NASA Astrophysics Data System (ADS)
Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei
2018-03-01
Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.
Transparent Conductive Nanofiber Paper for Foldable Solar Cells
Nogi, Masaya; Karakawa, Makoto; Komoda, Natsuki; Yagyu, Hitomi; Nge, Thi Thi
2015-01-01
Optically transparent nanofiber paper containing silver nanowires showed high electrical conductivity and maintained the high transparency, and low weight of the original transparent nanofiber paper. We demonstrated some procedures of optically transparent and electrically conductive cellulose nanofiber paper for lightweight and portable electronic devices. The nanofiber paper enhanced high conductivity without any post treatments such as heating or mechanical pressing, when cellulose nanofiber dispersions were dropped on a silver nanowire thin layer. The transparent conductive nanofiber paper showed high electrical durability in repeated folding tests, due to dual advantages of the hydrophilic affinity between cellulose and silver nanowires, and the entanglement between cellulose nanofibers and silver nanowires. Their optical transparency and electrical conductivity were as high as those of ITO glass. Therefore, using this conductive transparent paper, organic solar cells were produced that achieved a power conversion of 3.2%, which was as high as that of ITO-based solar cells. PMID:26607742
NASA Astrophysics Data System (ADS)
Felicia, Dian M.; Rochiem, R.; Laia, Standley M.
2018-04-01
Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.
2016-05-13
silver nanowires synthesized in our group using sol-gel techniques...been demonstrated (Figure 12). The electrical resistance of the coatings should further be decreased Figure 14. High aspect ratio silver nanowires ...the coatings is to use a conductive polymer matrix and disperse high aspect ratio silver nanowires into the coating formulations. The electrical
Electrically Conductive Silver Paste Obtained by Use of Silver Neodecanoate as Precursor
NASA Astrophysics Data System (ADS)
Shen, Longguang; Liu, Jianguo; Zeng, Xiaoyan; Ren, Zhao
2015-02-01
An electrically conductive silver paste has been prepared from an organometallic compound, silver neodecanoate, as silver precursor. The precursor was highly soluble in organic solvents and decomposed into metallic silver at low sintering temperatures (<200°C). Thermogravimetric analysis showed the silver content of the paste was approximately 25 wt.%. Viscosity studies indicated the paste was a pseudoplastic liquid with viscosity in the range 6.5-9 Pa s. The paste was compatible with the micro-pen direct-writing process, enabling production of silver lines on a substrate. The electrical resistivity of the silver lines was 9 × 10-6 Ω cm after sintering at 115°C for 60 min, 5.8 × 10-6 Ω cm when sintered at 150°C for 60 min, and 3 × 10-6 Ω cm when sintered above 300°C, values which are similar to those of bulk silver. Hence, the prepared paste can be successfully used on flexible substrates such as polymers.
Electrically conductive polyimides containing silver trifluoroacetylacetonate
NASA Technical Reports Server (NTRS)
Rancourt, James D. (Inventor); Stoakley, Diane M. (Inventor); Caplan, Maggie L. (Inventor); St. Clair, Anne K. (Inventor); Taylor, Larry T. (Inventor)
1996-01-01
Polyimides with enhanced electrical conductivity are produced by adding a silver ion-containing additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. After thermal treatment the resulting polyimides had surface conductivities in the range of 1.7.times.10.sup.-3 4.5 .OMEGA..sup.-1 making them useful in low the electronics industry as flexible, electrically conductive polymeric films and coatings.
NASA Astrophysics Data System (ADS)
Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.
2017-10-01
Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.
Polyimides Containing Silver Trifluoroacetylacetonate
NASA Technical Reports Server (NTRS)
Stoakley, Diane M.; St. Clair, Anne K.; Rancourt, James D.; Taylor, Larry T.; Caplan, Maggie L.
1994-01-01
Mechanically strong, flexible, thermally stable, electrically conductive films and coatings suitable for use in electronics industry made by incorporating silver trifluoroacetylacetonate into linear aromatic condensation polyimides. In experimental films, most successful combinations of flexibility and conductivity obtained by use of 1:1, 1:1.74, and 1:2 mole ratios of silver trifluoroacetylacetonate per polyimide repeat unit. Other concentrations of silver trifluoroacetylacetonate used with different heat-treatment schedules to obtain conductive silver-impregnated films.
Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping
2016-01-19
Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.
Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping
2016-01-01
Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diantoro, Markus, E-mail: markus.diantoro.fmipa@um.ac.id; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul
Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C{sub 6}-C{sub 3}-C{sub 6} carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order tomore » obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.« less
NASA Astrophysics Data System (ADS)
Diantoro, Markus; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin, Sujito, Hidayat, Arif
2016-03-01
Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C6-C3-C6 carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.
Silver Oxalate Ink with Low Sintering Temperature and Good Electrical Property
NASA Astrophysics Data System (ADS)
Yang, Wendong; Wang, Changhai; Arrighi, Valeria
2018-02-01
Favorable conductivity at low temperature is desirable for flexible electronics technology, where formulation of a suitable ink material is very critical. In this paper, a type of silver organic decomposable ink (10 wt.% silver content) was formulated by using as-prepared silver oxalate and butylamine, producing silver films with good uniformity and conductivity on a polyimide substrate after sintering below 130°C (15.72 μΩ cm) and even at 100°C (36.29 μΩ cm). Silver oxalate powder with good properties and an appropriate solid amine complex with lower decomposition temperature were synthesized, both differing from those reported in the literature. The influence of the factors on the electrical properties of the produced silver films such as sintering temperature and time was studied in detail and the relationship between them was demonstrated.
Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung
2016-05-20
In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.
NASA Astrophysics Data System (ADS)
Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh
2018-07-01
In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.
NASA Astrophysics Data System (ADS)
Mohammad, A.; Mahmood, A.; Chin, K. T.; Danquah, M. K.; van Stratan, S.
2017-06-01
Conductive polymer had opened a new era of engineering for microelectronics and semiconductor applications. However, it is still a challenge for high voltage applications due to lower electrical conductivity compare to metals. This results tremendous energy losses during transmission and restricts its usage. In order to address such problem a novel method was investigated using nano silver particle doped iodothiophene since silver is the highest electrical conductive material. The experiments were carried out to study the organometallic diffusion behaviour of nanosilver doped iodothiophene with different concentration of iodothiophene. Five different mixing ratio between nanosilver and the solution of iodothiophene dissolved in diethyl ether were used which are 1:1.25, 1:1.5, 1:2.5, 1:3 and l:5. It was revealed that there is an effective threshold concentration of which the nano silver evenly distributed and there was no coagulation observed. These parameters laid the foundation of better doping process between the nano silver and the polymer significantly which would contribute developing conductive polymer towards high voltage application for industries that are vulnerable to corrosive environment.
NASA Astrophysics Data System (ADS)
Abu-Thabit, Nedal Y.; Basheer, Rafil A.
2014-09-01
Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500-1000 nm size giving a membrane electrical resistance in the range of 10-30 Ohm sq-1. However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2-10 Ohm sq.-1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 107-108 CFU mL-1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h-1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected.
Barakat, Nasser A M; Woo, Kee-Do; Kanjwal, Muzafar A; Choi, Kyung Eun; Khil, Myung Seob; Kim, Hak Yong
2008-10-21
In the present study, silver metal nanofibers have been successfully prepared by using the electrospinning technique. Silver nanofibers have been produced by electrospinning a sol-gel consisting of poly(vinyl alcohol) and silver nitrate. The dried nanofiber mats have been calcined at 850 degrees C in an argon atmosphere. The produced nanofibers do have distinct plasmon resonance compared with the reported silver nanoparticles. Contrary to the introduced shapes of silver nanoparticles, the nanofibers have a blue-shifted plasmon resonance at 330 nm. Moreover, the optical properties study indicated that the synthesized nanofibers have two band gap energies of 0.75 and 2.34 eV. An investigation of the electrical conductivity behavior of the obtained nanofibers shows thermal hystersis. These privileged physical features greatly widen the applications of the prepared nanofibers in various fields.
NASA Astrophysics Data System (ADS)
Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun
2016-06-01
Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.
Voltage-Induced Nonlinear Conduction Properties of Epoxy Resin/Micron-Silver Particles Composites
NASA Astrophysics Data System (ADS)
Qu, Zhaoming; Lu, Pin; Yuan, Yang; Wang, Qingguo
2018-01-01
The nonlinear conduction properties of epoxy resin (ER)/micron-silver particles (MP) composites were investigated. Under sufficient high intensity applied constant voltage, the obvious nonlinear conduction properties of the samples with volume fraction 25% were found. With increments in the voltage, the conductive switching effect was observed. The nonlinear conduction mechanism of the ER/MP composites under high applied voltages could be attributed to the electrical current conducted via discrete paths of conductive particles induced by the electric field. The test results show that the ER/MP composites with nonlinear conduction properties are of great potential application in electromagnetic protection of electron devices and systems.
Nonlinear Conductive Behaviour of Silver Nanowires/Silicone Rubber Composites
NASA Astrophysics Data System (ADS)
Lu, Pin; Qu, Zhaoming; Wang, Qingguo; Bai, Liyun; Zhao, Shiyang
2018-01-01
Silver nanowires with an average length of 10 μm and diameter of about 90 nm have been synthesized by polyol reduction of silver nitrate in the presence of polyvinylpyrrolidone(PVP). Silver nanowires (AgNWs)/silicone rubber (SR) composites have been made by mixing silver nanowires into silicone rubber. The nonlinear response of AgNWs/SR composites under high electric field is investigated. The nonlinear Conductive behavior of composites is considered as a competitive process of several effects. From the perspective of the microstructure of composites, the conductive path is established by the quantum tunnel effect between silver nanowires. The influence factors on the conductivity of composites are discussed and analyzed. The results show that the AgNWs/SR composites with nonlinear conductive properties are of great potential application in electromagnetic protection of electron device and system.
Ultralight Conductive Silver Nanowire Aerogels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Lan, Pui Ching; Freyman, Megan C.
Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less
Ultralight Conductive Silver Nanowire Aerogels
Qian, Fang; Lan, Pui Ching; Freyman, Megan C.; ...
2017-09-05
Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here in this work, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm 3 and an electrical conductivity up tomore » 51 000 S/m. Lastly, mechanical studies show that silver nanowire aerogels exhibit “elastic stiffening” behavior with a Young’s modulus up to 16 800 Pa.« less
Quantized conductance observed during sintering of silver nanoparticles by intense terahertz pulses
NASA Astrophysics Data System (ADS)
Takano, Keisuke; Harada, Hirofumi; Yoshimura, Masashi; Nakajima, Makoto
2018-04-01
We show that silver nanoparticles, which are deposited on a terahertz-receiving antenna, can be sintered by intense terahertz pulse irradiation. The conductance of the silver nanoparticles between the antenna electrodes is measured under the terahertz pulse irradiation. The dispersant materials surrounding the nanoparticles are peeled off, and conduction paths are created. We reveal that, during sintering, quantum point contacts are formed, leading to quantized conductance between the electrodes with the conductance quantum, which reflects the formation of atomically thin wires. The terahertz electric pulses are sufficiently intense to activate electromigration, i.e., transfer of kinetic energy from the electrons to the silver atoms. The silver atoms move and atomically thin wires form under the intense terahertz pulse irradiation. These findings may inspire nanoscale structural processing by terahertz pulse irradiation.
Enhanced photoluminescence of Alq3 via patterned array silver dendritic nanostructures
NASA Astrophysics Data System (ADS)
Hsu, Wei-Hsiu; Hsieh, Ming-Hao; Lo, Shih-Shou
2012-04-01
Various silver nanostructures, semi-ball, jungle, and dendritic, are demonstrated by an electrical deposition process. The formation of silver nanostructures with various morphologies is studied by the mechanism of the diffusion limited aggregation (DLA) model. A array pattern of silver nanostructures can be obtained when the conductive substrate was used in a uniform electrical filed. A thickness 500 nm of Alq3 thin-film was covered on the silver nanostructure by thermal evaporation method. The strongest intensity of Alq3 green emission was observed when the pattern-array dendritic silver nanostructure was covered by Alq3. It can be explained with the plasmonic coupling due to the Alq3 and dendritic nanostructure. The result can help us to further application the patterned-array silver dendritic nanostructure for advanced opto-electronic device.
Friction, wear, and noise of slip ring and brush contacts for synchronous satellite use.
NASA Technical Reports Server (NTRS)
Lewis, N. E.; Cole, S. R.; Glossbrenner, E. W.; Vest, C. E.
1973-01-01
A program is being conducted for testing of slip rings for synchronous orbit application. Instrumentation systems necessary for monitoring electrical noise, friction, and brush wear at atmospheric pressure and at less than 50 nanotorr have been developed. A multiplex scheme necessary for the simultaneous recording of brush displacement, friction, and electrical noise has also been developed. Composite brushes consisting of silver-molybdenum disulfide-graphite and silver-niobium diselenide-graphite have been employed on rings of coin silver and rhodium plate. Brush property measurements made included measurement of density, electrical resistivity, shear strength, and microstructure.
NASA Technical Reports Server (NTRS)
Vest, R. W.; Singaram, Saraswathi
1989-01-01
Metallo-organic ink containing silver (with some bismuth as adhesion agent) applied to printed-circuit boards and pyrolized in air to form electrically conductive patterns. Ink contains no particles of silver, does not have to be mixed during use to maintain homogeneity, and applied to boards by ink-jet printing heads. Consists of silver neodecanoate and bismuth 2-ethylhexanoate dissolved in xylene and/or toluene.
NASA Astrophysics Data System (ADS)
Pal, Hemant; Sharma, Vimal
2014-11-01
The mechanical, electrical, and thermal expansion properties of carbon nanotube (CNT)-based silver and silver-palladium (10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver-palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion (CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%-40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver-palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.
Highly Conductive Nano-Silver Circuits by Inkjet Printing
NASA Astrophysics Data System (ADS)
Zhu, Dongbin; Wu, Minqiang
2018-06-01
Inkjet technology has become popular in the field of printed electronics due to its superior properties such as simple processes and printable complex patterns. Electrical conductivity of the circuits is one of the key factors in measuring the performance of printed electronics, which requires great material properties and a manufactured process. With excellent conductivity and ductility, silver is an ideal material as the wire connecting components. This review summarizes the progress of conductivity studies on inkjet printed nano-silver lines, including ink composition and nanoparticle morphology, deposition of nano-silver lines with uniform and high aspect ratios, sintering mechanisms and alternative methods of thermal sintering. Finally, the research direction on inkjet printed electronics is proposed.
Probability of conductive bond formation in a percolating network of nanowires with fusible tips
NASA Astrophysics Data System (ADS)
Rykaczewski, Konrad; Wang, Robert Y.
2018-03-01
Meeting the heat dissipation demands of microelectronic devices requires development of polymeric composites with high thermal conductivity. This property is drastically improved by percolation networks of metallic filler particles that have their particle-to-particle contact resistances reduced through thermal or electromagnetic fusing. However, composites with fused metallic fillers are electrically conductive, which prevents their application within the chip-board and the inter-chip gaps. Here, we propose that electrically insulating composites for these purposes can be achieved by the application of fusible metallic coatings to the tips of nanowires with thermally conductive but electrically insulating cores. We derive analytical models that relate the ratio of the coated and total nanowire lengths to the fraction of fused, and thus conductive, bonds within percolating networks of these structures. We consider two types of materials for these fusible coatings. First, we consider silver-like coatings, which form only conductive bonds when contacting the silver-like coating of another nanowire. Second, we consider liquid metal-like coatings, which form conductive bonds regardless of whether they contact a coated or an uncoated segment of another nanowire. These models were validated using Monte Carlo simulations, which also revealed that electrical short-circuiting is highly unlikely until most of the wire is coated. Furthermore, we demonstrate that switching the tip coating from silver- to liquid metal-like materials can double the fraction of conductive bonds. Consequently, this work provides motivation to develop scalable methods for fabrication of the hybrid liquid-coated nanowires, whose dispersion in a polymer matrix is predicted to yield highly thermally conductive but electrically insulating composites.
Heat-Conducting Anchors for Thermocouples
NASA Technical Reports Server (NTRS)
Macdavid, Kenton S.
1987-01-01
Metal particles in adhesive aid heat transfer. Aluminum caps containing silver-filled epoxy used as high-thermal-conductance anchors for thermocouples, epoxy providing thermal path between mounting surfaces and thermocouple measuring junctions. Normally, epoxy-filled aluminum caps used when measuring steady-state temperatures. Silver-filled epoxy used when thermocouple not isolated electrically from surface measured.
Complex conductivity response to silver nanoparticles in partially saturated sand columns
NASA Astrophysics Data System (ADS)
Abdel Aal, Gamal; Atekwana, Estella A.; Werkema, D. Dale
2017-02-01
The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0-30%), nanoparticle concentrations (0-10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90-210 and 1500-2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex conductivity parameters based on the strong power law relationships.
Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.
1995-01-01
Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.
Complex conductivity response to silver nanoparticles in ...
The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0–30%), nanoparticle concentrations (0–10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90–210 and 1500–2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex co
NASA Astrophysics Data System (ADS)
Titkov, A. I.; Gadirov, R. M.; Nikonov, S. Yu.; Odod, A. V.; Solodova, T. A.; Kurtсevich, A. E.; Kopylova, T. N.; Yukhin, Yu. M.; Lyakhov, N. Z.
2018-02-01
Inkjet ink based on silver nanoparticles with sizes of 11.1 ± 2.4 nm has been developed. Test images are printed on a laboratory inkjet printer, followed by sintering the printed patterns with a diode laser having a wavelength of 453 nm. The structure and electrical properties of the resulting films are studied depending on the parameters of laser sintering. It is found that under optimal conditions, an electrically conductive film with a low resistivity of 12.2 μΩ· cm can be formed.
Electroless silver coating of rod-like glass particles.
Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon
2008-09-01
An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.
NASA Astrophysics Data System (ADS)
Polonyankin, D. A.; Blesman, A. I.; Postnikov, D. V.
2017-05-01
Conductive thin films formation by copper and silver magnetron sputtering is one of high technological areas for industrial production of solar energy converters, energy-saving coatings, flat panel displays and touch control panels because of their high electrical and optical properties. Surface roughness and porosity, average grain size, internal stresses, orientation and crystal lattice type, the crystallinity degree are the main physical properties of metal films affecting their electrical resistivity and conductivity. Depending on the film thickness, the dominant conduction mechanism can affect bulk conductivity due to the flow of electron gas, and grain boundary conductivity. The present investigation assesses the effect of microstructure and surface topography on the electrical conductivity of magnetron sputtered Cu and Ag thin films using X-ray diffraction analysis, scanning electron and laser interference microscopy. The highest specific conductivity (78.3 MS m-1 and 84.2 MS m-1, respectively, for copper and silver films at the thickness of 350 nm) were obtained with the minimum values of roughness and grain size as well as a high degree of lattice structuredness.
Yu, Xiao; Li, Zihua; Liu, Yong; Zhao, Wenxia; Xu, Ruimei; Wang, Donghai; Shen, Hui
2017-02-15
A promising new concept is the application of flexible and foldable conductive film or paper for wearable electronics, in which silver nanowires, carbon nanotubes, and graphene are primarily used as conductive materials. However, their insufficient nanostructure contacts lead to poor electrical conductivity and mechanical fracture. Here, we demonstrate a simple and innovative strategy for fabricating a free-standing silver film with inverted pyramids by replicating pyramids on a textured silicon wafer under a hydrothermal reaction. In this unique structure, the inverted pyramids on the film surface can provide sufficient buffer space for a mechanically foldable and unfoldable cushion, and the continuous film ensures an uninterrupted electron transport pathway. As a result, the silver film with inverted pyramids can exhibit extremely high conductivity, with a sheet resistance as low as 2.55 × 10 -3 Ω/sq, corresponding to an electrical conductivity of 4.2 × 10 5 S cm -1 for a 9.2-μm-thick film (67.7% of bulk silver's conductivity). Surprisingly, this film has outstanding mechanical folding stability, with less than a 0.5% deviation from the initial resistance after 35,000 repetitive folding and unfolding cycles when tested at the folding site. The film is free-standing, thin, flexible, foldable, and suitable for cutting and patterned growth, which makes it suitable for wearable electronics, showing a much wider range of applications than substrate-based ones.
Reflective Silvered Polyimide Films Via In Situ Thermal Reduction Silver (I) Complexes
NASA Technical Reports Server (NTRS)
Southward, Robin E. (Inventor); Thompson, David W. (Inventor); St.Clair, Anne K. (Inventor); Stoakley, Diane M. (Inventor)
2000-01-01
Self-metallizing. flexible polyimide films with highly reflective surfaces are prepared by an in situ self-metallization procedure involving thermally initiated reduction of polymer-soluble silver(I) complexes. Polyamic acid solutions are doped with silver(I) acetate and solubilizing agents. Thermally curing the silver(I) doped resins leads to flexible. metallized films which have reflectivities as high as 100%. abrasion-resistant surfaces. thermal stability and, in some cases, electrical conductivity, rendering them useful for space applications.
Recent Development of Nanomaterial-Doped Conductive Polymers
NASA Astrophysics Data System (ADS)
Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.
2017-12-01
Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.
NASA Astrophysics Data System (ADS)
Anis, Badawi; Mostafa, A. M.; El Sayed, Z. A.; Khalil, A. S. G.; Abouelsayed, A.
2018-07-01
We present the preparation of highly conducting, transparent, and flexible reduced graphene oxide/silver nanowires (rGO/SNWs) substrates using non-thermal laser photoreduction method. High quality monolayers graphene oxide (GO) solution has been prepared by the chemical oxidation of thermally expanded large area natural graphite. Silver nanowires was prepared by using the typical polyol method. Uniform hybrid GO/silver nanowires (GO/SNWs) was prepared by growing the nanowires from silver nuclei in the presence of GO. Uniform and high-quality rGO/SNWs thin films were prepared using a dip-coating technique and were reduced to highly electrically conductive graphene and transparent conductive films using non-thermal laser scribe method. The laser scribed rGO/SNWs hybrid film exhibited 80% transparency with 70 Ω □-1 after 20 min of dipping in GO/SNWs solution.
Electrical Conductivity in Transparent Silver Nanowire Networks: Simulations and Experiments
NASA Astrophysics Data System (ADS)
Sherrott, Michelle; Mutiso, Rose; Rathmell, Aaron; Wiley, Benjamin; Winey, Karen
2012-02-01
We model and experimentally measure the electrical conductivity of two-dimensional networks containing finite, conductive cylinders with aspect ratio ranging from 33 to 333. We have previously used our simulations to explore the effects of cylinder orientation and aspect ratio in three-dimensional composites, and now extend the simulation to consider two-dimensional silver nanowire networks. Preliminary results suggest that increasing the aspect ratio and area fraction of these rods significantly decreases the sheet resistance of the film. For all simulated aspect ratios, this sheet resistance approaches a constant value for high area fractions of rods. This implies that regardless of aspect ratio, there is a limiting minimum sheet resistance that is characteristic of the properties of the nanowires. Experimental data from silver nanowire networks will be incorporated into the simulations to define the contact resistance and corroborate experimentally measured sheet resistances of transparent thin films.
Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils.
Wu, Min; Kuga, Shigenori; Huang, Yong
2008-09-16
We demonstrate a simple, facile approach to the deposition of silver nanoparticles on the surface of cellulose microfibrils with a quasi-one-dimensional arrangement. The process involves the generation of aldehyde groups by oxidizing the surface of cellulose microfibrils and then the assembly of silver nanoparticles on the surface by means of the silver mirror reaction. The linear nature of the microfibrils and the relatively uniform surface chemical modification result in a uniform linear distribution of silver particles along the microfibrils. The effects of various reaction parameters, such as the reaction time for the reduction process and employed starting materials, have been investigated by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Additionally, the products were examined for their electric current-voltage characteristics, the results showing that these materials had an electric conductivity of approximately 5 S/cm, being different from either the oxidated cellulose or bulk silver materials by many orders of magnitude.
NASA Astrophysics Data System (ADS)
Aziz, Shujahadeen B.; Abdullah, Omed Gh.; Hussein, Sarkawt A.
2018-03-01
The influence of anion type on silver ion reduction and drop in direct current (DC) conductivity was investigated experimentally. The structural, optical, morphological and electrical properties of the samples were investigated using x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), optical micrographs (OM) and impedance spectroscopy. The XRD results reveal significant disruption in the crystalline structure of chitosan (CS) for different concentrations of silver nitrate (AgNt) salt. The localized surface resonance plasmonic (LSRP) peaks that were observed for CS:AgNt samples, along with the white silver specs detected by OM technique confirm the formation of Ag nanoparticles. The appearance of obvious dark regions in the CS:AgNt system reveals the existence of a large percentage of amorphous domains. The nonexistence of spherulitic texture confirms the amorphous nature of the samples. The second semicircle in an impedance plot can be attributed to an Ag nanoparticle grain boundary. The established relationships between dielectric constant and carrier concentration and the behavior of dielectric constant versus salt concentration were used to explain the phenomenon of ion-ion association. The continuous increase of DC conductivity was noticed at high temperatures, which was then explained on the basis of lattice energy of silver salts. The influences of anion size on the rate of silver ion reductions are also interpreted.
NASA Astrophysics Data System (ADS)
Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do
2017-03-01
As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.
NASA Astrophysics Data System (ADS)
Han, Y. D.; Zhang, S. M.; Jing, H. Y.; Wei, J.; Bu, F. H.; Zhao, L.; Lv, X. Q.; Xu, L. Y.
2018-04-01
With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.
Han, Y D; Zhang, S M; Jing, H Y; Wei, J; Bu, F H; Zhao, L; Lv, X Q; Xu, L Y
2018-02-12
With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.
Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.
1994-07-01
The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes * The Sputtered La0.5Sr0.5MnO3-Yttria Stabilized Zirconia Composite Electrode in Solid Oxide Fuel Cells * A Solid Electrochemical Ferro Sensor for Molten Matte * SnO2-based Sensor for H2S Monitoring-Electrical Conductivity Measurements and Device Testing * Humidity Sensor using Potassium Tungsten Bronze Synthesized from Peroxo-Polytungstic Acid * Study on Li/LiClO4/V6O13 Test Cells * Fabrication and Characterisation of Some Solid Electrolyte Cells Containing CuI and Silver Oxysalts * Solid State Battery of Proton Conducting Sodium Thiosulphate Pentahydrate * Low Temperature Synthesis of LiMn2O4 for Secondary Lithium Batteries * Effect of Different Cathode Active Materials on Battery Performance with Silver Molybdate Electrolyte Partially Substituted with Zinc Oxide * Fabrication and Characterization of Electrochemical Cells based on Silver Molybdoarsenate and Silver Tungstoarsenate Glass Electrolytes * Lorentz Force Dependence of Dissipation in a Granular Superconductor * Late Entry (Invited paper) * Simultaneous Voltammetry and Spectroscopy of Polyaniline in Propylene Carbonate * Author Index * Tentative List of Participants
Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers
NASA Astrophysics Data System (ADS)
Xu, Ping; Jeon, Sea-Ho; Mack, Nathan H.; Doorn, Stephen K.; Williams, Darrick J.; Han, Xijiang; Wang, Hsing-Lin
2010-08-01
A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes.A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes. Electronic supplementary information (ESI) available: EDAX, XRD, and SEM images. See DOI: 10.1039/c0nr00106f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagor, Anna; Pawlowski, Antoni; Pietraszko, Adam
2009-03-15
Single crystals of proustite Ag{sub 3}AsS{sub 3} have been characterised by impedance spectroscopy and single-crystal X-ray diffraction in the temperature ranges of 295-543 and 295-695 K, respectively. An analysis of the one-particle potential of silver atoms shows that in the whole measuring temperature range defects in the silver substructure play a major role in the conduction mechanism. Furthermore, the silver transfer is equally probable within silver chains and spirals, as well as between chains and spirals. The trigonal R3c room temperature phase does not change until the decomposition of the crystal. The electric anomaly of the first-order character which appearsmore » near 502 K is related to an increase in the electronic component of the total conductivity resulting from Ag{sub 2}S deposition at the sample surface. - Joint probability density function map of silver atoms at T=695 K.« less
Antibacterial properties of Ag-doped hydroxyapatite layers prepared by PLD method
NASA Astrophysics Data System (ADS)
Jelínek, Miroslav; Kocourek, Tomáš; Jurek, Karel; Remsa, Jan; Mikšovský, Jan; Weiserová, Marie; Strnad, Jakub; Luxbacher, Thomas
2010-12-01
Thin hydroxyapatite (HA), silver-doped HA and silver layers were prepared using a pulsed laser deposition method. Doped layers were ablated from silver/HA targets. Amorphous and crystalline films of silver concentrations of 0.06 at.%, 1.2 at.%, 4.4 at.%, 8.3 at.% and 13.7 at.% were synthesized. Topology was studied using scanning electron microscopy and atomic force microscopy. Contact angle and zeta potential measurements were conducted to determine the wettability, surface free energy and electric surface properties. In vivo measurement (using Escherichia coli cells) of antibacterial properties of the HA, silver-doped HA and silver layers was carried out. The best antibacterial results were achieved for silver-doped HA layers of silver concentration higher than 1.2 at.%.
Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers.
Xu, Ping; Jeon, Sea-Ho; Mack, Nathan H; Doorn, Stephen K; Williams, Darrick J; Han, Xijiang; Wang, Hsing-Lin
2010-08-01
A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes.
NASA Astrophysics Data System (ADS)
Igbenehi, H.; Jiguet, S.
2012-09-01
Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.
Burnout of the organic vehicle in an electrically conductive thick-film paste
NASA Astrophysics Data System (ADS)
Liu, Zongrong; Chung, D. D. L.
2004-11-01
The burnout of the organic vehicle in a silver-particle, glass-free, electrically conductive, thick-film paste during firing in air was studied. For a vehicle consisting of ethyl cellulose dissolved in ether, burnout primarily involves the thermal decomposition of ethyl cellulose. The presence of ether with dissolved ethyl cellulose facilitates the burnout of ethyl cellulose. Excessive ethyl cellulose hinders the burnout. A high heating rate results in more residue after burnout. By interrupting the heating at 160°C for 15 min, the residue after subsequent burnout is diminished probably because of reduced temporal overlap of the processes of organic burnout and silver particle necking. By interrupting the heating at either 300°C or 385°C for 30 min, the temperature required for complete burnout is reduced. The addition of silver particles facilitates drying at room temperature and burnout upon heating.
Morphology, structure, optical, and electrical properties of AgSbO3
NASA Astrophysics Data System (ADS)
Yi, Z. G.; Liu, Y.; Withers, R. L.
2010-07-01
The morphology of defect pyrochlore-type, AgSbO3 microparticle/nanoparticles obtained via solid state reaction evolve from irregular to Fullerene-like polyhedra before finally decomposing into metal-organic framework-5 like particles with increase in sintering temperature. The defect pyrochlore-type AgSbO3 particles are slightly Ag deficient while the valence of the antimony ion is shown to be +5 giving rise to a probable stoichiometry of Ag1-xSbVO3-x/2, with x˜0.01-0.04. A highly structured diffuse intensity distribution observed via electron diffraction is interpreted in terms of correlated displacements of one-dimensional (1D) silver ion chains along ⟨110⟩ directions. A redshifting in the absorption edges in UV-visible absorption spectra is observed for samples prepared at sintering temperatures higher than 1000 °C and attributed to the surface plasma resonance effect associated with small amounts of excess metallic Ag on the Ag1-xSbVO3-x/2 particles. An electrical properties investigation of the silver antimonate samples via dielectric, conductivity, and electric modulus spectroscopy shows a prominent dielectric relaxation associated with grain boundaries. The silver ion conductivity is associated with correlated displacements of 1D silver ion chains along ⟨110⟩ directions.
NASA Astrophysics Data System (ADS)
Mirzaee, Majid; Dolati, Abolghasem
2014-09-01
Silver-doped indium tin oxide thin films were synthesized using sol-gel dip-coating technique. The influence of different silver-dopant contents and annealing temperature on the electrical, optical, structural, and morphological properties of the films were characterized by means of four-point probe, UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscope (XPS). XRD analysis confirmed the formation of cubic bixbyte structure of In2O3 with silver nanoparticles annealed at 350 °C. XPS analysis showed that divalent tin transformed to tetravalent tin through oxidization, and silver nanoparticles embedded into ITO matrix covered with silver oxide shell, resulting in high quality nanocomposite thin films. The embedment of polyvinylpyrrolidone inhibited the growth of silver nanoparticles and ITO annealed at 350 °C. Delafossite structure of tin-doped AgInO2 was found at higher annealing temperatures. XRD analysis and FESEM micrographs showed that the optimum temperature to prevent the formation of AgInO2 is 350 °C. The embedment of silver particles (5-10 nm) from reduction of silver ion in ITO thin films improved the electrical conductivity and optical transmittance of ITO nanolayers. The lowest stable sheet resistance of 1,952 Ω/Sq for a 321 nm thick and an average optical transmittance of 91.8 % in the visible region with a band gap of 3.43 eV were achieved for silver-doping content of 0.04 M.
Han, Y D; Zhang, Siming; Jing, H Y; Wei, Jun; Bu, Fanhui; Zhao, Lei; Lv, Xiaoqing; Xu, L Y
2018-01-24
With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens and sintered at a low temperature (100℃). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ·m, which was only 6.5 times of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was owing to the combined action of nanospheres and nanoplates. It was a valued way to prepare Ag nanoink with good performance for printed/written electronics. © 2018 IOP Publishing Ltd.
Friction, wear and noise of slip ring and brush contacts for synchronous satellite use.
NASA Technical Reports Server (NTRS)
Lewis, N. E.; Cole, S. R.; Glossbrenner, E. W.; Vest, C. E.
1972-01-01
A program is being conducted for testing of slip rings for synchronous orbit application. Instrumentation systems necessary for monitoring electrical noise, friction, and brush wear at atmospheric pressure and at less than 50 ntorr have been developed. A multiplex scheme necessary for the simultaneous recording of brush displacement, friction, and electrical noise has also been developed. Composite brushes consisting of silver-molybdenum disulfide-graphite and silver-niobium diselenide-graphite have been employed on rings of coin silver and rhodium plate. Four contact combinations have been tested during an ambient condition run-in at 150 rpm and a humidity sequence at 0.1 rpm. The first six months of the two year vacuum test at 0.1 rpm have been completed. Electrical noise, friction and brush wear data recorded during these periods have been analyzed.
Ice-Templated Bimodal-Porous Silver Nanowire/PDMS Nanocomposites for Stretchable Conductor.
Oh, Jae Young; Lee, Dongju; Hong, Soon Hyung
2018-06-27
A three-dimensional (3D) bimodal-porous silver nanowire (AgNW) nanostructure with superior electrical properties is fabricated by freeze drying of AgNW aqueous dispersion with macrosized ice spheres for bimodal-porous structure. The ice sphere dispersed AgNW solution yields a 3D AgNW network at the surface of ice sphere and formation of macropores by removal of ice sphere during freeze-drying process. The resulting nanostructures exhibit excellent electrical properties due to their low electrical percolation threshold by the formation of macropores, which results in an efficient and dense 3D AgNW network with a small amount of AgNWs. The highly conductive and stretchable AgNW/poly(dimethylsiloxane) (PDMS) nanocomposites are made by impregnating the 3D porous conductive network with highly stretchable poly(dimethylsiloxane) (PDMS) matrix. The AgNW/PDMS nanocomposites exhibit a high conductivity of 42 S/cm with addition of relatively small amount of 2 wt %. The high conductivity is retained when stretched up to 120% elongation even after 100 stretching-releasing cycles. Due to high electrical conductivity and superior stretchability of AgNW/PDMS nanocomposites, these are expected to be used in stretchable electronic devices.
Method for electrically isolating an electrically conductive member from another such member
Tsang, K.L.; Chen, Y.
1984-02-09
The invention relates to methods for electrically isolating a first electrically conductive member from another such member by means of an electrically insulating medium. In accordance with the invention, the insulating medium is provided in the form of MgO which contains a dopant selected from lithium, copper, cobalt, sodium, silver, gold and hydrogen. The dopant is present in the MgO in an amount effective to suppress dielectric breakdown of the MgO, even at elevated temperatures and in the presence of electrical fields.
Technique eliminates high voltage arcing at electrode-insulator contact area
NASA Technical Reports Server (NTRS)
Mealy, G.
1967-01-01
Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.
UV-light assisted patterned metallization of textile fabrics
NASA Astrophysics Data System (ADS)
Bahners, Thomas; Gebert, Beate; Prager, Andrea; Hartmann, Nils; Hagemann, Ulrich; Gutmann, Jochen S.
2018-04-01
A UV-assisted process allows full-faced or local deposition of silver domains on textiles made of natural as well as synthetic fibers, which act as nuclei for subsequent galvanic metallization. SEM and XPS analyses indicate that the process generates particulate depositions - particles, aggregates - of elementary silver. Masking the UV irradiation confines silver deposition strictly to the exposed areas thus allowing patterning. Adhesion of the deposited silver is high on the studied natural fiber cotton and polyamide fibers. Adhesion on smooth and chemically inert synthethic fibers such as, e.g., poly(ethylene terephthalate) or para- and meta-aramids could be enhanced by finishing with poly(vinylamine) thus providing complex-forming amino groups. Although the process does not deposit a closed, electrically conducting layer, all studied samples could be metallized by galvanization. The resulting metal coatings exhibit high conductivity and wash stability. Following a patterned silver deposition, the subsequent galvanic metallization produced conductive patterns of identical geometry thus opening an avenue towards printed circuits on textile fabrics.
Highly stretchable and conductive silver nanowire thin films formed by soldering nanomesh junctions.
Chen, Shih-Pin; Liao, Ying-Chih
2014-10-07
Silver nanowires (AgNWs) have been widely used for stretchable and foldable conductors due to their percolating network nanostructure. To enhance the mechanical strength of AgNW thin films under extreme stretching conditions, in this study, we utilize a simple chemical reaction to join AgNW network connections. Upon applying a reactive ink over AgNW thin films, silver nanoparticles are preferentially generated over the nanowire junctions and solder the nanomesh structures. The soldered nanostructure reinforces the conducting network and exhibits no obvious change in electrical conductivity in the stretching or rolling process with elongation strains up to 120%. Several examples are also demonstrated to show potential applications of this material in stretchable electronic devices.
NASA Astrophysics Data System (ADS)
Luo, Xiangcheng
Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic/plastic deformation, oxidation, strain hardening, passive layer damage, fracture, etc.) with the electrical contact resistance, which was measured in real time for contacts under dynamic compression, thus allowing both reversible and irreversible changes to be observed. The materials studied included metals (carbon steel, stainless steel, aluminum and copper), carbon fiber reinforced polymer-matrix composite (nylon-6), ceramic (mortar) and graphite, due to their relevance to fastening, concrete structures, electric brushes and electrical pressure contacts.
Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun
2014-08-07
Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihut, Dorina M., E-mail: dorinamm@yahoo.com; Lozano, Karen; Foltz, Heinrich
2014-11-01
Silver and copper nanoparticles were deposited as thin films onto substrates consisting of Nylon 6 nanofibers manufactured using forcespinning{sup ®} equipment. Different rotational speeds were used to obtain continuous nanofibers of various diameters arranged as nonwoven mats. The Nylon 6 nanofibers were collected as successive layers on frames, and a high-vacuum thermal evaporation method was used to deposit the silver and copper thin films on the nanofibers. The structures were investigated using scanning electron microscopy–scanning transmission electron microscopy, atomic force microscopy, x-ray diffraction, and electrical resistance measurements. The results indicate that evaporated silver and copper nanoparticles were successfully deposited onmore » Nylon 6 nanofibers as thin films that adhered well to the polymer substrate while the native morphology of the nanofibers were preserved, and electrically conductive nanostructures were achieved.« less
Characterization by spectroscopic Ellipsometry, the physical properties of silver nanoparticles.
NASA Astrophysics Data System (ADS)
Coanga, Jean-Maurice
2013-04-01
Physicists are able to change their minds through their experiments. I think it is time to go kick the curse and go further in research if we want a human future. I work in the Nano-Optics and Plasmonics research. I defined with ellipsomètrie the structure of new type of Nano particles of silver. It's same be act quickly to replace the old dirty leaded electronic-connexion chip and by the other hand to find a new way for the heath care of cancer disease by nanoparticles the next killers of bad cells. Silver nanoparticle layers are obtained by Spark Plasma Sintering are investigated as an alternative to lead alloy based material for solder joint in power mechatronics modules. These layers are characterized by mean of conventional techniques that is the dilatometry technique, the resistivity measurement through the van der Pauw method, and the flash laser technique. Furthermore, the nanoparticles of silver layer are deeply studied by UV-Visible spectroscopic ellipsometry. Spectroscopic angles parameters are determined in function of temperature and dielectric constants are deduced and analyzed through an optical model which takes into account a Drude and a Lorentz component within the Bruggeman effective medium approximation (EMA). The relaxation times and the electrical conductivity are plot in function of temperature. The obtained electrical conductivity give significant result in good agreement to those reported by four points electrical measurement method.
Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder.
Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong
2016-12-22
The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.
Graphene and silver-nanoprism dispersion for printing optically-transparent electrodes
NASA Astrophysics Data System (ADS)
Sinar, Dogan; Knopf, George K.; Nikumb, Suwas
2017-02-01
Optically transparent electrodes (OTEs) are used for bioelectronics, touch screens, visual displays, and photovoltaic cells. Although the conductive coating for these electrodes is often composed of indium tin oxide (ITO), indium is a very expensive material and thin ITO films are relatively brittle compared to conductive polymer or graphene thin films. An alternative highly conductive optically transparent thin film based on a graphene (G) and silver-nanoprism (AgNP) dispersion is introduced in this paper. The aqueous G ink is first synthesized using carboxymethyl cellulose (CMC) as a stabilizing agent. Silver (Ag) nanoprisms are then prepared separately by a simple thermal process which involves the reduction of silver nitrate by sodium borohydride. These Ag nanoprisms are only a few nanometers thick but have relatively large surface areas (>1000 nm2). As a consequence, the nanoprisms provide more efficient injection of free carriers to the G layer. The concentrated G-AgNP dispersions are then deposited on optically transparent glass and polyimide substrates using an inkjet printer with a HP6602A print head. After printing, these optically thin films can be thermally treated to further increase electrical conductivity. Thermal treatment decomposes CMC which frees elemental carbon from polymer chain and, simultaneously, causes the film to become hydrophobic. Preliminary experiments demonstrate that the G-AgNP films on glass substrates exhibit high conductivity at 70% transparency (550 nm). Additional tests on the Gr-AgNP thin films printed on polymide substrates show mechanical stability under bending with minimal reduction in electrical conductivity or optical transparency.
Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua
2010-12-20
We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.
Process for electrically interconnecting electrodes
Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.
2002-01-01
Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com
2016-07-06
p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO{sub 3} as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films weremore » characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.« less
NASA Astrophysics Data System (ADS)
Park, Hyung Ju; Chi, Young Shik; Choi, Insung S.; Yun, Wan Soo
2010-07-01
We report a simple method of enhancing electric conductance in nanogap devices without any additional treatments, such as silver-enhancing process. The low electric conductance after selective immobilization of biofunctionalized gold nanoparticles in the gap region was greatly enhanced by repeated I-V scans at relatively high voltage ranges of -5 to 5 V, which was attributed to the formation of a new conduction pathway across the gap. The higher conduction state of the nanogap device showed a very stable I-V curve, which was used as an excellent measure of the existence of prostate-specific antigen.
NASA Astrophysics Data System (ADS)
Wang, Lei; Huang, Dongchen; Li, Min; Xu, Hua; Zou, Jianhua; Tao, Hong; Peng, Junbiao; Xu, Miao
2017-12-01
Solution-processed silver nanowires (AgNWs) have been considered as a promising material for next generation flexible transparent conductive electrodes. However AgNWs films have several intrinsic drawbacks, such as thermal stability and storage stability. Herein, we demonstrate a laminated ZnO/MgO (ZnMgO, ZMO) as a protective layer on the AgNWs films using atomic layer deposition (ALD). The fabricated films exhibited a low sheet resistance of 16 Ω/sq with high transmittance of 91% at 550 nm, an excellent thermal stability and bending property. The ZMO film grows perpendicularly on the surface of the AgNWs, making a perfect coverage of bulk silver nanowires and junction, which can effectively prompt the electrical transport behavior and enhance stability of the silver nanowires network.
Temperature Dependence of Electrical and Thermal Conduction in Single Silver Nanowire
2015-06-02
Methods section. After knowing the geometrical sizes of the films, the electrical resistivity can be calculated . The temper- ature dependent electrical...plane spacing for peaks (111), (220) and (311) are 2.3616 Å, 1.4518 Å and 1.2287 Å respectively. The corresponding lattice constant can be calculated ...21 nm). So the upper limit of the thermal conductivity ( C vl 3ph vκ = /, ) is calculated as 12.3 W/K·m at 36 K. The phonon mean free path should
Properties of Lightning Strike Protection Coatings
NASA Astrophysics Data System (ADS)
Gagne, Martin
Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity of conductive coatings. Mechanical tests include adhesion, scratch, hardness and Young's modulus of the coatings. The environmental tests are temperature cycling and salt spray cycling. These basic characteristics were investigated first, but further tests also combine the categories, such as electrical tests before, during and after environmental tests, and the effects on the sample's mechanical properties after high electrical current injections. The electrical properties of the conductive coatings have improved and are very close to that of current expanded metallic foil or within an order of magnitude. The mechanical properties of most of these coatings are also good. They exhibit good adhesion, hardness, and no significant loss of flexion properties after current injections. The environmental tests are more mitigated, with some conductive coatings losing their surface conductivity, others having a small increase in specific resistivity, and some were simply unaffected. Tests such as thermogravimetric analysis, scanning electron microscope analysis of scratch tests, and optical microscope observations are included to provide additional analysis of the results of the conductive coatings. The conductive coatings were characterized and tested as part of the CRIAQ project. Lightning strike tests are required to gather further information on these conductive coatings. The main application for these coatings is for lightning strike protection of aircraft, but they can also be used for ground based lightning strike protection and general electromagnetic shielding.
Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.
Liu, Yi-Kai; Lee, Ming-Tsang
2014-08-27
This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.
NASA Astrophysics Data System (ADS)
Chiu, Chih-Wei; Ou, Gang-Bo; Tsai, Yu-Hsuan; Lin, Jiang-Jen
2015-11-01
Highly electrically conductive films were prepared by coating organic/inorganic nanohybrid solutions with a polymeric dispersant and exfoliated mica nanosheets (Mica) on which silver nanoparticles (AgNPs) had been dispersed in various components. Transmission electronic microscopy showed that the synthesized AgNPs had a narrow size distribution and a diameter of approximately 20 nm. Furthermore, a 60 μm thick film with a sheet resistance as low as 4.5 × 10-2 Ω/sq could be prepared by controlling the heating temperature and by using AgNPs/POE-imide/Mica in a weight ratio of 20:20:1. During the heating process, the surface color of the hybrid film changed from dark golden to white, suggesting the accumulation of the AgNPs through surface migration and their melting to form an interconnected network. These nanohybrid films have potential for use in various electrically conductive devices.
Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance.
Thyagarajan, Krishnan; Sokhoyan, Ruzan; Zornberg, Leonardo; Atwater, Harry A
2017-08-01
A plasmonic metasurface with an electrically tunable optical response that operates at strikingly low modulation voltages is experimentally demonstrated. The fabricated metasurface shows up to 30% relative change in reflectance in the visible spectral range upon application of 5 mV and 78% absolute change in reflectance upon application of 100 mV of bias. The designed metasurface consists of nanostructured silver and indium tin oxide (ITO) electrodes which are separated by 5 nm thick alumina. The millivolt-scale optical modulation is attributed to a new modulation mechanism, in which transport of silver ions through alumina dielectric leads to bias-induced nucleation and growth of silver nanoparticles in the ITO counter-electrode, altering the optical extinction response. This transport mechanism, which occurs at applied electric fields of 1 mV nm -1 , provides a new approach to use of ionic transport for electrical control over light-matter interactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature
NASA Astrophysics Data System (ADS)
Pascal, Andre; William, Bussiere; Alain, Coulbois; Jean-Louis, Gelet; David, Rochette
2016-08-01
During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually, the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of the fuse element, one can consider that the volume is fixed so that the pressure increase appears to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm and 10 atm, are considered. The electrical field inside the plasma can reach high values since the distance between the cathode surface and the anode surface varies with time. That is to say from zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m, 104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the electric fuse, we first need to determine some characteristics in order to justify some hypotheses. That is to say: are the classical approximations of the thermal plasmas physics justified? In other words: plasma frequency, the ideality of the plasma, the Debye-Hückel approximation and the drift velocity versus thermal velocity. These characteristics and assumptions are discussed and commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the electrical conductivities.
Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder
Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong
2016-01-01
The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service. PMID:28004839
NASA Astrophysics Data System (ADS)
Onggar, T.; Häntzsche, E.; Nocke, A.; Hund, R. D.; Cherif, Ch
2017-04-01
High-performance textile yarns such as glass filament (GF) yarn will be used as the base material for the development of sensor yarns because glass filament yarns offer both high tensile strengths and moduli of elasticity, as well as high melting temperatures and elongation. A new continuous wet-chemical metallization process has been developed for GF yarns on a laboratory scale to achieve special properties such as electrical conductivity. The aim of the work is to develop a continuous wet-chemical silver plating process for the GF-filament yarn in order to achieve electrical conductivity on the GF-surface. The process was carried out continuously in order to metallize the GF, which is sensitive to the shear force. A homogeneous, completely covered and adhered silver layer on the GF yarn surfaces was obtained by the application of this technology. The surface morphology was been determined by light and scanning electron microscopy to assess the silver layer properties such as structure, homogeneity, and cracking. The chemical structure of the surfaces was analyzed by means of energy dispersive x-ray spectroscopy. For structural analysis, GF yarns were investigated using a Fourier transform infrared spectrometer. The dispersive and polar component of the surface energy of the sized and silvered GF yarn was measured by using a single fiber Tensiometer K100. The silver layer thickness and the silver content were determined after the metallization. Textile physical tests of the tensile strength, elasticity modulus, elongation at break, and yarn fineness of the single GF yarns as well as GF bundle were carried out.
