Semi-flexible gas-insulated transmission line using electric field stress shields
Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.
1982-12-28
A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.
Semi-flexible gas-insulated transmission line using electric field stress shields
Cookson, A.H.; Dale, S.J.; Bolin, P.C.
1982-12-28
A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.
Electrode assembly for a fluidized bed apparatus
Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.
1976-11-23
An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.
Conformally encapsulated multi-electrode arrays with seamless insulation
Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah
2016-11-22
Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.
Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints
Kommineni, P.R.
1983-02-15
A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section. 4 figs.
High-voltage electrical apparatus utilizing an insulating gas of sulfur hexafluoride and helium
Wootton, Roy E.
1980-01-01
High-voltage electrical apparatus includes an outer housing at low potential, an inner electrode disposed within the outer housing at high potential with respect thereto, and support means for insulatably supporting the inner electrode within the outer housing. Conducting particles contaminate the interior of the outer housing, and an insulating gas electrically insulates the inner electrode from the outer housing even in the presence of the conducting particles. The insulating gas is comprised of sulfur hexafluoride at a partial pressure of from about 2.9 to about 3.4 atmospheres absolute, and helium at a partial pressure from about 1.1 to about 11.4 atmospheres absolute. The sulfur hexafluoride comprises between 20 and 65 volume percent of the insulating gas.
Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint
Kommineni, P.R.
1983-01-25
A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent. 3 figs.
Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint
Kommineni, Prasad R.
1983-01-25
A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent.
2011-06-01
technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary design...support technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary...vacuum gap with low emissivity surfaces on either side as the first insulating layer.11 D. Electrical Energy Conversion There are a wide variety
Corrugated outer sheath gas-insulated transmission line
Kemeny, George A.; Cookson, Alan H.
1981-01-01
A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.
Particle trap with dielectric barrier for use in gas insulated transmission lines
Dale, Steinar J.
1982-01-01
A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.
Flexible gas insulated transmission line having regions of reduced electric field
Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.
1983-01-01
A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.
Particle trap with dielectric barrier for use in gas insulated transmission lines
Dale, S.J.
1982-06-15
A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew
2017-01-01
Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.
Vertically aligned gas-insulated transmission line having particle traps at the inner conductor
Dale, Steinar J.
1984-01-01
Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... inner wall and insulation blankets). This proposed AD results from reports of heat damage to the inner... insulation blankets and heat transfer through the upper compression pad area and the fireseal bracket support... upper and lower inner wall insulation blankets, measuring the electrical conductivity on the aluminum...
NASA Technical Reports Server (NTRS)
Linley, Larry
1994-01-01
The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.
Effects of carbon/graphite fiber contamination on high voltage electrical insulation
NASA Technical Reports Server (NTRS)
Garrity, T.; Eichler, C.
1980-01-01
The contamination mechanics and resulting failure modes of high voltage electrical insulation due to carbon/graphite fibers were examined. The high voltage insulation vulnerability to carbon/graphite fiber induced failure was evaluated using a contamination system which consisted of a fiber chopper, dispersal chamber, a contamination chamber, and air ducts and suction blower. Tests were conducted to evaluate the effects of fiber length, weathering, and wetness on the insulator's resistance to carbon/graphite fibers. The ability of nuclear, fossil, and hydro power generating stations to maintain normal power generation when the surrounding environment is contaminated by an accidental carbon fiber release was investigated. The vulnerability assessment included only the power plant generating equipment and its associated controls, instrumentation, and auxiliary and support systems.
Electrostatically screened, voltage-controlled electrostatic chuck
Klebanoff, Leonard Elliott
2001-01-01
Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.
NASA requirements and applications environments for electrical power wiring
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.; Hammoud, Ahmad N.
1992-01-01
Serious problems can occur from insulation failures in the wiring harnesses of aerospace vehicles. In most recorded incidents, the failures have been identified to be the result of arc tracking, the propagation of an arc along wiring bundles through degradation of insulation. Propagation of the arc can lead to the loss of the entire wiring harness and the functions which it supports. While an extensive database of testing for arc track resistant wire insulations has been developed for aircraft applications, the counterpart requirements for spacecraft are very limited. The electrical, thermal, mechanical, chemical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications is presented.
Tool for cutting insulation from electrical cables
Harless, Charles E.; Taylor, Ward G.
1978-01-01
This invention is an efficient hand tool for precisely slitting the sheath of insulation on an electrical cable--e.g., a cable two inches in diameter--in a manner facilitating subsequent peeling or stripping of the insulation. The tool includes a rigid frame which is slidably fitted on an end section of the cable. The frame carries a rigidly affixed handle and an opposed, elongated blade-and-handle assembly. The blade-and-handle assembly is pivotally supported by a bracket which is slidably mounted on the frame for movement toward and away from the cable, thus providing an adjustment for the depth of cut. The blade-and-handle assembly is mountable to the bracket in two pivotable positions. With the assembly mounted in the first position, the tool is turned about the cable to slit the insulation circumferentially. With the assembly mounted in the second position, the tool is drawn along the cable to slit the insulation axially. When cut both circumferentially and axially, the insulation can easily be peeled from the cable.
Multi-pin chemiresistors for microchemical sensors
Ho, Clifford K [Albuquerque, NM
2007-02-20
A multi-pin chemiresistor for use in microchemical sensors. A pair of free-standing, bare wires is supported by an electrically insulating support, and are oriented parallel to each other and spaced closely together. A free-standing film of a chemically sensitive polymer that swells when exposed to vapors of a volatile chemical is formed in-between the pair of closely-spaced wires by capillary action. Similar in construction to a thermocouple, this "chemicouple" is relatively inexpensive and easy to fabricate by dipping the pair of bare wires into a bath of well-mixed chemiresistor ink. Also, a chemiresistor "stick" is formed by dipping an electrically insulating rod with two or more linear or spiral-wrapped electrical traces into the bath of well-mixed chemiresistor ink, which deposits a uniform coating of the chemically sensitive polymer on the rod and the electrical traces. These "sticks" can be easily removed and replaced from a multi-chemiresistor plug.
High temperature polymer dielectric film-wire insulation
NASA Technical Reports Server (NTRS)
Nairus, John G.
1994-01-01
The highlights of the program are outlined including two major accomplishments. TRW identified and demonstrated the potential of two aromatic/heterocyclic polymers to have an outstanding and superior combination of electrical, thermal, and chemical resistance properties versus state-of-the-art Kapton for spacecraft and/or aircraft dielectric insulation applications. (Supporting data is provided in tables.) Feasibility was demonstrated for supporting/enabling technologies such as ceramic coatings, continuous film casting, and conductor wire wrapping, which are designed to accelerate qualification and deployment of the new wire insulation materials for USAF systems applications during the mid- to late-1990's.
49 CFR 238.225 - Electrical system.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., and the frames shall be electrically insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility may be achieved...
49 CFR 238.225 - Electrical system.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and the frames shall be electrically insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility may be achieved...
49 CFR 238.225 - Electrical system.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and the frames shall be electrically insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility may be achieved...
49 CFR 238.225 - Electrical system.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and the frames shall be electrically insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility may be achieved...
49 CFR 238.225 - Electrical system.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and the frames shall be electrically insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility may be achieved...
NASA Astrophysics Data System (ADS)
Malecha, Ziemowit; Lubryka, Eliza
2017-11-01
The numerical model of thin layers, characterized by a defined wrapping pattern can be a crucial element of many computational problems related to engineering and science. A motivating example is found in multilayer electrical insulation, which is an important component of superconducting magnets and other cryogenic installations. The wrapping pattern of the insulation can significantly affect heat transport and the performance of the considered instruments. The major objective of this study is to develop the numerical boundary conditions (BC) needed to model the wrapping pattern of thin insulation. An example of the practical application of the proposed BC includes the heat transfer of Rutherford NbTi cables immersed in super-fluid helium (He II) across thin layers of electrical insulation. The proposed BC and a mathematical model of heat transfer in He II are implemented in the open source CFD toolbox OpenFOAM. The implemented mathematical model and the BC are compared in the experiments. The study confirms that the thermal resistance of electrical insulation can be lowered by implementing the proper wrapping pattern. The proposed BC can be useful in the study of new patterns for wrapping schemes. The work has been supported by statutory funds from Polish Ministry for Science and Higher Education for the year of 2017.
NASA Astrophysics Data System (ADS)
Buică, G.; Antonov, A. E.; Beiu, C.; Dobra, R.; Risteiu, M.
2018-06-01
Rigid electrical insulating materials are used in the manufacture of work equipment with electric safety function, being mainly intended for use in the energy sector. The paper presents the results of the research on the identification of the technical and safety requirements for rigid electrical insulating materials that are part of the electrical insulating work equipment. The paper aims to show the behaviour of rigid electrical insulating materials under the influence of mechanical risk factors, in order to check the functionality and to ensure the safety function for the entire life time. There were tested rigid electrical insulating equipment designed to be used as safety means in electrical power stations and overhead power lines.
Hybrid particle traps and conditioning procedure for gas insulated transmission lines
Dale, Steinar J.; Cookson, Alan H.
1982-01-01
A gas insulated transmission line includes an outer sheath, an inner condor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping ring is disposed within the outer sheath, and the trapping ring has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the trapping ring along an arc. A support sheet having an adhesive coating thereon is secured to the trapping ring and disposed on the outer sheath within the low field region formed between the trapping ring and the outer sheath. A conditioning method used to condition the transmission line prior to activation in service comprises applying an AC voltage to the inner conductor in a plurality of voltage-time steps, with the voltage-time steps increasing in voltage magnitude while decreasing in time duration.
A brief survey of radiation effects on polymer dielectrics
NASA Technical Reports Server (NTRS)
Laghari, Javaid R.; Hammoud, Ahmad N.
1990-01-01
Future space power needs are extrapolated to be at least three to four orders of magnitude more than is currently available. This long-term reliable power will be required on missions such as the Space Station, Pathfinder, Space Plane, and high-powered satellites, and for defense. Electrical insulation and dielectrics are the key electrical materials needed to support these power systems, where a single-point system failure could prove catastrophic or even fatal for the whole mission. Therefore, the impact of radiation, an environmental stress, on the properties and performance of insulation and dielectrics must be understood. The influence of radiation on polymer dielectrics, the insulating materials most commonly used for power transmission and storage, is reviewed. The effects of the type of radiation, dose, rate, and total exposure on the key electrical, mechanical, and physical properties of polymer dielectrics are described and explained.
NASA Technical Reports Server (NTRS)
Li, Jun (Inventor); Meyyappan, Meyya (Inventor)
2006-01-01
Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.
Bonding Diamond To Metal In Electronic Circuits
NASA Technical Reports Server (NTRS)
Jacquez, Andrew E.
1993-01-01
Improved technique for bonding diamond to metal evolved from older technique of soldering or brazing and more suitable for fabrication of delicate electronic circuits. Involves diffusion bonding, developed to take advantage of electrically insulating, heat-conducting properties of diamond, using small diamond bars as supports for slow-wave transmission-line structures in traveling-wave-tube microwave amplifiers. No fillets or side coats formed because metal bonding strips not melted. Technique also used to mount such devices as transistors and diodes electrically insulated from, but thermally connected to, heat sinks.
Grisham, Larry R
2013-12-17
The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.
Effect of thermal insulation on the electrical characteristics of NbOx threshold switches
NASA Astrophysics Data System (ADS)
Wang, Ziwen; Kumar, Suhas; Wong, H.-S. Philip; Nishi, Yoshio
2018-02-01
Threshold switches based on niobium oxide (NbOx) are promising candidates as bidirectional selector devices in crossbar memory arrays and building blocks for neuromorphic computing. Here, it is experimentally demonstrated that the electrical characteristics of NbOx threshold switches can be tuned by engineering the thermal insulation. Increasing the thermal insulation by ˜10× is shown to produce ˜7× reduction in threshold current and ˜45% reduction in threshold voltage. The reduced threshold voltage leads to ˜5× reduction in half-selection leakage, which highlights the effectiveness of reducing half-selection leakage of NbOx selectors by engineering the thermal insulation. A thermal feedback model based on Poole-Frenkel conduction in NbOx can explain the experimental results very well, which also serves as a piece of strong evidence supporting the validity of the Poole-Frenkel based mechanism in NbOx threshold switches.
Nanotechnology Support for Memristor Nanoelectronics
2012-03-01
hafnium oxide; 2) investigation of a conductive atomic force microscopy (cAFM) approach for measuring nanoparticle electrical properties , which was...films; and 4) successful measurement of memristive properties of nanoparticle -loaded insulating films. These results lay the groundwork for follow-on...a cAFM strategy for measuring nanoparticle electrical properties . Our initial approach to measuring nanoparticles was to attempt electrical
Oligodendrocytes: Myelination and Axonal Support
Simons, Mikael; Nave, Klaus-Armin
2016-01-01
Myelinated nerve fibers have evolved to enable fast and efficient transduction of electrical signals in the nervous system. To act as an electric insulator, the myelin sheath is formed as a multilamellar membrane structure by the spiral wrapping and subsequent compaction of the oligodendroglial plasma membrane around central nervous system (CNS) axons. Current evidence indicates that the myelin sheath is more than an inert insulating membrane structure. Oligodendrocytes are metabolically active and functionally connected to the subjacent axon via cytoplasmic-rich myelinic channels for movement of macromolecules to and from the internodal periaxonal space under the myelin sheath. This review summarizes our current understanding of how myelin is generated and also the role of oligodendrocytes in supporting the long-term integrity of myelinated axons. PMID:26101081
Scanning-SQUID investigation of spin-orbit torque acting on yttrium iron garnet devices
NASA Astrophysics Data System (ADS)
Rosenberg, Aaron J.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Nowack, Katja C.; Kirtley, John R.; Yang, Fengyuan; Ralph, Daniel C.; Moler, Kathryn A.
Successful manipulation of electrically insulating magnets, such as yttrium iron garnet, by by current-driven spin-orbit torques could provide a highly efficient platform for spintronic memory. Compared to devices fabricated using magnetic metals, magnetic insulators have the advantage of the ultra-low magnetic damping and the elimination of shunting currents in the magnet that reduce the torque efficiency. Here, we apply current in the spin Hall metal β-Ta to manipulate the magnetic orientation of micron-sized, electrically-insulating yttrium iron garnet devices. We do not observe spin-torque switching even for applied currents well above the critical current expected in a macrospin switching model. This suggests either inefficient transfer of spin torque at our Ta/YIG interface or a breakdown of the macrospin approximation. This work is supported by FAME, one of six centers of STARnet sponsored by MARCO and DARPA. The SQUID microscope and sensors were developed with support from the NSF-sponsored Center NSF-NSEC 0830228, and from NSF IMR-MIP 0957616.
Ultra High Voltage Propellant Isolators and Insulators for JIMO Ion Thrusters
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Gaier, James R.; Hung, Ching-Cheh; Walters, Patty A.; Sechkar, Ed; Panko, Scott; Kamiotis, Christina A.
2004-01-01
Within NASA's Project Prometheus, high specific impulse ion thrusters for electric propulsion of spacecraft for the proposed Jupiter Icy Moon Orbiter (JIMO) mission to three of Jupiter's moons: Callisto, Ganymede and Europa will require high voltage operation to meet mission propulsion. The anticipated approx.6,500 volt net ion energy will require electrical insulation and propellant isolation which must exceed that used successfully by the NASA Solar Electric Propulsion Technology Readiness (NSTAR) Deep Space 1 mission thruster by a factor of approx.6. Xenon propellant isolator prototypes that operate at near one atmosphere and prototypes that operate at low pressures (<100 Torr) have been designed and are being tested for suitability to the JIMO mission requirements. Propellant isolators must be durable to Paschen breakdown, sputter contamination, high temperature, and high voltage while operating for factors longer duration than for the Deep Space 1 Mission. Insulators used to mount the thrusters as well as those needed to support the ion optics have also been designed and are under evaluation. Isolator and insulator concepts, design issues, design guidelines, fabrication considerations and performance issues are presented. The objective of the investigation was to identify candidate isolators and insulators that are sufficiently robust to perform durably and reliably during the proposed JIMO mission.
NASA Astrophysics Data System (ADS)
Xu, Jin
2017-12-01
When an electric field is applied on a topological insulator, not only the electric field is generated, but also the magnetic field is generated, vice versa. I designed topological insulator and superconductor bi-layer magnetic cloak, derived the electric field and magnetic field inside and outside the topological insulator and superconductor sphere. Simulation and calculation results show that the applied magnetic field is screened by the topological insulator and superconductor bi-layer, and the electric field is generated in the cloaked region.
NASA Astrophysics Data System (ADS)
Rathi, Servin; Park, Jin-Hyung; Lee, In-yeal; Baik, Jeong Min; Yi, Kyung Soo; Kim, Gil-Ho
2014-07-01
We studied insulator-metal transitions in VO2 nanobeams for both abrupt and gradual changes in applied electric fields. Based on the observations, the Poole-Frenkel effect explained the abrupt transition, while the gradual case is found to be dominated by the Joule heating phenomenon. We also carried out power model and finite element method based simulations which supported the Joule heating phenomena for gradual transition. An in-principle demonstration of the Poole-Frenkel effect, performed using a square voltage pulse of 1 µs duration, further confirms the proposed insulator-metal transition mechanism with a switching time in the order of 100 ns. Finally, conductivity variations introduced via rapid thermal annealing at various temperatures validate the roles of both Joule heating and Poole-Frenkel mechanisms in the transitions.
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
30 CFR 77.503 - Electric conductors; capacity and insulation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductors; capacity and insulation... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such...
30 CFR 77.503 - Electric conductors; capacity and insulation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductors; capacity and insulation... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such...
Tomaszewski, Michał; Ruszczak, Bogdan; Michalski, Paweł
2018-06-01
Electrical insulators are elements of power lines that require periodical diagnostics. Due to their location on the components of high-voltage power lines, their imaging can be cumbersome and time-consuming, especially under varying lighting conditions. Insulator diagnostics with the use of visual methods may require localizing insulators in the scene. Studies focused on insulator localization in the scene apply a number of methods, including: texture analysis, MRF (Markov Random Field), Gabor filters or GLCM (Gray Level Co-Occurrence Matrix) [1], [2]. Some methods, e.g. those which localize insulators based on colour analysis [3], rely on object and scene illumination, which is why the images from the dataset are taken under varying lighting conditions. The dataset may also be used to compare the effectiveness of different methods of localizing insulators in images. This article presents high-resolution images depicting a long rod electrical insulator under varying lighting conditions and against different backgrounds: crops, forest and grass. The dataset contains images with visible laser spots (generated by a device emitting light at the wavelength of 532 nm) and images without such spots, as well as complementary data concerning the illumination level and insulator position in the scene, the number of registered laser spots, and their coordinates in the image. The laser spots may be used to support object-localizing algorithms, while the images without spots may serve as a source of information for those algorithms which do not need spots to localize an insulator.
Ryan, T.M.
1962-04-01
A steel or aluminum small diameter (1/4 in.) tube-type neutron detector containing an inert atmosphere and having a coating of fissionable material on its inner circumference is described. A conducting wire, positioned along the axis of the tube by spaced insulators, is connected to a power source. The coating of fissionable material is brushed onto a nickel foil which is inserted into the tube and supported between the insulators. (AEC)
Electric Field Distribution in High Voltage Power Modules Using Finite Element Simulations
NASA Astrophysics Data System (ADS)
Wang, Zhao; Liu, Yaoning
2018-03-01
With the development of the high voltage insulated gate bipolar transistor (IGBT) power module, it leads to serious problems concerning the electric field insulation. The electric field capabilities of the silicone gels used in the power module encapsulation directly affect the module insulation. Some solutions have been developed to optimize the electric field and reliability. In this letter, the finite element simulation was used to analyze and localize the maximum electric field position; solutions were proposed to improve the module insulation. It’s demonstrated that BaTiO3 silicone composite is a promising insulation material for high voltage power device.
