. The wave speeds, however, corresponded to the speeds of the first longitudinal wave within the ice skeleton. The elastic moduli were high on the order of several tens of MPa for lower densities (150 kg m-3) and agreed well with earlier lab studies, in particular for the higher densities 250-400 kg m-3). However, the scatter was rather large as expected for in-situ experiments in the layered snow cover. In addition, we measured accelerations during propagation saw test experiments. The propagation of cracks during this type of snow instability test has mainly been studied by analysing the bending of the slab (due to the saw cut) using particle tracking velocimetry. We used the accelerometers to measure crack propagation speeds. The wave speeds were slightly higher for most experiments than reported previously. Furthermore, in some experiments, we encountered to different wave types with one propagating at a higher speed. This finding may be interpreted as the actual crack propagation and the settling of the weak layer (collapse wave). Our results show that field measurements of propagation properties are feasible and that crack propagation as observed during propagation saw tests may involve different processes that need to be further investigated.

  7. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave

    PubMed Central

    Muller, Lyle; Reynaud, Alexandre; Chavane, Frédéric; Destexhe, Alain

    2014-01-01

    Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions. PMID:24770473

  8. Active control of turbomachine discrete tones

    NASA Technical Reports Server (NTRS)

    Fleeter, Sanford

    1994-01-01

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  9. Relationship between directions of wave and energy propagation for cold plasma waves

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1986-01-01

    The dispersion relation for plasma waves is considered in the 'cold' plasma approximation. General formulas for the dependence of the phase and group velocities on the direction of wave propagation with respect to the local magnetic field are obtained for a cold magnetized plasma. The principal cold plasma resonances and cut-off frequencies are defined for an arbitrary angle and are used to establish basic regimes of frequency where the cold plasma waves can propagate or can be evanescent. The relationship between direction of wave and energy propagation, for cold plasma waves in hydrogen atmosphere, is presented in the form of angle diagrams (angle between group velocity and magnetic field versus angle between phase velocity and magnetic field) and polar diagrams (also referred to as 'Friedrich's diagrams') for different directions of wave propagation. Morphological features of the diagrams as well as some critical angles of propagation are discussed.

  10. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  11. The Shock and Vibration Digest. Volume 15, Number 8

    DTIC Science & Technology

    1983-08-01

    a number of cracks have occurred in rotor shafts of turbogenerator sys - tems. Methods for detecting such cracks have thus become important, and...Bearing-Foundation Sys - tems Caused by Electrical System Faults," IFTOMM, p 177. 95. Ming, H., Sgroi, V., and Malanoski, S.B., "Fan/ Foundation...vibra- tion fundamentals, deterministic and random signals, convolution integrals, wave motion, continuous sys - tems, sound propagation outdoors

  12. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 27

    DTIC Science & Technology

    1977-02-10

    input and output conditions. The power section of the circuit is modified to permit triacs and thyristors, respectively, to function. The purpose of the...electronic materials, components, and devices, on circuit theory, pulse techniques, electromagnetic wave propagation, radar, quantum electronic theory...Lasers, Masers, Holography, Quasi-Optical 20 Microelectronics and General Circuit Theory and Information 21 Radars and Radio Wavigati on 22

  13. Structural Health Monitoring 2007: Quantification, Validation, and Implementation

    DTIC Science & Technology

    2007-11-30

    11:20 ~ 11:40 A Novel MEMS Strain Sensor for Structural Health Monitoring Applications under Harsh Environmental Conditions p. 121 Matthew Malkin...Session: Wave Propagation Models in Damage Assesment Chair: Wieslaw Ostachowicz, Polish Academy of Sciences Room: 030 W. Ostachowicz and P. Kudela...University Dayton Research Institute 11:00 ~ 11:20 Low Impact Damage Detection and Analysis with Thin Film Piezo-electric Sensors p. 1064 Samuel

  14. Electromagnetic pulses, localized and causal

    NASA Astrophysics Data System (ADS)

    Lekner, John

    2018-01-01

    We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.

  15. Terahertz wave polarization beam splitter using a cascaded multimode interference structure.

    PubMed

    Li, Jiu-sheng; Liu, Han; Zhang, Le

    2014-08-01

    A terahertz wave polarization beam splitter, based on two cascaded multimode interference structures with different widths, is designed and numerically demonstrated. The numerical calculation results show that the designed polarization beam splitter can split transverse-electric (TE) and transverse-magnetic (TM)-polarized terahertz waves into different propagation directions with high efficiency over a frequency range from 6.40 to 6.50 THz. This polarization beam splitter shows more than a 22.06 dB extinction ratio for TE-polarization and a 31.65 dB extinction ratio for TM-polarization. Using such a polarization beam splitter, the whole length of the polarization beam splitter is reduced to about 1/12 that of a conventional design. This enables the polarization beam splitter to be used in terahertz wave integrated circuit fields.

  16. Wave power focusing due to the Bragg resonance

    NASA Astrophysics Data System (ADS)

    Tao, Ai-feng; Yan, Jin; Wang, Yi; Zheng, Jin-hai; Fan, Jun; Qin, Chuan

    2017-08-01

    Wave energy has drawn much attention as an achievable way to exploit the renewable energy. At present, in order to enhance the wave energy extraction, most efforts have been concentrated on optimizing the wave energy convertor and the power take-off system mechanically and electrically. However, focusing the wave power in specific wave field could also be an alternative to improve the wave energy extraction. In this experimental study, the Bragg resonance effect is applied to focus the wave energy. Because the Bragg resonance effect of the rippled bottom largely amplifies the wave reflection, leading to a significant increase of wave focusing. Achieved with an energy conversion system consisting of a point absorber and a permanent magnet single phase linear motor, the wave energy extracted in the wave flume with and without Bragg resonance effect was measured and compared quantitatively in experiment. It shows that energy extraction by a point absorber from a standing wave field resulted from Bragg resonance effect can be remarkably increased compared with that from a propagating wave field (without Bragg resonance effect).

  17. Waveguide apparatuses and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, James E.

    2016-05-10

    Optical fiber waveguides and related approaches are implemented to facilitate communication. As may be implemented in accordance with one or more embodiments, a waveguide has a substrate including a lattice structure having a plurality of lattice regions with a dielectric constant that is different than that of the substrate, a defect in the lattice, and one or more deviations from the lattice. The defect acts with trapped transverse modes (e.g., magnetic and/or electric modes) and facilitates wave propagation along a longitudinal direction while confining the wave transversely. The deviation(s) from the lattice produces additional modes and/or coupling effects.

  18. Atomic physics effects on tokamak edge drift-tearing modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahm, T.S.

    1993-03-01

    The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold {Delta}{sup Th}, produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.

  19. Atomic physics effects on tokamak edge drift-tearing modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahm, T.S.

    1993-03-01

    The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold [Delta][sup Th], produced by ion sound wave coupling is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semi-collisional regime, both ionization and charge exchange act as drag on the ion parallel velocity, and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation.

  20. Head wave correlations in ambient noise.

    PubMed

    Gebbie, John; Siderius, Martin

    2016-07-01

    Ambient ocean noise is processed with a vertical line array to reveal coherent time-separated arrivals suggesting the presence of head wave multipath propagation. Head waves, which are critically propagating water waves created by seabed waves traveling parallel to the water-sediment interface, can propagate faster than water-only waves. Such eigenrays are much weaker than water-only eigenrays, and are often completely overshadowed by them. Surface-generated noise is different whereby it amplifies the coherence between head waves and critically propagating water-only waves, which is measured by cross-correlating critically steered beams. This phenomenon is demonstrated both experimentally and with a full wave simulation.

  1. Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves.

    PubMed

    Haas, Brigitte; Schipke, Carola G; Peters, Oliver; Söhl, Goran; Willecke, Klaus; Kettenmann, Helmut

    2006-02-01

    In the corpus callosum, astrocytic calcium waves propagate via a mechanism involving ATP-release but not gap junctional coupling. In the present study, we report for the neocortex that calcium wave propagation depends on functional astrocytic gap junctions but is still accompanied by ATP-release. In acute slices obtained from the neocortex of mice deficient for astrocytic expression of connexin43, the calcium wave did not propagate. In contrast, in the corpus callosum and hippocampus of these mice, the wave propagated as in control animals. In addition to calcium wave propagation in astrocytes, ATP-release was recorded as a calcium signal from 'sniffer cells', a cell line expressing high-affinity purinergic receptors placed on the surface of the slice. The astrocyte calcium wave in the neocortex was accompanied by calcium signals in the 'sniffer cell' population. In the connexin43-deficient mice we recorded calcium signals from sniffer cells also in the absence of an astrocytic calcium wave. Our findings indicate that astrocytes propagate calcium signals by two separate mechanisms depending on the brain region and that ATP release can propagate within the neocortex independent from calcium waves.

  2. Remote sensing and modeling of lightning caused long recovery events within the lower ionosphere using VLF/LF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2014-11-01

    On the 4 November 2012 at 3:04:27 UT a strong lightning in the midst of the North Sea affected the propagation conditions of VLF/LF transmitter radio signals from NRK (Iceland, 37.5 kHz) and GBZ (UK, 19.58 kHz) received at 5246° N 8° E (NW Germany). The amplitude and phase dips show a recovery time of 6-12 min pointing to a LOng Recovery Early VLF (LORE) event. Clear assignment of the causative return stroke in space and time was possible with data from the WWLLN (Worldwide Lightning Location Network). Based on a return stroke current model the electric field is calculated and an excess electron density distribution which decays over time in the lower ionosphere is derived. Ionization, attachment and recombination processes are modeled in detail. Entering the electron density distribution in VLF/LF radio wave propagation calculations using the LWPC (Long Wavelength Propagation Capability) code allows to model the VLF/LF amplitude and phase behavior by adjusting the return stroke current moment. The results endorse and quantify the conception of lower ionosphere EMP heating by strong - but not necessarily extremely strong - return strokes of both polarities.

  3. Power Flow Angles for Slanted Finger Surface Acoustic Wave Filters on Langasite Substrate

    NASA Astrophysics Data System (ADS)

    Goto, Mikihiro; Yatsuda, Hiromi; Chiba, Takao

    2007-07-01

    Power flow angles (PFAs) on a langasite (LGS) substrate with Euler angles of (0{\\degree}, 138.5{\\degree}, \\psi), \\psi=25.7 to 27.7° are investigated for slanted finger interdigital transducer (SFIT) surface acoustic wave (SAW) filters by an electrical and optical methods. In the electrical method, several tilted SFIT SAW filters with different tilt angles for (0{\\degree}, 138.5{\\degree}, \\psi) LGS substrates were designed, and the frequency responses of the filters were measured. In the optical method, the PFAs were directly measured by optical probing for a parallel interdigital transducer (IDT) with wide propagation area on the substrate. As a result, a good correlation between electrical and optical measurements of the PFAs is obtained, but the calculated PFAs are slightly different from the measured PFAs. A good frequency response of a tilted 380 MHz SFIT SAW filter with an appropriate tilt angle corresponding to the PFA on the substrate is obtained even though the aperture is small.

  4. Electric potential and electric field imaging

    NASA Astrophysics Data System (ADS)

    Generazio, E. R.

    2017-02-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  5. All-passive nonreciprocal metastructure.

    PubMed

    Mahmoud, Ahmed M; Davoyan, Arthur R; Engheta, Nader

    2015-09-28

    One-way propagation of light, analogous to the directional flow of electrons in the presence of electric potential difference, has been an important goal in the wave-matter interaction. Breaking time-reversal symmetry in photonic flows is faced with challenges different from those for electron flows. In recent years several approaches and methods have been offered towards achieving this goal. Here we investigate another systematic approach to design all-passive relatively high-throughput metastructures that exhibit nonreciprocal properties and achieve wave-flow isolation. Moreover, we build on those findings and propose a paradigm for a quasi-two-dimensional metastructure that mimics the nonreciprocal property of Faraday rotation without using any magnetic or electric biasing. We envision that the proposed approaches may serve as a building block for all-passive time-reversal symmetry breaking with potential applications for future nonreciprocal systems and devices.

  6. Numerical investigation of refractometric sensor elements based on side polished fibres using the Galerkin method

    NASA Astrophysics Data System (ADS)

    Karakoleva, E. I.; Andreev, A. Tz; Zafirova, B. S.

    2006-12-01

    The Galerkin method was applied to solve the vector wave equation in order to determine the propagation constants and the transverse electric fields of the modes propagating along side polished single-mode and two-mode optical fibres. The effective refractive indices of the modes were calculated depending on the values of the residual cladding (minimum distance between a fibre core and a polished surface) and the superstrate refractive index. The influence of the fibre parameters and working wavelength on the refractometric sensitivity was estimated in the case when a side polished fibre with inscribed in-fibre Bragg grating is used as a sensor element.

  7. Rossby Wave Propagation into the Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed

    NASA Astrophysics Data System (ADS)

    Domeisen, Daniela I. V.; Martius, Olivia; Jiménez-Esteve, Bernat

    2018-02-01

    Sudden stratospheric warming (SSW) events are to a dominant part induced by upward propagating planetary waves. While theory predicts that the zonal phase speed of a tropospheric wave forcing affects wave propagation into the stratosphere, its relevance for SSW events has so far not been considered. This study shows in a linear wave diagnostic and in reanalysis data that phase speeds tend eastward as waves propagate upward, indicating that the stratosphere preselects eastward phase speeds for propagation, especially for zonal wave number 2. This also affects SSW events: Split SSW events tend to be preceded by anomalously eastward zonal phase speeds. Zonal phase speed may indeed explain part of the increased wave flux observed during the preconditioning of SSW events, as, for example, for the record 2009 SSW event.

  8. Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi2 Te3.

    PubMed

    Singh, Swati; Mun, Hyeona; Lee, Sanghoon; Kim, Sung Wng; Baik, Seunghyun

    2017-09-01

    The self-propagating exothermic chemical reaction with transient thermovoltage, known as the thermopower wave, has received considerable attention recently. A greater peak voltage and specific power are still demanded, and materials with greater Seebeck coefficients have been previously investigated. However, this study employs an alternative mechanism of transient chemical potential gradient providing an unprecedentedly high peak voltage (maximum: 8 V; average: 2.3 V) and volume-specific power (maximum: 0.11 W mm -3 ; average: 0.04 W mm -3 ) using n-type single-crystalline Bi 2 Te 3 substrates. A mixture of nitrocellulose and sodium azide is used as a fuel, and ultraviolet photoelectron spectroscopy reveals a significant downshift in Fermi energy (≈5.09 eV) of the substrate by p-doping of the fuel. The induced electrical potential by thermopower waves has two distinct sources: the Seebeck effect and the transient chemical potential gradient. Surprisingly, the Seebeck effect contribution is less than 2.5% (≈201 mV) of the maximum peak voltage. The right combination of substrate, fuel doping, and anisotropic substrate geometry results in an order of magnitude greater transient chemical potential gradient (≈5.09 eV) upon rapid removal of fuel by exothermic chemical reaction propagation. The role of fuel doping and chemical potential gradient can be viewed as a key mechanism for enhanced heat to electric conversion performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic Field Control of the Entry into the Ionosphere of Whistler-Mode Waves Produced by Venus Lightning

    NASA Astrophysics Data System (ADS)

    Russell, Christopher; Wei, Hanying; Zhang, Tielong

    The sampling rate of the Venus Express fluxgate magnetometer was set so that it could register the 100 Hz signals previously reported by the electric antenna on the Pioneer Venus Orbiter. At least two minutes of each periapsis pass is devoted to recording at 128 Hz. Many of these passes do observe signals near 100 Hz, and these signals invariably have the properties expected for whistler-mode waves. They are nearly circularly polarized, and they propagate very closely to along the magnetic field. The waves are also only a fraction of a second in duration. They do not occur every orbit. The magnetic field is often nearly horizontal throughout the periapsis pass. When it is, no signals are seen. When the field deviates more than 15o from the horizontal, signals can reach the spacecraft but they again are not always present. The number 15o is quite similar to the size of the cone of non-propagation of the whistler-mode perpendicular to the magnetic field. Thus this observation, too, is consistent with a cloud level source of electric discharges whose electromagnetic radiation is refracted along the vertical upon entering the ionosphere. Only when and where this field is inclined to the horizontal can the signal enter the ionosphere. We continue to refine our estimate of the rate of lightning on Venus, but it is clear that the rate is very significant, comparable to activity in the terrestrial atmosphere.

  10. Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments

    DTIC Science & Technology

    2015-09-30

    Elastic wave propagation mechanisms in underwater acoustic environments Scott D. Frank Marist College Department of Mathematics Poughkeepsie...conversion from elastic propagation to acoustic propagation, and intense interface waves on underwater acoustic environments with elastic bottoms...acoustic propagation will be considered as a means to predict the presence of elastic ice layers. APPROACH In a cylindrically symmetric environment

  11. Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.

    PubMed

    Yan, Xiang; Yuan, Fuh-Gwo

    2015-06-01

    This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.

  12. Helicons in uniform fields. I. Wave diagnostics with hodograms

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2018-03-01

    The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.

  13. Low frequency wave propagation in a cold magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Ghosh, S.; Khan, M.

    1998-12-01

    In this paper several characteristics of low frequency waves in a cold magnetized dusty plasma propagating parallel and perpendicular to the static background magnetic field have been investigated. In the case of parallel propagation the negatively charged dust particles resonate with the right circularly polarized (RCP) component of em waves when the wave frequency equals the dust cyclotron frequency. It has been shown that an RCP wave in dusty plasma consists of two branches and there exists a region where an RCP wave propagation is not possible. Dispersion relation, phase velocity and group velocity of RCP waves have been obtained and propagation characteristics have been shown graphically. Poynting flux and Faraday rotation angles have been calculated for both lower and upper branches of the RCP wave. It has been observed that sense of rotation of the plane of polarization of the RCP wave corresponding to two distinct branches are opposite. Finally, the effect of dust particles on the induced magnetization from the inverse Faraday effect (IFE) due to the interaction of low frequency propagating and standing em waves with dusty plasmas has been evaluated.

  14. Characteristic analysis of surface waves in a sensitive plasma absorption probe

    NASA Astrophysics Data System (ADS)

    You, Wei; Li, Hong; Tan, Mingsheng; Liu, Wandong

    2018-01-01

    With features that are simple to construct and a symmetric configuration, the sensitive plasma absorption probe (SPAP) is a dependable probe for industry plasma diagnosis. The minimum peak in the characteristic curve of the coefficient of reflection stems from the surface wave resonance in plasma. We use numerical simulation methods to analyse the details of the excitation and propagation of these surface waves. With this method, the electromagnetic field structure and the resonance and propagation characteristics of the surface wave were analyzed simultaneously using the simulation method. For this SPAP structure, there are three different propagation paths for the propagating plasma surface wave. The propagation characteristic of the surface wave along each path is presented. Its dispersion relation is also calculated. The objective is to complete the relevant theory of the SPAP as well as the propagation process of the plasma surface wave.