Study on Silver-plated Molybdenum Interconnected Materials for LEO Solar Cell Array
NASA Astrophysics Data System (ADS)
Zhu, Jia-jun; Hu, Yu-hao; Xu, Meng; Yang, Wu-lin; Fu, Li-cai; Li, De-yi; Zhou, Ling-ping
2017-09-01
Atomic oxygen (AO) is one of the most important environmental factors that affected the performance of low earth orbit spacecraft in orbit. In which, silver was the most common materials as the interconnected materials. However, with the poor AO resistance of silver, the interconnectors could be failure easier, and the lifetime of the spacecraft was also reduced. In this paper, the silver-plated molybdenum interconnected materials made by Ag thin films deposited on the Mo foils by vacuum deposition methods was studied. And the effects of the preparation process on the micro-structure of the Ag thin films, the interfacial adhesive strength and the electrical conductivity of the composites were investigated. It was found that the Ag thin films deposited on the Mo substrates coated the Ag thin films by ion beam assisted deposition(IBAD) methods exhibited a perfectly (200) preferred orientation. The interfacial adhesive strength had been increased to 18.58MPa. And the composites also have excellent electrical performance.
Lee, Jong-Gun; An, Seongpil; Kim, Tae-Gun; Kim, Min-Woo; Jo, Hong-Seok; Swihart, Mark T; Yarin, Alexander L; Yoon, Sam S
2017-10-11
We have sequentially deposited layers of silver nanowires (AgNWs), silicon dioxide (SiO 2 ) nanoparticles, and polystyrene (PS) nanoparticles on uncoated glass by a rapid low-cost supersonic spraying method to create antifrosting, anticondensation, and self-cleaning glass. The conductive silver nanowire network embedded in the coating allows electrical heating of the glass surface. Supersonic spraying is a single-step coating technique that does not require vacuum. The fabricated multifunctional glass was characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM). The thermal insulation and antifrosting performance were demonstrated using infrared thermal imaging. The reliability of the electrical heating function was tested through extensive cycling. This transparent multifunctional coating holds great promise for use in various smart window designs.
NASA Astrophysics Data System (ADS)
Chang, Min-Hwa; Cho, Hyun-Ah; Kim, Youn-Soo; Lee, Eun-Jong; Kim, Jin-Yeol
2014-07-01
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.
Thermal-electrical properties and resistance stability of silver coated yarns
NASA Astrophysics Data System (ADS)
Li, Yafang; Liu, Hao; Li, Xiaojiu
2017-03-01
Thermal-electrical properties and resistance stability of silver yarns was researched to evaluate the performance be a heating element. Three samples of silver coated yarns with different linear density and electrical resistivity, which obtained by market. Silver coated yarns were placed at the high temperature condition for ageing. The electrical resistances of yarns were increased with the ageing process. The infrared photography instrument was used to measurement the temperature variation of silver coated yarns by applied different current on. The result shows that the temperature rise with the power increases.
2015-01-14
substrates using a titanium adhesion layer, and (3) characterized hardness and electrical conductivity of plated silver before and after rapid thermal...layer composite films. We observed that the silver erosion during carboxylated carbon nanotube deposition leads to significant porosity within the...composite films. We plan to explore amine-terminated carbon nanotubes in the near future to eliminate the porosity and study how different
Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu
2016-05-25
We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas.
NASA Astrophysics Data System (ADS)
Pettersen, Sigurd R.; Nagao, Shijo; Kristiansen, Helge; Helland, Susanne; Njagi, John; Suganuma, Katsuaki; Zhang, Zhiliang; He, Jianying
2017-01-01
The flash diffusivity method, also known as laser flash analysis (LFA), is commonly used to obtain the thermal diffusivity (α) and thermal conductivity (κ) of materials, due to its relative simplicity, rapid measurements, small sample size requirement, and standardized commercially available instruments. In this work, an epoxy adhesive was filled with a large fraction of homogeneous micron-sized polymethylmethacrylate spheres coated with thin silver films, such that a percolating metallic network that dominated the electric and thermal transport formed through the polymer at <3 vol. % silver. Specific heat capacity (Cp) was measured from the LFA measurements by a comparative method and from the total and reversible heat flow signals of modulated differential scanning calorimetry (MDSC). κ was estimated as the product of α, Cp, and density (ρ) and was found to vary significantly with the method to find Cp. The electron contribution was found from the electrical conductivity by the Wiedemann-Franz law and was used to elucidate the thermal transport mechanisms in the composite. A theoretical background for the various methods is included.
Kim, Tae-Gun; Lee, Jong-Gun; Park, Chan-Woo; ...
2017-12-26
We demonstrate the use of supersonic spraying for the deposition of silver nanowires (AgNWs) on a flexible polyimide (PI) substrate for the formation of transparent and conducting films (TCF) as an alternative to nonflexible ITO (indium tin oxide). The self-fused intersections of the NWs resulted in films with a low sheet resistance (Rs = 31 ..omega../sq) and fairly high transmittance (Tr = 92%) on a glass substrate. The effect of the impact speed of the supersonically sprayed AgNWs on the opto-electric properties of the flexible TCF was evaluated by varying the spray coating conditions. The fabricated films were characterized bymore » X-ray diffraction analysis, atomic force microscopy, ultraviolet-visible spectroscopy, and scanning electron microscopy. Finally, cyclic bending tests were performed on the PI/AgNW films as well as PI/ZnO/indium tin oxide/AgNW films, and the changes in their electrical properties with bending were compared.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Tae-Gun; Lee, Jong-Gun; Park, Chan-Woo
We demonstrate the use of supersonic spraying for the deposition of silver nanowires (AgNWs) on a flexible polyimide (PI) substrate for the formation of transparent and conducting films (TCF) as an alternative to nonflexible ITO (indium tin oxide). The self-fused intersections of the NWs resulted in films with a low sheet resistance (Rs = 31 ..omega../sq) and fairly high transmittance (Tr = 92%) on a glass substrate. The effect of the impact speed of the supersonically sprayed AgNWs on the opto-electric properties of the flexible TCF was evaluated by varying the spray coating conditions. The fabricated films were characterized bymore » X-ray diffraction analysis, atomic force microscopy, ultraviolet-visible spectroscopy, and scanning electron microscopy. Finally, cyclic bending tests were performed on the PI/AgNW films as well as PI/ZnO/indium tin oxide/AgNW films, and the changes in their electrical properties with bending were compared.« less
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1981-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane is disclosed. A ferrous/ferric couple in a chloride solution serves as a cathode fluid to produce a positive electric potential. A chromic/chromous couple in a chloride solution serves as an anode fluid to produce a negative potential. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the lead deplates from the negative electrode and the metal coating on the electrode acts as a catalyst to increase current density.
Optimal irradiance for sintering of inkjet-printed Ag electrodes with a 532nm CW laser
NASA Astrophysics Data System (ADS)
Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Hwang, Jun Young; Moon, Seung Jae
2013-09-01
Industrial solar cell fabrication generally adopts printing process to deposit the front electrodes, which needs additional heat treatment after printing to enhance electrical conductivity. As a heating method, laser irradiation draws attention not only because of its special selectivity, but also because of its intense heating to achieve high electric conductivity which is essential to reduce ohmic loss of solar cells. In this study, variation of electric conductivity was examined with laser irradiation having various beam intensity. 532 nm continuous wave (CW) laser was irradiated on inkjet-printed silver lines on glass substrate and electrical resistance was measured in situ during the irradiation. The results demonstrate that electric conductivity varies nonlinearly with laser intensity, having minimum specific resistance of 4.1 x 10-8 Ωm at 529 W/cm2 irradiation. The results is interesting because the specific resistance achieved by the present laser irradiation was about 1.8 times lower than the best value obtainable by oven heating, even though it was still higher by 2.5 times than that of bulk silver. It is also demonstrated that the irradiation time, needed to finish sintering process, decreases with laser intensity. The numerical simulation of laser heating showed that the optimal heating temperature could be as high as 300 oC for laser sintering, while it was limited to 250 oC for oven sintering. The nonlinear response of sintering with heating intensity was discussed, based on the results of FESEM images and XRD analysis.
Preparation and application of silver nanopaste as thermal interface materials
NASA Astrophysics Data System (ADS)
Zou, Lianfeng
The power densities in electronic devices have increased dramatically; heat dissipation has become a major challenge in high performance electronics applications. We have investigated a new type of resin-free hybrid silver nanopastes, which contain silver micro-flakes with particle sizes of 1 - 10 um and silver nanoparticles with diameters of 3 - 8 nm. The assemble temperature can be as low as 150oC due to the low sintering temperature of silver nanoparticles. The fused silver micro-and nanoparticles in TIM form continuous metallic networks, resulting in good thermal, electrical and mechanical bonding. The steady-state thermal gradient measurement show the bulk thermal conductivity between 20W/ (m*K) and 100 W/ (m*K), which is higher than commercial product in the market. The application specific performance of the nanopaste has been using LED lamp on heat sinks as model test vehicle.
2014-01-01
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value. PMID:25024690
Chang, Min-Hwa; Cho, Hyun-Ah; Kim, Youn-Soo; Lee, Eun-Jong; Kim, Jin-Yeol
2014-01-01
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 10(5) S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.
Materials characterization study of conductive flexible second surface mirrors
NASA Technical Reports Server (NTRS)
Levadou, F.; Bosma, S. J.; Paillous, A.
1981-01-01
The status of prequalification and qualification work on conductive flexible second surface mirrors is described. The basic material is FEP Teflon witn either aluminium or silver vacuum deposited reflectors. The top layer has been made conductive by deposition of layer of a indium oxide. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties, the electrostatic behavior of the materials under simulated substorm environment and electrical conductivity at low temperatures are characterized. The effects of simulated ultra violet and particles irradiation on electrical and thermo-optical properties of the materials are also presented.
Conductive pathway on cotton fabric created using solution with silver organometallic compound
NASA Astrophysics Data System (ADS)
Campbell, Eric E.; He, Ruijian; Mayer, Michael
2017-10-01
A knitted cotton fabric is made conductive by thermal deposition of an organometallic silver compound (OSC). For the thermal process, the fabric was soaked with the OSC liquid and heated to 225 °C for 4 min. The cured state of the OSC is determined by the stabilization in the electrical resistance. The resulting silver metallization is shaped as nanoparticles and a continuous film. A typical resistance of a 10 cm × 1.5 cm metallized strip made with 1.9 ml OSC is 1.70 Ω. Various other resistance levels were achieved. A higher volume of OSC provided a lower electrical resistance for the metallized conductive path but increased its stiffness. Lower resistance was achieved by increasing the number of repeat coatings while keeping the OSC volume constant. The resistance decreased when the OSC coated fabric was elongated, an effect similar to negative piezoresistivity. A resistance of initially 0.34 Ω decreased to a minimum of 0.29 Ω at 10% elongation under repeated stretching and relaxation cycling. The metallization method reported here can be suitable for applications in the field know as technical textiles, electronic textiles (e-textiles), wearable electronics, functional garments, or smart fabrics.
Xiao, Chong; Xu, Jie; Li, Kun; Feng, Jun; Yang, Jinlong; Xie, Yi
2012-03-07
Thermoelectric has long been recognized as a potentially transformative energy conversion technology due to its ability to convert heat directly into electricity. However, how to optimize the three interdependent thermoelectric parameters (i.e., electrical conductivity σ, Seebeck coefficient S, and thermal conductivity κ) for improving thermoelectric properties is still challenging. Here, we put forward for the first time the semiconductor-superionic conductor phase transition as a new and effective way to selectively optimize the thermoelectric power factor based on the modulation of the electric transport property across the phase transition. Ultra low value of thermal conductivity was successfully retained over the whole investigated temperature range through the reduction of grain size. As a result, taking monodisperse Ag(2)Se nanocrystals for an example, the maximized ZT value can be achieved around the temperature of phase transition. Furthermore, along with the effective scattering of short-wavelength phonons by atomic defects created by alloying, the alloyed ternary silver chalcogenide compounds, monodisperse Ag(4)SeS nanocrystals, show better ZT value around phase transition temperature, which is cooperatively contributed by superionic phase transition and alloying at nanoscale. © 2012 American Chemical Society
Ultra-flexible and robust transparent electrodes by embedding silver nanowires into polyimide matrix
NASA Astrophysics Data System (ADS)
Zhao, Rong Rong; Yu, Ming Shi; Wang, Guan Cheng; Liu, Wei; Chen, Tong Lai
2018-06-01
Silver nanowires (AgNWs) percolated films have been extensively considered as promising candidates for alternative transparent electrodes. However, due to their high surface roughness, poor adhesion and thermal stability, their practical use in transparent conducting film application is still heavily limited. In this paper, we report ultra-flexible transparent electrodes by imbedding AgNWs into polyimide (PI) thin films to achieve smooth surface, pronounced thermal stability, and high adhesion. Besides the excellent electrical conductivity of about 7-13Ω/□ in sheet resistance, the obtained AgNWs/PI films have excellent transparency and mechanical resilience due to the intrinsic physical and chemical properties of PI organic polymer. By embedding AgNWs into PI, the surface roughness of AgNWs percolated films can be reduced from 39.5 nm to 6 nm (RMS values), and the adhesion of AgNWs to PI is greatly enhanced if compared to the case of only AgNWs onto glass or plastic substrates. Additionally, the AgNWs/PI films show extraordinary stability in terms of electrical conductivity after the arbitrary twisting and thermal heating test, respectively, which are demonstrated by the electrical-thermal measurements via thermal IR imaging.
Solar cell array interconnects
Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.
1995-11-14
Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.
Solar cell array interconnects
Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.
1995-01-01
Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.
Development of technologies for welding interconnects to fifty-micron thick silicon solar cells
NASA Technical Reports Server (NTRS)
Patterson, R. E.
1982-01-01
A program was conducted to develop technologies for welding interconnects to 50 microns thick, 2 by 2 cm solar cells. The cells were characterized with respect to electrical performance, cell thickness, silver contact thickness, contact waviness, bowing, and fracture strength. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Thermal shock tests (100 cycles from 100 C to -180 C) were performed on 16 cell coupons for each cell type without any weld joint failures or electrical degradation. Three 48 cell modules (one for each cell type) were assembled with 50 microns thick cells, frosted fused silica covers, silver clad Invar interconnectors, and Kapton substrates.
Welding interconnects to 50-micron silicon solar cells
NASA Technical Reports Server (NTRS)
Patterson, R. E.; Mesch, H. G.
1983-01-01
A program was conducted to develop technologies for welding interconnects to 50-micron thick, 2 by 2 cm solar cells obtained from three suppliers. The cells were characterized with respect to electrical performance, cell thickness, silver contact thickness, contact waviness, bowing, and fracture strength. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Thermal shock tests (100 cycles from 100 deg to -180 deg C) were performed on 16-cell coupons for each cell type without any weld joint failures or electrical degradation. Three 48-cell modules (one for each cell type) were assembled with 50-micron thick cells, frosted fused silica covers, silver clad Invar interconnectors, and Kapton substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ailavajhala, Mahesh S.; Mitkova, Maria; Gonzalez-Velo, Yago
We explore the radiation induced effects in thin films from the Ge-Se to Ge-Te systems accompanied with silver radiation induced diffusion within these films, emphasizing two distinctive compositional representatives from both systems containing a high concentration of chalcogen or high concentration of Ge. The studies are conducted on blanket chalcogenide films or on device structures containing also a silver source. Data about the electrical conductivity as a function of the radiation dose were collected and discussed based on material characterization analysis. Raman Spectroscopy, X-ray Diffraction Spectroscopy, and Energy Dispersive X-ray Spectroscopy provided us with data about the structure, structural changesmore » occurring as a result of radiation, molecular formations after Ag diffusion into the chalcogenide films, Ag lateral diffusion as a function of radiation and the level of oxidation of the studied films. Analysis of the electrical testing suggests application possibilities of the studied devices for radiation sensing for various conditions.« less
Conductive Adhesive Based on Mussel-Inspired Graphene Decoration with Silver Nanoparticles.
Casa, Marcello; Sarno, Maria; Liguori, Rosalba; Cirillo, Claudia; Rubino, Alfredo; Bezzeccheri, Emanuele; Liu, Johan; Ciambelli, Paolo
2018-02-01
Decoration with silver nanoparticles was obtained by coating graphene with a polydopamine layer, able to induce spontaneous metallic nanoparticles formation without any specific chemical interfacial modifier, neither using complex instrumentation. The choice of dopamine was inspired by the composition of adhesive proteins in mussels, related to their robust attach to solid surfaces. The synthesis procedure started from graphite and involved eco-friendly compounds, such as Vitamin C and glucose as reducing agent and water as reaction medium. Silver decorated graphene was inserted as secondary nanofiller in the formulation of a reference conductive adhesive based on epoxy resin and silver flakes. A wide characterization of the intermediate materials obtained along the step procedure for the adhesive preparation was carried out by several techniques. We have found that the presence of nanofiller yields, in addition to an improvement of the thermal conductivity (up to 7.6 W/m · K), a dramatic enhancement of the electrical conductivity of the adhesive. In particular, starting from 3 · 102 S/cm of the reference adhesive, we obtained a value of 4 · 104 S/cm at a nanofiller concentration of 11.5 wt%. The combined double filler conductivity was evaluated by Zallen's model. The effect of the temperature on the resistivity of the adhesive has been also studied.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Li, Wanli; Gao, Yue; Zhang, Hao; Jiu, Jinting; Suganuma, Katsuaki
2017-08-01
Micron silver paste enables a low-temperature and pressureless sintering process by using an ether-type solvent CELTOL-IA (C x H y O z , x > 10, boiling point of approximately 200°C) for the die attachment of high-powered devices. The conductive patterns formed by the silver paste had a low electrical resistivity of 8.45 μΩ cm at 180°C. The paste also achieved a high bonding strength above 30 MPa at 180°C without the assistance of pressures. These superior performance indicators result from the favorable removal of the solvent, its thermal behavior, and its good wetting on the silver layer. The results suggest that the micron silver paste with a suitable solvent can promote the further spreading of next-generation power devices owing to its marked cost advantage and excellent performance.
NASA Astrophysics Data System (ADS)
He, Gui-Cang; Dong, Xian-Zi; Liu, Jie; Lu, Heng; Zhao, Zhen-Sheng
2018-05-01
A two-beam laser fabrication technique is introduced to fabricate the single silver nanowire (AgNW) on polyethylene terephthalate (PET) substrate. The resistivity of the AgNW is (1.31 ± 0.05) × 10-7 Ω·m, which is about 8 times of the bulk silver resistivity (1.65 × 10-8 Ω·m). The AgNW electrical resistance is measured in temperature range of 10-300 K and fitted with the Bloch-Grüneisen formula. The fitting results show that the residue resistance is 153 Ω, the Debye temperature is 210 K and the electron-phonon coupling constant is (5.72 ± 0.24) × 10-8 Ω·m. Due to the surface scattering, the Debye temperature and the electron-phonon coupling constant are lower than those of bulk silver, and the residue resistance is bigger than that of bulk silver. Thermal conductivity of the single AgNW is calculated in the corresponding temperature range, which is the biggest at the temperature approaching the Debye temperature. The AgNW on PET substrate is the low temperature resistance material and is able to be operated stably at such a low temperature of 10 K.
NASA Astrophysics Data System (ADS)
Signor, L.; Kumar, P.; Tressou, B.; Nadot-Martin, C.; Miranda-Ordonez, José; Carr, J.; Joulain, K.; Milhet, X.
2018-07-01
Silver paste sintering is a very promising technology for chip bonding in future power electronics modules owing to its high melting temperature and the good electrical and thermal properties among other classic solder alloys. However, in its sintered form, these joints contain nanometric/submicrometric pores that affect their thermal performance. The present study gives insight into the relationship between the material thermal conductivity and the real three-dimensional porous structure using finite element modelling. It is shown that over a certain pore fraction threshold (˜ 13%), the pore morphology has a non-negligible influence on the thermal conductivity. Results are also compared to predictions obtained by analytical models available in the literature.
NASA Astrophysics Data System (ADS)
Signor, L.; Kumar, P.; Tressou, B.; Nadot-Martin, C.; Miranda-Ordonez, José; Carr, J.; Joulain, K.; Milhet, X.
2018-03-01
Silver paste sintering is a very promising technology for chip bonding in future power electronics modules owing to its high melting temperature and the good electrical and thermal properties among other classic solder alloys. However, in its sintered form, these joints contain nanometric/submicrometric pores that affect their thermal performance. The present study gives insight into the relationship between the material thermal conductivity and the real three-dimensional porous structure using finite element modelling. It is shown that over a certain pore fraction threshold (˜ 13%), the pore morphology has a non-negligible influence on the thermal conductivity. Results are also compared to predictions obtained by analytical models available in the literature.
Shaban, Samy M; Abd-Elaal, Ali A
2017-07-01
Three novels amide Gemini cationic surfactants with various alkyl chains and their silver nanohybrid with silver nanoparticles were synthesized and a confirmation study for surfactant and their nanoparticles formation has been established using IR, 1 HNMR, TEM and UV-Vis spectroscopy. The surface-active properties of these surfactants and their nanoform were investigated through surface tension and electrical conductivity measurements and a comparative study has been established. The thermodynamic parameters of micellization and adsorption were assessed at temperatures range from 25 to 65°C. The effect of silver particles on the surface behavior of the synthesized surfactant has been discussed. The aggregation behavior of silver nanoparticles with these synthesized Gemini surfactants in water were investigated using dynamic light scattering and transmission electron microscopy. Furthermore, the antimicrobial activities of these synthesized amide Gemini surfactants and their nanostructure with silver against both Gram positive and Gram negative bacteria were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrical Conductivity Measurements of Hydroxylammonium Nitrate: Design Considerations
1986-04-01
aqueous NaNO3 i• shown as well to indicate the similarity of this conductivity data with that cf HAN. The solubility of NaNO 3 in H120 is much less than... Wilmot , R-16 Commander Silver Spring, MD 20910 US Army Tank Automotive Command 1 Commander ATTN: AMSTA-TSL Naval Weapons Center Warren, MI 48397-5000
NASA Astrophysics Data System (ADS)
El-Bediwi, A. B.
2004-02-01
The structure, electrical resistivity, and elastic modulus of SnSb7 and SnSb7X (X = Cu , Ag, or Cu and Ag) rapidly solidified alloys have been investigated using X-ray diffractometer, double bridge, and dynamic resonance techniques. Copper and silver additions to SnSb result in the formation of a eutectic matrix containing embedded crystals (intermetallic phases) of SnCu, SnAg, and SnSb. The hard crystals SnCu, SnAg, and SnSb increase the overall hardness and wear resistance of SnSb bearing alloys. Addition of copper and silver improves internal friction, electrical conductivity, and elastic modulus values of SnSb rapidly solidified bearing alloys. The internal friction, elastic modulus, and electrical resistivity values are relatively sensitive to the composition of the intermediate phases in the matrix. The SbSb(7)Cu(2)g(2) has better properties (lowest internal friction, cost, adequate elastic modulus, and electrical resistivity) for bearing alloys as compared to cast iron and bronzes.
NASA Astrophysics Data System (ADS)
Zhou, Jian; Tang, Hongbo
2018-05-01
This paper introduces a facile and effective route to decorate micro-sized silver particle surfaces with Ag/AgI nanoclusters through a wet chemical reaction at room temperature using iodine and ethanol as reactant and solvent, respectively. Photosensitivity of AgI is utilized in the route, and AgI decomposes into Ag upon contact with sunshine, forming Ag/AgI nanoclusters. The modified micro-sized Ag particles showed sinterability even at 200°C and formed rigid electrical conductive networks at 350°C. Moreover, sintered film containing the modified Ag particles reached the best conductivity, 9.35 mΩ/sq, after sintering at 350°C for 20 min, while the film with untreated control Ag particles obtained its best conductivity at 400°C. The excellent sinterability should be attributed to the nanoclusters which served as a sintering aid during the heating process. However, increase of sintering temperature and time destroyed densification and conductivity of the sintered film containing the modified particles.
Cold welding of ultrathin gold nanowires.
Lu, Yang; Huang, Jian Yu; Wang, Chao; Sun, Shouheng; Lou, Jun
2010-03-01
The welding of metals at the nanoscale is likely to have an important role in the bottom-up fabrication of electrical and mechanical nanodevices. Existing welding techniques use local heating, requiring precise control of the heating mechanism and introducing the possibility of damage. The welding of metals without heating (or cold welding) has been demonstrated, but only at macroscopic length scales and under large applied pressures. Here, we demonstrate that single-crystalline gold nanowires with diameters between 3 and 10 nm can be cold-welded together within seconds by mechanical contact alone, and under relatively low applied pressures. High-resolution transmission electron microscopy and in situ measurements reveal that the welds are nearly perfect, with the same crystal orientation, strength and electrical conductivity as the rest of the nanowire. The high quality of the welds is attributed to the nanoscale sample dimensions, oriented-attachment mechanisms and mechanically assisted fast surface-atom diffusion. Welds are also demonstrated between gold and silver, and silver and silver, indicating that the technique may be generally applicable.
NASA Astrophysics Data System (ADS)
Das, Surjya P.; Wittekopf, Burghard; Weil, Konrad G.
1988-11-01
Silver nitrate can form homogeneous liquid phases with some organic nitriles and water, even when there is no miscibility between the pure liquid components. We determined the shapes of the single phase regions in the ternary phase diagram for the following systems: silver nitrate /RCN /H2O with R =CH3, C3H7, C6H5, and C6H5CH2 at room temperature and for R =C6H5 also at 60 °C and O °C. Furthermore we studied kinematic viscosities, electrical conductivities, and densities of mixtures containing silver nitrate, RCN, and water with the mole ratios X /4 /1 (0.2≦ X ≦S 3.4). In these cases also R = C2H5 and C4H9 were studied. The organic nitriles show different dependences of viscosity and conductivity on the silver nitrate content from the aliphatic ones.
High conductivity composite metal
Zhou, Ruoyi; Smith, James L.; Embury, John David
1998-01-01
Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.
Chen, Dustin; Zhao, Fangchao; Tong, Kwing; ...
2016-07-08
Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less
Liang, Jiajie; Tong, Kwing; Pei, Qibing
2016-07-01
A water-based silver-nanowire (AgNW) ink is formulated for screen printing. Screen-printed AgNW patterns have uniform sharp edges, ≈50 μm resolution, and electrical conductivity as high as 4.67 × 10(4) S cm(-1) . The screen-printed AgNW patterns are used to fabricate a stretchable composite conductor, and a fully printed and intrinsically stretchable thin-film transistor array is also realized. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Arrese, J.; Vescio, G.; Xuriguera, E.; Medina-Rodriguez, B.; Cornet, A.; Cirera, A.
2017-03-01
Nowadays, inkjet-printed devices such as transistors are still unstable in air and have poor performances. Moreover, the present electronics applications require a high degree of reliability and quality of their properties. In order to accomplish these application requirements, hybrid electronics is fulfilled by combining the advantages of the printing technologies with the surface-mount technology. In this work, silver nanoparticle-based inkjet ink (AgNP ink) is used as a novel approach to connect surface-mount devices (SMDs) onto inkjet-printed pads, conducted by inkjet printing technology. Excellent quality AgNP ink-junctions are ensured with high resolution picoliter drop jetting at low temperature (˜150 °C). Electrical, mechanical, and morphological characterizations are carried out to assess the performance of the AgNP ink junction. Moreover, AgNP ink is compared with common benchmark materials (i.e., silver epoxy and solder). Electrical contact resistance characterization shows a similar performance between the AgNP ink and the usual ones. Mechanical characterization shows comparable shear strength for AgNP ink and silver epoxy, and both present higher adhesion than solder. Morphological inspections by field-emission scanning electron microscopy confirm a high quality interface of the silver nanoparticle interconnection. Finally, a flexible hybrid circuit on paper controlled by an Arduino board is manufactured, demonstrating the viability and scalability of the AgNP ink assembling technique.
Co-percolation to tune conductive behaviour in dynamical metallic nanowire networks.
Fairfield, J A; Rocha, C G; O'Callaghan, C; Ferreira, M S; Boland, J J
2016-11-03
Nanowire networks act as self-healing smart materials, whose sheet resistance can be tuned via an externally applied voltage stimulus. This memristive response occurs due to modification of junction resistances to form a connectivity path across the lowest barrier junctions in the network. While most network studies have been performed on expensive noble metal nanowires like silver, networks of inexpensive nickel nanowires with a nickel oxide coating can also demonstrate resistive switching, a common feature of metal oxides with filamentary conduction. However, networks made from solely nickel nanowires have high operation voltages which prohibit large-scale material applications. Here we show, using both experiment and simulation, that a heterogeneous network of nickel and silver nanowires allows optimization of the activation voltage, as well as tuning of the conduction behavior to be either resistive switching, memristive, or a combination of both. Small percentages of silver nanowires, below the percolation threshold, induce these changes in electrical behaviour, even for low area coverage and hence very transparent films. Silver nanowires act as current concentrators, amplifying conductivity locally as shown in our computational dynamical activation framework for networks of junctions. These results demonstrate that a heterogeneous nanowire network can act as a cost-effective adaptive material with minimal use of noble metal nanowires, without losing memristive behaviour that is essential for smart sensing and neuromorphic applications.
Coating-Free, Air-Stable Silver Nanowires for High-performance Transparent Conductive Film.
Tang, Long; Zhang, Jiajia; Dong, Lei; Pan, Yunmei; Yang, Chongyang; Li, Mengxiong; Ruan, Yingbo; Ma, Jianhua; Lu, Hongbin
2018-06-21
Silver nanowires (Ag NWs) based films are considered as a promising alternative for traditional indium tin oxide (ITO) but still suffer from some limitations, including insufficient conductivity, transparency and environmental instability. We here report a novel etching synthesis strategy to improve the performance of Ag NW films. Different from the traditional methods to synthesize high aspect ratios of NWs or employ electrically conductive coatings, we find it effective to reduce the high-reactivity defects of NWs for optimizing the comprehensive performance of Ag NW films. In this strategy etching can suppress the generation of high-reactivity defects and meanwhile the etching growth of NWs can be accomplished in an uneven ligand distribution environment. The resulting Ag NWs are uniformly straight and sharp-edged structure. The transparent conductive film (TCF) obtained exhibits simultaneous improvements in electrical conductivity, transparency and air-stability. Even after exposure in air for 200 days and no any protective coatings, the film can still meet the highest requirement of practical applications, with a figure of merit 361 (i.e., FoM > 350). These results not only demonstrate the importance of defect control in the synthesis of Ag NWs, but also pave a way for further optimizing the performance of Ag NW-based films. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Umarji, Govind; Qureshi, Nilam; Gosavi, Suresh; Mulik, Uttam; Kulkarni, Atul; Kim, Taesung; Amalnerkar, Dinesh
2017-02-01
In conventional thick-film technology, there are often problems associated with poor edges, rough surfaces, and reproducibility due to process limitations, especially for high-frequency applications. These difficulties can be circumvented by using thin-film technology, but process cost and complexity remain major concerns. In this context, photopatternable thick-film technology can offer a viable alternative due to its Newtonian rheology, which can facilitate formation of the required sharp edges. We present herein a unique attempt to formulate a photopatternable silver paste with organic (photosensitive polymer) to inorganic (silver and glass) ratio of 30:70, developed in-house by us for fabrication of thick-film-based ring resonator and band-pass filter components. The ring resonator and band-pass component structures were realized by exposing screen-printed film to ultraviolet light at wavelength of 315 nm to 400 nm for 30 s to crosslink the photosensitive polymer. The pattern was subsequently developed using 1% sodium carbonate aqueous solution. For comparison, conventional silver and silver-palladium thick films were produced using in-house formulations. The surface topology and microstructural features were examined by stereomicroscopy and scanning electron microscopy. The smoothness and edge definition of the film were assessed by profilometry. The resistivity of the samples was observed and remained in the range from 3.4 μΩ cm to 3.6 μΩ cm. The electrical properties were compared by measuring the insertion loss characteristics. The results revealed that the ring resonator fabricated using the photopatternable silver paste exhibited better high-frequency properties compared with components based on conventional silver or silver-palladium paste, especially in terms of the resonant frequency of 10.1 GHz (versus 10 GHz designed) with bandwidth of 80 MHz. Additionally, the band-pass filter fabricated using the photopatternable silver paste displayed better center frequency ( f 0 = 10.588 GHz) and comparable ripple and attenuation bandwidth performance on par with Cu thin film.
High conductivity composite metal
Zhou, R.; Smith, J.L.; Embury, J.D.
1998-01-06
Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.
Thermal Conductivity on the Nanofluid of Graphene and Silver Nanoparticles Composite Material.
Myekhlai, Munkhshur; Lee, Taejin; Baatar, Battsengel; Chung, Hanshik; Jeong, Hyomin
2016-02-01
The composite material consisted of graphene (GN) and silver nanoparticles (AgNPs) has been essential topic in science and industry due to its unique thermal, electrical and antibacterial proper- ties. However, there are scarcity studies based on their thermal properties of nanofluids. Therefore, GN-AgNPs composite material was synthesized using facile and environment friendly method and further nanofluids were prepared by ultrasonication in this study. The morphological and structural investigations were carried out using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) as well as ultra violet (UV)-visible spectroscopy. Furthermore, thermal conductivity measurements were performed for as-prepared nanofluids. As a result of thermal conductivity study, GN-AgNPs composite material was considerably enhanced the thermal conductivity of base fluid (water) by to 6.59% for the nanofluid (0.2 wt% GN and 0.4 wt% AgNPs).
The lifecycle of silver in the United States in 2009
Goonan, Thomas G.
2014-01-01
Because silver is highly sought after for its properties, which make it eminently suitable for new technology applications, a clear understanding of the flow of materials in the economy, the historical context, and trends for the future can help project the future of silver in the economy of the United States. Silver has many properties that are desired in today’s economy. It has superior electrical and heat conductivity, chemical stability, high-temperature strength, malleability, and other characteristics that make it important in high-tech electronic and other industrial applications. Because it is relatively scarce as a natural resource and is easily coined, silver historically has been an important monetary metal. As knowledge of silver chemistry has increased, many industrial end uses have been developed. This study reviews the flows of silver into various end uses and examines the nature of the end use with respect to the silver properties desired and the ability of the end use to produce recyclable end-of-life materials. For the most part, silver can be profitably recycled, but the recycling activity is helped by tipping fees (fees imposed on scrap generators by scrap collectors for taking the material) for materials that might otherwise be regulated as hazardous wastes. New high-technology applications use silver in nanolevel amounts, leading to a potential for dissipative loss and reduced recycling capability.
NASA Astrophysics Data System (ADS)
Koç, Sevgul Ozturk; Galioglu, Sezin; Ozturk, Seckin; Kurç, Burcu Akata; Koç, Emrah; Salamov, Bahtiyar G.
2018-02-01
We have analyzed the interaction between microdischarge and microporous zeolite electronic materials modified by silver (Ag0) nanoparticles (resistivity 1011 to 106 Ω cm) on the atmospheric pressure cold plasma generation in air. The generation and maintenance of stable cold plasma is studied according to the effect of the Ag0 nanoparticles. The role of charge carriers in mixed conductivity processes and electrical features of zeolite from low pressure to atmospheric pressure is analyzed in air microplasmas for both before and after breakdown regimes. The results obtained from the experiments indicate that Ag0 nanoparticles play a significant role in considerably reducing the breakdown voltage in plasma electronic devices with microporous zeolite electronic materials.
NASA Astrophysics Data System (ADS)
Sohn, Hiesang; Woo, Yun Sung; Shin, Weonho; Yun, Dong-Jin; Lee, Taek; Kim, Felix Sunjoo; Hwang, Jinyoung
2017-10-01
We present hybrid transparent conducting films based on silver nanowires (Ag NWs) and doped graphene through novel dual co-doping method by applying various dopants (HNO3 or Au for p-doping and N2H4 for n-doping) on top and bottom sides of graphene. We systematically investigated the effect of dual-doping on their surface as well as electrical and optical properties of graphene and Ag NW/graphene hybrid films through the combination study with various dopant types (p/p, p/n, n/p, and n/n). We found that the p/p-type dual-doped (p-type dopant: HNO3) graphene and its hybrid formation with Ag NWs appeared to be the most effective in enhancing the electrical properties of conductor (doped graphene with ΔR/R0 = 84% and Ag NW/doped graphene hybrid with ΔR/R0 = 62%), demonstrating doped monolayer graphene with high optical transmittance (TT = 97.4%), and sheet resistance (Rs = 188 Ω/sq.). We also note that dual-doping improved such electrical properties without any significant debilitation of optical transparency of conductors (doped graphene with ΔTT = 0.1% and Ag NW/doped graphene hybrid with ΔTT = 0.4%). In addition, the enhanced conductivity of p-type dual-doped graphene allows a hybrid system to form co-percolating network in which Ag NWs can form a secondary conductive path at grain boundaries of polycrystalline graphene.
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1980-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang
Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental resultsmore » with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.« less
NASA Astrophysics Data System (ADS)
Lyu, Jing; Hammig, Mark D.; Liu, Lehao; Xu, Lizhi; Chi, Hang; Uher, Ctirad; Li, Tiehu; Kotov, Nicholas A.
2017-10-01
Materials that are both stretchable and electrically conductive enable a broad spectrum of applications in sensing, actuating, electronics, optics and energy storage. The materials engineering concept of stretchable conductors is primarily based on combining nanowires, nanoribbons, nanoparticles, or nanocarbons with rubbery polymers to obtain composites with different abilities to transport charge and alter their nanoscale organization under strain. Although some of these composites reveal remarkably interesting multiscale reconfigurability and self-assembly phenomena, decreasing conductance with increased strain has restricted their widespread implementation. In a broader physical sense, the dependence of conductance on stress is undesirable because it requires a correlated change of electrical inputs. In this paper, we describe highly conductive and deformable sheets with a conductivity as high as 230 000 S cm-1, composed of silver nanoparticles, infiltrated within a porous aramid nanofiber (ANF) matrix. By forming a kirigami pattern, consisting of a regularized network of notches cut within the films, their ultimate tensile strain is improved from ˜2% to beyond 100%. The use of ANFs derived from well-known ultrastrong Kevlar™ fibers imparts high mechanical performance to the base composite. Importantly, the conductance of the films remains constant, even under large deformation resulting in a material with a zero conductance gradient. Unlike other nanocomposites for which strain and conductance are strongly coupled, the kirigami nanocomposite provides a pathway to demanding applications for flexible and stretchable electronics with power/voltage being unaffected by the deformation mode and temperature.
Development of electro-conductive silver phosphate-based glass optrodes for in vivo optogenetics
NASA Astrophysics Data System (ADS)
Desjardins, Mathieu; Roudjane, Mourad; Ledemi, Yannick; Gagnon-Turcotte, Gabriel; Maghsoudloo, Esmaeel; Filion, Guillaume; Gosselin, Benoit; Messaddeq, Younès.
2018-02-01
Multifunctional fibers are developed worldwide for enabling many new advanced applications. Among the multiple new functionalities that such fibers can offer according to their design, chemical composition and materials combination, the co-transmission of light and electrical signals is of first interest for sensing applications, in particular for optogenetics and electrophysiology. Multifunctional fibers offer an all-solid approach relying on new ionic conducting glasses for the design and manufacturing of next generation optrodes, which represents a tremendous upgrade compared to conventional techniques that requires the utilization of liquid electrolytes to carry the electrical signal generated by genetically encoded neuronal gated ion channels after optical excitation. After a systematic study conducted on different ion-conductive glass systems, silver phosphate-based glasses belonging to the AgI-AgPO3-WO3 and AgI-AgPO3-Ag2WO4 systems were found to be very promising materials for the target application. Several types of fibers, including single-core step-index fibers, multimaterial fibers made of inorganic and optical polymeric glasses have been then fabricated and characterized. Light transmission ranging from 400 to 1000 nm and electrical conductivity ranging from 10-3 and 10-1 S·cm-1 at room temperature (AC frequencies from 1 Hz to 1 MHz) were demonstrated with these fibers. Very sharp fiber tapers were then produced with high repeatability by using a CO2 laser optical setup, allowing a significant shrinking from the fiber (300 μm diameter) to the taper tip (25-30 μm diameter).
Baba, Akira; Aoki, Nobutaka; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao
2011-06-01
In this study, we demonstrate the fabrication of grating-coupled surface plasmon resonance (SPR) enhanced organic thin-film photovoltaic cells and their improved photocurrent properties. The cell consists of a grating substrate/silver/P3HT:PCBM/PEDOT:PSS structure. Blu-ray disk recordable substrates are used as the diffraction grating substrates on which silver films are deposited by vacuum evaporation. P3HT:PCBM films are spin-coated on silver/grating substrates. Low conductivity PEDOT:PSS/PDADMAC layer-by-layer ultrathin films deposited on P3HT:PCBM films act as the hole transport layer, whereas high conductivity PEDOT:PSS films deposited by spin-coating act as the anode. SPR excitations are observed in the fabricated cells upon irradiation with white light. Up to a 2-fold increase in the short-circuit photocurrent is observed when the surface plasmon (SP) is excited on the silver gratings as compared to that without SP excitation. The finite-difference time-domain simulation indicates that the electric field in the P3HT:PCBM layer can be increased using the grating-coupled SP technique. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Xiong, Shenghu; Yuan, Xiao; Tong, Hua; Yang, Yunxia; Liu, Cui; Ye, Xiaojun; Li, Yongsheng; Wang, Xianhao; Luo, Lan
2018-04-01
Circular transmission line model (CTLM) measurements were applied to study the contact formation mechanism of the silver paste metallization on n-type emitter of crystalline silicon solar cells. The electrical performance parameters ρc,Rsk , and Lt , which are related to the physical and chemical states of the multiphase materials at the interface, were extracted from the CTLM measurements, and were found to be sensitive to sintering temperature. As the temperature increased from 585 °C to 780 °C, initially the ρc value decreased rapidly, then flattened out and increased slightly. The order of resistivity magnitude was restricted by the SiNx passivation layer in the early sintering stages, and relied on the carrier tunneling probability affected by the precipitated silver crystallites or colloids, emitter doping concentration and molten glass layer. Based on the calculations that the sheet resistance underneath the electrode was reduced form 110 Ω / □ to 0.186 Ω / □ , it could be inferred that there was formation of a highly conductive layer of silver crystallites and colloids contained glass on the emitter. The transfer length Lt exhibited a U-shaped variation along with the temperature, reflecting the variation of the interfacial electrical properties. Overall, this article shows that the CTLM method can become a new powerful tool for researchers to meet the challenges of silver paste metallization innovation for manufacturing high-efficiency silicon solar cells.
NASA Astrophysics Data System (ADS)
Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin
2017-07-01
Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes.
Properties of thin silver films with different thickness
NASA Astrophysics Data System (ADS)
Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan
2009-01-01
In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.
Relaxation dynamics in AgI-doped silver vanadate superionic glasses.
Bhattacharya, S; Ghosh, A
2005-09-22
Relaxation dynamics of Ag+ ions in several series of AgI-Ag2O-V2O5 superionic glasses has been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 93 to 323 K. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. The frequency-dependent electrical data have been analyzed in the framework of conductivity formalism. We have obtained the mobile ion concentration and the power-law exponent from the analysis of the conductivity spectra. We have observed that the concentration of Ag+ ions is independent of temperature and the conductivity is primarily determined by the mobility. A fraction of the Ag+ ions in the glass compositions are involved in the dynamic process. We have also shown that the power-law exponent is independent of temperature. The results are also supported by the temperature and composition independence of the scaling of the conductivity spectra.
NASA Astrophysics Data System (ADS)
Szałapak, J.; Kiełbasiński, K.; Krzemiński, J.; Jakubowska, M.
2017-08-01
There are few EU directives restricting use of lead and other hazardous substances in electronics. That leads to ban Pb- Sn alloy from use, the consequence of which is a search for new ways of preparing joints. One of the discussed solutions is using silver particles in Low Temperature Joining Technique (LTJT). This technique allows to use different conducting pastes and lower their sintering temperatures with the use of pressure. The most popular material for the joining tests was silver. Due to its high melting temperature and high pressures needed for lowering the temperature, silver nanoparticles were considered and tested. The temperatures of sintering decreased to 300ºC and the pressures went down from about 40 to less than 10 MPa. Due to unsatisfactory parameters of such joints, the authors prepared mixtures of spherical, submicron-sized silver particles with nanoparticles. Joints were tested for their electrical and shears strength parameters. In this article, the authors show the comparison of different variations of the mixtures with joints prepared only with nanoparticles.
The Effect of Electric Field on the Explosive Sensitivity of Silver Azide
NASA Astrophysics Data System (ADS)
Rodzevich, A. P.; Gazenaur, E. G.; Kuzmina, L. V.; Krasheninin, V. I.; Gazenaur, N. V.
2017-05-01
The effect of a constant contactless electric field on the rate of a chemical reaction in silver azide is explored in this paper. The technology of growing and processing silver azide whiskers in the constant contactless electric field (field intensity was varied in the range from 10-3 V/m to 100 V/m) allows supervising their explosive sensitivity, therefore, the results of experiments can be relevant for purposeful controlling the resistance of explosive materials. This paper is one of the first attempts to develop efficient methods to affect the explosive sensitivity of energy-related materials in a weak electric field (up to 10-3 V/m).
Green chemical synthesis of silver nanomaterials with maltodextrin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallant, David Robert; Lu, Ping; Lambert, Timothy N.
2010-11-01
Silver nanomaterials have significant application resulting from their optical properties related to surface enhanced Raman spectroscopy, high electrical conductivity, and anti-microbial impact. A 'green chemistry' synthetic approach for silver nanomaterials minimizes the environmental impact of silver synthesis, as well as lowers the toxicity of the reactive agents. Biopolymers have long been used for stabilization of silver nanomaterials during synthesis, and include gum Arabic, heparin, and common starch. Maltodextrin is a processed derivative of starch with lower molecular weight and an increase in the number of reactive reducing aldehyde groups, and serves as a suitable single reactant for the formation ofmore » metallic silver. Silver nanomaterials can be formed under either a thermal route at neutral pH in water or by reaction at room temperature under more alkaline conditions. Deposited silver materials are formed on substrates from near neutral pH solutions at low temperatures near 50 C. Experimental conditions based on material concentrations, pH and reaction time are investigated for development of deposited films. Deposit morphology and optical properties are characterized using SEM and UV-vis techniques. Silver nanoparticles are generated under alkaline conditions by a dissolution-reduction method from precipitated silver (II) oxide. Synthesis conditions were explored for the rapid development of stable silver nanoparticle dispersions. UV-vis absorption spectra, powder X-ray diffraction (PXRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques were used to characterize the nanoparticle formation kinetics and the influence of reaction conditions. The adsorbed content of the maltodextrin was characterized using thermogravimetric analysis (TGA).« less
Liang, Jiajie; Tong, Kwing; Pei, Qibing
2016-05-09
Silver nanowire is a very promising material for fabricating compliant conductors which are essential for stretchable/wearable electronic devices. Screen printing is a cost-effective and scalable technology to fabricate large-area thin film coatings with modest pattern resolution. The biggest challenge to prepare a screen printable silver nanowire ink stems from the low viscosity of silver nanowire dispersions and that the addition of a thickening agent could dramatically increase the inter-nanowire contact resistance in the resulting coating. Herein, we report the synthesis of a water-based silver nanowire ink, which was formulated with low solid contents, high viscosity at 0.1 s -1 shearmore » rate, and appropriate rheological behavior suitable for screen printing. Silver nanowire coating patterns were screen printed with uniform sharp edges, ~50 μm resolution, and electrical conductivity as high as 4.67 × 10 4 S cm -1. The screen printed silver nanowires were then used to fabricate a composite conductor that retained a conductivity greater than 10,000 S cm -1 under 70% tensile strain. Fully printed and stretchable/wearable thin-film transistor arrays were also fabricated by employing the screen printed composite conductor as the source, drain, and gate, drop cast semiconducting carbon nanotubes as the channel, and a dielectric elastomer. The 10 × 6 thin-film transistor arrays had a fabrication yield of 91.7%, average mobility of 33.8 ± 3.7 cm 2V -1s -1, ON/OFF ratio ~1000, and remained stable during 1,000 cycles of wearing on and peeling off a glass tube with 5 mm diameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Jiajie; Tong, Kwing; Pei, Qibing
Silver nanowire is a very promising material for fabricating compliant conductors which are essential for stretchable/wearable electronic devices. Screen printing is a cost-effective and scalable technology to fabricate large-area thin film coatings with modest pattern resolution. The biggest challenge to prepare a screen printable silver nanowire ink stems from the low viscosity of silver nanowire dispersions and that the addition of a thickening agent could dramatically increase the inter-nanowire contact resistance in the resulting coating. Herein, we report the synthesis of a water-based silver nanowire ink, which was formulated with low solid contents, high viscosity at 0.1 s -1 shearmore » rate, and appropriate rheological behavior suitable for screen printing. Silver nanowire coating patterns were screen printed with uniform sharp edges, ~50 μm resolution, and electrical conductivity as high as 4.67 × 10 4 S cm -1. The screen printed silver nanowires were then used to fabricate a composite conductor that retained a conductivity greater than 10,000 S cm -1 under 70% tensile strain. Fully printed and stretchable/wearable thin-film transistor arrays were also fabricated by employing the screen printed composite conductor as the source, drain, and gate, drop cast semiconducting carbon nanotubes as the channel, and a dielectric elastomer. The 10 × 6 thin-film transistor arrays had a fabrication yield of 91.7%, average mobility of 33.8 ± 3.7 cm 2V -1s -1, ON/OFF ratio ~1000, and remained stable during 1,000 cycles of wearing on and peeling off a glass tube with 5 mm diameter.« less
NASA Astrophysics Data System (ADS)
Rao, Lang; Cai, Bo; Yu, Xiao-Lei; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong
2015-05-01
3D microelectrodes are one-step fabricated into a microfluidic droplet separator by filling conductive silver paste into PDMS microchambers. The advantages of 3D silver paste electrodes in promoting droplet sorting accuracy are systematically demonstrated by theoretical calculation, numerical simulation and experimental validation. The employment of 3D electrodes also helps to decrease the droplet sorting voltage, guaranteeing that cells encapsulated in droplets undergo chip-based sorting processes are at better metabolic status for further potential cellular assays. At last, target droplet containing single cell are selectively sorted out from others by an appropriate electric pulse. This method provides a simple and inexpensive alternative to fabricate 3D electrodes, and it is expected our 3D electrode-integrated microfluidic droplet separator platform can be widely used in single cell operation and analysis.