30 CFR 75.513 - Electric conductor; capacity and insulation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductor; capacity and insulation. 75.513 Section 75.513 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... § 75.513 Electric conductor; capacity and insulation. [Statutory Provision] All electric conductors...
30 CFR 75.513 - Electric conductor; capacity and insulation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductor; capacity and insulation. 75.513 Section 75.513 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL... § 75.513 Electric conductor; capacity and insulation. [Statutory Provision] All electric conductors...
Deichelbohrer, Paul R [Richland, WA
1986-01-01
A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.
Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus
NASA Astrophysics Data System (ADS)
Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi
This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.
Electrical wire insulation and electromagnetic coil
Bich, George J.; Gupta, Tapan K.
1984-01-01
An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.
Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary
2014-06-10
A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.
An experimental investigation of electric flashover across solid insulators in vacuum
NASA Technical Reports Server (NTRS)
Vonbaeyer, H. C.
1984-01-01
The insulation of high voltage conductors often employs solid insulators for many applications. In such applications, an unexpected electric flashover may occur along the insulator surface. Under conditions of high vacuum, the flashover voltage across the insulator is observed to be lower compared with that of the same electrode separation without an insulator. The reason for such an extreme reduction of flashover voltage is not well understood. Several models based on the secondary electron emission, were proposed to explain the onset of the surface flashover. The starting point and the developing velocity of the surface flashover were determined. An intensified image converter camera was used to observe the initial stage of electrical flashover along the insulator surface parallel to the electric field. Several different insulator materials were used as test pieces to determine the effect of the dielectric constant on the flashover voltage characteristics.
NASA Technical Reports Server (NTRS)
Bowler, Nicola; Kessler, Michael R.; Li, Li; Hondred, Peter R.; Chen, Tianming
2012-01-01
Polymers have been widely used as wiring electrical insulation materials in space/air-craft. The dielectric properties of insulation polymers can change over time, however, due to various aging processes such as exposure to heat, humidity and mechanical stress. Therefore, the study of polymers used in electrical insulation of wiring is important to the aerospace industry due to potential loss of life and aircraft in the event of an electrical fire caused by breakdown of wiring insulation. Part of this research is focused on studying the mechanisms of various environmental aging process of the polymers used in electrical wiring insulation and the ways in which their dielectric properties change as the material is subject to the aging processes. The other part of the project is to determine the feasibility of a new capacitive nondestructive testing method to indicate degradation in the wiring insulation, by measuring its permittivity.
The Development and Application of Simulative Insulation Resistance Tester
NASA Astrophysics Data System (ADS)
Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao
2018-02-01
The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.
Linear particle accelerator with seal structure between electrodes and insulators
Broadhurst, John H.
1989-01-01
An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.
Cryogenic electrical properties of irradiated cyanate ester/epoxy insulation for fusion magnets
NASA Astrophysics Data System (ADS)
Li, X.; Wu, Z. X.; Li, J.; Xu, D.; Liu, H. M.; Huang, R. J.; Li, L. F.
2017-12-01
The insulation materials used in high field fusion magnets require excellent mechanical properties, high electrical breakdown strength, good thermal conductivity and high radiation tolerance. Previous investigations showed that cyanate ester/epoxy (CE/EP) insulation material, a candidate insulation for fusion magnets, can maintain good mechanical performance at cryogenic temperature after 10 MGy irradiation and has a much longer pot life than traditional epoxy insulation material. In order to quantify the electrical properties of the CE/EP insulation material at low temperature, a cryogenic electrical property testing system cooled by a G-M cryocooler was developed for this study. An insulation material with 40% cyanate ester and 60% epoxy was subjected to 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min, and total doses of 1 MGy, 5 MGy and 10 MGy. The electrical breakdown strength of this CE/EP insulation material was measured before and after irradiation. The results show that cryogenic temperature has a positive effect on the electrical breakdown strength of this composite, while the influence of 60Co γ-ray irradiation is not obvious at 6.1 K.
NASA Astrophysics Data System (ADS)
Dobra, R.; Pasculescu, D.; Marc, G.; Risteiu, M.; Antonov, A.
2017-06-01
Insulation resistance measurement is one of the most important tests required by standards and regulations in terms of electrical safety. Why these tests are is to prevent possible accidents caused by electric shock, damage to equipment or outbreak of fire in normal operating conditions of electrical cables. The insulation resistance experiment refers to the testing of electrical cable insulation, which has a measured resistance that must be below the imposed regulations. Using a microcontroller system data regarding the insulation resistance of the power cables is acquired and with SCADA software the test results are displayed.
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the exposed surfaces...
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., such as by providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the...
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., such as by providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the...
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the exposed surfaces...
Goldfuss, G.T.
1975-09-16
This invention relates to a device for sensing the level of a liquid while preventing the deposition and accumulation of materials on the exterior surfaces thereof. Two dissimilar metal wires are enclosed within an electrical insulating material, the wires being joined together at one end to form a thermocouple junction outside the insulating material. Heating means is disposed within the electrical insulating material and maintains the device at a temperature substantially greater than that of the environment surrounding the device, the heating means being electrically insulated from the two dissimilar thermocouple wires. In addition, a metal sheath surrounds and contacts both the electrical insulating material and the thermocouple junction. Electrical connections are provided for connecting the heating means with a power source and for connecting the thermocouple wires with a device for sensing the electrical potential across the thermocouple junction. (auth)
Physical properties of Ce-TZP at cryogenic temperature
NASA Astrophysics Data System (ADS)
Han, Y. M.; Chen, Z.; Zhou, M.; Huang, R. J.; Huang, C. J.; Li, L. F.
2014-01-01
Electrical insulators, which are used to insulate cryogenic supply lines and conductor windings, are critical units in superconducting TOKAMAK magnets. Electrical insulators used in superconducting magnets fall into axial and radial insulators. These insulators can be made from glass ribbon epoxy densification and have been used in the Experiment Advanced Superconducting Tokamak (EAST). The properties of Ce-TZP can satisfy the requirement of electrical insulators. In this paper, thermal conductivity, mechanical properties and coefficient of thermal expansion of Ce-TZP have been investigated at cryogenic temperatures. Results indicate that the Ce-TZP shows better properties than epoxy and it demonstrates that the Ce-TZP can be used as insulation material in superconducting magnets.
46 CFR 111.60-21 - Cable insulation tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...
46 CFR 111.60-21 - Cable insulation tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...
46 CFR 111.60-21 - Cable insulation tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...
46 CFR 111.60-21 - Cable insulation tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...
46 CFR 111.60-21 - Cable insulation tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... electric power and lighting and associated equipment must be checked for proper insulation resistance to...
Miller, W.E.; Tomczuk, Z.
1995-08-22
An apparatus is disclosed capable of functioning as a solid cathode and for removing crystalline structure from the upper surface of a liquid cathode, includes a metallic support vertically disposed with respect to an electrically insulating container capable of holding a liquid metal cathode. A piston of electrically insulating material mounted on the drive tube, surrounding the current lead, for vertical and rotational movement with respect thereto including a downwardly extending collar portion surrounding the metallic current lead. At least one portion of the piston remote from the metallic current lead being removed. Mechanism for lowering the piston to the surface of the liquid cathode and raising the piston from the surface along with mechanism for rotating the piston around its longitudinal axis. 5 figs.
Miller, William E.; Tomczuk, Zygmunt
1995-01-01
An apparatus capable of functioning as a solid cathode and for removing crystalline structure from the upper surface of a liquid cathode, includes a metallic support vertically disposed with respect to an electrically insulating container capable of holding a liquid metal cathode. A piston of electrically insulating material mounted on the drive tube, surrounding the current lead, for vertical and rotational movement with respect thereto including a downwardly extending collar portion surrounding the metallic current lead. At least one portion of the piston remote from the metallic current lead being removed. Mechanism for lowering the piston to the surface of the liquid cathode and raising the piston from the surface along with mechanism for rotating the piston around its longitudinal axis.
NASA Astrophysics Data System (ADS)
Durganandini, P.
2015-03-01
We consider thin planar charged quantum rings on the surface of a three dimensional topological insulator coated with a thin ferromagnetic layer. We show theoretically, that when the ring is threaded by a magnetic field, then, due to the Aharanov-Bohm effect, there are not only the well known circulating persistent currents in the ring but also oscillating persistent Hall voltages across the thin ring. Such oscillating persistent Hall voltages arise due to the topological magneto-electric effect associated with the axion electrodynamics exhibited by the surface electronic states of the three dimensional topological insulator when time reversal symmetry is broken. We further generalize to the case of dipole currents and show that analogous Hall dipole voltages arise. We also discuss the robustness of the effect and suggest possible experimental realizations in quantum rings made of semiconductor heterostructures. Such experiments could also provide new ways of observing the predicted topological magneto-electric effect in three dimensional topological insulators with time reversal symmetry breaking. I thank BCUD, Pune University, Pune for financial support through research grant.
Method of fabricating high-density hermetic electrical feedthroughs using insulated wire bundles
Shah, Kedar G.; Benett, William J.; Pannu, Satinderpall S.
2016-05-10
A method of fabricating electrical feedthroughs coats of a plurality of electrically conductive wires with an electrically insulating material and bundles the coated wires together in a substantially parallel arrangement. The bundled coated wires are secured to each other by joining the electrically insulating material of adjacent wires together to form a monolithic block which is then cut transverse to the wires to produce a block section having opposing first and second sides with a plurality of electrically conductive feedthroughs extending between them.
Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK
2014-01-07
This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.
Ceramic electrical insulation for electrical coils, transformers, and magnets
Rice, John A.; Hazelton, Craig S.; Fabian, Paul E.
2002-01-01
A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.
Gate-tunable gigantic changes in lattice parameters and optical properties in VO2
NASA Astrophysics Data System (ADS)
Nakano, Masaki; Okuyama, Daisuke; Shibuya, Keisuke; Ogawa, Naoki; Hatano, Takafumi; Kawasaki, Masashi; Arima, Taka-Hisa; Iwasa, Yoshihiro; Tokura, Yoshinori
2014-03-01
The field-effect transistor provides an electrical switching function of current flowing through a channel surface by external gate voltage (VG). We recently reported that an electric-double-layer transistor (EDLT) based on vanadium dioxide (VO2) enables electrical switching of the metal-insulator phase transition, where the low-temperature insulating state can be completely switched to the metallic state by application of VG. Here we demonstrate that VO2-EDLT enables electrical switching of lattice parameters and optical properties as well as electrical current. We performed in-situ x-ray diffraction and optical transmission spectroscopy measurements, and found that the c-axis length and the infrared transmittance of VO2 can be significantly modulated by more than 1% and 40%, respectively, by application of VG. We emphasize that these distinguished features originate from the electric-field induced bulk phase transition available with VO2-EDLT. This work was supported by the Japan Society for the Promotion of Science (JSPS) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''
49 CFR 238.425 - Electrical system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility can be achieved through equipment design or changes to...
49 CFR 238.425 - Electrical system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility can be achieved through equipment design or changes to...
49 CFR 238.425 - Electrical system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility can be achieved through equipment design or changes to...
49 CFR 238.425 - Electrical system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility can be achieved through equipment design or changes to...
49 CFR 238.425 - Electrical system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... insulated from the supports that hold them. (d) Electromagnetic interference and compatibility. (1) The operating railroad shall ensure electromagnetic compatibility of the safety-critical equipment systems with their environment. Electromagnetic compatibility can be achieved through equipment design or changes to...
Dielectric behavior of beef meat in the 1-1500kHz range: Simulation with the Fricke/Cole-Cole model.
Damez, Jean-Louis; Clerjon, Sylvie; Abouelkaram, Saïd; Lepetit, Jacques
2007-12-01
The electrical properties of biological tissues have been researched for many years. Impedance measurements observed with increasing frequencies are mainly attributed to changes in membrane conductivity and ion and charged-molecule mobility (mainly Na(+), K(+), CL(-) ions). Equivalent circuits with passive electrical components are frequently used as a support model for presentation and analyses of the behavior of tissues submitted to electrical fields. Fricke proposed an electrical model where the elements are resistive and capacitive. The model is composed of a resistive element (Rp) representing extracellular fluids (ECF) placed in parallel with a capacitive element (Cs) representing insulating membranes in series and a resistive element (Rs) representing intracellular fluids (ICF). This model is able to describe impedance measurements: at lower frequencies, most of the current flows around the cells without being able to penetrate them, while at higher frequencies the membranes lose their insulating properties and the current flows through both the extracellular and intracellular compartments. Since meat ageing induces structural change, particularly in membrane integrity, the insulating properties of membranes decrease, and intracellular and extracellular electrolytes mix, thus driving changes in their electrical properties. We report a method combining the Fricke and Cole-Cole models that was developed to monitor and explain tissues conductivity changes in preferential directions during beef meat ageing.
An application area of C60: Overall improvement of insulating oil's electrical performance
NASA Astrophysics Data System (ADS)
Sun, Potao; Sima, Wenxia; Chen, Jiaqi; Zhang, Dingfei; Jiang, Xiongwei; Chen, Qiulin
2018-04-01
We prepared nano-C60 based insulating oil, which has the potential to overcome the application barriers of nanomodified insulating oil. We find that nano-C60 based insulating oil has an excellent stability. Its electrical performance increases by 17.9%, 9.3%, and 8.3% for AC and positive/negative lightning impulse voltage, respectively. We believe that C60 molecules have a strong capacity to absorb electrons and can capture photons in a streamer, which may weaken photoionization in the streamer and thereby improve the electrical performance of insulating oil.
All diamond self-aligned thin film transistor
Gerbi, Jennifer [Champaign, IL
2008-07-01
A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.
NASA Astrophysics Data System (ADS)
Mebarki, Fouzia
The aim of this study is to examine the possibility of using thermoplastic composite materials for electrical applications such as supports of automotive engine ignition systems. We are particularly interested in composites based on recycled polyethylene terephtalate (PET). Conventional isolations like PET cannot meet the new prescriptive requirements. The introduction of reinforcement materials, such as glass fibers and mica can improve the mechanical characteristics of these materials. However, this enhancement may also reduce electrical properties especially since these composites have to be used under severe thermal and electric stresses. In order to estimate PET composite insulation lifetimes, accelerated aging tests were carried out at temperatures ranging from room temperature to 140°C and at a frequency of 300Hz. Studies at high temperature will help to identify the service temperature of candidate materials. Dielectric breakdown tests have been made on a large number of samples according to the standard of dielectric strength tests of solid insulating ASTM D-149. These tests have to identify the problematic samples and to check solid insulation quality. The different knowledge gained from this analysis was used to predict material performance. This will give the company the possibility to improve existing formulations and subsequently develop a material having electrical and thermal properties suitable for this application.
30 CFR 57.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation and fittings for power wires and... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires and cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical...
30 CFR 57.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation and fittings for power wires and... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires and cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
..., personal protective equipment, insulating and shielding materials, and insulated tools for working on or...] Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and Distribution... the information collection requirements specified in its standards on Electrical Protective Equipment...
High power density capacitor and method of fabrication
Tuncer, Enis
2012-11-20
A ductile preform for making a drawn capacitor includes a plurality of electrically insulating, ductile insulator plates and a plurality of electrically conductive, ductile capacitor plates. Each insulator plate is stacked vertically on a respective capacitor plate and each capacitor plate is stacked on a corresponding insulator plate in alignment with only one edge so that other edges are not in alignment and so that each insulator plate extends beyond the other edges. One or more electrically insulating, ductile spacers are disposed in horizontal alignment with each capacitor plate along the other edges and the pattern is repeated so that alternating capacitor plates are stacked on alternating opposite edges of the insulator plates. A final insulator plate is positioned at an extremity of the preform. The preform may then be drawn to fuse the components and decrease the dimensions of the preform that are perpendicular to the direction of the draw.
Carbon nanotube nanoelectrode arrays
Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi
2008-11-18
The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.
DC breakdown characteristics of silicone polymer composites for HVDC insulator applications
NASA Astrophysics Data System (ADS)
Han, Byung-Jo; Seo, In-Jin; Seong, Jae-Kyu; Hwang, Young-Ho; Yang, Hai-Won
2015-11-01
Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.
Dielectrophoretic systems without embedded electrodes
Cummings, Eric B [Livermore, CA; Singh, Anup K [San Francisco, CA
2006-03-21
Method and apparatus for dielectrophoretic separation of particles in a fluid based using array of insulating structures arranged in a fluid flow channel. By utilizing an array of insulating structures, a spatially inhomogeneous electric field is created without the use of the embedded electrodes conventionally employed for dielectrophoretic separations. Moreover, by using these insulating structures a steady applied electric field has been shown to provide for dielectrophoresis in contrast to the conventional use of an alternating electric field. In a uniform array of posts, dielectrophoretic effects have been produced flows having significant pressure-driven and electrokinetic transport. Above a threshold applied electric field, filaments of concentrated and rarefied particles appear in the flow as a result of dielectrophoresis. Above a higher threshold applied voltage, dielectrophoresis produces zones of highly concentrated and immobilized particles. These patterns are strongly influenced by the angle of the array of insulating structures with respect to the mean applied electric field and the shape of the insulating structures.
Technique eliminates high voltage arcing at electrode-insulator contact area
NASA Technical Reports Server (NTRS)
Mealy, G.
1967-01-01
Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.
NASA Astrophysics Data System (ADS)
Walukow, Stephy B.; Manjang, Salama; Zainuddin, Zahir; Samman, Faizal Arya
2018-03-01
This research is to analyze design of ceramic and polymer 150 kV insulators for the tropical area. The use of an insulator certainly requires an electric field. The leakage current and breakdown voltage this happens the contaminant on the surface of the insulator. This type of contaminant can be rain, dust, salt air, extreme weather (much in tropical climates), industrial pollutants and cracks on the surface resulting in collisions. The method used in this research is magnetic field and electric field isolator using Quicfield software. To get the test results variation ranges 20 kV, 70 kV and 150 kV. Side effects of magnetic and electric fields around the insulator. The simulation results show the accumulated contaminants on the surface. Planning should be done in insulator insulator on unstable insulator. Thus, the approach using this commercially available software can be applied to. Therefore, the development of further simulations on the different types of composite insulators used on.
NASA Astrophysics Data System (ADS)
Stochl, Robert J.; Knoll, Richard H.
1991-06-01
The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on a 87.6 in diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.
NASA Astrophysics Data System (ADS)
Stochl, Robert J.; Knoll, Richard H.
1991-06-01
The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on an 87.6 in. diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr, respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EWSUK,KEVIN G.
1999-11-24
Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referredmore » to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.« less
Forming Refractory Insulation On Copper Wire
NASA Technical Reports Server (NTRS)
Setlock, J.; Roberts, G.
1995-01-01
Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.
Breakdown characteristics of SF6/N2 in severely non-uniform electric fields at low temperatures
NASA Astrophysics Data System (ADS)
Wang, Y.; Gao, Z. W.; Li, G. X.; Zhu, X. C.; Yu, C. L.; Liang, J. Q.; Li, L.