  15. Re-evaluation of ``;The Propagation of Radiation in the Spherical Wave Form''

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.

    2012-03-01

    It is well accepted that radiation propagates in the free space (without obstacles) in a spherical wave form as well as in a plane wave form. Almost all observed phenomena such as interference, diffraction etc are explained satisfactorily on the basis of spherical wave propagation with a slight alteration in the mathematical treatment. However, one of the fundamental aspects, namely the intensity of the radiation as a function of the distance still remains an unsolved problem as the intensity varies with 1/(distance)2 when one represents the propagation in terms of spherical waves while it is independent of the distance if it is considered as a plane wave. In order to understand this puzzle, the propagation by a spherical wave form is reexamined. It is found that conversion of fields into particle (vice versa), via the field quantization process, explains several dilemma related with the radiation propagation.

  16. Modeling the propagation of electromagnetic waves over the surface of the human body

    NASA Astrophysics Data System (ADS)

    Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.

    2016-12-01

    The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.

  17. Polar Spacecraft Based Comparisons of Intense Electric Fields and Poynting Flux Near and Within the Plasma Sheet-Tail Lobe Boundary to UVI Images: An Energy Source for the Aurora

    NASA Technical Reports Server (NTRS)

    Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; hide

    2000-01-01

    In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 R(sub E), near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame.) ranging front 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly ill the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs per square centimeters per second and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines. the resulting energy flux ranges up to 100 ergs per centimeter squared per second. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1 degree mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5 degrees) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs per centimeter squared per second. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 kilometers per second. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of C/SIGMA(sub p), where SIGMA(sub p), is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.

  18. Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; Russell, C. T.; Parks, G.; Brittnacher, M.; Germany, G.; Spann, J.

    2000-08-01

    In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 RE near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame) ranging from 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly in the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs cm-2 s-1 and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines, the resulting energy flux ranges up to 100 ergs cm-2s-1. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1° mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5° ) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs cm-2s-1. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 km/s. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of c/Σp, where Σp is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.

  19. Formation of multiple energy dispersion of H+, He+, and O+ ions in the inner magnetosphere in response to interplanetary shock

    NASA Astrophysics Data System (ADS)

    Tsuji, H.; Ebihara, Y.; Tanaka, T.