NASA Astrophysics Data System (ADS)
Bergin, Stephen M.; Chen, Yu-Hui; Rathmell, Aaron R.; Charbonneau, Patrick; Li, Zhi-Yuan; Wiley, Benjamin J.
2012-03-01
This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells. Electronic supplementary information (ESI) available: Includes methods and transmission spectra of nanowire films. See DOI: 10.1039/c2nr30126a
Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka
2016-01-01
Summary An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches. PMID:27826514
Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa Del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka; Scotognella, Francesco
2016-01-01
An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.
Ambient-Stable and Durable Conductive Ag-Nanowire-Network 2-D Films Decorated with a Ti Layer.
Kim, Yoon-Mi; Hwang, Bu-Yeon; Lee, Ki-Wook; Kim, Jin-Yeol
2018-05-11
Highly stable and durable conductive silver nanowire (Ag NW) network electrode films were prepared through decoration with a 5-nm-thick Ti layer. The Ag NW network 2-D films showed sheet resistance values as low as 32 ohm/sq at 88% transparency when decorated with Ti. These 2-D films exhibited a 30% increase in electrical conductivity while maintaining good stability of the films through enhanced resistance to moisture and oxygen penetration as a result of the protective effect of the Ti layer.
Novel AgNWs-PAN/TPU membrane for point-of-use drinking water electrochemical disinfection.
Tan, Xiaojun; Chen, Chao; Hu, Yongyou; Wen, Junjie; Qin, Yanzhe; Cheng, Jianhua; Chen, Yuancai
2018-10-01
The safety of drinking water remains a major challenge in developing countries and point-of-use (POU) drinking water treatment device plays an important role in decentralised drinking water safety. In this study, a novel material, i.e. a silver nanowires-polyacrylonitrile/thermoplastic polyurethane (AgNWs-PAN/TPU) composite membrane, was fabricated via electrospinning and vacuum filtration deposition. Morphological and structural characterisation showed that the PAN/TPU fibres had uniform diameters and enhanced mechanical properties. When added to these fibres, the AgNWs formed a highly conductive network with good physical stability and low silver ion leaching (<100 ppb). A POU device equipped with a AgNWs-PAN/TPU membrane displayed complete removal of 10 5 CFU/mL bacteria, which were inactivated by silver ions released from the AgNWs within 6 h. Furthermore, under a voltage of 1.5 V, the bacteria were completely inactivated within 20-25 min. Inactivation efficiency in 5 mM NaCl solution was higher than those in Na 2 SO 4 and NaNO 3 solutions. We concluded that a strong electric field was formed at the AgNW tips. Additionally, silver ions and chlorine compounds worked synergistically in the disinfection process. This study provides a scientific basis for research and development of silver nanocomposite membranes, with high mechanical strength and high conductivity, for POU drinking water disinfection. Copyright © 2018 Elsevier B.V. All rights reserved.
Structure of semiconducting versus fast-ion conducting glasses in the Ag-Ge-Se system.
Zeidler, Anita; Salmon, Philip S; Whittaker, Dean A J; Piarristeguy, Andrea; Pradel, Annie; Fischer, Henry E; Benmore, Chris J; Gulbiten, Ozgur
2018-01-01
The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Ag x (Ge 0.25 Se 0.75 ) (100- x ) tie line (0≤ x ≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x =5 and x =25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag-Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag-Se coordination number increases from 2.6(3) at x =5 to 3.3(2) at x =25. For x =25, the measured Ag-Ag partial pair-distribution function gives 1.9(2) Ag-Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se-Se homopolar bonds as silver is added to the Ge 0.25 Se 0.75 base glass, and the limit of glass-formation at x ≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se-Se homopolar bonds as silver is added to the base glass.
Structure of semiconducting versus fast-ion conducting glasses in the Ag–Ge–Se system
2018-01-01
The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Agx(Ge0.25Se0.75)(100−x) tie line (0≤x≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x=5 and x=25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag–Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag–Se coordination number increases from 2.6(3) at x=5 to 3.3(2) at x=25. For x=25, the measured Ag–Ag partial pair-distribution function gives 1.9(2) Ag–Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se–Se homopolar bonds as silver is added to the Ge0.25Se0.75 base glass, and the limit of glass-formation at x≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se–Se homopolar bonds as silver is added to the base glass. PMID:29410843
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan
The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants
Low-Temperature Properties of Silver
Smith, David R.; Fickett, F. R.
1995-01-01
Pure silver is used extensively in the preparation of high-temperature superconductor wires, tapes, films, and other configurations in which the silver not only shields the superconducting material from the surrounding materials, but also provides a degree of flexibility and strain relief, as well as stabilization and low-resistance electrical contact. Silver is relatively expensive, but at this stage of superconductor development, its unique combination of properties seems to offer the only reasonable means of achieving usable lengths of conductor. In this role, the low-temperature physical (electrical, thermal, magnetic, optical) and mechanical properties of the silver all become important. Here we present a collection of properties data extracted from the cryogenic literature and, to the extent possible, selected for reliability. PMID:29151733
Park, Jun-Ho; Park, Myung-Joo; Lee, Jang-Sik
2017-01-05
The development of paper electronics would enable realization of extremely cheap devices for portable, disposable, and environmentally-benign electronics. Here, we propose a simple dry-writing tool similar to a pencil, which can be used to draw electrically conducting lines on paper for use in paper-based electronic devices. The fabricated pencil is composed of silver nanoparticles decorated on graphene layers to construct layered hybrid nanostructures. This pencil can draw highly conductive lines that are flexible and foldable on conventional papers. Electrodes drawn using this pencil on conventional copy paper are stable during repetitive mechanical folding and highly resistant to moisture/chemicals. This pencil can draw a conductive line where its resistance can be tuned by changing the amount of nanoparticles. A nonvolatile memory device is realized on papers by hand written lines with different resistance. All memory elements are composed of carbons on papers, so complete data security can be achieved by burning the memory papers. This work will provide a new opportunity to fabricate electronic devices on real papers with good conductivity as well as robust mechanical/chemical stability.
Super-Joule heating in graphene and silver nanowire network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maize, Kerry; Das, Suprem R.; Sadeque, Sajia
Transistors, sensors, and transparent conductors based on randomly assembled nanowire networks rely on multi-component percolation for unique and distinctive applications in flexible electronics, biochemical sensing, and solar cells. While conduction models for 1-D and 1-D/2-D networks have been developed, typically assuming linear electronic transport and self-heating, the model has not been validated by direct high-resolution characterization of coupled electronic pathways and thermal response. In this letter, we show the occurrence of nonlinear “super-Joule” self-heating at the transport bottlenecks in networks of silver nanowires and silver nanowire/single layer graphene hybrid using high resolution thermoreflectance (TR) imaging. TR images at the microscopicmore » self-heating hotspots within nanowire network and nanowire/graphene hybrid network devices with submicron spatial resolution are used to infer electrical current pathways. The results encourage a fundamental reevaluation of transport models for network-based percolating conductors.« less
NASA Technical Reports Server (NTRS)
Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.
1990-01-01
The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.
Jiu, Jinting; Sugahara, Tohru; Nogi, Masaya; Araki, Teppei; Suganuma, Katsuaki; Uchida, Hiroshi; Shinozaki, Kenji
2013-12-07
Silver nanowire (AgNW) films with a random mesh structure have attracted considerable attention as high-performance flexible transparent electrodes that can replace the expensive and brittle ITO-sputtered films widely used in displays, touch screens, and solar cells. Methods such as heating, pressure treatment, and light treatment are usually used to obtain an optically transparent and electrically conductive film comparable to those of commercial ITO. However, the adhesion between the AgNW film and the substrate is so weak that other overcoatings or extra treatments are necessary. Here, a high-intensity pulsed light (HIPL) sintering technique was developed to rapidly and simply sinter the AgNW film and thus achieve strong adhesion and even high conductivity on these flexible polymer substrates which will be widely applied to the printing of electronic devices. The conductivity of the AgNW film closely depended on the thermal performance of substrates, and the adhesion was determined by the soft state of the substrate surface originating from the glass transition or melting of substrates with light intensity. The rapid sintering technique can be popularized to fabricate new devices on these polymer substrates by considering the thermal properties of the substrate to improve the performance of devices.
Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material
NASA Astrophysics Data System (ADS)
Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di
2018-01-01
Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.
NASA Astrophysics Data System (ADS)
Martine, Patricia; Fakhimi, Azin; Lin, Ling; Jurewicz, Izabela; Dalton, Alan; Zakhidov, Anvar A.; Baughman, Ray H.
2015-03-01
We have fabricated highly transparent and conductive free-standing nanocomposite thin film electrodes by adding silver nanowires (AgNWs) to dry-spun Multiwall Carbon Nanotube (MWNT) aerogels. This nanocomposite exhibits desirable properties such as high optical transmittance, excellent flexibility and enhanced electrical conductivity. The incorporation of the AgNWs to the MWNT aerogels was accomplished by using a spray coating method. The optical transparency and sheet resistance of the nanocomposite was tuned by adjusting the concentration of AgNWs, back pressure and nozzle distance of the spray gun to the MWNT aerogel during deposition. As the solvent evaporated, the aerogel MWNT bundles densified via surface tension which caused the MWNT bundles to collapse. This adjustable process was responsible in forming well defined apertures that increased the nanocomposite's transmittance up to 90 percent. Via AgNWs percolation and random interconnections between separate MWNT bundles in the aerogel matrix, the sheet resistance decreased from 1 K ohm/sq to less than 100 ohm/sq. Alan G. MacDiarmid NanoTech Institute
NASA Technical Reports Server (NTRS)
Downs, W. R.
1976-01-01
The potential flammability hazard when a water/glycol solution contacts defectively insulated silver-clad copper circuitry or electrical components carrying a direct current is described. The chemical reactions and means for detecting them are explained. Methods for detecting and cleaning contaminated areas and the use of inhibitors to arrest chemical reactivity are also explained. Preventive measures to minimize hazards are given. Photomicrographs of the chemical reactions occurring on silver clad wires are also included.
Cantilever testing of sintered-silver interconnects
Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.; ...
2017-10-19
Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less
Cantilever testing of sintered-silver interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.
Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less
NASA Technical Reports Server (NTRS)
Vecchioni, Simon; Toomey, Emily; Capece, Mark C.; Rothschild, Lynn; Wind, Shalom
2017-01-01
DNA is an ideal template for a biological nanowire-it has a linear structure several atoms thick; it possesses addressable nucleobase geometry that can be precisely defined; and it is massively scalable into branched networks. Until now, the drawback of DNA as a conducting nanowire been, simply put, its low conductance. To address this deficiency, we extensively characterize a chemical variant of canonical DNA that exploits the affinity of natural cytosine bases for silver ions. We successfully construct chains of single silver ions inside double-stranded DNA, confirm the basic dC-Ag+-dC bond geometry and kinetics, and show length-tunability dependent on mismatch distribution, ion availability and enzyme activity. An analysis of the absorbance spectra of natural DNA and silver-binding, poly-cytosine DNA demonstrates the heightened thermostability of the ion chain and its resistance to aqueous stresses such as precipitation, dialysis and forced reduction. These chemically critical traits lend themselves to an increase in electrical conductivity of over an order of magnitude for 11-base silver-paired duplexes over natural strands when assayed by STM break junction. We further construct and implement a genetic pathway in the E. coli bacterium for the biosynthesis of highly ionizable DNA sequences. Toward future circuits, we construct a model of transcription network architectures to determine the most efficient and robust connectivity for cell-based fabrication, and we perform sequence optimization with a genetic algorithm to identify oligonucleotides robust to changes in the base-pairing energy landscape. We propose that this system will serve as a synthetic biological fabrication platform for more complex DNA nanotechnology and nanoelectronics with applications to deep space and low resource environments.
Khan, Afzal; Nguyen, Viet Huong; Muñoz-Rojas, David; Aghazadehchors, Sara; Jiménez, Carmen; Nguyen, Ngoc Duy; Bellet, Daniel
2018-06-06
Silver nanowire (AgNW) networks offer excellent electrical and optical properties and have emerged as one of the most attractive alternatives to transparent conductive oxides to be used in flexible optoelectronic applications. However, AgNW networks still suffer from chemical, thermal, and electrical instabilities, which in some cases can hinder their efficient integration as transparent electrodes in devices such as solar cells, transparent heaters, touch screens, and organic light emitting diodes. We have used atmospheric pressure spatial atomic layer deposition (AP-SALD) to fabricate hybrid transparent electrode materials in which the AgNW network is protected by a conformal thin layer of zinc oxide. The choice of AP-SALD allows us to maintain the low-cost and scalable processing of AgNW-based transparent electrodes. The effects of the ZnO coating thickness on the physical properties of AgNW networks are presented. The composite electrodes show a drastic enhancement of both thermal and electrical stabilities. We found that bare AgNWs were stable only up to 300 °C when subjected to thermal ramps, whereas the ZnO coating improved the stability up to 500 °C. Similarly, ZnO-coated AgNWs exhibited an increase of 100% in electrical stability with respect to bare networks, withstanding up to 18 V. A simple physical model shows that the origin of the stability improvement is the result of hindered silver atomic diffusion thanks to the presence of the thin oxide layer and the quality of the interfaces of hybrid electrodes. The effects of ZnO coating on both the network adhesion and optical transparency are also discussed. Finally, we show that the AP-SALD ZnO-coated AgNW networks can be effectively used as very stable transparent heaters.
Silver-Zinc Redox-Coupled Electroceutical Wound Dressing Disrupts Bacterial Biofilm
Roy, Sashwati; Khanna, Savita; Hemann, Craig; Deng, Binbin; Das, Amitava; Zweier, Jay L.; Wozniak, Daniel; Sen, Chandan K.
2015-01-01
Pseudomonas aeruginosa biofilm is commonly associated with chronic wound infection. A FDA approved wireless electroceutical dressing (WED), which in the presence of conductive wound exudate gets activated to generate electric field (0.3–0.9V), was investigated for its anti-biofilm properties. Growth of pathogenic P. aeruginosa strain PAO1 in LB media was markedly arrested in the presence of the WED. Scanning electron microscopy demonstrated that WED markedly disrupted biofilm integrity in a setting where silver dressing was ineffective. Biofilm thickness and number of live bacterial cells were decreased in the presence of WED. Quorum sensing genes lasR and rhlR and activity of electric field sensitive enzyme, glycerol-3-phosphate dehydrogenase was also repressed by WED. This work provides first electron paramagnetic resonance spectroscopy evidence demonstrating that WED serves as a spontaneous source of reactive oxygen species. Redox-sensitive multidrug efflux systems mexAB and mexEF were repressed by WED. Taken together, these observations provide first evidence supporting the anti-biofilm properties of WED. PMID:25803639
Wang, Fuliang; Mao, Peng; He, Hu
2016-02-17
Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10(-8) (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10(-8) to 5.08 × 10(-8) (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved.
Synthesis of tin, silver and their alloy nanoparticles for lead-free interconnect applications
NASA Astrophysics Data System (ADS)
Jiang, Hongjin
SnPb solders have long been used as interconnect materials in microelectronic packaging. Due to the health threat of lead to human beings, the use of lead-free interconnect materials is imperative. Three kinds of lead-free interconnect materials are being investigated, namely lead-free metal solders (SnAg, SnAgCu, etc.), electrically conductive adhesives (ECAs) and carbon nanotubes (CNTs). However, there are still limitations for the full utilization of these lead-free interconnect materials in the microelectronic packaging, such as higher melting point of lead-free metal solders, lower electrical conductivity of the ECAs and poor adhesion of CNTs to substrates. This thesis is devoted to the research and development of low processing temperature lead-free interconnect materials for microelectronic packaging applications with an emphasis on fundamental studies of nanoparticles synthesis, dispersion and oxidation prevention, and nanocomposites fabrication. Oxide-free tin (Sn), tin/silver (96.5Sn3.5Ag) and tin/silver/copper (96.5Sn3.0Ag0.5Cu) alloy nanoparticles with different sizes were synthesized by a low temperature chemical reduction method. Both size dependent melting point and latent heat of fusion of the synthesized nanoparticles were obtained. The nano lead-free solder pastes/composites created by dispersing the SnAg or SnAgCu alloy nanoparticles into an acidic type flux spread and wet on the cleaned copper surface at 220 to 230°C. This study demonstrated the feasibility of nano sized SnAg or SnAgCu alloy particle pastes for low processing temperature lead-free interconnect applications in microelectronic packaging.
Conductive Fabric-Based Stretchable Hybridized Nanogenerator for Scavenging Biomechanical Energy.
Zhang, Kewei; Wang, Zhong Lin; Yang, Ya
2016-04-26
We demonstrate a stretchable hybridized nanogenerator based on a highly conductive fabric of glass fibers/silver nanowires/polydimethylsiloxane. Including a triboelectric nanogenerator and an electromagnetic generator, the hybridized nanogenerator can deliver output voltage/current signals from stretchable movements by both triboelectrification and electromagnetic induction, maximizing the efficiency of energy scavenging from one motion. Compared to the individual energy-harvesting units, the hybridized nanogenerator has a better charging performance, where a 47 μF capacitor can be charged to 2.8 V in only 16 s. The hybridized nanogenerator can be integrated with a bus grip for scavenging wasted biomechanical energy from human body movements to solve the power source issue of some electric devices in the pure electric bus.
Gonçalves, C; Ribeiro, J; Pereira, T; Luís, A L; Mauricio, A C; Santos, J D; Lopes, M A
2016-08-01
Peripheral nerve regeneration is a serious clinical problem. Presently, there are several nerve tube-guides available in the market, however with some limitations. The goal of this work was the development of a biomaterial with high electrical conductivity to produce tube-guides for nerve regeneration after neurotmesis injuries whenrver an end-to-end suture without tension is not possible. A matrix of poly(vinyl alcohol) (PVA) was used loaded with the following electrical conductive materials: COOH-functionalized multiwall carbon nanotubes (MWCNTs), poly(pyrrole) (PPy), magnesium chloride (MgCl2 ), and silver nitrate (AgNO3 ). The tube-guide production was carried out by a freezing/thawing process (physical crosslinking) with a final annealing treatment. After producing the tube-guide for nerve regeneration, the physicochemical characterization was performed. The most interesting results were achieved by loading PVA with 0.05% of PPy or COOH- functionalized CNTs. These tubes combined the electrical conductivity of carbon nanotubes (CNTs) and PPy with the biocompatibility of PVA matrix, with potential clinical application for nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1981-1987, 2016. © 2016 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... Federal Power Act, proposing to study the feasibility of the Silver Lake Hydroelectric Project, located on Silver Lake and Duck River, in the Valdez-Cordova Census Area, Alaska. The sole purpose of a preliminary...-high roller-compacted concrete dam constructed at the outfall of Silver Lake to Duck River; (2) Silver...
NASA Astrophysics Data System (ADS)
Vaagensmith, Bjorn
Building integrated photovoltaics (BIPV), such as semitransparent organic solar cells (OSC) for power generating windows, is a promising method for implementing renewable energy under the looming threat of depleting fossil fuels. OSC require a solution processed transparent electrode to be cost effective; but typically employ a non-solution processed indium tin oxide (ITO) transparent electrode. PEDOT:PSS and silver nanowire transparent electrodes have emerged as a promising alternative to ITO and are solution processed compatible. However, PEDOT:PSS requires a strong acid treatment, which is incompatible with high throughput solution processed fabrication techniques. Silver nanowires suffer from a short lifetime when subject to electrical stress. The goals of this work were to fabricate a PEDOT:PSS electrodes without using strong acids, a silver nanowire electrode with a lifetime that can exceed 6000 hours of constant electrical stress, and use these two electrodes to fabricate a semitransparent OSC. Exploring optimal solvent blend additives in conjunction with solvent bend post treatments for PEDOT:PSS electrodes could provide an acid free method that results in comparable sheet resistance and transmittance of ITO electrodes. Silver nanowires fail under electrical stress due to sulfur corrosion and Joule heating (which melts and breaks apart electrical contact). A silver oxide layer coating the nanowires could hinder sulfur corrosion and help redistribute heat. Moreover, nanowires with thicker diameters could also exhibit higher heat tolerance and take longer to corrode. Four layer PEDOT:PSS electrodes with optimal solvent blend additives and post treatments were fabricated by spin coating. Silver nanowire electrodes of varying nanowire diameter with and without UV-ozone treatment were fabricated by spray coating and subject to electrical stress of 20 mA/cm2 constant current density. PEDOT:PSS electrodes exhibited a sheet resistance of 80 O/□ and average transmittance of 73%, which were too high and too low, respectively. Silver nanowire electrodes, on the other hand, were able to achieve sheet resistances below 50 O/□ while maintaining a direct transmittance above 80%. Silver nanowires electrodes with average nanowire diameters of 80 nm lasted 2 days longer with UV-ozone treatment than without; and silver nanowire electrodes with average nanowire diameters of 233 nm lasted for 6,312 hours, which met the 6000 hour goal. PEDOT:PSS transparent electrode needs to be improved where the sheet resistance is below 50 O/□ and transmittance above 80%. This could be achieved by adding silver nanoparticles (SNP) less than 40 nm in size, which would also have a plasmonic effect enabling the solar cell to absorb ultraviolet light. Then a fully solution processed semitransparent solar cell utilizing a PEDOT:PSS:SNP and silver nanowire transparent electrodes can be fabricated.
Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices
NASA Astrophysics Data System (ADS)
Alleyne, Fatima Sierre
One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective of this study is to understand the resulting phase transformation behavior during Ag precipitation with the intent to ultimately control the electrical operation of AlN piezoelectric resonators in energy scavenging applications. In this work, multiple source reactive ion sputtering was employed to deposit a thin film of AlN on a 525 microns thick Si substrate, followed by ion implantation (Ag cathode) into the aluminum nitride, and subsequent thermal annealing. Computer simulations were conducted to elucidate the projected range of the silver in the AlN epilayer as a result of the ion implantation process. A myriad of characterization methods including Rutherford Backscattering Spectrometry (RBS), x-ray diffraction (XRD), rocking curve, electron microscopy was employed to quantify the concentration of silver, morphology of silver precipitates, as well as the composition, crystallinity and degree of damage in the ion-implanted AlN samples with respect to thermal annealing conditions. The presence, or lack of precipitates in the samples was utilized to draw conclusions about the feasibility of developing a buried conductive layer in a ceramic matrix via ion implantation. Computer simulations results obtained via TRIM and TRIDYN confirmed that the maximum concentration of silver lied within 30 -- 47 nm from the surface. The RBS data verified the presence of Si, Al, N, Ag, and O2 , whose concentration varied with temperature. X-ray diffraction and electron microscopy corroborated the crystallinity of the AlN epilayer. Electron diffraction confirmed both the epitaxy of the AlN film on the (001) Si substrate and the crystalline quality of the epilayer prior to and after the thermal annealing treatment. Electron microscopy revealed that the sputtered AlN film grew epitaxially in a columnar morphology and silver precipitates did form in some of the aluminum nitride samples implanted but only in those implanted with a higher concentration of Ag under high-energy implantation conditions. It is concluded that the Ag implanted region does indeed have potential as a buried contact layer for piezoelectric activation and sensing if the critical concentration and appropriate thermal conditions can be attained.
NASA Astrophysics Data System (ADS)
Stewart, Ian Edward
Printed electronics, including transparent conductors, currently rely on expensive materials to generate high conductivity devices. Conductive inks for thick film applications utilizing inkjet, aerosol, and screen printing technologies are often comprised of expensive and rare silver particles. Thin film applications such as organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) predominantly employ indium tin oxide (ITO) as the transparent conductive layer which requires expensive and wasteful vapor deposition techniques. Thus an alternative to silver and ITO with similar performance in printed electronics warrants considerable attention. Copper nanomaterials, being orders of magnitude cheaper and more abundant than silver or indium, solution-coatable, and exhibiting a bulk conductivity only 6 % less than silver, have emerged as a promising candidate for incorporation in printed electronics. First, we examine the effect of nanomaterial shape on the conductivity of thick films. The inks used in such films often require annealing at elevated temperature in order to sinter the silver nanoparticles together and obtain low resistivities. We explore the change in morphology and resistivity that occurs upon heating thick films of silver nanowires (of two different lengths, Ag NWs), nanoparticles (Ag NPs), and microflakes (Ag MFs) deposited from water at temperatures between 70 and 400 °C. At the lowest temperatures, longer Ag NWs exhibited the lowest resistivity (1.8 x 10-5 O cm), suggesting that the resistivity of thick films of silver nanostructures is dominated by the contact resistance between particles. This result supported previous research showing that junction resistance between Ag NWs in thin film conductors also dominates optoelectronic performance. Since the goal is to replace silver with copper, we perform a similar analysis by using a pseudo-2D rod network modeling approach that has been modified to include lognormal distributions in length that more closely reflect experimental data collected from the nanowire transparent conductors. In our analysis, we find that Cu NW-based transparent conductors are capable of achieving comparable electrical performance to Ag NW transparent conductors with similar dimensions. We also synthesize high aspect ratio Cu NWs (as high as 5700 in an aqueous based synthesis taking less than 30 minutes) and show that this increase in aspect ratio can result results in transparent conducting films with a transmittance >95% at a sheet resistance <100 O sq-1, optoelectronic properties similar to that for ITO. Two of the major barriers preventing the further use of Cu NWs in printed electronics are the necessity to anneal the nanowires under H2 at higher temperatures and copper's susceptibility to oxidation. The former issue is solved by removing the insulating oxide along the Cu NWs with acetic acid and pressing the nanowires together to make H2 annealing obsolete. Finally, several methods of preventing copper oxidation in the context of transparent conductors were successfully developed such as electroplating zinc, tin, and indium and electrolessly plating benzotriazole (BTAH), nickel, silver, gold, and platinum. While all of the shells lessened or prevented oxidation both in dry and humid conditions, it was found that a thin layer of silver confers identical optoelectronic properties to the Cu NWs as pure Ag NWs. These results are expected provide motivation to replace pure silver and ITO in printed electronics.
Electrically Conductive Anodized Aluminum Surfaces
NASA Technical Reports Server (NTRS)
Nguyen, Trung Hung
2006-01-01
Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In comparison with these competing finishes, the present nanocomposite finishes are expected to cost 50 to 20 percent less and to last longer.
Scheibel, Thomas; Parthasarathy, Raghuveer; Sawicki, George; Lin, Xiao-Min; Jaeger, Heinrich; Lindquist, Susan L
2003-04-15
Recent research in the field of nanometer-scale electronics has focused on the operating principles of small-scale devices and schemes to realize useful circuits. In contrast to established "top-down" fabrication techniques, molecular self-assembly is emerging as a "bottom-up" approach for fabricating nanostructured materials. Biological macromolecules, especially proteins, provide many valuable properties, but poor physical stability and poor electrical characteristics have prevented their direct use in electrical circuits. Here we describe the use of self-assembling amyloid protein fibers to construct nanowire elements. Self-assembly of a prion determinant from Saccharomyces cerevisiae, the N-terminal and middle region (NM) of Sup35p, produced 10-nm-wide protein fibers that were stable under a wide variety of harsh physical conditions. Their lengths could be roughly controlled by assembly conditions in the range of 60 nm to several hundred micrometers. A genetically modified NM variant that presents reactive, surface-accessible cysteine residues was used to covalently link NM fibers to colloidal gold particles. These fibers were placed across gold electrodes, and additional metal was deposited by highly specific chemical enhancement of the colloidal gold by reductive deposition of metallic silver and gold from salts. The resulting silver and gold wires were approximately 100 nm wide. These biotemplated metal wires demonstrated the conductive properties of a solid metal wire, such as low resistance and ohmic behavior. With such materials it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry.
Electric lamp, base for use therewith and method of assembling same
Hough, Harold L.; English, George J.; Chakrabarti, Kirti B.
1989-02-14
An electric lamp including a reflector, at least one conductive ferrule located within a surface of the reflector and a lead-in conductor electrically connected to the ferrule and extending within the reflector. The lamp includes a base having an insulative (e.g., ceramic) cap located substantially about the ferrule, barrier means (e.g., ceramic fiber) located within the cap to define an open chamber substantially about the ferrule, an electrical conductor (e.g., wire) extending within the cap and electrically connected (e.g., silver soldered) to the ferrule, and sealing means (e.g., high temperature cement) located within the cap to provide a seal therefore. The barrier means serves to separate the sealing means from the open chamber about the ferrule such that the heat generated by the ferrule can be vented through spaced apertures located within the cap's side wall. A method of assembling a base on an electric lamp is also provided.
THE CONDUCTIVITY OF POLYTHENE UNDER GAMMA IRRADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintle, H.J.
1960-07-01
The electrical conductivity of specimens of polythene film was measured in vacuo with and without gamma irradiation. The specimens were 0.005 in. thick, and silver electrodes were evaporated onto each side of the specimen to provide as intimate contact as possible with the dielectric material. The measurements were made at about 25 deg C with a dose rate of 0.014 r/min from a small Co/sup 60/ source, using an applied potential of 90 v. Data are tabulated and results are compared with previous measurements by others. (C.H.)
Ink composition for making a conductive silver structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Steven B.; Lewis, Jennifer A.
An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in themore » ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120.degree. C. or less.« less
Liang, Liying; Liu, Haimei; Yang, Wensheng
2013-02-07
The improvement of the electrochemical properties of electrode materials with large capacity and good capacity retention is becoming an important task in the field of lithium ion batteries (LIBs). We designed a function-oriented hybrid material consisting of silver vanadium oxide (β-AgVO(3)) nanowires modified with uniform Ag nanoparticles and multi-walled carbon nanotubes (CNTs) as a high-performance cathode material for LIBs. The Ag nanoparticles which precipitated automatically in the synthetic process act as a bridge between the β-AgVO(3) nanowires and CNTs, creating a self-bridged network structure. The Ag particles at the junction of the nanowires and CNTs facilitate electron transport from the CNTs to the nanowires, and thereby improve the electrical conductivity of the β-AgVO(3) nanowires and the composite. Moreover, the self-bridged network is hierarchically porous with a high surface area. When used as a cathode material, this composite electrode reveals high discharge capacities, excellent rate capability, and good cycling stability. The improved performance of the composite arises from its unique nanosized β-AgVO(3) nanowires with short diffusion pathway for lithium ions, efficient electron collection and transfer in the presence of Ag nanoparticles, together with excellent electrical conductivity of CNTs.
Thin semi-rigid coaxial cables for cryogenics applications
NASA Astrophysics Data System (ADS)
Kushino, Akihiro; Kasai, Soichi
2013-03-01
We have developed cryogenic coaxial cables for low temperature signal readout from sensitive devices, such as transition edge sensors, superconducting tunnel junctions, and kinetic inductance detectors. In order to reduce heat penetration into cryogenic stages, low thermal conductivity metals were chosen for both center and outer electrical conductors. Various types of coaxial cables, employing stainless-steel, cupro-nickel, brass, beryllium-copper, phosphor-bronze, niobium, and niobium-titanium, were manufactured using drawing dies. Thermal and electrical properties were investigated between 1 and 8 K. Coaxial cables made of copper alloys showed thermal conductance roughly consistent with literature, meanwhile Nb coaxial cable must be affected by the drawing process and thermal conductance was lowered. Attenuation of superconducting Nb and NbTi coaxial cables were observed to be adequately small up to above 10 GHz compared to those of normal conducting coaxial cables, which are subject to the Wiedemann-Franz law. We also measured normal conducting coaxial cables with silver-plated center conductors to improve high frequency performance.
Jeevika, Alagan; Ravi Shankaran, Dhesingh
2015-11-15
Silver nanowires (AgNWs) have been demonstrated to be a promising next generation conducting material and an alternative to the traditional electrode (ITO) because of its high conductivity, transparency and stability. Generally, AgNWs are synthesized by chemical method (mainly polyol reduction method) at high temperature in the presence of exotic seeds. The present work aims at the green approach for preparation and characterization of 1D AgNWs ink using clove oil (Syzygium Aromaticum) at room temperature. AgNWs was prepared by green synthesis using clove oil as reducing as well as capping agent at room temperature. The obtained ink was purified, filtered and redissolved in methanol. The prepared AgNWs showed an absorption peaks at 350 and 387nm in the UV-vis spectrum due to transverse SPR mode of silver. From the HR-TEM analysis, it was observed that the AgNWs possess an average diameter and length of ∼39±0.01nm and ∼3μm, respectively. The obtained AgNWs are crystalline in nature and are arranged in a perfect crystal lattice orientation, which was confirmed from the selected area electron diffraction studies. Moreover, the X-ray diffraction analysis confirms the face centered cubic structure. The AgNWs coated glass substrate shows an electrical conductivity of ∼0.48×10(6)S/m. Copyright © 2015 Elsevier Inc. All rights reserved.
Tugba Camic, B; Oytun, Faruk; Hasan Aslan, M; Jeong Shin, Hee; Choi, Hyosung; Basarir, Fevzihan
2017-11-01
A solution-processed transparent conducting electrode was fabricated via layer-by-layer (LBL) deposition of graphene oxide (GO) and silver nanowires (Ag NWs). First, graphite was oxidized with a modified Hummer's method to obtain negatively-charged GO sheets, and Ag NWs were functionalized with cysteamine hydrochloride to acquire positively-charged silver nanowires. Oppositely-charged GO and Ag NWs were then sequentially coated on a 3-aminopropyltriethoxysilane modified glass substrate via LBL deposition, which provided highly controllable thin films in terms of optical transmittance and sheet resistance. Next, the reduction of GO sheets was performed to improve the electrical conductivity of the multilayer films. The resulting GO/Ag NWs multilayer was characterized by a UV-Vis spectrometer, field emission scanning electron microscope (FE-SEM), optical microscope (OM) and sheet resistance using a four-point probe method. The best result was achieved with a 2-bilayer film, resulting in a sheet resistance of 6.5Ω sq -1 with an optical transmittance of 78.2% at 550nm, which values are comparable to those of commercial ITO electrodes. The device based on a 2-bilayer hybrid film exhibited the highest device efficiency of 1.30% among the devices with different number of graphene/Ag NW LBL depositions. Copyright © 2017 Elsevier Inc. All rights reserved.
Theoretical approach to oxygen atom degradation of silver
NASA Technical Reports Server (NTRS)
Fromhold, Albert T., Jr.; Noh, Seung; Beshears, Ronald; Whitaker, Ann F.; Little, Sally A.
1987-01-01
Based on available Rutherford backscattering spectrometry (RBS), proton induced X-ray emission (PIXE) and ellipsometry data obtained on silver specimens subjected to atomic oxygen attack in low Earth orbit STS flight 41-G, a theory was developed to model the oxygen atom degradation of silver. The diffusion of atomic oxygen in a microscopically nonuniform medium is an essential constituent of the theory. The driving force for diffusion is the macroscopic electrochemical potential gradient developed between the specimen surface exposed to the ambient and the bulk of the silver specimen. The longitudinal electric effect developed parallel to the gradient is modified by space charge of the diffusing charged species. Lateral electric fields and concentration differences also exist due to the nonuniform nature of the medium. The lateral concentration differences are found to be more important than the lateral electric fields in modifying the diffusion rate. The model was evaluated numerically. Qualitative agreement exists between the kinetics predicted by the theory and kinetic data taken in ground-based experiments utilizing a plasma asher.
NASA Technical Reports Server (NTRS)
Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.
1990-01-01
The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.
Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity
NASA Astrophysics Data System (ADS)
Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian
2018-04-01
Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.
Free-standing nanocomposites with high conductivity and extensibility.
Chun, Kyoung-Yong; Kim, Shi Hyeong; Shin, Min Kyoon; Kim, Youn Tae; Spinks, Geoffrey M; Aliev, Ali E; Baughman, Ray H; Kim, Seon Jeong
2013-04-26
The prospect of electronic circuits that are stretchable and bendable promises tantalizing applications such as skin-like electronics, roll-up displays, conformable sensors and actuators, and lightweight solar cells. The preparation of highly conductive and highly extensible materials remains a challenge for mass production applications, such as free-standing films or printable composite inks. Here we present a nanocomposite material consisting of carbon nanotubes, ionic liquid, silver nanoparticles, and polystyrene-polyisoprene-polystyrene having a high electrical conductivity of 3700 S cm(-1) that can be stretched to 288% without permanent damage. The material is prepared as a concentrated dispersion suitable for simple processing into free-standing films. For the unstrained state, the measured thermal conductivity for the electronically conducting elastomeric nanoparticle film is relatively high and shows a non-metallic temperature dependence consistent with phonon transport, while the temperature dependence of electrical resistivity is metallic. We connect an electric fan to a DC power supply using the films to demonstrate their utility as an elastomeric electronic interconnect. The huge strain sensitivity and the very low temperature coefficient of resistivity suggest their applicability as strain sensors, including those that operate directly to control motors and other devices.
Wang, Fuliang; Mao, Peng; He, Hu
2016-01-01
Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10−8 (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10−8 to 5.08 × 10−8 (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved. PMID:26883558
Optical properties of embedded metal nanoparticles at low temperatures
NASA Astrophysics Data System (ADS)
Heilmann, A.; Kreibig, U.
2000-06-01
Metal nanoparticles (gold, silver, copper) that are embedded in an insulating organic host material exhibit optical plasma resonance absorption in the visible and near-infrared region. The spectral position, the half width and the intensity of the plasma resonance absorption all depend on the particle size, the particle shape, and the optical behavior of the cluster and the host material. The optical extinction of various gold, silver or copper particle assemblies embedded in plasma polymer or gelatin was measured at 4.2 K and 1.2 K as well as at room temperature. The packing density of several samples was high enough to resolve a reversible increase of the plasma resonance absorption intensity towards lower temperatures. Additionally, at larger silver particles D_m > 50 nm a significant blue shift of the plasma resonance absorption was measured. Particle size and shape distribution were determined by transmission electron microscopy (TEM). For the first time, simultaneous measurements of the electrical and optical properties at one and the same particle assembly were performed at low temperatures. Contrary to the increasing optical extinction, the d.c. conductivity decreased to two orders of magnitude. At silver particles embedded in a plasma polymer made from thiophene a significant photocurrent was measured.
Luo, Yan; Li, Jiao; Huang, Jianguo
2016-11-29
A new bioinspired hierarchical nanofibrous silver-nanoparticle/anatase-rutile-titania (Ag-NP/A-R-titania) composite was fabricated by employing a natural cellulose substance (e.g., commercial laboratory cellulose filter paper) as the structural scaffold template, which was composed of anatase-phase titania (A-titania) nanotubes with rutile-phase titania (R-titania) nanoneedles grown on the surfaces and further silver nanoparticles (AgNPs) immobilized thereon. As it was employed as an anode material for lithium-ion batteries (LIBs), high reversible capacity, enhanced rate performance, and excellent cycling stability were achieved as compared with those of the corresponding cellulose-substance-derived nanotubular A-titania, R-titania, heterogeneous anatase/rutile titania (A-R-titania) composite, and commercial P25 powder. This benefited from its unique porous cross-linked three-dimensional structure inherited from the initial cellulose substance scaffold, which enhances the sufficient electrode/electrolyte contact, relieves the severe volume change upon cycling, and improves the amount of lithium-ion storage; moreover, the high loading content of the silver component in the composite improves the electrical conductivity of the electrode. The structural integrity of the composite was maintained upon long-term charge/discharge cycling, indicating its significant stability.
NASA Astrophysics Data System (ADS)
Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk
2018-03-01
This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.
Tugba Camic, B; Jeong Shin, Hee; Hasan Aslan, M; Basarir, Fevzihan; Choi, Hyosung
2018-02-15
Solution-processed transparent conducting electrodes (TCEs) were fabricated via the self-assembly deposition of silver nanowires (Ag NWs). Glass substrates modified with (3-aminopropyl)triethoxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane (MPTES) were coated with Ag NWs for various deposition times, leading to three different Ag NWs samples (APTES-Ag NWs (PVP), MPTES-Ag NWs (PVP), and APTES-Ag NWs (COOH)). Controlling the deposition time produced Ag NWs monolayer thin films with different optical transmittance and sheet resistance. Post-annealing treatment improved their electrical conductivity. The Ag NWs films were successfully characterized using UV-Vis spectroscopy, field emission scanning electron microscopy, optical microscopy and four-point probe. Three Ag NWs films exhibited low sheet resistance of 4-19Ω/sq and high optical transmittance of 65-81% (at 550nm), which are comparable to those of commercial ITO electrode. We fabricated an organic photovoltaic device by using Ag NWs as the anode instead of ITO electrode, and optimized device with Ag NWs exhibited power conversion efficiency of 1.72%. Copyright © 2017 Elsevier Inc. All rights reserved.
3-D printed 2.4 GHz rectifying antenna for wireless power transfer applications
NASA Astrophysics Data System (ADS)
Skinner, Matthew
In this work, a 3D printed rectifying antenna that operates at the 2.4GHz WiFi band was designed and manufactured. The printed material did not have the same properties of bulk material, so the printed materials needed to be characterized. The antenna and rectifying circuit was printed out of Acrylonitrile Butadiene Styrene (ABS) filament and a conductive silver paste, with electrical components integrated into the circuit. Before printing the full rectifying antenna, each component was printed and evaluated. The printed antenna operated at the desired frequency with a return loss of -16 dBm with a bandwidth of 70MHz. The radiation pattern was measured in an anechoic chamber with good matching to the model. The rectifying circuit was designed in Ansys Circuit Simulation using Schottky diodes to enable the circuit to operate at lower input power levels. Two rectifying circuits were manufactured, one by printing the conductive traces with silver ink, and one with traces made from copper. The printed silver ink is less conductive than the bulk copper and therefore the output voltage of the printed rectifier was lower than the copper circuit. The copper circuit had an efficiency of 60% at 0dBm and the printed silver circuit had an efficiency of 28.6% at 0dBm. The antenna and rectifying circuits were then connected to each other and the performance was compared to a fully printed integrated rectifying antenna. The rectifying antennas were placed in front of a horn antenna while changing the power levels at the antenna. The efficiency of the whole system was lower than the individual components but an efficiency of 11% at 10dBm was measured.
Nuclear radiation-warning detector that measures impedance
Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven
2013-06-04
This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.
Puigmartí-Luis, Josep; Paradinas, Markos; Bailo, Elena; Rodriguez-Trujillo, Romen; Pfattner, Raphael; Ocal, Carmen; Amabilino, David B
2015-06-01
The chemical modification of an immobilized single crystal in a fluid cell is reported, whereby a material with switching functions is generated in situ by generating a chemical reagent in the flow. Crystals of the insulating organic crystal of TCNQ (tetracyanoquinodimethane) were grown in a microfluidic channel and were trapped using a pneumatic valve, a nascent technique for materials manipulation. They were subsequently reduced using solution-deposited silver to provide a conducting material in situ by a heterogeneous reaction. Removal of the new material from the chip proved it to be the silver salt of reduced TCNQ. Uniquely, conducting atomic force microscope (CAFM) studies show three regions in the solid. The localized original neutral organic material crystal is shown to be an insulator but to produce areas with Ohmic conducting characteristics after reduction. This inhomogeneous doping provides an opportunity for probing electrical materials properties side by side. Measurements with the CAFM witness this conducting material where the TCNQ is fully transformed to the silver salt. Additionally, an intermediate phase is observed that exhibits bipolar resistive switching typical of programmable resistive memories. Raman microscopy proves the conversion of the material in specific regions and clearly defines the intermediate phase region that could be responsible for the switching effect in related materials. This kind of "on crystal chemistry" exploiting immobilization and masking by a pneumatic clamp in a microfluidic channel shows how material can be selectively converted to give different functionalities in the same material piece, even though it is not a single crystal to single crystal conversion, and beckons exploitation for the preparation of systems relevant for molecular electronics as well as other areas where chemical manipulation of single crystals could be beneficial.
Powder processing of hybrid titanium neural electrodes
NASA Astrophysics Data System (ADS)
Lopez, Jose Luis, Jr.
A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.
High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes
NASA Astrophysics Data System (ADS)
Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan
2018-02-01
Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.
High Performance of PEDOT:PSS/n-Si Solar Cells Based on Textured Surface with AgNWs Electrodes.
Jiang, Xiangyu; Zhang, Pengbo; Zhang, Juan; Wang, Jilei; Li, Gaofei; Fang, Xiaohong; Yang, Liyou; Chen, Xiaoyuan
2018-02-14
Hybrid heterojunction solar cells (HHSCs) have gained extensive research and attention due to simple device structure and low-cost technological processes. Here, HHSCs are presented based on a highly transparent conductive polymer poly(3,4ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) directly spin-coated on an n-type crystalline silicon with microscale surface textures, which are prepared by traditional chemical etching. We have studied interface properties between PEDOT:PSS and textured n-Si by varying coating conditions. Final power conversion efficiency (PCE) could arrive at 8.54% by these simple solution-based fabrication processes. The high conversion efficiency is attributed to the fully conformal contact between PEDOT:PSS film and textured silicon. Furthermore, the reflectance of the PEDOT:PSS layer on textured surface is analyzed by changing film thickness. In order to improve the performance of the device, silver nanowires were employed as electrodes because of its better optical transmittance and electrical conductivity. The highest PCE of 11.07% was achieved which displayed a 29.6% enhancement compared with traditional silver electrodes. These findings imply that the combination of PEDOT:PSS film and silver nanowire transparent electrodes pave a promising way for realizing high-efficiency and low-cost solar cells.
Rahmouni, H; Smari, M; Cherif, B; Dhahri, E; Khirouni, K
2015-06-14
This study presents the electrical properties, complex impedance analysis and dielectrical behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Transport measurements indicate that all the samples have a semiconductor-like behavior. The metal-semiconductor transition is not observed across the whole temperature range explored [80 K-700 K]. At a specific temperature, a saturation region was marked in the σ (T) curves. We obtained a maximum σdc value at ambient temperature with the introduction of 20% Ag content. Two hopping models were applied to study the conduction mechanism. We found that activation energy (Ea) related to ac-conductivity is lower than the Ea implicated in dc-conductivity. Complex impedance analysis confirms the contribution of grain boundary to conductivity and permits the attribution of grain boundary capacitance evolution to the temperature dependence of the barrier layer width. From the temperature dependence of the average normalized change (ANC), we deduce the temperature at which the available density of trapped charge states vanishes. Such a temperature is close to the temperature at which the saturation region appears in σ(T) curves. Moreover, complex impedance analysis (CIA) indicates the presence of electrical relaxation in materials. It is noteworthy that relaxation species such as defects may be responsible for electrical conduction. The dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites has a Debye-like relaxation with a sharp decrease in the real part of permittivity at a frequency where the imaginary part of permittivity (ε'') and tg δ plots versus frequency demonstrate a relaxation peak. The Debye-like relaxation is explained by Maxwell-Wagner (MW) polarization. Experimental results are found to be in good agreement with the Smit and Wijn theory.
Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires.
Cheng, Yin; Wang, Ranran; Sun, Jing; Gao, Lian
2015-04-28
Stretchable electronics, as a promising research frontier, has achieved progress in a variety of sophisticated applications. The realization of stretchable electronics frequently involves the demand for a stretchable conductor as an electrical circuit. However, it still remains a challenge to fabricate high-performance (working strain exceeding 200%) stretchable conductors. Here, we present for the first time a facile, cost-effective, and scalable method for manufacturing ultrastretchable composite fibers with a "twining spring" configuration: cotton fibers twining spirally around a polyurethane fiber. The composite fiber possesses a high conductivity up to 4018 S/cm, which remains as high as 688 S/cm at 500% tensile strain. In addition, the conductivity of the composite fiber (initial conductivity of 4018 S/cm) remains perfectly stable after 1000 bending events and levels off at 183 S/cm after 1000 cyclic stretching events of 200% strain. Stretchable LED arrays are integrated efficiently utilizing the composite fibers as a stretchable electric wiring system, demonstrating the potential applications in large-area stretchable electronics. The biocompatibility of the composite fiber is verified, opening up its prospects in the field of implantable devices. Our fabrication strategy is also versatile for the preparation of other specially functionalized composite fibers with superb stretchability.
Collective behavior of silver plasma during pulsed laser ablation
NASA Astrophysics Data System (ADS)
Dildar, I. M.; Rehman, S.; Khaleeq-ur-Rahman, M.; Bhatti, K. A.; Shuaib, A.
2015-07-01
The present work reports an electrical investigation of silver plasma using a self-fabricated Langmuir probe in air and under a low vacuum (~10-3 torr). A silver target was irradiated with a Q-switched Nd:YAG laser with the wavelength 1.064 µm, energy 10 mJ, pulse duration 9-14 ns and power 1.1 MW. The collective behavior of a silver plasma plume is studied using a Langmuir probe as an electrical diagnostic technique. By applying different positive and negative voltages to the probe, the respective signals are collected on a four channels digital storage oscilloscope having a frequency of 500 MHz. An I-V curve helps to measure electron temperature and electron density directly and plasma frequency, response time, Debye length and number of particles in ‘Debye’s sphere’ indirectly using the theory of Langmuir probe and mathematical formulas. The floating potential is measured as negative for laser induced silver plasma in air and vacuum, following the theory of plasma.
A humidity sensing organic-inorganic composite for environmental monitoring.
Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S
2013-03-14
In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.
A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring
Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S.
2013-01-01
In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ∼200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ∼31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved. PMID:23493124
Murphy, Elizabeth A.; Garcia, Tatiana; Jackson, P. Ryan; Duncker, James J.