2018-01-01
SF6 has good electrical insulating properties, which is widely used as an insulating medium of GIS, GIL and other electrical equipment. However, the reliability of electrical equipments´ insulated gas is greatly challenged in cold areas, since SF6 more readily liquefies. To solve the problem, SF6 can be mixed with N2 to maintain the insulating properties, and reduce its liquefaction temperature. Such practice has certain application prospect. In this paper, a breakdown experimental platform was built to study the insulating property of SF6/N2 at low temperature, wherein the temperature of the platform can be adjusted. A severely non-uniform electric field was generated by a rod-plate electrode. The breakdown characteristics of SF6/N2 with different mixing proportions at low pressures and low temperatures were measured. The result showed that the mixed gas was not liquefied within the temperature range. Temperature had insignificant influence on the insulating property thereof. The result in the paper has certain guiding significance for applying SF6/N2 mixed gas in high latitude areas.
NASA Astrophysics Data System (ADS)
Arshad; Nekahi, A.; McMeekin, S. G.; Farzaneh, M.
2016-09-01
Electrical field distribution along the insulator surface is considered one of the important parameters for the performance evaluation of outdoor insulators. In this paper numerical simulations were carried out to investigate the electric field and potential distribution along silicone rubber insulators under various polluted and dry band conditions. Simulations were performed using commercially available simulation package Comsol Multiphysics based on the finite element method. Various pollution severity levels were simulated by changing the conductivity of pollution layer. Dry bands of 2 cm width were inserted at the high voltage end, ground end, middle part, shed, sheath, and at the junction of shed and sheath to investigate the effect of dry band location and width on electric field and potential distribution. Partial pollution conditions were simulated by applying pollution layer on the top and bottom surface respectively. It was observed from the simulation results that electric field intensity was higher at the metal electrode ends and at the junction of dry bands. Simulation results showed that potential distribution is nonlinear in the case of clean and partially polluted insulator and linear for uniform pollution layer. Dry band formation effect both potential and electric field distribution. Power dissipated along the insulator surface and the resultant heat generation was also studied. The results of this study could be useful in the selection of polymeric insulators for contaminated environments.
Electric Field and Current Density Performance Analysis of Sf6, C4f8 and CO2 Gases As An Insulation
NASA Astrophysics Data System (ADS)
Mazli, Ahmad Danial Ahmad; Jamail, Nor Akmal Mohd; Azlin Othman, Nordiana
2017-08-01
SF6 gases are not only widely used as an insulating component in electric power industry but also as an arc extinguishing performance in high voltage (HV) gas-insulated circuit breaker (GCB). SF6 gases is generally used in the production of semiconductor materials and devices. Though these gasses is widely used in many application, the presences of temperature hotspot in the insulations may affect the insulation characteristics particularly electric field and current density. Therefore, it is important to determine the relationship between electric field and current density of gasses used in the insulator in the presence of hotspot. In this paper, three types of gases in particular Sulphur Hexafluoride (SF6), Octafluorocylobutane (C4F8), and Carbon Dioxide (CO2) was used in the insulator for gas insulation with the presence of two hotspots. These two hotspost were detected by referring the rising temperature in the insulator which are 1000 and 2000 Kelvin temperature for hotspot 1 and hotspot 2, respectively. From the simulation results, it can be concluded that Sulphur Hexafluoride (SF6) is the best choice for gas insulation since it had the lowest current density and electric field compared to Octafluorocylobutane (C4F8), and Carbon Dioxide (CO2). It is observed that the maximum current density and electric field for SF6 during normal condition are 358.94 × 103 V/m and 0.643 × 109 A/m2, respectively. Meanwhile, during temperature rising at hotspot 1 and hotspot 2, SF6 also had lowest current density and electric field compared to the other gasses where the results for Emax and Jmax at hotspot 1 are 322.34 × 103 V/m and 1.934 × 109 A/m2, respectively; While, Emax and Jmax at hotspot 2 are 259.77× 103 V/m and 2.824 × 109 A/m2. The results of this analysis can be used to find the best choices of gas that can be used in the insulator.
A real-time insulation detection method for battery packs used in electric vehicles
NASA Astrophysics Data System (ADS)
Tian, Jiaqiang; Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai
2018-05-01
Due to the energy crisis and environmental pollution, electric vehicles have become more and more popular. Compared to traditional fuel vehicles, the electric vehicles are integrated with more high-voltage components, which have potential security risks of insulation. The insulation resistance between the chassis and the direct current bus of the battery pack is easily affected by factors such as temperature, humidity and vibration. In order to ensure the safe and reliable operation of the electric vehicles, it is necessary to detect the insulation resistance of the battery pack. This paper proposes an insulation detection scheme based on low-frequency signal injection method. Considering the insulation detector which can be easily affected by noises, the algorithm based on Kalman filter is proposed. Moreover, the battery pack is always in the states of charging and discharging during driving, which will lead to frequent changes in the voltage of the battery pack and affect the estimation accuracy of insulation detector. Therefore the recursive least squares algorithm is adopted to solve the problem that the detection results of insulation detector mutate with the voltage of the battery pack. The performance of the proposed method is verified by dynamic and static experiments.
Crossover from Incoherent to Coherent Phonon Scattering in Epitaxial Oxide Superlattices
2013-12-08
function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two...a function of interface density. Wedo so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the
Insulation detection of electric vehicle batteries
NASA Astrophysics Data System (ADS)
Dai, Qiqi; Zhu, Zhongwen; Huang, Denggao; Du, Mingxing; Wei, Kexin
2018-06-01
In this paper, an electric vehicle insulation detection method with single side switching fixed resistance is designed, and the hardware and software design of the system are given. The experiment proves that the insulation detection system can detect the insulation resistance in a wide range of resistance values, and accurately report the fault level. This system can effectively monitor the insulation fault between the car body and the high voltage line and avoid the passengers from being injured.
NASA Astrophysics Data System (ADS)
Dobra, R.; Pasculescu, D.; Risteiu, M.; Buica, G.; Jevremović, V.
2017-06-01
This paper describe some possibilities to minimize voltages switching-off risks from the mining power networks, in case of insulated resistance faults by using a predictive diagnose method. The cables from the neutral insulated power networks (underground mining) are designed to provide a flexible electrical connection between portable or mobile equipment and a point of supply, including main feeder cable for continuous miners, pump cable, and power supply cable. An electronic protection for insulated resistance of mining power cables can be made using this predictive strategy. The main role of electronic relays for insulation resistance degradation of the electrical power cables, from neutral insulated power networks, is to provide a permanent measurement of the insulated resistance between phases and ground, in order to switch-off voltage when the resistance value is below a standard value. The automat system of protection is able to signalize the failure and the human operator will be early informed about the switch-off power and will have time to take proper measures to fix the failure. This logic for fast and automat switch-off voltage without aprioristic announcement is suitable for the electrical installations, realizing so a protection against fires and explosion. It is presented an algorithm and an anticipative relay for insulated resistance control from three-phase low voltage installations with insulated neutral connection.
Gas insulated transmission line having low inductance intercalated sheath
Cookson, Alan H.
1978-01-01
A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.
Aluminum nitride insulating films for MOSFET devices
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Maserjian, J.
1972-01-01
Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.
Electrochemical removal of material from metallic work
Csakvary, Tibor; Fromson, Robert E.
1980-05-13
Deburring, polishing, surface forming and the like are carried out by electrochemical machining with conformable electrode means including an electrically conducting and an insulating web. The surface of the work to be processed is covered by a deformable electrically insulating web or cloth which is perforated and conforms with the work. The web is covered by a deformable perforated electrically conducting screen electrode which also conforms with, and is insulated from, the work by the insulating web. An electrolyte is conducted through the electrode and insulating web and along the work through a perforated elastic member which engages the electrode under pressure pressing the electrode and web against the work. High current under low voltage is conducted betwen the electrode and work through the insulator, removing material from the work. Under the pressure of the elastic member, the electrode and insulator continue to conform with the work and the spacing between the electrode and work is maintained constant.
Park, J.H.
1998-06-23
A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.
NASA Astrophysics Data System (ADS)
Sim, Jai S.; Zhou, You; Ramanathan, Shriram
2012-10-01
We demonstrate a robust lithographic patterning method to fabricate self-supported sub-50 nm VO2 membranes that undergo a phase transition. Utilizing such self-supported membranes, we directly observed a shift in the metal-insulator transition temperature arising from stress relaxation and consistent opening of the hysteresis. Electric double layer transistors were then fabricated with the membranes and compared to thin film devices. The ionic liquid allowed reversible modulation of channel resistance and distinguishing bulk processes from the surface effects. From the shift in the metal-insulator transition temperature, the carrier density doped through electrolyte gating is estimated to be 1 × 1020 cm-3. Hydrogen annealing studies showed little difference in resistivity between the film and the membrane indicating rapid diffusion of hydrogen in the vanadium oxide rutile lattice consistent with previous observations. The ability to fabricate electrically-wired, suspended VO2 ultra-thin membranes creates new opportunities to study mesoscopic size effects on phase transitions and may also be of interest in sensor devices.
Le Bras, David; Strømme, Maria; Mihranyan, Albert
2015-05-07
Cellulose is one of the oldest electrically insulating materials used in oil-filled high-power transformers and cables. However, reports on the dielectric properties of nanocellulose for electrical insulator applications are scarce. The aim of this study was to characterize the dielectric properties of two nanocellulose types from wood, viz., nanofibrillated cellulose (NFC), and algae, viz., Cladophora cellulose, for electrical insulator applications. The cellulose materials were characterized with X-ray diffraction, nitrogen gas and moisture sorption isotherms, helium pycnometry, mechanical testing, and dielectric spectroscopy at various relative humidities. The algae nanocellulose sample was more crystalline and had a lower moisture sorption capacity at low and moderate relative humidities, compared to NFC. On the other hand, it was much more porous, which resulted in lower strength and higher dielectric loss than for NFC. It is concluded that the solid-state properties of nanocellulose may have a substantial impact on the dielectric properties of electrical insulator applications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wires not insulated from one another, suitable for carrying an electric current. Electric Cable. An assembly of one or more insulated conductors of electric current under a common or integral jacket. A cable... the primary electric current or power is transmitted. Signaling Cable. A fiber optic cable, or a cable...
Code of Federal Regulations, 2014 CFR
2014-07-01
... wires not insulated from one another, suitable for carrying an electric current. Electric Cable. An assembly of one or more insulated conductors of electric current under a common or integral jacket. A cable... the primary electric current or power is transmitted. Signaling Cable. A fiber optic cable, or a cable...
Code of Federal Regulations, 2013 CFR
2013-07-01
... wires not insulated from one another, suitable for carrying an electric current. Electric Cable. An assembly of one or more insulated conductors of electric current under a common or integral jacket. A cable... the primary electric current or power is transmitted. Signaling Cable. A fiber optic cable, or a cable...
Alternator insulation evaluation tests
NASA Technical Reports Server (NTRS)
Penn, W. B.; Schaefer, R. F.; Balke, R. L.
1972-01-01
Tests were conducted to predict the remaining electrical insulation life of a 60 KW homopolar inductor alternator following completion of NASA turbo-alternator endurance tests for SNAP-8 space electrical power systems application. The insulation quality was established for two alternators following completion of these tests. A step-temperature aging test procedure was developed for insulation life prediction and applied to one of the two alternators. Armature winding insulation life of over 80,000 hours for an average winding temperature of 248 degrees C was predicted using the developed procedure.
NASA Technical Reports Server (NTRS)
1982-01-01
The basic test methods of aging and deterioration mechanisms of electrical insulating materials are discussed. A comprehensive test system developed to study the degradation process is described. This system is completely checked, and calibrated with a few insulating material samples.
NASA Astrophysics Data System (ADS)
Wu, Zhixiong; Huang, Rongjin; Huang, ChuanJun; Yang, Yanfang; Huang, Xiongyi; Li, Laifeng
2017-12-01
The Glass-fiber reinforced plastic (GFRP) fabricated by the vacuum bag process was selected as the high voltage electrical insulation and mechanical support for the superconducting joints and the current leads for the ITER Feeder system. To evaluate the cryogenic mechanical properties of the GFRP, the mechanical properties such as the short beam strength (SBS), the tensile strength and the fatigue fracture strength after 30,000 cycles, were measured at 77K in this study. The results demonstrated that the GFRP met the design requirements of ITER.
NASA Astrophysics Data System (ADS)
Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.
2017-12-01
The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.
Component for thermoelectric generator
Purdy, David L.
1977-01-01
In a thermoelectric generator, a component comprises a ceramic insulator, having over limited areas thereof, each area corresponding to a terminal end of thermoelectric wires, a coating of a first metal which adheres to the insulator, and an electrical thermoelectric junction including a second metal which wets said first metal and adheres to said terminal ends but does not wet said insulator, and a cloth composed of electrically insulating threads interlaced with thermoelectric wires.
Dry and wet arc track propagation resistance testing
NASA Technical Reports Server (NTRS)
Beach, Rex
1995-01-01
The wet arc-propagation resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical environment. Results of an arc-propagation test may vary slightly due to the method of arc initiation; therefore a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc by dripping salt water over pre-damaged wires which creates a conductive path between the wires. The power supply, test current, circuit resistances, and other variables are optimized for testing 20 guage wires. The use of other wire sizes may require modifications to the test variables. The dry arc-propagation resistance test for wire insulation also provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment. In service, electrical arcs may originate form a variety of factors including insulation deterioration, faulty installation, and chafing. Here too, a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc with a vibrating blade. The test also evaluates the ability of the insulation to prevent further arc-propagation when the electrical arc is re-energized.
System and method for evaluating a wire conductor
Panozzo, Edward; Parish, Harold
2013-10-22
A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.
Insulation Technology in Dry Air and Vacuum for a 72kV Low Pressured Dry Air Insulated Switchgear
NASA Astrophysics Data System (ADS)
Yoshida, Tadahiro; Koga, Hiromi; Harada, Takakazu; Miki, Shinichi; Arioka, Masahiro; Sato, Shinji; Yoshida, Satoru; Inoue, Naoaki; Maruyama, Akihiko; Takeuchi, Toshie
A new 72kV rated low pressured dry air insulated switchgear applying electromagnetic actuation and function that supports CBM has been developed. First, dielectric characteristics in dry air under lightning impulse application has been investigated at bare and insulator covered electrodes. Dependence of the breakdown electric field strength on the effective area has been clarified to apply the configuration design of the insulation mold for the vacuum interrupter. In addition, moisture volume dependence on surface resistance has been clarified to decide moisture volume in gas pressure tank. Next, a new vacuum circuit breaker (VCB) has been designed. To keep dimensions from former 72kV SF6 gas insulated switchgear, distance between contacts in vacuum interrupter is needed to be shorter than that of former switchgear. Voltage withstand capability between electrodes practically designed for vacuum interrupter has been investigated under dc voltage application simulated the small capacitive current breaking test. Gap configuration including contacts and slits has been optimized and distance has been shortened 11% from former switchgear. As a result, the new low pressured dry air insulated switchgear has been designed comparably in outer size to former SF6 gas insulated switchgear. Using dry air as an insulation medium with low pressure has been able to reduce the environmental burden.
Depositing bulk or micro-scale electrodes
Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.
2016-11-01
Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof
Mihailovich, Robert E.; Papavasiliou, Alex P.; Mehrotra, Vivek; Stupar, Philip A.; Borwick, III, Robert L.; Ganguli, Rahul; DeNatale, Jeffrey F.
2017-03-28
A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil. Alternating magnetic layers and electrically insulating layers may be micro-fabricated and electroplated as a single and substantially continuous segment on or around the insulating material.
Extending the high-order-harmonic spectrum using surface plasmon polaritons
NASA Astrophysics Data System (ADS)
Ebadian, H.; Mohebbi, M.
2017-08-01
Nanoparticle assisted high-order-harmonic generation by low-intensity ultrashort laser pulses in hydrogen atomic gas is studied. This work is based on surface plasmon-polariton coupling in metal-insulator-metal structures. The necessary laser intensity is provided by enhancement of the incident laser power in the vicinity of bowtie nanoparticles installed on an insulator-metal structure. The inhomogeneous electric field distribution in the Au nanobowtie gap region is investigated. Simulations show that the insulator layer installed on the Au metal film that supports the plasmon-polariton interactions has a dramatic effect on the field enhancement factor. High-order-harmonic generation cutoffs for different arrangements are calculated and results show that the metal-insulator-metal structure is an excellent device for high-order-harmonic generation purposes. Also, the harmonic cutoff order is extended to more than 170, which is a considerable value and will be an efficient source for extreme ultraviolet radiation.
Disorder enabled band structure engineering of a topological insulator surface
Xu, Yishuai; Chiu, Janet; Miao, Lin; ...
2017-02-03
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
Devitt, Brian Meldan; Baker, Joseph F; Fitzgerald, Eilis; McCarthy, Conor
2010-01-01
A case of injury to the third web space of the right hand of a rugby player, as a result of buddy strapping with electrical insulating tape of the little and ring finger, is presented. A deep laceration of the web space and distal palmar fascia resulted, necessitating wound exploration and repair. This case highlights the danger of using electrical insulating tape as a means to buddy strap fingers. PMID:22736733
NASA Astrophysics Data System (ADS)
Alsaqqa, Ali; Kilcoyne, Colin; Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.
Vanadium dioxide (VO2) is a strongly correlated material that exhibits a sharp thermally driven metal-insulator transition at Tc ~ 340 K. The transition can also be triggered by a DC voltage in the insulating phase with a threshold (Vth) behavior. The mechanisms behind these transitions are hotly discussed and resistance noise spectroscopy is a suitable tool to delineate different transport mechanisms in correlated systems. We present results from a systematic study of the low frequency (1 mHz < f < 10 Hz) noise behavior in VO2 nanobeams across the thermally and electrically driven transitions. In the thermal transition, the power spectral density (PSD) of the resistance noise is unchanged as we approach Tc from 300 K and an abrupt drop in the magnitude is seen above Tc and it remains unchanged till 400 K. However, the noise behavior in the electrically driven case is distinctly different: as the voltage is ramped from zero, the PSD gradually increases by an order of magnitude before reaching Vth and an abrupt increase is seen at Vth. The noise magnitude decreases above Vth, approaching the V = 0 value. The individual roles of percolation, Joule heating and signatures of correlated behavior will be discussed. This work is supported by NSF DMR 0847324.
Polymer Coating of Carbon Nanotube Fibers for Electric Microcables
Alvarez, Noe T.; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R.; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J.; Shanov, Vesselin
2014-01-01
Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core. PMID:28344254
Polymer Coating of Carbon Nanotube Fibers for Electric Microcables.
Alvarez, Noe T; Ochmann, Timothy; Kienzle, Nicholas; Ruff, Brad; Haase, Mark R; Hopkins, Tracy; Pixley, Sarah; Mast, David; Schulz, Mark J; Shanov, Vesselin
2014-11-04
Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter-which is approximately four times the diameter of a red blood cell-is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core.
Li, Yufan; Ma, Qinli; Huang, S. X.; Chien, C. L.