    2017-04-01

    An interplanetary (IP) shock has a large impact on magnetospheric ions. Satellite observations have shown that soon after arrival of the IP shock, overall intensity of the ions rapidly increases and multiple energy dispersion appears in an energy-time spectrogram of the ions. In order to understand the response of the magnetospheric ions to IP shock, we have performed test particle simulation under the electric and magnetic fields provided by the global magnetohydrodynamic simulation. We reconstructed the differential flux of H+, He+, and O+ ions at (7, 0, 0) Re in GSM coordinates by means of the semi-Lagrangian (phase space mapping) method. Simulation results show that the ions respond to the IP shock in two different ways. First, overall intensity of the flux gradually increases at all pitch angles. As the compressional wave propagates tailward, the magnetic field increases, which accelerates the ions due to the gyrobetatron. Second, multiple energy-time dispersion appears in the reconstructed spectrograms of the ion flux. The energy-time dispersion is caused by the ion moving toward mirror point together with tailward propagating compressional wave at off-equator. The ions are primarily accelerated by the drift betatron under the strong electric field looking dawnward. The dispersion is absent in the spectrogram of equatorially mirroring ions. The dispersion appears at higher energy for heavier ions. These features are consistent with the satellite observations. Because the acceleration depends on bounce phase, the bounce-averaged approximation is probably invalid for the ions during the interval of geomagnetic sudden commencement.Plain Language SummarySolar storm can cause a significant compression of the magnetosphere on the dayside. The compression starts at the subsolar point and propagates toward the nightside in the magnetosphere. Some ions bouncing between the Northern Hemisphere and the Southern Hemisphere are found to be accelerated selectively when the ions move together with the propagation of the compressional wave. As a consequence, striped structures appear in the energy versus time spectrum of the ion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJT....37..101G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJT....37..101G"><span>Laser-Generated Rayleigh Waves Propagating in Transparent Viscoelastic Adhesive Coating/Metal Substrate Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guan, Yi-jun; Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi; Ge, Yong</p> <p>2016-10-01</p> <p>We have established numerical models for simulating laser-generated Rayleigh waves in coating/substrate systems by a finite element method and investigated the propagation characteristics of Rayleigh waves in systems concerning the viscoelasticity and transparency of adhesive coatings. In this way, we have studied the influence of the mechanical properties of the coating, such as the elastic moduli, viscoelastic moduli, coating thickness, transparency, and coating material, on the propagation characteristics of the Rayleigh waves. The results show that the propagation characteristics of the Rayleigh waves can be divided into low- and high-frequency parts. The high-frequency propagation characteristics of the Rayleigh wave are closely related to the properties of the adhesive coating.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.tmp..184C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.tmp..184C"><span>Influence of off-great-circle propagation of Rayleigh waves on event-based surface wave tomography in Northeast China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Haopeng; Ni, Sidao; Chu, Risheng; Chong, Jiajun; Liu, Zhikun; Zhu, Liangbao</p> <p>2018-05-01</p> <p>Surface waves are generally assumed to propagate along great-circle paths in most surface-wave tomography. However, when lateral heterogeneity is strong, off-great-circle propagation may occur and deteriorate surface wave tomography results based on the great-circle assumption. In this study, we used teleseismic waveforms recorded by the NECESSArray in Northeast China to study off-great-circle propagation of Rayleigh waves using the beamforming method and evaluated the influence of off-great-circle propagation on event-based surface wave tomography. The results show that arrival angle anomalies generally increase with decreasing period. The arrival angle anomalies at 60 and 50 s periods are smaller than that at 40 and 30 s periods, which indicates that the off-great-circle propagation is relatively weak for longer periods. At 30 s period, the arrival angle anomalies are relatively larger and some of the measurements can exceed 20°, which represents a strong off-great-circle propagation effect. In some areas, the arrival angle anomalies of adjacent events differ significantly, which may be attributed to multipathing propagation of surface waves. To evaluate the influence of off-great-circle propagation on event-based surface wave tomography, we used measured arrival angle anomalies to correct two-station phase velocity measurements, and performed azimuthal anisotropy tomography using dispersion datasets with and without the arrival angle correction. At longer periods, such as 60 s, the influence of off-great-circle propagation on surface wave tomography is weak even though the corrected model has better data fit than the uncorrected model. However, the influence of off-great-circle propagation is non-negligible at short periods. The tomography results at 30 s period show that the differences in phase velocity, the strength of anisotropy and the fast direction can be as large as 1.5 per cent, 1.0 per cent and 30°, respectively. Furthermore, the corrected phase velocity is systematically lower than that without correction. This study illustrates the necessity of studying the off-great-circle propagation of surface waves to improve the accuracy of event-based surface wave tomography, especially for shorter periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001lew..book.....H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001lew..book.....H"><span>Linear Elastic Waves - Series: Cambridge Texts in Applied Mathematics (No. 26)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harris, John G.</p> <p>2001-10-01</p> <p>Wave propagation and scattering are among the most fundamental processes that we use to comprehend the world around us. While these processes are often very complex, one way to begin to understand them is to study wave propagation in the linear approximation. This is a book describing such propagation using, as a context, the equations of elasticity. Two unifying themes are used. The first is that an understanding of plane wave interactions is fundamental to understanding more complex wave interactions. The second is that waves are best understood in an asymptotic approximation where they are free of the complications of their excitation and are governed primarily by their propagation environments. The topics covered include reflection, refraction, the propagation of interfacial waves, integral representations, radiation and diffraction, and propagation in closed and open waveguides. Linear Elastic Waves is an advanced level textbook directed at applied mathematicians, seismologists, and engineers. Aimed at beginning graduate students Includes examples and exercises Has application in a wide range of disciplines</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MAR.M1277F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MAR.M1277F"><span>Electrical Heart Defibrillation with Ion Channel Blockers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feeney, Erin; Clark, Courtney; Puwal, Steffan</p> <p></p> <p>Heart disease is the leading cause of mortality in the United States. Rotary electrical waves within heart muscle underlie electrical disorders of the heart termed fibrillation; their propagation and breakup leads to a complex distribution of electrical activation of the tissue (and of the ensuing mechanical contraction that comes from electrical activation). Successful heart defibrillation has, thus far, been limited to delivering large electrical shocks to activate the entire heart and reset its electrical activity. In theory, defibrillation of a system this nonlinear should be possible with small electrical perturbations (stimulations). A successful algorithm for such a low-energy defibrillator continues to elude researchers. We propose to examine in silica whether low-energy electrical stimulations can be combined with antiarrhythmic, ion channel-blocking drugs to achieve a higher rate of defibrillation and whether the antiarrhythmic drugs should be delivered before or after electrical stimulation has commenced. Progress toward a more successful, low-energy defibrillator will greatly minimize the adverse effects noted in defibrillation and will assist in the development of pediatric defibrillators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMMM..450....7L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMMM..450....7L"><span>Homogeneous microwave field emitted propagating spin waves: Direct imaging and modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lohman, Mathis; Mozooni, Babak; McCord, Jeffrey</p> <p>2018-03-01</p> <p>We explore the generation of propagating dipolar spin waves by homogeneous magnetic field excitation in the proximity of the boundaries of magnetic microstructures. Domain wall motion, precessional dynamics, and propagating spin waves are directly imaged by time-resolved wide-field magneto-optical Kerr effect microscopy. The aspects of spin wave generation are clarified by micromagnetic calculations matching the experimental results. The region of dipolar spin wave formation is confined to the local resonant excitation due to non-uniform internal demagnetization fields at the edges of the patterned sample. Magnetic domain walls act as a border for the propagation of plane and low damped spin waves, thus restraining the spin waves within the individual magnetic domains. The findings are of significance for the general understanding of structural and configurational magnetic boundaries for the creation, the propagation, and elimination of spin waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA21C..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA21C..02F"><span>Wave Coupling in the Atmosphere-Ionosphere System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forbes, J. M.</p> <p>2016-12-01</p> <p>Vertically-propagating solar and lunar tides, Kelvin waves, gravity waves (GW) and planetary waves (PW) constitute the primary mechanism for transmitting lower atmosphere variability to the upper atmosphere and ionosphere. Vertically propagating waves grow exponentially with height into the more rarified atmosphere where they dissipate, deposit net momentum and heat, and induce net constituent transport. Some waves penetrate to the base of the exosphere (ca. 500-600 km). Over the past decade, a mature knowledge of the tidal part of the spectrum has emerged, in an average or climatological sense, up to about 110 km. This knowledge has largely accrued as a result of remote sensing observations made from the TIMED satellite. These observations have also enabled limited studies on day-to-day variability of atmospheric tides, the PW and Kelvin wave spectra up to 110 km, and PW-tide coupling. Complementary ionospheric observations made by GPS receivers, COSMIC, CHAMP, and ROCSAT contain signatures of plasma redistributions induced by these waves, and ionosphere-thermosphere (IT) general circulation models have been developed that provide a corroborating theoretical foundation. Pioneering theoretical and modeling work also demonstrate the importance of the GW part of the spectrum on thermosphere circulation and thermal structure. While significant strides have been made, critical shortcomings in our understanding of atmosphere-IT coupling remain. In particular, we are practically absent any observations of the vertical evolution and dissipation of the wave spectrum between 100 and 200 km, which is also the region where electric fields and currents are generated by dynamo action. Moreover, the day-to-day variability of the wave spectrum and secondary wave generation remain to be quantified in this critical region. In this talk, the above progress and knowledge gaps will be examined in light of imminent and potential future missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16937158','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16937158"><span>Mapping slow waves and spikes in chronically instrumented conscious dogs: implantation techniques and recordings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ver Donck, L; Lammers, W J E P; Moreaux, B; Smets, D; Voeten, J; Vekemans, J; Schuurkes, J A J; Coulie, B</p> <p>2006-03-01</p> <p>Myoelectric recordings from the intestines in conscious animals have been limited to a few electrode sites with relatively large inter-electrode distances. The aim of this project was to increase the number of recording sites to allow high-resolution reconstruction of the propagation of myoelectrical signals. Sets of six unipolar electrodes, positioned in a 3x2 array, were constructed. A silver ring close to each set served as the reference electrodes. Inter-electrode distances varied from 4 to 8 mm. Electrode sets, to a maximum of 4, were implanted in various configurations allowing recording from 24 sites simultaneously. Four sets of 6 electrodes each were implanted successfully in 11 female Beagles. Implantation sites evaluated were the upper small intestine (n=10), the lower small intestine (n=4) and the stomach (n=3). The implants remained functional for 7.2 months (median; range 1.4-27.3 months). Recorded signals showed slow waves at regular intervals and spike potentials. In addition, when the sets were positioned close together, it was possible to re-construct the propagation of individual slow waves, to determine their direction of propagation and to calculate their propagation velocity. No signs or symptoms of interference with normal GI-function were observed in the tested animals. With this approach, it is possible to implant 24 extracellular electrodes on the serosal surface of the intestines without interfering with its normal physiology. This approach makes it possible to study the electrical activities of the GI system at high resolution in vivo in the conscious animal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21344675-wave-propagation-downstream-high-power-helicon-dipolelike-magnetic-field','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21344675-wave-propagation-downstream-high-power-helicon-dipolelike-magnetic-field"><span>Wave propagation downstream of a high power helicon in a dipolelike magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Prager, James; Winglee, Robert; Roberson, B. Race</p> <p>2010-01-15</p> <p>The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863169','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863169"><span>High-frequency plasma-heating apparatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Brambilla, Marco; Lallia, Pascal</p> <p>1978-01-01</p> <p>An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1238992-integrated-coherent-matter-wave-circuits','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1238992-integrated-coherent-matter-wave-circuits"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ryu, C.; Boshier, M. G.</p> <p></p> <p>An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4791966','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4791966"><span>PLASMA ENERGIZATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Furth, H.P.; Chambers, E.S.</p> <p>1962-03-01</p> <p>BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA248112','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA248112"><span>User’s Guide for the VTRPE (Variable Terrain Radio Parabolic Equation) Computer Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-10-01</p> <p>propagation effects and antenna characteristics in radar system performance calculations. the radar transmission equation is oiten employed. Fol- lowing Kerr.2...electromagnetic wave equations for the complex electric and magnetic radiation fields. The model accounts for the effects of nonuniform atmospheric refractivity...mission equation, that is used in the performance prediction and analysis of radar and communication systems. Optimized fast Fourier transform (FFT</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910000895','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910000895"><span>Effect of surface deposits on electromagnetic waves propagating in uniform ducts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baumeister, Kenneth J.</p> <p>1990-01-01</p> <p>A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA632386','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA632386"><span>Architecture Analysis of Wireless Power Transmission for Lunar Outposts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-01</p> <p>through his work on wireless communication using radio wave propagation for both transmitting and receiving high frequency electricity using a focusing...Administration nm nanometers NRC National Research Council PGT platform generic technologies PMAD power management and distribution RF radio frequency xiv...GHz (Marzwell 2008). While the slot antenna can handle frequencies between 70 GHz and 150 GHz, it has been optimized for 94 GHz and has a radio</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008spa..book.1535W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008spa..book.1535W"><span>Seismic Wave Propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Xianyun; Wu, Ru-Shan</p> <p></p> <p>A seismic wave is a mechanical disturbance or energy packet that can propagate from point to point in the Earth. Seismic waves can be generated by a sudden release of energy such as an earthquake, volcanic eruption, or chemical explosion. There are several types of seismic waves, often classified as body waves, which propagate through the volume of the Earth, and surface waves, which travel along the surface of the Earth. Compressional and shear waves are the two main types of body wave and Rayleigh and Love waves are the most common forms of surface wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2168A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2168A"><span>Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agapitov, O.; Drake, J. F.; Vasko, I.; Mozer, F. S.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G. D.</p> <p>2018-03-01</p> <p>Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JSV...332.4517L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JSV...332.4517L"><span>On selection of primary modes for generation of strong internally resonant second harmonics in plate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yang; Chillara, Vamshi Krishna; Lissenden, Cliff J.</p> <p>2013-09-01</p> <p>The selection of primary shear-horizontal (SH) and Rayleigh-Lamb (RL) ultrasonic wave modes that generate cumulative second harmonics in homogeneous isotropic plates is analyzed by theoretical modeling. Selection criteria include: internal resonance (synchronism and nonzero power flux), group velocity matching, and excitability/receivability. The power flux, group velocity matching, and excitability are tabulated for the SH and RL internal resonance points. The analysis indicates that SH waves can generate cumulative symmetric RL secondary wave fields. Laboratory experiments on aluminum plates demonstrate that excitation of the SH3 primary mode generates the s4 secondary RL mode and that the secondary wave field amplitude increases linearly with propagation distance. Simple magnetostrictive transducers were used to excite the primary SH wave and to receive the SH and RL wave signals. Reception of these wave modes having orthogonal polarizations was achieved by simply reorienting the electrical coil. The experiment was complicated by the presence of a nonplanar primary wavefront, however finite element simulations were able to clarify the experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGE....13S..50G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGE....13S..50G"><span>Numerical investigations on mapping permeability heterogeneity in coal seam gas reservoirs using seismo-electric methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gross, L.; Shaw, S.</p> <p>2016-04-01</p> <p>Mapping the horizontal distribution of permeability is a key problem for the coal seam gas industry. Poststack seismic data with anisotropy attributes provide estimates for fracture density and orientation which are then interpreted in terms of permeability. This approach delivers an indirect measure of permeability and can fail if other sources of anisotropy (for instance stress) come into play. Seismo-electric methods, based on recording the electric signal from pore fluid movements stimulated through a seismic wave, measure permeability directly. In this paper we use numerical simulations to demonstrate that the seismo-electric method is potentially suitable to map the horizontal distribution of permeability changes across coal seams. We propose the use of an amplitude to offset (AVO) analysis of the electrical signal in combination with poststack seismic data collected during the exploration phase. Recording of electrical signals from a simple seismic source can be closer to production planning and operations. The numerical model is based on a sonic wave propagation model under the low frequency, saturated media assumption and uses a coupled high order spectral element and low order finite element solver. We investigate the impact of seam thickness, coal seam layering, layering in the overburden and horizontal heterogeneity of permeability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanos...7.7284W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanos...7.7284W"><span>Predictive of the quantum capacitance effect on the excitation of plasma waves in graphene transistors with scaling limit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei</p> <p>2015-04-01</p> <p>Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07689c</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4525157','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4525157"><span>Investigating Alfvénic wave propagation in coronal open-field regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Morton, R. J.; Tomczyk, S.; Pinto, R.</p> <p>2015-01-01</p> <p>The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9674E..0LT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9674E..0LT"><span>A propagation method with adaptive mesh grid based on wave characteristics for wave optics simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan</p> <p>2015-10-01</p> <p>Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41B2630T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41B2630T"><span>Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tu, J.; Song, P.</p> <p>2017-12-01</p> <p>We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of the upward flow around the equator and global antisunward convection, is the result of such coupling of the high-latitude and the low-latitude/equatorial ionosphere, and the requirement of the flow continuity, instead of mechanisms such as the penetration electric field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/832721','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/832721"><span>On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Belle R. Upadhyaya; J. Wesley Hines</p> <p>2004-09-27</p> <p>Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acousticmore » time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line monitoring of small structural flaws by the use of transient and nonlinear acoustic signal analysis, and its implementation by the proper design of a piezo-electric transducer suite.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840029619&hterms=Saunders&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D60%26Ntt%3DSaunders%252C%2BM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840029619&hterms=Saunders&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D60%26Ntt%3DSaunders%252C%2BM"><span>Hydromagnetic vortices. I - The 11 December 1977 event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saunders, M. A.; Southwood, D. J.; Fritz, T. A.; Hones, E. W., Jr.</p> <p>1983-01-01</p> <p>Through a synthesis of magnetometer, plasma, energetic particle and electric field data from the ISEE satellite pair, the characteristics of the initial (11 December 1977) magnetotail plasma vortex event reported by Hones et al. (1978), are described. The event is associated with a hot (beta is approximately unity) compressional hydromagnetic wave and apparent vortical motion is seen because at two points in the flow cycle the flow is field-aligned. The behavior of the energetic ions receives special study: when combined with the thermal flow measurements energy dispersion is evident in the field-aligned flow, while the large pitch angle energetic ions reveal the presence of gradients. It is argued that these gradients are wave-induced, and the data are used to determine the perpendicular wave wavelength together with the speed and direction of transverse wave propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100042290','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100042290"><span>Frequency coded sensors incorporating tapers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor)</p> <p>2010-01-01</p> <p>A surface acoustic wave device includes a piezoelectric substrate on which is formed a transducer that generates acoustic waves on the surface of the substrate from electrical waves received by the transducer. The waves are carried along an acoustic track to either a second transducer or a reflector. The transducers or transducer and reflector are formed of subsections that are constructed to operate at mutually different frequencies. The subsections of at least one of the transducers or transducer and reflector are out of alignment with respect to one another relative to the transverse of the propagation direction. The out of aligned subsections provide not only a frequency component but also a time to the signal output signal. Frequency response characteristics are improved. An alternative embodiment provides that the transducers and/or reflectors are continuously tapered instead of having discrete frequency subsections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1418915-propagation-dispersion-shock-waves-magnetoelastic-materials','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1418915-propagation-dispersion-shock-waves-magnetoelastic-materials"><span>Propagation and dispersion of shock waves in magnetoelastic materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Crum, R. S.; Domann, J. P.; Carman, G. P.</p> <p></p> <p>Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SMaS...26l5027C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SMaS...26l5027C"><span>Propagation and dispersion of shock waves in magnetoelastic materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.</p> <p>2017-12-01</p> <p>Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1418915-propagation-dispersion-shock-waves-magnetoelastic-materials','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1418915-propagation-dispersion-shock-waves-magnetoelastic-materials"><span>Propagation and dispersion of shock waves in magnetoelastic materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Crum, R. S.; Domann, J. P.; Carman, G. P.; ...</p> <p>2017-11-15</p> <p>Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22561929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22561929"><span>Common omissions and misconceptions of wave propagation in turbulence: discussion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Charnotskii, Mikhail</p> <p>2012-05-01</p> <p>This review paper addresses typical mistakes and omissions that involve theoretical research and modeling of optical propagation through atmospheric turbulence. We discuss the disregard of some general properties of narrow-angle propagation in refractive random media, the careless use of simplified models of turbulence, and omissions in the calculations of the second moment of the propagating wave. We also review some misconceptions regarding short-exposure imaging, propagation of polarized waves, and calculations of the scintillation index of the beam waves. © 2012 Optical Society of America</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97b4201M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97b4201M"><span>Propagating elastic vibrations dominate thermal conduction in amorphous silicon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moon, Jaeyun; Latour, Benoit; Minnich, Austin J.