2016-04-05
As part of the Great Lakes and Mississippi River Interbasin Study, the U.S. Army Corps of Engineers (USACE) is conducting an assessment of the vulnerability of the Chicago Area Waterway System and Des Plaines River to Asian carp (specifically, Hypophthalmichthys nobilis (bighead carp) and Hypophthalmichthys molitrix (silver carp)) spawning and recruitment. As part of this assessment, the USACE requested the help of the U.S. Geological Survey in predicting the fate and transport of Asian carp eggs hypothetically spawned at the electric dispersal barrier on the Chicago Sanitary and Ship Canal and downstream of the Brandon Road Lock and Dam on the Des Plaines River under dry weather flow and high water temperature conditions. The Fluvial Egg Drift Simulator (FluEgg) model predicted that approximately 80 percent of silver carp eggs spawned near the electric dispersal barrier would hatch within the Lockport and Brandon Road pools (as close as 3.6 miles downstream of the barrier) and approximately 82 percent of the silver carp eggs spawned near the Brandon Road Dam would hatch in the Des Plaines River (as close as 1.6 miles downstream from the gates of Brandon Road Lock). Extension of the FluEgg model to include the fate and transport of larvae until gas bladder inflation—the point at which the larvae begin to leave the drift—suggests that eggs spawned at the electric dispersal barrier would reach the gas bladder inflation stage primarily within the Dresden Island Pool, and those spawned at the Brandon Road Dam would reach this stage primarily within the Marseilles and Starved Rock Pools.
NASA Technical Reports Server (NTRS)
Snider, W. E.; Nagle, W. J.
1972-01-01
Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45 percent KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide (PPO) plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a potassium hydroxide (KOH) electrolyte in a plastic case are discussed.
NASA Technical Reports Server (NTRS)
Snider, W. E.; Nagle, W. J.
1972-01-01
Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45% KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a KOH electrolyte in a plastic case are considered.
Yamada, Toshikazu; Fukuhara, Katsuo; Matsuoka, Ken; Minemawari, Hiromi; Tsutsumi, Jun'ya; Fukuda, Nobuko; Aoshima, Keisuke; Arai, Shunto; Makita, Yuichi; Kubo, Hitoshi; Enomoto, Takao; Togashi, Takanari; Kurihara, Masato; Hasegawa, Tatsuo
2016-01-01
Silver nanocolloid, a dense suspension of ligand-encapsulated silver nanoparticles, is an important material for printing-based device production technologies. However, printed conductive patterns of sufficiently high quality and resolution for industrial products have not yet been achieved, as the use of conventional printing techniques is severely limiting. Here we report a printing technique to manufacture ultrafine conductive patterns utilizing the exclusive chemisorption phenomenon of weakly encapsulated silver nanoparticles on a photoactivated surface. The process includes masked irradiation of vacuum ultraviolet light on an amorphous perfluorinated polymer layer to photoactivate the surface with pendant carboxylate groups, and subsequent coating of alkylamine-encapsulated silver nanocolloids, which causes amine–carboxylate conversion to trigger the spontaneous formation of a self-fused solid silver layer. The technique can produce silver patterns of submicron fineness adhered strongly to substrates, thus enabling manufacture of flexible transparent conductive sheets. This printing technique could replace conventional vacuum- and photolithography-based device processing. PMID:27091238
NASA Astrophysics Data System (ADS)
Shirwaiker, Rohan A.
There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are achieved by formulating the system design, fabricating prototypes with appropriate design parameters, evaluating the prototypes using various physical and electrical characterization techniques, and characterizing the antibacterial efficacy of the prototypes using statistical experiments. The major contributions of this dissertation include: (1) Design of a systems focused approach that quantifies the potential effectiveness of silver ions under various configurations of the surface system design. (2) Development of meso and micro-scale fabrication methodologies for prototype fabrication. (3) Development of microbiological testing protocols utilizing variance reduction techniques to test the antibacterial efficacy of system prototypes. (4) Development of empirical models for the surface system using factorial design of experiments (DOE). Basic results from the research demonstrate significant antibacterial efficacy of the surface system against four dangerous bacteria including Staph aureus, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis which are together responsible for more than 80% of nosocomial infections. Results of the DOE characterization study indicate the statistically significant contributions of three system parameters -- size of features, electric current, and type of bacteria -- to the antibacterial performance of the system. This dissertation synergistically utilizes knowledge and principles from three broader areas of research -- industrial engineering, materials science and microbiology -- to model, design, fabricate and characterize an electrically activated silver-ion based antibacterial surface system with practical applications in improving human health and healthcare systems. The research is aimed at promoting novel integrative research and development of technologies utilizing antibacterial properties of silver and other heavy metals.
NASA Astrophysics Data System (ADS)
Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav
2017-02-01
Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles
Electrostatic Charging of Spacecraft in Geosynchronous Orbit
1992-12-17
degrees above and below the equatorial plane. All mirrors are fabricated from " Zerodur * which has a very low coefficient of expansion, and are coated with a...conducting black paint, and the mirror itself is constructed of Zerodur and silvered on the front surface. The mirror is electrically isolated from the...TM Sp 389 provides East-West scanning, and the radiometer mirror is used to scan in the North-South direction; the mirror is moved by two pixels pcr
Design and testing of RFID sensor tag fabricated using inkjet-printing and electrodeposition
NASA Astrophysics Data System (ADS)
Chien Dang, Mau; Son Nguyen, Dat; Dung Dang, Thi My; Tedjini, Smail; Fribourg-Blanc, Eric
2014-06-01
The passive RFID tag with an added sensing function is of interest to many applications. In particular, applications where RFID tagging is already considered to be the next step, such as food items, are a specific target. This paper demonstrates a flexible RFID tag sensor fabricated using a low cost technique with an added zero-cost sensing function. It is more specifically applied to the sensing of degradable food, in particular beef meat in our demonstrated example. To reach this, the antenna is designed in such a way to be sensitive to the variation of the dielectric permittivity of the meat over time. The design of the sensing tag as well as its fabrication process are described. The fabrication involves inkjet printing of a silver nanoparticle based ink on a commercial low cost PET film to create a seed layer. It is followed by a copper electrodeposition step on top of the silver pattern to complete the tag to obtain the desired thickness and conductivity of the tag antenna. The results of the electrical tests showed that with the inkjet printing-electrodeposition combination it is possible to produce flexible electrically conductive patterns for practical RFID applications. The tag was then tested in close-to-real-world conditions and it is demonstrated that it can provide a sensing function to detect the consumption limit of the packaged beef.
NASA Astrophysics Data System (ADS)
Arif, Shafaq; Saleemi, Farhat; Rafique, M. Shahid; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Aziz, Uzma
2016-11-01
Ion implantation is a versatile technique to tailor the surface properties of polymers in a controlled manner. In the present study, samples of poly (methyl methacrylate) (PMMA) have been implanted with 400 keV silver (Ag+) ion beam to various ion fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The effect of Ag+ ion-induced disorder on morphological, chemical and optical properties of PMMA is analyzed using Atomic Force Microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy. Furthermore, the electrical conductivity of pristine and implanted PMMA is measured using four probe apparatus. The AFM images revealed the growth of nano-sized grainy structures and hillocks above the surface of implanted PMMA. The FTIR spectra confirmed the modifications in chemical structure of PMMA along with the formation of sbnd Cdbnd Csbnd carbon contents. The refractive index, extinction coefficient and photoconductivity of implanted PMMA have been found to increase as a function of ion fluence. Simultaneously, indirect optical band gap is reduced from 3.13 to 0.81 eV at a relatively high fluence (5 × 1015 ions/cm2). A linear correlation has been established between the band gap and Urbach energies. Moreover, the electrical conductivity of Ag+ implanted PMMA has increased from 2.14 × 10-10 (pristine) to 9.6 × 10-6 S/cm.
PREDICTING THE TOXICITY OF SEDIMENTS SPIKED WITH SILVER
Previous experiments conducted with freshwater sediments spiked with silver have shown that, when expressed on a dry weight basis, the toxicity of silver is sediment-specific and dependent on the form of silver added (e.g., AgNO3, Ag2S). This study was conducted to assess the use...
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Gao, Qingshan; Zhou, Bing; Bhargava, Gaurang
2017-08-01
Hollow graphitized carbon nanosphere (CNS) materials with inner diameter of 20 to 50 nm and shell thickness of 10 15 nm were synthesized from the polymerization of resorcinol (R) and formaldehyde (F) in the presence of a well-characterized iron polymeric complex (IPC). The CNS with unique nanostructures was used to fabricate CNS-polymer composites by dispersing CNS as fillers in the polymer matrix. Aggregation of CNS in polymer composites is usually a challenging issue. In this work, we employed in situ polymerization method and melt-mixing method to fabricate CNS-polymethylmethacrylate (PMMA) composites and compared their difference in terms of CNS dispersion in the composites and surface electrical conductivity. Four probes technique was utilized to measure the surface electrical conductivity of the CNS-PMMA composites. The measurements on four points and four silver painted lines on the thin film of CNS-PMMA composites were compared. The in situ polymerization method was found more efficient for better CNS dispersion in PMMA matrix and lower percolation conductivity threshold compared to the melt-mixing method. The enhanced electrical conductivity for CNS-PMMA composites may be attributed to the stronger covalent CNS-PMMA bonding between the surface functional groups and the MMA moieties.
Shen, Wenfeng; Zhang, Xianpeng; Huang, Qijin; Xu, Qingsong; Song, Weijie
2014-01-01
Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (∼8.0 μΩ cm) were prepared simply by dispersing the synthesized silver NP powder in water. These inks are stable, fairly homogeneous and suitable for a wide range of patterning techniques. The inks were successfully printed on paper and polyethylene terephthalate (PET) substrates using a common color printer. Upon annealing at 180 °C, the resistivity of the printed silver patterns decreased to 3.7 μΩ cm, which is close to twice that of bulk silver. Various factors affecting the resistivity of the printed silver patterns, such as annealing temperature and the number of printing cycles, were investigated. The resulting high conductivity of the printed silver patterns reached over 20% of the bulk silver value under ambient conditions, which enabled the fabrication of flexible electronic devices, as demonstrated by the inkjet printing of conductive circuits of LED devices.
NASA Astrophysics Data System (ADS)
Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung
2016-08-01
In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process.
Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung
2016-01-01
In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755
Liu, Yang; Liu, Gang
2018-01-01
Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 106 pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results. PMID:29677143
Wang, Hui; Liu, Yang; Liu, Gang
2018-04-20
Silver, a very common heavy metal, has been employed in electronics, medicine, jewelry, and catalysis due to its excellent chemical and physical characteristics. Silver-containing wastes can cause environmental pollution, so it is vital to monitor the Ag(I) concentration. Here, a label-free biosensor was developed for the Ag(I) detection, which used single-walled carbon nanotubes/field effect transistor (SWNTs/FET) to functionalize with a specific DNAzyme, containing an Agzyme and a complementary strand DNA (CS-DNA) embedded an RNA-base. The CS-DNA was covalently immobilized on the SWNTs’ surface through peptide bonds, and then combined with the Agzyme. When Ag(I) was bound with the Agzyme, the CS-DNA can be cleaved at the RNA site efficiently. The cleaved DNAzyme induced a remarkable change in the electrical conductivity of SWNTs. The performances of DNAzyme/SWNTs/FET were investigated using different spectroscopy and electrochemical methods. Under the optimized parameters, DNAzyme/SWNTs/FET presented a high sensitivity and selectivity towards Ag(I), in which the linear response range is 10 pM to 10⁶ pM and the limit of detection is 5 pM(S/N = 3). Additionally, the prepared biosensor was applied to measure the Ag(I) concentration in the water sample with good results.
Yu, Yi-Hsin; Chen, Shih-Hsun; Chang, Che-Lun; Lin, Chin-Teng; Hairston, W. David; Mrozek, Randy A.
2016-01-01
This study investigates alternative material compositions for flexible silicone-based dry electroencephalography (EEG) electrodes to improve the performance lifespan while maintaining high-fidelity transmission of EEG signals. Electrode materials were fabricated with varying concentrations of silver-coated silica and silver flakes to evaluate their electrical, mechanical, and EEG transmission performance. Scanning electron microscope (SEM) analysis of the initial electrode development identified some weak points in the sensors’ construction, including particle pull-out and ablation of the silver coating on the silica filler. The newly-developed sensor materials achieved significant improvement in EEG measurements while maintaining the advantages of previous silicone-based electrodes, including flexibility and non-toxicity. The experimental results indicated that the proposed electrodes maintained suitable performance even after exposure to temperature fluctuations, 85% relative humidity, and enhanced corrosion conditions demonstrating improvements in the environmental stability. Fabricated flat (forehead) and acicular (hairy sites) electrodes composed of the optimum identified formulation exhibited low impedance and reliable EEG measurement; some initial human experiments demonstrate the feasibility of using these silicone-based electrodes for typical lab data collection applications. PMID:27809260
Yu, Yi-Hsin; Chen, Shih-Hsun; Chang, Che-Lun; Lin, Chin-Teng; Hairston, W David; Mrozek, Randy A
2016-10-31
This study investigates alternative material compositions for flexible silicone-based dry electroencephalography (EEG) electrodes to improve the performance lifespan while maintaining high-fidelity transmission of EEG signals. Electrode materials were fabricated with varying concentrations of silver-coated silica and silver flakes to evaluate their electrical, mechanical, and EEG transmission performance. Scanning electron microscope (SEM) analysis of the initial electrode development identified some weak points in the sensors' construction, including particle pull-out and ablation of the silver coating on the silica filler. The newly-developed sensor materials achieved significant improvement in EEG measurements while maintaining the advantages of previous silicone-based electrodes, including flexibility and non-toxicity. The experimental results indicated that the proposed electrodes maintained suitable performance even after exposure to temperature fluctuations, 85% relative humidity, and enhanced corrosion conditions demonstrating improvements in the environmental stability. Fabricated flat (forehead) and acicular (hairy sites) electrodes composed of the optimum identified formulation exhibited low impedance and reliable EEG measurement; some initial human experiments demonstrate the feasibility of using these silicone-based electrodes for typical lab data collection applications.
Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone
NASA Astrophysics Data System (ADS)
Xiang, Feng; Gan, Weiping
2018-01-01
In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.
Design and Fabrication of Smart Diapers with Antibacterial Yarn
Lin, Jia-Horng; Shiu, Bing-Chiuan; Lou, Ching-Wen
2017-01-01
In this study, intelligent eco-diapers are made by combining antibacterial yarns coated with quaternary ammonium salts with conductive yarns to improve caretaking for urinary incontinence. The combination of conductive yarns and sensors can detect the moisture content in eco-diapers, and an alarm is sent when moisture is significant. A wireless module is used to send detected signals to a smartphone or tablet PC via the Internet. This concept is used for a scenario in which nurses do not randomly check on patients in a long-term care institution. When used offline, eco-diapers can send caregivers an alarm for the need to change diapers via cell phones. The diameters of the copper and silver-plated copper fibers are 0.08 and 0.10 mm, respectively. Cotton yarns are twisted with copper and silver-plated copper fibers to form the conductive yarns, which are 0.12 mm in diameter. Moreover, 30-count cotton and 150 D nylon yarns are coated with quaternary ammonium salt via dyeing and finishing processes to form antibacterial yarns. In the current study, intelligent eco-diapers are tested for their electrical and antibacterial properties as specified by AATC and JISL test standards. PMID:29065646
NASA Astrophysics Data System (ADS)
Jung, Eui Dae; Nam, Yun Seok; Seo, Houn; Lee, Bo Ram; Yu, Jae Choul; Lee, Sang Yun; Kim, Ju-Young; Park, Jang-Ung; Song, Myoung Hoon
2015-09-01
Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices. [Figure not available: see fulltext.
Laboratory Studies of Containment in Underground Nuclear Tests.
1980-01-31
and filling the space between charge holder and tube with epoxy. The access tube is filled with epoxy. Vel t iug occurs when tile tube is drilled out...membrane is then stretched over the eud of the access tube and held in place by means of a Teflon ferrule and epoxy sa I . Tile membrane is filled with...electrically conductive silver -based paint. Two copper tabs are first embedded in the surface of the sphere during cast ing. After the grout is cured, the paint
Dennehy, Mariana; Amo-Ochoa, Pilar; Freire, Eleonora; Suárez, Sebastián; Halac, Emilia; Baggio, Ricardo
2018-02-01
Among the potential applications of coordination polymers, electrical conductivity ranks high in technological interest. We report the synthesis, crystal structure and spectroscopic analysis of an Ag I -thiosaccharinate one-dimensional coordination polymer {systematic name: catena-poly[[[aquatetrakis(μ 3 -1,1-dioxo-1,2-benzisothiazole-3-thiolato-κ 3 N:S 3 :S 3 )tetrasilver(I)]-μ 2 -4,4'-(propane-1,3-diyl)dipyridine-κ 2 N:N'] dimethyl sulfoxide hemisolvate]}, {[Ag 4 (C 7 H 4 NO 2 S 2 ) 4 (C 13 H 14 N 2 )(H 2 O)]·0.5C 2 H 6 OS} n , with the 4,4'-(propane-1,3-diyl)dipyridine ligand acting as a spacer. A relevant feature of the structure is the presence of an unusually short Ag...Ag distance of 2.8306 (9) Å, well within the range of argentophilic interactions, confirmed experimentally as such by a Raman study on the low-frequency spectrum, and corroborated theoretically by an Atoms in Molecules (AIM) analysis of the calculated electron density. Electrical conductivity measurements show that this complex can act as a semiconductor with moderate conductivity.
Boomi, P; Anandha Raj, J; Palaniappan, S P; Poorani, G; Selvam, S; Gurumallesh Prabu, H; Manisankar, P; Jeyakanthan, J; Langeswaran, V K
2018-01-01
A rapid and simple chemical synthesis of poly(2-aminothiophenol)‑silver (P2ATP-Ag) nanocomposite using conductive and electroactive silver nanoparticles (AgNPs) is reported. The AgNPs was synthesized by chemical reduction method using tri‑sodium citrate as reducing agent and poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizing agent. P2ATP-Ag nanocomposite was synthesized by using potassium peroxodisulphate as oxidant and the samples were characterized. The presence of AgNPs in the composite was confirmed from UV-Vis, FTIR and X-ray diffraction studies. Morphology of the P2ATP and its composite were investigated by SEM. HR-TEM images show spherical, trigonal and rod like morphologies with sizes of Ag nanoparticles and its composite. Thermal analysis revealed that the thermal stability of the P2ATP-Ag nanocomposite is improved when compared with pure P2ATP. The synthesized AgNPs, pure P2ATP and P2ATP-Ag nanocomposite were screened for antibacterial activity test against human pathogen such as Gram positive (Bacillus subtilis, ATCC-6051) and Gram negative (Vibrio cholerae, ATCC-14035), carried out by agar-well diffusion method at micro molar concentration. The result shows that P2ATP-Ag nanocomposite has excellent antibacterial activity due to the presence of Ag nanoparticles. The electrical conductivity of the P2ATP-Ag nanocomposite is better than that of pure P2ATP. The reported nanocomposite will be a potential material for electrocatalysis, sensors and biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology
Ye-Lin, Yiyao; Garcia-Casado, Javier
2018-01-01
Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment. PMID:29361722
Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology.
Lidón-Roger, José Vicente; Prats-Boluda, Gema; Ye-Lin, Yiyao; Garcia-Casado, Javier; Garcia-Breijo, Eduardo
2018-01-21
Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment.
High-performance polyimide nanocomposites with core-shell AgNWs@BN for electronic packagings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yongcun; Liu, Feng, E-mail: liufeng@nwpu.edu.cn
2016-08-22
The increasing density of electronic devices underscores the need for efficient thermal management. Silver nanowires (AgNWs), as one-dimensional nanostructures, possess a high aspect ratio and intrinsic thermal conductivity. However, high electrical conductivity of AgNWs limits their application for electronic packaging. We synthesized boron nitride-coated silver nanowires (AgNWs@BN) using a flexible and fast method followed by incorporation into synthetic polyimide (PI) for enhanced thermal conductivity and dielectric properties of nanocomposites. The thinner boron nitride intermediate nanolayer on AgNWs not only alleviated the mismatch between AgNWs and PI but also enhanced their interfacial interaction. Hence, the maximum thermal conductivity of an AgNWs@BN/PImore » composite with a filler loading up to 20% volume was increased to 4.33 W/m K, which is an enhancement by nearly 23.3 times compared with that of the PI matrix. The relative permittivity and dielectric loss were about 9.89 and 0.015 at 1 MHz, respectively. Compared with AgNWs@SiO{sub 2}/PI and Ag@BN/PI composites, boron nitride-coated core-shell structures effectively increased the thermal conductivity and reduced the permittivity of nanocomposites. The relative mechanism was studied and discussed. This study enables the identification of appropriate modifier fillers for polymer matrix nanocomposites.« less
Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethane
NASA Astrophysics Data System (ADS)
Vasconcelos, B.; Vediappan, K.; Oliveira, J. C.; Fonseca, C.
2018-06-01
A simple and low-cost surface functionalization method is proposed to activate a thermoplastic polyurethane (TPU) for the electroless deposition of a silver coating with excellent adhesion and low resistivity. The TPU surface functionalization was performed in solution and consisted in forming a physical interpenetrating network at the TPU surface, involving TPU and polyvinylpyrrolidone (PVP), a polymer displaying a strong affinity for metals. The presence of PVP on the TPU surface and its stability in aqueous solution were assessed by ATR-FTIR and contact angle measurements as a function of the PVP concentration and treatment time. A modified Tollens solution was used to grow a silver film on the TPU substrate, by using the electroless plating method. Compact silver films with an average thickness of 12.5 μm and a resistivity of 8.57 mΩ·cm were obtained for a 24 h plating time. The adhesion strength of the silver film proved to be higher than 8.5 N/cm. The resistance to fatigue of the silver films was studied by performing series of compression/stretching tests (150 cycles). It was concluded that the films kept low resistance values, although displaying a higher sensitivity to compression than to stretching. Furthermore, the films keep a good conductivity for strains up to 400%. The excellent electrical and mechanical properties of the films make them suitable candidates for the coating of multipin dry bioelectrodes. Owing to the high affinity of many metals for PVP, this activation technique has the potential to be extended to the deposition of other metals and other polymers as well, provided a suitable solvent is used.
The electrical losses induced by silver paste in n-type silicon solar cells
NASA Astrophysics Data System (ADS)
Aoyama, Takayuki; Aoki, Mari; Sumita, Isao; Yoshino, Yasushi; Ohshita, Yoshio; Ogura, Atsushi
2017-10-01
Aluminum-added silver paste (Ag/Al paste) has been used for p+ emitter of n-type solar cells. The electrical losses due to shunting and recombination caused by the paste in the cells have been reported to originate from huge metallic spikes due to the aluminum. However, whether the aluminum actually induces the losses has not been clarified yet. In this study, the “floating contact method” is applied to aluminum-free silver (Al-free Ag) paste to investigate the effects of aluminum extraction from the Ag/Al paste and to understand how the aluminum principally induces the losses for the p+ emitter. Furthermore, the interfacial morphology between the Al-free Ag paste and p-type silicon is investigated. The Ag paste itself creates tiny crystallites for the p+ emitter, resulting in shunting and recombination. The result indicates that the aluminum addition to Ag paste is not the main reason for the electrical losses in the n-type solar cells.
Effect of Diluent on Ultra-low Temperature Curable Conductive Silver Adhesive
NASA Astrophysics Data System (ADS)
Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Du, Haibo; Qin, Lei
2018-03-01
The ultra-low temperature curable conductive silver adhesive needed urgently for the surface conductive treatment of piezoelectric composite material. The effect of diluent acetone on ultra-low temperature curable conductive silver adhesive were investigated for surface conductive treatment of piezoelectric composite material. In order to improve the operability and extend the life of the conductive adhesive, the diluent was added to dissolve and disperse conductive adhesive. With the increase of the content of diluent, the volume resistivity of conductive adhesive decreased at first and then increased, and the shear strength increased at first and then decreased. When the acetone content is 10%, the silver flaky bonded together, arranged the neatest, the smallest gap, the most closely connected, the surface can form a complete conductive network, and the volume resistivity is 2.37 × 10-4Ω · cm, the shear strength is 5.13MPa.
Wang, Yan; Gu, Fu-Qiang; Ni, Li-Juan; Liang, Kun; Marcus, Kyle; Liu, Shu-Li; Yang, Fan; Chen, Jin-Ju; Feng, Zhe-Sheng
2017-11-30
Conductive polymer composites (CPCs) containing nanoscale conductive fillers have been widely studied for their potential use in various applications. In this paper, polypyrrole (PPy)/polydopamine (PDA)/silver nanowire (AgNW) composites with high electromagnetic interference (EMI) shielding performance, good adhesion ability and light weight are successfully fabricated via a simple in situ polymerization method followed by a mixture process. Benefiting from the intrinsic adhesion properties of PDA, the adhesion ability and mechanical properties of the PPy/PDA/AgNW composites are significantly improved. The incorporation of AgNWs endows the functionalized PPy with tunable electrical conductivity and enhanced EMI shielding effectiveness (SE). By adjusting the AgNW loading degree in the PPy/PDA/AgNW composites from 0 to 50 wt%, the electrical conductivity of the composites greatly increases from 0.01 to 1206.72 S cm -1 , and the EMI SE of the composites changes from 6.5 to 48.4 dB accordingly (8.0-12.0 GHz, X-band). Moreover, due to the extremely low density of PPy, the PPy/PDA/AgNW (20 wt%) composites show a superior light weight of 0.28 g cm -3 . In general, it can be concluded that the PPy/PDA/AgNW composites with tunable electrical conductivity, good adhesion properties and light weight can be used as excellent EMI shielding materials.
Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.
Kell, Arnold J; Paquet, Chantal; Mozenson, Olga; Djavani-Tabrizi, Iden; Deore, Bhavana; Liu, Xiangyang; Lopinski, Gregory P; James, Robert; Hettak, Khelifa; Shaker, Jafar; Momciu, Adrian; Ferrigno, Julie; Ferrand, Olivier; Hu, Jian Xiong; Lafrenière, Sylvie; Malenfant, Patrick R L
2017-05-24
A silver molecular ink platform formulated for screen, inkjet, and aerosol jet printing is presented. A simple formulation comprising silver neodecanoate, ethyl cellulose, and solvent provides improved performance versus that of established inks, yet with improved economics. Thin, screen-printed traces with exceptional electrical (<10 mΩ/□/mil or 12 μΩ·cm) and mechanical properties are achieved following thermal or photonic sintering, the latter having never been demonstrated for silver-salt-based inks. Low surface roughness, submicron thicknesses, and line widths as narrow as 41 μm outperform commercial ink benchmarks based on flakes or nanoparticles. These traces are mechanically robust to flexing and creasing (less than 10% change in resistance) and bind strongly to epoxy-based adhesives. Thin traces are remarkably conformal, enabling fully printed metal-insulator-metal band-pass filters. The versatility of the molecular ink platform enables an aerosol jet-compatible ink that yields conductive features on glass with 2× bulk resistivity and strong adhesion to various plastic substrates. An inkjet formulation is also used to print top source/drain contacts and demonstrate printed high-mobility thin film transistors (TFTs) based on semiconducting single-walled carbon nanotubes. TFTs with mobility values of ∼25 cm 2 V -1 s -1 and current on/off ratios >10 4 were obtained, performance similar to that of evaporated metal contacts in analogous devices.
Wu, Chaoxing; Kim, Tae Whan; Li, Fushan; Guo, Tailiang
2016-07-26
The technological realization of wearable triboelectric generators is attractive because of their promising applications in wearable self-powered intelligent systems. However, the low electrical conductivity, the low electrical stability, and the low compatibility of current electronic textiles (e-textiles) and clothing restrict the comfortable and aesthetic integration of wearable generators into human clothing. Here, we present high-performance, transparent, smart e-textiles that employ commercial textiles coated with silver nanowire/graphene sheets fabricated by using a scalable, environmentally friendly, full-solution process. The smart e-textiles show superb and stable conduction of below 20 Ω/square as well as excellent flexibility, stretchability, foldability, and washability. In addition, wearable electricity-generating textiles, in which the e-textiles act as electrodes as well as wearable substrates, are presented. Because of the high compatibility of smart e-textiles and clothing, the electricity-generating textiles can be easily integrated into a glove to harvest the mechanical energy induced by the motion of the fingers. The effective output power generated by a single generator due to that motion reached as high as 7 nW/cm(2). The successful demonstration of the electricity-generating glove suggests a promising future for polyester/Ag nanowire/graphene core-shell nanocomposite-based smart e-textiles for real wearable electronic systems and self-powered clothing.
Castrillón, Reinel; Pérez, Jairo J; Andrade-Caicedo, Henry
2018-04-02
Wearable textile electrodes for the detection of biopotentials are a promising tool for the monitoring and early diagnosis of chronic diseases. We present a comparative study of the electrical characteristics of four textile electrodes manufactured from common fabrics treated with a conductive polymer, a commercial fabric, and disposable Ag/AgCl electrodes. These characteristics will allow identifying the performance of the materials when used as ECG electrodes. The electrodes were subjected to different electrical tests, and complemented with conductivity calculations and microscopic images to determine their feasibility in the detection of ECG signals. We evaluated four electrical characteristics: contact impedance, electrode polarization, noise, and long-term performance. We analyzed PEDOT:PSS treated fabrics based on cotton, cotton-polyester, lycra and polyester; also a commercial fabric made of silver-plated nylon Shielde® Med-Tex P130, and commercial Ag/AgCl electrodes. We calculated conductivity from the surface resistance and, analyzed their surface at a microscopic level. Rwizard was used in the statistical analysis. The results showed that textile electrodes treated with PEDOT:PSS are suitable for the detection of ECG signals. The error detecting features of the ECG signal was lower than 2% and the electrodes kept working properly after 36 h of continuous use. Even though the contact impedance and the polarization level in textile electrodes were greater than in commercial electrodes, these parameters did not affect the acquisition of the ECG signals. Fabrics conductivity calculations were consistent to the contact impedance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panigrahi, R.; Srivastava, S.K., E-mail: sunit@chem.iitkgp.ernet.in
Graphical abstract: Probable scheme to demonstrate the mechanism of PnHMAg showing enhanced EMI shielding compared to PnHM. - Highlights: • Hollow polyaniline microsphere (PnHM) exhibits superior properties due to its enhanced surface to volume ratio. • PnHMAg has been used in developing efficient sensor for the detection of sugar. • Presence of Ag nanoparticles enhances the electrical conductivity of PnHMAg resulting in the improvement of electromagnetic interference shielding in both X- and S-band regions. • Such properties could be harnessed effectively for development of devices for commercial as well as national purposes. - Abstract: The present study is focused onmore » synthesis of polyaniline hollow microspheres (PnHM) nanocomposites of silver (Ag) i.e., PnHMAg by emulsion polymerization of aniline and Tollen’s reagent as a source for Ag nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of PnHMAg indicated presence of silver nanoparticles dispersed on polyaniline surface. The electrical conductivity of PnHMAg is increased by ∼6 times compared to PnHM. Cyclic voltammogram of PnHM in sugar sensing exhibits characteristics redox peaks at ∼0.09 (sugar) and ∼0.53 V (polyaniline). Interestingly, PnHMAg showed a single peak at ∼−0.18 V with increased intensity (∼5 times) indicating its high sugar sensing ability. PnHMAg also exhibits high shielding efficiency of 19.5 dB (11.2 GHz) due to the presence of highly conducting Ag nanoparticles. TEM studies confirmed that Ag nanoparticles are well distributed on PnHM. As a result, a continuous electronic path is developed due to enhanced interconnectivity of PnHM.« less
NASA Astrophysics Data System (ADS)
Mu, Quanyi; Dunn, Conner K.; Wang, Lei; Dunn, Martin L.; Qi, H. Jerry; Wang, Tiejun
2017-04-01
Recent developments in soft materials and 3D printing are promoting the rapid development of novel technologies and concepts, such as 4D printing and soft machines, that in turn require new methods for fabricating conductive materials. Despite the ubiquity of silver nanoparticles (NPs) in the conducting electrodes of printed electronic devices, their potential use in stretchable conductors has not been fully explored in 4D printing and soft machines. This paper studies the effect of thermal cure conditions on conductivity and electro-mechanical behaviors of silver ink by the direct ink write (DIW) printing approach. We found that the electro-mechanical properties of silver wires can be tailored by controlling cure time and cure temperature to achieve conductivity as well as stretchability. For the silver NP ink we used in the experiments, silver wires cured at 80 °C for 10-30 min have conductivity >1% bulk silver, Young’s modulus <100 MPa, yield strain ˜9%, and can retain conductivity up to 300% strain. In addition, under stress controlled cyclic loading/unloading conditions, the resistance of these wires is only about 1.3 times the initial value after the 100th repeat cycle (7.6% maximum strain in the first cycle). Silver wires cured at 120 °C for 10-20 min are more sensitive to strain and have a yield strain of around 6%. These properties indicate that the silver ink can be used to fabricate stretchable electrodes and flex sensors. Using the DIW fabrication method, we printed silver ink patterns on the surface of 3D printed polymer parts, with the future goal of constructing fully 3D printed arbitrarily formed soft and stretchable devices and of applying them to 4D printing. We demonstrated a fully printed functional soft-matter sensor and a circuit element that can be stretched by as much as 45%.
Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs
NASA Astrophysics Data System (ADS)
Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui
2015-08-01
Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03218k
Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires
2011-01-01
1, 3, and 5 wt.% silver-doped ZnO (SZO) nanowires (NWs) are grown by hot-walled pulsed laser deposition. After silver-doping process, SZO NWs show some change behaviors, including structural, electrical, and optical properties. In case of structural property, the primary growth plane of SZO NWs is switched from (002) to (103) plane, and the electrical properties of SZO NWs are variously measured to be about 4.26 × 106, 1.34 × 106, and 3.04 × 105 Ω for 1, 3, and 5 SZO NWs, respectively. In other words, the electrical properties of SZO NWs depend on different Ag ratios resulting in controlling the carrier concentration. Finally, the optical properties of SZO NWs are investigated to confirm p-type semiconductor by observing the exciton bound to a neutral acceptor (A0X). Also, Ag presence in ZnO NWs is directly detected by both X-ray photoelectron spectroscopy and energy dispersive spectroscopy. These results imply that Ag doping facilitates the possibility of changing the properties in ZnO NWs by the atomic substitution of Ag with Zn in the lattice. PMID:21985620
Nitrogen doped silicon-carbon multilayer protective coatings on carbon obtained by TVA method
NASA Astrophysics Data System (ADS)
Ciupina, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Lungu, Cristian P.; Vladoiu, Rodica; Jepu, Ionut; Mandes, Aurelia; Dinca, Virginia; Caraiane, Aureliana; Nicolescu, Virginia; Cupsa, Ovidiu; Dinca, Paul; Zaharia, Agripina
2017-08-01
Protective nitrogen doped Si-C multilayer coatings on carbon, used to improve the oxidation resistance of carbon, were obtained by Thermionic Vacuum Arc (TVA) method. The initial carbon layer having a thickness of 100nm has been deposed on a silicon substrate in the absence of nitrogen, and then a 3nm Si thin film to cover carbon layer was deposed. Further, seven Si and C layers were alternatively deposed in the presence of nitrogen ions, each having a thickness of 40nm. In order to form silicon carbide at the interface between silicon and carbon layers, all carbon, silicon and nitrogen ions energy has increased up to 150eV . The characterization of microstructure and electrical properties of as-prepared N-Si-C multilayer structures were done using Transmission Electron Microscopy (TEM, STEM) techniques, Thermal Desorption Spectroscopy (TDS) and electrical measurements. Oxidation protection of carbon is based on the reaction between oxygen and silicon carbide, resulting in SiO2, SiO and CO2, and also by reaction involving N, O and Si, resulting in silicon oxynitride (SiNxOy) with a continuously variable composition, and on the other hand, since nitrogen acts as a trapping barrier for oxygen. To perform electrical measurements, 80% silver filled two-component epoxy-based glue ohmic contacts were attached on the N-Si-C samples. Electrical conductivity was measured in constant current mode. The experimental data show the increase of conductivity with the increase of the nitrogen content. To explain the temperature behavior of electrical conductivity we assumed a thermally activated electric transport mechanism.
Fabrication and electrical characterization of partially metallized vias fabricated by inkjet
NASA Astrophysics Data System (ADS)
Khorramdel, B.; Mäntysalo, M.
2016-04-01
Through silicon vias (TSVs), acting as vertical interconnections, play an important role in micro-electro-mechanical systems (MEMS) 3D wafer level packaging. Today, taking advantage of nanoparticle inks, inkjet technologies as local filling methods could be used to plate the inside the vias with a conductive material, rather than using a current method, such as chemical vapor deposition or electrolytic growth. This could decrease the processing time, cost and waste material produced. In this work, we have fabricated and demonstrated electrical characterization of TSVs with a top diameter of 85 μm, and partially metallized on their inside walls using silver nanoparticle ink and drop-on-demand inkjet printing. Electrical measurement showed that the resistance of a single via with a void free coverage from top to bottom could be less than 4 Ω, which is still acceptable for MEMS applications.
Stretchable electronics based on Ag-PDMS composites
Larmagnac, Alexandre; Eggenberger, Samuel; Janossy, Hanna; Vörös, Janos
2014-01-01
Patterned structures of flexible, stretchable, electrically conductive materials on soft substrates could lead to novel electronic devices with unique mechanical properties allowing them to bend, fold, stretch or conform to their environment. For the last decade, research on improving the stretchability of circuits on elastomeric substrates has made significant progresses but designing printed circuit assemblies on elastomers remains challenging. Here we present a simple, cost-effective, cleanroom-free process to produce large scale soft electronic hardware where standard surface-mounted electrical components were directly bonded onto all-elastomeric printed circuit boards, or soft PCBs. Ag-PDMS tracks were stencil printed onto a PDMS substrate and soft PCBs were made by bonding the top and bottom layers together and filling punched holes with Ag-PDMS to create vias. Silver epoxy was used to bond commercial electrical components and no mechanical failure was observed after hundreds of stretching cycles. We also demonstrate the fabrication of a stretchable clock generator. PMID:25434843
Inhalation of Silver Nanomaterials—Seeing the Risks
Theodorou, Ioannis G.; Ryan, Mary P.; Tetley, Teresa D.; Porter, Alexandra E.
2014-01-01
Demand for silver engineered nanomaterials (ENMs) is increasing rapidly in optoelectronic and in health and medical applications due to their antibacterial, thermal, electrical conductive, and other properties. The continued commercial up-scaling of ENM production and application needs to be accompanied by an understanding of the occupational health, public safety and environmental implications of these materials. There have been numerous in vitro studies and some in vivo studies of ENM toxicity but their results are frequently inconclusive. Some of the variability between studies has arisen due to a lack of consistency between experimental models, since small differences between test materials can markedly alter their behaviour. In addition, the propensity for the physicochemistry of silver ENMs to alter, sometimes quite radically, depending on the environment they encounter, can profoundly alter their bioreactivity. Consequently, it is important to accurately characterise the materials before use, at the point of exposure and at the nanomaterial-tissue, or “nanobio”, interface, to be able to appreciate their environmental impact. This paper reviews current literature on the pulmonary effects of silver nanomaterials. We focus our review on describing whether, and by which mechanisms, the chemistry and structure of these materials can be linked to their bioreactivity in the respiratory system. In particular, the mechanisms by which the physicochemical properties (e.g., aggregation state, morphology and chemistry) of silver nanomaterials change in various biological milieu (i.e., relevant proteins, lipids and other molecules, and biofluids, such as lung surfactant) and affect subsequent interactions with and within cells will be discussed, in the context not only of what is measured but also of what can be visualized. PMID:25535082
Printed Nano Cu and NiSi Contacts and Metallization for Solar Cell Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmody, Michael John
There has long been a desire to replace the front-side silver contacts in silicon solar cells. There are two driving forces to do this. First, silver is an expensive precious metal. Secondly, the process to use silver requires that it be formulated into screen print pastes that need a lead-containing glass frit, and the use of lead is forbidden in many parts of the world. Because of the difficulty in replacing these pastes and the attendant processes, lead exemptions have granted to solar cells. Copper has been the replacement metal of choice because it is significantly cheaper than silver andmore » is very close to silver in electrical conductivity. Using processes which do not use lead, obviates it as an environmental contaminant. However, copper cannot be in contact with the silicon of the cell since it migrates through the silicon and causes defects which severely damage the efficiency of the cell. Hence, a conductive barrier must be placed between the copper and silicon and nickel, and especially nickel silicide, have been shown to be materials of choice. However, nickel must be sputtered and annealed to create the nickel silicide barrier, and copper has either been sputtered or plated. All of these processes require expensive, specialized equipment and plating uses environmentally unfriendly chemicals. Therefore, Intrinsiq proposed using printed nano nickel silicide ink (which we had previously invented) and printed nano copper ink to create these electrodes and barriers. We found that nano copper ink could be readily printed and sintered under a reducing atmosphere to give highly conductive grids. We further showed that nano nickel silicide ink could be readily jetted into grids on top of the silicon cell. It could then be annealed to create a barrier. However, it was found that the combination of printed NiSi and printed Cu did not give contact resistivity good enough to produce efficient cells. Only plated copper on top of the printed NiSi gave useful contact resistivity, and that proved to five to ten times less conductive than the commercial silver grids. Even so, the NiSi layer was a very good barrier to copper migration, even under harsh environmental conditions. Additionally, both plated copper and printed copper could be soldered to. While it may be possible to produce an all printed copper/nickel silicide top electrode for silicon cells, it was not easily demonstrated within the time and monetary constraints of the present project. Additionally, potential customers have told us that having to laser ablate the anti-reflection coating of cells to create a connection for NiSi, and the addition of two printing and annealing (sintering for copper) steps, adds too much expense to compensate for any potential cost savings from using copper. The cost benefits of copper have been further eroded by the facts that over the lifetime of this project, the cost of silver electrodes decreased due to manufacturers finding ways to use less and less silver, and inventing pastes which use less costly silver materials to begin with. All of these factors were considered and led to the decision to stop the program before actual manufacturing scale was attempted.« less
NASA Astrophysics Data System (ADS)
Kim, Jaeseok; Maeng, Inhee; Jung, Jongwook; Song, Hyunjoon; Son, Joo-Hiuk; Kim, Kilsuk; Lee, Jaeik; Kim, Chul-Hong; Chae, Geesung; Jun, Myungchul; Hwang, YongKee; Jeong Lee, Su; Myoung, Jae-Min; Choi, Hyunyong
2013-01-01
We have investigated the complex conductivity of silver nanowire thin films using terahertz time-domain spectroscopy. Maxwell-Garnett effective medium theory, which accounts for the effective complex conductivity of silver nanowires, is presented in detail theoretically and experimentally. The conductivity of nanowires exhibits a characteristic non-Drude response in which the applied terahertz field is polarized in the longitudinal nanowire direction. The non-Drude responses of the silver nanowires are explained by the Gans approximation and the Drude-Smith model, and both agree well with the experimental data. Our results provide a basis for further explorations of charge carrier dynamics in nanowire-based transparent electrode applications.
Graphene-Decorated Nanocomposites for Printable Electrodes in Thin Wafer Devices
NASA Astrophysics Data System (ADS)
Bakhshizadeh, N.; Sivoththaman, S.
2017-12-01
Printable electrodes that induce less stress and require lower curing temperatures compared to traditional screen-printed metal pastes are needed in thin wafer devices such as future solar cells, and in flexible electronics. The synthesis of nanocomposites by incorporating graphene nanopowders as well as silver nanowires into epoxy-based electrically conductive adhesives (ECA) is examined to improve electrical conductivity and to develop alternate printable electrode materials that induce less stress on the wafer. For the synthesized graphene and Ag nanowire-decorated ECA nanocomposites, the curing kinetics were studied by dynamic and isothermal differential scanning calorimetry measurements. Thermogravimetric analysis on ECA, ECA-AG and ECA/graphene nanopowder nanocomposites showed that the temperatures for onset of decomposition are higher than their corresponding glass transition temperature ( T g) indicating an excellent thermal resistance. Printed ECA/Ag nanowire nanocomposites showed 90% higher electrical conductivity than ECA films, whereas the ECA/graphene nanocomposites increased the conductivity by over two orders of magnitude. Scanning electron microscopy results also revealed the effect of fillers morphology on the conductivity improvement and current transfer mechanisms in nanocomposites. Residual stress analysis performed on Si wafers showed that the ECA and nanocomposite printed wafers are subjected to much lower stress compared to those printed with metallic pastes. The observed parameters of low curing temperature, good thermal resistance, reasonably high conductivity, and low residual stress in the ECA/graphene nanocomposite makes this material a promising alternative in screen-printed electrode formation in thin substrates.
Alternative Fuels Data Center: Massachusetts Transportation Data for
Cod National Seashore Initiative for Resiliency in Energy through Vehicles (iREV) Maryland Hybrid Truck Goods Movement Initiative No One Silver Bullet, But a Lot of Silver Beebees Northeast Electric Vehicle Initiative Plug In America Removing Barriers, Implementing Policies and Advancing Alternative
Jia, Yonggao; Chen, Chao; Jia, Dan; Li, Shuxin; Ji, Shulin; Ye, Changhui
2016-04-20
The uniformity of the sheet resistance of transparent conductive films is one of the most important quality factors for touch panel applications. However, the uniformity of silver nanowire transparent conductive films is far inferior to that of indium-doped tin oxide (ITO). Herein, we report a dynamic heating method using infrared light to achieve silver nanowire transparent conductive films with high uniformity. This method can overcome the coffee ring effect during the drying process and suppress the aggregation of silver nanowires in the film. A nonuniformity factor of the sheet resistance of the as-prepared silver nanowire transparent conductive films could be as low as 6.7% at an average sheet resistance of 35 Ω/sq and a light transmittance of 95% (at 550 nm), comparable to that of high-quality ITO film in the market. In addition, a mechanical study shows that the sheet resistance of the films has little change after 5000 bending cycles, and the film could be used in touch panels for human-machine interactive input. The highly uniform and mechanically stable silver nanowire transparent conductive films meet the requirement for many significant applications and could play a key role in the display market in a near future.
Vaithilingam, Jayasheelan; Simonelli, Marco; Saleh, Ehab; Senin, Nicola; Wildman, Ricky D; Hague, Richard J M; Leach, Richard K; Tuck, Christopher J
2017-02-22
Despite the advancement of additive manufacturing (AM)/3-dimensional (3D) printing, single-step fabrication of multifunctional parts using AM is limited. With the view of enabling multifunctional AM (MFAM), in this study, sintering of metal nanoparticles was performed to obtain conductivity for continuous line inkjet printing of electronics. This was achieved using a bespoke three-dimensional (3D) inkjet-printing machine, JETx, capable of printing a range of materials and utilizing different post processing procedures to print multilayered 3D structures in a single manufacturing step. Multiple layers of silver were printed from an ink containing silver nanoparticles (AgNPs) and infrared sintered using a swathe-by-swathe (SS) and layer-by-layer sintering (LS) regime. The differences in the heat profile for the SS and LS was observed to influence the coalescence of the AgNPs. Void percentage of both SS and LS samples was higher toward the top layer than the bottom layer due to relatively less IR exposure in the top than the bottom. The results depicted a homogeneous microstructure for LS of AgNPs and showed less deformation compared to the SS. Electrical resistivity of the LS tracks (13.6 ± 1 μΩ cm) was lower than the SS tracks (22.5 ± 1 μΩ cm). This study recommends the use of LS method to sinter the AgNPs to obtain a conductive track in 25% less time than SS method for MFAM.
Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers
NASA Astrophysics Data System (ADS)
Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing
2016-12-01
We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.
Negative permittivity chamber inside a stack of silver nanorings
NASA Astrophysics Data System (ADS)
Chen, Sheng Chung; Shiu Chau, Jr.
2010-05-01
The interactions of silver nanorings with polarized optical wave are numerically studied. If the resonant conditions are tuned, the polarization of incident field, inside the nanoring hole, will be reversed by the single silver nanoring due to the surface plasmon resonance, thus, the nanoring hole becomes a region of which permittivity is negative. Put two identical silver nanorings closely, there are two nodes happened between nanorings. It indicates that there is a very steep gradient of electric field and quasi-standing waves exist between nanorings. If many silver nanorings are lined up, the holes of the nanorings will form a negative permittivity chamber. The more close to the center of the chamber, the more ideal the polarization is reversed.
Silver nanowire-based transparent, flexible, and conductive thin film
2011-01-01
The fabrication of transparent, conductive, and uniform silver nanowire films using the scalable rod-coating technique is described in this study. Properties of the transparent conductive thin films are investigated, as well as the approaches to improve the performance of transparent silver nanowire electrodes. It is found that silver nanowires are oxidized during the coating process. Incubation in hydrogen chloride (HCl) vapor can eliminate oxidized surface, and consequently, reduce largely the resistivity of silver nanowire thin films. After HCl treatment, 175 Ω/sq and approximately 75% transmittance are achieved. The sheet resistivity drops remarkably with the rise of the film thickness or with the decrease of transparency. The thin film electrodes also demonstrated excellent flexible stability, showing < 2% resistance change after over 100 bending cycles. PMID:21711602
Electrically activated artificial muscles made with liquid crystal elastomers
NASA Astrophysics Data System (ADS)
Shahinpoor, Mohsen
2000-06-01
Composites of monodomain nematic liquid crystal elastomers and a conducting material distributed within their network are shown to exhibit large deformations, i.e. contraction, expansion, bending with strains of over 200% and appreciable force, by Joule heating through electrical activation. The electrical activation of the conducting material induces a rapid Joule heating in the sample leading to a nematic to isotropic phase transition where the elastomer of dimensions 32 mm x 7 mm x 0.4 mm contracted in less than a second. The cooling process, isotropic to nematic transition where the elastomer expands back to its original length, was slow and took 8 seconds. The material studied here is a highly novel liquid crystalline co-elastomer, invented and developed by Heino Finkelmann and co-workers at Albert-Ludwigs-Universitaet in Freiburg, Germany. The material is such that in which the mesogenic units are in both the side chains and the main chains of the elastomer. This co-elastomer was then mechanically loaded to induce a uniaxial network anisotropy before the cross-linking reaction was completed. These samples were then made into a composite with a conducting material such as dispersed silver particles or graphite fibers. The final samples was capable of undergoing more than 200% reversible strain in a few seconds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.