2018-01-01
The advent of topological insulators (TIs), a novel class of materials that harbor a metallic spin-chiral surface state coexisting with band-insulating bulk, opens up new possibilities for spintronics. One promising route is current-induced switching of an adjacent magnetic layer via spin-orbit torque (SOT), arising from the large spin-orbit coupling intrinsically possessed by TIs. The Kondo insulator SmB6 has been recently proposed to be a strongly correlated TI, supported by the observation of a metallic surface state in bulk SmB6, as evidenced by the thickness independence of the low-temperature resistance plateau. We report the synthesis of epitaxial (001) SmB6/Si thin films and a systematic thickness-dependent electrical transport study. Although the low-temperature resistance plateau is observed for all films from 50 to 500 nm in thickness, the resistance is distinctively thickness-dependent and does not support the notion of surface conduction and interior insulation. On the other hand, we demonstrate that SmB6 can generate a large SOT to switch an adjacent ferromagnetic layer, even at room temperature. The effective SOT generated from SmB6 is comparable to that from β-W, one of the strongest SOT materials. PMID:29376125
Element for use in an inductive coupler for downhole drilling components
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron
2006-08-29
The present invention includes an element for use in an inductive coupler in a downhole component. The element includes a plurality of ductile, generally U-shaped leaves that are electrically conductive. The leaves are less than about 0.0625" thick and are separated by an electrically insulating material. These leaves are aligned so as to form a generally circular trough. The invention also includes an inductive coupler for use in downhole components, the inductive coupler including an annular housing having a recess with a magnetically conductive, electrically insulating (MCEI) element disposed in the recess. The MCEI element includes a plurality of segments where each segment further includes a plurality of ductile, generally U-shaped electrically conductive leaves. Each leaf is less than about 0.0625" thick and separated from the otherwise adjacent leaves by electrically insulating material. The segments and leaves are aligned so as to form a generally circular trough. The inductive coupler further includes an insulated conductor disposed within the generally circular trough. A polymer fills spaces between otherwise adjacent segments, the annular housing, insulated conductor, and further fills the circular trough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayakumar, R.; Martovetsky, N.N.; Perfect, S.A.
A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete.more » It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations.« less
Self-assembly of carbon black into nanowires that form a conductive three dimensional micronetwork
NASA Astrophysics Data System (ADS)
Levine, L. E.; Long, G. G.; Ilavsky, J.; Gerhardt, R. A.; Ou, R.; Parker, C. A.
2007-01-01
The authors have used mechanical self-assembly of carbon-black nanoparticles to fabricate a three dimensional, electrically connected micronetwork of nanowires embedded within an insulating, supporting matrix of poly(methyl methacrylate). The electrical connectivity, mean wire diameter, and morphological transitions were characterized as a function of the carbon-black mass fraction. Conductive wires were produced with mean diameters as low as 24nm with lengths up to 100μm.
A Method to have Multi-Layer Thermal Insulation Provide Damage Detection
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Taylor, Bryant D.; Jones, Thomas W.; Shams, Qamar A.; Lyons, Frankel; Henderson, Donald
2007-01-01
Design and testing of a multi-layer thermal insulation system that also provides debris and micrometeorite damage detection is presented. One layer of the insulation is designed as an array of passive open-circuit electrically conductive spiral trace sensors. The sensors are a new class of sensors that are electrically open-circuits that have no electrical connections thereby eliminating one cause of failure to circuits. The sensors are powered using external oscillating magnetic fields. Once electrically active, they produce their own harmonic magnetic fields. The responding field frequency changes if any sensor is damaged. When the sensors are used together in close proximity, the inductive coupling between sensors provides a means of telemetry. The spiral trace design using reflective electrically conductive material provides sufficient area coverage for the sensor array to serves as a layer of thermal insulation. The other insulation layers are designed to allow the sensor s magnetic field to permeate the insulation layers while having total reflective surface area to reduce thermal energy transfer. Results of characterizing individual sensors and the sensor array s response to punctures are presented. Results of hypervelocity impact testing using projectiles of 1-3.6 millimeter diameter having speeds ranging from 6.7-7.1 kilometers per second are also presented.
Electrochemical cell with powdered electrically insulative material as a separator
Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell
Cooper, Tom O.; Miller, William E.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, is compacted as layers onto an electrode to form an integral electrode structure and assembled into the cell. The assembled cell is heated to its operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Tokarz, Richard D.
1982-01-01
A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.
Study of curved glass photovoltaic module and module electrical isolation design requirements
NASA Technical Reports Server (NTRS)
1980-01-01
The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.
Study of curved glass photovoltaic module and module electrical isolation design requirements
NASA Astrophysics Data System (ADS)
1980-06-01
The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.
Mechanism of the free charge carrier generation in the dielectric breakdown
NASA Astrophysics Data System (ADS)
Rahim, N. A. A.; Ranom, R.; Zainuddin, H.
2017-12-01
Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.
A method to stabilise the performance of negatively fed KM3NeT photomultipliers
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Ageron, M.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Martí, J.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Buompane, R.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherubini, S.; Chiarella, V.; Chiarelli, L.; Chiarusi, T.; Circella, M.; Classen, L.; Cobas, D.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amato, C.; D'Amico, A.; D'Onofrio, A.; De Bonis, G.; De Sio, C.; Di Capua, F.; Di Palma, I.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; Elsaesser, D.; Enzenhöfer, A.; Favaro, M.; Fermani, P.; Ferrara, G.; Frascadore, G.; Furini, M.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giacomini, F.; Gialanella, L.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Grmek, A.; Guerzoni, M.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijer, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Leisos, A.; Leonora, E.; Clark, M. Lindsey; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Manzali, M.; Margiotta, A.; Margotti, A.; Marinelli, A.; Mariš, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marzaioli, F.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Orzelli, A.; Pancaldi, G.; Paolucci, A.; Papaikonomou, A.; Papaleo, R.; Păvălaš, G. E.; Peek, H.; Pellegrini, G.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Schnabel, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Terrasi, F.; Tézier, D.; Theraube, S.; Timmer, P.; Töonnis, C.; Trasatti, L.; Travaglini, R.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Versari, F.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zani, S.; Zornoza, J. D.; Zúñiga, J.
2016-12-01
The KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier tubes that will have to be operated in a stable and reliable fashion. In this context, the stability of the dark counts has been investigated for photomultiplier tubes with negative high voltage on the photocathode and held in insulating support structures made of 3D printed nylon material. Small gaps between the rigid support structure and the photomultiplier tubes in the presence of electric fields can lead to discharges that produce dark count rates that are highly variable. A solution was found by applying the same insulating varnish as used for the high voltage bases directly to the outside of the photomultiplier tubes. This transparent conformal coating provides a convenient and inexpensive method of insulation.
System and method for sub-sea cable termination
Chen, Qin; Yin, Weijun; Zhang, Lili
2016-04-05
An electrical connector includes a first cable termination chamber configured to receive a first power cable having at least a first conductor sheathed at least in part by a first insulating layer and a first insulation screen layer. Also, the electrical connector includes a first non-linear resistive layer configured to be coupled to a portion of the first conductor unsheathed by at least the first insulation screen layer and configured to control a direct current electric field generated in the first cable termination chamber. In addition, the electrical connector includes a first deflector configured to be coupled to the first power cable and control an alternating current electric field generated in the first cable termination chamber.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, R.R.; Bond, J.A.
1994-03-29
A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.
Vinegar, Harold J.; Sandberg, Chester Ledlie
2010-11-09
A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.
NASA Astrophysics Data System (ADS)
Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.
2017-10-01
As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.
Not Available
1981-01-29
A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.
76 FR 1983 - Airworthiness Directives; The Boeing Company Model MD-11 and MD-11F Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
... assemblies of the tail tank fuel system, a wiring change, and corrective actions if necessary. This AD also requires, for certain airplanes, a general visual inspection for correct installation of the self-adhering high-temperature electrical insulation tape; installation of a wire assembly support bracket and...
Downhole data transmission system
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S; Dahlgren, Scott; Fox, Joe
2006-06-20
A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.
Downhole Data Transmission System
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe
2003-12-30
A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.
Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA
2011-11-15
A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.
High pressure electrical insulated feed thru connector
Oeschger, Joseph E.; Berkeland, James E.
1979-11-13
A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.
Polyimide/Glass Composite High-Temperature Insulation
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon
2009-01-01
Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.
NASA Astrophysics Data System (ADS)
Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour
2018-04-01
The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.
NASA Astrophysics Data System (ADS)
Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.
2018-04-01
Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.
Metallic hot wire anemometer. [for high speed wind tunnel tests
NASA Technical Reports Server (NTRS)
Lemos, F. R. (Inventor)
1977-01-01
A hot wire anemometer is described which has a body formed of heat resistant metal such as an alloy high in nickel content which supports a probe wire disposed in a V groove in the body. The V groove contains a high temperature ceramic adhesive that partially encompasses the downstream side of the probe wire. Mechanical and electrical connection to the probe wire is achieved through conductive support rods that are constructed of the same high temperature metal, insulation between the body and the conductor rods being provided by a coating of an oxide of the same material which coating is formed in situ. The oxide coating insulates the conductor rods from the body, mechanically fixes the conductors within the body, and maintains its integrity at elevated temperatures.
Analysis and comparison of magnetic sheet insulation tests
NASA Astrophysics Data System (ADS)
Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.
1994-05-01
Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.
Flux pumping for non-insulated and metal-insulated HTS coils
NASA Astrophysics Data System (ADS)
Ma, Jun; Geng, Jianzhao; Coombs, T. A.
2018-01-01
High-temperature superconducting (HTS) coils wound from coated conductors without turn-to-turn insulation (non-insulated (NI) coils) have been proven with excellent electrical and thermal performances. However, the slow charging of NI coils has been a long-lasting problem. In this work, we explore using a transformer-rectifier HTS flux pump to charge an NI coil and a metal-insulated coil. The charging performance comparison is made between different coils. Comprehensive study is done to thoroughly understand the electrical-magnetic transience in charging these coils. We will show that the low-voltage high-current flux pump is especially suitable for charging NI coils with very low characteristic resistance.
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT
2008-01-15
A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.
Quantum spin liquids and the metal-insulator transition in doped semiconductors.
Potter, Andrew C; Barkeshli, Maissam; McGreevy, John; Senthil, T
2012-08-17
We describe a new possible route to the metal-insulator transition in doped semiconductors such as Si:P or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott localization of electrons into a quantum spin liquid state with diffusive charge neutral "spinon" excitations. Such a quantum spin liquid state can appear as an intermediate phase between the metal and the Anderson-Mott insulator. An immediate testable consequence is the presence of metallic thermal conductivity at low temperature in the electrical insulator near the metal-insulator transition. Further, we show that though the transition is second order, the zero temperature residual electrical conductivity will jump as the transition is approached from the metallic side. However, the electrical conductivity will have a nonmonotonic temperature dependence that may complicate the extrapolation to zero temperature. Signatures in other experiments and some comparisons with existing data are made.
Data transmission element for downhole drilling components
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael
2006-01-31
A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.
Electrical Insulation Fire Characteristics : Volume 2. Toxicity.
DOT National Transportation Integrated Search
1978-12-01
The purpose of this research was to determine the relative inhalation toxicity of the thermal degradation products or gaseous pyrolysis of selected types of electrical wiring insulations. The specific materials to be evaluated were supplied by the Bo...
Power module assembly with reduced inductance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Terence G.; Stancu, Constantin C.; Jaksic, Marko
A power module assembly has a plurality of electrically conducting layers, including a first layer and a third layer. One or more electrically insulating layers are operatively connected to each of the plurality of electrically conducting layers. The electrically insulating layers include a second layer positioned between and configured to electrically isolate the first and the third layers. The first layer is configured to carry a first current flowing in a first direction. The third layer is configured to carry a second current flowing in a second direction opposite to the first direction, thereby reducing an inductance of the assembly.more » The electrically insulating layers may include a fourth layer positioned between and configured to electrically isolate the third layer and a fifth layer. The assembly results in a combined substrate and heat sink structure. The assembly eliminates the requirements for connections between separate substrate and heat sink structures.« less
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, Roland R.; Bond, James A.
1994-01-01
A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.
Thin film photovoltaic device and process of manufacture
Albright, S.P.; Chamberlin, R.
1997-10-07
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.
Thin film photovoltaic device and process of manufacture
Albright, Scot P.; Chamberlin, Rhodes
1999-02-09
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.
Thin film photovoltaic device and process of manufacture
Albright, S.P.; Chamberlin, R.
1999-02-09
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.
Thin film photovoltaic device and process of manufacture
Albright, Scot P.; Chamberlin, Rhodes
1997-10-07
Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.
Dirac Fermions without bulk backscattering in rhombohedral topological insulators
NASA Astrophysics Data System (ADS)
Mera Acosta, Carlos; Lima, Matheus; Seixas, Leandro; da Silva, Antônio; Fazzio, Adalberto
2015-03-01
The realization of a spintronic device using topological insulators is not trivial, because there are inherent difficulties in achieving the surface transport regime. The majority of 3D topological insulators materials (3DTI) despite of support helical metallic surface states on an insulating bulk, forming topological Dirac fermions protected by the time-reversal symmetry, exhibit electronic scattering channels due to the presence of residual continuous bulk states near the Dirac-point. From ab initio calculations, we studied the microscopic origin of the continuous bulk states in rhombohedral topological insulators materials with the space group D3d 5 (R 3 m) , showing that it is possible to understand the emergence of residual continuous bulk states near the Dirac-point into a six bands effective model, where the breaking of the R3 symmetry beyond the Γ point has an important role in the hybridization of the px, py and pz atomic orbitals. Within these model, the mechanisms known to eliminate the bulk scattering, for instance: the stacking faults (SF), electric field and alloy, generated the similar effect in the effective states of the 3DTI. Finally, we show how the surface electronic transport is modified by perturbations of bulk with SF. We would like to thank the financial support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Li, Qi; Hu, Jun; Zhang, Bo; He, Jinliang
2018-04-01
Electrical degradation of insulating polymers at electrode interfaces is an essential factor in determining long-term reliability. A critical challenge is that the exact mechanism of degradation is not fully understood, either experimentally or theoretically, due to the inherent complex processes. Consequently, in this study, we investigate electroluminescence (EL) at the interface of an electrode and insulator, and determine the relationship between EL and electrical degradation. Using a tip-plate electrode structure, the unique features of EL under a highly divergent field are investigated. The voltage type (alternating or direct current), the polymer matrix, and the time of pressing are also investigated separately. A study of EL from insulators under a divergent field is provided, and the relationship between EL spectra and degradation is discussed. It is shown that EL spectra under a divergent field have unique characteristics compared with EL spectra from polymer films under a uniform field and the most obvious one is the UV emission. The results obtained in the current investigation bring us a step closer to understanding the process of electrical degradation and provide a potential way to diagnose insulator defects.
Large Enhancement of Thermal Conductivity and Lorenz Number in Topological Insulator Thin Films.
Luo, Zhe; Tian, Jifa; Huang, Shouyuan; Srinivasan, Mithun; Maassen, Jesse; Chen, Yong P; Xu, Xianfan
2018-02-27
Topological insulators (TI) have attracted extensive research effort due to their insulating bulk states but conducting surface states. However, investigation and understanding of thermal transport in topological insulators, particularly the effect of surface states, are lacking. In this work, we studied thickness-dependent in-plane thermal and electrical conductivity of Bi 2 Te 2 Se TI thin films. A large enhancement in both thermal and electrical conductivity was observed for films with thicknesses below 20 nm, which is attributed to the surface states and bulk-insulating nature of these films. Moreover, a surface Lorenz number much larger than the Sommerfeld value was found. Systematic transport measurements indicated that the Fermi surface is located near the charge neutrality point (CNP) when the film thickness is below 20 nm. Possible reasons for the large Lorenz number include electrical and thermal current decoupling in the surface state Dirac fluid, and bipolar diffusion transport. A simple computational model indicates that the surface states and bipolar diffusion indeed can lead to enhanced electrical and thermal transport and a large Lorenz number.
Choi, Y H; Song, J B; Yang, D G; Kim, Y G; Hahn, S; Lee, H G
2016-10-01
This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.
NASA Astrophysics Data System (ADS)
Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.
2016-10-01
This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.
Liu, Ming; Zhang, Xiang
2018-01-23
This disclosure provides systems, methods, and apparatus related to catalytic devices. In one aspect, a device includes a substrate, an electrically insulating layer disposed on the substrate, a layer of material disposed on the electrically insulating layer, and a catalyst disposed on the layer of material. The substrate comprises an electrically conductive material. The substrate and the layer of material are electrically coupled to one another and configured to have a voltage applied across them.
Effects Of Radiation On Insulators
NASA Technical Reports Server (NTRS)
Bouquet, Frank L.
1988-01-01
Report presents data on responses of electrically insulating thermosetting and thermoplastic polymers to radiation. Lowest-threshold-dose (LTD) levels and 25-percent-change levels presented for such properties as tensile strength and electrical resistivity. Data on radiation-induced outgassing also given.
NASA Astrophysics Data System (ADS)
Clayton, N.; Crouchen, M.; Evans, D.; Gung, C.-Y.; Su, M.; Devred, A.; Piccin, R.
2017-12-01
The high voltage (HV) insulation on the ITER magnet feeder superconducting busbars and current leads will be prepared from S-glass fabric, pre-impregnated with an epoxy resin, which is interleaved with polyimide film and wrapped onto the components and cured during feeder manufacture. The insulation architecture consists of nine half-lapped layers of glass/Kapton, which is then enveloped in a ground-screen, and two further half-lapped layers of glass pre-preg for mechanical protection. The integrity of the HV insulation is critical in order to inhibit electrical arcs within the feeders. The insulation over the entire length of the HV components (bus bar, current leads and joints) must provide a level of voltage isolation of 30 kV. In operation, the insulation on ITER busbars will be subjected to high mechanical loads, arising from Lorentz forces, and in addition will be subjected to fretting erosion against stainless steel clamps, as the pulsed nature of some magnets results in longitudinal movement of the busbar. This work was aimed at assessing the wear on, and the changes in, the electrical properties of the insulation when subjected to typical ITER operating conditions. High voltage tests demonstrated that the electrical isolation of the insulation was intact after the fretting test.
Insulation Requirements of High-Voltage Power Systems in Future Spacecraft
NASA Technical Reports Server (NTRS)
Qureshi, A. Haq; Dayton, James A., Jr.
1995-01-01
The scope, size, and capability of the nation's space-based activities are limited by the level of electrical power available. Long-term projections show that there will be an increasing demand for electrical power in future spacecraft programs. The level of power that can be generated, conditioned, transmitted, and used will have to be considerably increased to satisfy these needs, and increased power levels will require that transmission voltages also be increased to minimize weight and resistive losses. At these projected voltages, power systems will not operate satisfactorily without the proper electrical insulation. Open or encapsulated power supplies are currently used to keep the volume and weight of space power systems low and to protect them from natural and induced environmental hazards. Circuits with open packaging are free to attain the pressure of the outer environment, whereas encapsulated circuits are imbedded in insulating materials, which are usually solids, but could be liquids or gases. Up to now, solid insulation has usually been chosen for space power systems. If the use of solid insulation is continued, when voltages increase, the amount of insulation for encapsulation also will have to increase. This increased insulation will increase weight and reduce system reliability. Therefore, non-solid insulation media must be examined to satisfy future spacecraft power and voltage demands. In this report, we assess the suitability of liquid, space vacuum, and gas insulation for space power systems.
... are insulated like pieces of electrical wire. This insulation protects them and also allows their signals to move faster along the axon. Without this insulation, signals from the brain might never reach the ...
49 CFR 236.752 - Joint, rail, insulated.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Joint, rail, insulated. 236.752 Section 236.752 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Joint, rail, insulated. A joint in which electrical insulation is provided between adjoining rails. ...
NASA Astrophysics Data System (ADS)
Zunger, Alex; Zhang, Xiuwen; Abdalla, Leonardo; Liu, Qihang
Currently known topological insulators (TIs) are limited to narrow gap compounds incorporating heavy elements, thus severely limiting the material pool available for such applications. We show how a heterovalent superlattice made of common semiconductor building blocks can transform its non-TI components into a topological heterostructure. The heterovalent nature of such interfaces sets up, in the absence of interfacial atomic exchange, a natural internal electric field that along with the quantum confinement leads to band inversion, transforming these semiconductors into a topological phase while also forming a giant Rashba spin splitting. We demonstrate this paradigm of designing TIs from ordinary semiconductors via first-principle calculations on III-V/II-VI superlattice InSb/CdTe. We illustrate the relationship between the interfacial stability and the topological transition, finding a ``window of opportunity'' where both conditions can be optimized. This work illustrates the general principles of co-evaluation of TI functionality with thermodynamic stability as a route of identifying realistic combination of common insulators that could produce topological heterostructures. This work was supported by Basic Energy Science, MSE division (Grant DE-FG02-13ER46959).