</p> <p>2018-01-01</p> <p>The thermal atomic vibrations of amorphous solids can be distinguished by whether they propagate as elastic waves or do not propagate due to lack of atomic periodicity. In a -Si, prior works concluded that nonpropagating waves are the dominant contributors to heat transport, with propagating waves being restricted to frequencies less than a few THz and scattered by anharmonicity. Here, we present a lattice and molecular dynamics analysis of vibrations in a -Si that supports a qualitatively different picture in which propagating elastic waves dominate the thermal conduction and are scattered by local fluctuations of elastic modulus rather than anharmonicity. We explicitly demonstrate the propagating nature of waves up to around 10 THz, and further show that pseudoperiodic structures with homogeneous elastic properties exhibit a marked temperature dependence characteristic of anharmonic interactions. Our work suggests that most heat is carried by propagating elastic waves in a -Si and demonstrates that manipulating local elastic modulus variations is a promising route to realize amorphous materials with extreme thermal properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.305a2123G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.305a2123G"><span>Structural Damage Detection with Piezoelectric Wafer Active Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giurgiutiu, Victor</p> <p>2011-07-01</p> <p>Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive enablers for a large class of damage detection and structural health monitoring (SHM) applications. This paper starts with a brief review of PWAS physical principles and basic modelling and continues by considering the various ways in which PWAS can be used for damage detection: (a) embedded guided-wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays, thickness mode; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; (c) passive detection, i.e., acoustic emission and impact detection. An example of crack-like damage detection and localization with PWAS phased arrays on a small metallic plate is given. The modelling of PWAS detection of disbond damage in adhesive joints is achieved with the analytical transfer matrix method (TMM). The analytical methods offer the advantage of fast computation which enables parameter studies and carpet plots. A parametric study of the effect of crack size and PWAS location on disbond detection is presented. The power and energy transduction between PWAS and structure is studied analytically with a wave propagation method. Special attention is given to the mechatronics modeling of the complete transduction cycle from electrical excitation into ultrasonic acoustic waves by the piezoelectric effect, the transfer through the structure, and finally reverse piezoelectric transduction to generate the received electric signal. It is found that the combination of PWAS size and wave frequency/wavelength play an important role in identifying transduction maxima and minima that could be exploited to achieve an optimum power-efficient design. The multi-physics finite element method (MP-FEM), which permits fine discretization of damaged regions and complicated structural geometries, is used to study the generation of guided waves in a plate from an electrically excited transmitter PWAS and the capture of these waves as electric signals at a receiver PWAS. Wave diffraction from a hole damage is illustrated through time-frame snapshots. The paper ends with conclusions and suggestions for further work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/42990-characteristics-large-vacuum-wave-precursor-sabre-voltage-adder-mitl-extraction-ion-diode','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/42990-characteristics-large-vacuum-wave-precursor-sabre-voltage-adder-mitl-extraction-ion-diode"><span>Characteristics of a large vacuum wave precursor on the SABRE voltage adder MITL and extraction ion diode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cuneo, M.E.; Hanson, D.L.; Menge, P.R.</p> <p></p> <p>SABRE (Sandia Accelerator and Beam Research Experiment) is a ten-cavity linear induction magnetically insulated voltage adder (6 MV, 300 kA) operated in positive polarity to investigate issues relevant to ion beam production and propagation for inertial confinement fusion. The voltage adder section is coupled to an applied-B extraction ion diode via a long coaxial output transmission line. Observations indicate that the power propagates in a vacuum wave prior to electron emission. After the electron emission threshold is reached, power propagates in a magnetically insulated wave. The precursor is observed to have a dominant impact on he turn-on, impedance history, andmore » beam characteristics of applied-B ion diodes since the precursor voltage is large enough to cause electron emission at the diode from both the cathode feed and cathode tips. The amplitude of the precursor at the load (3--4.5 MV) is a significant fraction of the maximum load voltage (5--6 MV) because (1) the transmission line gaps ( {approx} 9 cm at output) and therefore impedances are relatively large, and hence the electric field threshold for electron emission (200 to 300 kV/cm) is not reached until well into the power pulse rise time; and (2) the rapidly falling forward wave and diode impedance reduces the ratio of main pulse voltage to precursor voltage. Experimental voltage and current data from the transmission line and the ion diode will be presented and compared with TWOQUICK (2-D electromagnetic PIC code) simulations and analytic models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAP...123l3302L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAP...123l3302L"><span>Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun</p> <p>2018-03-01</p> <p>Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AnGeo..33.1037P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AnGeo..33.1037P"><span>Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paral, J.; Hudson, M. K.; Kress, B. T.; Wiltberger, M. J.; Wygant, J. R.; Singer, H. J.</p> <p>2015-08-01</p> <p>Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L = 4.5, well within the computed magnetopause location. We compare ULF wave power from the Electric Field and Waves (EFW) electric field instrument on the Van Allen Probes for the 8 October 2013 storm with ULF wave power simulated using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) magnetospheric simulation code coupled to the Rice Convection Model (RCM). Two other storms with strong magnetopause compression, 8-9 October 2012 and 17-18 March 2013, are also examined. We show that the global MHD model captures the azimuthal magnetosonic impulse propagation speed and amplitude observed by the Van Allen Probes which is responsible for prompt acceleration at MeV energies reported for the 8 October 2013 storm. The simulation also captures the ULF wave power in the azimuthal component of the electric field, responsible for acceleration and radial transport of electrons, at frequencies comparable to the electron drift period. This electric field impulse has been shown to explain observations in related studies (Foster et al., 2015) of electron acceleration and drift phase bunching by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on the Van Allen Probes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4310574','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4310574"><span>LOADED WAVEGUIDES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Mullett, L.B.; Loach, B.G.; Adams, G.L.</p> <p>1958-06-24</p> <p>>Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984PhDT.......110C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984PhDT.......110C"><span>Surface Plasmon Waves on Thin Metal Films.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Craig, Alan Ellsworth</p> <p></p> <p>Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010062307&hterms=mathematicians&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmathematicians','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010062307&hterms=mathematicians&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmathematicians"><span>Dynamics in Layer Models of Solid Flame Propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aldushin, A. P.; Bayliss, A.; Matkowsky, B. J.; Gokoglu, S. (Technical Monitor)</p> <p>2000-01-01</p> <p>Self-propagating high-temperature synthesis (SHS) is a process in which combustion waves, e.g., "solid flames", which are considered here, are employed to synthesize desired materials. Like many other systems, SHS is a pattern forming system. The problem of describing experimentally observed patterns and of predicting new, as yet unobserved, patterns continues to attract the attention of scientists and mathematicians due to the fundamental significance of the phenomena in combustion in particular, and in nonlinear science in general. Here, we analyze the dynamics of solid flame propagation in a 2D region by considering the region to be composed of parallel, identical layers aligned along the direction of propagation and having thermal contact. Each layer is then described by wave propagation in 1D, with the transverse Laplacian replaced by a term describing heat exchange between neighboring layers. This configuration is the simplest model of a 2D system because it accounts, in a simple way, for the principal feature of the problem, i.e., heat exchange between neighbors in the transverse direction. For simplicity, we describe the situation for two layers. Because the layers are identical, uniformly propagating waves in each layer must be identical, independent of the heat exchange rate alpha. When the Zeldovich number Z exceeds a critical value Z(sub c), which depends on alpha, uniformly propagating waves become unstable. The stability diagram for the two coupled layers reproduces that for the full 2D problem after appropriate identification of parameters in the two problems. Depending on parameter values, we determine three different steady-state dynamical behaviors (though additional behaviors are also expected to occur). The three behaviors are: (i) waves in each layer which pulsate in phase as they propagate, so that together they form a single pulsating propagating wave; (ii) the waves in each layer are no longer identical, and antiphase pulsations occur, with the two waves alternately advancing and receding as they propagate. This wave is the analog of the spinning wave on the surface of a circular cylinder; (iii) finally, there is a region of bistability between the in phase and antiphase waves. with each having its own domain of attraction, so that which of the two behaviors occur depends on the condition of initiation of the wave. The results of our computations indicate a qualitative similarity in the behavior of combustion waves in the layer model and in the full 2D model. Specifically, due to the similarity between the small alpha wave behavior in the layer model and the large diameter behavior in the model of waves on the surface of a cylinder, we are able to predict the behavior of the mean velocity for the waves on the cylinder, where computations of the full problem can be rather difficult. We also compute solutions for three or more layers. The results of our computations prompt us to predict that, while planar uniformly propagating waves are unstable, the wave will be quasiplanar, i.e., the resulting spinning waves have very low amplitude hot spots, and travel with the velocity close to that of the uniformly propagating wave. Such waves may be difficult to distinguish from uniformly propagating waves in experiments. We also find that for both the layer model and full 2D problem, steady-state time-dependent waves, e.g., pulsating and spinning wave, have a conserved quantity H which characterizes the excess energy in the wave, just as in the case of uniformly propagating waves. The quantity H, which is generated by dissipation, does not vary in time and is proportional to the diffusivity and caloricity of the system, and inversely proportional to the mean wave velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApPhL.112l3503G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApPhL.112l3503G"><span>Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghatge, Mayur; Tabrizian, Roozbeh</p> <p>2018-03-01</p> <p>A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26093440','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26093440"><span>Elastic parabolic equation solutions for oceanic T-wave generation and propagation from deep seismic sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frank, Scott D; Collis, Jon M; Odom, Robert I</p> <p>2015-06-01</p> <p>Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010111483','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010111483"><span>Charge Generation and Propagation in Igneous Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Freund, Friedemann</p> <p>2002-01-01</p> <p>Various electrical phenomena have been reported prior to or concurrent with earthquakes such as resistivity changes, ground potentials, electromagnetic (EM), and luminous signals. Doubts have been raised as to whether some of these phenomena are real and indeed precursory. One of the reasons for uncertainty is that, despite decades of intense work, there is still no physically coherent model. Using low- to medium-velocity impacts to measure electrical signals with microsecond time resolution, it has now been observed that when dry gabbro and diorite cores are impacted at relatively low velocities, approximately 100 m/s, highly mobile charge carriers are generated in a small volume near the impact point. They spread through the rocks, causing electric potentials exceeding +400 mV, EM, and light emission. As the charge cloud spreads, the rock becomes momentarily conductive. When a dry granite block is impacted at higher velocity, approximately 1.5 km/s, the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. After the sound waves have passed, the surface of the granite block becomes positively charged, suggesting the same charge carriers as observed during the low-velocity impact experiments, expanding from within the bulk. During the next 2-3 ms the surface potential oscillates, indicating pulses of electrons injected from ground and contact electrodes. The observations are consistent with positive holes, e.g., defect electrons in the O(2-) sublattice, traveling via the O 2p-dominated valence band of the silicate minerals. Before activation, the positive holes lay dormant in the form of electrically inactive positive hole pairs (PHP), chemically equivalent to peroxy links, O3X/OO\\XO3, with X=Si(4+), Al(3+), etc. PHPs are introduced into the minerals by way of hydroxyl,O3X-OH, which all nominally anhydrous minerals incorporate when crystallizing in H2O-laden environments. The fact that positive holes can be activated by low-energy impacts, and their attendant sound waves, suggests that they can also be activated by microfracturing. Depending on where in the stressed rock volume the charge carriers are activated, they will form rapidly moving or fluctuating charge clouds that may account for earthquake-related electrical signals and EM emission. Wherever such charge clouds intersect the surface, high fields are expected, causing electric discharges and earthquake lights.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018APhy...64...58D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018APhy...64...58D"><span>An Investigation of the Effects of Internal Waves on Sound Propagation in a Stratified Medium with a Sloping Bed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deldar, H.; Bidokhti, A. A.; Chegini, V.</p> <p>2018-01-01</p> <p>Internal waves usually cause temporal and spatial changes of density and consequently affect the acoustic wave propagation in the ocean. The purpose of this study is a laboratory investigation of the effects of internal waves generated by oscillation of a cylinder in a large stratified glass tank with a sloping bed on the sound waves propagation. Results showed that sound waves are affected by internal waves that depend on the slope angle to the direction of internal wave propagation angle ratio. When the ratio is subcritical or supercritical, the acoustic signal is much reduced as compared to the case with no sloped bottom. This can be explained in terms of the internal waves energy reaching the sloped bed and their reflections.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024332','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024332"><span>Regional seismic wavefield computation on a 3-D heterogeneous Earth model by means of coupled traveling wave synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, F.F.</p> <p>2002-01-01</p> <p>I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApPhL.102o1106M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApPhL.102o1106M"><span>Longitudinal terahertz wave generation from an air plasma filament induced by a femtosecond laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minami, Yasuo; Kurihara, Takayuki; Yamaguchi, Keita; Nakajima, Makoto; Suemoto, Tohru</p> <p>2013-04-01</p> <p>We have generated and detected a longitudinally polarized (Z-polarized) terahertz (THz) wave by focusing a conically propagating THz beam generated from a plasma filament induced by a femtosecond laser pulse. In the experiment, we observed a radially polarized field in a collimated region and Z-polarized field at focus in the time domain. The maximum value of the Z-polarized THz electric field reached 1.0 kV/cm. It was also quantitatively discussed about the Z-polarized field and the radial field at the focal point. We expect this technique to find application in THz time domain spectroscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160013340','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160013340"><span>Electric Potential and Electric Field Imaging with Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Generazio, Ed</p> <p>2016-01-01</p> <p>The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7754E..2BS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7754E..2BS"><span>Green's function integral equation method for propagation of electromagnetic waves in an anisotropic dielectric-magnetic slab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shu, Weixing; Lv, Xiaofang; Luo, Hailu; Wen, Shuangchun</p> <p>2010-08-01</p> <p>We extend the Green's function integral method to investigate the propagation of electromagnetic waves through an anisotropic dielectric-magnetic slab. From a microscopic perspective, we analyze the interaction of wave with the slab and derive the propagation characteristics by self-consistent analyses. Applying the results, we find an alternative explanation to the general mechanism for the photon tunneling. The results are confirmed by numerical simulations and disclose the underlying physics of wave propagation through slab. The method extended is applicable to other problems of propagation in dielectric-magnetic materials, including metamaterials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880015884','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880015884"><span>Linear and nonlinear acoustic wave propagation in the atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hariharan, S. I.; Yu, Ping</p> <p>1988-01-01</p> <p>The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25b3514H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25b3514H"><span>Terahertz radiation generation by beating of two laser beams in a collisional plasma with oblique magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan</p> <p>2018-02-01</p> <p>A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012InPhT..55..449F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012InPhT..55..449F"><span>Phase resolved near-field imaging of propagating waves in infrared tapered slot antennas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Florence, Louis A.; Kinzel, Edward C.; Olmon, Robert L.; Ginn, James C.; Raschke, Markus B.; Boreman, Glenn D.</p> <p>2012-11-01</p> <p>Tapered slot antennas (TSAs) consist of a planar non-resonant structure which couples incident radiation to a propagating waveguide mode. They are commonly used at microwave and radio frequencies because they are fundamentally broadband and have small profiles. Because of their planar layout and broadband response they have recently been scaled to infrared frequencies where they have advantages for sensing and energy harvesting. We use scattering-type scanning near-field optical microscopy (s-SNOM) to study the mode transformation of two types of TSA operating in the thermal infrared (λ0 = 10.6 μm) with respect to electric field amplitude and phase. The results agree well with simulation showing both the phase reversal across the tapered slot and the traveling of wave fronts along the tapered slot, yet they also reveal high sensitivity of device performance to inhomogeneities in the geometry or illumination. This study will aid future design and analysis of practical non-resonant antennas operating at optical and infrared frequencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20490600','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20490600"><span>Sound propagation in a monodisperse bubble cloud: from the crystal to the glass.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Devaud, M; Hocquet, T; Leroy, V</p> <p>2010-05-01</p> <p>We present a theoretical study of the propagation of a monochromatic pressure wave in an unbounded monodisperse bubbly liquid. We begin with the case of a regular bubble array--a bubble crystal--for which we derive a dispersion relation. In order to interpret the different branches of this relation, we introduce a formalism, the radiative picture, which is the adaptation to acoustics of the standard splitting of the electric field in an electrostatic and a radiative part in Coulomb gauge. In the case of an irregular or completely random array--a bubble glass--and at wavelengths large compared to the size of the bubble array spatial inhomogeneities, the difference between order and disorder is not felt by the pressure wave: a dispersion relation still holds, coinciding with that of a bubble crystal with the same bubble size and air volume fraction at the centre of its first Brillouin zone. This relation is discussed and compared to that obtained by Foldy in the framework of his multiscattering approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021726','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021726"><span>Wave-propagation formulation of seismic response of multistory buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Safak, E.</p> <p>1999-01-01</p> <p>This paper presents a discrete-time wave-propagation method to calculate the seismic response of multistory buildings, founded on layered soil media and subjected to vertically propagating shear waves. Buildings are modeled as an extension of the layered soil media by considering each story as another layer in the wave-propagation path. The seismic response is expressed in terms of wave travel times between the layers and wave reflection and transmission coefficients at layer interfaces. The method accounts for the filtering effects of the concentrated foundation and floor masses. Compared with commonly used vibration formulation, the wave-propagation formulation provides several advantages, including simplicity, improved accuracy, better representation of damping, the ability to incorporate the soil layers under the foundation, and providing better tools for identification and damage detection from seismic records. Examples are presented to show the versatility and the superiority of the method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040112326&hterms=leaves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dleaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040112326&hterms=leaves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dleaves"><span>Long-distance signaling within Coleus x hybridus leaves; mediated by changes in intra-leaf CO2?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stahlberg, R.; Van Volkenburgh, E.; Cleland, R. E.</p> <p>2001-01-01</p> <p>Rapid long-distance signaling in plants can occur via several mechanisms, including symplastic electric coupling and pressure waves. We show here in variegated Coleus leaves a rapid propagation of electrical signals that appears to be caused by changes in intra-leaf CO2 concentrations. Green leaf cells, when illuminated, undergo a rapid depolarization of their membrane potential (Vm) and an increase in their apoplastic pH (pHa) by a process that requires photosynthesis. This is followed by a slower hyperpolarization of Vm and apoplastic acidification, which do not require photosynthesis. White (chlorophyll-lacking) leaf cells, when in isolated white leaf segments, show only the slow response, but when in mixed (i.e. green and white) segments, the rapid Vm depolarization and increase in pHa propagate over more than 10 mm from the green to the white cells. Similarly, these responses propagate 12-20 mm from illuminated to unilluminated green cells. The fact that the propagation of these responses is eliminated when the leaf air spaces are infiltrated with solution indicates that the signal moves in the apoplast rather than the symplast. A depolarization of the mesophyll cells is induced in the dark by a decrease in apoplastic CO2 but not by an increase in pHa. These results support the hypothesis that the propagating signal for the depolarization of the white mesophyll cells is a photosynthetically induced decrease in the CO2 level of the air spaces throughout the leaf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10522E..1MT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10522E..1MT"><span>Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.</p> <p>2018-02-01</p> <p>We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Chaos..28d3118Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Chaos..28d3118Z"><span>Observing spatio-temporal dynamics of excitable media using reservoir computing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zimmermann, Roland S.; Parlitz, Ulrich</p> <p>2018-04-01</p> <p>We present a dynamical observer for two dimensional partial differential equation models describing excitable media, where the required cross prediction from observed time series to not measured state variables is provided by Echo State Networks receiving input from local regions in space, only. The efficacy of this approach is demonstrated for (noisy) data from a (cubic) Barkley model and the Bueno-Orovio-Cherry-Fenton model describing chaotic electrical wave propagation in cardiac tissue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA624020','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA624020"><span>Particle Methods for Electromagnetic Wave Propagation Problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-15</p> <p>operation with respect to the underlying jump process. Using (8), (9), (12), (13), and the commutation of the expectation and differential operators (18...F’03) received the B.S. degree in electronics and communications engi- neering from REC-Warangal (now NIT Warangal), Warangal, India , in 1981, the...M.S. degree in mi- crowave and radar engineering from IIT-Kharagpur, Kharagpur, India , in 1983, and the Ph.D. degree in electrical engineering from the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22114667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22114667"><span>New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weise, Louis D; Panfilov, Alexander V</p> <p>2011-01-01</p> <p>Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM) model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material) to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..DPPGP8031A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..DPPGP8031A"><span>Studies of nonlinear interactions between counter-propagating Alfv'en waves in the LAPD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Auerbach, D. W.; Perez, J. C.; Carter, T. A.; Boldyrev, S.</p> <p>2007-11-01</p> <p>From a weak turbulence point of view, nonlinear interactions between shear Alfv'en waves are fundamental to the energy cascade in low-frequency magnetic turbulence. We report here on an experimental study of counter-propagating Alfv'en wave interactions in the Large Plasma Device (LAPD) at UCLA. Colliding, orthogonally polarized kinetic Alfv'en waves are generated by two antennae, separated by 5m along the guide magnetic field. Magnetic field and langmuir probes record plasma behavior between the antennae. When each antenna is operated separately, linearly polarized Alfv'en waves propagate in opposite directions along the guide field. When two antennae simultaneously excite counter propagating waves, we observe multiple side bands in the frequency domain, whose amplitude scales quadratically with wave amplitude. In the spatial domain we observe non-linear superposition in the 2D structure of the waves and spectral broadening in the perpendicular wave-number spectrum. This indicates the presence of nonlinear interaction of the counter propagating Alfv'en waves, and opens the possiblity to investigate Alfv'enic plasma turbulence in controlled and reproducible laboratory experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994PhDT.......106B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994PhDT.......106B"><span>Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bozeman, Steven Paul</p> <p></p> <p>The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in skin depth with magnetic field and a damping of the effect of B with pressure. The flat coil geometry which launches waves more nearly parallel to B allows enhanced wave penetration at higher pressures than the standard helical coil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=mechanical+AND+properties&pg=3&id=EJ860670','ERIC'); return false;" href="https://eric.ed.gov/?q=mechanical+AND+properties&pg=3&id=EJ860670"><span>A Problem-Based Approach to Elastic Wave Propagation: The Role of Constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Fazio, Claudio; Guastella, Ivan; Tarantino, Giovanni</p> <p>2009-01-01</p> <p>A problem-based approach to the teaching of mechanical wave propagation, focused on observation and measurement of wave properties in solids and on modelling of these properties, is presented. In particular, some experimental results, originally aimed at measuring the propagation speed of sound waves in metallic rods, are used in order to deepen…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..12112068H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..12112068H"><span>Spaced-based search coil magnetometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hospodarsky, George B.