2016-05-21
We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGO{sub X}) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGO{sub X} (1–3 monolayers-thick) and AgNWs exhibit sheet resistances of ∼100–1000 kΩ/□ and 100–900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGO{sub X}/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify themore » nanoscale phenomena responsible for this effect. For rGO{sub X} networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGO{sub X}/AgNWs' networks, rGO{sub X} flakes are found to form conductive “bridges” between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGO{sub X}/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.« less
Cervantes, Felix A; Backus, Elaine A
2018-05-31
Blue-green sharpshooter, Graphocephala atropunctata, is a native California vector of Xylella fastidiosa (Xf), a foregut-borne bacterium that is the causal agent of Pierce's disease in grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG monitor) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents for the first time a complete, updated waveform library for this species, as well as effects of different electropenetrograph settings and adhesives on waveform appearances. Both AC and DC applied signals were used with input resistor (Ri) levels (amplifier sensitivities) of 10 6 , 10 7 , 10 8 and 10 9 Ohms, as well as two type of adhesives, conducting silver paint and handmade silver glue. Waveform description, characterization of electrical origins (R versus emf components), and proposed biological meanings of waveforms are reported, as well as qualitative differences in waveform appearances observed with different electropenetrograph settings and adhesives. In addition, a quantitative study with AC signal, using two applied voltage levels (50 and 200 mV) and two Ri levels (10 7 and 10 9 Ohms) was performed. Intermediate Ri levels 10 7 and 10 8 Ohms provided EPG waveforms with the greatest amount of information, because both levels captured similar proportions of R and emf components, as supported by appearance, clarity, and definition of waveforms. Similarly, use of a gold wire loop plus handmade silver glue provided more definition of waveforms than a gold wire loop plus commercial conducting silver paint. Qualitative/observational evidence suggested that AC applied signal caused fewer aberrant behaviors/waveforms than DC applied signal. In the quantitative study, behavioral components of the sharpshooter X wave were the most affected by changes in Ri and voltage level. Because the X wave probably represents X. fastidiosa inoculation behavior, future studies of X. fastidiosa inoculation via EPG will require carefully determined instrument settings. An intermediate Ri level such as 10 8 Ohms with low voltage, AC applied signal, and gold wire loop plus silver glue is recommended as the best electropenetrograph methods to conduct future EPG studies of sharpshooter inoculation behaviors on Xf-resistant and -susceptible grapevine. Copyright © 2018. Published by Elsevier Ltd.
Accurately controlled sequential self-folding structures by polystyrene film
NASA Astrophysics Data System (ADS)
Deng, Dongping; Yang, Yang; Chen, Yong; Lan, Xing; Tice, Jesse
2017-08-01
Four-dimensional (4D) printing overcomes the traditional fabrication limitations by designing heterogeneous materials to enable the printed structures evolve over time (the fourth dimension) under external stimuli. Here, we present a simple 4D printing of self-folding structures that can be sequentially and accurately folded. When heated above their glass transition temperature pre-strained polystyrene films shrink along the XY plane. In our process silver ink traces printed on the film are used to provide heat stimuli by conducting current to trigger the self-folding behavior. The parameters affecting the folding process are studied and discussed. Sequential folding and accurately controlled folding angles are achieved by using printed ink traces and angle lock design. Theoretical analyses are done to guide the design of the folding processes. Programmable structures such as a lock and a three-dimensional antenna are achieved to test the feasibility and potential applications of this method. These self-folding structures change their shapes after fabrication under controlled stimuli (electric current) and have potential applications in the fields of electronics, consumer devices, and robotics. Our design and fabrication method provides an easy way by using silver ink printed on polystyrene films to 4D print self-folding structures for electrically induced sequential folding with angular control.
NASA Astrophysics Data System (ADS)
Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.; Jayaraj, M. K.
2016-05-01
Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.
2016-05-23
Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.
Synthesis of silver nanoparticles: chemical, physical and biological methods
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B.
2014-01-01
Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This review presents an overview of silver nanoparticle preparation by physical, chemical, and biological synthesis. The aim of this review article is, therefore, to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries. PMID:26339255
Electrically biased GaAs/AlGaAs heterostructures for enhanced detection of bacteria
NASA Astrophysics Data System (ADS)
Aziziyan, Mohammad R.; Hassen, Walid M.; Dubowski, Jan J.
2016-03-01
We have examined the influence of electrical bias on immobilization of bacteria on the surface of GaAs/AlGaAs heterostructures, functionalized with an alkanethiol based architecture. A mixture of biotinylated polyethylene glycol (PEG) thiol and hexadecanethiol was applied to attach neutravidin and antibodies targeting specific immobilization of Legionella pneumophila. An electrochemical setup was designed to bias biofunctionalized samples with the potential measured versus silver/silver chloride reference electrode in a three electrode configuration system. The immobilization efficiency has been examined with fluorescence microscopy after tagging captured bacteria with fluorescein labeled antibodies. We demonstrate more than 2 times enhanced capture of Legionella pneumophila, suggesting the potential of electrically biased biochips to deliver enhanced sensitivity in detecting these bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dustin; Zhao, Fangchao; Tong, Kwing
Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less
Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès
2017-03-03
In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO 3 -WO 3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO 3 -WO 3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10 -3 and 10 -1 S·cm -1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.
Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès
2017-01-01
In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10−3 and 10−1 S·cm−1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording. PMID:28256608
Eom, Hyeonjin; Lee, Jaemin; Pichitpajongkit, Aekachan; Amjadi, Morteza; Jeong, Jun-Ho; Lee, Eungsug; Lee, Jung-Yong; Park, Inkyu
2014-10-29
Silver nanowire (Ag NW) based transparent electrodes are inherently unstable to moist and chemically reactive environment. A remarkable stability improvement of the Ag NW network film against oxidizing and sulfurizing environment by local electrodeposition of Ni along Ag NWs is reported. The optical transmittance and electrical resistance of the Ni deposited Ag NW network film can be easily controlled by adjusting the morphology and thickness of the Ni shell layer. The electrical conductivity of the Ag NW network film is increased by the Ni coating via welding between Ag NWs as well as additional conductive area for the electron transport by electrodeposited Ni layer. Moreover, the chemical resistance of Ag NWs against oxidation and sulfurization can be dramatically enhanced by the Ni shell layer electrodeposited along the Ag NWs, which provides the physical barrier against chemical reaction and diffusion as well as the cathodic protection from galvanic corrosion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shin, Wonjung; Cho, Wonki; Baik, Seung Jae
2018-01-01
As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.
Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting.
Yao, Qiufang; Fan, Bitao; Xiong, Ye; Wang, Chao; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng
2017-07-15
A self-reporting aerogel toward stress sensitive slectricity (SSE) was presented using an interconnected 3D fibrous network of Ag nanoparticles/cellulose nanofiber aerogel (Ag/CNF), which was prepared via combined routes of silver mirror reaction and ultrasonication. Sphere-like Ag nanoparticles (AgNPs) with mean diameter of 74nm were tightly anchored in the cellulose nanofiber through by the coherent interfaces as the conductive materials. The as-prepared Ag/CNF as a self-reporting material for SSE not only possessed quick response and sensitivity, but also be easily recovered after 100th compressive cycles without plastic deformation or degradation in compressive strength. Consequently, Ag/CNF could play a viable role in self-reporting materials as a quick electric-stress responsive sensor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi
2016-01-01
In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻). PMID:26839126
Baumer, Franziska; Nilges, Tom
2017-11-20
Semiconducting silver tellurides gained reasonable interest in the past years due to its thermoelectric, magneto-caloric, and nonlinear optic properties. Nanostructuring has been frequently used to address quantum-confinement effects of minerals and synthetic compounds in the Ag-Te system. Here, we report on the structural, thermal, and thermoelectric properties of stuetzite-like Ag 1.54 Te (or Ag 4.63 Te 3 ) and Ag 1.9 Te. By a quasi-topotactic reaction upon tellurium evaporation Ag 1.54 Te can be transferred to Ag 1.9 Te after heat treatment. Crystal structures, thermal and thermoelectric properties of stuetzite-like Ag 1.54 Te (or Ag 4.63 Te 3 ) and Ag 1.9 Te were determined by ex situ and in situ experiments. This method represents an elegant chemical way to Ag 1.9 Te, which was so far only accessible electrochemically via electrochemical removal of silver from the mineral hessite (Ag 2 Te). The mixed conductors show reasonable high total electric conductivities, very low thermal conductivities, and large Seebeck coefficients, which result in a significant high thermoelectric figure of 0.57 at 680 K.
Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi
2016-02-03
In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).
Printing Silver Nanogrids on Glass
ERIC Educational Resources Information Center
Sanders, Wesley C.; Valcarce, Ron; Iles, Peter; Smith, James S.; Glass, Gabe; Gomez, Jesus; Johnson, Glen; Johnston, Dan; Morham, Maclaine; Befus, Elliot; Oz, Aimee; Tomaraei, Mohammad
2017-01-01
This manuscript describes a laboratory experiment that provides students with an opportunity to create conductive silver nanogrids using polymeric templates. A microcontact-printed polyvinylpyrrolidone grid directs the citrate-induced reduction of silver ions for the fabrication of silver nanogrids on glass substrates. In addition to…
Addae, Sarah A.; Pinard, Melissa A.; Caglayan, Humeyra; Cakmakyapan, Semih; Caliskan, Deniz; Ozbay, Ekmel; Aslan, Kadir
2010-01-01
We report a new approach to colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) that reduces the total assay time to < 2 min and the lower-detection-limit by 100-fold based on absorbance readout. The new approach combines the use of silver nanoparticles, microwaves and split ring resonators (SRR). The SRR structure is comprised of a square frame of copper thin film (30 µm thick, 1 mm wide, overall length of ~9.4 mm on each side) with a single split on one side, which was deposited onto a circuit board (2×2 cm2). A single micro-cuvette (10 µl volume capacity) was placed in the split of the SRR structures. Theoretical simulations predict that electric fields are focused in and above the micro-cuvette without the accumulation of electrical charge that breaks down the copper film. Subsequently, the walls and the bottom of the micro-cuvette were coated with silver nanoparticles using a modified Tollen’s reaction scheme. The silver nanoparticles served as a mediator for the creation of thermal gradient between the bioassay medium and the silver surface, where the bioassay is constructed. Upon exposure to low power microwave heating, the bioassay medium in the micro-cuvette was rapidly and uniformly heated by the focused electric fields. In addition, the creation of thermal gradient resulted in the rapid assembly of the proteins on the surface of silver nanoparticles without denaturing the proteins. The proof-of-principle of the new approach to ELISA was demonstrated for the detection of a model protein (biotinylated-bovine serum albumin, b-BSA). In this regard, the detection of b-BSA with bulk concentrations (1 µM to 1 pM) was carried out on commercially available 96-well high throughput screening (HTS) plates and silver nanoparticle-deposited SRR structures at room temperature and with microwave heating, respectively. While the room temperature bioassay (without microwave heating) took 70 min to complete, the identical bioassay took < 2 min to complete using the SRR structures (with microwave heating). A lower detection limit of 0.01 nM for b-BSA (100-fold lower than room temperature ELISA) was observed using the SRR structures. PMID:20953346
Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaelson, Lynne M.; Munoz, Krystal; Karas, Joseph
The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of 1 dollar / W DC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipmentmore » choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200 thermal cycles, with results similar to silver paste control cells. 100 cells have been processed through Technic’s novel demo plating tool built and installed during budget period 2. This plating tool performed consistently from cell to cell, providing gentle handling for the solar cells. An agreement has been signed with a cell manufacturer to process their cells through our plating chemistry and equipment. Their main focus for plated contacts is to reduce the direct materials cost by utilizing nickel, copper, and tin in place of silver paste. Based on current market conditions and cost model calculations, the overall savings offered by plated contacts is only 3.5% dollar/W versus silver paste contacts; however, the direct materials savings depend on the silver market. If silver prices increase, plated contacts may find a wider adoption in the solar industry in order to keep the direct materials costs down for front grid contacts.« less
Deposition of hermetic silver shells onto copper flakes.
Njagi, John I; Netzband, Christopher M; Goia, Dan V
2017-02-15
Continuous silver shells were deposited on copper flakes using a two-stage precipitation process. A tightly packed layer of silver nanoparticles was first formed on the surface of the base metal by galvanic displacement. The size of the noble metal particles and their distribution on the substrate were controlled using complexing agents and dispersants. A continuous Ag deposit was subsequently grown by reducing slowly [Ag(NH 3 ) 2 ] + ions with glucose. The final shell thickness was controlled by varying the amount of metal deposited in the second step. The electrical properties of resulting silver coated copper flakes are comparable to those measured for silver flakes of similar size and aspect ratio. By preventing the oxidation of copper cores up to 400°C, the hermetic noble metal shell dramatically extends the temperature range in which Ag/Cu flakes can successfully replace pure silver. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, E. Ramesh; Nageswar Rao, P.; Appa Rao, B.
2016-09-01
Super ion conducting glasses of composition D%AgI-(100-D)%[MAg2O-F{(F1)B2O3- (F2)TeO2}]; D=10.0 to 60.0 in steps of 10.0 for a fixed values of F1 (0.4), F2 (0.6) which are glass network formers, fixed values of modifier M(0.667), F (0.333) and D is dopant salt which was varied. These glasses were prepared by melt quenching technique. XRD spectra taken for all the samples. Electrical characterization was done in terms of AC and DC conductivities. DC and AC conductivities at room temperature increased from 10-5 to 10-1 scm-1 and DC activation energy (Edc) found to decrease from 0.36 to 0.19eV with increase in D% ratio. Measurements are performed over the frequency range 1 kHz to 3 MHz at different temperatures. From the impedance spectroscopy real and imaginary parts of impedances (Z', Z"), conductivities were calculated and plotted, and equivalent R-C circuit parameters were obtained from Cole-Cole plots. With the increase in D%, AC conductivity is observed to increase whereas the AC activation energy (Eac) is observed to decrease from 0.23 to 0.14 eV. The quantitative analysis of these results indicates that the electrical conductivity of silver borate glasses is enhanced with increase in D% ratio. Based on conductivity values these glasses are ionic conductors, in which conduction is by hopping mechanism. An attempt is made to understand the charge transportation process.
Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming
2016-09-21
We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.
Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min
2013-05-06
Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.
Embedded silver PDMS electrodes for single cell electrical impedance spectroscopy
NASA Astrophysics Data System (ADS)
Wei, Yuan; Xu, Zhensong; Cachia, Mark A.; Nguyen, John; Zheng, Yi; Wang, Chen; Sun, Yu
2016-09-01
This paper presents a microfluidic device with wide channels and embedded AgPDMS electrodes for measuring the electrical properties of single cells. The work demonstrates the feasibility of using a large channel design and embedded electrodes for impedance spectroscopy to circumvent issues such as channel clogging and limited device re-usability. AgPDMS electrodes were formed on channel sidewalls for impedance detection and cell electrical properties measurement. Equivalent circuit models were used to interpret multi-frequency impedance data to quantify each cell’s cytoplasm conductivity and specific membrane capacitance. T24 cells were tested to validate the microfluidic system and modeling results. Comparisons were then made by measuring two leukemia cell lines (AML-2 and HL-60) which were found to have different cytoplasm conductivity values (0.29 ± 0.15 S m-1 versus 0.47 ± 0.20 S m-1) and specific membrane capacitance values (41 ± 25 mF m-2 versus 55 ± 26 mF m-2) when the cells were flown through the wide channel and measured by the AgPDMS electrodes.
Electrophoretic deposited TiO 2 pigment-based back reflectors for thin film solar cells
Bills, Braden; Morris, Nathan; Dubey, Mukul; ...
2015-01-16
Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This paper reports titanium dioxide (TiO 2) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge / dielectricmore » breakdown approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigment-based reflectors on complex shape and flexible substrates. Finally, mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuang, Ping
2011-01-01
Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (R s = 10 ohms/square (Ω /2)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowiremore » and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2Ω /2. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.« less
NASA Astrophysics Data System (ADS)
Wang, Y. Y.; Cai, K. F.; Yao, X.
2009-12-01
A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is ˜25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value (˜147 μV K -1) and low electrical conductivity (˜0.017 S cm -1). The formation mechanism of the PbTe nanoparticles and films is proposed.
Investigation of electrically conducting yarns for use in textile actuators
NASA Astrophysics Data System (ADS)
Martinez, Jose G.; Richter, Klaus; Persson, Nils-Krister; Jager, Edwin W. H.
2018-07-01
Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 × INOX 50 μm, polyester + 2 × Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S.
2014-01-28
Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we reportmore » template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.« less
Lin, Sen; Bai, Xiaopeng; Wang, Haiyang; Wang, Haolun; Song, Jianan; Huang, Kai; Wang, Chang; Wang, Ning; Li, Bo; Lei, Ming; Wu, Hui
2017-11-01
Electrochromic smart windows (ECSWs) are considered as the most promising alternative to traditional dimming devices. However, the electrode technology in ECSWs remains stagnant, wherein inflexible indium tin oxide and fluorine-doped tin oxide are the main materials being used. Although various complicated production methods, such as high-temperature calcination and sputtering, have been reported, the mass production of flexible and transparent electrodes remains challenging. Here, a nonheated roll-to-roll process is developed for the continuous production of flexible, extralarge, and transparent silver nanofiber (AgNF) network electrodes. The optical and mechanical properties, as well as the electrical conductivity of these products (i.e., 12 Ω sq -1 at 95% transmittance) are comparable with those AgNF networks produced via high-temperature sintering. Moreover, the as-prepared AgNF network is successfully assembled into an A4-sized ECSW with short switching time, good coloration efficiency, and flexibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.
2016-01-01
The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.
NASA Astrophysics Data System (ADS)
Kushino, A.; Kasai, S.; Ukibe, M.; Ohkubo, M.
2018-04-01
In this study, the characteristics of thin semi-rigid cables composed of different conductors and with outer diameters ranging from 0.86 to 1.19 mm were investigated at low temperatures. The thermal conductance was measured between approximately 1 and 8 K, and the frequency dependence of the attenuation in the cables was obtained at 3 K. The electrical conductors used in the cables were alloys: beryllium copper, brass, stainless steel (SUS304), phosphor bronze, cupronickel (CuNi), and niobium-titanium (NbTi). The thermal conductance of a commercial miniature coaxial cable with braided wires forming the outer electrical conductor was also examined for reference. The measured thermal conductance was compared to published data and that generated from material libraries and databases. Among the measured cables using normal metals, the semi-rigid cable composed of SUS304 conductors and a polytetrafluoroethylene insulator showed the lowest thermal conductance. The transmission performance of the semi-rigid cables using SUS304 or CuNi was improved by plating the central conductors with a silver coating of approximately 3 μm thickness, and their thermal conductance with the plating increased by approximately one order of magnitude. The superconducting NbTi semi-rigid cable exhibited the lowest thermal conductance of all the cables considered in the present study along with very small attenuation up to above 5 GHz.
NASA Astrophysics Data System (ADS)
Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe
2016-09-01
The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.
NASA Astrophysics Data System (ADS)
Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.
2018-01-01
While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.
Zhang, Yang; Kang, Zhixin; Bessho, Takeshi
2017-03-10
In this paper, a new method for the synthesis of silver carbon nanotube (Ag/CNT) composite films as conductive connection units for flexible electronic devices is presented. This method is about a two-component solution process by spin coating with an after-treatment annealing process. In this method, multi-walled carbon nanotubes (MWCNTs) act as the core of silver heterogeneous nucleation, which can be observed and analyzed by a field-emission scanning electron microscope. With the effects of mechanical interlocking, chemical grafting, and annealing, the interfacial adhesive strength between films and PET sheets was enhanced to 12 N cm -1 . The tensile strength of the Ag/CNT composite films was observed to increase by 38% by adding 5 g l -1 MWCNTs. In the four-probe method, the resistivity of Ag/CNT-5 declined by 78.2% compared with pristine Ag films. The anti-fatigue performance of the Ag/CNT composite films was monitored by cyclic bending deformation and the results revealed that the growth rate of electrical resistance during the deformation was obviously retarded. As for industrial application, this method provides an efficient low-cost way to prepare Ag/CNT composite films and can be further applied to other coating systems.
Crystal structure and chemical bonding of the high-temperature phase of AgN3.
Schmidt, Carsten L; Dinnebier, Robert; Wedig, Ulrich; Jansen, Martin
2007-02-05
The crystal structure of silver azide (AgN3) in its high-temperature (HT) modification was determined from X-ray powder diffraction data, recorded at T = 170 degrees C and was further refined by the Rietveld method. The structure is monoclinic (P21/c (No. 14), a = 6.0756(2) A, b = 6.1663(2) A, c = 6.5729(2) A, beta = 114.19(0) degrees, V = 224.62(14) A3, Z = 4) and consists of two-dimensional Ag and N containing layers in which the silver atoms are coordinated by four nitrogen atoms exhibiting a distorted square coordination environment. These sheets are linked together by weaker perpendicular Ag-N contacts, thus forming a 4 + 2 coordination geometry around the silver atoms. The phase transition has been characterized by DTA, DSC, and measurement of the density, as well as of the ionic conductivity. Both, the room-temperature and the HT phase are electrically insulating. This fact is getting support by DFT band structure calculations within the generalized gradient approximation, using the PBE functional. On the basis of the DFT band structure, the bonding characteristics of both phases are essentially the same. Finally, the implication of the existence of a low-symmetry HT-phase in a crystalline explosive concerning decomposition mechanisms is discussed.
Yung, Lai Chin; Fei, Cheong Choke; Mandeep, JS; Binti Abdullah, Huda; Wee, Lai Khin
2014-01-01
The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail. PMID:24830317
Meng, Qingshi; Qin, Kaiqiang; Ma, Liying; He, Chunnian; Liu, Enzuo; He, Fang; Shi, Chunsheng; Li, Qunying; Li, Jiajun; Zhao, Naiqin
2017-09-13
A three-dimensional cross-linked porous silver network (PSN) is fabricated by silver mirror reaction using polymer foam as the template. The N-doped porous carbon nanofibers (N-PCNFs) are further prepared on PSN by chemical vapor deposition and treated by ammonia gas subsequently. The PSN substrate serving as the inner current collector will improve the electron transport efficiency significantly. The ammonia gas can not only introduce nitrogen doping into PCNFs but also increase the specific surface area of PCNFs at the same time. Because of its large surface area (801 m 2 /g), high electrical conductivity (211 S/cm), and robust structure, the as-constructed N-PCNFs/PSN demonstrates a specific capacitance of 222 F/g at the current density of 100 A/g with a superior rate capability of 90.8% of its initial capacitance ranging from 1 to 100 A/g while applied as the supercapacitor electrode. The symmetric supercapacitor device based on N-PCNFs/PSN displays an energy density of 8.5 W h/kg with power density of 250 W/kg and excellent cycling stability, which attains 103% capacitance retention after 10 000 charge-discharge cycles at a high current density of 20 A/g, which indicates that N-PCNFs/PSN is a promising candidate for supercapacitor electrode materials.
Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Js; Binti Abdullah, Huda; Wee, Lai Khin
2014-01-01
The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.
NASA Astrophysics Data System (ADS)
Yuan, Yongbo; Bi, Yu; Huang, Jinsong
2011-02-01
We report efficient laminated organic photovoltaic device with efficiency approach the optimized device by regular method based on Poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The high efficiency is mainly attributed to the formation of a concrete polymer/metal interface mechanically and electrically by the use of electronic-glue, and using the highly conductive and flexible silver film as anode to reduce photovoltage loss and modifying its work function for efficiency hole extraction by ultraviolet/ozone treatment, and the pressure induced crystallization of PCBM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yanhong; Gao, Ping; Bi, Kaifeng
Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.
NASA Astrophysics Data System (ADS)
Lee, T. J.; Lee, S. K.
2015-12-01
A resistivity measurement system for conductive core samples has been setup using a high resolution nano-voltmeter. Using the system, in this study, various coupling effects between electrodes and the samples are discussed including contact resistance, lead resistance, temperature dependence, and heat produced within the samples by applied current. The lead resistance was over 10 times higher than the resistance of the conductive samples such as graphite or nichrome, even though the electrodes and lead lines were made of silver. Furthermore, lead resistance itself showed very strong temperature dependence, so that it is essential to subtract the lead resistance from the measured values at corresponding temperature. Minimization of contact resistance is very important, so that the axial loads are needed as big as possible unless the deformation of sample occurs.
NASA Astrophysics Data System (ADS)
Madaria, Anuj R.; Kumar, Akshay; Zhou, Chongwu
2011-06-01
The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σDC/σOp, for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, ΦTE. Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.
Comparison of cutting efficiencies between electric and air-turbine dental handpieces.
Choi, Charlson; Driscoll, Carl F; Romberg, Elaine
2010-02-01
Dentistry is gravitating toward the increased use of electric handpieces. The dental professional should have sufficient evidence to validate the switch from an air-turbine handpiece to an electric handpiece. However, there is little research quantifying the cutting efficiency of electric and air-turbine handpieces. Studies that do quantify cutting efficiency typically do so with only a single material. The purpose of this study was to compare the cutting efficiency of an electric handpiece and an air-turbine handpiece, using various materials commonly used in dentistry. Seven materials: Macor (machinable glass ceramic), silver amalgam, aluminum oxide, zirconium oxide, high noble metal alloy, noble metal alloy, and base metal alloy, were each cut with a bur 220 times; 110 times with an electric handpiece, and 110 times with an air-turbine handpiece. The weight difference of the material was calculated by subtracting the weight of the material after a cut from the weight of the material before the cut. The cutting efficiency was calculated by dividing the weight difference by the duration of the cut (g/s). Data were analyzed by a 2-way analysis of variance followed by Tukey's Honestly Significant Difference (HSD) test (alpha=.05). The electric handpiece cut more efficiently than the air-turbine handpiece (F=3098.9, P<.001). In particular, the high noble metal alloy, silver amalgam, and Macor were cut more efficiently with the electric handpiece (0.0383 +/-0.0002 g/s, 0.0260 +/-0.0002 g/s, and 0.0122 +/-0.0002 g/s, respectively) than with the air-turbine handpiece (0.0125 +/-0.0002 g/s, 0.0142 +/-0.0002 g/s, and 0.008 +/-0.0002 g/s, respectively). The electric handpiece is more efficient at cutting various materials used in dentistry, especially machinable glass ceramic, silver amalgam, and high noble alloy, than the air-turbine handpiece.
NASA Astrophysics Data System (ADS)
Ho, N. A. D.; Babel, S.
2017-06-01
Silver has valuable features and limited availability, and thus recovery from wastewater or aqueous solutions plays an important role in environmental protection and economic profits. In this study, silver recovery along with power generation and COD removal were investigated in a bio-electrochemical system (BES). The BES comprised of an anode and a cathode chamber which were separated by a cation exchange membrane to prevent the cross-over of electrolytes. During the biological oxidation of acetate as an electron donor in the anode chamber, the reduction of ammonia chelated silver ions as electron acceptors in the cathode side occurred spontaneously. Results showed that a silver recovery of 99% and COD removal efficiency of 60% were achieved at the initial silver concentration of 1,000 mg/L after 48 hours of operation. The power generation improved 4.66%, from 3,618 to 3,795 mW/m3, by adding NaNO3 of 850 mg/L to the catholyte containing 2,000 mg/L of silver ions. Deposits on the cathode surface were characterized using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Metallic silver with dendritic structures and high purity were detected. This study demonstrated that BES technology can be employed to recover silver from complex chelating solution, produce electricity, and treat wastewater.
Wan, Yan-Jun; Zhu, Peng-Li; Yu, Shu-Hui; Sun, Rong; Wong, Ching-Ping; Liao, Wei-Hsin
2018-05-30
Metal-based materials with exceptional intrinsic conductivity own excellent electromagnetic interference (EMI) shielding performance. However, high density, corrosion susceptibility, and poor flexibility of the metal severely restrict their further applications in the areas of aircraft/aerospace, portable and wearable smart electronics. Herein, a lightweight, flexible, and anticorrosive silver nanowire wrapped carbon hybrid sponge (Ag@C) is fabricated and employed as ultrahigh efficiency EMI shielding material. The interconnected Ag@C hybrid sponges provide an effective way for electron transport, leading to a remarkable conductivity of 363.1 S m -1 and superb EMI shielding effectiveness of around 70.1 dB in the frequency range of 8.2-18 GHz, while the density is as low as 0.00382 g cm -3 , which are among the best performances for electrically conductive sponges/aerogels/foams by far. More importantly, the Ag@C sponge surprisingly exhibits super-hydrophobicity and strong corrosion resistance. In addition, the hybrid sponges possess excellent mechanical resilience even with a large strain (90% reversible compressibility) and an outstanding cycling stability, which is far better than the bare metallic aerogels, such as silver nanowire aerogels and copper nanowire foams. This strategy provides a facile methodology to fabricate lightweight, flexible, and anticorrosive metal-based sponge for highly efficient EMI shielding applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of silver doping on surface defect characteristics of TiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, S. K., E-mail: surya@pu.ac.in; Rani, Mamta; Department of Physics, DAV University Jalandhar, - 144 001, Punjab
2015-08-28
In the present work, we proposed a novel silver doped TiO{sub 2} polyethylene conjugated films to improve the performance of DSSCs. Oxides nanoparticles dispersed in a semiconducting polymer form the active layer of a solar cell. Localized surface plasmon resonance effects associated with spatially dispersed silver (Ag) nanoparticles can be exploited to enhance the light-harvesting efficiency, the photocurrent density and the overall light-to electrical-energy-conversion efficiency of high-area DSSCs based TiO{sub 2} photoanodes. Silver doped titanium dioxide (TiO{sub 2}:Ag) is prepared by sol-gel technique and deposited on fluorine doped indium oxide (FTO) coated glass substrates by using doctor blade technique atmore » 550°C from aqueous solutions of titanium butoxide and silver nitrate precursors. The effect of Ag doping on electrical properties of films is studied. The Ag-TiO{sub 2} films are about 548 times more photosensitive as compare to the pure TiO{sub 2} sample. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of TiO{sub 2} nanoparticles promotes the separation of photogenerated electron-hole pairs and thus enhances the photosensitivity. Photoconduction mechanism of all prepared samples is investigated by performing transient photoconductivity measurements on TiO{sub 2} and Ag-TiO{sub 2} films keeping intensity of light constant.« less
NASA Astrophysics Data System (ADS)
Borchert, James W.; Stewart, Ian E.; Ye, Shengrong; Rathmell, Aaron R.; Wiley, Benjamin J.; Winey, Karen I.
2015-08-01
Development of thin-film transparent conductors (TC) based on percolating networks of metal nanowires has leaped forward in recent years, owing to the improvement of nanowire synthetic methods and modeling efforts by several research groups. While silver nanowires are the first commercially viable iteration of this technology, systems based on copper nanowires are not far behind. Here we present an analysis of TCs composed of copper nanowire networks on sheets of polyethylene terephthalate that have been treated with various oxide-removing post treatments to improve conductivity. A pseudo-2D rod network modeling approach has been modified to include lognormal distributions in length that more closely reflect experimental data collected from the nanowire TCs. In our analysis, we find that the copper nanowire TCs are capable of achieving comparable electrical performance to silver nanowire TCs with similar dimensions. Lastly, we present a method for more accurately determining the nanowire area coverage in a TC over a large area using Rutherford Backscattering Spectrometry (RBS) to directly measure the metal content in the TCs. These developments will aid research and industry groups alike in the characterization of nanowire based TCs.Development of thin-film transparent conductors (TC) based on percolating networks of metal nanowires has leaped forward in recent years, owing to the improvement of nanowire synthetic methods and modeling efforts by several research groups. While silver nanowires are the first commercially viable iteration of this technology, systems based on copper nanowires are not far behind. Here we present an analysis of TCs composed of copper nanowire networks on sheets of polyethylene terephthalate that have been treated with various oxide-removing post treatments to improve conductivity. A pseudo-2D rod network modeling approach has been modified to include lognormal distributions in length that more closely reflect experimental data collected from the nanowire TCs. In our analysis, we find that the copper nanowire TCs are capable of achieving comparable electrical performance to silver nanowire TCs with similar dimensions. Lastly, we present a method for more accurately determining the nanowire area coverage in a TC over a large area using Rutherford Backscattering Spectrometry (RBS) to directly measure the metal content in the TCs. These developments will aid research and industry groups alike in the characterization of nanowire based TCs. Electronic supplementary information (ESI) available: Contains calibration curve for %T vs. area fraction. See DOI: 10.1039/c5nr03671b
Thermoelectric properties of p-type Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kyunghan; Center for Nanoparticle Research, Institute for Basic Science,; Kong, Huijun
The thermoelectric properties of Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} (4≤m≤16, −0.1≤x≤0.3, 1/3≤y≤2/3, 0.2≤z≤0.4; Lead Antimony Silver Tellurium Tin, LASTT-m) compositions were investigated in the temperature range of 300 to ~670 K. All samples crystallize in the average NaCl-type structure without any noticeable second phase and exhibit very narrow bandgaps of <0.1 eV. We studied a range of m values, silver concentrations (x), Pb/Sn ratios (y), and antimony concentrations (z) to determine their effects on the thermoelectric properties. The samples were investigated as melt grown polycrystalline ingots. Varying the Ag contents, the Pb/Sn ratios, and the Sb contents off-stoichiometrymore » allowed us to control the electrical conductivity, the Seebeck coefficient, and the thermal conductivity. The electrical conductivity tends to decrease with decreasing m values. The highest ZT of ~1.1 was achieved at ~660 K for Ag{sub 0.9}Pb{sub 5}Sn{sub 5}Sb{sub 0.8}Te{sub 12} mainly due to the very low lattice thermal conductivity of ~0.4 W/(m K) around 660 K. Also, samples with charge-balanced stoichiometries, Ag(Pb{sub 1−y}Sn{sub y}){sub m}SbTe{sub m+2}, were studied and found to exhibit a lower power factor and higher lattice thermal conductivity than the Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} compositions. - Graphical abstract: The Ag{sub 1−x}(Pb{sub 1−y}Sn{sub y}){sub m}Sb{sub 1−z}Te{sub m+2} system defines a complex and flexible class of tunable thermoelectric class of materials with high performance.« less
Exposure-related health effects of silver and silver compounds: a review.
Drake, Pamela L; Hazelwood, Kyle J
2005-10-01
A critical review of studies examining exposures to the various forms of silver was conducted to determine if some silver species are more toxic than others. The impetus behind conducting this review is that several occupational exposure limits and guidelines exist for silver, but the values for each depend on the form of silver as well as the individual agency making the recommendations. For instance, the American Conference of Governmental Industrial Hygienists has established separate threshold limit values for metallic silver (0.1 mg/m3) and soluble compounds of silver (0.01 mg/m3). On the other hand, the permissible exposure limit (PEL) recommended by the Occupational Safety and Health Administration and the Mine Safety and Health Administration and the recommended exposure limit set by the National Institute for Occupational Safety and Health is 0.01 mg/m3 for all forms of silver. The adverse effects of chronic exposure to silver are a permanent bluish-gray discoloration of the skin (argyria) or eyes (argyrosis). Most studies discuss cases of argyria and argyrosis that have resulted primarily from exposure to the soluble forms of silver. Besides argyria and argyrosis, exposure to soluble silver compounds may produce other toxic effects, including liver and kidney damage, irritation of the eyes, skin, respiratory, and intestinal tract, and changes in blood cells. Metallic silver appears to pose minimal risk to health. The current occupational exposure limits do not reflect the apparent difference in toxicities between soluble and metallic silver; thus, many researchers have recommended that separate PELs be established.
Ultrasonically spray coated silver layers from designed precursor inks for flexible electronics.
Marchal, W; Vandevenne, G; D'Haen, J; Calmont de Andrade Almeida, A; Durand Sola, M A; van den Ham, E J; Drijkoningen, J; Elen, K; Deferme, W; Van Bael, M K; Hardy, A
2017-05-26
Integration of electronic circuit components onto flexible materials such as plastic foils, paper and textiles is a key challenge for the development of future smart applications. Therefore, conductive metal features need to be deposited on temperature sensitive substrates in a fast and straightforward way. The feasibility of these emerging (nano-) electronic technologies depends on the availability of well-designed deposition techniques and on novel functional metal inks. As ultrasonic spray coating (USSC) is one of the most promising techniques to meet the above requirements, innovative metal organic decomposition (MOD) inks are designed to deposit silver features on plastic foils. Various amine ligands were screened and their influence on the ink stability and the characteristics of the resulting metal depositions were evaluated to determine the optimal formulation. Eventually, silver layers with excellent performance in terms of conductivity (15% bulk silver conductivity), stability, morphology and adhesion could be obtained, while operating in a very low temperature window of 70 °C-120 °C. Moreover, the optimal deposition conditions were determined via an in-depth analysis of the ultrasonically sprayed silver layers. Applying these tailored MOD inks, the USSC technique enabled smooth, semi-transparent silver layers with a tunable thickness on large areas without time-consuming additional sintering steps after deposition. Therefore, this novel combination of nanoparticle-free Ag-inks and the USSC process holds promise for high throughput deposition of highly conductive silver features on heat sensitive substrates and even 3D objects.
Ultrasonically spray coated silver layers from designed precursor inks for flexible electronics
NASA Astrophysics Data System (ADS)
Marchal, W.; Vandevenne, G.; D'Haen, J.; Almeida, A. Calmont de Andrade; Durand Sola, M. A., Jr.; van den Ham, E. J.; Drijkoningen, J.; Elen, K.; Deferme, W.; Van Bael, M. K.; Hardy, A.
2017-05-01
Integration of electronic circuit components onto flexible materials such as plastic foils, paper and textiles is a key challenge for the development of future smart applications. Therefore, conductive metal features need to be deposited on temperature sensitive substrates in a fast and straightforward way. The feasibility of these emerging (nano-) electronic technologies depends on the availability of well-designed deposition techniques and on novel functional metal inks. As ultrasonic spray coating (USSC) is one of the most promising techniques to meet the above requirements, innovative metal organic decomposition (MOD) inks are designed to deposit silver features on plastic foils. Various amine ligands were screened and their influence on the ink stability and the characteristics of the resulting metal depositions were evaluated to determine the optimal formulation. Eventually, silver layers with excellent performance in terms of conductivity (15% bulk silver conductivity), stability, morphology and adhesion could be obtained, while operating in a very low temperature window of 70 °C-120 °C. Moreover, the optimal deposition conditions were determined via an in-depth analysis of the ultrasonically sprayed silver layers. Applying these tailored MOD inks, the USSC technique enabled smooth, semi-transparent silver layers with a tunable thickness on large areas without time-consuming additional sintering steps after deposition. Therefore, this novel combination of nanoparticle-free Ag-inks and the USSC process holds promise for high throughput deposition of highly conductive silver features on heat sensitive substrates and even 3D objects.
A facile approach to a silver conductive ink with high performance for macroelectronics
NASA Astrophysics Data System (ADS)
Tao, Yu; Tao, Yuxiao; Wang, Biaobing; Wang, Liuyang; Tai, Yanlong
2013-06-01
An unusual kind of transparent and high-efficiency organic silver conductive ink (OSC ink) was synthesized with silver acetate as silver carrier, ethanolamine as additive, and different kinds of aldehyde-based materials as reduction agents and was characterized by using a thermogravimetric analyzer, X-ray diffraction, a scanning electron microscope, and a four-point probe. The results show that different reduction agents all have an important influence on the conductive properties of the ink through a series of complex chemical reactions, and especially when formic acid or dimethylformamide was used as the reduction agent and sintered at 120°C for 30 s, the resistivity can be lowered to 6 to 9 μΩ·cm. Furthermore, formula mechanism, conductive properties, temperature, and dynamic fatigue properties were investigated systematically, and the feasibility of the OSC ink was also verified through the preparation of an antenna pattern.
A facile approach to a silver conductive ink with high performance for macroelectronics
2013-01-01
An unusual kind of transparent and high-efficiency organic silver conductive ink (OSC ink) was synthesized with silver acetate as silver carrier, ethanolamine as additive, and different kinds of aldehyde-based materials as reduction agents and was characterized by using a thermogravimetric analyzer, X-ray diffraction, a scanning electron microscope, and a four-point probe. The results show that different reduction agents all have an important influence on the conductive properties of the ink through a series of complex chemical reactions, and especially when formic acid or dimethylformamide was used as the reduction agent and sintered at 120°C for 30 s, the resistivity can be lowered to 6 to 9 μΩ·cm. Furthermore, formula mechanism, conductive properties, temperature, and dynamic fatigue properties were investigated systematically, and the feasibility of the OSC ink was also verified through the preparation of an antenna pattern. PMID:23799897
NASA Astrophysics Data System (ADS)
Lu, Haifei
Noble-metal nanocrystals have received considerable attention in recent years for their size and shape dependent localized surface Plasmon resonances (LSPR). Various applications based on colloidal nanoparticles, such as surface enhanced Raman scattering (SERS), surface enhanced fluorescence (SEF), plasmonic sensing, photothermal therapy etc., have been broadly explored in the field of biomedicine, because of their extremely large optical scattering and absorption cross sections, as well as giant electric field enhancement on their surface. However, despite its high chemical stability, gold exhibits quite large losses and electric field enhancement is comparatively weaker than silver. Silver nanoparticles synthesized by the traditional technique only cover an LSPR ranged from 420~500 nm. On the other hand, the range of 500~660 nm, which is covered by several easily available commercial laser lines, very limited colloidal silver nanostructures with controllable size and shape have been reported, and realization of tuning the resonance to longer wavelengths is very important for the practical applications. In this thesis, a systematic study on photochemical synthesis of silver nanodecahedrons (NDs) and related nanostructures, and their plasmonic field enhancements are presented. First, the roles of chemicals and the light source during the formation of silver nanoparticles have been studied. We have also developed a preparation route for the production size-controlled silver nanodecahedrons (LSPR range 420 ~ 660 nm) in high purity. Indeed our experiments indicate that both the chemicals and the light sources can affect the shape and purity of final products. Adjusting the molar ratio between sodium citrate and silver nitrate can help to control the crystal structure following rapid reduction from sodium borohydride. Light from a blue LED (465 nm) can efficiently transform the polyvinylpyrrolidone stabilized small silver nanoparticles into silver NDs through photo excitation. These silver NDs acting as seeds can be re-grown into larger silver NDs with LSPR ranging from 490 nm to 590 nm, upon receiving LED irradiation with emission close to the LSPR of silver ND seeds, which are suspended in a precursor solution containing small silver nanoparticles. With the aid of centrifugation, silver NDs with high purity can be obtained. Furthermore, silver ND with a broad tuning range (LSPR 490 ~ 660 nm) can be synthesized from these seeds using irradiation from a 500 nm LED. Second, the optical properties of silver NDs and their SERS application for sensitive molecular detection are presented. Raman signal obtained from silver NDs show remarkable advantage over noble nanoparticles of other shaped, thus revealing their strong localized field enhancement. Experimental results demonstrate that average enhancement factor from individual silver ND may be as high as 106. In order to explore their application for biosensing and bioimaging, stable silica coated SERS tags based on silver ND producing high Raman intensity have been studied. Our experiment results indicate that 10-8 M 4-MBA in solution can be detected by silver NDs modified silicon chip through SERS. Simulation result on the geometry of silver ND/silica spacer/gold film/substrate shows that the Raman sensitivity of the NDs modified chip can be further improved with the insertion of a dielectric/conductor film between them. Finally, we present a photochemical method for the preparation of silver nanostructures preparation with the use of 633 nm laser. Silver nanostructures composed of silver nanoplates could be grown from small silver nanoparticles deposited on a glass substrate. The periodicity of the silver nanostructures is several micrometers, revealing that this photochemical method has the potential for "writing" silver pattern on a solid substrate. Raman spectroscopy has also been explored for real-time monitoring of silver nanostructure growth and SERS hotspots formation.
Printed silver nanowire antennas with low signal loss at high-frequency radio
NASA Astrophysics Data System (ADS)
Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji
2012-05-01
Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film. Electronic supplementary information (ESI) available: Operation of R/C car with a silver nanowire monopole antenna. See DOI: 10.1039/c2nr30485f
Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs.
Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui
2015-08-28
Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq(-1), equal to the electronic conductivity, which is about 500 S cm(-1). The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.
Particle size effects on viscosity of silver pastes: A manufacturer's view
NASA Technical Reports Server (NTRS)
Provance, J.; Allison, K.
1983-01-01
Particles from a variety of silver powders were investigated by scanning electron microscopy and particle size analyses. Particle size distribution curves and volume population graphs were prepared for these silver powders and for glass powders with optimum, extra fine and coarse particle sizes. The viscosity at a given shear rate and slope of viscosity over a range of shear rates were determined for thick film pastes made with these powders. Because of particle anomalies and variations, the need for flexibility to achieve the best printing qualities for silver pastes was evident. It was established that print quality, dried and fired film density and optimum contact of silver particles with silicon, important for cell electrical output, could be achieved by adjusting the slope of viscosity that fell outside of the range, -0.550 to -0.650. This was accomplished through organic vehicle technology that permitted a change in the slope of viscosity, up or down, while maintaining a constant silver and total solids content.
Silver nanostructures synthesis via optically induced electrochemical deposition
NASA Astrophysics Data System (ADS)
Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung
2016-06-01
We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.
The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet.
He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng
2017-02-02
Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 10 3 V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two-beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices.
NASA Technical Reports Server (NTRS)
Harkness, J. D.
1976-01-01
Considerable research is being done to find more efficient and reliable means of starting electrical energy for orbiting satellites. Rechargeable cells offer one such means. A test program is described which has been established in order to further the evaluation of certain types of cells and to obtain performance and failure data as an aid to their continued improvement. The purpose of the program is to determine the cycling performance capabilities of packs of cells under different load and temperature conditions. The various kinds of cells tested were nickel-cadmium, silver-cadmium, and silver-zinc sealed cells. A summary of the results of the life cycling program is given in this report.
Gomez-Carretero, Salvador; Nybom, Rolf; Richter-Dahlfors, Agneta
2017-10-01
The incidence of hospital-acquired infections is to a large extent due to device-associated infections. Bacterial attachment and biofilm formation on surfaces of medical devices often act as seeding points of infection. To prevent such infections, coatings based on silver nanoparticles (AgNPs) are often applied, however with varying clinical success. Here, the traditional AgNP-based antibacterial technology is reimagined, now forming the base for an electroenhanced antimicrobial coating. To integrate AgNPs in an electrically conducting polymer layer, a simple, yet effective chemical strategy based on poly(hydroxymethyl 3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT-MeOH:PSS) and (3-aminopropyl)triethoxysilane is designed. The resultant PEDOT-MeOH:PSS-AgNP composite presents a consistent coating of covalently linked AgNPs, as shown by scanning electron microscopy and surface plasmon resonance analysis. The efficacy of the coatings, with and without electrical addressing, is then tested against Staphylococcus aureus, a major colonizer of medical implants. Using custom-designed culturing devices, a nearly complete prevention of biofilm growth is obtained in AgNP composite devices addressed with a square wave voltage input. It is concluded that this electroenhancement of the bactericidal effect of the coupled AgNPs offers a novel, efficient solution against biofilm colonization of medical implants. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electric radiation mapping of silver/zinc oxide nanoantennas by using electron holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, J. E.; Mendoza-Santoyo, F.; Cantu-Valle, J.
2015-01-21
In this work, we report the fabrication of self-assembled zinc oxide nanorods grown on pentagonal faces of silver nanowires by using microwaves irradiation. The nanostructures resemble a hierarchal nanoantenna and were used to study the far and near field electrical metal-semiconductor behavior from the electrical radiation pattern resulting from the phase map reconstruction obtained using off-axis electron holography. As a comparison, we use electric numerical approximations methods for a finite number of ZnO nanorods on the Ag nanowires and show that the electric radiation intensities maps match closely the experimental results obtained with electron holography. The time evolution of themore » radiation pattern as generated from the nanostructure was recorded under in-situ radio frequency signal stimulation, in which the generated electrical source amplitude and frequency were varied from 0 to 5 V and from 1 to 10 MHz, respectively. The phase maps obtained from electron holography show the change in the distribution of the electric radiation pattern for individual nanoantennas. The mapping of this electrical behavior is of the utmost importance to gain a complete understanding for the metal-semiconductor (Ag/ZnO) heterojunction that will help to show the mechanism through which these receiving/transmitting structures behave at nanoscale level.« less
Deus, D; Kehrenberg, C; Schaudien, D; Klein, G; Krischek, C
2017-02-01
Nano-silver is used in consumer products due to its antibacterial properties. The aim of this study was to evaluate the effect of a nano-silver-coated film on the quality of turkey meat during vacuum-sealed and modified atmosphere packaging up to 12 days of storage. In the first part of the experiment, turkey breasts were packaged using either vacuum packaging or modified atmosphere packages (MAPs) and contained films with or without a nano-silver coating (control film). Parameters such as pH, electrical conductivity, color (lightness L*, redness a*), myoglobin redox forms, thiobarbituric acid-reactive substances (TBARS), biogenic amines (BAs), total viable bacterial counts, Pseudomonas species counts, and Enterobacteriaceae species counts were evaluated on storage days 4, 8, and 12. In the second part of the study, the antimicrobial effect of a nano-silver-coated film on turkey breast was evaluated after inoculation with Escherichia coli (E. coli). Turkey meat packaged with the nano-silver film exhibited lower a* values on days 1 (3.15 ± 0.62), 4 (3.90 ± 0.68), and 8 (4.27 ± 0.76) compared to the packaged meat with the control film (3.41 ± 0.73, 4.35 ± 0.94, 4.85 ± 0.89, respectively), indicating special optical properties of nanoparticles. Concerning the BAs, silver packaged meat showed higher values of tyramine on day 12 (1274 ± 392 ng/g meat) and cadaverine on day 4 (1224 ± 435 ng/g meat) compared to the normal packaged products (647 ± 576 and 508 ± 314 ng/g meat, respectively). MAP meat revealed higher L* and TBARS values and lower microbial counts than the vacuum packaged products on all days. The MAP meat also showed lower a* results on days 4 and 8 and higher metmyoglobin (metMb) values on days 8 and 12 compared to th E: vacuum products. In the inoculation study, the microbial counts of the turkey meat were comparable between the two film types. The study showed that the nano-silver coating did not exhibit any advantageous effects on the quality and microbiological parameters of the turkey meat. © 2016 Poultry Science Association Inc.