Detection of Partial Discharge Sources Using UHF Sensors and Blind Signal Separation
Boya, Carlos; Parrado-Hernández, Emilio
2017-01-01
The measurement of the emitted electromagnetic energy in the UHF region of the spectrum allows the detection of partial discharges and, thus, the on-line monitoring of the condition of the insulation of electrical equipment. Unfortunately, determining the affected asset is difficult when there are several simultaneous insulation defects. This paper proposes the use of an independent component analysis (ICA) algorithm to separate the signals coming from different partial discharge (PD) sources. The performance of the algorithm has been tested using UHF signals generated by test objects. The results are validated by two automatic classification techniques: support vector machines and similarity with class mean. Both methods corroborate the suitability of the algorithm to separate the signals emitted by each PD source even when they are generated by the same type of insulation defect. PMID:29140267
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yishuai; Chiu, Janet; Miao, Lin
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
Electrically tunable transport and resistive switching in doped Ca2RuO4
NASA Astrophysics Data System (ADS)
Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim
We study electronic transport properties of Cr doped (2.5%) Mott insulator Ca2RuO4 where electric fields were previously found to induce an insulator-to-metal switching with potential industrial applications. In our experiments we observe a continuous reduction in the resistivity of Ca2RuO4 as a function of increasing electrical bias followed by an abrupt switching at higher biases. Interestingly, the observed switching is non-destructive and requires opposite bias polarities to switch from high-to-low and low-to-high resistance states. Combination of 2-, 3-, and 4-probe measurements provide a means to shed light on the origin of the switching and distinguish between its bulk and interfacial contributions. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, by NSF Grants DMR-1600057, DMR-1265162, and DMR-1122603, and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-2626.
Method for electrically isolating an electrically conductive member from another such member
Tsang, K.L.; Chen, Y.
1984-02-09
The invention relates to methods for electrically isolating a first electrically conductive member from another such member by means of an electrically insulating medium. In accordance with the invention, the insulating medium is provided in the form of MgO which contains a dopant selected from lithium, copper, cobalt, sodium, silver, gold and hydrogen. The dopant is present in the MgO in an amount effective to suppress dielectric breakdown of the MgO, even at elevated temperatures and in the presence of electrical fields.
Pourrahimi, Amir Masoud; Olsson, Richard T; Hedenqvist, Mikael S
2018-01-01
Recent progress in the development of polyethylene/metal-oxide nanocomposites for extruded high-voltage direct-current (HVDC) cables with ultrahigh electric insulation properties is presented. This is a promising technology with the potential of raising the upper voltage limit in today's underground/submarine cables, based on pristine polyethylene, to levels where the loss of energy during electric power transmission becomes low enough to ensure intercontinental electric power transmission. The development of HVDC insulating materials together with the impact of the interface between the particles and the polymer on the nanocomposites electric properties are shown. Important parameters from the atomic to the microlevel, such as interfacial chemistry, interfacial area, and degree of particle dispersion/aggregation, are discussed. This work is placed in perspective with important work by others, and suggested mechanisms for improved insulation using nanoparticles, such as increased charge trap density, adsorption of impurities/ions, and induced particle dipole moments are considered. The effects of the nanoparticles and of their interfacial structures on the mechanical properties and the implications of cavitation on the electric properties are also discussed. Although the main interest in improving the properties of insulating polymers has been on the use of nanoparticles, leading to nanodielectrics, it is pointed out here that larger microscopic hierarchical metal-oxide particles with high surface porosity also impart good insulation properties. The impact of the type of particle and its inherent properties (purity and conductivity) on the nanocomposite dielectric and insulating properties are also discussed based on data obtained by a newly developed technique to directly observe the charge distribution on a nanometer scale in the nanocomposite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inhomogeneity at the LaAlO3/SrTiO3 interface
NASA Astrophysics Data System (ADS)
Claeson, T.; Kalabukhov, A.; Gunnarsson, R.; Winkler, D.; Borjesson, J.; Ljustina, N.; Olsson, E.; Popok, V.; Boikov, Yu.; Serenkov, I.; Sakharov, V.
2010-03-01
High electrical conductivity has been reported for the interface between two wide-band gap insulators, LaAlO3 (LAO) and SrTiO3 (STO). It occurs above a critical thickness of LAO and can be tuned by an electric field. The conduction has been attributed to i) ``polar catastrophe'' , where the electrostatic charge at the interface is compensated by the transfer of half an electron per unit cell to the interface, ii) oxygen vacancies in the STO, and iii) cation intermixing, which may result in the formation of metallic La1-xSrxTiO3 layer. The relation between microstructure and electrical properties is crucial for understanding the origin of electrical conductivity. We have investigated the interface composition using medium-energy ion spectroscopy, high resolution electron microscopy, and Kelvin probe force microscopy. We find a correlation between cationic intermixing at the interface and electrical properties and inhomogeneities of the interface conductivity that may support a percolation model. Work supported by Swedish VR & KAW, Russian ISTC 3743, EC NANOXIDE
Phase-field model of insulator-to-metal transition in VO2 under an electric field
NASA Astrophysics Data System (ADS)
Shi, Yin; Chen, Long-Qing
2018-05-01
The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.
NASA Astrophysics Data System (ADS)
Ebisawa, Yoshihito; Yamada, Shin; Mori, Shigekazu; Ikeda, Masami
This paper describes breakdown characteristics of an oil-pressboard insulation system to a superposition voltage of AC and DC voltages. Although AC electric field is decided by the ratio of the relative permittivity of a pressboard and insulating oil, DC electric field is decided by ratio α of volume resistivities. From the measurement in this study, 13—78 and 1.8—5.7 are obtained as the volume resistivity ratios α at temperature of 30°C and 80°C, respectively. The breakdown voltages against AC, DC, and those superposition voltages are surveyed to insulation models. In normal temperature, the breakdown voltage to the superposition voltage of AC and DC is determined by AC electric field applied to the oil duct. Since the α becomes as low as 2-3 at temperature of 80°C, AC and DC voltages almost equally contribute to the electric field of the oil duct as a result. That is, it became clear that superposed DC voltage boosts the electric field across oil ducts at operating high temperature.
Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms
NASA Astrophysics Data System (ADS)
Nobukane, Hiroyoshi; Matsuyama, Toyoki; Tanda, Satoshi
2017-01-01
The quantum anomaly that breaks the symmetry, for example the parity and the chirality, in the quantization leads to a physical quantity with a topological Chern invariant. We report the observation of a Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms by employing electric transport. We observed the superconductor-to-insulator transition by reducing the thickness of Sr2RuO4 single crystals. The appearance of a gap structure in the insulating phase implies local superconductivity. Fractional quantized conductance was observed without an external magnetic field. We found an anomalous induced voltage with temperature and thickness dependence, and the induced voltage exhibited switching behavior when we applied a magnetic field. We suggest that there was fractional magnetic-field-induced electric polarization in the interlayer. These anomalous results are related to topological invariance. The fractional axion angle Θ = π/6 was determined by observing the topological magneto-electric effect in the Bose-insulating phase of Sr2RuO4 nanofilms.
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston
NASA Astrophysics Data System (ADS)
Upadhyaya, Pramey; Tserkovnyak, Yaroslav
2016-07-01
We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.
A Novel Method for Measuring Electrical Conductivity of High Insulating Oil Using Charge Decay
NASA Astrophysics Data System (ADS)
Wang, Z. Q.; Qi, P.; Wang, D. S.; Wang, Y. D.; Zhou, W.
2016-05-01
For the high insulating oil, it is difficult to measure the conductivity precisely using voltammetry method. A high-precision measurementis proposed for measuring bulk electrical conductivity of high insulating oils (about 10-9--10-15S/m) using charge decay. The oil is insulated and charged firstly, and then grounded fully. During the experimental procedure, charge decay is observed to show an exponential law according to "Ohm" theory. The data of time dependence of charge density is automatically recorded using an ADAS and a computer. Relaxation time constant is fitted from the data using Gnuplot software. The electrical conductivity is calculated using relaxation time constant and dielectric permittivity. Charge density is substituted by electric potential, considering charge density is difficult to measure. The conductivity of five kinds of oils is measured. Using this method, the conductivity of diesel oil is easily measured to beas low as 0.961 pS/m, as shown in Fig. 5.
Electrically floating, near vertical incidence, skywave antenna
Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.
2014-07-08
An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to... preventing external short circuits, such as by providing complete electrical insulation of battery terminals...
Hot-blade stripper for polyester insulation on FCC
NASA Technical Reports Server (NTRS)
Angele, W.; Chambers, C. M.
1971-01-01
Stripper incorporates a blade which is electrically heated to a controlled temperature. Heated blade softens and strips insulation from cable while paper ribbon removes insulation material and keeps blade clean for next operation.
Hermetically sealed electrical feedthrough for high temperature secondary cells
Knoedler, R.; Nelson, P.A.; Shimotake, H.; Battles, J.E.
1983-07-26
A passthrough seal is disclosed for electrically isolating the terminal in a lithium/metal sulfide cell from the structural cell housing. The seal has spaced upper and lower insulator rings fitted snuggly between the terminal and an annularly disposed upstanding wall, and outwardly of a powdered insulator also confined between the upstanding wall and terminal. The adjacent surfaces of the upper insulator ring and the respective upstanding wall and terminal are conically tapered, diverging in the axial direction away from the cell interior, and a sealing ring is located between each pair of the adjacent surfaces. The components are sized so that upon appropriate movement of the upper insulator ring toward the lower insulator ring the powdered insulator and sealing rings are each compressed to a high degree. This compacts the powdered insulator thereby rendering the same highly impervious and moreover fuses the sealing rings to and between the adjacent surfaces. The upper and lower insulator rings might be formed of beryllium oxide and/or alumina, the powdered insulator might be formed of boron nitride, and the sealing rings might be formed of aluminum.
Hermetically sealed electrical feedthrough for high temperature secondary cells
Knoedler, Reinhard; Nelson, Paul A.; Shimotake, Hiroshi; Battles, James E.
1985-01-01
A passthrough seal is disclosed for electrically isolating the terminal in a lithium/metal sulfide cell from the structural cell housing. The seal has spaced upper and lower insulator rings fitted snuggly between the terminal and an annularly disposed upstanding wall, and outwardly of a powdered insulator also confined between the upstanding wall and terminal. The adjacent surfaces of the upper insulator ring and the respective upstanding wall and terminal are conically tapered, diverging in the axial direction away from the cell interior, and a sealing ring is located between each pair of the adjacent surfaces. The components are sized so that upon appropriate movement of the upper insulator ring toward the lower insulator ring the powdered insulator and sealing rings are each compressed to a high degree. This compacts the powdered insulator thereby rendering the same highly impervious and moreover fuses the sealing rings to and between the adjacent surfaces. The upper and lower insulator rings might be formed of beryllium oxide and/or alumina, the powdered insulator might be formed of boron nitride, and the sealing rings might be formed of aluminum.
LONG TERM OPERATION ISSUES FOR ELECTRICAL CABLE SYSTEMS IN NUCLEAR POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Dr Leonard S; Duckworth, Robert C; Glass III, Dr. Samuel W.
Nuclear power plants contain hundreds of kilometers of electrical cables including cables used for power, for instrumentation, and for control. It is essential that safety-related cable systems continue to perform following a design-basis event. Wholesale replacement of electrical cables in existing plants facing licensing period renewal is both impractical and cost-prohibitive. It is therefore important to understand the long term aging of cable materials to have confidence that aged cables will perform when needed. It is equally important in support of cable aging management to develop methods to evaluate the health of installed cables and inform selective cable replacement decisions.more » The most common insulation materials for electrical cables in nuclear power plants are cross-linked polyethylene and ethylene-propylene rubber. The mechanical properties of these materials degrade over time in the presence of environmental stresses including heat, gamma irradiation, and moisture. Mechanical degradation of cable insulation beyond a certain threshold is unacceptable because it can lead to insulation cracking, exposure of energized conductors, arcing and burning or loss of the ability of the cable system to function during a design-basis accident. While thermal-, radiation-, and moisture-related degradation of polymer insulation materials has been extensively studied over the last few decades, questions remain regarding the long-term performance of cable materials in nuclear plant-specific environments. Identified knowledge gaps include an understanding of the temperature-dependence of activation energies for thermal damage and an understanding of the synergistic effects of radiation and thermal stress on polymer degradation. Many of the outstanding questions in the aging behavior of cable materials relate to the necessity of predicting long-term field degradation using accelerated aging results from the laboratory. Materials degrade faster under more extreme conditions, but extension of behavior to long term degradation under more mild conditions, such as those experienced by most installed cables in nuclear power plants, is complicated by the fact that different degradation mechanisms may be involved in extreme and mild scenarios. The discrepancy in predicted results from short term, more extreme exposure and actual results from longer term, more mild exposures can be counter intuitive. For instance, due to the attenuation of oxidation penetration in material samples rapidly aged through exposure to high temperatures, the bulk of the samples may be artificially protected from thermal aging. In another example, simultaneous exposure of cable insulation material to heat and radiation may actually lead to less damage at higher temperatures than may be observed at lower temperatures. The Light Water Reactor Sustainability program of the United States (US) Department of Energy Office (DOE) of Nuclear Energy is funding research to increase the predictive understanding of electrical cable material aging and degradation in existing nuclear power plants in support of continued safe operation of plants beyond their initial license periods. This research includes the evaluation and development of methods to assess installed cable condition.« less
New Materials for the Repair of Polyimide Electrical Wire Insulation
NASA Technical Reports Server (NTRS)
2008-01-01
Two viable polyimide backbone materials have been identified that will allow the repair of polyimide electrical wire insulation found on the Space Shuttle and other aging aircraft. This identification is the outcome of ongoing efforts to assess the viability of using such polyimides and polyimide precursors (polyamic acids [PAAs]) as repair materials for aging polyimide electrical wire insulation. These repair materials were selected because they match the chemical makeup of the underlying wire insulation as closely as possible. This similarity allows for maximum compatibility, coupled with the outstanding physical properties of polyimides. The two polyimide backbone materials allow the polymer to be extremely flexible and to melt at low temperatures. A polymer chain end capping group that allows the polymer to crosslink into a nonflowable repair upon curing at around 200 C was also identified.
Resistive foil edge grading for accelerator and other high voltage structures
Caporaso, George J.; Sampayan, Stephen F.; Sanders, David M.
2014-06-10
In a structure or device having a pair of electrical conductors separated by an insulator across which a voltage is placed, resistive layers are formed around the conductors to force the electric potential within the insulator to distribute more uniformly so as to decrease or eliminate electric field enhancement at the conductor edges. This is done by utilizing the properties of resistive layers to allow the voltage on the electrode to diffuse outwards, reducing the field stress at the conductor edge. Preferably, the resistive layer has a tapered resistivity, with a lower resistivity adjacent to the conductor and a higher resistivity away from the conductor. Generally, a resistive path across the insulator is provided, preferably by providing a resistive region in the bulk of the insulator, with the resistive layer extending over the resistive region.
Electrically insulated MLI and thermal anchor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, Koji; Furukawa, Masato; Murakami, Haruyuki
2014-01-29
The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter methodmore » and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.« less
Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Sawyer, C. D.; Nakashima, A.
1972-01-01
A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.
Silicon oxide: a non-innocent surface for molecular electronics and nanoelectronics studies.
Yao, Jun; Zhong, Lin; Natelson, Douglas; Tour, James M
2011-02-02
Silicon oxide (SiO(x)) has been widely used in many electronic systems as a supportive and insulating medium. Here, we demonstrate various electrical phenomena such as resistive switching and related nonlinear conduction, current hysteresis, and negative differential resistance intrinsic to a thin layer of SiO(x). These behaviors can largely mimic numerous electrical phenomena observed in molecules and other nanomaterials, suggesting that substantial caution should be paid when studying conduction in electronic systems with SiO(x) as a component. The actual electrical phenomena can be the result of conduction from SiO(x) at a post soft-breakdown state and not the presumed molecular or nanomaterial component. These electrical properties and the underlying mechanisms are discussed in detail.
77 FR 36146 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... airplanes to the applicability. We are issuing this AD to prevent degradation of the electrical insulation... could cause the level sensor to heat above acceptable limits, possibly resulting in a fuel tank... connector sleeves materials fitted to the MTI units. Degradation of the electrical insulation sleeves of the...
76 FR 68671 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... incorrect connector sleeves materials fitted to the MTI units. Degradation of the electrical insulation... condition, if not corrected, could cause the level sensor to heat above acceptable limits, possibly.... Degradation of the electrical insulation sleeves of the Low- level indication lamps on the MTI of the flight...
HIGH ENERGY GASEOUS DISCHARGE DEVICES
Josephson, V.
1960-02-16
The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.
Park, Jaewon; Kim, Hyun Soo; Han, Arum
2009-01-01
A poly(dimethylsiloxane) (PDMS) patterning method based on a photoresist lift-off technique to make an electrical insulation layer with selective openings is presented. The method enables creating PDMS patterns with small features and various thicknesses without any limitation in the designs and without the need for complicated processes or expensive equipments. Patterned PDMS layers were created by spin-coating liquid phase PDMS on top of a substrate having sacrificial photoresist patterns, followed by a photoresist lift-off process. The thickness of the patterned PDMS layers could be accurately controlled (6.5–24 µm) by adjusting processing parameters such as PDMS spin-coating speeds, PDMS dilution ratios, and sacrificial photoresist thicknesses. PDMS features as small as 15 µm were successfully patterned and the effects of each processing parameter on the final patterns were investigated. Electrical resistance tests between adjacent electrodes with and without the insulation layer showed that the patterned PDMS layer functions properly as an electrical insulation layer. Biocompatibility of the patterned PDMS layer was confirmed by culturing primary neuron cells on top of the layer for up to two weeks. An extensive neuronal network was successfully formed, showing that this PDMS patterning method can be applied to various biosensing microdevices. The utility of this fabrication method was further demonstrated by successfully creating a patterned electrical insulation layer on flexible substrates containing multi-electrode arrays. PMID:19946385
Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging
NASA Technical Reports Server (NTRS)
Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.
2004-01-01
Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our experiments also show that "Malter" electron emission occurs for hours after turning off the electron beam. This Malter emission similar to emission due to negative electron affinity in semiconductors is a result of the prior radiation or optical excitations of valence electrons and their slow drift among traps towards the surface where they are subsequently emitted. This work is supported through funding from the NASA Space Environments and Effects Program.
High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC
NASA Technical Reports Server (NTRS)
Lizcano, M.
2017-01-01
High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, T.E.
1996-12-03
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, T.E.
1997-03-04
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, the balance of the ITO being insulative. The device is made by the following general steps: (a) providing a substrate having a conductive ITO coating on at least one surface thereof; (b) rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, Tony E.
1996-01-01
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, Tony E.
1997-01-01
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.
WATER STABILITY OF FILLED ELASTOMERS,
ELECTRICAL INSULATION, *BUTYL RUBBER , ELASTOMERS, STABILITY, STABILITY, HYDROLYSIS, CURING AGENTS, ADDITIVES, WATER, ABSORPTION, THICKNESS, ELECTRICAL RESISTANCE, LEAKAGE(ELECTRICAL), DIFFUSION, TALC, ELECTRIC CABLES.
Low-Melt Poly(Amic Acids) and Polyimides and Their Uses
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parks, Steven L. (Inventor)
2014-01-01
Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.