</p> <p>2016-12-01</p> <p>Search coil magnetometers are one of the primary tools used to study the magnetic component of low-frequency electromagnetic waves in space. Their relatively small size, mass, and power consumption, coupled with a good frequency range and sensitivity, make them ideal for spaceflight applications. The basic design of a search coil magnetometer consists of many thousands of turns of wire wound on a high permeability core. When a time-varying magnetic field passes through the coil, a time-varying voltage is induced due to Faraday's law of magnetic induction. The output of the coil is usually attached to a preamplifier, which amplifies the induced voltage and conditions the signal for transmission to the main electronics (usually a low-frequency radio receiver). Search coil magnetometers are usually used in conjunction with electric field antenna to measure electromagnetic plasma waves in the frequency range of a few hertz to a few tens of kilohertzs. Search coil magnetometers are used to determine the properties of waves, such as comparing the relative electric and magnetic field amplitudes of the waves, or to investigate wave propagation parameters, such as Poynting flux and wave normal vectors. On a spinning spacecraft, they are also sometimes used to determine the background magnetic field. This paper presents some of the basic design criteria of search coil magnetometers and discusses design characteristics of sensors flown on a number of spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22598969-instability-surface-electron-cyclotron-tm-modes-influenced-non-monochromatic-alternating-electric-field','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22598969-instability-surface-electron-cyclotron-tm-modes-influenced-non-monochromatic-alternating-electric-field"><span>Instability of surface electron cyclotron TM-modes influenced by non-monochromatic alternating electric field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Girka, I. O., E-mail: igorgirka@karazin.ua; Girka, V. O.; Sydora, R. D.</p> <p>2016-06-15</p> <p>The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1.more » An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.14002023S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.14002023S"><span>Wave propagation of spectral energy content in a granular chain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shrivastava, Rohit Kumar; Luding, Stefan</p> <p>2017-06-01</p> <p>A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004GeoRL..31.7308J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004GeoRL..31.7308J"><span>The anomalous amplification of M2 tide in the Taiwan Strait</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jan, Sen; Chern, Ching-Sheng; Wang, Joe; Chao, Shenn-Yu</p> <p>2004-04-01</p> <p>The complex tidal wave propagation pattern in the Taiwan Strait invites parochialism. Along the eastern (Taiwan) boundary of the strait, the anomalous amplification of M2 tide in the middle often led to the parochial view that two tidal waves coming from both ends of the strait collide in the middle, creating wave resonance. Along the western (China) boundary, one sees a southward progressive tidal wave and hence no wave collision. To reconcile, we examine a few solutions of a numerical tidal model below. Both realistic bottom bathymetry and idealized bottom topographies are used to identify dominant mechanism leading to the complex tidal wave propagation. Our process of elimination identifies the wave reflection of southward propagating tidal wave by the deep trench in the southern strait as the true cause responsible for the complex wave propagation pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/14682','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/14682"><span>An introduction to wave propagation in pavements and soils : theory and practice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1999-02-01</p> <p>This paper introduces the physics and analyst of wave propagation in pavement and soils. The study of wave propagation in soils can yield useful results to engineers concerned with resilient characteristics of a particular site, dynamic soils structu...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSA43A2132K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSA43A2132K"><span>Measurement of LF Standard-Frequency Waves JJY along the track of Shirase, the Japanese Antarctic Research Icebreaker, during JARE53-JARE54</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kitauchi, H.; Nozaki, K.; Ito, H.; Tsuchiya, S.; Imamura, K.; Nagatsuma, T.</p> <p>2013-12-01</p> <p>We first obtained a strong evidence of reception of the low frequency (LF) radio waves, 40 kHz and 60 kHz, of the call sign JJY by use of a newly developed, highly sensitive receiving system on board the Japanese Antarctic research icebreaker Shirase offshore East Ongul Island, East Antarctica--about 14,000 km away from those transmitting stations in Japan. The measured data sets of the electric field intensity and phase of those signals are to be analysed to examine and/or improve numerical prediction methods of field strength for long-distance propagation of LF radio waves, contributing to the Recommendation 'Prediction of field strength at frequencies below about 150 kHz' made by International Telecommunication Union Radiocommunication Sector (ITU-R). The call sign JJY of standard frequency and time signals (SFTS) of LF 40 kHz and 60 kHz are emitted from the transmitting stations, respectively, Ohtakadoya-yama 37° 22‧ 21″ N, 140° 50‧ 56″ E in Fukushima Prefecture (eastern Japan) and Hagane-yama 33° 27‧ 56″ N, 130° 10‧ 32″ E in Saga/Fukuoka Prefecture (western Japan) by NICT. Those are widely used for calibrating frequency standard oscillators and radio-controlled clocks in Japan. Since low signal attenuation in LF radio band allows long distance communication, kilometre waves have been utilized for operations such as SFTS and military communications around the world. Therefore, there is a need to give guidance to engineers for the planning of radio services in LF band so as to avoid interference. ITU-R recommends the guidance 'Prediction of field strength at frequencies below about 150 kHz', in which a numerical prediction method is proposed to compute the electric field intensity, up to 16,000 km of long-distance propagation, away from the transmitting station. Since reliable data sets are limited for the long-distance propagation, in this study we tried to measure the field strength and phase of the LF SFTS JJY of 40 kHz and 60 kHz over 14,000 km away from those transmitting stations for further examination of the numerical prediction method. As part of the Japanese Antarctic Research Expedition (JARE), NICT conducts ionospheric observation during the round trip between Tokyo, Japan and Syowa Station, the Japanese Antarctic base, at 69° 00‧ S, 39° 35‧ E on East Ongul Island, Lutzow-Holm Bay, East Antarctica. In this research we make measurements of the electric field intensity and phase of those signals, continuously along both the ways between Tokyo and Syowa Station, by a newly developed, highly sensitive receiving system installed on board the Japanese Antarctic research icebreaker Shirase. During the 53rd JARE from November 2011 to April 2012, we conducted the measurements to obtain a strong evidence of reception of the LF SFTS JJY of 40 kHz and 60 kHz offshore East Ongul Island, East Antarctica--about 14,000 km away from those transmitting stations in Japan. We applied phase tracking technique to identify the reception of those signals, for the field strengths of the JJY radio waves are so weak in Lutzow-Holm Bay that it is difficult to distinguish between the signals and noises. The measured data sets are to be analysed for further examination and/or improvement of the numerical prediction method of field strength for long-distance propagation of LF radio waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860004341','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860004341"><span>Microwave Dielectric and Propagation Properties of Vegetation Canopies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ulaby, F. T. (Principal Investigator)</p> <p>1985-01-01</p> <p>A vegetation canopy is a highly inhomogeneous medium at microwave frequencies, and because the scattering elements (leaves, stalks, fruits, and branches) have a nonuniform distribution in orientation, the canopy is likely to exhibit nonisotropic attenuation properties. In some canopies, the stalk may contain the overwhelming majority of the plant's biomass, which suggests that an incident radar wave would be differentially attenuated by the canopy depending on the direction of the incident electric field relative to the stalks' orientation. The propagation properties of a vegetation canopy play a central role in modeling both the backscattering behavior observed by an imaging radar and the emission observed by a radiometer. These propagation properties are in turn governed by the dielectric properties and the size, shape, and slope distributions of the scatteres. In spite of the critical need for canopy propagation models and experimental data, very few investigations had been conducted (prior to this study) to determine the extinction properties of vegetation canopies, either by constituent type (leaves, stalks, etc.) or as a whole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5207230','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5207230"><span>A Q-Band Free-Space Characterization of Carbon Nanotube Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hassan, Ahmed M.; Garboczi, Edward J.</p> <p>2016-01-01</p> <p>We present a free-space measurement technique for non-destructive non-contact electrical and dielectric characterization of nano-carbon composites in the Q-band frequency range of 30 GHz to 50 GHz. The experimental system and error correction model accurately reconstruct the conductivity of composite materials that are either thicker than the wave penetration depth, and therefore exhibit negligible microwave transmission (less than −40 dB), or thinner than the wave penetration depth and, therefore, exhibit significant microwave transmission. This error correction model implements a fixed wave propagation distance between antennas and corrects the complex scattering parameters of the specimen from two references, an air slab having geometrical propagation length equal to that of the specimen under test, and a metallic conductor, such as an aluminum plate. Experimental results were validated by reconstructing the relative dielectric permittivity of known dielectric materials and then used to determine the conductivity of nano-carbon composite laminates. This error correction model can simplify routine characterization of thin conducting laminates to just one measurement of scattering parameters, making the method attractive for research, development, and for quality control in the manufacturing environment. PMID:28057959</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ASAJ..112.2403M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ASAJ..112.2403M"><span>Nonlinear magnetoacoustic wave propagation with chemical reactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Margulies, Timothy Scott</p> <p>2002-11-01</p> <p>The magnetoacoustic problem with an application to sound wave propagation through electrically conducting fluids such as the ocean in the Earth's magnetic field, liquid metals, or plasmas has been addressed taking into account several simultaneous chemical reactions. Using continuum balance equations for the total mass, linear momentum, energy; as well as Maxwell's electrodynamic equations, a nonlinear beam equation has been developed to generalize the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a fluid with linear viscosity but nonlinear and diffraction effects. Thermodynamic parameters are used and not tailored to only an adiabatic fluid case. The chemical kinetic equations build on a relaxing media approach presented, for example, by K. Naugolnukh and L. Ostrovsky [Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge, 1998)] for a linearized single reaction and thermodynamic pressure equation of state. Approximations for large and small relaxation times and for magnetohydrodynamic parameters [Korsunskii, Sov. Phys. Acoust. 36 (1990)] are examined. Additionally, Cattaneo's equation for heat conduction and its generalization for a memory process rather than a Fourier's law are taken into account. It was introduced for the heat flux depends on the temperature gradient at an earlier time to generate heat pulses of finite speed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhLA..382..241L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhLA..382..241L"><span>Generating ultra wide low-frequency gap for transverse wave isolation via inertial amplification effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Jingru; Li, Sheng</p> <p>2018-02-01</p> <p>Low-frequency transverse wave propagation plays a significant role in the out-of-plane vibration control. To efficiently attenuate the propagation of transverse waves at low-frequency range, this letter proposed a new type phononic beam by attaching inertial amplification mechanisms on it. The wave propagation of the beam with enhanced effective inertia is analyzed using the transfer matrix method. It is demonstrated that the low-frequency gap within inertial amplification effects can possess much wider bandwidth than using the local resonance method, thus is more suitable for designing applications to suppress transverse wave propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhCS.656a2023K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhCS.656a2023K"><span>Study on Pressure Wave Propagation in a Liquid Containing Spherical Bubbles in a Rectangular Duct</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawahara, Junya; Watanabe, Masao; Kobayashi, Kazumichi</p> <p>2015-12-01</p> <p>Pressure wave propagation in a liquid containing several bubbles is numerically investigated. We simulate liner plane wave propagation in a liquid containing 10 spherical bubbles in a rectangular duct with the equation of motion for N spherical bubbles. The sound pressures of the reflected waves from the rigid walls are calculated by using the method of images. The result shows that the phase velocity of the pressure wave propagating in the liquid containing 10 spherical bubbles in the duct agrees well with the low-frequency speed of sound in a homogeneous bubbly liquid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123..587L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123..587L"><span>One-Dimensional Full Wave Simulation of Equatorial Magnetosonic Wave Propagation in an Inhomogeneous Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Xu; Chen, Lunjin; Yang, Lixia; Xia, Zhiyang; Malaspina, David M.</p> <p>2018-01-01</p> <p>The effect of the plasmapause on equatorially radially propagating fast magnetosonic (MS) waves in the Earth's dipole magnetic field is studied by using finite difference time domain method. We run 1-D simulation for three different density profiles: (1) no plasmapause, (2) with a plasmapause, and (3) with a plasmapause accompanied with fine-scale density irregularity. We find that (1) without plasmapause the radially inward propagating MS wave can reach ionosphere and continuously propagate to lower altitude if no damping mechanism is considered. The wave properties follow the cold plasma dispersion relation locally along its trajectory. (2) For simulation with a plasmapause with a scale length of 0.006 RE compared to wavelength, only a small fraction of the MS wave power is reflected by the plasmapause. WKB approximation is generally valid for such plasmapause. (3) The multiple fine-scale density irregularities near the outer edge of plasmapause can effectively block the MS wave propagation, resulting in a terminating boundary for MS waves near the plasmapause.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21389149-plasma-control-modification-helicon-wave-propagation-low-magnetic-fields','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21389149-plasma-control-modification-helicon-wave-propagation-low-magnetic-fields"><span>Plasma control by modification of helicon wave propagation in low magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lafleur, T.; Charles, C.; Boswell, R. W.</p> <p>2010-07-15</p> <p>By making use of nonuniform magnetic fields, it is shown experimentally that control of helicon wave propagation can be achieved in a low pressure (0.08 Pa) expanding plasma. The m=1 helicon waves are formed during a direct capacitive to wave mode transition that occurs in a low diverging magnetic field (B{sub 0}<3 mT). In this initial configuration, waves are prevented from reaching the downstream region, but slight modifications to the magnetic field allows the axial distance over which waves can propagate to be controlled. By changing the effective propagation distance in this way, significant modification of the density and plasmamore » potential profiles can be achieved, showing that the rf power deposition can be spatially controlled as well. Critical to the modification of the wave propagation behavior is the magnetic field strength (and geometry) near the exit of the plasma source region, which gives electron cyclotron frequencies close to the wave frequency of 13.56 MHz.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...860...54O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...860...54O"><span>Quasi-periodic Counter-propagating Fast Magnetosonic Wave Trains from Neighboring Flares: SDO/AIA Observations and 3D MHD Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ofman, Leon; Liu, Wei</p> <p>2018-06-01</p> <p>Since their discovery by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) in the extreme ultraviolet, rapid (phase speeds of ∼1000 km s‑1), quasi-periodic, fast-mode propagating (QFP) wave trains have been observed accompanying many solar flares. They typically propagate in funnel-like structures associated with the expanding magnetic field topology of the active regions (ARs). The waves provide information on the associated flare pulsations and the magnetic structure through coronal seismology (CS). The reported waves usually originate from a single localized source associated with the flare. Here we report the first detection of counter-propagating QFPs associated with two neighboring flares on 2013 May 22, apparently connected by large-scale, trans-equatorial coronal loops. We present the first results of a 3D MHD model of counter-propagating QFPs in an idealized bipolar AR. We investigate the excitation, propagation, nonlinearity, and interaction of the counter-propagating waves for a range of key model parameters, such as the properties of the sources and the background magnetic structure. In addition to QFPs, we also find evidence of trapped fast- (kink) and slow-mode waves associated with the event. We apply CS to determine the magnetic field strength in an oscillating loop during the event. Our model results are in qualitative agreement with the AIA-observed counter-propagating waves and used to identify the various MHD wave modes associated with the observed event, providing insights into their linear and nonlinear interactions. Our observations provide the first direct evidence of counter-propagating fast magnetosonic waves that can potentially lead to turbulent cascade and carry significant energy flux for coronal heating in low-corona magnetic structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASTP.155...86K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASTP.155...86K"><span>Statistical analysis of mesospheric gravity waves over King Sejong Station, Antarctica (62.2°S, 58.8°W)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kam, Hosik; Jee, Geonhwa; Kim, Yong; Ham, Young-bae; Song, In-Sun</p> <p>2017-03-01</p> <p>We have investigated the characteristics of mesospheric short period (<1 h) gravity waves which were observed with all-sky images of OH Meinel band and OI 557 nm airglows over King Sejong Station (KSS) (62.22°S, 58.78°W) during a period of 2008-2015. By applying 2-dimensional FFT to time differenced images, we derived horizontal wavelengths, phase speeds, and propagating directions (188 and 173 quasi-monochromatic waves from OH and OI airglow images, respectively). The majority of the observed waves propagated predominantly westward, implying that eastward waves were filtered out by strong eastward stratospheric winds. In order to obtain the intrinsic properties of the observed waves, we utilized winds simultaneously measured by KSS Meteor Radar and temperatures from Aura Microwave Limb Sounder (MLS). More than half the waves propagated horizontally, as waves were in Doppler duct or evanescent in the vertical direction. This might be due to strong eastward background wind field in the mesosphere over KSS. For freely propagating waves, the vertical wavelengths were in the interquartile range of 9-33 km with a median value of 15 km. The vertical wavelengths are shorter than those observed at Halley station (76°S, 27°W) where the majority of the observed waves were freely propagating. The difference in the wave propagating characteristics between KSS and Halley station suggests that gravity waves may affect mesospheric dynamics in this part of the Antarctic Peninsula more strongly than over the Antarctic continent. Furthermore, strong wind shear over KSS played an important role in changing the vertical wavenumbers as the waves propagated upward between two airglow layers (87 and 96 km).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22403345-incident-angle-insensitive-tunable-multichannel-perfect-absorber-consisting-nonlinear-plasma-matching-metamaterials','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22403345-incident-angle-insensitive-tunable-multichannel-perfect-absorber-consisting-nonlinear-plasma-matching-metamaterials"><span>Incident angle insensitive tunable multichannel perfect absorber consisting of nonlinear plasma and matching metamaterials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kong, Xiang-kun; Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044; Liu, Shao-Bin, E-mail: plrg@nuaa.edu.cn</p> <p>2014-12-15</p> <p>A novel, compact, and multichannel nonreciprocal absorber through a wave tunneling mechanism in epsilon-negative and matching metamaterials is theoretically proposed. Nonreciprocal absorption properties are acquired via the coupling together of evanescent and propagating waves in an asymmetric configuration, constituted of nonlinear plasma alternated with matching metamaterial. The absorption channel number can be adjusted by changing the periodic number. Due to the positive feedback between nonlinear permittivity of plasma and the inner electric field, bistable absorption and reflection are achieved. Moreover, compared with some truncated photonic crystal or multilayered designs proposed before, our design is more compact and independent of incidentmore » angle or polarization. This kind of multilayer structure offers additional opportunities to design novel omnidirectional electromagnetic wave absorbers.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840062965&hterms=development+personality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddevelopment%2Bpersonality','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840062965&hterms=development+personality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddevelopment%2Bpersonality"><span>Kristian Birkeland - The man and the scientist</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Egeland, A.</p> <p>1984-01-01</p> <p>A review is presented of Birkeland's outstanding contributions to auroral theory and, in particular, to the foundation of modern magnetospheric physics. Birkeland's first years in research, after a study of mathematics and theoretical physics at the university, were concerned with Maxwell's theory, the investigation of electromagnetic waves in conductors, wave propagation in space, an energy transfer by means of electromagnetic waves, and a general expression for the Poynting vector. Experiments with cathode rays near a magnet in 1895, led Birkeland to the development of an auroral theory. This theory represented the first detailed, realistic explanation of the creation of an aurora. Attention is given to experiments conducted to verify the theory, the discovery of the polar elementary storm, and the deduction of auroral electric currents. Birkeland's background and education is also considered along with his personality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018InJPh.tmp...22M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018InJPh.tmp...22M"><span>The propagation of ion-acoustic waves carrying orbital angular momentum in the electron-positron-ion plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mehdian, H.; Nobahar, D.; Hajisharifi, K.</p> <p>2018-02-01</p> <p>Ion-acoustic (IA) waves carrying orbital angular momentum (OAM) are investigated in an unmagnetized, uniform, and collisionless electron-positron-ion (e-p-i) plasma system. Employing the hydrodynamic theory, the paraxial equation in term of ion perturbed number density is derived and discussed about its Laguerre-Gaussian (LG) beam solutions. Obtaining an approximate solution for the electrostatic potential, the IA wave characteristics including helical electric field structure, energy density, and OAM density are theoretically studied. Based on the numerical analysis, the effects of positron concentration, radial and angular mode number as well as beam waist on the obtained potential profile are investigated. It is shown that the depth (height) and width of the LG potential profile wells (barriers) are considerably modify by the variation of positron concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004SPIE.5333...18A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004SPIE.5333...18A"><span>Three-dimensional computation of laser cavity eigenmodes by the use of finite element analysis (FEA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Altmann, Konrad; Pflaum, Christoph; Seider, David</p> <p>2004-06-01</p> <p>A new method for computing eigenmodes of a laser resonator by the use of finite element analysis (FEA) is presented. For this purpose, the scalar wave equation [Δ + k2]E(x,y,z) = 0 is transformed into a solvable 3D eigenvalue problem by separating out the propagation factor exp(-ikz) from the phasor amplitude E(x,y,z) of the time-harmonic electrical field. For standing wave resonators, the beam inside the cavity is represented by a two-wave ansatz. For cavities with parabolic optical elements the new approach has successfully been verified by the use of the Gaussian mode algorithm. For a DPSSL with a thermally lensing crystal inside the cavity the expected deviation between Gaussian approximation and numerical solution could be demonstrated clearly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29125128','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29125128"><span>Action potential propagation: ion current or intramembrane electric field?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martí, Albert; Pérez, Juan J; Madrenas, Jordi</p> <p>2018-01-01</p> <p>The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGP34A..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGP34A..02N"><span>Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.</p> <p>2011-12-01</p> <p>A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870017368&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870017368&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwave%2Boscillation"><span>Steepened magnetosonic waves in the high beta plasma surrounding Comet Giacobini-Zinner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsurutani, B. T.; Smith, E. J.; Thorne, R. M.; Gosling, J. T.; Matsumoto, H.