Laser-induced dewetting of silver-doped chalcogenide glasses
NASA Astrophysics Data System (ADS)
Douaud, Alexandre; Messaddeq, Sandra Helena; Boily, Olivier; Messaddeq, Younès
2018-07-01
We report the observation of laser-induced dewetting responsible for the formation of periodic relief structures in silver-based chalcogenide thin-films. By varying the concentration of silver in the Agx(As20S80)100-x system (with x = 0, 4, 9 and 36), different surface relief structures are formed. The evolution of the surface changes as a function of laser parameters (power density, duration of exposure, and polarisation) as well as film thickness and silver concentration has been investigated. The scanning electron microscopy and atomic force microscopy images of irradiated spots show periodic ripples aligned perpendicularly to the electric field of incident light. Our results show that addition of silver into sulphur-rich chalcogenide thin-films improves the dewetting when compared to pure As20S80 thin-films. The changes in surface morphology were attributable to photo-induced chemical modifications and a laser-driven molecular rearrangement.
Silver Makes Better Electrical Contacts to Thiol-Terminated Silanes than Gold.
Li, Haixing; Su, Timothy A; Camarasa-Gómez, María; Hernangómez-Pérez, Daniel; Henn, Simon E; Pokorný, Vladislav; Caniglia, Caravaggio D; Inkpen, Michael S; Korytár, Richard; Steigerwald, Michael L; Nuckolls, Colin; Evers, Ferdinand; Venkataraman, Latha
2017-11-06
We report that the single-molecule junction conductance of thiol-terminated silanes with Ag electrodes are higher than the conductance of those formed with Au electrodes. These results are in contrast to the trends in the metal work function Φ(Ag)<Φ(Au). As such, a better alignment of the Au Fermi level to the molecular orbital of silane that mediates charge transport would be expected. This conductance trend is reversed when we replace the thiols with amines, highlighting the impact of metal-S covalent and metal-NH 2 dative bonds in controlling the molecular conductance. Density functional theory calculations elucidate the crucial role of the chemical linkers in determining the level alignment when molecules are attached to different metal contacts. We also demonstrate that conductance of thiol-terminated silanes with Pt electrodes is lower than the ones formed with Au and Ag electrodes, again in contrast to the trends in the metal work-functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detecting changes in tree health and productivity in silver fir-beech forests of Slovenia
N. Torelli; W.C. Shortle; K. Cufar; F. Ferlin; K.T. Smith
1999-01-01
Cambial electrical resistance (CER) was used as an objective measure of vitality of silver fir (Abies alba) in the forests of Slovenia. Trees were rated during the growing season by CER and a subjective crown status index (CSI). Both CER and CSI were inversely correlated to annual ring width increment. Using both CER and CSI, fir were assigned to...
Kou, Pengfei; Yang, Liu; Chang, Cheng; He, Sailing
2017-01-01
Silver nanowire (Ag NW) networks have attracted wide attention as transparent electrodes for emerging flexible optoelectronics. However, the sheet resistance is greatly limited by large wire-to-wire contact resistances. Here, we propose a simple sunlight illumination approach to remarkably improve their electrical conductivity without any significant degradation of the light transmittance. Because the power density is extremely low (0.1 W/cm2, 1-Sun), only slight welding between Ag NWs has been observed. Despite this, a sheet resistance of <20 Ω/sq and transmittance of ~87% at wavelength of 550 nm as well as excellent mechanical flexibility have still been achieved for Ag NW networks after sunlight illumination for 1 hour or longer, which are significant upgrades over those of ITO. Slight plasmonic welding together with the associated self-limiting effect has been investigated by numerical simulations and further verified experimentally through varied solar concentrations. Due to the reduced resistance, high-performance transparent film heaters as well as efficient defrosters have been demonstrated, which are superior to the previously-reported Ag NW based film heaters. Since the sunlight is environmentally friendly and easily available, sophisticated or expensive facilities are not necessary. Our findings are particularly meaningful and show enormous potential for outdoor applications. PMID:28169343
NASA Astrophysics Data System (ADS)
Wegscheider, S.; Steinlechner, S.; Leuchtenmüller, M.
2017-02-01
Industrial wastes such as slags, dust, or precipitation residues contain significant amounts of valuable metals like zinc, lead, and copper as well as precious metals like silver and indium. Nevertheless, a lot of these waste materials are not recycled, and therefore, many valuable metals end up being sent to landfills. Because of harmful components in the waste, it is often necessary to send it to specialized landfills for hazardous wastes, which leads to environmental problems as well as additional costs. Consequently, the recovery of the valuable metals from the residues represents a sensible task to decrease the negative impact on the environment and to reduce costs for maintaining a landfill. In addition, recycling helps to decrease the dependency from primary resources. The present study deals with the behavior of different metals in a pyro-metallurgical treatment for a mixture of jarosite and electric arc furnace dust with a special focus on indium and silver.
Screen Cage Ion Plating (SCIP) and scratch testing of polycrystalline aluminum oxide
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.
1992-01-01
A screen cage ion plating (SCIP) technique was developed to apply silver films on electrically nonconducting aluminum oxide. It is shown that SCIP has remarkable throwing power; surfaces to be coated need not be in direct line of sight with the evaporation source. Scratch tests, employing a diamond stylus with a 200 micro m radius tip, were performed on uncoated and on silver coated alumina. Subsequent surface analysis show that a significant amount of silver remains on the scratched surfaces, even in areas where high stylus load produced severe crack patterns in the ceramic. Friction coefficients were lowered during the scratch tests on the coated alumina indicating that this modification of the ion planting process should be useful for applying lubricating films of soft metals to electrical insulating materials. The very good throwing power of SCIP also strongly suggests general applicability of this process in other areas of technology, e.g., electronics, in addition to tribology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu; Lee, Daeho
2014-08-18
In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.
NASA Astrophysics Data System (ADS)
Mukherjee, P. S.; Das, A. K.; Dutta, B.; Meikap, A. K.
2017-12-01
A comprehensive study on the prevailing conduction mechanism, dielectric relaxation and current voltage behaviour of Polyvinyl alcohol (PVA) - Silver (Ag) nanotube composite film has been reported. Introduction of Ag nanotubes enhances the conductivity and dielectric permittivity of film. Film shows semiconducting behaviour with two activation energies. The dc conductivity of the nanocomposite film obeys the adiabatic small polaron model. The dielectric permittivity can be analysed by modified Cole-Cole model. A non-Debye type asymmetric behaviour has been observed in the sample. The back to back Schottky diode concept has been used to describe the current-voltage characteristic of the composite film.
Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency.
Dong, Jianjin; Goldthorpe, Irene A
2018-01-26
Transparent electrodes such as indium tin oxide and random meshes of silver nanowires (AgNWs) have isotropic in-plane properties. However, we show that imparting some alignment to AgNWs can create anisotropic transparency and electrical conductivity characteristics that may benefit many applications. For example, liquid crystal displays and the touch sensors on top of them often only need to be transparent to one type of polarized light as well as predominantly conductive in only one direction. Herein, AgNWs are slightly preferentially aligned during their deposition by rod coating. Compared to randomly oriented AgNW films, the alignment boosts the transparency to perpendicularly polarized light, as well as achieves a higher transparency for a given sheet resistance in one direction compared to randomly oriented AgNWs films. These factors together increase the transparency of a 16 Ω/sq electrode by 7.3 percentage points. The alignment technique is cheap and scalable, compatible with roll-to-roll processes, and most importantly does not require extra processing steps, as rod coating is already a standard process for AgNW electrode fabrication.
Decreasing electrical resistivity of silver along the melting boundary up to 5 GPa
NASA Astrophysics Data System (ADS)
Littleton, Joshua A. H.; Secco, Richard A.; Yong, Wenjun
2018-04-01
The electrical resistivity of Ag was experimentally measured at high pressures up to 5 GPa and at temperatures up to ∼300 K above melting. The resistivity decreased as a function of pressure and increased as a function of temperature as expected and is in very good agreement with 1 atm data. Observed melting temperatures at high pressures also agree well with previous experimental and theoretical studies. The main finding of this study is that resistivity of Ag decreases along the pressure- and temperature-dependent melting boundary, in conflict with prediction of resistivity invariance. This result is discussed in terms of the dominant contribution of the increasing energy separation between the Fermi level and 4d-band as a function of pressure. Calculated from the resistivity using the Wiedemann-Franz law, the electronic thermal conductivity increased as a function of pressure and decreased as a function of temperature as expected. The decrease in the high pressure thermal conductivity in the liquid phase as a function of temperature contrasts with the behavior of the 1 atm data.
Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency
NASA Astrophysics Data System (ADS)
Dong, Jianjin; Goldthorpe, Irene A.
2018-01-01
Transparent electrodes such as indium tin oxide and random meshes of silver nanowires (AgNWs) have isotropic in-plane properties. However, we show that imparting some alignment to AgNWs can create anisotropic transparency and electrical conductivity characteristics that may benefit many applications. For example, liquid crystal displays and the touch sensors on top of them often only need to be transparent to one type of polarized light as well as predominantly conductive in only one direction. Herein, AgNWs are slightly preferentially aligned during their deposition by rod coating. Compared to randomly oriented AgNW films, the alignment boosts the transparency to perpendicularly polarized light, as well as achieves a higher transparency for a given sheet resistance in one direction compared to randomly oriented AgNWs films. These factors together increase the transparency of a 16 Ω/sq electrode by 7.3 percentage points. The alignment technique is cheap and scalable, compatible with roll-to-roll processes, and most importantly does not require extra processing steps, as rod coating is already a standard process for AgNW electrode fabrication.
Carbon nanotubes polymer nanoparticles inks for healthcare textile
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Lee, Jungmin; Mathur, Gyanesh N.; Varadan, Vijay K.
2012-10-01
Healthcare textiles are ambient health monitoring systems that can contribute towards medical aid as well as general fitness of the populace. These are textile based products that have sensor systems mounted on them or are electrically functionalized to act as sensors. While embedded sensor chipsets and connection wires have been shown as working prototypes of this concept, there is a need for seamless integration of sensor technologies without hindering the inherent properties of the textile. Screen printing or stamping with electrically conductive inks have been demonstrated as technologies for fabricating electronics on flexible substrates. They are applicable to textile manufacturing as well. Printing technology allows for fabrication of nanocomposite based electronics elements in a bottom-up fashion. This has advantages such as low material consumption, high speed fabrication and low temperature processing. In this research, Multi-Wall Carbon Nanotubes (MWCNTs) and polyaniline nanoparticles (PANP) core shell based nanocomposites were synthesized and formulated into colloidal ink. Printed MWCNTs-PANP traces were electrically characterized and compared with traces made with those made by other composites such as Silver, and Carbon Black. The nanocomposite based inks are compared for proposed applications as sensor systems and conductive tracks on smart textile for pervasive wireless healthcare system that can be mass produced using low cost printing processes.
Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials
NASA Technical Reports Server (NTRS)
Orwoll, Robert A.
1997-01-01
The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.
Characterization of Resistances of a Capacitive Deionization System
Qu, Yatian; Baumann, Theodore F.; Santiago, Juan G.; ...
2015-07-27
Capacitive deionization (CDI) is a promising desalination technology, which operates at low pressure, low temperature, requires little infrastructure, and has the potential to consume less energy for brackish water desalination. However, CDI devices consume significantly more energy than the theoretical thermodynamic minimum, and this is at least partly due to resistive power dissipation. We here report our efforts to characterize electric resistances in a CDI system, with a focus on the resistance associated with the contact between current collectors and porous electrodes. We present an equivalent circuit model to describe resistive components in a CDI cell. We propose measurable figuresmore » of merit to characterize cell resistance. We also show that contact pressure between porous electrodes and current collectors can significantly reduce contact resistance. As a result, we propose and test an alternative electrical contact configuration which uses a pore-filling conductive adhesive (silver epoxy) and achieves significant reductions in contact resistance.« less
Wang, Bronwen; Rockwell, G.L.; Blodgett, J.C.
1995-01-01
Water-quality data for selected sites on Reversed, Rush, and Alger Creeks and Gull and Silver Lakes, Mono County, California, were collected from April 1994 to March 1995. Water samples were analyzed for major ions and trace elements, nutrients, methylene blue active substances, and oil and grease. Field measurements were made for discharge, specific conductance, pH, water temperature, barometric pressure, dissolved oxygen, and alkalinity. Additional data collected include vertical water profiles of specific conductance, pH, water temperature, and dissolved oxygen collected at 3.3-foot intervals for Gull and Silver Lakes; chlorophyll-a and -b concentrations and Secchi depth for Gull and Silver Lakes; sediment interstitial- water nutrient concentrations in cores from Gull Lake; and lake surface and volume of Gull and Silver Lakes.
Composite Ceramic Superconducting Wires for Electric Motor Applications
1989-04-28
anneal, reaching a zero stress condition. One must consider the kinetics of stress relaxation to estimate the retained residual stress. Also, upon cooling...temperature residual stress. Starting from zero stress after intercalation, thermomechanical stress builds up from around 300’C or so, depending upon...silicon diode thermometer. The sample filament is electroded in a four-point geometry using either silver epoxy over sputteredd silver pads or fired-on
Jiang, Yanhua; Cui, Xiuguo; Zu, Lei; Hu, Zhongkai; Gan, Jing; Lian, Huiqin; Liu, Yang; Xing, Guangjian
2015-10-13
In recent years, manganese dioxide has become a research hotspot as an electrode material because of its low price. However, it has also become an obstacle to industrialization due to its low ratio of capacitance and the low rate performance which is caused by the poor electrical conductivity. In this study, a KI solution with electrochemical activity was innovatively applied to the electrolyte, and we systematically investigated the rate performance of the mesoporous manganese dioxide and the composite electrode with silver nanowires in supercapacitors. The results showed that when mesoporous manganese dioxide and mesoporous manganese dioxide/silver nanowires composite were used as electrodes, the strength of the current was amplified five times (from 0.1 to 0.5 A/g), the remaining rates of specific capacitance were 95% (from 205.5 down to 197.1 F/g) and 92% (from 208.1 down to 191.7 F/g) in the KI electrolyte, and the rate performance was much higher than which in an Na₂SO₄ electrolyte with a remaining rate of 25% (from 200.3 down to 49.1 F/g) and 60% (from 187.2 down to 113.1 F/g). The morphology and detail structure were investigated by Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry and Nitrogen adsorption-desorption isotherms. The electrochemical performance was assessed by cyclic voltammograms, galvanostatic charge/discharge and electrochemical impedance spectroscopy.
Novel aqueous dual-channel aluminum-hydrogen peroxide battery
NASA Astrophysics Data System (ADS)
Marsh, Catherine; Licht, Stuart
1994-06-01
A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarization losses of 0.9 mV cm(exp 2) mA(exp -1), and power densities of 1 W/cm(exp 2). Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H2O2 + 2OH(-) yields 2AlO2(-) + 4H2O E = 2.3 V. The search for electrical propulsion sources which fit the requirements for electrically powered vehicles has blurred the standard characteristics associated with electrochemical storage systems. Presently, electrochemical systems comprised of mechanically rechargeable primary batteries, secondary batteries, and fuel cells are candidates for electrochemical propulsion sources. While important advances in energy and power density continue for nonaqueous and molten electrolytes, aqueous electrolyte batteries often have an advantage in simplicity, conductivity, cost effectiveness, and environmental impact. Systems coupling aluminum anodes and aqueous electrolytes have been investigated. These systems include: aluminum/silver oxide, aluminum/manganese dioxide, aluminum air, aluminum/hydrogen peroxide aqueous batteries, and the recently introduced aluminum/ferricyanide and aluminum sulfur aqueous batteries. Conventional aqueous systems such as the nickel cadmium and lead-acid batteries are characterized by their relatively low energy densities and adverse environmental impact. Other systems have substantially higher theoretical energy capacities. While aluminum-silver oxide has demonstrated the highest steady-state power density, its high cost is an impediment for widespread utilization for electric propulsion.
Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.
Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K
2014-01-01
Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.
Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp
Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T.; Soniya, E.V.; Mathew, Jyothis; Radhakrishnan, E.K.
2014-01-01
Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm – 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus. PMID:25763025
Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas
2018-01-12
Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from 'electrochemical' to 'mechanical', which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.
NASA Astrophysics Data System (ADS)
Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas
2018-01-01
Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from ‘electrochemical’ to ‘mechanical’, which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.
Production of silver ions from colloidal silver by nanoparticle iontophoresis system.
Tseng, Kuo-Hsiung; Liao, Chih-Yu
2011-03-01
Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.
Transport Properties Of PbI2 Doped Silver Oxysalt Based Amorphous Solid Electrolytes
NASA Astrophysics Data System (ADS)
Shrisanjaykumar Jayswal, Manishkumar
Solid electrolytes are a class of materials that conduct electricity by means of motion of ions like Ag+, Na+, Li +, Cu+, H+, F-, O -2 etc. in solid phase. The host materials include crystalline, polycrystalline, glasses, polymers and composites. Ion conducting glasses are one of the most sought after solid electrolytes that are useful in various electrochemical applications like solid state batteries, gas sensors, supercapacitors, electrochromic devices, to name a few. Since the discovery of fast silver ion transport in silver oxyhalide glasses at the end of the 1960s, many glasses showing large ionic conductivity up to 10-4 10-2 S/cm at room temperature have been developed, chiefly silver and copper ion conductors. The silver ion conducting glasses owe their high ionic conductivity mainly to stabilized alpha-AgI. AgI, as we know, undergoes a structural phase transition from wurtzite (beta phase) at room temperature to body centered cubic (alpha phase) structure at temperatures higher than 146 °C. The alpha-AgI possesses approximately six order of higher ionic conductivity than beta-AgI. The high ionic conductivity of alpha-AgI is attributed to its molten sublattice type of structure, which facilitates easy Ag+ ion migration, like a liquid. And hence, several attempts have been made to stabilize it at room temperature in crystalline as well as non-crystalline hosts like oxide and non-oxide glasses. Recently, in order to stabilize AgI in glasses, instead of directly doping it, indirect routes have also been explored. Where, a metal iodide salt along with silver oxide or silver phosphate is taken and an exchange reaction permitted by Hard and Soft, Acid and Base (HSAB) principle occurs between the two and AgI and metal oxide form in the glass forming melt. Work done in the present thesis has been organized in seven chapters as follows: Chapter 1: A review and background information of different solid electrolyte materials and their development is presented. Along with that a detailed review on fast ion conducting glasses is included. At the end of the chapter, the aim of the present work has been given. Chapter 2: A discussion about various theoretical models to explain fast ion conduction mechanism in superionic conductors in general and superionic conducting glasses in particular is given. In addition to that, impedance spectroscopy and its various formalisms are discussed. Chapter 3: This chapter describes the method of preparation of the glass samples and various characterizations and techniques to study their various properties. Chapter 4: Physical properties of the prepared glass samples are studied and discussed in this chapter. The glass samples are found to be fully amorphous as exhibited by x-ray diffraction studies. The density of the prepared samples is increasing consistently with increasing PbI 2 content in the glass. For glass series (a), the molar volume also increases with PbI2 content. However, for glass series (b) and (c), molar volume is reducing with increasing PbI2 content, showing that glass is getting compacted with increasing PbI2 content. Chapter 5: Transport properties of the prepared glass samples have been investigated using impedance spectroscopy and its various formalisms. The chapter discusses DC conductivity, AC conductivity, dielectric permittivity and modulus analysis of the obtained impedance spectra. The sigma' spectra were scaled using Summerfield scaling law using sigmaDCT as the scaling factor for frequency axis and a well defined Time-Temperature Superposition (TTS) is observed as a function of temperature. The dielectric spectra show the presence of a dielectric relaxation in all glass samples. The dielectric permittivity, epsilon', spectra were scaled using the scaling law given by Sidebottom. The modulus spectra exhibit non-Debye relaxation of Ag+ ions and could be explained using KWW (Kohlrausch-Williams-Watts) decay function. Scaling analysis of the modulus spectra as a function of temperature suggest of invariance of ion relaxation process with changing temperatures. Chapter 6: Solid state battery studies: This chapter discusses about "solid state batteries" prepared by using the best conducting glass composition, from each glass Battery discharge characteristics, polarization measurements and other battery parameters like battery capacity, power density, energy, specific power etc. have been evaluated and summarized. Chapter 7: A summary of the work done and future prospects are discussed. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Dermanaki Farahani, Rouhollah; Janier, Mathieu; Dubé, Martine
2018-03-01
In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film’s electrical resistivity from 9.4 × 103 down to 3.1 × 10-4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors’ resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens’ cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.
Metal-enhanced fluorescence exciplex emission.
Zhang, Yongxia; Mali, Buddha L; Geddes, Chris D
2012-01-01
In this letter, we report the first observation of metal-enhanced exciplex fluorescence, observed from anthracene in the presence of diethylaniline. Anthracene in the presence of diethylaniline in close proximity to Silver Island Films (SIFs) shows enhanced monomer and exciplex emission as compared to a non-silvered control sample containing no silver nanoparticles. Our findings suggest two complementary methods for the enhancement: (i) surface plasmons can radiate coupled monomer and exciplex fluorescence efficiently, and (ii) enhanced absorption (enhanced electric near-field) further facilitates enhanced emission. Our exciplex studies help us to further understand the complex photophysics of the metal-enhanced fluorescence technology. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Mei
This thesis focuses on the fabrication, characterisation and analysis of high-quality transparent conductive electrodes for application in heterojunction silicon wafer solar cells. Indium tin oxide (ITO) is the material of interest, which is investigated by both the pulsed direct current (PDC) and the unbalanced radio frequency (URF) magnetron sputtering methods. The influences of deposition parameters and annealing conditions on the performance of the ITO films are studied and the optimal deposition conditions are established for both systems. The results show that ITO films with low crystallinity have degraded electrical properties after annealing at 200°C. The degradation of ITO film properties is associated with the excess scattering centres formed along with the newly crystallised regions, which significantly deteriorate the electron mobility. The relationships between the deposition conditions and the material properties are investigated by X-ray photoelectron spectroscopy (XPS). It is shown that the major electron donors in amorphous ITO films are oxygen vacancies. With the increase of the film crystallinity, the doping efficiency of Sn atoms improves. The substitutional Sn atoms contribute additional free electrons in ITO films, which improve the film's conductivity. It is also shown that the darkening of ITO films observed in PDC sputtering is due to the existence of second phase Sn3O4, which severely darken the ITO sample when it is excessively present in the surface layer and in the bulk of the film. The hydrogen gas used in the URF sputtering method is shown to effectively lower the concentration of free electrons. Benefiting from the reduced electron scattering by ionized dopant atoms, the ITO films deposited with hydrogen gas maintain a high electron mobility. Besides the ITO material properties, the sputter induced damages are also studied. It is shown that in PDC sputtering the ion bombardment damage is the primary damage contributor, while plasma luminescence damage is the main cause of damage in URF sputtering. A few HET solar cells are fabricated by varying only the ITO deposition conditions in the URF sputtering system. It is shown that the deposition temperature and the chamber ambient are crucial for achieving good ITO properties and for maintaining good interface properties. The champion solar cell shows a respectable efficiency of 19.7%. By means of detailed loss analyses of the cells' fill factor (FF) and external quantum efficiency (EQE), the major loss mechanisms are quantified for different ITO deposition conditions. It is demonstrated that, by slightly adjusting the currently used process recipes, HET solar cells with more than 20% efficiency can be achieved. A novel mesh material formed by silver nanoparticles is investigated in order to break the electrical and optical limitations of ITO films. The hybrid structure is formed by superimposing a silver mesh with a thin TCO layer, where the silver mesh and the TCO layer are functioning as the electrical layer and the optical layer, respectively. The developed TCO/SANTE hybrid structure shows a sheet resistance as low as 4.4 O/□ and over 80% visible transmission, which demonstrates its potential to enhance the efficiency of HET solar cells by boosting the conductivity of the front electrode.
Vaseem, Mohammad; McKerricher, Garret; Shamim, Atif
2016-01-13
Currently, silver-nanoparticle-based inkjet ink is commercially available. This type of ink has several serious problems such as a complex synthesis protocol, high cost, high sintering temperatures (∼200 °C), particle aggregation, nozzle clogging, poor shelf life, and jetting instability. For the emerging field of printed electronics, these shortcomings in conductive inks are barriers for their widespread use in practical applications. Formulating particle-free silver inks has potential to solve these issues and requires careful design of the silver complexation. The ink complex must meet various requirements, such as in situ reduction, optimum viscosity, storage and jetting stability, smooth uniform sintered films, excellent adhesion, and high conductivity. This study presents a robust formulation of silver-organo-complex (SOC) ink, where complexing molecules act as reducing agents. The 17 wt % silver loaded ink was printed and sintered on a wide range of substrates with uniform surface morphology and excellent adhesion. The jetting stability was monitored for 5 months to confirm that the ink was robust and highly stable with consistent jetting performance. Radio frequency inductors, which are highly sensitive to metal quality, were demonstrated as a proof of concept on flexible PEN substrate. This is a major step toward producing high-quality electronic components with a robust inkjet printing process.
Ag-graphene hybrid conductive ink for writing electronics.
Xu, L Y; Yang, G Y; Jing, H Y; Wei, J; Han, Y D
2014-02-07
With the aim of preparing a method for the writing of electronics on paper by the use of common commercial rollerball pens loaded with conductive ink, hybrid conductive ink composed of Ag nanoparticles (15 wt%) and graphene-Ag composite nanosheets (0.15 wt%) formed by depositing Ag nanoparticles (∼10 nm) onto graphene sheets was prepared for the first time. Owing to the electrical pathway effect of graphene and the decreased contact resistance of graphene junctions by depositing Ag nanoparticles (NPs) onto graphene sheets, the concentration of Ag NPs was significantly reduced while maintaining high conductivity at a curing temperature of 100 ° C. A typical resistivity value measured was 1.9 × 10(-7) Ω m, which is 12 times the value for bulk silver. Even over thousands of bending cycles or rolling, the resistance values of writing tracks only increase slightly. The stability and flexibility of the writing circuits are good, demonstrating the promising future of this hybrid ink and direct writing method.
Strong field localization in subwavelength metal-dielectric optical waveguides
NASA Astrophysics Data System (ADS)
Kozina, O. N.; Mel'Nikov, L. A.; Nefedov, I. S.
2011-08-01
Detailed calculations of eigenmodes of waveguiding structures made of silver and glass and containing coaxial cables with a nanoscale cross section of different configurations are conducted. In particular, the study focuses on optical coaxial waveguides with the core made in the form of a thin metallic cylinder filled with a dielectric. We show that these waveguides support relatively low-loss propagation of radiation that is strongly localized in the central region, has phase velocity approaching the speed of light and predominant electric-field orientation (dipole type). Optical characteristics of such waveguides are compared with those of coaxial-type waveguides containing a continuous central filament made of metal and with a multilayer structure. Using numeric modeling, we established that the proposed type of the waveguide enables the transmission of an optical image with relatively low losses with a submicron resolution over a distance considerably longer than its cross section. A typical propagation length in the waveguides based on silver and glass with the refractive index of about 1.5 at a wavelength of 500 nm is about 1700 nm.
Overcoming the limitations of silver nanowire electrodes for light emitting applications
NASA Astrophysics Data System (ADS)
Chen, Dustin Yuan
The global lighting market is projected to exceed 100 billion dollars by 2020, undergoing rapid transitions driven by technological advancements. In conjunction with increased demand for new technology, global regulations have become increasingly stringent, mandating the development and implementation of more fuel-efficient light sources. As prior generations of lighting technology such as incandescent bulbs and florescent lighting progressively become phased out, newer technologies such as light emitting diodes (LEDs) and organic light emitting diodes (OLEDs) have become progressively popular and commonplace. Though they still lag behind LEDs in terms of market penetration, OLEDs have garnered increasing amounts of attention in recent years due to unique attributes such as their exotic and large scale form factors, mechanical flexibility, and potential for high volume, low-cost manufacturing. Unfortunately, the costs for OLED manufacturing are currently still prohibitively high for several applications, with the anode and substrate representing 20-25 percent of this total cost. Significant technical and processing improvements for OLED substrates are of utmost necessity for fiscal cost reduction and commercialization of OLED technology. Silver nanowires have gained traction as a potential replacement for the current status quo, indium tin oxide (ITO) due to attributes such as flexibility, low cost processing, and high optoelectronic properties. However, due to nanoscale size effects, the integration of silver nanowires in both process flows and operational use has proven to be problematic. This work makes several key contributions towards enabling the use of silver nanowires for practical and commercial applications within the lighting industry. First, a novel method for the fabrication of a high temperature-stable, flexible substrate with surface roughness (Ra) < 2 nm is presented, based on atomic layer deposition of a conformal metal oxide film on silver nanowires. This development of a thermally stable AgNW based substrate is critical for the future of flexible OLEDs, as both polymers and AgNWs are unstable at elevated temperatures required for certain OLED processing. However, at the time publication, no solutions existed for flexible OLED substrates simultaneously having thermal stability in excess of 230 °C for more than a few minutes while maintaining a smooth surface for subsequent device fabrication. The thermally stable silver nanowires developed in this work are able to withstand temperatures of 500 °C in ramping tests, and when integrated with a thermally stable polymer matrix, withstand temperatures of 300 °C for at least 6 hours, representing an increase in allowable processing temperatures of 70 °C for several hours longer. Resulting polymer light emitting devices (PLEDs) requiring high temperature processing fabricated on this thermally stable exhibit comparable performance to the same devices fabricated on ITO, validating its compatibility for integration in traditional process flows, and validity for use in extreme processing conditions. Secondly, the aforementioned method is applied to understanding the electrical stability of silver nanowires. At the time of publication, previous works on the electrical failure of silver nanowires centered on the observation of failure under current flow, without a solution offered for how to mitigate the phenomenon. However, because the underlying purpose of these electrodes is to transport current, providing a solution for the failure flow is paramount to the success of AgNWs in future commercial applications. The importance of the development of this solution cannot be understated, especially in light of the fact that silver nanowires have been shown to fail under electrical stresses below typical operating conditions of various optoelectronic devices. The same technique mentioned previously can be leveraged for electrically stable silver nanowire networks, which show significant morphological stability over pristine silver nanowires when electrically stressed at normal operating conditions for OLEDs. These electrically stable substrates were able to produce high performance OLEDs with lifetimes 140% longer than the same devices fabricated on ITO, and 20% higher than non-electrically stable AgNW-based substrates. Thirdly, the thermally and electrically stable substrate was used to fabricate a high performing perovskite quantum dot light-emitting device exhibiting high flexibility. The use of quantum dots instead of perovskite precursors and post treatment to convert the precursors to perovskite allowed for several new innovations. Due to the elimination of highly polar solvents typically required with perovskite precursors, a broadened range of architectures can be achieved. Furthermore, due to the small dimensions of the quantum dots in contrast to thick films of perovskite formed from precursors, the active layer can extremely thin, allowing for high mechanical flexibility. The performance metrics achieved of 10.4 cd/A, 8.1 lm/W, and 2.6% EQE at a brightness of 1000 cd/m2 were enabled in part by the substrate, which further allowed for the high mechanical performance. The electroluminescence performance of the perovskite quantum dot LEDs was found to be virtually fully recoverable after being subjected to a bending radius of 2.5 mm, or repeated cycles of bending and unbending to a 4 mm radius, representing the first report of a highly flexible and mechanically perovskite quantum dot light emitting device with high electroluminescence performance. The improved stability of AgNWs with regards to both manufacturing and operational use, in addition to proof of concept in various light emitting devices demonstrates the potential of this technology for large-scale, commercial lighting applications.
Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J
2016-08-24
We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive delivery of functional materials.
Printed silver nanowire antennas with low signal loss at high-frequency radio.
Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji
2012-05-21
Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.
Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity.
Perrin, Lionel; Pajor-Swierzy, Anna; Magdassi, Shlomo; Kamyshny, Alexander; Ortega, Francisco; Rubio, Ramón G
2018-01-24
Liquid drop evaporation on surfaces is present in many industrial and medical applications, e.g., printed electronics, spraying of pesticides, DNA mapping, etc. Despite this strong interest, a theoretical description of the dynamic of the evaporation of complex liquid mixtures and nanosuspensions is still lacking. Indeed, one of the aspects that have not been included in the current theoretical descriptions is the competition between the kinetics of evaporation and the adsorption of surfactants and/or particles at the liquid/vapor and liquid/solid interfaces. Materials formed by an electrically isolating solid on which a patterned conducting layer was formed by the deposits left after drop evaporation have been considered as very promising for building electrical circuits on flexible plastic substrates. In this work, we have done an exhaustive study of the evaporation of nanosuspensions of latex and hydrophobized silver nanoparticles on four substrates of different hydrophobicity. The advancing and receding contact angles as well as the time dependence of the volume of the droplets have been measured over a broad range of particle concentrations. Also, mixtures of silver particles and a surfactant, commonly used in industrial printing, have been examined. Furthermore, the adsorption kinetics at both the air/liquid and solid/liquid interfaces have been measured. Whereas the latex particles do not adsorb at the solid/liquid and only slightly reduce the surface tension, the silver particles strongly adsorb at both interfaces. The experimental results of the evaporation process were compared with the predictions of the theory of Semenov et al. (Evaporation of Sessile Water Droplets: Universal Behavior in the Presence of Contact Angle Hysteresis. Colloids Surf. Physicochem. Eng. Asp. 2011, 391 (1-3), 135-144) and showed surprisingly good agreement despite that the theory was developed for pure liquids. The morphology of the deposits left by the droplets after total evaporation was studied by scanning electronic microscopy, and the effects of the substrate, the particle nature, and their concentrations on these patterns are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadjarodi, Azadeh, E-mail: tajarodi@iust.ac.ir; Zabihi, Fatemeh; Chemistry and Nanotechnology Laboratory, National Center for Laser Science and Technology, Tehran
2013-10-15
Graphical abstract: - Highlights: • Metallic silver was decorated in mSiO{sub 2} with grafted hemiaminal functional groups. • Synthesized nanoparticles were used for preparation of glycerol based nanofluids. • The effect of temperature, weight fraction of mSiO{sub 2} and concentration of silver nanoparticles on thermal conductivity of nanofluids was investigated. - Abstract: In the present study, the mesoporous structure of silica (mSiO{sub 2}) nanoparticles as well as hemiaminal grafted mSiO{sub 2} decorated by metallic silver (Ag/mSiO{sub 2}) has been used for the preparation of glycerol based nanofluids. Structural and morphological characterization of the synthesized products have been carried out usingmore » Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), UV–vis spectroscopy, inductively coupled plasma (ICP) and N{sub 2} adsorption–desorption isotherms. The thermal conductivity and viscosity of the nanofluids have been measured as a function of temperature for various weight fractions and silver concentrations of mSiO{sub 2} and Ag/mSiO{sub 2} nanoparticles, respectively. The results show that the thermal conductivity of the nanofluids increase up to 9.24% as the weight fraction of mSiO{sub 2} increases up to 4 wt%. Also, increasing the percent of the silver decorated mSiO{sub 2} (Ag/mSiO{sub 2}) up to 2.98% caused an enhancement in the thermal conductivity of the base fluid up to 10.95%. Furthermore, the results show that the nanofluids have Newtonian behavior in the tested temperature range for various concentrations of nanoparticles.« less
NASA Astrophysics Data System (ADS)
Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.
The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.
NASA Astrophysics Data System (ADS)
Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.
2010-02-01
We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.
Retinal projections in the electric catfish (Malapterurus electricus).
Ebbesson, S O; O'Donnel, D
1980-01-01
The poorly developed visual system of the electric catfish was studied with silver-degeneration methods. Retinal projections were entirely contralateral to the hypothalamic optic nucleus, the lateral geniculate nucleus, the dorsomedial optic nucleus, the pretectal nuclei including the cortical nucleus, and the optic tectum. The small size and lack of differentiation of the visual system in the electric catfish suggest a relatively small role for this sensory system in this species.
Fuel Cell Vehicle Basics | NREL
Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel cell electric vehicle was
Printing an ITO-free flexible poly (4-vinylphenol) resistive switching device
NASA Astrophysics Data System (ADS)
Ali, Junaid; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Aziz, Shahid; Choi, Kyung Hyun
2018-02-01
Resistive switching in a sandwich structure of silver (Ag)/Polyvinyl phenol (PVP)/carbon nanotube (CNTs)-silver nanowires (AgNWs) coated on a flexible PET substrate is reported in this work. Densely populated networks of one dimensional nano materials (1DNM), CNTs-AgNWs have been used as the conductive bottom electrode with the prominent features of high flexibility and low sheet resistance of 90 Ω/sq. Thin, yet uniform active layer of PVP was deposited on top of the spin coated 1DNM thin film through state of the art printing technique of electrohydrodynamic atomization (EHDA) with an average thickness of 170 ± 28 nm. Ag dots with an active area of ∼0.1 mm2 were deposited through roll to plate printing system as the top electrodes to complete the device fabrication of flexible memory device. Our memory device exhibited suitable electrical characteristics with OFF/ON ratio of 100:1, retention time of 60 min and electrical endurance for 100 voltage sweeps without any noticeable decay in performance. The resistive switching characteristics at a low current compliance of 3 nA were also evaluated for the application of low power consumption. This memory device is flexible and can sustain more than 100 bending cycles at a bending diameter of 2 cm with stable HRS and LRS values. Our proposed device shows promise to be used as a future potential nonvolatile memory device in flexible electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba
This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R{sub ct}(2.50 Ω cm{sup 2}) for I{sub 3}{sup −}/I{sup −} redox solution. Themore » four probe studies showed the large electrical conductivity (226S cm{sup −1}) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm{sup −2}) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.« less
Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin
2017-02-24
We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films.
Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.
Oyanedel-Craver, Vinka A; Smith, James A
2008-02-01
Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.
Zhang, Xuefei; Yates, Matthew Z
2018-05-23
Fast recombination of photogenerated charge carriers in titanium dioxide (TiO 2 ) remains a challenging issue, limiting the photocatalytic activity. This study demonstrates increased photocatalytic performance of TiO 2 nanoparticles supported on electrically polarized hydroxyapatite (HA) films. Dense and thermally stable yttrium and fluorine co-doped HA films with giant internal polarization were synthesized as photocatalyst supports. TiO 2 nanoparticles deposited on the support were then used to catalyze the photochemical reduction of aqueous silver ions to produce silver nanoparticles. It was found that significantly more silver nanoparticles were produced on polarized HA supports than on depolarized HA supports. In addition, the photodegradation of methyl orange with TiO 2 nanoparticles on polarized HA supports was found to be much faster than with TiO 2 nanoparticles on depolarized HA supports. It is proposed that separation of photogenerated electrons and holes in TiO nanoparticles is promoted by the internal polarization of the HA support, and consequently, the recombination of charge carriers is mitigated. The results imply that materials with large internal polarization can be used in strategies for enhancing quantum efficiency of photocatalysts.
Ward, Timothy J; Boeri, Robert L; Hogstrand, Christer; Kramer, James R; Lussier, Suzanne M; Stubblefield, William A; Wyskiel, Derek C; Gorsuch, Joseph W
2006-07-01
Tests were conducted with mysids (Americamysis bahia) and silversides (Menidia beryllina) to evaluate the influence of salinity and organic carbon on the chronic toxicity of silver. During 7- and 28-d tests conducted at 10, 20, and 30% per hundred salinity, higher concentrations of dissolved silver generally were required to cause a chronic effect as the salinity of the seawater was increased. The 28-d mysid and silverside 20%-effective concentration values (expressed as dissolved silver) ranged from 3.9 to 60 and from 38 to 170 microg/L, respectively, over the salinity range. This pattern was not observed when the same test results were evaluated against the concentrations of free ionic silver (measured directly during toxicity tests), as predicted by the free-ion activity model. Increasing the concentration of dissolved organic carbon from 1 mg/L to the apparent maximum achievable concentration of 6 mg/L in seawater caused a slight decrease in chronic toxicity to silversides but had no effect on the chronic toxicity to mysids. The possible additive toxicity of silver in both food and water also was investigated. Even at the maximum achievable foodborne concentration, the chronic toxicity of silver added to the water was not affected when silver was also added to the food, based on the most sensitive endpoint (growth). However, although fecundity was unaffected at all five tested concentrations during the test with silver in water only, it was significantly reduced at the two highest waterborne silver concentrations (12 and 24 microg/L) during the test with silver dosed into food and water.
Wei, Hong; Li, Zhipeng; Tian, Xiaorui; Wang, Zhuoxian; Cong, Fengzi; Liu, Ning; Zhang, Shunping; Nordlander, Peter; Halas, Naomi J; Xu, Hongxing
2011-02-09
We show that the local electric field distribution of propagating plasmons along silver nanowires can be imaged by coating the nanowires with a layer of quantum dots, held off the surface of the nanowire by a nanoscale dielectric spacer layer. In simple networks of silver nanowires with two optical inputs, control of the optical polarization and phase of the input fields directs the guided waves to a specific nanowire output. The QD-luminescent images of these structures reveal that a complete family of phase-dependent, interferometric logic functions can be performed on these simple networks. These results show the potential for plasmonic waveguides to support compact interferometric logic operations.
NASA Astrophysics Data System (ADS)
Chuang, Ricky Wenkuei
2001-07-01
An effectively simple dry silver electromigration technology without the need of evaporating separate gold or aluminum film electrodes onto both sides of glass is reported to fabricate low-loss deep multimode planar and channel waveguides on BK7 and BF450 glass substrates. A relatively high electrical field ranging from 440 to 545 V/mm was applied to the glass to speed up the migration, while at the same time preventing silver ions that were driven into the glass from reducing into silver atom; a major contributor to waveguide loss. The deep planar and channel waveguides thus fabricated showed no discolors or cracks, of which the attenuation losses of less than 2dB/cm and 0.1dB/cm were later measured from channel waveguides constructed on the BK7 and BF450 glass substrates, respectively, using our 0.6328mum He-Ne laser edge-coupling setup. To complete the waveguide studies, the scanning electron microscope (SEM) equipped with energy-dispersive X-ray (EDX) detector was adopted to obtain the concentration profiles of silver and sodium ions distributed in a waveguiding region after the exchange. The EDX measurements acquired hereafter were then utilized along with the Gladstone-Dale relation altogether to deduce the refractive index profile; of which a nearly step-like profile was consistently deduced from every deep planar and channel waveguides fabricated. Finally, a numerical model utilizing the space charge approach was devised to explain the nonlinear current effect often observed during the actual waveguide fabrication. The simulation results have confirmed that the nonlinear current-versus-time profile obtained is mainly attributed to the inhomogeneous distribution of the electric field in the glass substrate due to a space charge region created by the separation between silver- and sodium-ion migration fronts as a result of their unequal mobilities; a phenomenon which is ultimately responsible for the eventual slow down in the ion exchange rate as monitored during the actual electromigration process. A fluxless oxidation-free bonding technology using multilayer composite solders based on the non eutectic binary alloys of indium-tin (In-Sn), silver-indium (Ag-In), gold-tin (Au-Sn), and bismuth-tin (Bi-Sn) has been established and studied to determine its applicability to photonics and MEMS packaging. The scanning acoustic microscopy (SAM) conducted on these solder samples has consistently shown that a nearly void-free joint fabricated from each non-eutectic binary alloy system can be reliably achieved. In addition, the scanning electron microscopy (SEM) equipped with the energy dispersive X-ray (EDX) detector was also performed on the cross section of each sample to determine its joint composition, especially of any sign of intermetallic compounds. These results will demonstrate that any intermetallic compound or phase present in a joint fabricated with a pre-determined multilayer composition based on a specific binary alloy system can be well understood and fully justified by correlating the experimental outcome with its respective binary phase diagram.
Tavakoli, Mahmoud; Malakooti, Mohammad H; Paisana, Hugo; Ohm, Yunsik; Marques, Daniel Green; Alhais Lopes, Pedro; Piedade, Ana P; de Almeida, Anibal T; Majidi, Carmel
2018-05-29
Coating inkjet-printed traces of silver nanoparticle (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity by six-orders of magnitude and significantly improves tolerance to tensile strain. This enhancement is achieved through a room-temperature "sintering" process in which the liquid-phase EGaIn alloy binds the AgNP particles (≈100 nm diameter) to form a continuous conductive trace. Ultrathin and hydrographically transferrable electronics are produced by printing traces with a composition of AgNP-Ga-In on a 5 µm-thick temporary tattoo paper. The printed circuit is flexible enough to remain functional when deformed and can support strains above 80% with modest electromechanical coupling (gauge factor ≈1). These mechanically robust thin-film circuits are well suited for transfer to highly curved and nondevelopable 3D surfaces as well as skin and other soft deformable substrates. In contrast to other stretchable tattoo-like electronics, the low-cost processing steps introduced here eliminate the need for cleanroom fabrication and instead requires only a commercial desktop printer. Most significantly, it enables functionalities like "electronic tattoos" and 3D hydrographic transfer that have not been previously reported with EGaIn or EGaIn-based biphasic electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falkenbach, Oliver; Koch, Guenter; Schlecht, Sabine
2016-06-07
We report on the preparation and thermoelectric properties of the quaternary system AgPb{sub m}BiTe{sub 2+m} (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Roommore » temperature Hall measurements yielded carrier concentrations in the order of 10{sup 19 }cm{sup −3}, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.« less
NASA Astrophysics Data System (ADS)
Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.
2005-09-01
Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.
Chang, Yin-Jung
2014-11-17
Transverse-electric (TE) resonant optical tunneling through an asymmetric, single-barrier potential system consisting of all passive materials in two-dimensional (2-D) glass/silver/TiO₂/air configuration is quantified at a silver thickness of 35 nm. Resonant tunneling occurs when the incident condition corresponds to the excitation of a radiation mode. Lasing-like transmission occurring at resonance is carefully qualified in terms of power conservation, resonance condition, and identification of the gain medium equivalent. In particular, effective gain (geff) and threshold gain (gth) coefficients, both of which are strong functions of the forward reflection coefficient at the silver-TiO₂ interface, are analytically obtained and the angular span over which geff > gth is further verified rigorously electromagnetically. The results show that the present configuration may be treated as a cascade of the gain equivalent (i.e. the silver film) and the TiO₂resonator that is of Fabry-Perot type, giving rise to negative gth when resonant tunneling occurs. The transmittance spectrum exhibiting a gain-curve-like envelope is shown to be a direct consequence of the competition of the resonator loss at the silver-TiO₂interface and the forward tunneling probability through the silver barrier, all controlled by the effective silver barrier thickness.
Molecular Electronic Devices Based On Electrooptical Behavior Of Heme-Like Molecules
NASA Astrophysics Data System (ADS)
Simic-Glavaski, B.
1986-02-01
This paper discusses application of the electrically modulated and unusually strong Raman emitted light produced by an adsorbed monolayer of phthalocyanine molecules on silver electrode or silver bromide substrates and on neural membranes. The analysis of electronic energy levels in semiconducting silver bromide and the adsorbed phthalocyanine molecules suggests a lasing mechanism as a possible origin of the high enhancement factor in surface enhanced Raman scattering. Electrically modulated Raman scattering may be used as a carrier of information which is drawn fran the fast intramolecular electron transfer aN,the multiplicity of quantum wells in phthalocyanine molecules. Fast switching times on the order of 10-13 seconds have been measured at room temperature. Multilevel and multioutput optical signals have also been obtained fran such an electrically modulated adsorbed monolayer of phthalocyanine molecules which can be precisely addressed and interrogated. This may be of practical use to develop Nlecular electronic devices with high density memory and fast parallel processing systems with a typical 1020 gate Hz/cm2 capacity at room temperature for use in optical computers. The paper also discusses the electrooptical modulation of Raman signals obtained from adsorbed bio-compatible phthalocyanine molecules on nerve membranes. This optical probe of neural systems can be used in studies of complex information processing in neural nets and provides a possible method for interfacing natural and man-made information processing devices.
Controlling Complex Systems and Developing Dynamic Technology
NASA Astrophysics Data System (ADS)
Avizienis, Audrius Victor
In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit complex dynamics (e.g. both short- and long-term changes in conductivity) in response to applied voltage signals. Characterization of these atomic switch networks (ASNs) brought out interesting parallels to biological neural networks, including power-law scaling in the statistics of electrical signal propagation and dynamic self-organization of differentiated subnetworks. A reservoir computing (RC) strategy was employed to utilize measurements of electrical signals dynamically generated in ASNs to perform time-series memory and manipulation tasks including a parity test and arbitrary waveform generation. These results represent the useful integration of a complex network into a dynamic physical RC device.
Design of Inkjet-Printed RFID-Based Sensor on Paper: Single- and Dual-Tag Sensor Topologies.
Kim, Sangkil; Georgiadis, Apostolos; Tentzeris, Manos M
2018-06-17
The detailed design considerations for the printed RFID-based sensor system is presented in this paper. Starting from material selection and metallization method, this paper discusses types of RFID-based sensors (single- & dual-tag sensor topologies), design procedures, and performance evaluation methods for the wireless sensor system. The electrical properties of the paper substrates (cellulose-based and synthetic papers) and the silver nano-particle-based conductive film are thoroughly characterized for RF applications up to 8 GHz. The reported technology could potentially set the foundation for truly “green”, low-cost, scalable wireless topologies for autonomous Internet-of-Things (IoT), bio-monitoring, and “smart skin” applications.
Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers
NASA Astrophysics Data System (ADS)
Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian
2015-09-01
The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.
Synthesis of oxide-free aluminum nanoparticles for application to conductive film
NASA Astrophysics Data System (ADS)
Jong Lee, Yung; Lee, Changsoo; Lee, Hyuck Mo
2018-02-01
Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.
Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers
Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian
2015-01-01
The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated. PMID:26333520
NASA Astrophysics Data System (ADS)
Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei
2016-10-01
Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.