Low-Melt Poly(amic Acids) and Polyimides and Their Uses
NASA Technical Reports Server (NTRS)
Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Parks, Steven L. (Inventor)
2015-01-01
Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.
Spahn, O.B.; Lear, K.L.
1998-03-10
The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.
Spahn, Olga B.; Lear, Kevin L.
1998-01-01
A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.
Improved insulator layer for MIS devices
NASA Technical Reports Server (NTRS)
Miller, W. E.
1980-01-01
Insulating layer of supersonic conductor such as LaF sub 3 has been shown able to impart improved electrical properties to photoconductive detectors and promises to improve other metal/insulator/semiconductor (MIS) devices, e.g., MOSFET and integrated circuits.
Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2010-05-18
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
Electric polarization switching in an atomically thin binary rock salt structure
NASA Astrophysics Data System (ADS)
Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.
2018-01-01
Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.
Rabie, Mohamed; Franck, Christian M
2018-01-16
Gases for electrical insulation are essential for the operation of electric power equipment. This Review gives a brief history of gaseous insulation that involved the emergence of the most potent industrial greenhouse gas known today, namely sulfur hexafluoride. SF 6 paved the way to space-saving equipment for the transmission and distribution of electrical energy. Its ever-rising usage in the electrical grid also played a decisive role in the continuous increase of atmospheric SF 6 abundance over the last decades. This Review broadly covers the environmental concerns related to SF 6 emissions and assesses the latest generation of eco-friendly replacement gases. They offer great potential for reducing greenhouse gas emissions from electrical equipment but at the same time involve technical trade-offs. The rumors of one or the other being superior seem premature, in particular because of the lack of dielectric, environmental, and chemical information for these relatively novel compounds and their dissociation products during operation.
Electrical insulation system for the shell-vacuum vessel and poloidal field gap in the ZTH machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reass, W.A.; Ballard, E.O.
1989-01-01
The electrical insulation systems for the ZTH machine have many unusual design problems. The poloidal field gap insulation must be capable of conforming to poloidal and toroidal contours, provide a 25 kV hold off, and sufficiently adhere to the epoxy back fill between the overlapping conductors. The shell-vacuum vessel system will use stretchable and flexible insulation along with protective hats, boots and sleeves. The shell-vacuum vessel system must be able to withstand a 12.5 kV pulse with provision for thermal insulation to limit the effects of the 300{degrees}C vacuum vessel during operation and bakeout. Methodology required to provide the electricalmore » protection along with testing data and material characteristics will be presented. 7 figs.« less
Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.
Gallo-Villanueva, Roberto C; Sano, Michael B; Lapizco-Encinas, Blanca H; Davalos, Rafael V
2014-02-01
In this work, the temperature effects due to Joule heating obtained by application of a direct current electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator-based dielectrophoresis. The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel, which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force toward the inlet of the channel while decreasing toward the outlet. Experimental results are in good agreement with simulations on the particle-trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing insulator-based dielectrophoresis systems. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jing, Ziang; Li, Changming; Zhao, Hong; Zhang, Guiling; Han, Baozhong
2016-01-01
The doping effect of graphene nanoplatelets (GNPs) on electrical insulation properties of polyethylene (PE) was studied by combining experimental and theoretical methods. The electric conduction properties and trap characteristics were tested for pure PE and PE/GNPs composites by using a direct measurement method and a thermal stimulated current (TSC) method. It was found that doping smaller GNPs is more beneficial to decrease the conductivity of PE/GNPs. The PE/GNPs composite with smaller size GNPs mainly introduces deep energy traps, while with increasing GNPs size, besides deep energy traps, shallow energy traps are also introduced. These results were also confirmed by density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) method calculations. Therefore, doping small size GNPs is favorable for trapping charge carriers and enhancing insulation ability, which is suggested as an effective strategy in exploring powerful insulation materials. PMID:28773802
30 CFR 56.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation and fittings for power wires and... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... insulated wires, other than cables, pass through metal frames, the holes shall be substantially bushed with...
30 CFR 56.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation and fittings for power wires and... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... insulated wires, other than cables, pass through metal frames, the holes shall be substantially bushed with...
Transpiration cooled electrodes and insulators for MHD generators
Hoover, Jr., Delmer Q.
1981-01-01
Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.
Specular Andreev reflection in thin films of topological insulators
NASA Astrophysics Data System (ADS)
Majidi, Leyla; Asgari, Reza
2016-05-01
We theoretically reveal the possibility of specular Andreev reflection in a thin film topological insulator normal-superconductor (N/S) junction in the presence of a gate electric field. The probability of specular Andreev reflection increases with the electric field, and electron-hole conversion with unit efficiency happens in a wide experimentally accessible range of the electric field. We show that perfect specular Andreev reflection can occur for all angles of incidence with a particular excitation energy value. In addition, we find that the thermal conductance of the structure displays exponential dependence on the temperature. Our results reveal the potential of the proposed topological insulator thin-film-based N/S structure for the realization of intraband specular Andreev reflection.
Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru
This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.
Electrical aging markers for EPR-based low-voltage cable insulation wiring of nuclear power plants
NASA Astrophysics Data System (ADS)
Verardi, L.; Fabiani, D.; Montanari, G. C.
2014-01-01
This paper presents results of electrical property measurements on EPR-based insulations of low-voltage power cables used in nuclear power plants. The specimens underwent accelerated aging through the simultaneous application of high temperature and gamma-radiation. Mechanical properties and the dielectric response at different frequencies were investigated. Results showed significant variation of the electrical and mechanical properties of aged cables at low frequencies, i.e. lower than 10-2 Hz. In particular, the real and imaginary parts of permittivity increase with aging time, accumulated dose and stress levels applied showing good correlation with elongation at break, which decreases as a function of extent of insulation aging.
Recommended design and fabrication sequence of AMTEC test assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Kumar, V.; Noravian, H.
1998-01-01
A series of previous OSC papers described: 1) a novel methodology for the coupled thermal, fluid flow, and electrical analysis of multitube AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells; 2) the application of that methodology to determine the effect of numerous design variations on the cell{close_quote}s performance, leading to selection and performance characterization of an OSC-recommended cell design; and 3) the design, analysis, and characterization of an OSC-generated power system design combining sixteen of the above AMTEC cells with two or three GPHS (General Purpose Heat Source) radioisotope heat source modules, and the applicability of those power systems to future spacemore » missions ({ital e.g.} Pluto Express and Europa Orbiter) under consideration by NASA. The OSC system design studies demonstrated the critical importance of the thermal insulation subsystem, and culminated in a design in which the eight AMTEC cells on each end of the heat source stack are embedded in Min-K fibrous insulation, and the Min-K and the GPHS modules are surrounded by graded-length Mo multifoil insulation. The present paper depicts the OSC-recommended AMTEC cell and generator designs, and identifies the need for an electrically heated (scaled-down but otherwise prototypic) test assembly for the experimental validation of the generator{close_quote}s system performance predictions. It then describes the design of an OSC-recommended test assembly consisting of an electrical heater enclosed in a graphite box to simulate the radioisotope heat source, four series-connected prototypic AMTEC cells of the OSC-recommended configuration, and a prototypic hybrid insulation package consisting of Min-K and graded-length Mo multifoils. Finally, the paper describes and illustrates an OSC-recommended detailed fabrication sequence and procedure for the above cell and test assembly. That fabrication procedure is being implemented by AMPS, Inc. with the support of DOE{close_quote}s Oak Ridge and Mound Laboratories, and the Air Force Phillips Laboratory (AFPL) will test the performance of the assembly over a range of input thermal powers and output voltages. The experimentally measured performance will be compared with the results of OSC analyses of the same insulated test assembly over the same range of operating parameters. {copyright} {ital 1998 American Institute of Physics.}« less
Surface Charge Effects on the Electro-Orientation of Insulating Nanotubes in Aqueous Electrolytes
NASA Astrophysics Data System (ADS)
Cetindag, Semih; Tiwari, Bishnu; Zhang, Dongyan; Yap, Yoke Khin; Kim, Sangil; Shan, Jerry W.
2017-11-01
While the alignment of electrically conductive nanowires and nanotubes by electric fields in liquid solution has been well studied, much less is known about the electro-orientation of insulating 1D particles, such as boron-nitride nanotubes (BNNTs). Here, we demonstrate for the first time the electro-orientation of individual insulating BNNTs in aqueous KCl solutions under AC fields. Comparison to theory indicates that the observed frequency response is not related to the crossover for Maxwell-Wagner interfacial polarization. Instead, the cross-over frequency in the low-frequency regime scales as the square root of solution conductivity, indicating that alignment is associated with the formation and motion of an electrical double layer (EDL), much like induced-charge electro-osmosis for a conducting particle. However, the mechanism for the formation of the EDL is presumably different for insulating particles like BNNTs as compared to conductors. By varying the surface charge of the particle by changing pH, we show that the alignment rate increases with increasing surface charge, and is likely a result of counter-ion migration and EDL polarization under the influence of applied electric field. Thus, particle surface charge (large Dukhin number) is believed to play a vital role in the electro-orientation of insulating particles in aqueous solutions. NSF CBET-1604931 and NSF DMR-1261910.
Capacitive charge generation apparatus and method for testing circuits
Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.
1998-07-14
An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.
Capacitive charge generation apparatus and method for testing circuits
Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.
1998-01-01
An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.
Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms
Nobukane, Hiroyoshi; Matsuyama, Toyoki; Tanda, Satoshi
2017-01-01
The quantum anomaly that breaks the symmetry, for example the parity and the chirality, in the quantization leads to a physical quantity with a topological Chern invariant. We report the observation of a Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms by employing electric transport. We observed the superconductor-to-insulator transition by reducing the thickness of Sr2RuO4 single crystals. The appearance of a gap structure in the insulating phase implies local superconductivity. Fractional quantized conductance was observed without an external magnetic field. We found an anomalous induced voltage with temperature and thickness dependence, and the induced voltage exhibited switching behavior when we applied a magnetic field. We suggest that there was fractional magnetic-field-induced electric polarization in the interlayer. These anomalous results are related to topological invariance. The fractional axion angle Θ = π/6 was determined by observing the topological magneto-electric effect in the Bose-insulating phase of Sr2RuO4 nanofilms. PMID:28112269
Development and analysis of insulation constructions for aerospace wiring applications
NASA Astrophysics Data System (ADS)
Slenski, George A.; Woodford, Lynn M.
1993-03-01
The Wright Laboratory Materials Directorate at WPAFB, Ohio recently completed a research and development program under contract with the McDonnell Douglas Aerospace Company, St. Louis, Missouri. Program objectives were to develop wire insulation performance requirements, evaluate candidate insulations, and prepare preliminary specification sheets on the most promising candidates. Aircraft wiring continues to be a high maintenance item and a major contributor to electrically-related aircraft mishaps. Mishap data on aircraft show that chafing of insulation is the most common mode of wire failure. Improved wiring constructions are expected to increase aircraft performance and decrease costs by reducing maintenance actions. In the laboratory program, new insulation constructions were identified that had overall improved performance in evaluation tests when compared to currently available MIL-W-81381 and MIL-W-22759 wiring. These insulations are principally aromatic polyimide and crosslinked ethylene tetrafluoroethylene (ETFE), respectively. Candidate insulations identified in preliminary specification sheets were principally fluoropolymers with a polyimide inner layer. Examples of insulation properties evaluated included flammability, high temperature mechanical and electrical performance, fluid immersion, and susceptibility to arc propagation under applied power chafing conditions. Potential next generation wire insulation materials are also reviewed.
A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors
ERIC Educational Resources Information Center
Deligkaris, Christos
2018-01-01
The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena.…
30 CFR 27.36 - Test for adequacy of electrical insulation and clearances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for adequacy of electrical insulation and clearances. 27.36 Section 27.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.36...
30 CFR 27.36 - Test for adequacy of electrical insulation and clearances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for adequacy of electrical insulation and clearances. 27.36 Section 27.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.36...
Hoffheins, Barbara S.; Lauf, Robert J.
1995-01-01
A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.
Hoffheins, B.S.; Lauf, R.J.
1995-09-19
A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.
Integrated Electrical Wire Insulation Repair System
NASA Technical Reports Server (NTRS)
Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven
2013-01-01
An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available
NASA Astrophysics Data System (ADS)
Crosse, J. A.
2017-02-01
Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1-10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation.
Electrical conductivity of rigid polyurethane foam at high temperature
NASA Astrophysics Data System (ADS)
Johnson, R. T., Jr.
1982-08-01
The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.
7 CFR 1755.870 - RUS specification for terminating cables.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of conductor insulation deformation or adhesion between conductors, caused by adverse heat transfer... x Overall Percent Difference in Average x Failures Insulation Compression: Control Heat Age..., Standard Specification for Forced-Convection Laboratory Ovens for Electrical Insulation; ASTM D 2633-82...
7 CFR 1755.870 - RUS specification for terminating cables.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of conductor insulation deformation or adhesion between conductors, caused by adverse heat transfer... x Overall Percent Difference in Average x Failures Insulation Compression: Control Heat Age..., Standard Specification for Forced-Convection Laboratory Ovens for Electrical Insulation; ASTM D 2633-82...
7 CFR 1755.870 - RUS specification for terminating cables.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of conductor insulation deformation or adhesion between conductors, caused by adverse heat transfer... x Overall Percent Difference in Average x Failures Insulation Compression: Control Heat Age..., Standard Specification for Forced-Convection Laboratory Ovens for Electrical Insulation; ASTM D 2633-82...
Method of fabricating high-density hermetic electrical feedthroughs
Shah, Kedar G.; Pannu, Satinderpall S.; Delima, Terri L.
2015-06-02
A method of fabricating electrical feedthroughs selectively removes substrate material from a first side of an electrically conductive substrate (e.g. a bio-compatible metal) to form an array of electrically conductive posts in a substrate cavity. An electrically insulating material (e.g. a bio-compatible sealing glass) is then flowed to fill the substrate cavity and surround each post, and solidified. The solidified insulating material is then exposed from an opposite second side of the substrate so that each post is electrically isolated from each other as well as the bulk substrate. In this manner a hermetic electrically conductive feedthrough construction is formed having an array of electrical feedthroughs extending between the first and second sides of the substrate from which it was formed.
Project W-320, 241-C-106 sluicing electrical calculations, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, J.W.
1998-08-07
This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. These calculations are required: To determine the power requirements needed to power electrical heat tracing segments contained within three manufactured insulated tubing assemblies; To verify thermal adequacy of tubing assembly selection by others; To size the heat tracing feeder and branch circuit conductors and conduits; To size protective circuit breaker and fuses; and To accomplish thermal design for two electrical heat tracing segments: One at C-106 tank riser 7 (CCTV) and one at the exhaust hatchway (condensate drain). Contents include: C-Farm electrical heat tracing;more » Cable ampacity, lighting, conduit fill and voltage drop; and Control circuit sizing and voltage drop analysis for the seismic shutdown system.« less
Fischer, William H.; Cookson, Alan H.; Yoon, Kue H.
1984-04-10
A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.
A LINE POLE 20, DETAIL OF ORIGINAL GLASS PINTYPE INSULATORS ...
A LINE POLE 20, DETAIL OF ORIGINAL GLASS PIN-TYPE INSULATORS AND INTACT COMMUNICATION LINE CROSS ARM WITH TWO GLASS INSULATORS. VIEW TO NORTHWEST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT
A LINE POLE 75, DETAIL OF ORIGINAL GLASS PINTYPE INSULATORS ...
A LINE POLE 75, DETAIL OF ORIGINAL GLASS PIN-TYPE INSULATORS AND INTACT COMMUNICATION LINE CROSS ARM WITH ONE GLASS INSULATOR. VIEW TO SOUTHWEST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT
Etude de l'isolation hybride en vue de son application dans les transformateurs de puissance
NASA Astrophysics Data System (ADS)
Kassi, Koutoua Simon
For nearly a century the conventional insulation (oil / cellulose complex) was the type of insulation used in the power transformers and most electrical power equipments. But the cellulose paper, the solid part of this insulation has many weaknesses. Indeed, the aging of cellulose paper in power transformers is accelerated by moisture, oxygen, metal catalysts, temperature, etc.). The risk of failures is thereby increased. Another major weakness of cellulose paper is its inability to protect the electrical transformer windings against the harmful effects of corrosive sulfur. Given all the weaknesses of cellulose paper, several studies have been conducted to evaluate the performance of aramid paper, which has better thermal properties. The aramid paper is currently used as high temperature insulation, combined with high fire point oils (synthetic and vegetable oils), mainly in electric traction transformers. The hybrid solid insulation is associated with mineral oil or with high fire point oils; it finds application in transformers of fixed and mobile substations. Manufacturing technology is controlled by manufacturers but operators of electrical networks do not have baseline data (standards) as diagnostic tools, allowing them to monitor the health/condition of the isolation in this new type of transformer. The overall objective of this research was to study the hybrid insulation and to demonstrate its potential use in power transformers. This overall objective has been subdivided into three specific objectives, namely: (i) improving the diagnostic of the condition of solid hybrid insulation and conventional solid insulation; (ii) diagnosing the condition of oils sampled from hybrid, high temperature and conventional insulation and finally (iii) investigating the ability of aramid paper and cellulose paper to protect the copper (electrical windings) against harmful effects of corrosive sulfur. In order to achieve these objectives, thermal accelerated aging were conducted in laboratory : • according to ASTM D1934 (American Society for Testing and Materials), four different type of insulation samples were considered, namely the oil impregnated hybrid insulation, oil impregnated cellulose insulation, oil impregnated high temperature insulation and paperless oil samples. Following the aging procedure, a local overheating (thermal fault) was applied on the paper sample using an experimental setup designed in our laboratory (first and second specific objectives). • according to the IEC (International Electrotechnical Commission)-62535, for mineral, synthetic, vegetable and silicones oils (third specific objective). The degree of polymerization by viscosimetry and the determination of the carbon oxides by dissolved gas analysis (DGA) were determined to assess the condition of the paper in conventional insulation compared to that of the hybrid insulation. Our results indicate that cellulose paper in the hybrid insulation is less degraded when compared to the conventional insulation. Since the life of a transformer is directly related to the solid insulation, these results suggest that hybrid transformer insulation has a higher life than conventional ones. Subsequently, a very good correlation between amounts of oxides of carbon and degree of polymerization was established. This relationship might help improving the accuracy when interpreting the results of the DGA for transformers (first specific objective). Regarding the second specific objective, we used four physicochemical diagnosis techniques (dissolved decay products 'DDP', Turbidity, interfacial tension (IFT) and water content) to assess comparatively the quality of oils sampled from the four types of insulation. According to our results, the oil of the hybrid insulation indicated better quality at a certain stage of aging and especially after the application of thermal stress on the solid insulation. For the third specific objective, a qualitative study followed by a quantitative ones provided the following results: aramid paper better protects copper against corrosive sulfur in mineral oil; synthetic ester oils are not corrosive; the vegetable oil is not corrosive but in the presence of cellulose paper, a degree of corrosiveness is observed and the aramid paper promotes formation of corrosive sulfur in silicone oils. Based on the obtained results, the feasibility of using hybrid insulation in power transformers is possible. Keywords : power transformer; hybrid insulation; high temperature insulation; conventional insulation; sub-stations; aramid paper; cellulose paper; degree of polymerization; dissolved gases analysis (DGA); mineral oils; vegetable oils; synthetic oils; corrosive sulfur.