</p> <p>1986-01-01</p> <p>Studies of intense hydromagnetic waves at Giacobini-Zinner are extended to investigate the mode and direction of wave propagation. Simultaneous high-resolution measurements of electron density fluctuations demonstrate that long period waves propagate in the magnetosonic mode. Principal axis analyses of the long period waves and accompanying partial rotations show that the sum of the wave phase rotations is 360 deg, indicating that both are parts of the same wave oscillation. The time sequence of the steepened waveforms observed by ICE shows that the waves must propagate towards the Sun with Cph less than Vsw. Observations are consistent with wave generation by resonant ion ring or ion beam instability which predicts right-hand polarized waves propagating in the ion beam (solar) direction. The large amplitudes and small scale sizes of the cometary waves suggest that rapid pitch-angle scattering and energy transfer with energetic ions should occur. Since the waves are highly compressive, first-order Fermi acceleration is forecast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21185681-sounding-experiments-high-pressure-gas-discharge','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21185681-sounding-experiments-high-pressure-gas-discharge"><span>Sounding experiments of high pressure gas discharge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Biele, Joachim K.</p> <p></p> <p>A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at themore » combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472246-trajectories-electrons-large-longitudinal-momenta-phase-plane-during-surfatron-acceleration-electromagnetic-wave','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472246-trajectories-electrons-large-longitudinal-momenta-phase-plane-during-surfatron-acceleration-electromagnetic-wave"><span>Trajectories of electrons with large longitudinal momenta in the phase plane during surfatron acceleration by an electromagnetic wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mkrtichyan, G. S., E-mail: hay-13@mail.ru</p> <p>2015-07-15</p> <p>The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic wave propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are trapped immediately if the initial wave phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons trapping by the wave is observed over the available computational times. According to numerical calculations, the trajectories of trapped particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectorymore » corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28505608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28505608"><span>A differential optical interferometer for measuring short pulses of surface acoustic waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shaw, Anurupa; Teyssieux, Damien; Laude, Vincent</p> <p>2017-09-01</p> <p>The measurement of the displacements caused by the propagation of a short pulse of surface acoustic waves on a solid substrate is investigated. A stabilized time-domain differential interferometer is proposed, with the surface acoustic wave (SAW) sample placed outside the interferometer. Experiments are conducted with surface acoustic waves excited by a chirped interdigital transducer on a piezoelectric lithium niobate substrate having an operational bandwidth covering the 200-400MHz frequency range and producing 10-ns pulses with 36nm maximum out-of-plane displacement. The interferometric response is compared with a direct electrical measurement obtained with a receiving wide bandwidth interdigital transducer and good correspondence is observed. The effects of varying the path difference of the interferometer and the measurement position on the surface are discussed. Pulse compression along the chirped interdigital transducer is observed experimentally. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22649664-dynamic-generation-spin-wave-currents-hybrid-structures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22649664-dynamic-generation-spin-wave-currents-hybrid-structures"><span>Dynamic generation of spin-wave currents in hybrid structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com</p> <p>2016-11-15</p> <p>Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA31A2382F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA31A2382F"><span>How to Recognize and Distinguish Low-Latitude Ionospheric Storms Disturbances Produced by TIDs or PPEFs During Geomagnetic Storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fagundes, P. R.; Ribeiro, B. A.; Kavutarapu, V.; Fejer, B. G.; Pillat, V. G.</p> <p>2016-12-01</p> <p>The effects of geomagnetic storms on ionosphere are one of the important aspects of the space weather and identifying the possible sources of these perturbations is important. Among the possible sources of ionospheric perturbations, the Travelling Ionospheric Disturbance (TID) and Prompt Penetration Electric Field (PPEF) are the most important. In this study, we present and discuss the ionospheric response in the Brazilian sector due to geomagnetic storms occurred during January 2013 and March 2015. These space weather events were investigated using a network of 100 GPS-TEC stations. It has been noticed that the VTEC was disturbed during main phase in both storms. During the first event (January), a positive ionospheric storm peak in TEC is observed first beyond the EIA crest and sometime later at low-latitude and equatorial region. This delayed response at different latitudes could be a signature of TID propagation. In this specific event a TID propagating to northwest direction with a velocity of about 200 m/s. However, during the second event (March), 3 positive ionospheric storm peaks were observed in the VTEC from equator to low latitudes during the storm main phase, but these 3 peaks do not present wave propagation characteristics. Probably, an eastward electric field penetrated at equatorial and low-latitude regions uplifts the F-region where the recombination rates are lower leading to a positive ionospheric storm. To distinguish if the positive ionospheric storm was produced by TID or PPEF, it is important to observe the positive ionospheric storm changes along the meridional direction. In case of TIDs, a meridional propagation of the disturbance wave with a phase and speed will be observed. Therefore, the perturbation occurs first beyond the EIA crest and sometime later at the low latitudes and finally at the equatorial region. In case of PPEF the positive ionospheric storm takes place almost simultaneously from beyond the EIA crest to equatorial region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1463F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1463F"><span>Atmosphere-Ionosphere Coupling due to Atmospheric Tides (Julius Bartels Medal Lecture)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forbes, Jeffrey M.</p> <p>2016-04-01</p> <p>Within the last decade, a new realization has arrived on the scene of ionosphere-thermosphere (IT) science: terrestrial weather significantly influences space weather. The aspect of space weather referred to here consists of electron density variability that translates to uncertainties in navigation and communications systems, and neutral density variability that translates to uncertainties in orbital and reentry predictions. In the present context "terrestrial weather" primarily refers to the meteorological conditions that determine the spatial-temporal distribution of tropospheric water vapor and latent heating associated with tropical convection, and the middle atmosphere disturbances associated with sudden stratosphere warmings. The net effect of these processes is a spatially- and temporally-evolving spectrum of waves (gravity waves, tides, planetary waves, Kelvin waves) that grows in amplitude with height and enters the IT system near ~100 km. Some members of the wave spectrum penetrate all the way to the base of the exosphere (ca. 500 km). Along the way, nonlinear interactions between different wave components occur, modifying the interacting waves and giving rise to secondary waves. Finally, the IT wind perturbations carried by the waves can redistribute ionospheric plasma, either through the electric fields generated via the dynamo mechanism between 100 and 150 km, or directly by moving plasma along magnetic field lines at higher levels. Additionally, the signatures of wave-driven dynamo currents are reflected in magnetic perturbations observed at the ground. This is how terrestrial atmospheric variability, through the spectrum of vertically- propagating waves that it produces, can effectively drive IT space weather. The primary objective of this Julius Bartels Lecture is to provide an overview of the global observational evidence for the IT consequences of these upward-propagating waves. In honor of Julius Bartels, who performed much research (including his habilitation thesis) on atmospheric and geomagnetic tides, this talk will emphasize the tidal part of the wave spectrum and its effects on the upper atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003APS..DPPKM1005G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003APS..DPPKM1005G"><span>Experiments on the Expansion of a Dense Plasma into a Background Magnetoplasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gekelman, Walter; Vanzeeland, Mike; Vincena, Steve; Pribyl, Pat</p> <p>2003-10-01</p> <p>There are many situations, which occur in space (coronal mass ejections, or are man-made (upper atmospheric detonations) as well as the initial stages of a supernovae, in which a dense plasma expands into a background magnetized plasma, that can support Alfvèn waves. The upgraded LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvèn wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments,which involve the expansion of a dense (initially, n_laser-plasma/n_0≫1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvèn waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The interaction results in the production of intense shear Alfvèn waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. In the initial phase the background magnetic field is expelled from a plasma bubble. Currents in the main body of the plasma are generated to neutralize the positively charged bubble. The current system which results, becomes that of a spectrum of shear Alfvèn waves. Spatial patterns of the wave magnetic fields waves are measured at over 10^4 locations. As the dense plasma expands across the magnetic field it seeds the column with shear waves. Most of the Alfvèn wave energy is in shear waves, which become field line resonances after a machine transit time. The interplay between waves, currents, inductive electric fields and space charge is analyzed in great detail. Dramatic movies of the measured wave fields and their associated currents will be presented. Work supported by ONR, and DOE /NSF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950054317&hterms=diversity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddiversity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950054317&hterms=diversity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddiversity"><span>Notes on the diversity of the properties of radio bursts observed on the nightside of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sonwalkar, Vikas S.; Carpenter, D. L.</p> <p>1995-01-01</p> <p>We report on further studies of radio wave bursts detected by the Orbiting Electric Field Detector (OEFD) on the Pioneer Venus Orbiter (PVO) in the nightside ionosphere of Venus. We have tested a total of 25 cases of wave burst activity for evidence of whistler-mode propagation to the spacecraft from impulsive subionospheric sources. As in a previous study of 11 of these cases (Sonwalkar et al., 1991) we find at least two distinct classes of events, one, mostly involving bursts at 100 Hz only, that passes certain tests for whistler-mode propagation, and another, mostly involving bursts in two or more of the four PVO narrowband channels (at 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz), that fails to pass the tests. The subionospheric lightning hypothesis continues to be tenable as a candidate explanation for many of the 100 Hz-only events, but its number of 100 Hz-only cases that do no pass all the applicable whistler-mode tests, as well as the existence at a wide range of altitudes of multichannel cases that are clearly not propagating whistler-mode waves. The wideband bursts are often observed at altitudes above 1000 km and frequently occur in regions of locally reduced electron density. Those observed at high altitude (and possibly low altitude as well) are believed to be generated near the spacecraft, possibly by an as yet unknown mechanism responsible for similar burst observations made near Earth and other planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1650.1178K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1650.1178K"><span>Numerical simulation and experimental validation of Lamb wave propagation behavior in composite plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Sungwon; Uprety, Bibhisha; Mathews, V. John; Adams, Daniel O.</p> <p>2015-03-01</p> <p>Structural Health Monitoring (SHM) based on Acoustic Emission (AE) is dependent on both the sensors to detect an impact event as well as an algorithm to determine the impact location. The propagation of Lamb waves produced by an impact event in thin composite structures is affected by several unique aspects including material anisotropy, ply orientations, and geometric discontinuities within the structure. The development of accurate numerical models of Lamb wave propagation has important benefits towards the development of AE-based SHM systems for impact location estimation. Currently, many impact location algorithms utilize the time of arrival or velocities of Lamb waves. Therefore the numerical prediction of characteristic wave velocities is of great interest. Additionally, the propagation of the initial symmetric (S0) and asymmetric (A0) wave modes is important, as these wave modes are used for time of arrival estimation. In this investigation, finite element analyses were performed to investigate aspects of Lamb wave propagation in composite plates with active signal excitation. A comparative evaluation of two three-dimensional modeling approaches was performed, with emphasis placed on the propagation and velocity of both the S0 and A0 wave modes. Results from numerical simulations are compared to experimental results obtained from active AE testing. Of particular interest is the directional dependence of Lamb waves in quasi-isotropic carbon/epoxy composite plates. Numerical and experimental results suggest that although a quasi-isotropic composite plate may have the same effective elastic modulus in all in-plane directions, the Lamb wave velocity may have some directional dependence. Further numerical analyses were performed to investigate Lamb wave propagation associated with circular cutouts in composite plates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1208D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1208D"><span>Electromagnetic Ion Cyclotron Wavefields in a Realistic Dipole Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denton, R. E.</p> <p>2018-02-01</p> <p>The latitudinal distribution and properties of electromagnetic ion cyclotron (EMIC) waves determine the total effect of those waves on relativistic electrons. Here we describe the latitudinal variation of EMIC waves simulated self-consistently in a dipole magnetic field for a plasmasphere or plume-like plasma at geostationary orbit with cold H+, He+, and O+ and hot protons with temperature anisotropy. The waves grow as they propagate away from the magnetic equator to higher latitude, while the wave vector turns outward radially and the polarization becomes linear. We calculate the detailed wave spectrum in four latitudinal ranges varying from magnetic latitude (MLAT) close to 0° (magnetic equator) up to 21°. The strongest waves are propagating away from the magnetic equator, but some wave power propagating toward the magnetic equator is observed due to local generation (especially close to the magnetic equator) or reflection. The He band waves, which are generated relatively high up on their dispersion surface, are able to propagate all the way to MLAT = 21°, but the H band waves experience frequency filtering, with no equatorial waves propagating to MLAT = 21° and only the higher-frequency waves propagating to MLAT = 14°. The result is that the wave power averaged k∥, which determines the relativistic electron minimum resonance energy, scales like the inverse of the local magnetic field for the He mode, whereas it is almost constant for the H mode. While the perpendicular wave vector turns outward, it broadens. These wavefields should be useful for simulations of radiation belt particle dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.110n3701M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.110n3701M"><span>Effect of anisotropy on stress-induced electrical potentials in bovine bone using ultrasound irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matsukawa, S.; Makino, T.; Mori, S.; Koyama, D.; Takayanagi, S.; Mizuno, K.; Yanagitani, T.; Matsukawa, M.</p> <p>2017-04-01</p> <p>The bone fracture healing mechanism of the low-intensity pulsed ultrasound technique is not yet clearly understood. In our previous study, the electrical potentials induced in bone were successfully measured by focusing on piezoelectricity in the MHz range. Bone is composed of collagen and hydroxyapatite and has strong anisotropy. The purpose of this study is to investigate the effects of bone anisotropy on the electrical potentials induced by ultrasound irradiation. For this study, ultrasound bone transducers were fabricated using cortical bovine bone plates as piezoelectric devices. An ultrasound of 7.4 kPapeak-peak (i.e., the peak-to-peak pressure value) was used to irradiate the side surface of each bone plate. Electrical potentials induced in the bone plate were then measured by varying the wave propagation direction in the plate. The peak-to-peak values of these ultrasonically induced electrical potentials were found to vary with changes in the ultrasound propagation direction in the bone sample. The potential was maximized at an inclination of approximately 45° to the bone axis but was minimized around the three orthogonal directions. These maxima and minima ranged from 28 to 33 μVpeak-peak and from 5 to 12 μVpeak-peak, respectively. Additionally, our ultrasound results indicated a change in polarity due to bone anisotropy in the MHz range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRE..111.6S06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRE..111.6S06L"><span>An estimation of the electrical characteristics of planetary shallow subsurfaces with TAPIR antennas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Gall, A.; Reineix, A.; Ciarletti, V.; Berthelier, J. J.; Ney, R.; Dolon, F.; Corbel, C.</p> <p>2006-06-01</p> <p>In the frame of the NETLANDER program, we have developed the Terrestrial And Planetary Investigation by Radar (TAPIR) imaging ground-penetrating radar to explore the Martian subsurface at kilometric depths and search for potential water reservoirs. This instrument which is to operate from a fixed lander is based on a new concept which allows one to image the various underground reflectors by determining the direction of propagation of the reflected waves. The electrical parameters of the shallow subsurface (permittivity and conductivity) need to be known to correctly determine the propagation vector. In addition, these electrical parameters can bring valuable information on the nature of the materials close to the surface. The electric antennas of the radar are 35 m long resistively loaded monopoles that are laid on the ground. Their impedance, measured during a dedicated mode of operation of the radar, depends on the electrical parameters of soil and is used to infer the permittivity and conductivity of the upper layer of the subsurface. This paper presents an experimental and theoretical study of the antenna impedance and shows that the frequency profile of the antenna complex impedance can be used to retrieve the geoelectrical characteristics of the soil. Comparisons between a numerical modeling and in situ measurements have been successfully carried over various soils, showing a very good agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24j3107S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24j3107S"><span>Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salamin, Yousef I.</p> <p>2017-10-01</p> <p>Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......181K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......181K"><span>The effect of convection and shear on the damping and propagation of pressure waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiel, Barry Vincent</p> <p></p> <p>Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection causes the spinning waves documented in inlets and exhausts of gas turbine engines, rocket combustion chambers, and afterburner chambers. As a result, the effects of shear must be included when modeling wave propagation, even for mean flows less than < Mach 0.10.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA......292W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA......292W"><span>Generation, propagation and run-up of tsunamis due to the Chicxulub impact event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weisz, R.; Wuennenmann, K.; Bahlburg, H.</p> <p>2003-04-01</p> <p>The Chicxulub impact event can be investigated in (1) local, (2) regional and in (3) global scales. Our investigations focus on the regional scale, especially on the influence of tsunami waves on the coast around the Gulf of Mexico caused by the impact. During an impact two types of tsunamis are generated. The first wave is known as the "rim wave" and is generated in front of the ejecta curtain. The second one is linked to the late modification stage of the impact and results from the collapsing cavity of water. We designate this wave as "collapse wave". The "rim wave" and "collapse wave" are able to propagate over long distances, without a significant loss of wave amplitude. Corresponding to the amplitudes, the waves have a potentially large influence on the coastal areas. Run-up distance and run-up height can be used as parameters for describing this influence. We are utilizing a multimaterial hydrocode (SALE) to simulate the generation of tsunami waves. The propagation of the waves is based on the non-linear shallow water theory, because tsunami waves are defined to be long waves. The position of the coast line varies according to the tsunami run-up and is implemented with open boundary conditions. We show with our investigations (1) the generation of tsunami waves due to shallow water impacts, (2) wave damping during propagation, and (3) the influence of the "rim wave" and the "collapse wave" on the coastal areas. Here, we present our first results from numerical modeling of tsunami waves owing to a Chicxulub sized impactor. The characteristics of the “rim wave” depend on the size of the bolide and the water depth. However, the amplitude and velocity of the “collapse wave” is only determined by the water depth in the impact area. The numerical modeling of the tsunami propagation and run-up is calculated along a section from the impact point towards to the west and gives the moderate damping of both waves and the run-up on the coastal area. As a first approximation, the bathymetric data, used in the wave propagation and run-up, correspond to a linearized bathymetry of the Recent Gulf of Mexico. The linearized bathymetry allows to study the influence of the bathymetry on wave propagation and run-up. Additionally, we give preliminary results of the implementation of the two-dimensional propagation and run-up model for arbitrary bathymetries. The two-dimensional wave propagation model will enable us to more realistically asses the influence of the impact-related tsunamis on the coasts around the Gulf of Mexico due to the Chicxulub impact event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97b2209W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97b2209W"><span>Metastable modular metastructures for on-demand reconfiguration of band structures and nonreciprocal wave propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Z.; Zheng, Y.; Wang, K. W.</p> <p>2018-02-01</p> <p>We present an approach to achieve adaptable band structures and nonreciprocal wave propagation by exploring and exploiting the concept of metastable modular metastructures. Through studying the dynamics of wave propagation in a chain composed of finite metastable modules, we provide experimental and analytical results on nonreciprocal wave propagation and unveil the underlying mechanisms that facilitate such unidirectional energy transmission. In addition, we demonstrate that via transitioning among the numerous metastable states, the proposed metastructure is endowed with a large number of bandgap reconfiguration possibilities. As a result, we illustrate that unprecedented adaptable nonreciprocal wave propagation can be realized using the metastable modular metastructure. Overall, this research elucidates the rich dynamics attainable through the combinations of periodicity, nonlinearity, spatial asymmetry, and metastability and creates a class of adaptive structural and material systems capable of realizing tunable bandgaps and nonreciprocal wave transmissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10496E..0PZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10496E..0PZ"><span>Viscoelastic characterization of dispersive media by inversion of a general wave propagation model in optical coherence elastography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.</p> <p>2018-02-01</p> <p>Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1352403','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1352403"><span>geometric optics and WKB method for electromagnetic wave propagation in an inhomogeneous plasma near cutoff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Light, Max Eugene</p> <p></p> <p>This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density n e(r), which will modify the wave propagation in the direction of the gradient rn e(r).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29047527','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29047527"><span>Invertible propagator for plane wave illumination of forward-scattering structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Samelsohn, Gregory</p> <p>2017-05-10</p> <p>Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SMaS...19a5015H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SMaS...19a5015H"><span>Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ha, Sungwon; Chang, Fu-Kuo</p> <p>2010-01-01</p> <p>Use of surface-mounted piezoelectric actuators to generate acoustic ultrasound has been demonstrated to be a key component of built-in nondestructive detection evaluation (NDE) techniques, which can automatically inspect and interrogate damage in hard-to-access areas in real time without disassembly of the structural parts. However, piezoelectric actuators create complex waves, which propagate through the structure. Having the capability to model piezoelectric actuator-induced wave propagation and understanding its physics are essential to developing advanced algorithms for the built-in NDE techniques. Therefore, the objective of this investigation was to develop an efficient hybrid spectral element for modeling piezoelectric actuator-induced high-frequency wave propagation in thin plates. With the hybrid element we take advantage of both a high-order spectral element in the in-plane direction and a linear finite element in the thickness direction in order to efficiently analyze Lamb wave propagation in thin plates. The hybrid spectral element out-performs other elements in terms of leading to significantly faster computation and smaller memory requirements. Use of the hybrid spectral element is proven to be an efficient technique for modeling PZT-induced (PZT: lead zirconate titanate) wave propagation in thin plates. The element enables fundamental understanding of PZT-induced wave propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..12111333B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..12111333B"><span>Multiple ionospheric perturbations during the Saint Patrick's Day storm 2015 in the European-African sector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borries, Claudia; Mahrous, Ayman M.; Ellahouny, Nada M.; Badeke, Ronny</p> <p>2016-11-01</p> <p>Strong ionospheric perturbations were generated by the intense geomagnetic storm on 17 March 2015. In this article, we are studying perturbations in the European-African sector observed in the total electron content (TEC). Focal points are wavelike phenomena considered as large-scale traveling ionospheric disturbances (LSTIDs). In the European-African sector, the storm produced three different types of LSTIDs: (1) a concurrent TEC perturbation at all latitudes simultaneously; (2) one LSTID propagating toward the equator, having very large wave parameters (wavelength: ≈3600 km, period: ≈120 min, and speed: ≈500 m/s); and (3) several LSTIDs propagating toward the equator with typical wave parameters (wavelength: ≈2100 km, period: ≈60 min, and speed ≈600 m/s). The third type of LSTIDs is considered to be exited as most LSTIDs either due to variations in the Joule heating or variations in the Lorentz force, whereas the first two perturbation types are rather unusual in their appearance. They occurred during the partial recovery phase when the geomagnetic perturbations were minor and the interplanetary magnetic field turned northward. A westward prompt penetration electric field is considered to excite the first perturbation signature, which indicates a sudden TEC depletion. For the second LSTID type, variations in the Lorentz force because of perturbed electric fields and a minor particle precipitation effect are extracted as possible excitation mechanisms.