Laser Processed Silver Nanowire Network Transparent Electrodes for Novel Electronic Devices
NASA Astrophysics Data System (ADS)
Spechler, Joshua Allen
Silver nanowire network transparent conducting layers are poised to make headway into a space previously dominated by transparent conducting oxides due to the promise of a flexible, scaleable, lab-atmosphere processable alternative. However, there are many challenges standing in the way between research scale use and consumer technology scale adaptation of this technology. In this thesis we will explore many, and overcome a few of these challenges. We will address the poor conductivity at the narrow nanowire-nanowire junction points in the network by developing a laser based process to weld nanowires together on a microscopic scale. We address the need for a comparative metric for transparent conductors in general, by taking a device level rather than a component level view of these layers. We also address the mechanical, physical, and thermal limitations to the silver nanowire networks by making composites from materials including a colorless polyimide and titania sol-gel. Additionally, we verify our findings by integrating these processes into devices. Studying a hybrid organic/inorganic heterojunction photovoltaic device we show the benefits of a laser processed electrode. Green phosphorescent organic light emitting diodes fabricated on a solution phase processed silver nanowire based electrode show favorable device metrics compared to a conductive oxide electrode based control. The work in this thesis is intended to push the adoption of silver nanowire networks to further allow new device architectures, and thereby new device applications.
NASA Astrophysics Data System (ADS)
Gralczyk, Kinga; Janczak, D.; Dybowska-Sarapuk, Ł.; Lepak, S.; Wróblewski, G.; Jakubowska, M.
2017-08-01
In the last few years there has been a growing interest in wearable electronic products, which are generating considerable interest especially in sport and medical industries. But rigid electronics is not comfortable to wear, so things like stretchable substrates, interconnects and electronic devices might help. Flexible electronics could adjust to the curves of a human body and allow the users to move freely. The objective of this paper is to study possibilities of polymer composites with conductive nanomaterials application in wearable electronics. Pastes with graphene, silver nanoplates and carbon nanotubes were manufactured and then interconnects were screen-printed on the surfaces of polyethylene terephthalate (PET) and fabric. Afterwards, the resistance and mechanical properties of samples were examined, also after washing them in a washing machine. It has been found that the best material for the conductive phase is silver. Traces printed directly on the fabric using conductive composites with one functional phase (silver nanoplates or graphene or carbon nanotubes) are too fragile to use them as a common solution in wearable electronics. Mechanical properties can be improved not only by adding carbon nanotubes or graphene to the silver paste, but also by printing additional layer of graphene paste or carbon nanotube paste onto silver layer. In fact, these solutions are not sufficient enough to solve a problem of using these composites in wearable electronics.
Sannicolo, Thomas; Charvin, Nicolas; Flandin, Lionel; Kraus, Silas; Papanastasiou, Dorina T; Celle, Caroline; Simonato, Jean-Pierre; Muñoz-Rojas, David; Jiménez, Carmen; Bellet, Daniel
2018-05-22
Electrical stability and homogeneity of silver nanowire (AgNW) networks are critical assets for increasing their robustness and reliability when integrated as transparent electrodes in devices. Our ability to distinguish defects, inhomogeneities, or inactive areas at the scale of the entire network is therefore a critical issue. We propose one-probe electrical mapping (1P-mapping) as a specific simple tool to study the electrical distribution in these discrete structures. 1P-mapping has allowed us to show that the tortuosity of the voltage equipotential lines of AgNW networks under bias decreases with increasing network density, leading to a better electrical homogeneity. The impact of the network fabrication technique on the electrical homogeneity of the resulting electrode has also been investigated. Then, by combining 1P-mapping with electrical resistance measurements and IR thermography, we propose a comprehensive analysis of the evolution of the electrical distribution in AgNW networks when subjected to increasing voltage stresses. We show that AgNW networks experience three distinctive stages: optimization, degradation, and breakdown. We also demonstrate that the failure dynamics of AgNW networks at high voltages occurs through a highly correlated and spatially localized mechanism. In particular the in situ formation of cracks could be clearly visualized. It consists of two steps: creation of a crack followed by propagation nearly parallel to the equipotential lines. Finally, we show that current can dynamically redistribute during failure, by following partially damaged secondary pathways through the crack.
NASA Astrophysics Data System (ADS)
Normann, M.; Grethe, T.; Zöll, K.; Ehrmann, A.; Schwarz-Pfeiffer, A.
2017-10-01
In recent years smart textiles have gained a significant increase of attention. Electrotherapeutic socks, light emitting dresses or shirts with integrated sensors, having the ability to process data of vital parameters, are just a few examples and the full potential is not yet exhausted: Smart textiles are not only used for clothing purposes. Sensors for the care of the elderly, light applications for home textiles and monitoring systems in the automotive section are promising fields for the future. For all these electrical and electronic features, the supply of power is needed. The most common used power supplies, however, are not flexible, often not lightweight and therefore a huge problem for the integration into textile products. In recent projects, textile-based batteries are being developed. Metal-coated fabrics and yarns (e.g. silver, copper, nickel, zinc) as well as carbon based materials were used to create textile based energy sources. This article gives an overview of textile based electrochemical cells by combining different conductive yarns and a gel-electrolyte. The available materials will be processed by embroidering utilizing tailored fiber placement (TFP). The electrical characteristics of different embroidered patterns and material combinations are examined.
Superwettability-Induced Confined Reaction toward High-Performance Flexible Electrodes.
Xiong, Weiwei; Liu, Hongliang; Zhou, Yahong; Ding, Yi; Zhang, Xiqi; Jiang, Lei
2016-05-18
To find a general strategy to realize confinement of the conductive layer for high-performance flexible electrodes, with improved interfacial adhesion and high conductivity, is of important scientific significance. In this work, superwettability-induced confined reaction is used to fabricate high-performance flexible Ag/polymer electrodes, showing significantly improved silver conversion efficiency and interfacial adhesion. The as-prepared flexible electrodes by superhydrophilic polymeric surface under oil are highly conductive with an order of magnitude higher than the Ag/polymer electrodes obtained from original polymeric surface. The high conductivity achieved via superhydrophilic confinement is ascribed to the fact that the superhydrophilic polymeric surface can enhance the reaction rate of silver deposition and reduce the size of silver nanoparticles to achieve the densest packing. This new approach will provide a simple method to fabricate flexible and highly conductive Ag/polymer electrodes with excellent adhesion between the conductive layer and the substrate, and can be extended to other metal/polymeric electrodes or alloy/polymeric electrodes.
NASA Astrophysics Data System (ADS)
Hoeng, Fanny; Denneulin, Aurore; Reverdy-Bruas, Nadège; Krosnicki, Guillaume; Bras, Julien
2017-02-01
With the aim of processing silver nanowires-based electrodes using screen printing process, this study proposes to evaluate the suitability of cellulose nanofibrils (CNF) as a thickening agent for providing a high viscosity silver nanowires screen printing ink. Rheology of CNF suspension has been specifically investigated according to screen printing process requirements using both rotational and oscillating rheology. It has been found that CNF indeed act as a thickener and stabilizer for the silver nanowires suspension. However, the solid dominant visco-elastic behavior of the CNF suspension was not suitable for screen printing and leads to defects within the printed film. CNF visco-elastic properties were modified by adding hydroxypropylmethyl cellulose (HPMC) to the suspension. Homogeneous transparent conductive layers have been obtained when using CNF-HPMC as a matrix for silver nanowires. The screen printed layers were characterized and performances of Rsh = 12 ± 5 Ω□-1 and T%500nm = 74,8% were achieved without any additional post-treatment to the film.
Jiang, Yanhua; Cui, Xiuguo; Zu, Lei; Hu, Zhongkai; Gan, Jing; Lian, Huiqin; Liu, Yang; Xing, Guangjian
2015-01-01
In recent years, manganese dioxide has become a research hotspot as an electrode material because of its low price. However, it has also become an obstacle to industrialization due to its low ratio of capacitance and the low rate performance which is caused by the poor electrical conductivity. In this study, a KI solution with electrochemical activity was innovatively applied to the electrolyte, and we systematically investigated the rate performance of the mesoporous manganese dioxide and the composite electrode with silver nanowires in supercapacitors. The results showed that when mesoporous manganese dioxide and mesoporous manganese dioxide/silver nanowires composite were used as electrodes, the strength of the current was amplified five times (from 0.1 to 0.5 A/g), the remaining rates of specific capacitance were 95% (from 205.5 down to 197.1 F/g) and 92% (from 208.1 down to 191.7 F/g) in the KI electrolyte, and the rate performance was much higher than which in an Na2SO4 electrolyte with a remaining rate of 25% (from 200.3 down to 49.1 F/g) and 60% (from 187.2 down to 113.1 F/g). The morphology and detail structure were investigated by Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry and Nitrogen adsorption-desorption isotherms. The electrochemical performance was assessed by cyclic voltammograms, galvanostatic charge/discharge and electrochemical impedance spectroscopy. PMID:28347086
Electrical mobility of silver ion in Ag2O-B2O3-P2O5-TeO2 glasses.
Sklepić, Kristina; Vorokhta, Maryna; Mošner, Petr; Koudelka, Ladislav; Moguš-Milanković, Andrea
2014-10-16
The effect of adding TeO(2) into (100 - x)[0.5Ag(2)O - 0.1B(2)O(3) - 0.4P(2)O(5)] - xTeO(2), with 0-80 mol % TeO(2) glass, on the structural changes and electrical properties has been investigated. DSC and thermodilatomery were used to study their thermal behavior, structure was studied by Raman spectroscopy, and electrical properties have been studied by impedance spectroscopy over a wide temperature and frequency range. The introduction of TeO(2) as a third glass former to the glass network causes the structural transformation from TeO(3) (tp) to TeO(4) (tbp) which contributes to the changes in conductivity. The glasses with low TeO(2) content show only a slow decrease in dc conductivity with addition of TeO(2) due to the increase of the number of nonbridging oxygens, which increases the mobility of Ag(+) ions. The steep decrease in conductivity for glasses containing more than 40 mol % TeO(2) is a result of decrease of the Ag(2)O content and stronger cross-linkage in glass network through the formation of more Te-(eq)O(ax)-Te bonds in TeO(4) tbp units. The glasses obey ac conductivity scaling with respect to temperature, implying that the dynamic process is not temperature dependent. On the other hand, the scaling of the spectra for different glass compositions showed the deviations from the Summerfield scaling because of the local structural disorder which occurs as a result of the structural modifications in the tellurite glass network.
Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.
Choi, Hyosung; Lee, Jung-Pil; Ko, Seo-Jin; Jung, Jae-Woo; Park, Hyungmin; Yoo, Seungmin; Park, Okji; Jeong, Jong-Ryul; Park, Soojin; Kim, Jin Young
2013-05-08
We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.
Farahani, Rouhollah Dermanaki; Janier, Mathieu; Dubé, Martine
2018-03-23
In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film's electrical resistivity from 9.4 × 10 3 down to 3.1 × 10 -4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors' resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens' cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.
Lee, Joong Hoon; Hwang, Ji-Young; Zhu, Jia; Hwang, Ha Ryeon; Lee, Seung Min; Cheng, Huanyu; Lee, Sang-Hoon; Hwang, Suk-Won
2018-06-14
We introduce optimized elastomeric conductive electrodes using a mixture of silver nanowires (AgNWs) with carbon nanotubes/polydimethylsiloxane (CNTs/PDMS), to build a portable earphone type of wearable system that is designed to enable recording electrophysiological activities as well as listening to music at the same time. A custom-built, plastic frame integrated with soft, deformable fabric-based memory foam of earmuffs facilitates essential electronic components, such as conductive elastomers, metal strips, signal transducers and a speaker. Such platform incorporates with accessory cables to attain wireless, real-time monitoring of electrical potentials whose information can be displayed on a cell phone during outdoor activities and music appreciation. Careful evaluations on experimental results reveal that the performance of fabricated dry electrodes are comparable to that of commercial wet electrodes, and position-dependent signal behaviors provide a route toward accomplishing maximized signal quality. This research offers a facile approach for a wearable healthcare monitor via integration of soft electronic constituents with personal belongings.
Assessing corrosion problems in photovoltaic cells via electrochemical stress testing
NASA Technical Reports Server (NTRS)
Shalaby, H.
1985-01-01
A series of accelerated electrochemical experiments to study the degradation properties of polyvinylbutyral-encapsulated silicon solar cells has been carried out. The cells' electrical performance with silk screen-silver and nickel-solder contacts was evaluated. The degradation mechanism was shown to be electrochemical corrosion of the cell contacts; metallization elements migrate into the encapsulating material, which acts as an ionic conducting medium. The corrosion products form a conductive path which results in a gradual loss of the insulation characteristics of the encapsulant. The precipitation of corrosion products in the encapsulant also contributes to its discoloration which in turn leads to a reduction in its transparency and the consequent optical loss. Delamination of the encapsulating layers could be attributed to electrochemical gas evolution reactions. The usefulness of the testing technique in qualitatively establishing a reliability difference between metallizations and antireflection coating types is demonstrated.
Preparation of thin film silver fluoride electrodes from constituent elements
NASA Technical Reports Server (NTRS)
Odonnell, P. M.
1972-01-01
The feasibility of preparing thin-film metal fluoride electrodes from the elemental constituents has been demonstrated. Silver fluoride cathodes were prepared by deposition of silver on a conducting graphite substrate followed by fluorination under controlled conditions using elemental fluorine. The resulting electrodes were of high purity, and the variables such as size, shape, and thickness were easily controlled.
Nanosilver - does it have only one face?
Likus, Wirginia; Bajor, Grzegorz; Siemianowicz, Krzysztof
2013-01-01
Silver nanoparticles (NPs) have at least one dimension of a particle smaller than 100 nm and contain 20-15,000 silver atoms. Due to its antibacterial activity nanosilver (NS) is used for medical purposes. NS particles can be obtained by various methods. Potentially, the best method of the NS synthesis for medical purposes is based on a brief flow of electric current between two silver electrodes placed in deionized water. It is accepted that the major antibacterial effect of silver is its partial oxidation and releasing silver ions, which interact with thiol groups of peptidoglicans of bacterial cell wall, and proteins of the cell membrane causing cell lysis. Silver ions can also bind to bacterial DNA preventing its replication and stopping synthesis of bacterial proteins. The rise in exposure to silver NPs has spurred interest into their toxicology. NS undergoes a set of biochemical transformations including accelerated oxidative dissolution in gastric acid, binding to thiol groups of serum and tissue proteins, exchange between thiol groups, sulfides and selenides, binding to selenoproroteins and photoreduction in skin to zerovalent metallic silver. Animal studies have shown that exposure to NS may lead to liver and spleen damage. NS can also stimulate an increased secretion of proinflammatory cytokines by monocytes. As a spectrum of NS applications is still growing, the complex evaluation of a safety of its use becomes an important task. This requires an elucidation of not only the influence of NS on human cells and organism, but also its biotransformation in organism and in environment.
NASA Astrophysics Data System (ADS)
Nair, Anju K.; Elizabeth, Indu; S, Gopukumar; Thomas, Sabu; M. S, Kala; Kalarikkal, Nandakumar
2018-01-01
We present an in-situ polyol assisted synthesis approach for the preparation of silver nanowires (AgNW) over the nitrogen doped graphene (NG) sheets and has been tested as a viable LIBs anode material for the first time. The use of NG serves as nucleation sites, thereby facilitating the growth of AgNWs. The specific material design of the as-prepared NG-AgNW hybrids involves some advantages, including a continuous AgNW-graphene conducting network. Since AgNWs are electrically conductive, it provides an electrical contact with NG sheets which can effectively help the charge transport process and limit the variations in volume during the lithiation/de-lithiation processes. Apart from this, the insertion of metallic Ag nanowires into a percolated NG network increases the interlayer distance of NG sheets and prevent its restacking. Moreover, the more porous nature of the hybrid structure accommodating the large volume changes of AgNWs. As an anode material for LIBs, the NG-AgNW hybrid displays a remarkable initial discharge capacity of 1215 mAh g-1 and attains a stable capacity of 724 mAh g-1 at a current density of 100 mA g-1 after 50 cycles. The electrode exhibits a stable reversible capacity of 714, 634, 550 and 464 mA h g-1 at 0.1, 0.2, 0.5, 1 Ag-1 respectively. The reversible capacity (710 mAh g-1) at 0.1 Ag-1 is recovered after the cycling at various current densities confirming outstanding rate performance of the material. In addition, the coulombic efficiency, the NG-AgNW anode retains nearly 99% after the second cycle, further indicating its excellent reversibility. The hybrid material exhibits better cycling stability, greater rate capability, capacity retention and superior reversible capacity than that of bare AgNW and NG sheets. Our smart design will pave way for the development of efficient electrode materials for high capacity and long cycle life LIBs.
The Effect of Ultrasonic Additive Manufacturing on Integrated Printed Electronic Conductors
NASA Astrophysics Data System (ADS)
Bournias-Varotsis, Alkaios; Wang, Shanda; Hutt, David; Engstrøm, Daniel S.
2018-07-01
Ultrasonic additive manufacturing (UAM) is a low temperature manufacturing method capable of embedding printed electronics in metal components. The effect of UAM processing on the resistivity of conductive tracks printed with five different conductive pastes based on silver, copper or carbon flakes/particles in either a thermoplastic or thermoset filler binder are investigated. For all but the carbon-based paste, the resistivity changed linearly with the UAM energy input. After UAM processing, a resistivity increase of more than 150 times was recorded for the copper based thermoset paste. The silver based pastes showed a resistivity increase of between 1.1 and 50 times from their initial values. The carbon-based paste showed no change in resistivity after UAM processing. Focussed ion beam microstructure analysis of the printed conductive tracks before and after UAM processing showed that the silver particles and flakes in at least one of the pastes partly dislodged from their thermoset filler creating voids, thereby increasing the resistivity, whereas the silver flakes in a thermoplastic filler did not dislodge due to material flow of the polymer binder. The lowest resistivity (8 × 10-5 Ω cm) after UAM processing was achieved for a thermoplastic paste with silver flakes at low UAM processing energy.
The Effect of Ultrasonic Additive Manufacturing on Integrated Printed Electronic Conductors
NASA Astrophysics Data System (ADS)
Bournias-Varotsis, Alkaios; Wang, Shanda; Hutt, David; Engstrøm, Daniel S.
2018-03-01
Ultrasonic additive manufacturing (UAM) is a low temperature manufacturing method capable of embedding printed electronics in metal components. The effect of UAM processing on the resistivity of conductive tracks printed with five different conductive pastes based on silver, copper or carbon flakes/particles in either a thermoplastic or thermoset filler binder are investigated. For all but the carbon-based paste, the resistivity changed linearly with the UAM energy input. After UAM processing, a resistivity increase of more than 150 times was recorded for the copper based thermoset paste. The silver based pastes showed a resistivity increase of between 1.1 and 50 times from their initial values. The carbon-based paste showed no change in resistivity after UAM processing. Focussed ion beam microstructure analysis of the printed conductive tracks before and after UAM processing showed that the silver particles and flakes in at least one of the pastes partly dislodged from their thermoset filler creating voids, thereby increasing the resistivity, whereas the silver flakes in a thermoplastic filler did not dislodge due to material flow of the polymer binder. The lowest resistivity (8 × 10-5 Ω cm) after UAM processing was achieved for a thermoplastic paste with silver flakes at low UAM processing energy.
Evaluating Plasmonic Transport in Current-carrying Silver Nanowires
Song, Mingxia; Stolz, Arnaud; Zhang, Douguo; Arocas, Juan; Markey, Laurent; Colas des Francs, Gérard; Dujardin, Erik; Bouhelier, Alexandre
2013-01-01
Plasmonics is an emerging technology capable of simultaneously transporting a plasmonic signal and an electronic signal on the same information support1,2,3. In this context, metal nanowires are especially desirable for realizing dense routing networks4. A prerequisite to operate such shared nanowire-based platform relies on our ability to electrically contact individual metal nanowires and efficiently excite surface plasmon polaritons5 in this information support. In this article, we describe a protocol to bring electrical terminals to chemically-synthesized silver nanowires6 randomly distributed on a glass substrate7. The positions of the nanowire ends with respect to predefined landmarks are precisely located using standard optical transmission microscopy before encapsulation in an electron-sensitive resist. Trenches representing the electrode layout are subsequently designed by electron-beam lithography. Metal electrodes are then fabricated by thermally evaporating a Cr/Au layer followed by a chemical lift-off. The contacted silver nanowires are finally transferred to a leakage radiation microscope for surface plasmon excitation and characterization8,9. Surface plasmons are launched in the nanowires by focusing a near infrared laser beam on a diffraction-limited spot overlapping one nanowire extremity5,9. For sufficiently large nanowires, the surface plasmon mode leaks into the glass substrate9,10. This leakage radiation is readily detected, imaged, and analyzed in the different conjugate planes in leakage radiation microscopy9,11. The electrical terminals do not affect the plasmon propagation. However, a current-induced morphological deterioration of the nanowire drastically degrades the flow of surface plasmons. The combination of surface plasmon leakage radiation microscopy with a simultaneous analysis of the nanowire electrical transport characteristics reveals the intrinsic limitations of such plasmonic circuitry. PMID:24378340
A printed, dry electrode Frank configuration vest for ambulatory vectorcardiographic monitoring
NASA Astrophysics Data System (ADS)
Paul, Gordon; Torah, Russel; Beeby, Steve; Tudor, John
2017-02-01
This paper describes the design and fabrication of a screen printed network of bio-potential measurement electrodes on a garment, in this case a vest. The electrodes are placed according to the Frank configuration, which allows monitoring of the electrical behavior of the heart in three spatial orientations. The vest is designed to provide stable contact pressure on the electrodes. The electrodes are fabricated from stencil printed carbon loaded rubber and are connected by screen printed silver polymer conductive tracks to an array of vias, which form an electrical connection to the other side of the textile. The vest is tested and compared to Frank configuration recordings that were obtained using standard self-adhesive ECG electrodes. The vest was successfully used to obtain Frank configuration recordings with minimal baseline drift. The vest is fabricated using only technologies found in standard textile production lines and can be used with a reduced setup effort compared to clinical 12-lead examinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, A. A., E-mail: alexchemtsu@rambler.ru; Tuev, V. I., E-mail: tvi-retem@main.tusur.ru
2015-10-27
The copolymer of the vinyl chloride-maleic anhydride and silver nano- and microparticle (70 wt %) composition is offered as a conductive adhesive for fixing various chips on the dielectric substrate. The wiring volume resistivity is up to 3.1×10{sup −8} Ohm×m. The adhesive strength of the silver-containing polymer composition (70% of Ag) applied under a shear on the dielectric substrate is 106 N/mm{sup 2}. Adhesive layers obtained from these substances have a high thermal conductivity up to λ = 199.93 W/m×K that depends on the amount of Ag in the polymer composition.
Luan, Chuhao; Shao, Yang; Lu, Qi; Gao, Shenghan; Huang, Kai; Wu, Hui; Yao, Kefu
2018-05-30
An efficient and selective catalyst is in urgent need for carbon dioxide electroreduction and silver is one of the promising candidates with affordable costs. Here we fabricated large-scale vertically standing Ag nanowire arrays with high crystallinity and electrical conductivity as carbon dioxide electroreduction catalysts by a simple nanomolding method that was usually considered not feasible for metallic crystalline materials. A great enhancement of current densities and selectivity for CO at moderate potentials was achieved. The current density for CO ( j co ) of Ag nanowire array with 200 nm in diameter was more than 2500 times larger than that of Ag foil at an overpotential of 0.49 V with an efficiency over 90%. The origin of enhanced performances are attributed to greatly increased electrochemically active surface area (ECSA) and higher intrinsic activity compared to those of polycrystalline Ag foil. More low-coordinated sites on the nanowires which can stabilize the CO 2 intermediate better are responsible for the high intrinsic activity. In addition, the impact of surface morphology that induces limited mass transportation on reaction selectivity and efficiency of nanowire arrays with different diameters was also discussed.
Transparent thin shield for radio frequency transmit coils.
Rivera, Debra S; Schulz, Jessica; Siegert, Thomas; Zuber, Verena; Turner, Robert
2015-02-01
To identify a shielding material compatible with optical head-motion tracking for prospective motion correction and which minimizes radio frequency (RF) radiation losses at 7 T without sacrificing line-of-sight to an imaging target. We evaluated a polyamide mesh coated with silver. The thickness of the coating was approximated from the composition ratio provided by the material vendor and validated by an estimate derived from electrical conductivity and light transmission measurements. The performance of the shield is compared to a split-copper shield in the context of a four-channel transmit-only loop array. The mesh contains less than a skin-depth of silver coating (300 MHz) and attenuates light by 15 %. Elements of the array vary less in the presence of the mesh shield as compared to the split-copper shield indicating that the array behaves more symmetrically with the mesh shield. No degradation of transmit efficiency was observed for the mesh as compared to the split-copper shield. We present a shield compatible with future integration of camera-based motion-tracking systems. Based on transmit performance and eddy-current evaluations the mesh shield is appropriate for use at 7 T.
Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou
2016-07-01
Novel silver nanowire (AgNW) - carbon fiber cloth (CC) nanocomposites were synthesized by a rapid and facile method. Acting as filter in an electrical gravity filtration device, the AgNW-CC nanocomposites were applied to electrochemical point-of-use water disinfection. AgNW-CC nanocomposites were characterized by FESEM, XRD, and FTIR. Their disinfection performance toward Escherichia coli and bacteriophage MS2 was evaluated by inhibition zone tests, optical density growth curve tests, and flow tests. The results showed that complex 3D AgNW networks with controllable silver release (<100 ppb) were fabricated on CC by using UV curing adhesive. AgNW-CC nanocomposites exhibited excellent intrinsic antibacterial activities against E. coli. The concentration of AgNWs and UV adhesive controlled the released silver and hence led to the change in antibacterial activity. The external electric field significantly enhanced the disinfection efficiency of AgNW-CC nanocomposites. Over 99.999% removal of E. coli and MS2 could be achieved. More complex AgNW networks contributed to higher disinfection efficiency under 10 V and 10(6) CFU (PFU) mL(-1) of microorganism. UV adhesive could keep the disinfection performance from being affected by flow rate. The convenient synthesis and outstanding disinfection performance offer AgNW-CC nanocomposites opportunities in the application of electrochemical point-of-use drinking water disinfection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Learning from Natural Nacre: Constructing Layered Polymer Composites with High Thermal Conductivity.
Pan, Guiran; Yao, Yimin; Zeng, Xiaoliang; Sun, Jiajia; Hu, Jiantao; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping
2017-09-27
Inspired by the microstructures of naturally layered and highly oriented materials, such as natural nacre, we report a thermally conductive polymer composite that consists of epoxy resin and Al 2 O 3 platelets deposited with silver nanoparticles (AgNPs). Owing to their unique two-dimensional structure, Al 2 O 3 platelets are stacked together via a hot-pressing technique, resulting in a brick-and-mortar structure, which is similar to the one of natural nacre. Moreover, the AgNPs deposited on the surfaces of the Al 2 O 3 platelets act as bridges that link the adjacent Al 2 O 3 platelets due to the reduced melting point of the AgNPs. As a result, the polymer composite with 50 wt % filler achieves a maximum thermal conductivity of 6.71 W m -1 K -1 . In addition, the small addition of AgNPs (0.6 wt %) minimally affects the electrical insulation of the composites. Our bioinspired approach will find uses in the design and fabrication of thermally conductive materials for thermal management in modern electronics.
3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.
Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana
2016-05-01
Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A highly stretchable, transparent, and conductive polymer.
Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F; Murmann, Boris; Bao, Zhenan
2017-03-01
Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain-among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire- or carbon nanotube-based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.
NASA Astrophysics Data System (ADS)
Zhao, Jie; Song, Man; Wen, Chenyu; Majee, Subimal; Yang, Dong; Wu, Biao; Zhang, Shi-Li; Zhang, Zhi-Bin
2018-03-01
We present a method for fabricating highly conductive graphene-silver composite films with a tunable microstructure achieved by means of an inkjet printing process and low temperature annealing. This is implemented by starting from an aqueous ink formulation using a reactive silver solution mixed with graphene nanoplatelets (GNPs), followed by inkjet printing deposition and annealing at 100 °C for silver formation. Due to the hydrophilic surfaces and the aid of a polymer stabilizer in an aqueous solution, the GNPs are uniformly covered with a silver layer. Simply by adjusting the content of GNPs in the inks, highly conductive GNP/Ag composites (>106 S m-1), with their microstructure changed from a large-area porous network to a compact film, is formed. In addition, the printed composite films show superior quality on a variety of unconventional substrates compared to its counterpart without GNPs. The availability of composite films paves the way to the metallization in different printed devices, e.g. interconnects in printed circuits and electrodes in energy storage devices.
NASA Astrophysics Data System (ADS)
Pandita, Surya D.; Lim, Hyoung Tae; Yoo, Youngtai; Park, Hoon Cheol
2006-03-01
Manufacturing and characterization of ionic polymer metal composites (IPMCs) with silver as electrodes have been investigated. Tollen's reagent that contains ion Ag(NH 3) II + was used as a raw material for silver deposition on the surfaces of the polymer membrane Nafion"R". Two types of inner solvents, namely common water based electrolyte solution (LiOH 1N) and ionic liquid were used and investigated. Compared to IPMCs with platinum electrodes, silver-plated IPMCs with water electrolyte showed higher conductivity. The actuation response of silver-plated IPMCs with the water based electrolyte was faster than that of platinum IPMCs. However, the silver electrode was too brittle and severely damaged during the solvent exchange process from water to ionic liquid, resulted in high resistance and hence very low actuation behavior.
NASA Astrophysics Data System (ADS)
Shi, Zhiquan; Zhou, Hui; Qing, Xutang; Dai, Tingyang; Lu, Yun
2012-06-01
Porous poly(tetrafluoroethylene) (PTFE) membranes play an important role in air purification and separation engineering. To achieve the bi-functionality of conducting and antibacterial property, two kinds of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes have been prepared. One involves hydrophobic polypyrrole/nano-silver composite with hollow capsule nanostructures immobilized on the surface of the PTFE membranes. The other is a type of composite membranes with polypyrrole/nano-silver composite wholly packed on the fibrils of the expand PTFE membrane to form core/shell coaxial cable structures. The structure and morphology of the two kinds of composite membranes have been characterized by FTIR, UV-vis, XRD, TGA and SEM measurements. Possible formation mechanisms of the hollow capsules and the core/shell nanocable structures have been discussed in detail. The antibacterial effects of composite membranes are also briefly investigated.
NASA Astrophysics Data System (ADS)
Alomairy, Sultan
Organic photovoltaic (OPV) devices have been developed extensively and optimised due to the use of nanomaterials in their construction. More recently, the demand for such devices to be flexible and mechanically robust has been a major area of research. Presently, Indium Tin Oxide (ITO) is the material that is used almost exclusively for transparent electrode. However, it has several drawbacks such as brittleness, high refractive index and high processing temperature. Furthermore, the price of ITO has been highly volatile due to scarcity of indium resources and the increased consumption of the material. Therefore, cheap, flexible and solution-processed transparent conductors are required for emerging optoelectronic devices with flexible construction which can be promising for wearable or environmentally adaptable devices purposes such as flexible solar cells and displays. Therefore, over the past decade an alternative material has been sought intensively, particularly in the need for producing large area flexible transparent electrodes. Many materials have been investigated but most investigations have focused on carbon nanotube (CNT), graphene flakes and metallic nanowires. Silver nanowires (Ag NWs) networks have been proven to show a high electrical conductivity with high optical transmittance. This special characteristic is desirable in transparent conductive electrodes in optoelectronic applications such as solar cells, light emitting diodes, and touch screen. On the other hand, Polymeric substrates that act as a non-brittle scaffold as well as protective packaging of the OPV are an essential element for such an “All-plastic” device. However, for such applications where the coating should be relatively hard a bottleneck to fabricating large area homogeneous films is associated with the formation of cracks as a result of local mismatches in mechanical properties during film formation. In this work, the fabrication and characterization of flexible transparent electrodes of Ag NWs on flexible substrates by spray deposition technique have been described. Furthermore, a way to enhance the electrical and mechanical properties of the Ag NWs transparent electrodes by incorporating a low density ensemble of graphene on top of the metal electrode networks using the Langmuir-Schafer has been achieved. Interestingly, the electrical conductivity in these hybrid electrodes is stable over relatively large strains during mechanical agitation indicating that such electrodes may have important application in future applications. Finally, producing crack-free monolayer latex over large area has been fabricated and characterised. Therefore, the polymer latex thin film has promising applications as purposes of hard coatings.
Liu, Yang; Alocilja, Evangelyn; Chakrabartty, Shantanu
2009-01-01
Silver-enhanced labeling is a technique used in immunochromatographic assays for improving the sensitivity of pathogen detection. In this paper, we employ the silver enhancement approach for constructing a biomolecular transistor that uses a high-density interdigitated electrode to detect rabbit IgG. We show that the response of the biomolecular transistor comprises of: (a) a sub-threshold region where the conductance change is an exponential function of the enhancement time and; (b) an above-threshold region where the conductance change is a linear function with respect to the enhancement time. By exploiting both these regions of operation, it is shown that the silver enhancing time is a reliable indicator of the IgG concentration. The method provides a relatively straightforward alternative to biomolecular signal amplification techniques. The measured results using a biochip prototype fabricated in silicon show that 240 pg/mL rabbit IgG can be detected at the silver enhancing time of 42 min. Also, the biomolecular transistor is compatible with silicon based processing making it ideal for designing integrated CMOS biosensors.
Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin
2017-01-01
We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films. PMID:28772586
Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S
2017-02-01
Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less
Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander; ...
2017-07-14
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less
Oxidation-Resistant Surfaces For Solar Reflectors
NASA Technical Reports Server (NTRS)
Gulino, Daniel A.; Egger, Robert A.; Banholzer, William F.
1988-01-01
Thin films on silver provide highly-reflective, corrosion-resistant mirrors. Study evaluated variety of oxidation-resistant reflective materials for use in solar dynamic power system, one that generates electricity by focusing Sunlight onto reciever of heat engine. Thin films of platinum and rhodium deposited by ion-beam sputtering on various substrate materials. Solar reflectances measured as function of time of exposure to radio-frequency-generated air plasma. Several protective coating materials deposited on silver-coated substrates and exposed to plasma. Analyzed before and after exposure by electon spectroscopy for chemical analysis and by Auger spectroscopy.
NASA Astrophysics Data System (ADS)
Zastrow, Armin; Wittwer, Volker
1986-09-01
The interest in efficient daylighting systems has grown recently, due to their potential for saving a considerable amount of electrical energy used for lighting purposes. In this paper we discuss the properties of daylighting systems based on either fluorescent planar concentrators and transparent light guiding plates or light pipes coated with highly reflective silver coated plastic films. Finally we give first results from a demonstration project, daylighting systems in the students' living quarters in Stuttgart-Hohenheim, which is supported by the Commission of the European Communities.
Processing of energy materials in electromagnetic field
NASA Astrophysics Data System (ADS)
Rodzevich, A. P.; Kuzmina, L. V.; Gazenaur, E. G.; Krasheninin, V. I.
2015-09-01
This paper presents the research results of complex impact of mechanical stress and electromagnetic field on the defect structure of energy materials. As the object of research quite a typical energy material - silver azide was chosen, being a model in chemistry of solids. According to the experiments co-effect of magnetic field and mechanical stress in silver azide crystals furthers multiplication, stopper breakaway, shift of dislocations, and generation of superlattice dislocations - micro-cracks. A method of mechanical and electric strengthening has been developed and involves changing the density of dislocations in whiskers.
NASA Astrophysics Data System (ADS)
Nakhjavani, Maryam; Nikkhah, V.; Sarafraz, M. M.; Shoja, Saeed; Sarafraz, Marzieh
2017-10-01
In this paper, silver nanoparticles are produced via green synthesis method using green tea leaves. The introduced method is cost-effective and available, which provides condition to manipulate and control the average nanoparticle size. The produced particles were characterized using x-ray diffraction, scanning electron microscopic images, UV visualization, digital light scattering, zeta potential measurement and thermal conductivity measurement. Results demonstrated that the produced samples of silver nanoparticles are pure in structure (based on the x-ray diffraction test), almost identical in terms of morphology (spherical and to some extent cubic) and show longer stability when dispersed in deionized water. The UV-visualization showed a peak in 450 nm, which is in accordance with the previous studies reported in the literature. Results also showed that small particles have higher thermal and antimicrobial performance. As green tea leaves are used for extracting the silver nanoparticles, the method is eco-friendly. The thermal behaviour of silver nanoparticle was also analysed by dispersing the nanoparticles inside the deionized water. Results showed that thermal conductivity of the silver nano-fluid is higher than that of obtained for the deionized water. Activity of Ag nanoparticles against some bacteria was also examined to find the suitable antibacterial application for the produced particles.
Pressure-assisted low-temperature sintering for paper-based writing electronics.
Xu, L Y; Yang, G Y; Jing, H Y; Wei, J; Han, Y D
2013-09-06
With the aim of preparing paper-based writing electronics, a kind of conductive pen was made with nano-silver ink as the conductive component and a rollerball pen as the writing implement. This was used to direct-write conductive patterns on Epson photo paper. In order to decrease the sintering temperature, pressure was introduced to enhance the driving forces for sintering. Compared with hot sintering without pressure, hot-pressure can effectively improve the conductivity of silver coatings, reduce the sintering time and thus improve productivity. Importantly, pressure can achieve a more uniform and denser microstructure, which increases the connection strength of the silver coating. At the optimum hot-pressure condition (sintering temperature 120 ° C/sintering pressure 25 MPa/sintering time 15 min), a typical measured resistivity value was 1.43 × 10⁻⁷ Ω m, nine greater than that of bulk silver. This heat treatment process is compatible with paper and does not cause any damage to the paper substrates. Even after several thousand bending cycles, the resistivity values of writing tracks by hot-pressure sintering stay almost the same (from 1.43 × 10⁻⁷ to 1.57 × 10⁻⁷ Ω m). The stability and flexibility of the writing circuits are good, which demonstrates the promising future of writing electronics.
The effects of nanosilver on egg quality traits in laying Japanese quail
NASA Astrophysics Data System (ADS)
Farzinpour, Amjad; Karashi, Naser
2013-04-01
Silver nanoparticles could prove to be a valuable alternative raw material for antibiotics and disinfectants as it is relatively free of adverse effects. Nanosilver is now been put to practical use in commonly used items, such as, clothes, electric home appliances, and electronic industry, but has not been widely applied in the medical or pharmacological fields. This study was designed to investigate the effects of nanosilver on egg quality traits in laying Japanese quail in completely randomized design with four treatments and six repetitions at 0, 4, 8 and 12 ppm of silver nanoparticle levels. Eggs collected daily and egg parameters, including egg weight, length, width; yolk weight and eggshell thickness were examined. The effect of the different silver nanoparticle levels was determined using the General Linear Model of SAS procedure, whilst differences between the groups were determined using least significant difference test. Results indicated that silver nanoparticles at all levels caused significantly reduce of yolk weight and hen-day egg production for each week than the control treatment ( P < 0.05), whilst silver nanoparticle had no significant effect on egg weight, egg length and width and eggshell thickness.
Lee, Hyungjin; Lee, Donghwa; Ahn, Yumi; Lee, Eun-Woo; Park, Lee Soon; Lee, Youngu
2014-08-07
Highly flexible and efficient silver nanowire-based organic light-emitting diodes (OLEDs) have been successfully fabricated by employing a n-type hole injection layer (HIL). The silver nanowire-based OLEDs without light outcoupling structures exhibited excellent device characteristics such as extremely low turn-on voltage (3.6 V) and high current and power efficiencies (44.5 cd A(-1) and 35.8 lm W(-1)). In addition, flexible OLEDs with the silver nanowire transparent conducting electrode (TCE) and n-type HIL fabricated on plastic substrates showed remarkable mechanical flexibility as well as device performance.
All-tantalum electrolytic capacitor
NASA Technical Reports Server (NTRS)
Green, G. E., Jr.
1977-01-01
Device uses single-compression tantalum-to-tantalum seal. Single-compression seal allows better utilization of volume within device. As result of all-tantalum case and lengthened cathode, electrical parameters, particularly equivalent series resistance and capacitance stability, improved over silver-cased capacitor.
NASA Astrophysics Data System (ADS)
Umar, Muhammad; Min, Kyungtaek; Kim, Sunghwan
2017-02-01
Transparent, flexible, and conducting films are of great interest for wearable electronics. For better biotic/abiotic interface, the films to integrate the electronics components requires the patterned surface conductors with optical transparency, smoothness, good electrical conductivity, along with the biofriendly traits of films. We focus on silk fibroin, a natural biopolymer extracted from the Bombyx mori cocoons, for this bioelectronics applications. Here we report an optically transparent, flexible, and patterned surface conductor on a silk film by burying a silver nanowires (AgNW) network below the surface of the silk film. The conducting silk film reveals high optical transparency of 80% and the excellent electronic conductivity of 15 Ω/sq, along with smooth surface. The integration of light emitting diode (LED) chip on the patterned electrodes confirms that the current can flow through the transparent and patterned electrodes on the silk film, and this result shows an application for integration of functional electronic/opto-electronic devices. Additionally, we fabricate a transparent and flexible radio frequency (RF) antenna and resistor on a silk film and apply these as a food sensor by monitoring the increasing resistance by the flow of gases from the spoiled food.
Flexible transparent conductive film based on silver nanowires and reduced graphene oxide
NASA Astrophysics Data System (ADS)
Wang, Ke; Yang, Xing; Li, Zhi-ling; Xie, Hui; Zhao, Yu-zhen; Wang, Yue-hui
2018-05-01
Silver nanowires (AgNWs) with diameter of 90—150 nm and length of 20—50 μm were successfully synthesized by a polyol process. Graphene oxide (GO) was prepared by Hummers method, and was reduced with strong hydrazine hydrate at room temperature. The flexible transparent conductive films (TCFs) were fabricated using the mixed cellulose eater (MCE) as matrix and AgNWs and reduced graphene oxide (rGO) as conductive fillers by the improved vacuum filtration process. Then, the optical, electrical and mechanical properties of the AgNWs-rGO films were investigated. The results show that for the AgNWs-rGO film produced with the deposition densities of AgNWs and rGO as 110 mg·m-2 and 55 mg·m-2, the optical transmission at 550 nm is 88.4% with R s around 891 Ω·sq-1, whereas the optical transmission for the AgNWs-rGO film with deposition densities of AgNWs and rGO of 385 mg·m-2 and 55 mg·m-2 is 79.0% at 550 nm with R s around 9.6 Ω·sq-1. There is little overt increase in R s of the AgNWS-rGO film after tape tests for 200 times. The bending test results indicate that the change in R s of AgNWs-MCE film is less than 2% even after 200 cycles of compressive or tensile bending. The excellent mechanical properties of the AgNWs-rGO film can be attributed to the burying of AgNWs and rGO at the surface of MCE.
Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana
2016-05-01
On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of pulse thermal processing on the properties of inkjet printed metal and flexible sensors
Joshi, Pooran C.; Kuruganti, Teja; Killough, Stephen M.
2015-03-11
In this paper, we report on the low temperature processing of environmental sensors employing pulse thermal processing (PTP) technique to define a path toward flexible sensor technology on plastic, paper, and fabric substrates. Inkjet printing and pulse thermal processing technique were used to realize mask-less, additive integration of low-cost sensors on polymeric substrates with specific focus on temperature, humidity, and strain sensors. The printed metal line performance was evaluated in terms of the electrical conductivity characteristics as a function of post-deposition thermal processing conditions. The PTP processed Ag metal lines exhibited high conductivity with metal sheet resistance values below 100more » mΩ/{whitesquare} using a pulse width as short as 250 μs. The flexible temperature and relative humidity sensors were defined on flexible polyimide substrates by direct printing of Ag metal structures. The printed resistive temperature sensor and capacitive humidity sensor were characterized for their sensitivity with focus on future smart-building applications. Strain gauges were printed on polyimide substrate to determine the mechanical properties of the silver nanoparticle films. Finally, the observed electrical properties of the printed metal lines and the sensitivity of the flexible sensors show promise for the realization of a high performance print-on-demand technology exploiting low thermal-budget PTP technique.« less
NASA Astrophysics Data System (ADS)
Morsi, M. A.; El-Khodary, Sherif A.; Rajeh, A.
2018-06-01
Both lithium bromide (LiBr) and biosynthesized silver nanoparticles (Ag NPs) with average size 2-30 nm have been incorporated into the polymeric matrix of polyethylene oxide and polyacrylamide (PEO/PAM) blend by the casting method. FT-IR analysis indicates the formation of hydrogen bond between the blend components. Also, LiBr and Ag NPs interact with the functional groups of PEO/PAM matrix. The results of XRD analysis depict the semi-crystalline nature of these polymer samples and the degree of crystallinity is decreased due to the addition process. The values of optical energy gap from UV-Vis. data are decreased from 3.55 eV for blend to 3.26 for the nanocomposite sample in the indirect transition. LiBr/Ag NPs assist the improvement of the thermal stability of the PEO/PAM blend, as evidenced by TGA and DTA techniques. Upon the addition of LiBr and Ag NPs, an improvement for the conductivity, dielectric permittivity (έ) and dielectric loss (ἕ) of PEO/PAM solid polymer electrolytes are observed. It's clear that the improvement of the electrical conductivity and dielectric parameters for PEO/PAM: Li+/Ag NPs polymer electrolyte system makes it as a promising candidate for solid-state Li battery applications.
Improved metal-adhesive polymers from copper(I)-catalyzed azide-alkyne cycloaddition.
Accurso, Adrian A; Delaney, Mac; O'Brien, Jeff; Kim, Hyonny; Iovine, Peter M; Díaz Díaz, David; Finn, M G
2014-08-18
Electrically conductive adhesive polymers offer many potential advantages relative to Sn-Pb solders, including reduced toxicity, low cost, low processing temperatures, and the ability to make application-specific formulations. Polymers generated from the copper(I)-catalyzed cycloaddition (CuAAC) reaction between multivalent azides and alkynes have previously been identified as strong metal-binding adhesives. Herein we demonstrate that the performance of these materials can be remarkably improved by the incorporation of a flexibility-inducing difunctionalized component and a tertiary amine additive in optimized concentrations. The best formulations were identified by means of rapid adhesion testing of a library of potential candidates by using a custom-built instrument and validated in an American Society for Testing and Materials (ASTM)-standard lap-shear test. Characteristic phase transitions were identified by differential scanning calorimetry (DSC) for adhesives with and without the additives as a function of curing temperature. The incorporation of flexible components was found to more than double the strength of the adhesive. Moreover, the adhesive was made electrically conductive by the inclusion of 20 wt% silver-coated copper flakes and further improved in this regard by the incorporation of multiwalled carbon nanotubes in the formulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tip-Enhanced Raman Nanographs: Mapping Topography and Local Electric Fields
El-Khoury, Patrick Z.; Gong, Yu; Abellan, Patricia; ...
2015-03-05
We report tip-enhanced Raman scattering experiments in which topographic and local electric field images are recorded simultaneously. We employ a Raman-active 4,4’-dimercaptostilbene (DMS)-coated gold tip of an atomic force microscope to map the topography and image electric fields localized at nanometric (20 and 5 nm-wide) slits lithographically etched in silver. Bi-modal imaging is feasible by virtue of the recorded scanning probe position-dependent frequency-resolved optical response, which can be sub-divided into two components. The first is a 500-2250 cm-1 Raman-shifted signal, characteristic of DMS. The molecular response reports on topography through intensity contrast in the absence/presence of a plasmonic junction formedmore » between the scanning probe and patterned silver surface. Here, we demonstrate that sub-15 nm spatial resolution is attainable using a 30 nm DMS-coated gold tip. The second response consists of two correlated sub-500 cm-1 signals arising from mirror-like reflections of (i) the incident laser, and (ii) the Raman scattered response of an underlying glass support (at 100-500 cm-1) off the gold tip. We show that both the low-wavenumber signals trace the local electric fields in the vicinity of the nanometric slits.« less
Imaging of Biological Cells Using Luminescent Silver Nanoparticles
NASA Astrophysics Data System (ADS)
Kravets, Vira; Almemar, Zamavang; Jiang, Ke; Culhane, Kyle; Machado, Rosa; Hagen, Guy; Kotko, Andriy; Dmytruk, Igor; Spendier, Kathrin; Pinchuk, Anatoliy
2016-01-01
The application of luminescent silver nanoparticles as imaging agents for neural stem and rat basophilic leukemia cells was demonstrated. The experimental size dependence of the extinction and emission spectra for silver nanoparticles were also studied. The nanoparticles were functionalized with fluorescent glycine dimers. Spectral position of the resonance extinction and photoluminescence emission for particles with average diameters ranging from 9 to 32 nm were examined. As the particle size increased, the spectral peaks for both extinction and the intrinsic emission of silver nanoparticles shifted to the red end of the spectrum. The intrinsic photoluminescence of the particles was orders of magnitude weaker and was spectrally separated from the photoluminescence of the glycine dimer ligands. The spectral position of the ligand emission was independent of the particle size; however, the quantum yield of the nanoparticle-ligand system was size-dependent. This was attributed to the enhancement of the ligand's emission caused by the local electric field strength's dependence on the particle size. The maximum quantum yield determined for the nanoparticle-ligand complex was (5.2 ± 0.1) %. The nanoparticles were able to penetrate cell membranes of rat basophilic leukemia and neural stem cells fixed with paraformaldehyde. Additionally, toxicity studies were performed. It was found that towards rat basophilic leukemia cells, luminescent silver nanoparticles had a toxic effect in the silver atom concentration range of 10-100 μM.
Direct Laser Writing of Porous-Carbon/Silver Nanocomposite for Flexible Electronics.
Rahimi, Rahim; Ochoa, Manuel; Ziaie, Babak
2016-07-06
In this Research Article, we demonstrate a facile method for the fabrication of porous-carbon/silver nanocomposites using direct laser writing on polymeric substrates. Our technique uses a combination of CO2 laser-induced carbonization and selective silver deposition on a polyimide sheet to create flexible highly conductive traces. The localized laser irradiation selectively converts the polyimide to a highly porous and conductive carbonized film with superhydrophilic wettability. The resulting pattern allows for selective trapping of aqueous silver ionic ink solutions into the carbonized regions, which are converted to silver nanoparticle fillers upon an annealing step. Elemental and surface morphology analysis via XRD and SEM reveals a uniform coating of Ag nanoparticles on the porous carbon. The Ag/C composite lowers the sheet resistance of the original laser carbonized polyimide from 50 to 0.02 Ω/□. The resulting patterns are flexible and electromechanically robust with less than 0.6 Ω variation in resistance after >15000 bending flexion cycles at a radius of curvature of 5 mm. Furthermore, using this technique, we demonstrate the fabrication of a wireless resonant pressure sensor capable of detecting pressures ranging from 0 to 97 kPa with an average sensitivity of -26 kHz/kPa.