Study of SF6 gas decomposition products based on spectroscopy technology
NASA Astrophysics Data System (ADS)
Cai, Ji-xing; Na, Yan-xiang; Ni, Wei-yuan; Li, Guo-wei; Feng, Ke-cheng; Song, Gui-cai
2011-08-01
With the rapid development of power industry, the number of SF6 electrical equipment are increasing, it has gradually replaced the traditional insulating oil material as insulation and arc media in the high-voltage electrical equipment. Pure SF6 gas has excellent insulating properties and arc characteristics; however, under the effect of the strong arc, SF6 gas will decompose and generate toxic substances, then corroding electrical equipment, thereby affecting the insulation and arc ability of electrical equipment. If excessive levels of impurities in the gas that will seriously affect the mechanical properties, breaking performance and electrical performance of electrical equipment, it will cause many serious consequences, even threaten the safe operation of the grid. This paper main analyzes the basic properties of SF6 gas and the basic situation of decomposition in the discharge conditions, in order to simulate the actual high-voltage electrical equipment, designed and produced a simulation device that can simulate the decomposition of SF6 gas under a high voltage discharge, and using fourier transform infrared spectroscopy to analyze the sample that produced by the simulation device. The result show that the main discharge decomposition product is SO2F2 (sulfuryl fluoride), the substance can react with water and generate corrosive H2SO4(sulfuric acid) and HF (hydrogen fluoride), also found that the increase in the number with the discharge, SO2F2concentration levels are on the rise. Therefore, the material can be used as one of the main characteristic gases to determine the SF6 electrical equipment failure, and to monitor their concentration levels.
Crosse, J. A.
2017-01-01
Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1–10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation. PMID:28220875
High voltage design structure for high temperature superconducting device
Tekletsadik, Kasegn D [Rexford, NY
2008-05-20
In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.
Apparatus for improving performance of electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2004-08-31
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Apparatus for improving performance of electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2002-01-01
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Method for improving performance of highly stressed electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2002-01-01
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Evidence of two-stage melting of Wigner solids
NASA Astrophysics Data System (ADS)
Knighton, Talbot; Wu, Zhe; Huang, Jian; Serafin, Alessandro; Xia, J. S.; Pfeiffer, L. N.; West, K. W.
2018-02-01
Ultralow carrier concentrations of two-dimensional holes down to p =1 ×109cm-2 are realized. Remarkable insulating states are found below a critical density of pc=4 ×109cm-2 or rs≈40 . Sensitive dc V-I measurement as a function of temperature and electric field reveals a two-stage phase transition supporting the melting of a Wigner solid as a two-stage first-order transition.
U. S. goal: zero energy growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulla, J.
Commentary:as envisioned by the ford foundation's energy policy project, zero energy growth would not mean austerity, but a better living standard for everyone. With sufficient incentive, industry could cut energy demand by 10-15% by 1980. Upgraded federal housing admin. standards for new dwellings could require more insulation. Electric heat, an energy waster of growing prominence, should be curbed. The logic in federal support of zero economic growth is defined.
Ceramic membrane development in NGK
NASA Astrophysics Data System (ADS)
Araki, Kiyoshi; Sakai, Hitoshi
2011-05-01
NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.
Design principles for HgTe based topological insulator devices
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Povolotskyi, Michael; Klimeck, Gerhard
2013-07-01
The topological insulator properties of CdTe/HgTe/CdTe quantum wells are theoretically studied. The CdTe/HgTe/CdTe quantum well behaves as a topological insulator beyond a critical well width dimension. It is shown that if the barrier (CdTe) and well-region (HgTe) are altered by replacing them with the alloy CdxHg1-xTe of various stoichiometries, the critical width can be changed. The critical quantum well width is shown to depend on temperature, applied stress, growth directions, and external electric fields. Based on these results, a novel device concept is proposed that allows to switch between a normal semiconducting and topological insulator state through application of moderate external electric fields.
NASA Astrophysics Data System (ADS)
Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk
2018-05-01
We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.
Causes of Cracking of Ignition Cable
NASA Technical Reports Server (NTRS)
Silsbee, F B
1921-01-01
The experiments described here show that the cracking at sharp bends, observed in the insulation of internal combustion engine high tension ignition wires after service, is due to a chemical attack upon the rubber by the ozone produced by the electric discharge that takes place at the surface of the cable. This cracking does not occur if the insulating material is not under tension, or if the cable is surrounded by some medium other than air. But it does occur even if the insulation is not subjected to electric stress, provided that the atmosphere near the cable contains ozone. The extent of this cracking varies greatly with the insulating material used. The cracking can be materially reduced by using braided cable and by avoiding sharp bends.
Efficient thermoelectric device
NASA Technical Reports Server (NTRS)
Ila, Daryush (Inventor)
2010-01-01
A high efficiency thermo electric device comprising a multi nanolayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanocrystals in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.
Properties of radiation stable insulation composites for fusion magnet
NASA Astrophysics Data System (ADS)
Wu, Zhixiong; Huang, Rongjin; Huang, Chuanjun; Li, Laifeng
2017-09-01
High field superconducting magnets made of Nb3Al will be a suitable candidate for future fusion device which can provide magnetic field over 15T without critical current degradation caused by strain. The higher magnetic field and the larger current will produce a huge electromagnetic force. Therefore, it is necessary to develop high strength cryogenic structural materials and electrical insulation materials with excellent performance. On the other hand, superconducting magnets in fusion devices will experience significant nuclear radiation exposure during service. While typical structural materials like stainless steel and titanium have proven their ability to withstand these conditions, electrical insulation materials used in these coils have not fared as well. In fact, recent investigations have shown that electrical insulation breakdown is a limiting factor in the performance of high field magnets. The insulation materials used in the high field fusion magnets should be characterized by excellent mechanical properties, high radiation resistivity and good thermal conductivity. To meet these objectives, we designed various insulation materials based on epoxy resins and cyanate ester resins and investigated their processing characteristic and mechanical properties before and after irradiation at low temperature. In this paper, the recent progress of the radiation stable insulation composites for high field fusion magnet is presented. The materials have been irradiated by 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min. The total doses of 1 MGy, 5 MGy and 10 MGy were selected to the test specimens.
Study on micro-water measurement method based on SF6 insulation equipment in high altitude area
NASA Astrophysics Data System (ADS)
Zhang, Han; Liu, Yajin; Yan, Jun; Liu, Zhijian; Yan, Yongfei
2018-06-01
Moisture content is an important indicator of the insulation and arc extinguishing performance of SF6 insulated electrical equipment. The research shows that moisture measurements are strongly influenced by altitude pressures and the different order of pressure correction and temperature correction calculation, different calculation results will result. Therefore, in this paper, we studies the pressure and temperature environment based on moisture test of SF6 gas insulated equipment in power industry. Firstly, the PVT characteristics of pure SF6 gas and water vapor were analyzed and put forward the necessity of pressure correction, then combined the Pitzer-Veli equation of SF6 gas and Water Pitzer-Veli equation to fit PVT equation of state of SF6-H20 that suitable for electric power industry and deduced the Correction Formula of Moisture Measurement in SF6 Gas. Finally, through experiments, completion of the calibration formula optimization and verification SF6 electrical equipment on, proof of the applicability and effectiveness of the correction formula.
System for detecting and limiting electrical ground faults within electrical devices
Gaubatz, Donald C.
1990-01-01
An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.
Arntzen, John D.
1978-01-01
An electrochemical cell includes two outer electrodes and a central electrode of opposite polarity, all nested within a housing having two symmetrical halves which together form an offset configuration. The outer electrodes are nested within raised portions within the side walls of each housing half while the central electrode sealingly engages the perimetric margins of the side-wall internal surfaces. Suitable interelectrode separators and electrical insulating material electrically isolate the central electrode from the housing and the outer electrodes. The outer electrodes are electrically connected to the internal surfaces of the cell housing to provide current collection. The nested structure minimizes void volume that would otherwise be filled with gas or heavy electrolyte and also provides perimetric edge surfaces for sealing and supporting at the outer margins of frangible interelectrode separator layers.
16 CFR 1404.1 - Scope, application, and effective date.
Code of Federal Regulations, 2010 CFR
2010-01-01
... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...
7 CFR 1755.860 - RUS specification for filled buried wires.
Code of Federal Regulations, 2012 CFR
2012-01-01
... sufficient heat barrier to prevent visible evidence of conductor insulation deformation or adhesion between... Insulations and Jackets for Telecommunications Wire and Cable; ASTM D 4566-90, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable; ASTM D...
16 CFR 1404.1 - Scope, application, and effective date.
Code of Federal Regulations, 2014 CFR
2014-01-01
... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...
16 CFR 1404.1 - Scope, application, and effective date.
Code of Federal Regulations, 2012 CFR
2012-01-01
... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...
16 CFR 1404.1 - Scope, application, and effective date.
Code of Federal Regulations, 2011 CFR
2011-01-01
... electrical light fixture or where cellulose insulation is installed too close to the exhaust flues from heat... REGULATIONS CELLULOSE INSULATION § 1404.1 Scope, application, and effective date. (a) Scope. This part 1404 establishes a requirement for manufacturers, including importers, of cellulose insulation to notify (1...
7 CFR 1755.860 - RUS specification for filled buried wires.
Code of Federal Regulations, 2014 CFR
2014-01-01
... sufficient heat barrier to prevent visible evidence of conductor insulation deformation or adhesion between... Insulations and Jackets for Telecommunications Wire and Cable; ASTM D 4566-90, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable; ASTM D...
7 CFR 1755.860 - RUS specification for filled buried wires.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sufficient heat barrier to prevent visible evidence of conductor insulation deformation or adhesion between... Insulations and Jackets for Telecommunications Wire and Cable; ASTM D 4566-90, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable; ASTM D...
Wire Stripper Holds Insulation Debris
NASA Technical Reports Server (NTRS)
Cook, Allen D.; Morris, Henry S.; Bauer, Laverne
1994-01-01
Attachment to standard wire-stripping tool catches bits of insulation as they are removed from electrical wire and retains them for proper disposal. Prevents insulation particles from falling at random, contaminating electronic equipment and soiling workspace. Commercial tool modified by attaching small collection box to one of the jaws.
NASA Astrophysics Data System (ADS)
Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho
2016-06-01
This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.
Electric field control in DC cable test termination by nano silicone rubber composite
NASA Astrophysics Data System (ADS)
Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai
2017-07-01
The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.
Ishizaki, Toshitaka; Nakano, Hideyuki; Tajima, Shin; Takahashi, Naoko
2016-01-01
A thin, insulating layer with high electrical resistivity is vital to achieving high performance of powder magnetic cores. Using layer-by-layer deposition of silica nanosheets or colloidal silica over insulating layers composed of strontium phosphate and boron oxide, we succeeded in fabricating insulating layers with high electrical resistivity on iron powder particles, which were subsequently used to prepare toroidal cores. The compact density of these cores decreased after coating with colloidal silica due to the substantial increase in the volume, causing the magnetic flux density to deteriorate. Coating with silica nanosheets, on the other hand, resulted in a higher electrical resistivity and a good balance between high magnetic flux density and low iron loss due to the thinner silica layers. Transmission electron microscopy images showed that the thickness of the colloidal silica coating was about 700 nm, while that of the silica nanosheet coating was 30 nm. There was one drawback to using silica nanosheets, namely a deterioration in the core mechanical strength. Nevertheless, the silica nanosheet coating resulted in nanoscale-thick silica layers that are favorable for enhancing the electrical resistivity. PMID:28336835
Aging of XLPE cable insulation under combined electrical and mechanical stresses
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, E.; Parpal, J.L.; Crine, J.P.
1996-12-31
Extruded crosslinked polyethylene (XLPE) insulation is widely used in high-voltage cables since it presents such attractive features as excellent dielectric properties and good thermomechanical behavior. However, its performance is affected by long-term degradation when it is subjected to the various thermal, mechanical and environmental stresses occurring in service in combination with electrical stress. The synergetic effect of superposed electrical and other stresses remains to be fully clarified. In particular, a fairly high level of mechanical stresses can be present in the insulation volume, originating from residual internal stresses created during the cooling process in the fabrication, external forces when cablesmore » are bent sharply, or thermomechanical stresses caused by differential thermal expansion between the conductor and the insulating material. In order to investigate the influence of the superposition of mechanical and electrical stresses, various measurements were conducted on XLPE and LDPE specimens in tip-plane and plane-plane geometries. Experimental data of time-to-breakdown, breakdown field and tree length are presented as a function of the magnitude of the stresses. In all cases, superposition of the mechanical stress was found to reduce the dielectric strength of the material.« less
Electron penetration of spacecraft thermal insulation
NASA Technical Reports Server (NTRS)
Powers, W. L.; Adams, B. F.; Inouye, G. T.
1981-01-01
The external thermal blanket with 13 mils of polyethylene which has the known range and stopping power as a function of electron energy is investiated. The most recent omnidirectional peak Jovian electron flux at 5 Jupiter radii is applied, the electron current penetrating the thermal blanket is calculated and allowed to impinge on a typical 20 mil polyethylene insulator surrounding a wire. The radiation dose rate to the insulator is then calculated and the electrical conductivity found. The results demonstrate that the increased electronic mobility is sufficient to keep the maximum induced electric field two orders of magnitude below the critical breakdown strength.
Electric-field driven insulator-metal transition and tunable magnetoresistance in ZnO thin film
NASA Astrophysics Data System (ADS)
Zhang, Le; Chen, Shanshan; Chen, Xiangyang; Ye, Zhizhen; Zhu, Liping
2018-04-01
Electrical control of the multistate phase in semiconductors offers the promise of nonvolatile functionality in the future semiconductor spintronics. Here, by applying an external electric field, we have observed a gate-induced insulator-metal transition (MIT) with the temperature dependence of resistivity in ZnO thin films. Due to a high-density carrier accumulation, we have shown the ability to inverse change magnetoresistance in ZnO by ionic liquid gating from 10% to -2.5%. The evolution of photoluminescence under gate voltage was also consistent with the MIT, which is due to the reduction of dislocation. Our in-situ gate-controlled photoluminescence, insulator-metal transition, and the conversion of magnetoresistance open up opportunities in searching for quantum materials and ZnO based photoelectric devices.
Insulation assembly for electric machine
Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.
2013-10-15
An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
14 CFR Appendix F to Part 23 - Test Procedure
Code of Federal Regulations, 2012 CFR
2012-01-01
... flame propagation characteristics of thermal/acoustic insulation when exposed to both a radiant heat... test. Radiant heat source means an electric or air propane panel. Thermal/acoustic insulation means a... insulation and in small parts, materials must be tested either as a section cut from a fabricated part as...
30 CFR 77.513 - Insulating mats at power switches.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...
30 CFR 77.513 - Insulating mats at power switches.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...
30 CFR 77.513 - Insulating mats at power switches.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...
30 CFR 77.513 - Insulating mats at power switches.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...
30 CFR 77.513 - Insulating mats at power switches.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulating mats at power switches. 77.513... COAL MINES Electrical Equipment-General § 77.513 Insulating mats at power switches. Dry wooden... switchboards and power-control switches where shock hazards exist. However, metal plates on which a person...
Dielectrophoresis device and method having insulating ridges for manipulating particles
Cummings, Eric B [Livermore, CA; Fiechtner, Gregory J [Livermore, CA
2008-03-25
Embodiments of the present invention provide methods and devices for manipulating particles using dielectrophoresis. Insulating ridges and valleys are used to generate a spatially non-uniform electrical field. Particles may be concentrated, separated, or captured during bulk fluid flow in a channel having insulating ridges and valleys.
Mahoney, Alice C.; Colless, James I.; Peeters, Lucas; ...
2017-11-28
Incorporating ferromagnetic dopants into three-dimensional topological insulator thin films has recently led to the realisation of the quantum anomalous Hall effect. These materials are of great interest since they may support electrical currents that flow without resistance, even at zero magnetic field. To date, the quantum anomalous Hall effect has been investigated using low-frequency transport measurements. However, transport results can be difficult to interpret due to the presence of parallel conductive paths, or because additional non-chiral edge channels may exist. Here we move beyond transport measurements by probing the microwave response of a magnetised disk of Cr-(Bi,Sb) 2Te 3. Wemore » identify features associated with chiral edge plasmons, a signature that robust edge channels are intrinsic to this material system. Finally, our results provide a measure of the velocity of edge excitations without contacting the sample, and pave the way for an on-chip circuit element of practical importance: the zero-field microwave circulator.« less
Hsu, Chia -Hsiu; Huang, Zhi -Quan; Crisostomo, Christian P.; ...
2016-01-14
We predict planar Sb/Bi honeycomb to harbor a two-dimensional (2D) topological crystalline insulator (TCI) phase based on first-principles computations. Although buckled Sb and Bi honeycombs support 2D topological insulator (TI) phases, their structure becomes planar under tensile strain. The planar Sb/Bi honeycomb structure restores the mirror symmetry, and is shown to exhibit non-zero mirror Chern numbers, indicating that the system can host topologically protected edge states. Our computations show that the electronic spectrum of a planar Sb/Bi nanoribbon with armchair or zigzag edges contains two Dirac cones within the band gap and an even number of edge bands crossing themore » Fermi level. Lattice constant of the planar Sb honeycomb is found to nearly match that of hexagonal-BN. As a result, the Sb nanoribbon on hexagonal-BN exhibits gapped edge states, which we show to be tunable by an out-of the-plane electric field, providing controllable gating of edge state important for device applications.« less
NASA Astrophysics Data System (ADS)
Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.
2014-03-01
Vanadium oxide (VO2) undergoes a first order metal to insulator transition (MIT) and a structural phase transition (monoclinic insulator to rutile metal) near 340 K. Over the past few years, several attempts are made to trigger the MIT in VO2 using ionic liquids (IL). Parkin's group has recently showed that IL gating leads to the creation of oxygen vacancies in VO2 and stabilizes the metallic phase. Our goal is to study the electronic properties, changes in the stoichiometry and structure of this metallic phase created by oxygen vacancies. Electrical transport measurements on single crystal nanobeams show that the metallic phase has a higher resistance while IL gating is applied and results from Raman spectroscopy studies on any structural change during IL gating will be presented. The role of substitutional dopants (such as W, Mo) on the creation of oxygen vacancies and subsequent stabilization of metallic phase in IL gated experiments will also be discussed. The work is supported by NSF DMR 0847324 and 0847169.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahoney, Alice C.; Colless, James I.; Peeters, Lucas
Incorporating ferromagnetic dopants into three-dimensional topological insulator thin films has recently led to the realisation of the quantum anomalous Hall effect. These materials are of great interest since they may support electrical currents that flow without resistance, even at zero magnetic field. To date, the quantum anomalous Hall effect has been investigated using low-frequency transport measurements. However, transport results can be difficult to interpret due to the presence of parallel conductive paths, or because additional non-chiral edge channels may exist. Here we move beyond transport measurements by probing the microwave response of a magnetised disk of Cr-(Bi,Sb) 2Te 3. Wemore » identify features associated with chiral edge plasmons, a signature that robust edge channels are intrinsic to this material system. Finally, our results provide a measure of the velocity of edge excitations without contacting the sample, and pave the way for an on-chip circuit element of practical importance: the zero-field microwave circulator.« less
Nonmetallic materials handbook. Volume 1: Epoxy materials
NASA Technical Reports Server (NTRS)
Podlaseck, S. E.
1979-01-01
Thermochemical and other properties data is presented for the following types of epoxy materials: adhesives, coatings finishes, inks, electrical insulation, encapsulants, sealants, composite laminates, tapes, and thermal insulators.
Hermetic electronics package with dual-sided electrical feedthrough configuration
Shah, Kedar G.; Pannu, Satinderpall S.