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760007256','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760007256"><span>Relativistic nonlinear plasma waves in a magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kennel, C. F.; Pellat, R.</p> <p>1975-01-01</p> <p>Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EaSci..27..421Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EaSci..27..421Z"><span>Viscoelastic representation of surface waves in patchy saturated poroelastic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi</p> <p>2014-08-01</p> <p>Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10494E..2JY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10494E..2JY"><span>Fast focus-scanning head in two-photon photoacoustic microscopy with electrically controlled liquid lens</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamaoka, Yoshihisa; Kimura, Yuka; Harada, Yoshinori; Takamatsu, Tetsuro; Takahashi, Eiji</p> <p>2018-02-01</p> <p>Conventional one-photon photoacoustic microscopy (PAM) utilizes high-frequency components of generated photoacoustic waves to improve the depth resolution. However, to obtain optically-high resolution in PAM in the depth direction, the use of high-frequency ultrasonic waves is to be avoided. It is because that the propagation distance is shortened as the frequency of ultrasonic waves becomes high. To overcome this drawback, we have proposed and developed two-photon photoacoustic microscopy (TP-PAM). Two-photon absorption occurs only at the focus point. TPPAM does not need to use the high-frequency components of photoacoustic waves. Thus, TP-PAM can improve the penetration depth while preserving the spatial resolution. However, the image acquisition time of TP-PAM is longer than that of conventional PAM, because TP-PAM needs to scan the laser spot both in the depth and transverse directions to obtain cross-sectional images. In this paper, we have introduced a focus-tunable electrically-controlled liquid lens in TP-PAM. Instead of a mechanical stepping-motor stage, we employed electrically-controlled liquid lens so that the depth of the focus spot can be quickly changed. In our system, the imaging speed of TP-PAM using the liquid lens and one-axis stepping-motor stage was 10 times faster than that using a two-axis stepping-motor stage only. TP-PAM with focus-scanning head consisting of the liquid lens and stepping-motor stage will be a promising method to investigate the inside of living tissues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSA33B..04T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSA33B..04T"><span>Earthquake- and tsunami-induced ionospheric disturbances detected by GPS total electron content observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsugawa, T.; Nishioka, M.; Matsumura, M.; Shinagawa, H.; Maruyama, T.; Ogawa, T.; Saito, A.; Otsuka, Y.; Nagatsuma, T.; Murata, T.</p> <p>2012-12-01</p> <p>Ionospheric disturbances induced by the 2011 Tohoku earthquake and tsunami were studied by the high-resolution GPS total electron content (TEC) observation in Japan and in the world. The initial ionospheric disturbance appeared as sudden depletions by about 6 TEC unit (20%) about seven minutes after the earthquake onset, near the epicenter. From 06:00UT to 06:15UT, circular waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, shortperiod oscillations with period of about 4 minutes were observed after 06:00 UT for 3 hours or more. We focus on the the circular and concentric waves in this paper. The circular or concentric structures indicate that these ionospheric disturbances had a point source. The center of these structures, termed as "ionospheric epicenter", was located around 37.5 deg N of latitude and 144.0 deg E of longitude, 170 km far from the epicenter to the southeast direction, and corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. Long-propagation of these TEC disturbances were studied also using high-resolution GPS-TEC data in North America and Europe. Medium-scale wave structures with wavelengths of several 100 km appeared in the west part of North America at the almost same time as the tsunami arrival. On the other hand, no remarkable wave structure was observed in Europe. We will introduce these observational results and discuss about the generation and propagation mechanisms of the ionospheric disturbances induced by the earthquake and tsunami.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992nntt.symp.....A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992nntt.symp.....A"><span>Effects of UGTs on the ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Argo, P. E.; Fitzgerald, T. J.</p> <p></p> <p>The processes that propagate local effects of underground nuclear tests from the ground into the upper atmosphere, and produce a detectable signal in the ionosphere are described. Initially, the blast wave from a underground test (UGT) radially expands, until it reaches the surface of the earth. The wave is both reflected and transmitted at this sharp discontinuity in propagation media. Tne reflected wave combines with the incident wave to form an 'Airy surface,' at which very strong ripping forces tear the earth apart. This broken region is called the 'spat zone,' and is launched into ballistic motion. The resultant ground motion launches an acoustical wave into the atmosphere. This acoustic wave, with overpressures of a few tenths of one percent, propagates upwards at the speed of sound. Assuming purely linear propagation, the path of the acoustic energy can be tracked using raytracing models. Most of the wave energy, which is radiated nearly vertically, tends to propagate into the upper atmosphere, while wave energy radiated at angles greater than about 30 degrees to the vertical will be reflected back to earth and is probably what is seen by most infrasonde measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599157-propagation-electromagnetic-waves-weak-collisional-fully-ionized-dusty-plasma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599157-propagation-electromagnetic-waves-weak-collisional-fully-ionized-dusty-plasma"><span>Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin</p> <p>2016-04-15</p> <p>The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause themore » attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSM24A..03I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSM24A..03I"><span>The VLF Wave and Particle Precipitation Mapper (VPM) Cubesat Payload Suite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inan, U.; Linscott, I.; Marshall, R. A.; Lauben, D.; Starks, M. J.; Doolittle, J. H.</p> <p>2012-12-01</p> <p>The VLF Wave and Particle Precipitation Mapper (VPM) payload is under development at Stanford University for a Cubesat mission that is planned to fly in low-earth-orbit in 2015. The VPM payload suite includes a 2-meter electric-field dipole antenna; a single-axis magnetic search coil; and a two-channel relativistic electron detector, measuring both trapped and loss-cone electrons. VPM will measure waves and relativistic electrons with the following primary goals: i) develop an improved climatology of plasmaspheric hiss in the L-shell range 1 < L < 3 at all local times; ii) detect VLF waves launched by space-based VLF transmitters, as well as energetic electrons scattered by those in-situ injected waves; iii) develop an improved climatology of lightning-generated whistlers and lightning-induced electron precipitation; iv)measure waves and electron precipitation produced by ground-based VLF transmitters; and v) validate propagation and wave-particle interaction models. In this paper we outline these science objectives of the VPM payload instrument suite, and describe the payload instruments and data products that will meet these science goals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT.......302H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT.......302H"><span>Microstructure of wave propagation during combustion synthesis of advanced materials: Experiments and theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hwang, Stephen</p> <p></p> <p>Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010CoTPh..54..583M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010CoTPh..54..583M"><span>INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Spiral Wave in Small-World Networks of Hodgkin-Huxley Neurons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Jun; Yang, Li-Jian; Wu, Ying; Zhang, Cai-Rong</p> <p>2010-09-01</p> <p>The effect of small-world connection and noise on the formation and transition of spiral wave in the networks of Hodgkin-Huxley neurons are investigated in detail. Some interesting results are found in our numerical studies. i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise. iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Gaussian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyEd..52b5001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyEd..52b5001S"><span>Laboratory model of the cardiovascular system for experimental demonstration of pulse wave propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stojadinović, Bojana; Nestorović, Zorica; Djurić, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikić, Dejan</p> <p>2017-03-01</p> <p>The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system. Here, we present a laboratory model of the cardiovascular system. We have designed an experimental setup which can help medical and nursing students to properly learn and understand basic fluid hemodynamic principles, pulse wave and the phenomenon of wave propagation in blood vessels. Demonstration of wave propagation allowed a real time observation of the formation of compression and expansion waves by students, thus enabling them to better understand the difference between the two waves, and also to measure the pulse wave velocity for different fluid viscosities. The laboratory model of the cardiovascular system could be useful as an active learning methodology and a complementary tool for understanding basic principles of hemodynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1159843','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1159843"><span>Method for enhancing the resolving power of ion mobility separations over a limited mobility range</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D</p> <p>2014-09-23</p> <p>A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15324087','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15324087"><span>Pulse propagation in discrete excitatory networks of integrate-and-fire neurons.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Badel, Laurent; Tonnelier, Arnaud</p> <p>2004-07-01</p> <p>We study the propagation of solitary waves in a discrete excitatory network of integrate-and-fire neurons. We show the existence and the stability of a fast wave and a family of slow waves. Fast waves are similar to those already described in continuum networks. Stable slow waves have not been previously reported in purely excitatory networks and their propagation is particular to the discrete nature of the network. The robustness of our results is studied in the presence of noise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22220724-propagation-sound-waves-through-spatially-homogeneous-smoothly-time-dependent-medium','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22220724-propagation-sound-waves-through-spatially-homogeneous-smoothly-time-dependent-medium"><span>Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Grigoryan, K.K.</p> <p>2013-06-15</p> <p>The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the soundmore » wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982wi...book.....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982wi...book.....C"><span>Fundamentals handbook of electrical and computer engineering. Volume 1 Circuits fields and electronics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, S. S. L.</p> <p></p> <p>State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4632108','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4632108"><span>PLASMA GENERATOR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Wilcox, J.M.; Baker, W.R.</p> <p>1963-09-17</p> <p>This invention is a magnetohydrodynamic device for generating a highly ionized ion-electron plasma at a region remote from electrodes and structural members, thus avoiding contamination of the plasma. The apparatus utilizes a closed, gas-filled, cylindrical housing in which an axially directed magnetic field is provided. At one end of the housing, a short cylindrical electrode is disposed coaxially around a short axial inner electrode. A radial electrical discharge is caused to occur between the inner and outer electrodes, creating a rotating hydromagnetic ionization wave that propagates aiong the magnetic field lines toward the opposite end of the housing. A shorting switch connected between the electrodes prevents the wave from striking the opposite end of the housing. (AEC)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH21C2552W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH21C2552W"><span>The Microphysics Explorer (MPEX) Mission: A Small Explorer Mission to Investigate the Role of Small Scale Non-Linear Time Domain Structures (TDS) and Waves in the Energization of Electrons and Energy Flow in Space Plasmas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wygant, J. R.</p> <p>2016-12-01</p> <p>Evidence has accumulated that most energy conversion structures in space plasmas are characterized by intense small-scale size electric fields with strong parallel components, which are prime suspects in the rapid and efficient bulk acceleration of electrons. The proposed MPEX mission will provide, for the first time, 1 ms measurements of electrons capable of resolving the acceleration process due to these small-scale structures. These structures include Time Domain Structures (TDS) which are often organized into wave trains of hundreds of discrete structures propagating along magnetic fields lines. Recent measurements in the near Earth tail on auroral field lines indicate these wave trains are associated with electron acceleration in layers of strong energy flow in the form of particle energy flux and Poynting flux. Also coincident are kinetic Alfven waves which may be capable of driving the time domain structures or directly accelerating electrons. Other waves that may be important include lower hybrid wave packets, electron cyclotron waves, and large amplitude whistler waves. High time resolution field measurements show that such structures occur within dayside and tail reconnection regions, at the bow shock, at interplanetary shocks, and at other structures in the solar wind. The MPEX mission will be a multiphase mission with apogee boosts, which will explore all these regions. An array of electron ESAs will provide a 1 millisecond measurement of electron flux variations with nearly complete pitch angle coverage over a programmable array of selected energy channels. The electric field detector will provide measurement a fully 3-D measurement of the electric field with the benefit of an extremely large ratio of boom length to spacecraft radius and an improved sensor design. 2-D ion distribution functions will be provided by ion mass spectrometer and energetic electrons will be measured by a solid-state telescope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvX...8b1042N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvX...8b1042N"><span>Magnetic and Electric Transverse Spin Density of Spatially Confined Light</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neugebauer, Martin; Eismann, Jörg S.; Bauer, Thomas; Banzer, Peter</p> <p>2018-04-01</p> <p>When a beam of light is laterally confined, its field distribution can exhibit points where the local magnetic and electric field vectors spin in a plane containing the propagation direction of the electromagnetic wave. The phenomenon indicates the presence of a nonzero transverse spin density. Here, we experimentally investigate this transverse spin density of both magnetic and electric fields, occurring in highly confined structured fields of light. Our scheme relies on the utilization of a high-refractive-index nanoparticle as a local field probe, exhibiting magnetic and electric dipole resonances in the visible spectral range. Because of the directional emission of dipole moments that spin around an axis parallel to a nearby dielectric interface, such a probe particle is capable of locally sensing the magnetic and electric transverse spin density of a tightly focused beam impinging under normal incidence with respect to said interface. We exploit the achieved experimental results to emphasize the difference between magnetic and electric transverse spin densities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PlST...18..897F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PlST...18..897F"><span>Low-Frequency Waves in Cold Three-Component Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong</p> <p>2016-09-01</p> <p>The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518783-apparent-cross-field-superslow-propagation-magnetohydrodynamic-waves-solar-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518783-apparent-cross-field-superslow-propagation-magnetohydrodynamic-waves-solar-plasmas"><span>APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kaneko, T.; Yokoyama, T.; Goossens, M.</p> <p>2015-10-20</p> <p>In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation acrossmore » the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SMaS...27a5030A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SMaS...27a5030A"><span>Application of magnetoelastic materials in spatiotemporally modulated phononic crystals for nonreciprocal wave propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ansari, M. H.; Attarzadeh, M. A.; Nouh, M.; Karami, M. Amin</p> <p>2018-01-01</p> <p>In this paper, a physical platform is proposed to change the properties of phononic crystals in space and time in order to achieve nonreciprocal wave transmission. The utilization of magnetoelastic materials in elastic phononic systems is studied. Material properties of magnetoelastic materials change significantly with an external magnetic field. This property is used to design systems with a desired wave propagation pattern. The properties of the magnetoelastic medium are changed in a traveling wave pattern, which changes in both space and time. A phononic crystal with such a modulation exhibits one-way wave propagation behavior. An extended transfer matrix method (TMM) is developed to model a system with time varying properties. The stop band and the pass band of a reciprocal and a nonreciprocal bar are found using this method. The TMM is used to find the transfer function of a magnetoelastic bar. The obtained results match those obtained via the theoretical Floquet-Bloch approach and numerical simulations. It is shown that the stop band in the transfer function of a system with temporal varying property for the forward wave propagation is different from the same in the backward wave propagation. The proposed configuration enables the physical realization of a class of smart structures that incorporates nonreciprocal wave propagation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/103551-propagation-fluidization-combustion-wave','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/103551-propagation-fluidization-combustion-wave"><span>Propagation of a fluidization - combustion wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.</p> <p>1994-05-01</p> <p>A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.110t1101Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.110t1101Z"><span>Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping</p> <p>2017-05-01</p> <p>Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E3407T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E3407T"><span>Ionospheric disturbances detected by high-resolution GPS-TEC observations after an earthquake and a tornado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsugawa, Takuya; Otsuka, Yuichi; Saito, Akinori; Ishii, Mamoru; Nishioka, Michi</p> <p></p> <p>Ionospheric disturbances following the 2011 Tohoku earthquake and the 2013 Moore tornado were observed by high-resolution GPS total electron content (TEC) observations using dense GPS receiver networks. After the 2011 Tohoku earthquake, concentric waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, sudden TEC depletions and short-period oscillations with a period of approximately 4 minutes were also observed. The center of these ionospheric variations, termed the "ionospheric epicenter", corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. After the EF5 tornado hit Moore, Oklahoma, USA, on 20 May 2013, clear concentric waves and short-period oscillations were observed. These concentric waves were non-dispersive waves with a horizontal wavelength of approximately 120 km and a period of approximately 13 minutes. They were observed for more than seven hours throughout North America. TEC oscillations with a period of approximately 4 minutes were also observed in the south of Moore for more than eight hours. Comparison between the GPS-TEC observations and the infrared cloud images from the GOES satellite indicates that the concentric waves and the short-period oscillations would be caused by supercell-induced atmospheric gravity waves and acoustic resonances, respectively. In this presentation, we will introduce the observational results of these ionospheric disturbances and discuss about the mechanism of concentric waves and short-period oscillations observed in both events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3665267','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3665267"><span>Improving Thermal Ablation Delineation With Electrode Vibration Elastography Using a Bidirectional Wave Propagation Assumption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>DeWall, Ryan J.; Varghese, Tomy</p> <p>2013-01-01</p> <p>Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. PMID:22293748</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22293748','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22293748"><span>Improving thermal ablation delineation with electrode vibration elastography using a bidirectional wave propagation assumption.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>DeWall, Ryan J; Varghese, Tomy</p> <p>2012-01-01</p> <p>Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. © 2012 IEEE</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780066148&hterms=sound+amplitude&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsound%2Bamplitude','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780066148&hterms=sound+amplitude&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsound%2Bamplitude"><span>Modulational instability of finite-amplitude, circularly polarized Alfven waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Derby, N. F., Jr.</p> <p>1978-01-01</p> <p>The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1164926','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1164926"><span>Plant salt stress status is transmitted systemically via propagating calcium waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stephan, Aaron B.; Schroeder, Julian I.</p> <p></p> <p>The existence and relevance of rapid long distance signaling in plants is evident to any observer of the nastic movements of the Venus flytrap (Dionaea muscipula) or the sensitive plant (Mimosa pudica). However, all plants require the transmission of sensory information from the site of perception to other tissues to adjust their physiological states according to their environment. It is becoming increasingly apparent that rapid long-distance signals exist throughout the plant kingdom and may be responsible for initiating a multitude of physiological responses: electrical “action potentials” have been shown to convey wounding and saltstress information from leaf-to-leaf (1, 2); amore » “hydraulic signal” transmitted by the direction of water movement within the xylem can mediate long-distance signaling of water stress experienced by the roots to the leaves in Arabidopsis (3); and reactive oxygen species (ROS) have been shown to propagate across a plant and carry stimulus-specific information to a variety of stresses (4). In PNAS, Choi et al. (5) use elegant approaches and present advances demonstrating that calcium can function as a long-distance signaling messenger, propagating in waves from roots and carrying salt-stress signals to induce expression of salt tolerance genes in leaves.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23031038','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23031038"><span>Propagation of a laser-driven relativistic electron beam inside a solid dielectric.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B</p> <p>2012-09-01</p> <p>Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1164926-plant-salt-stress-status-transmitted-systemically-via-propagating-calcium-waves','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1164926-plant-salt-stress-status-transmitted-systemically-via-propagating-calcium-waves"><span>Plant salt stress status is transmitted systemically via propagating calcium waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Stephan, Aaron B.; Schroeder, Julian I.</p> <p>2014-04-29</p> <p>The existence and relevance of rapid long distance signaling in plants is evident to any observer of the nastic movements of the Venus flytrap (Dionaea muscipula) or the sensitive plant (Mimosa pudica). However, all plants require the transmission of sensory information from the site of perception to other tissues to adjust their physiological states according to their environment. It is becoming increasingly apparent that rapid long-distance signals exist throughout the plant kingdom and may be responsible for initiating a multitude of physiological responses: electrical “action potentials” have been shown to convey wounding and saltstress information from leaf-to-leaf (1, 2); amore » “hydraulic signal” transmitted by the direction of water movement within the xylem can mediate long-distance signaling of water stress experienced by the roots to the leaves in Arabidopsis (3); and reactive oxygen species (ROS) have been shown to propagate across a plant and carry stimulus-specific information to a variety of stresses (4). In PNAS, Choi et al. (5) use elegant approaches and present advances demonstrating that calcium can function as a long-distance signaling messenger, propagating in waves from roots and carrying salt-stress signals to induce expression of salt tolerance genes in leaves.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/972072','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/972072"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Bingnan</p> <p></p> <p>Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves withmore » frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based nonlinear SRRs are built and modeled to study the nonlinearity in magnetic metamaterials and the results will be presented in Chapter 3. Negative refractive index n is one of the major target in the research of metamaterials. Negative n can be obtained with a metamaterial with both ϵ and μ negative. As an alternative, negative index for one of the circularly polarized waves could be achieved with metamaterials having a strong chirality ?. In this case neither ϵ} nor μ negative is required. My work on chiral metamaterials will be presented in Chapter 4.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PApGe.160..509W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PApGe.160..509W"><span>Wave Propagation, Scattering and Imaging Using Dual-domain One-way and One-return Propagators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, R.-S.</p> <p></p> <p>- Dual-domain one-way propagators implement wave propagation in heterogeneous media in mixed domains (space-wavenumber domains). One-way propagators neglect wave reverberations between heterogeneities but correctly handle the forward multiple-scattering including focusing/defocusing, diffraction, refraction and interference of waves. The algorithm shuttles between space-domain and wavenumber-domain using FFT, and the operations in the two domains are self-adaptive to the complexity of the media. The method makes the best use of the operations in each domain, resulting in efficient and accurate propagators. Due to recent progress, new versions of dual-domain methods overcame some limitations of the classical dual-domain methods (phase-screen or split-step Fourier methods) and can propagate large-angle waves quite accurately in media with strong velocity contrasts. These methods can deliver superior image quality (high resolution/high fidelity) for complex subsurface structures. One-way and one-return (De Wolf approximation) propagators can be also applied to wave-field modeling and simulations for some geophysical problems. In the article, a historical review and theoretical analysis of the Born, Rytov, and De Wolf approximations are given. A review on classical phase-screen or split-step Fourier methods is also given, followed by a summary and analysis of the new dual-domain propagators. The applications of the new propagators to seismic imaging and modeling are reviewed with several examples. For seismic imaging, the advantages and limitations of the traditional Kirchhoff migration and time-space domain finite-difference migration, when applied to 3-D complicated structures, are first analyzed. Then the special features, and applications of the new dual-domain methods are presented. Three versions of GSP (generalized screen propagators), the hybrid pseudo-screen, the wide-angle Padé-screen, and the higher-order generalized screen propagators are discussed. Recent progress also makes it possible to use the dual-domain propagators for modeling elastic reflections for complex structures and long-range propagations of crustal guided waves. Examples of 2-D and 3-D imaging and modeling using GSP methods are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010059296&hterms=components+medium+environment&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcomponents%2Bmedium%2Benvironment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010059296&hterms=components+medium+environment&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcomponents%2Bmedium%2Benvironment"><span>Diffusion Driven Combustion Waves in Porous Media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aldushin, A. P.; Matkowsky, B. J.