Distribution of copper, silver and gold during thermal treatment with brominated flame retardants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oleszek, Sylwia, E-mail: sylwia_oleszek@yahoo.com; Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze; Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp
2013-09-15
Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose themore » plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.« less
Open-channel integrating-type flow meter
Koopman, K.C.
1971-01-01
A relatively inexpensive meter for measuring cumulative flow in open channels with a rated control,. called a "totalizer", was developed. It translates the nonlinear function of gage height to flow by use of a cam and a float. A variable resistance element in an electronic circuit is controlled by the float so that the electron flow in the circuit corresponds to the flow of water. The flow of electricity causes electroplating of an electrode with silver. The amount of silver deposited is proportionate to the flow of water. The total flow of water is determined by removing the silver from the electrode at a fixed rate with ·an electronic device and recording the time for removal with a counter. The circuit is designed so that the ,resultant reading on the counter is in acre-feet of water.
Synthesis and Study of Silver Nanoparticles
ERIC Educational Resources Information Center
Soloman, Sally D.; Bahadory, Mozghan; Jeyarajasingam, Aravindan V.; Rutkowsky, Susan A.; Boritz, Charles; Mulfinger, Lorraine
2007-01-01
A laboratory experiment was conducted in which the students synthesized yellow colloidal silver, estimate particle size using visible spectroscopy and studied aggregation effects. The students were thus introduced to nanotechnology along with other topics such as redox chemistry, limiting and excess reactants, spectroscopy and atomic size.
Tyne, William; Lofts, Stephen; Spurgeon, David J; Jurkschat, Kerstin; Svendsen, Claus
2013-08-01
A new toxicity test medium for Caenorhabditis elegans is presented. The test solution is designed to provide a better representation of natural soil pore water conditions than currently available test media. The medium has a composition that can readily be modified to allow for studies of the influences of a range of environmentally relevant parameters on nematode biology and toxicology. Tests conducted in the new medium confirmed that nematodes' reproduction was possible at a range of solution pH levels, offering the potential to conduct toxicity studies under a variety of conditions. A test to establish silver nanoparticle and dissolved silver nitrate toxicity, a study type not feasible in M9 or agar media due to precipitation and nanoparticle agglomeration, indicated lower silver nanoparticle (median effective concentration [EC50] of 6.5 mg Ag/L) than silver nitrate (EC50 0.28 mg Ag/L) toxicity. Characterization identified stable nanoparticle behavior in the new test medium. Copyright © 2013 SETAC.
Antibacterial Effect of Silver Diamine Fluoride on Cariogenic Organisms.
Lou, Yali; Darvell, Brain W; Botelho, Michael G
2018-05-01
To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diamine fluoride (SDF), silver fluoride, and silver nitrate. Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. Silver diamine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p < 0.05) on all three test organisms, although ammonium fluoride had no effect at low concentration; the remaining other compounds had no effect. Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian-Yang; Hsueh, Yu-Lee; Huang, Jung-Jie, E-mail: jjhuang@mdu.edu.tw
2014-06-01
Silver nanowires were synthesized by the polyol method employing ethylene glycol, Poly(N-vinylpyrrolidone) (PVP) and silver nitrate (AgNO{sub 3}) as the precursors. Most of the studies used metal salts (PtCl{sub 2}, NaCl) as seed precursor to synthesize the silver nanowires. In the study, the metal salts were not used and the concentration of capping agent was changed to observe the aspect ratio of silver nanowires. The experimental results showed that controlling synthesis temperature, Poly(N-vinylpyrrolidone) (PVP) molecular weight, reactant concentrations, and addition rates of AgNO{sub 3} affects the growth characteristics of silver nanowires. Field-emission scanning electron microscopy, UV–vis spectrophotometry, and X-ray diffractometrymore » were employed to characterize the silver nanowires. As increasing the concentration of PVP, the silver nanowire diameter widened and resulted in a smaller aspect ratio. We successfully prepared silver nanowires (diameter: 170 nm, length: 20 μm). The silver nanowire thin film suspension showed high transmittance, low sheet resistance, and may be used for transparent conductive film applications. - Graphical abstract: The FE-SEM image shows that nanostructures with considerable quantities of silver nanowires can also be produced when the PVP (Mw=360 K)/AgNO{sub 3} molar ratio was 2.5. - Highlights: • The polyol method was used to synthesize of silver nanowire. • The metal seed precursors were not used before synthesizing the silver nanowires. • The silver nanowire diameter and length was 170 nm and 20 μm, respectively. • Silver nanowire film with high transmittance (>85%) and low sheet resistance (<110 Ω/sq)« less
Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier
2015-01-01
A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878
Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol
2017-05-17
To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (<3 Ω/sq) and high transparency (∼90%) simultaneously. A proper space between two metal films led to high transmittance by an optical phenomenon. The principle of parallel connection allowed the electrode to have high conductivity. In situ fabrication was possible because the only materials composing the electrode were silver and WO 3 , which can be deposited by thermal evaporation. The electrode was flexible enough to withstand 10 000 bending cycles with a 1 mm bending radius. Furthermore, a few μm scale patterning of the electrode was easily implemented by using photolithography, which is widely employed industrially for patterning. Flexible organic light-emitting diodes and a transparent flexible thin-film transistor were successfully fabricated with the proposed electrode. Various practical applications of this electrode to new transparent flexible electronics are expected.
Hydrostatic extrusion of Cu-Ag melt spun ribbon
Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.
1998-09-08
The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.
Hydrostatic extrusion of Cu-Ag melt spun ribbon
Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.
1998-01-01
The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.
Kimball, Briant A.; Johnson, Kevin K.; Runkel, Robert L.; Steiger, Judy I.
2004-01-01
The Silver Maple Claims area along Silver Creek, near Park City, Utah, is administered by the Bureau of Land Management. To quantify possible sources of elevated zinc concentrations in Silver Creek that exceed water-quality standards, the U.S. Geological Survey conducted a mass-loading study in May 2002 along a 1,400-meter reach of Silver Creek that included the Silver Maple Claims area. Additional samples were collected upstream and downstream from the injection reach to investigate other possible sources of zinc and other metals to the stream. Many metals were investigated in the study, but zinc is of particular concern for water-quality standards. The total loading of zinc along the study reach from Park City to Wanship, Utah, was about 49 kilograms per day. The Silver Maple Claims area contributed about 38 percent of this load. The Silver Creek tailings discharge pipe, which empties just inside the Silver Maple Claims area, contributed more than half the load of the Silver Maple Claims area. Substantial zinc loads also were added to Silver Creek downstream from the Silver Maple Claims area. Ground-water discharge upstream from the waste-water treatment plant contributed 20 percent of the total zinc load, and another 17 percent was contributed near the waste-water treatment plant. By identifying the specific areas where zinc and other metal loads are contributed to Silver Creek, it is possible to assess the needs of a remediation plan. For example, removing the tailings from the Silver Maple Claims area could contribute to lowering the zinc concentration in Silver Creek, but without also addressing the loading from the Silver Creek tailings discharge pipe and the ground-water discharge farther downstream, the zinc concentration could not be lowered enough to meet water-quality standards. Additional existing sources of zinc loading downstream from the Silver Maple Claims area could complicate the process of lowering zinc concentration to meet water-quality standards.
Wu, Shuwang; Li, Linhai; Xue, Han; Liu, Kai; Fan, Qingrui; Bai, Guoying; Wang, Jianjun
2017-10-24
Ice templates have been widely utilized for the preparation of porous materials due to the obvious advantages, such as environmentally benign and applicable to a wide range of materials. However, it remains a challenge to have controlled pore size as well as dimension of the prepared porous materials with the conventional ice template, since it often employs the kinetically not-stable growing ice crystals as the template. For example, there is no report so far for the preparation of 2D metal meshes with tunable pore size based on the ice template, although facile and eco-friendly prepared metal meshes are highly desirable for wearable electronics. Here, we report the preparation of 2D silver meshes with tunable mesh size employing recrystallized ice crystals as templates. Ice recrystallization is a kinetically stable process; therefore, the grain size of recrystallized ice crystals can be easily tuned, e.g., by adding different salts and changing the annealing temperature. Consequently, the size and line width of silver meshes obtained after freeze-drying can be easily adjusted, which in turn varied the conductivity of the obtained 2D silver film. Moreover, the silver meshes are transparent and display stable conductivity after the repeated stretching and bending. It can be envisioned that this approach for the preparation of 2D conducting films is of practical importance for wearable electronics. Moreover, this study provides a generic approach for the fabrication of 2D meshes with a controllable pore size.
Large silver-cadmium technology program
NASA Technical Reports Server (NTRS)
Charlip, S.; Lerner, S.
1971-01-01
The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.
Application of Microsecond Voltage Pulses for Water Disinfection by Diaphragm Electric Discharge
NASA Astrophysics Data System (ADS)
Kakaurov, S. V.; Suvorov, I. F.; Yudin, A. S.; Solovyova, T. L.; Kuznetsova, N. S.
2015-11-01
The paper presents the dependence of copper and silver ions formation on the duration of voltage pulses of diaphragm electric discharge and on the pH of treated liquid medium. Knowing it allows one to create an automatic control system to control bactericidal agent's parameters obtained in diaphragm electric discharge reactor. The current-voltage characteristic of the reactor with a horizontal to the diaphragm membrane water flow powered from the author's custom pulse voltage source is also presented. The results of studies of the power consumption of diaphragm electric discharge depending on temperature of the treated liquid medium are given.
NASA Technical Reports Server (NTRS)
1994-01-01
The Vision Catalyst Purifier employs the basic technology developed by NASA to purify water aboard the Apollo spacecraft. However, it also uses an "erosion" technique. The purifier kills bacteria, viruses, and algae by "catalytic corrosion." A cartridge contains a silver-impregnated alumina bed with a large surface area. The catalyst bed converts oxygen in a pool of water to its most oxidative state, killing over 99 percent of the bacteria within five seconds. The cartridge also releases into the pool low levels of ionic silver and copper through a controlled process of erosion. Because the water becomes electrochemically active, no electricity is required.
Zhang, Bingjie; Smith, Paul F.; Lee, Seung-Yong; ...
2016-12-01
Efficient conduction of both electrons and cations (e.g., Li +) has a profound effect on the current and capacity of lithium-based batteries. With this study, we focus on cathode effects, with the preparation of pure silver hollandite materials with variable silver ion content within (intra-tunnel) and on the surface of α-MnO 2 tunneled materials, followed by the measurement and analysis of impedance and electrochemistry data. Specifically, pure Ag xMn 8O 16-y materials with low (x = 1.13) and high (x = 1.54) intra-tunnel silver content are compared with Ag xMn 8O 16-y·aAg 2O (a = 0.25, 0.63, 1.43) composites preparedmore » via a new Ag 2O coating strategy. When the Ag 2O (a = 0, 0.25) content is low, the material with higher intra-tunnel silver (x = 1.53) content delivers up to ~5-fold higher capacity accounted for by a ~10-fold lower impedance than its lower intra-tunnel silver (x = 1.13) counterpart. In the presence of high Ag 2O content (a = 0.63, 1.43), both composites exhibit comparable impedance but the lower intra-tunnel silver (x = 1.13) composite delivers up to ~1.5-fold higher capacity than higher intra-tunnel silver composite, highlighting the key role of Li + transport under those conditions. Our results demonstrate material design strategies which can significantly increase electronic and ionic conductivities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bingjie; Smith, Paul F.; Lee, Seung-Yong
Efficient conduction of both electrons and cations (e.g., Li +) has a profound effect on the current and capacity of lithium-based batteries. With this study, we focus on cathode effects, with the preparation of pure silver hollandite materials with variable silver ion content within (intra-tunnel) and on the surface of α-MnO 2 tunneled materials, followed by the measurement and analysis of impedance and electrochemistry data. Specifically, pure Ag xMn 8O 16-y materials with low (x = 1.13) and high (x = 1.54) intra-tunnel silver content are compared with Ag xMn 8O 16-y·aAg 2O (a = 0.25, 0.63, 1.43) composites preparedmore » via a new Ag 2O coating strategy. When the Ag 2O (a = 0, 0.25) content is low, the material with higher intra-tunnel silver (x = 1.53) content delivers up to ~5-fold higher capacity accounted for by a ~10-fold lower impedance than its lower intra-tunnel silver (x = 1.13) counterpart. In the presence of high Ag 2O content (a = 0.63, 1.43), both composites exhibit comparable impedance but the lower intra-tunnel silver (x = 1.13) composite delivers up to ~1.5-fold higher capacity than higher intra-tunnel silver composite, highlighting the key role of Li + transport under those conditions. Our results demonstrate material design strategies which can significantly increase electronic and ionic conductivities.« less
APPARATUS FOR CONVERTING HEAT INTO ELECTRICITY
Crouthamel, C.E.; Foster, M.S.
1964-01-28
This patent shows an apparatus for converting heat to electricity. It includes a galvanic cell having an anodic metal anode, a fused salt electrolyte, and a hydrogen cathode having a diffusible metal barrier of silver-- palladium alloy covered with sputtered iron on the side next to the fused electrolyte. Also shown is a regenerator for regenerating metal hydride produced by the galvanic cell into hydrogen gas and anodic metal, both of which are recycled. (AEC)
Neural pathways from thalamus associated with regulation of aggressive behavior.
Bandler, R J; Flynn, J P
1974-01-11
Small electrolytic lesions were made through electrodes in the thalamus of cats at sites where electrical stimulation elicited attack on a rat. Staining by modified Nauta reduced silver methods revealed that significant degeneration passed caudally from the lesions and entered the midbrain dorsal central gray region. Electrical stimulation of this dorsal midbrain region elicited attack on a rat, and destruction of this region suppressed the attack elicited by thalamic stimulation.
USDA-ARS?s Scientific Manuscript database
Saturated sand-packed column experiments were conducted to investigate the influence of physicochemical factors on the transport and retention of surfactant stabilized silver nanoparticles (AgNPs). The normalized concentration in breakthrough curves (BTCs) of AgNPs increased with a decrease in solut...
Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil
USDA-ARS?s Scientific Manuscript database
Column experiments were conducted with undisturbed loamy sand soil under unsaturated conditions (around 90% saturation degree) to investigate the retention of surfactant stabilized silver nanoparticles (AgNPs) with various input concentration (Co), flow velocity, and ionic strength (IS), and the rem...
A highly stretchable, transparent, and conductive polymer
Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; ...
2017-03-10
Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm undermore » 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. As a result, the combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.« less
A highly stretchable, transparent, and conductive polymer
Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I.; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F.; Murmann, Boris; Bao, Zhenan
2017-01-01
Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects. PMID:28345040
NASA Astrophysics Data System (ADS)
Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.
2016-05-01
The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.
NASA Astrophysics Data System (ADS)
Wei, Ying; Yao, Kai; Wang, Xiaofeng; Jiang, Yihua; Liu, Xueyuan; Zhou, Naigen; Li, Fan
2018-01-01
In this paper, we demonstrate the high-performance inverted planar heterojunction perovskite solar cells (PeSCs) based on the novel inorganic hole-transporting layer (HTL) of silver (Ag)-doped NiOx (Ag:NiOx). Density-functional theory (DFT) calculation reveals that Ag prefers to occupy the substitutional Ni site (AgNi) and behaves as an acceptor in NiO lattice. Compared with the pristine NiOx films, appropriate Ag doping can increase the optical transparency, work function, electrical conductivity and hole mobility of NiOx films. Moreover, the CH3NH3PbI3 perovskite films grown on Ag:NiOx exhibit better crystallinity, higher coverage and smoother surface with densely packed larger grains than those grown on the pristine NiOx film. Consequently, the Ag:NiOx HTL boosts the efficiency of the inverted planar heterojunction PeSCs from 13.46% (for the pristine NiOx-based device) to 16.86% (for the 2 at.% Ag:NiOx-based device). Furthermore, the environmental stability of PeSCs based on Ag:NiOx HTL is dramatically improved compared to devices based on organic HTLs and pristine NiOx HTLs. This work provides a simple and effective HTL material system for high-efficient and stable PeSCs.
NASA Astrophysics Data System (ADS)
Hazarika, Ankita; Deka, Biplab K.; Kim, Doyoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook
2017-01-01
We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.
Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook
2017-01-11
We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.
Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S
2013-06-01
Silver vanadium oxide (Ag 2 V 4 O 11 , SVO) has enjoyed widespread commercial success over the past 30 years as a cathode material for implantable cardiac defibrillator (ICD) batteries. Recently, silver vanadium phosphorous oxide (Ag 2 VO 2 PO 4 , SVPO) has been studied as possibly combining the desirable thermal stability aspects of LiFePO 4 with the electrical conductivity of SVO. Further, due to the noted insoluble nature of most phosphate salts, a lower material solubility of SVPO relative to SVO is anticipated. Thus, the first vanadium dissolution studies of SVPO in battery electrolyte solutions are described herein. The equilibrium solubility of SVPO was ~5 times less than SVO, with a rate constant of dissolution ~3.5 times less than that of SVO. The vanadium dissolution in SVO and SVPO can be adequately described with a diffusion layer model, as supported by the Noyes-Whitney equation. Cells prepared with vanadium-treated anodes displayed higher AC impedance and DC resistance relative to control anodes. These data support the premise that SVPO cells are likely to exhibit reduced cathode solubility and thus less affected by increased cell resistance due to cathode solubility compared to SVO based cells.
Influence of Bi addition on the property of Ag-Bi nano-composite coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei
Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less
Influence of Bi addition on the property of Ag-Bi nano-composite coatings
Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei; ...
2018-03-26
Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less
Development of a 0.014-inch magnetic resonance imaging guidewire.
Qiu, Bensheng; Karmarkar, Parag; Brushett, Chris; Gao, Fabao; Kon, Ryan; Kar, Sourav; Atalar, Ergin; Yang, Xiaoming
2005-04-01
The purpose of this study was to develop a standard 0.014-inch intravascular magnetic resonance imaging guidewire (MRIG), a coaxial cable with an extension of the inner conductor, specifically designed for use in the small vessels. After a theoretical analysis, the 0.014-inch MRIG was built by plating/cladding highly electrically conductive materials, silver or gold, over the inside and outside of the coaxial conductors. The conductors were made of superelastic, nonmagnetic, biocompatible materials, Nitinol or MP35N. Then, in comparison with a previously designed 0.032-inch MRIG, the performance of the new 0.014-inch MRIG in vitro and in vivo was successfully evaluated. This study represents the initial work to confirm the critical role of highly conductive and superelastic materials in building such small-size MRIGs, which are expected to generate high-resolution MR imaging of vessel walls/plaques and guide endovascular interventional procedures in the small vessels, such as the coronary arteries. Copyright 2005 Wiley-Liss, Inc.
Zhou, Qifa; Wu, Dawei; Jin, Jing; Hu, Chang-hong; Xu, Xiaochen; Williams, Jay; Cannata, Jonathan M; Lim, Leongchew; Shung, K Kirk
2008-01-01
A high-frequency angled needle ultrasound transducer with an aperture size of 0.4 x 0.56 mm2 was fabricated using a lead zinc niobate-lead titanate (PZN- 7%PT) single crystal as the active piezoelectric material. The single crystal was bonded to a conductive silver particle matching layer and a conductive epoxy backing material through direct contact curing. A parylene outer matching layer was formed by vapor deposition. Angled needle probe configuration was achieved by dicing at 45 degrees to the single crystal poling direction to satisfy a clinical request for blood flow measurement in the posterior portion of the eye. The electrical impedance magnitude and phase of the transducer were 42 Omega and -63 degrees , respectively. The measured center frequency and the fractional bandwidth at -6 dB were 43 MHz and 45%, respectively. The two-way insertion loss was approximately 17 dB. Wire phantom imaging using fabricated PZN-7%PT single crystal transducers was obtained and spatial resolutions were assessed.
Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk
2007-03-01
High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.
Ehdaie, Beeta; Rento, Chloe T.; Son, Veronica; Turner, Sydney S.; Samie, Amidou; Dillingham, Rebecca A.
2017-01-01
The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet’s performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings. PMID:28095435
Ehdaie, Beeta; Rento, Chloe T; Son, Veronica; Turner, Sydney S; Samie, Amidou; Dillingham, Rebecca A; Smith, James A
2017-01-01
The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet's performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver-embedded ceramic tablet was simple to use and culturally appropriate. Also, silver levels in all treated water samples remained below 20 μg/L, significantly lower than the drinking water standard of 100 μg/L, making it safe for consumption. Long-term data demonstrates that the silver-embedded ceramic tablet has beneficial effects even after one year of use. This study demonstrates that the silver-embedded ceramic tablet can effectively improve water quality when used alone, or with ceramic water filters, to reduce rates of recontamination. Therefore, the tablet has the potential to provide a low-cost means to purify water in resource-limited settings.
Silver nanoparticle assisted urine sugar determination using thermal lens spectroscopy
NASA Astrophysics Data System (ADS)
Thomas, Lincy; John, Jisha; George, Nibu A.; Kurian, Achamma
2014-11-01
Nanotechnology plays a vital role in the development of biosensors by enhancing their sensitivity and performance. In this paper, we report a novel urine sugar sensing method that makes use of the unique properties of silver-nanofluids in combination with the laser induced photothermal lens technique. The thermal lens signal decreases with increase in sugar levels in urine samples, which may be attributed to the enhanced interaction of glucose and conduction electrons of silver-nanoparticles, thereby changing the surface plasmon energy.
Silver-Foil Psychrometer for Measuring Leaf Water Potential in situ.
Hoffman, G J; Rawlins, S L
1972-09-01
The water potential of leaves in situ can be measured without temperature control with a miniature, single-junction psychrometer constructed from silver foil and attached to the leaf with a silver-impregnated, conductive coating. The temperature of the psychrometer has been found to stay within 0.025 degrees C of the temperature of a simulated leaf when the latter temperature was changing at a rate of 1 degrees C per minute. Leaf water potentials can be measured with a precision of +/- 1 bar, or better.
Microwave-assisted green synthesis of silver nanostructures.
Nadagouda, Mallikarjuna N; Speth, Thomas F; Varma, Rajender S
2011-07-19
Over the past 25 years, microwave (MW) chemistry has moved from a laboratory curiosity to a well-established synthetic technique used in many academic and industrial laboratories around the world. Although the overwhelming number of MW-assisted applications today are still performed on a laboratory (mL) scale, we expect that this enabling technology may be used on a larger, perhaps even production, scale in conjunction with radio frequency or conventional heating. Microwave chemistry is based on two main principles, the dipolar mechanism and the electrical conductor mechanism. The dipolar mechanism occurs when, under a very high frequency electric field, a polar molecule attempts to follow the field in the same alignment. When this happens, the molecules release enough heat to drive the reaction forward. In the second mechanism, the irradiated sample is an electrical conductor and the charge carriers, ions and electrons, move through the material under the influence of the electric field and lead to polarization within the sample. These induced currents and any electrical resistance will heat the sample. This Account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Researchers have successfully demonstrated the application of this method in the preparation of silver (Ag), gold (Au), platinum (Pt), and gold-palladium (Au-Pd) nanostructures. MW heating conditions allow not only for the preparation of spherical nanoparticles within a few minutes but also for the formation of single crystalline polygonal plates, sheets, rods, wires, tubes, and dendrites. The morphologies and sizes of the nanostructures can be controlled by changing various experimental parameters, such as the concentration of metallic salt precursors, the surfactant polymers, the chain length of the surfactant polymers, the solvents, and the operation reaction temperature. In general, nanostructures with smaller sizes, narrower size distributions, and a higher degree of crystallization have been obtained more consistently via MW heating than by heating with a conventional oil-bath. The use of microwaves to heat samples is a viable avenue for the greener synthesis of nanomaterials and provides several desirable features such as shorter reaction times, reduced energy consumption, and better product yields.
Ning, Honglong; Chen, Jianqiu; Fang, Zhiqiang; Tao, Ruiqiang; Cai, Wei; Yao, Rihui; Hu, Shiben; Zhu, Zhennan; Zhou, Yicong; Yang, Caigui; Peng, Junbiao
2017-01-01
Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium–gallium–zinc–oxide (a-IGZO) TFTs with good electrical performance. In this paper, silver (Ag) source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm2·V−1·s−1 and an on/off current ratio of over 105. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance. PMID:28772410
Ning, Honglong; Chen, Jianqiu; Fang, Zhiqiang; Tao, Ruiqiang; Cai, Wei; Yao, Rihui; Hu, Shiben; Zhu, Zhennan; Zhou, Yicong; Yang, Caigui; Peng, Junbiao
2017-01-10
Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs with good electrical performance. In this paper, silver (Ag) source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm²·V -1 ·s -1 and an on/off current ratio of over 10⁵. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance.
Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer
NASA Technical Reports Server (NTRS)
Johannes, Daniel; Webber, Robert
2013-01-01
Adiabatic demagnetization refrigerators (ADR) are operated in space to cool detectors of cosmic radiation to a few 10s of mK. A key element of the ADR is a superconducting magnet operating at about 0.3 K that is continually energized and de-energized in synchronism with a thermal switch, such that a piece of paramagnetic salt is alternately warm in a high magnetic field and cold in zero magnetic field. This causes the salt pill or refrigerant to cool, and it is able to suck heat from an object, e.g., the sensor, to be cooled. Current has to be fed into and out of the magnets from a dissipative power supply at the ambient temperature of the spacecraft. The current leads that link the magnets to the power supply inevitably conduct a significant amount of heat into the colder regions of the supporting cryostat, resulting in the need for larger, heavier, and more powerful supporting refrigerators. The aim of this project was to design and construct high-temperature superconductor (HTS) leads from YBCO (yttrium barium copper oxide) composite conductors to reduce the heat load significantly in the temperature regime below the critical temperature of YBCO. The magnet lead does not have to support current in the event that the YBCO ceases to be superconducting. Cus - tomarily, a normal metal conductor in parallel with the YBCO is a necessary part of the lead structure to allow for this upset condition; however, for this application, the normal metal can be dispensed with. Amorphous silicon dioxide is deposited directly onto the surface of YBCO, which resides on a flexible substrate. The silicon dioxide protects the YBCO from chemically reacting with atmospheric water and carbon dioxide, thus preserving the superconducting properties of the YBCO. The customary protective coating for flexible YBCO conductors is silver or a silver/gold alloy, which conducts heat many orders of magnitude better than SiO2 and so limits the use of such a composite conductor for passing current across a thermal gradient with as little flow of heat as possible to make an efficient current lead. By protecting YBCO on a flexible substrate of low thermal conductivity with SiO2, a thermally efficient and flexible current lead can be fabricated. The technology is also applicable to current leads for 4 K superconducting electronics current biasing. A commercially available thin-film YBCO composite tape conductor is first stripped of its protective silver coating. It is then mounted on a jig that holds the sample flat and acts as a heat sink. Silicon dioxide is then deposited onto the YBCO to a thickness of about 1 micron using PECVD (plasma-enhanced chemical vapor deposition), without heating the YBCO to the point where degradation occurs. Since SiO2 can have good high-frequency electrical properties, it can be used to coat YBCO cable structures used to feed RF signals across temperature gradients. The prime embodiment concerns the conduction of DC current across the cryogenic temperature gradient. The coating is hard and electrically insulating, but flexible.
NASA Astrophysics Data System (ADS)
Ichinose, Ataru; Horii, Shigeru; Doi, Toshiya
2017-10-01
Two approaches to reducing the material cost of second-generation superconducting wires are proposed in this paper: (1) instead of the electrical stabilizing layers of silver and copper presently used on the superconducting layer, a Nb-doped SrTiO3 conductive buffer layer and cube-textured Cu are proposed as an advanced architecture, and (2) the use of an electromagnetic (EM) steel tape as a metal substrate of coated conductors in a conventional architecture. In structures fabricated without using electrical stabilizing layers on the superconducting layer, the critical current density achieved at 77 K in a self-field was approximately 2.6 MA/cm2. On the other hand, in the case of using EM steel tapes, although the critical current density was far from practical at the current stage, the biaxial alignment of YBa2Cu3O y (YBCO) and buffer layers was realized without oxidation on the metal surface. In this study, the possibility of material cost reduction has been strongly indicated toward the development of low-cost second-generation superconducting wires in the near future.
Wang, Jianqiang; Wu, Yichao; Yang, Zhe; Guo, Hao; Cao, Bin; Tang, Chuyang Y
2017-05-24
We report a facile method for preparing silver-loaded membranes for point-of-use disinfection and disaster relief applications. A bio-inspired material, polydopamine, was coated onto a highly porous nanofibrous polyacrylonitrile substrate. We then take advantage of the redox properties of polydopamine to form silver nanoparticles in situ. These nanoparticles were uniformly distributed on the surface of nanofibers with no apparent agglomeration at a silver loading up to 4.36 wt.% (cPAN-Ag1.5). The silver-incorporated membrane cPAN-Ag1.5 achieved a high pure water flux of 130 Lm -2 h -1 at 10-cm water head, demonstrating the feasibility of energy-efficient gravity-driven filtration and eliminating the need for electrical power. The strong anti-bacterial activity and high physical rejection of the membrane led to an excellent disinfection power, with no viable bacterial cells detected in its permeate water. The membrane exhibited >7 log reduction for E. coli and >6 log reduction for B. subtilis. The strategy reported here provides an efficient and green route to synthesize point-of-use membranes. Combining their excellent permeability and disinfection effectiveness, these membranes offer an ideal solution to water supply in disaster-affected areas.
Membrane-free battery for harvesting low-grade thermal energy.
Yang, Yuan; Loomis, James; Ghasemi, Hadi; Lee, Seok Woo; Wang, Yi Jenny; Cui, Yi; Chen, Gang
2014-11-12
Efficient and low-cost systems are desired to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). An attractive approach is the thermally regenerative electrochemical cycle (TREC), which uses the dependence of electrode potential on temperature to construct a thermodynamic cycle for direct heat-to-electricity conversion. By varying the temperature, an electrochemical cell is charged at a lower voltage than discharged; thus, thermal energy is converted to electricity. Recently, a Prussian blue analog-based system with high efficiency has been demonstrated. However, the use of an ion-selective membrane in this system raises concerns about the overall cost, which is crucial for waste heat harvesting. Here, we report on a new membrane-free battery with a nickel hexacyanoferrate (NiHCF) cathode and a silver/silver chloride anode. The system has a temperature coefficient of -0.74 mV K(-1). When the battery is discharged at 15 °C and recharged at 55 °C, thermal-to-electricity conversion efficiencies of 2.6% and 3.5% are achieved with assumed heat recuperation of 50% and 70%, respctively. This work opens new opportunities for using membrane-free electrochemical systems to harvest waste heat.
Electroless silver plating on PET fabric initiated by in situ reduction of polyaniline
NASA Astrophysics Data System (ADS)
Mu, Shipeng; Xie, Huayang; Wang, Wei; Yu, Dan
2015-10-01
Novel electroless silver plating poly(ethylene terephthalate) (PET) fabric was prepared by a two-step procedure. In the first step, the in situ polymerized polyaniline (PANI) occurred on the fabric surface in the presence of ammonium persulfate (APS). Then, Ag(0) species reduced from silver nitrate (AgNO3) by in situ reduction of PANI were used as catalyst to initiate electroless silver plating. Hence, this composite material was prepared by conductive polymer combined with electroless plating. The silver layer on PET fabric surface was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) as well as X-ray photoelectron spectroscopy (XPS). The results showed that the silver layer was plated uniformly and compactly with surface resistance about 0.1 Ω/sq on average. The shielding effectiveness (SE) of silver-plated PET fabric was around 50-90 dB, which was considered to have potential applications in electromagnetic shielding materials. Thermogravimetric (TG) analysis was carried out to study thermal stability. The antibacterial tests demonstrated that the silver-plated fabric exhibited excellent antibacterial activity against Staphylococcus aureus and Escherichia coli both with 100%.
USDA-ARS?s Scientific Manuscript database
Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer material with varying silt and clay content, background solution chemistry, and flow velocity. Brea...
NASA Astrophysics Data System (ADS)
Chen, Sujie; Li, Siying; Peng, Sai; Huang, Yukun; Zhao, Jiaqing; Tang, Wei; Guo, Xiaojun
2018-01-01
Soft conductive films composed of a silver nanowire (AgNW) network, a neutral-pH PEDOT:PSS over-coating layer and a polydimethylsiloxane (PDMS) elastomer substrate are fabricated by large area compatible coating processes. The neutral-pH PEDOT:PSS layer is shown to be able to significantly improve the conductivity, stretchability and air stability of the conductive films. The soft conductive films are patterned using a simple maskless patterning approach to fabricate an 8 × 8 flexible pressure sensor array. It is shown that such soft conductive films can help to improve the sensitivity and reduce the signal crosstalk over the pressure sensor array. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 16JC1400603).
Schmuckler, Jo
2008-08-01
Electrical stimulation and other modalities are recommended for treatment of pressure ulcers in spinal cord injury patients but their use may be limited by clinical contraindications such as necrosis and infection. Acoustic pressure wound therapy can be used to address infection and has no known contraindications related to wound status. A retrospective nonconsecutive study was conducted involving five inpatients with sacral pressure ulcers and compromised mobility (spinal cord injury, ventilator/mobility dependency, or persistent vegetative state) treated with acoustic pressure wound therapy three times per week, 4 to 6 minutes per session, for 5 weeks to 5.5 months. Acoustic pressure wound therapy was administered until necrotic tissue was removed, granulation was complete, drainage resolved to moderate levels, and wound size was compatible with indications for high-voltage electrical stimulation. Within 1 to 4 weeks of starting acoustic pressure wound therapy, four out of five wounds with substantial yellow slough or eschar demonstrated 100% granulation tissue and wound area and volume decreased 71% to 97% and 75% to 99%, respectively. Subsequent treatments included electrical stimulation alone (three patients) or in conjunction with negative pressure wound therapy (one patient), and silver foam (one patient). Acoustic pressure wound therapy was found to be an effective option in preparing wounds for subsequent therapy.
Compact cladding-pumped planar waveguide amplifier and fabrication method
Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.
2003-10-28
A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.
Silver concentrations and selected hydrologic data in the Upper Colorado River basin, 1991-92
Johncox, D.A.
1993-01-01
The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District and the Northern Colorado Water Conservancy District, collected water and sediment samples in May and September 1991 and 1992 from nine stream-sampling sites and three lake-sampling sites within the Upper Colorado River Basin upstream from Kremmling, Colorado. Data were collected to determine the present (1992) conditions of the Upper Colorado River Basin regarding silver concentrations in the water and sediment. Lake-water and stream-water samples were analyzed for concentrations of total recoverable silver, dissolved silver, and suspended solids. Lake- and stream-bottom material was analyzed for concentrations of total recoverable silver. Additional data collected were streamflow, specific conductance, pH, and water temperature. Transparency (Secchi-disk measurements) also was measured in the lakes.
Methods and apparatus for controlling dispersions of nanoparticles
Lavrentovich, Oleg D; Golovin, Andrii B
2014-10-21
Electrically reconfigurable metamaterial with spatially varied refractive index is proposed for applications such as optical devices and lenses. The apparatus and method comprises a metamaterial in which the refractive indices are modified in space and time by applying one or more electric fields. The metamaterials are electrically controllable and reconfigurable, and consist of metal (gold, silver, etc.) particles of different shapes, such as rods, with dimension much smaller than the wavelength of light, dispersed in a dielectric medium. The metamaterial is controlled by applying a non-uniform electric field that causes two effects: (1) It aligns the metallic anisometric particles with respect to the direction of the applied electric field and (2) It redistributes particles in space, making their local concentration position dependent.
Microwave-assisted one-step patterning of aqueous colloidal silver.
Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N
2012-07-05
A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.
Genetics of behavior in the silver fox.
Kukekova, Anna V; Temnykh, Svetlana V; Johnson, Jennifer L; Trut, Lyudmila N; Acland, Gregory M
2012-02-01
The silver fox provides a rich resource for investigating the genetics of behavior, with strains developed by intensely selective breeding that display markedly different behavioral phenotypes. Until recently, however, the tools for conducting molecular genetic investigations in this species were very limited. In this review, the history of development of this resource and the tools to exploit it are described. Although the focus is on the genetics of domestication in the silver fox, there is a broader context. In particular, one expectation of the silver fox research is that it will be synergistic with studies in other species, including humans, to yield a more comprehensive understanding of the molecular mechanisms and evolution of a wider range of social cognitive behaviors.
NASA Astrophysics Data System (ADS)
Kim, Jin-Hoon; Triambulo, Ross E.; Park, Jin-Woo
2017-03-01
We investigated the charge injection properties of silver nanowire networks (AgNWs) in a composite-like structure with poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS). The composite films acted as the anodes and hole transport layers (HTLs) in organic light-emitting diodes (OLEDs). The current density (J)-voltage (V)-luminance (L) characteristics and power efficiency (ɛ) of the OLEDs were measured to determine their electrical and optical properties. The charge injection properties of the AgNWs in the OLEDs during operation were characterized via impedance spectroscopy (IS) by determining the variations in the capacitances (C) of the devices with respect to the applied V and the corresponding frequency (f). All measured results were compared with results for OLEDs fabricated on indium tin oxide (ITO) anodes. The OLEDs on AgNWs showed lower L and ɛ values than the OLEDs on ITO. It was also observed that AgNWs exhibit excellent charge injection properties and that the interfaces between the AgNWs and the HTL have very small charge injection barriers, resulting in an absence of charge carrier traps when charges move across these interfaces. However, in the AgNW-based OLED, there was a large mismatch in the number of injected holes and electrons. Furthermore, the highly conductive electrical paths of the AgNWs in the composite-like AgNW and PEDOT:PSS structure allowed a large leakage current of holes that did not participate in radiative recombination with the electrons; consequently, a lower ɛ was observed for the AgNW-based OLEDs than for the ITO-based OLEDs. To match the injection of electrons by the electron transport layer (ETL) in the AgNW-based OLED with that of holes by the AgNW/PEDOT:PSS composite anode, the electron injection barrier of the ETL was decreased by using the low work function polyethylenimine ethoxylated (PEIE) doped with n-type cesium carbonate (Cs2CO3). With the doped-PEIE, the performance of the AgNW-based OLED was significantly enhanced through the balanced injection of holes and electrons, which clearly verified our analysis results by IS.
Preliminary Results of an Experimental Investigation of the Qu Superconducting Heat Pipe
NASA Technical Reports Server (NTRS)
Blackmon, James B.; Entrekin, Sean F.
2006-01-01
This note on preliminary results of our evaluation of the so-called Qu Tube is prompted in part by recent concerns expressed to the authors by some researchers regarding the performance characteristics of the superconducting, solid-state heat pipe as described in the patents, or on the company's websites. Briefly, the company's claims include: a new type of heat transfer mechanism that is a form of solid state thermal superconductivity, which results in an effective thermal conductivity of the order of tens of thousands of times that of an equivalent solid silver bar, or, tens to hundreds of times that of liquid - vapor heat pipes. The company's website also refers to tests conducted by Stanford Research Institute that substantiate these claims, but the report is apparently not publicly available. We are conducting an investigation of the Qu Tube under a NASA Grant, and in general find that these claims have merit, but our study is not yet complete. We present some of our preliminary results in part to show that it would not be imprudent to conduct such studies, especially for possible future applications requiring exceptional thermal management performance capabilities. Working with HiTek Services, we originally acquired several Qu Tubes, including 17" long, 5/16" diameter copper tubes, one that is 7 7/8" long, 3/16" diameter, and one that is 4" long, 1" diameter. We subjected the smaller tubes to various exploratory tests, including a transient test with electrical band heaters, boiling water tests, and a series of steady state tests with electrical band heaters heating one end with free convective cooling along the remainder of the length. All results indicate a very high thermal conductivity, but the length of these tubes limited our ability to obtain accurate data on temperature gradients, necessary to determine the effective thermal conductivity. We then acquired nine Qu Tubes that are 10' long, 5/16" diameter, and we have recently conducted initial tests, which further support the claims of exceptional thermal conductivity.
Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface.
Hu, Hang; Wang, Zhongyong; Ye, Qinxian; He, Jiaqing; Nie, Xiao; He, Gufeng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao
2016-08-10
Integrating connected silver nanowire networks with flexible polymers has appeared as a popular way to prepare flexible electronics. To reduce the contact resistance and enhance the connectivity between silver nanowires, various welding techniques have been developed. Herein, rather than welding on solid supporting substrates, which often requires complicated transferring operations and also may pose damage to heat-sensitive substrates, we report an alternative approach to prepare easily transferrable conductive networks through welding of self-assembled silver nanowires at the air/water interface using plasmonic heating. The intriguing welding behavior of partially aligned silver nanowires was analyzed with combined experimental observation and theoretical modeling. The underlying water not only physically supports the assembled silver nanowires but also buffers potential overheating during the welding process, thereby enabling effective welding within a broad range of illumination power density and illumination duration. The welded networks could be directly integrated with PDMS substrates to prepare high-performance stable flexible heaters that are stretchable, bendable, and can be easily patterned to explore selective heating applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu
Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasingmore » trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.« less
NASA Astrophysics Data System (ADS)
Rahman, Md Taibur; McCloy, John; Ramana, C. V.; Panat, Rahul
2016-08-01
Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24-500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.
Nagabandi, N.; Yegin, C.; Feng, X.; ...
2018-01-31
Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques; including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. Internal nanostructure was found to be strongly dependent on the linker chemistry. Whilemore » the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride (BBC) linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W/m-K and 306-321 W/m-K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 495 to 400 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3x10-6 m2/K-s for MBCA-BNNS and 8.5x10-7 m2/K-s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.« less
Nagabandi, N; Yegin, C; Feng, X; King, C; Oh, J K; Scholar, E A; Narumanchi, S; Akbulut, M
2018-03-09
Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m -1 K and 306-321 W m -1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10 -6 m 2 K -1 s for MBCA-BNNS and 8.5 × 10 -7 m 2 K -1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.
NASA Astrophysics Data System (ADS)
Nagabandi, N.; Yegin, C.; Feng, X.; King, C.; Oh, J. K.; Scholar, E. A.; Narumanchi, S.; Akbulut, M.
2018-03-01
Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m-1 K and 306-321 W m-1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10-6 m2 K-1 s for MBCA-BNNS and 8.5 × 10-7 m2 K-1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagabandi, N.; Yegin, C.; Feng, X.
Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques; including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. Internal nanostructure was found to be strongly dependent on the linker chemistry. Whilemore » the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride (BBC) linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W/m-K and 306-321 W/m-K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 495 to 400 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3x10-6 m2/K-s for MBCA-BNNS and 8.5x10-7 m2/K-s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.« less
Probing physical properties at the nanoscale using atomic force microscopy
NASA Astrophysics Data System (ADS)
Ditzler, Lindsay Rachel
Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating interactions at the nanoscale, such as ligand-receptor interactions. This work examines the interactions between the enzyme dihydrofolate reductase (DHFR), a widely investigated enzyme targeted for cancer and antimicrobial pharmaceutical, and methotrexate (MTX), a strong competitive inhibitor of DHFR. The DHFR was immobilized on a gold substrate, bound through a single surface cysteine, and maintained catalytic activity. AFM probe was functionalized with MTX and the interaction strength was measured using AFM. This work highlights the versatility of AFM, specifically force spectroscopy for the quantification of electrical, mechanical, and ligand-receptor interactions at the nanoscale.
Photonic confinement in laterally structured metal-organic microcavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mischok, Andreas, E-mail: andreas.mischok@iapp.de; Brückner, Robert; Sudzius, Markas
2014-08-04
We investigate the formation of optical modes in organic microcavities with an incorporated perforated silver layer. The metal leads to a formation of Tamm-plasmon-polaritons and thus separates the sample into metal-free or metal-containing areas, supporting different resonances. This mode splitting is exploited to confine photons in elliptic holes and triangular cuts, forming distinctive standing wave patterns showing the strong lateral confinement. A comparison with a Maxwell-Bloch based rate equation model clearly shows the nonlinear transition into the lasing regime. The concentration of the electric field density and inhibition of lateral loss channels in turn decreases the lasing threshold by upmore » to one order of magnitude, to 0.1 nJ. By spectroscopic investigation of such a triangular wedge, we observe the transition from the unperturbed cavity state to a strongly confined complex transversal mode. Such a structured silver layer can be utilized in future for charge carrier injection in an electrically driven organic solid state laser.« less
NASA Astrophysics Data System (ADS)
Anilkumar, T.; Naik, Adarsh Ajith; Ramesan, M. T.
2017-06-01
Here we report the preparation of nitromercurated styrene butadiene rubber (NMSBR)/silver doped zinc oxide nanocomposite by inexpensive and ecofriendly two roll mill mixing. The composites were characterized by UV, FTIR, XRD, SEM, TGA and conductivity measurements. UV and FTIR spectrum indicated the interfacial interaction between the polymer and nanoparticles.XRD and SEM images showed the uniform arrangement of nanoparticles within the macromolecular chain. TGA study indicated the better thermal resistance of the composite. The dielectric properties and AC conductivity ofnanocomposites were much greater than nitromercurated SBR and they may be used as multifunctional materials for nanoelectronic devices.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-28
... training activities within the Navy's Silver Strand Training Complex (SSTC) and southern nearshore areas of... activities, introduction of new platforms and equipment for training, and increased access and availability... readiness using the SSTC to support and conduct current, emerging, and future training activities. A Notice...
Joseph, Siby; Mathew, Beena
2015-02-05
Herein, we report a simple microwave assisted method for the green synthesis of silver and gold nanoparticles by the reduction of aqueous metal salt solutions using leaf extract of the medicinal plant Aerva lanata. UV-vis., FTIR, XRD, and HR-TEM studies were conducted to assure the formation of nanoparticles. XRD studies clearly confirmed the crystalline nature of the synthesized nanoparticles. From the HR-TEM images, the silver nanoparticles (AgNPs) were found to be more or less spherical and gold nanoparticles (AuNPs) were observed to be of different morphology with an average diameter of 18.62nm for silver and 17.97nm for gold nanoparticles. In order to evaluate the effect of microwave heating upon rate of formation, the synthesis was also conducted under ambient condition without the assistance of microwave radiation and the former method was found to be much faster than the later. The synthesized nanoparticles were used as nanocatalysts in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. Copyright © 2014 Elsevier B.V. All rights reserved.
Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems.
Wu, Jianwei; Wang, Ridong; Yu, Haixia; Li, Guijun; Xu, Kexin; Tien, Norman C; Roberts, Robert C; Li, Dachao
2015-02-07
Microfluidic systems based on polydimethylsiloxane (PDMS) have gained popularity in recent years. However, microelectrode patterning on PDMS to form biosensors in microchannels remains a worldwide technical issue due to the hydrophobicity of PDMS and its weak adhesion to metals. In this study, an additive technique using inkjet-printed silver nanoparticles to form microelectrodes on PDMS is presented. (3-Mercaptopropyl)trimethoxysilane (MPTMS) was used to modify the surface of PDMS to improve its surface wettability and its adhesion to silver. The modified surface of PDMS is rendered relatively hydrophilic, which is beneficial for the silver droplets to disperse and thus effectively avoids the coalescence of adjacent droplets. Additionally, a multilevel matrix deposition (MMD) method is used to further avoid the coalescence and yield a homogeneous pattern on the MPTMS-modified PDMS. A surface wettability comparison and an adhesion test were conducted. The resulting silver pattern exhibited good uniformity, conductivity and excellent adhesion to PDMS. A three-electrode electrochemical biosensor was fabricated successfully using this method and sealed in a PDMS microchannel, forming a lab-on-a-chip glucose biosensing system.
NASA Astrophysics Data System (ADS)
Wang, Meng; Wang, Bin; Wu, Shixuan; Guo, Tingke; Li, Haoyu; Guo, Zhaoqing; Wu, Junhua; Jia, Peiyuan; Wang, Yuxia; Xu, Xiaoxuan; Wang, Yufang; Zhang, Cunzhou
2015-02-01
We have obtained the surface-enhanced Raman scattering substrate by depositing silver nanoparticles on the surface of the inverted pyramidal nanovoid in order to improve the enhance effects. Experimental results showed that the combined substrate exhibited greater enhancement than the nanovoid substrate or nanoparticles. In order to test the SERS activity of the combined substrates, Rh6G and ricin toxin were used as Raman probes. Finite element method was employed to simulate electric field and induced charge distribution of the substrates, which have been used to explore the interaction between nanoparticles and nanovoid as well as mechanism of the great enhancement.
Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix
NASA Astrophysics Data System (ADS)
Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei
2018-03-01
The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).
NASA Astrophysics Data System (ADS)
Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.
2017-02-01
Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.
NASA Astrophysics Data System (ADS)
Mamatha Upadhya, S.; Raju, C. S. K.; Saleem, S.; Alderremy, A. A.; Mahesha
2018-06-01
A Comprehensive study on laminar, magnetohydrodynamic (MHD) boundary layer flow of nanofluid (water + Silver, water + Graphene) embedded with conducting micrometer sized dust particles over a stretching cylinder with the incorporation of Cattaneo-Christov heat flux model is conducted. Appropriate similarity variables are employed to the flow governing equations and the resulting ordinary differential equations are solved by employing Runge-Kutta-Fehlberg method. The results for varied controlling parameters for both dusty nano fluid and dust phase are shown through graphs, table and discussed in detail. Authentication of the obtained results is provided by comparing with published results. Results indicate that Graphene + water dusty nanofluid shows better heat transfer performance compared with Silver + water dusty nanofluid. Improvement in thermal relaxation boosts temperature distribution in both fluid and dust phase.
Peng, Peng; Hu, Anming; Gerlich, Adrian P.; Liu, Yangai; Zhou, Y. Norman
2015-01-01
Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm·m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale. PMID:25788019