</p> <p>2000-01-01</p> <p>Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases the wave velocity. In addition to the reaction and diffusion layers, the uniformly propagating wave structure includes a layer with a pressure gradient, where the gas motion is induced by the production or consumption of the gas in the reaction as well as by thermal expansion of the gas. The width of this zone determines the scale of the combustion wave in the porous medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRCM...28..326E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRCM...28..326E"><span>Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebrahimi, Farzad; Barati, Mohammad Reza</p> <p>2018-04-01</p> <p>This article deals with the wave propagation analysis of single/double layered functionally graded (FG) size-dependent nanobeams in elastic medium and subjected to a longitudinal magnetic field employing nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants, and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also, presence of cut-off and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA628530','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA628530"><span>Electro-Optic Propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2002-09-30</p> <p>Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...OBJECTIVES The electro - optical propagation objectives are: 1) The acquisition and analysis of mid-wave and long-wave infrared transmission and...elements to the electro - optical propagation model development. The first element is the design and execution of field experiments to generate useful</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012A%26A...538A..79N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012A%26A...538A..79N"><span>Modification of wave propagation and wave travel-time by the presence of magnetic fields in the solar network atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nutto, C.; Steiner, O.; Schaffenberger, W.; Roth, M.</p> <p>2012-02-01</p> <p>Context. Observations of waves at frequencies above the acoustic cut-off frequency have revealed vanishing wave travel-times in the vicinity of strong magnetic fields. This detection of apparently evanescent waves, instead of the expected propagating waves, has remained a riddle. Aims: We investigate the influence of a strong magnetic field on the propagation of magneto-acoustic waves in the atmosphere of the solar network. We test whether mode conversion effects can account for the shortening in wave travel-times between different heights in the solar atmosphere. Methods: We carry out numerical simulations of the complex magneto-atmosphere representing the solar magnetic network. In the simulation domain, we artificially excite high frequency waves whose wave travel-times between different height levels we then analyze. Results: The simulations demonstrate that the wave travel-time in the solar magneto-atmosphere is strongly influenced by mode conversion. In a layer enclosing the surface sheet defined by the set of points where the Alfvén speed and the sound speed are equal, called the equipartition level, energy is partially transferred from the fast acoustic mode to the fast magnetic mode. Above the equipartition level, the fast magnetic mode is refracted due to the large gradient of the Alfvén speed. The refractive wave path and the increasing phase speed of the fast mode inside the magnetic canopy significantly reduce the wave travel-time, provided that both observing levels are above the equipartition level. Conclusions: Mode conversion and the resulting excitation and propagation of fast magneto-acoustic waves is responsible for the observation of vanishing wave travel-times in the vicinity of strong magnetic fields. In particular, the wave propagation behavior of the fast mode above the equipartition level may mimic evanescent behavior. The present wave propagation experiments provide an explanation of vanishing wave travel-times as observed with multi-line high-cadence instruments. Movies are available in electronic form at http://www.aanda.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110013493&hterms=kellogg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dkellogg','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110013493&hterms=kellogg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dkellogg"><span>Large-Amplitude Transmitter-Associated and Lightning-Associated Whistler Waves in the Earth's Inner Plasmasphere at L less than 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Breneman, A.; Cattell, C.; Wygant, J.; Kersten, K.; Wilson, L. B., III; Schreiner, S.; Kellogg, P. J.; Goetz, K.</p> <p>2011-01-01</p> <p>We report observations of very large amplitude whistler mode waves in the Earth fs nightside inner radiation belt enabled by the STEREO Time Domain Sampler. Amplitudes range from 30.110 mV/m (zero ]peak), 2 to 3 orders of magnitude larger than previously observed in this region. Measurements from the peak electric field detector (TDSMax) indicate that these large ]amplitude waves are prevalent throughout the plasmasphere. A detailed examination of high time resolution electric field waveforms is undertaken on a subset of these whistlers at L < 2, associated with pump waves from lightning flashes and the naval transmitter NPM in Hawaii, that become unstable after propagation through the ionosphere and grow to large amplitudes. Many of the waveforms undergo periodic polarization reversals near the lower hybrid and NPM naval transmitter frequencies. The reversals may be related to finite plasma temperature and gradients in density induced by ion cyclotron heating of the plasma at 200 Hz, the modulation frequency of the continuous ]mode NPM naval transmitter signal. Test particle simulations using the amplitudes and durations of the waves observed herein suggest that they can interact strongly with high ]energy (>100 keV) electrons on a time scale of <1 s and thus may be an important previously unaccounted for source of energization or pitch ]angle scattering in the inner radiation belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1806c0006F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1806c0006F"><span>High-frequency guided ultrasonic waves to monitor corrosion thickness loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fromme, Paul; Bernhard, Fabian; Masserey, Bernard</p> <p>2017-02-01</p> <p>Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840024048','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840024048"><span>Time dependent wave envelope finite difference analysis of sound propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baumeister, K. J.</p> <p>1984-01-01</p> <p>A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3677718','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3677718"><span>Shear wave propagation in anisotropic soft tissues and gels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Namani, Ravi; Bayly, Philip V.</p> <p>2013-01-01</p> <p>The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JOpt...19h5002C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JOpt...19h5002C"><span>Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh</p> <p>2017-08-01</p> <p>The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCoPh.359..283M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCoPh.359..283M"><span>Novel two-way artificial boundary condition for 2D vertical water wave propagation modelled with Radial-Basis-Function Collocation Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mueller, A.</p> <p>2018-04-01</p> <p>A new transparent artificial boundary condition for the two-dimensional (vertical) (2DV) free surface water wave propagation modelled using the meshless Radial-Basis-Function Collocation Method (RBFCM) as boundary-only solution is derived. The two-way artificial boundary condition (2wABC) works as pure incidence, pure radiation and as combined incidence/radiation BC. In this work the 2wABC is applied to harmonic linear water waves; its performance is tested against the analytical solution for wave propagation over horizontal sea bottom, standing and partially standing wave as well as wave interference of waves with different periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5757343-slow-wave-propagation-monolithic-microwave-integrated-circuits-layered-non-layered-structures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5757343-slow-wave-propagation-monolithic-microwave-integrated-circuits-layered-non-layered-structures"><span>Slow-wave propagation on monolithic microwave integrated circuits with layered and non-layered structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tzuang, C.K.C.</p> <p>1986-01-01</p> <p>Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJP..132..192Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJP..132..192Z"><span>Multi-soliton interaction of a generalized Schrödinger-Boussinesq system in a magnetized plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Xue-Hui; Tian, Bo; Chai, Jun; Wu, Xiao-Yu; Guo, Yong-Jiang</p> <p>2017-04-01</p> <p>Under investigation in this paper is a generalized Schrödinger-Boussinesq system, which describes the stationary propagation of coupled upper-hybrid waves and magnetoacoustic waves in a magnetized plasma. Bilinear forms, one-, two- and three-soliton solutions are derived by virtue of the Hirota method and symbolic computation. Propagation and interaction for the solitons are illustrated graphically: Coefficients β1^{} and β2^{} can affect the velocities and propagation directions of the solitary waves. Amplitude, velocity and shape of the one solitary wave keep invariant during the propagation, implying that the transport of the energy is stable in the upper-hybrid and magnetoacoustic waves, and amplitude of the upper-hybrid wave is bigger than that of the magnetoacoustic wave. For the upper-hybrid and magnetoacoustic waves, head-on, overtaking and bound-state interaction between the two solitary waves are asymptotically depicted, respectively, indicating that the interaction between the two solitary waves is elastic. Elastic interaction between the bound-state soliton and a single one soliton is also displayed, and interaction among the three solitary waves is all elastic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH33B2783T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH33B2783T"><span>Wave Propagation Around Coronal Structures: Stratification, Buoyancy, Small Scale Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tomlinson, S. M.; Rappazzo, F.; Velli, M.</p> <p>2017-12-01</p> <p>We study the propagation of waves in a coronal medium characterized by stratification and structure in density. temperature and magnetic field. It is well known that average gradients affect the propagation of Alfvén and other MHD waves via reflection, phase mixing, resonant absorption and other coupling phenomena. Here we discuss how the interplay of propagation on inhomogeneous, stratified structures with nonlinear interactions may lead to interesting effects including preferential heating, buoyancy, and plasma acceleration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000059210','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000059210"><span>Experimental Results of the Impact of an Ion Thruster Plasma on Microwave Propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zaman, Afroz J.; Lambert, Kevin M.</p> <p>2000-01-01</p> <p>Electric thrusters are being considered for a variety of space missions because of the significant propellant savings that result from the use of high performance, electric propulsion technologies. Propellant mass savings reduces spacecraft launch requirements and increases mission lifetime and payload. The impact of electric thruster plasma plumes on microwave signal propagation however is an important spacecraft integration concern. Arcjets were the first electric thrusters to be considered for operational missions. Ling, et al. studied the effect of arcjet plumes on propagation. Arcjets produce a lightly ionized plume and Ling's analysis predicted that the plume would have a negligible effect on communication. Plumes from the higher performance ion thrusters being developed exhibit higher ionization levels, plasma temperatures and particle velocities than arcjets. Therefore, there was a need to assess the impact due to these plumes. To address this need, the authors designed and performed a series of experiments to examine propagation effects of plumes. The challenge with these experiments was that they had to be performed in the operational environment of the thruster. Therefore, the experiments were conducted inside a metal chamber which could be depressurized to simulate a near vacuum condition of space. The metal chamber presents a potential large source of error to the propagation measurements due to the corruption of the desired data by multiple wall reflections within the chamber. This chamber effect was minimized by employing a pulsed-continuous wave transmitter and receiver system. This system based on an HP8510 Network Analyzer, uses external hardware time gating to eliminate the clutter of the spurious reflections. Additionally, high gain antennas were used in the measurements to ensure that minimal amounts of energy were transmitted/received in undesirable directions. The measurements took place in Vacuum Facility 5 of the Electric Propulsion Laboratory at the NASA Glenn Research Center. This facility utilizes a cylindrical, stainless steel, vacuum chamber, which is 18.3 m long and 4.6 m in diameter. For the tests being described here a 30 cm diameter, xenon ion thruster was used. The thruster provided between 500 W and 2.3 kW of operating power. The thruster was mounted on a stand along the axis of the chamber near one of its ends and could be moved axially.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000055765','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000055765"><span>Experimental Results of the Impact of an Ion Thruster Plasma on Microwave Propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zaman, Afroz J.; Lambert, Kevin M.</p> <p>2000-01-01</p> <p>Electric thrusters are being considered for a variety of space missions because of the significant propellant savings that result from the use of high performance, electric propulsion technologies, Propellant mass savings reduces spacecraft launch requirements and increases mission lifetime and payload. The impact of electric thruster plasma plumes on microwave signal propagation however is an important spacecraft integration concern. Arcjets were the first electric thrusters to be considered for operational missions. Ling, et al., studied the effect of arcjet plumes on propagation. Arcjets produce a lightly ionized plume and Ling's analysis predicted that the plume would have a negligible effect on communication. Plumes from the higher performance ion thrusters being developed exhibit higher ionization levels, plasma temperatures and particle velo@ities than arcjets. Therefore, there was a need to assess the impact due to these plumes. To address this need, the authors designed and performed a series of experiments to examine propagation effects of plumes. The challenge with these experiments was that they had to be performed in the operational environment of the thruster. Therefore, the experiments were conducted inside a metal chamber which could be depressurized to simulate a near vacuum condition of space. The metal chamber presents a potential large source of error to the propagation measurements due to the corruption of the desired data by multiple wall reflections within the chamber. This chamber effect was minimized by employing a pulsed-continuous wave transmitter and receiver system. This system, based on an HP8510 Network Analyzer, uses external hardware time gating to eliminate the clutter of the spurious reflections. Additionally, high gain antennas were used in the measurements to ensure that minimal amounts of energy ",ere transmitted/received in undesirable directions. The measurements took place in Vacuum Facility 5 of the Electric Propulsion Laboratory at the NASA Glenn Research Center. This facility utilizes a cylindrical, stainless steel, vacuum chamber, which is 18.3 m long and 4.6 m in diameter. For the tests being described here a 30 cm diameter, xenon ion thruster was used. The thruster provided between 500 W and 2.3 kW of operating power. The thruster was mounted on a stand along the axis of the chamber near one of its ends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1419134','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1419134"><span>Electrical and contractile activities of the human rectosigmoid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sarna, S; Latimer, P; Campbell, D; Waterfall, W E</p> <p>1982-01-01</p> <p>Electrical and mechanical activities were recorded from the rectosigmoid of normal subjects using an intraluminal recording tube with two sets of bipolar electrodes and strain gauges. Four distinct types of electrical activities were recorded. (1) Electrical control activity (ECA). This activity varied in amplitude and frequency over time and the control waves were not phase-locked. The means of dominant frequency components in the lower and higher frequency ranges were 3.86 +/- 0.18 SD and 10.41 +/- 0.46 SD c/min, respectively. The overall dominant frequency component was mostly in the lower frequency range of 2.0-9.0 c/min. (2) Discrete electrical response activity (DERA). This activity appeared as short duration bursts (less than 10 s) of response potentials whose repetition rate was in the total colonic electrical control activity frequency range of 2.0-13.0 c/min. The mean duration of this activity was 2.24 +/- 1.30 SD s. (3) Continuous electrical response activity (CERA). This activity appeared as long duration bursts (greater than 10 s) of response potentials which were not related to electrical control activity. Its mean duration was 14.78 +/- 3.68 SD s. This activity generally did not propagate. (4) Contractile electrical complex (CEC). This activity appeared as oscillations in the frequency range of 25-40 c/min and was also not related to electrical control activity. This activity propagated, sometimes proximally and sometimes distally. Its mean duration was 18.87 +/- 9.22 SD s. The latter three types of electrical activities were all associated with different types of contractions. These contractions, however, did not always occlude the lumen. Colonic electrical control activity controls the appearance of discrete electrical response activity in time and space. The mechanism of generation of continuous electrical response activity and contractile electrical complex is not yet known. PMID:7095566</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472099-dynamics-ionization-processes-high-pressure-nitrogen-air-sf-sub-during-subnanosecond-breakdown-initiated-runaway-electrons','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472099-dynamics-ionization-processes-high-pressure-nitrogen-air-sf-sub-during-subnanosecond-breakdown-initiated-runaway-electrons"><span>Dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during a subnanosecond breakdown initiated by runaway electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tarasenko, V. F., E-mail: vft@loi.hcei.tsc.ru; Beloplotov, D. V.; Lomaev, M. I.</p> <p>2015-10-15</p> <p>The dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse dischargemore » is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF{sub 6} is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870057874&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddebye%2Blength','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870057874&hterms=debye+length&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Ddebye%2Blength"><span>Effect of double layers on magnetosphere-ionosphere coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lysak, Robert L.; Hudson, Mary K.</p> <p>1987-01-01</p> <p>The dynamic aspects of auroral current structures are reviewed with emphasis on consequences for models of microscopic turbulence (MT). A number of models of MT are introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. The effect of a double layer (DL) electric field which scales with the plasma temperature and the Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is shown that the DL model is less diffusive than the resistive model, indicating the possibility of narrow intense current structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA103069','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA103069"><span>Spacecraft and Stellar Occultations by Turbulent Planetary Atmospheres. A Theoretical Investigation of Various Wave Propagation Effects and Their Impact on Derived Profiles of Refractivity, Temperature and Pressure,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-05-08</p> <p>by writing the electric field observer approaches the focal as E = A exp I i(kS - wt) 1, where A is le in the plane ofthc sky the amplitude and kS...lowest-order correction to the electric field E. Writing z- [@ (Yi-Yo) 2 + o (zI -z 0 c 0 (zI - o) 3 4c 2 (z, -Zo) 2 (, -yo) + ... (3.14) it is...si ellair oc cult at ions when t It(- tcondit ions leadlIn-,, to equation (7.2) are satisfied. Thus equtins 17. 1) and( ( 7.2) ielt the( vatriance</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptCo.407..132L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptCo.407..132L"><span>Study of the transverse and longitudinal electric field components of surface plasmon polaritons on flat metal film by polarization-resolved Fourier-space microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, C.; Ong, H. C.</p> <p>2018-01-01</p> <p>We have employed a polarization-resolved Fourier-space surface plasmon resonance microscope to determine the electric field component ratio of surface plasmon polaritons (SPPs) propagating on a flat gold film. By using a metallic nanoparticle as a probe to capture the radiation damping of the SPP scattered waves, we find the angular far-field distribution is related to the transverse and longitudinal fields of SPPs. The experiment is supported by analytical and numerical calculations. Our results present a simple but useful approach to probe the behaviors of SPPs such as the transverse spin density as well as the energy density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868315','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868315"><span>Acoustic wave device using plate modes with surface-parallel displacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Martin, Stephen J.; Ricco, Antonio J.</p> <p>1992-01-01</p> <p>Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7207268','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7207268"><span>Acoustic wave device using plate modes with surface-parallel displacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Martin, S.J.; Ricco, A.J.</p> <p>1992-05-26</p> <p>Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes there between. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6473047','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6473047"><span>Acoustic wave device using plate modes with surface-parallel displacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Martin, S.J.; Ricco, A.J.</p> <p>1988-04-29</p> <p>Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..SHK.U3002K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..SHK.U3002K"><span>Underwater sympathetic detonation of pellet explosive</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kubota, Shiro; Saburi, Tei; Nagayama, Kunihito</p> <p>2017-06-01</p> <p>The underwater sympathetic detonation of pellet explosives was taken by high-speed photography. The diameter and the thickness of the pellet were 20 and 10 mm, respectively. The experimental system consists of the precise electric detonator, two grams of composition C4 booster and three pellets, and these were set in water tank. High-speed video camera, HPV-X made by Shimadzu was used with 10 Mfs. The underwater explosions of the precise electric detonator, the C4 booster and a pellet were also taken by high-speed photography to estimate the propagation processes of the underwater shock waves. Numerical simulation of the underwater sympathetic detonation of the pellet explosives was also carried out and compared with experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012994','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012994"><span>Optimization of one-way wave equations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, M.W.; Suh, S.Y.</p> <p>1985-01-01</p> <p>The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..330a2058S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..330a2058S"><span>Computational process to study the wave propagation In a non-linear medium by quasi- linearization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharath Babu, K.; Venkata Brammam, J.; Baby Rani, CH</p> <p>2018-03-01</p> <p>Two objects having distinct velocities come into contact an impact can occur. The impact study i.e., in the displacement of the objects after the impact, the impact force is function of time‘t’ which is behaves similar to compression force. The impact tenure is very short so impulses must be generated subsequently high stresses are generated. In this work we are examined the wave propagation inside the object after collision and measured the object non-linear behavior in the one-dimensional case. Wave transmission is studied by means of material acoustic parameter value. The objective of this paper is to present a computational study of propagating pulsation and harmonic waves in nonlinear media using quasi-linearization and subsequently utilized the central difference scheme. This study gives focus on longitudinal, one- dimensional wave propagation. In the finite difference scheme Non-linear system is reduced to a linear system by applying quasi-linearization method. The computed results exhibit good agreement on par with the selected non-liner wave propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4829418','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4829418"><span>A circuit mechanism for the propagation of waves of muscle contraction in Drosophila</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fushiki, Akira; Zwart, Maarten F; Kohsaka, Hiroshi; Fetter, Richard D; Cardona, Albert; Nose, Akinao</p> <p>2016-01-01</p> <p>Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for the propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion. DOI: http://dx.doi.org/10.7554/eLife.13253.001 PMID:26880545</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29092606','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29092606"><span>The influence of air-filled structures on wave propagation and beam formation of a pygmy sperm whale (Kogia breviceps) in horizontal and vertical planes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen</p> <p>2017-10-01</p> <p>The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3152534','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3152534"><span>Modeling the NF-κB mediated inflammatory response predicts cytokine waves in tissue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2011-01-01</p> <p>Background Waves propagating in "excitable media" is a reliable way to transmit signals in space. A fascinating example where living cells comprise such a medium is Dictyostelium D. which propagates waves of chemoattractant to attract distant cells. While neutrophils chemotax in a similar fashion as Dictyostelium D., it is unclear if chemoattractant waves exist in mammalian tissues and what mechanisms could propagate them. Results We propose that chemoattractant cytokine waves may naturally develop as a result of NF-κB response. Using a heuristic mathematical model of NF-κB-like circuits coupled in space we show that the known characteristics of NF-κB response favor cytokine waves. Conclusions While the propagating wave of cytokines is generally beneficial for inflammation resolution, our model predicts that there exist special conditions that can cause chronic inflammation and re-occurrence of acute inflammatory response. PMID:21771307</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>