2016-11-22
A hermetic electronics package includes a metal case with opposing first and second open ends, with each end connected to a first feedthrough construction and a second feedthrough construction. Each feedthrough contruction has an electrically insulating substrate and an array of electrically conductive feedthroughs extending therethrough, with the electrically insulating substrates connected to the opposing first and second open ends, respectively, of the metal case so as to form a hermetically sealed enclosure. A set of electronic components are located within the hermetically sealed enclosure and are operably connected to the feedthroughs of the first and second feedthrough constructions so as to electrically communicate outside the package from opposite sides of the package.
Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun
2010-10-19
A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.
The Application of Surface Potential Test on Hand-making Insulation for Generator Stator End-winding
NASA Astrophysics Data System (ADS)
Lu, Zhu-mao; Liu, Qing; Wang, Tian-zheng; Bai, Lu; Li, Yan-peng
2017-05-01
This paper presents the advantage of surface potential test on hand-making insulation for generator stator end-winding insulation detection, compared with DC or AC withstand voltage test, also details the test principle, connection method and test notes. And through the case, surface potential test on hand-making insulation proved effective for insulation quality detection after generator stator end-winding maintenance, and the experimental data is useful and reliable for the electrical equipment operation and maintenance in the power plant.
Exploring the energy landscape of resistive switching in antiferromagnetic S r3I r2O7
NASA Astrophysics Data System (ADS)
Williamson, Morgan; Shen, Shida; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim
2018-04-01
We study the resistive switching triggered by an applied electrical bias in the antiferromagnetic Mott insulator S r3I r2O7 . The switching was previously associated with an electric-field-driven structural transition. Here we use time-resolved measurements to probe the thermal activation behavior of the switching process and acquire information about the energy barrier associated with the transition. We quantify the changes in the energy-barrier height with respect to the applied bias and find a linear decrease of the barrier with increasing bias. Our observations support the potential of antiferromagnetic transition-metal oxides for spintronic applications.
NASA Technical Reports Server (NTRS)
Stringer, E. J.
1977-01-01
Connection can be made without removing insulation, and connector case insulates splice. Device can be made in various sizes and saves time, especially when working on prototype boards with several interconnecting test leads.
Plated lamination structures for integrated magnetic devices
Webb, Bucknell C.
2014-06-17
Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.
Self-Healable Electrical Insulation for High Voltage Applications
NASA Technical Reports Server (NTRS)
Williams, Tiffany S.
2017-01-01
Polymeric aircraft electrical insulation normally degrades by partial discharge with increasing voltage, which causes excessive localized Joule heating in the material and ultimately leads to dielectric failure of the insulator through thermal breakdown. Developing self-healing insulation could be a viable option to mitigate permanent mechanical degradation, thus increasing the longevity of the insulation. Instead of relying on catalyst and monomer-filled microcapsules to crack, flow, and cure at the damaged sites described in well-published mechanisms, establishment of ionic crosslinks could allow for multiple healing events to occur with the added benefit of achieving full recovery strength under certain thermal environments. This could be possible if the operating temperature of the insulator is the same as or close to the temperature where ionic crosslinks are formed. Surlyn, a commercial material with ionic crosslinks, was investigated as a candidate self-healing insulator based off prior demonstrations of self-healing behavior. Thin films of varying thicknesses were investigated and the effects of thickness on the dielectric strength were evaluated and compared to representative polymer insulators. The effects of thermal conditioning on the recovery strength and healing were observed as a function of time following dielectric breakdown. Moisture absorption was also studied to determine if moisture absorption rates in Surlyn were lower than that of common polyimides.
NASA Astrophysics Data System (ADS)
Clayton, N.; Crouchen, M.; Devred, A.; Evans, D.; Gung, C.-Y.; Lathwell, I.
2017-04-01
It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes ('pre-preg') and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.
Workshop on environmental qualification of electric equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lofaro, R.; Gunther, W.; Villaran, M.
1994-05-01
Questions concerning the Environmental Qualification (EQ) of electrical equipment used in commercial nuclear power plants have recently become the subject of significant interest to the US Nuclear Regulatory Commission (NRC). Initial questions centered on whether compliance with the EQ requirements for older plants were adequate to support plant operation beyond 40 years. After subsequent investigation, the NRC Staff concluded that questions related to the differences in EQ requirements between older and newer plants constitute a potential generic issue which should be evaluated for backfit, independent of license renewal activities. EQ testing of electric cables was performed by Sandia National Laboratoriesmore » (SNL) under contract to the NRC in support of license renewal activities. Results showed that some of the environmentally qualified cables either failed or exhibited marginal insulation resistance after a simulated plant life of 20 years during accident simulation. This indicated that the EQ process for some electric cables may be non-conservative. These results raised questions regarding the EQ process including the bases for conclusions about the qualified life of components based upon artificial aging prior to testing.« less
Electrodeless electro-hydrodynamic gentle printing of personalized medicines
NASA Astrophysics Data System (ADS)
Khusid, Boris; Elele, Ezinwa; Shen, Yueyang
2010-11-01
Drop-on-demand (DOD) principle appears to be a particular promising approach for manufacturing personalized treatments carefully tailored to a patient's genetic background. The authors have recently developed a DOD method for gentle printing of personalized medicines. A fluid is infused into an electrically insulating nozzle to form a pendant drop. A sufficiently strong voltage pulse is applied to external electrodes to stretch the pendant drop until it touches an electrically insulating film and forms a liquid bridge. As the liquid bridge is intentionally formed in an unstable configuration, it breaks up, creating two drops, one on the film and the other hanging from the nozzle. To prove the validity and versatility of the method, experiments are conducted on fluids whose viscosity, conductivity, dielectric constant, and surface tension vary over a broad range, respectively: 1-1045 cP, 0.02-290 μS/cm, 9-78, and 41-72 dyn/cm. We present a scaling analysis that captures the essential physics of drop evolution and provides the critical design guidelines. The work was supported by NSF Engineering Research Center on Structured Organic Particulate Systems.
Evaluation of Radiation Belt Space Weather Forecasts for Internal Charging Analyses
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Coffey, Victoria N.; Jun, Insoo; Garrett, Henry B.
2007-01-01
A variety of static electron radiation belt models, space weather prediction tools, and energetic electron datasets are used by spacecraft designers and operations support personnel as internal charging code inputs to evaluate electrostatic discharge risks in space systems due to exposure to relativistic electron environments. Evaluating the environment inputs is often accomplished by comparing whether the data set or forecast tool reliability predicts measured electron flux (or fluence over a given period) for some chosen period. While this technique is useful as a model metric, it does not provide the information necessary to evaluate whether short term deviances of the predicted flux is important in the charging evaluations. In this paper, we use a 1-D internal charging model to compute electric fields generated in insulating materials as a function of time when exposed to relativistic electrons in the Earth's magnetosphere. The resulting fields are assumed to represent the "true" electric fields and are compared with electric field values computed from relativistic electron environments derived from a variety of space environment and forecast tools. Deviances in predicted fields compared to the "true" fields which depend on insulator charging time constants will be evaluated as a potential metric for determining the importance of predicted and measured relativistic electron flux deviations over a range of time scales.
NASA Astrophysics Data System (ADS)
Ajiki, Kohji; Morimoto, Hiroaki; Shimokawa, Fumiyuki; Sakai, Shinya; Sasaki, Kazuomi; Sato, Ryogo
Contact wires used in feeding system for electric railroad are insulated by insulators. However, insulation of an insulator sometimes breaks down by surface dirt of an insulator and contact with a bird. The insulator breakdown derives a ground fault in feeding system. Ground fault will cause a human electric shock and a destruction of low voltage electric equipment. In order to prevent the damage by ground fault, an S-type horn has been applicable as equipped on insulators of negative feeder and protective wire until present. However, a concrete pole breaks down at the time of the ground fault because a spark-over voltage of the S-type horn is higher than a breakdown voltage of a concrete pole. Farther, the S-type horn installed in the steel tube pole does not discharge a case, because the earth resistance of a steel tube pole is very small. We assumed that we could solve these troubles by changing the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. Accordingly, we developed an attachment gap that should be used to change the power frequency spark-over voltage of the S-type horn from 12kV to 3kV. The attachment gap consists of a gas gap arrester and a zinc oxide element. By the dynamic current test and the artificial ground fault test, we confirmed that the attachment gap in the S-type horn could prevent a trouble at the time of the ground fault.
Electrically insulating thermal nano-oils using 2D fillers.
Taha-Tijerina, Jaime; Narayanan, Tharangattu N; Gao, Guanhui; Rohde, Matthew; Tsentalovich, Dmitri A; Pasquali, Matteo; Ajayan, Pulickel M
2012-02-28
Different nanoscale fillers have been used to create composite fluids for applications such as thermal management. The ever increasing thermal loads in applications now require advanced operational fluids, for example, high thermal conductivity dielectric oils in transformers. These oils require excellent filler dispersion, high thermal conduction, but also electrical insulation. Such thermal oils that conform to this thermal/electrical requirement, and yet remain in highly suspended stable state, have not yet been synthesized. We report here the synthesis and characterization of stable high thermal conductivity Newtonian nanofluids using exfoliated layers of hexagonal boron nitride in oil without compromising its electrically insulating property. Two-dimensional nanosheets of hexagonal boron nitride are liquid exfoliated in isopropyl alcohol and redispersed in mineral oil, used as standard transformer oil, forming stable nanosuspensions with high shelf life. A high electrical resistivity, even higher than that of the base oil, is maintained for the nano-oil containing small weight fraction of the filler (0.01 wt %), whereas the thermal conductivity was enhanced. The low dissipation factor and high pour point for this nano-oil suggests several applications in thermal management.
Fairchild, Dana M [Armour, SD
2010-03-02
The bird guard provides a device to protect electrical insulators comprising a central shaft; a clamp attached to an end of the shaft to secure the device to a transmission tower; a top and bottom cover to shield transmission tower insulators; and bearings to allow the guard to rotate in order to frighten birds away from the insulators.
30 CFR 56.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 57.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 56.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 56.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and cables... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 57.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
30 CFR 57.12008 - Insulation and fittings for power wires and cables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cables. Power wires and cables shall be insulated adequately where they pass into or out of electrical... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...
Code of Federal Regulations, 2012 CFR
2012-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
Code of Federal Regulations, 2014 CFR
2014-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
14 CFR Appendix F to Part 23 - Test Procedure
Code of Federal Regulations, 2011 CFR
2011-01-01
... materials used in electrical wire and cable insulation and in small parts, materials must be tested either... wire and cable insulation, the wire and cable specimens must be the same size as used in the airplane... specification (make and size) must be tested. The specimen of wire or cable (including insulation) must be...
Code of Federal Regulations, 2013 CFR
2013-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
7 CFR 1728.204 - Electric standards and specifications for materials and construction.
Code of Federal Regulations, 2014 CFR
2014-01-01
... application where additional insulation is desired. (1) The cable may be used in single-phase, two (V)-phase... polyethylene (TR-XLPE) insulation compound containing an additive, a polymer modification filler, which helps... shield shall have a nominal operating temperature equal to, or higher than, that of the insulation. (e...
7 CFR 1728.204 - Electric standards and specifications for materials and construction.
Code of Federal Regulations, 2013 CFR
2013-01-01
... application where additional insulation is desired. (1) The cable may be used in single-phase, two (V)-phase... polyethylene (TR-XLPE) insulation compound containing an additive, a polymer modification filler, which helps... shield shall have a nominal operating temperature equal to, or higher than, that of the insulation. (e...
Code of Federal Regulations, 2011 CFR
2011-07-01
... simultaneously and perform virtually the same duty; (f) Each ungrounded conductor must have insulation compatible with the impressed voltage. Insulation materials must be resistant to deterioration from engine heat... damaging wires, cables, or conduits by cutting or abrasion. The insulation of the cables within a battery...
76 FR 23846 - Virginia Electric Power Company, LLC, North Anna Power Station, Unit No. 1; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-28
... to the oil soaking fibrous insulation. Inadequately designed oil collection systems and oil leaking onto RCP piping insulation was identified as a cause. The licensee's April 23, 2010, letter proposes to... also prevent oil from collecting on three sections of fiberglass cloth covered Tempmat insulation under...
Exfoliated BN shell-based high-frequency magnetic core-shell materials.
Zhang, Wei; Patel, Ketan; Ren, Shenqiang
2017-09-14
The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.
30 CFR 75.516-2 - Communication wires and cables; installation; insulation; support.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Communication wires and cables; installation... Equipment-General § 75.516-2 Communication wires and cables; installation; insulation; support. (a) All communication wires shall be supported on insulated hangers or insulated J-hooks. (b) All communication cables...
30 CFR 75.516-2 - Communication wires and cables; installation; insulation; support.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Communication wires and cables; installation... Equipment-General § 75.516-2 Communication wires and cables; installation; insulation; support. (a) All communication wires shall be supported on insulated hangers or insulated J-hooks. (b) All communication cables...
30 CFR 75.516-2 - Communication wires and cables; installation; insulation; support.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Communication wires and cables; installation... Equipment-General § 75.516-2 Communication wires and cables; installation; insulation; support. (a) All communication wires shall be supported on insulated hangers or insulated J-hooks. (b) All communication cables...
30 CFR 75.516-2 - Communication wires and cables; installation; insulation; support.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Communication wires and cables; installation... Equipment-General § 75.516-2 Communication wires and cables; installation; insulation; support. (a) All communication wires shall be supported on insulated hangers or insulated J-hooks. (b) All communication cables...
30 CFR 75.516-2 - Communication wires and cables; installation; insulation; support.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Communication wires and cables; installation... Equipment-General § 75.516-2 Communication wires and cables; installation; insulation; support. (a) All communication wires shall be supported on insulated hangers or insulated J-hooks. (b) All communication cables...
Dielectric and Insulating Technology 2005 : Reviews & Forecasts
NASA Astrophysics Data System (ADS)
Okamoto, Tatsuki
This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).
Dielectric and Insulating Technology 2006 : Review & Forecast
NASA Astrophysics Data System (ADS)
Okamoto, Tatsuki
This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1999-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices
Gallo-Villanueva, Roberto C.; Sano, Michael B.; Lapizco-Encinas, Blanca H.; Davalos, Rafael V.
2014-01-01
In this work, the temperature effects due to Joule heating obtained by application of a DC electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator based dielectrophoresis (iDEP). The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force towards the inlet of the channel while decreasing towards the outlet. Experimental results are in good agreement with simulations on the particle trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing iDEP systems. PMID:24002905
Electrical switching in cadmium boracite single crystals
NASA Technical Reports Server (NTRS)
Takahashi, T.; Yamada, O.
1981-01-01
Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.
Light emitting ceramic device and method for fabricating the same
Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2004-11-30
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
The momentum of an electromagnetic wave inside a dielectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Testa, Massimo, E-mail: massimo.testa@roma1.infn.it
2013-09-15
The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from themore » conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.« less
Electrical contact structures for solid oxide electrolyte fuel cell
Isenberg, Arnold O.
1984-01-01
An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.
Electrical bushing for a superconductor element
Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis
2010-05-04
The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.
HAREM: high aspect ratio etching and metallization for microsystems fabrication
NASA Astrophysics Data System (ADS)
Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Collard, Dominique; Fujita, Hiroyuki
2008-07-01
We report a simple bulk micromachining method for the fabrication of high aspect ratio monocrystalline silicon MEMS (microelectromechanical systems) in a standard silicon wafer. We call this two-mask microfabrication process high aspect ratio etching and metallization or HAREM: it combines double-side etching and metallization to create suspended micromechanical structures with electrically 'insulating walls' on their backside. The insulating walls ensure a proper electrical insulation between the different actuation and sensing elements situated on either fixed or movable parts of the device. To demonstrate the high potential of this simple microfabrication method, we have designed and characterized electrostatically actuated microtweezers that integrate a differential capacitive sensor. The prototype showed an electrical insulation better than 1 GΩ between the different elements of the device. Furthermore, using a lock-in amplifier circuit, we could measure the position of the moving probe with few nanometers resolution for a displacement range of about 3 µm. This work was presented in part at the 21st IEEE MEMS Conference (Tucson, AZ, USA, 13-17 January, 2008) (doi:10.1109/MEMSYS.2008.4443656).
The Breakdown Characteristics of the Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Yoshida, Hisashi; Yanabu, Satoru
The basic breakdown characteristics of the silicone oil as an insulating medium was studied with aim of realization of electric power apparatus which may be considered to be SF6 free and flame-retarding. As the first step, the impulse breakdown characteristics was measured with three kinds of electrodes whose electric field distributions differed. The breakdown characteristics in silicone oil was explained in relation to stressed oil volume (SOV) and the breakdown stress. At the second step the surface breakdown characteristic for impulse voltage was measured with two kinds of insulators which was set to between plane electrodes. The surface breakdown characteristic for impulse voltage was explained in relation to the ratio of the relative permittivity of oil and insulator. And on the third step, the breakdown characteristics of oil gap after interrupting small capacitive current was studied. In this experiment, the disconnecting switch to interrupt capacitive current was simulated by oil gap after interrupting impulse current, and to measure breakdown characteristics the high impulse voltage was subsequently applied. The breakdown stress in silicone oil after application of impulse current was discussed for insulation recovery characteristics.
Non-ferromagnetic overburden casing
Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy
2010-09-14
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.
NASA Technical Reports Server (NTRS)
Robinson, Paul A., Jr.
1988-01-01
Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.
Bell, J.S.
1959-09-15
An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.
NASA Astrophysics Data System (ADS)
Strychalski, M.; Chorowski, M.; Polinski, J.
2014-05-01
Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.
Hirose, H
1997-01-01
This paper proposes a new treatment for electrical insulation degradation. Some types of insulation which have been used under various circumstances are considered to degrade at various rates in accordance with their stress circumstances. The cross-linked polyethylene (XLPE) insulated cables inspected by major Japanese electric companies clearly indicate such phenomena. By assuming that the inspected specimen is sampled from one of the clustered groups, a mixed degradation model can be constructed. Since the degradation of the insulation under common circumstances is considered to follow a Weibull distribution, a mixture model and a Weibull power law can be combined. This is called The mixture Weibull power law model. By using the maximum likelihood estimation for the newly proposed model to Japanese 22 and 33 kV insulation class cables, they are clustered into a certain number of groups by using the AIC and the generalized likelihood ratio test method. The reliability of the cables at specified years are assessed.
Mechanical and electric characteristics of vacuum impregnated no-insulation HTS coil
NASA Astrophysics Data System (ADS)
Park, Heecheol; Kim, A.-rong; Kim, Seokho; Park, Minwon; Kim, Kwangmin; Park, Taejun
2014-09-01
For the conduction cooling application, epoxy impregnation is inevitable to enhance the thermal conduction. However, there have been several research results on the delamination problem with coated conductor and the main cause of the delamination is related with the different thermal contraction between epoxy, the insulation layer and the weak conductor. To avoid this problem, the amount of epoxy and insulation layer between conductors should be minimized or removed. Therefore, no insulation (NI) winding method and impregnation after dry winding can be considered to solve the problem. The NI coil winding method is very attractive due to high mechanical/thermal stability for the special purpose of DC magnets by removing the insulation layer. In this paper, the NI coil winding method and vacuum impregnation are applied to a HTS coil to avoid the delamination problem and enhance the mechanical/thermal stability for the conduction cooling application. Through the charging/discharging operation, electric/thermal characteristics are investigated at 77 K and 30 K.
Fischer, William H.; Yoon, Kue H.
1984-04-10
A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed perpendicular to the direction of travel of the inner conductor/insulating support assembly.
Characterization of XLPE cable insulation by dynamic mechanical thermal analyzer (DMTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parpal, J.L.; Guddemi, C.; Lamarre, L.
1996-12-31
Polymeric insulated cables and accessories are becoming widely used at voltages over 120 kV, even up to 500 kV. Although high electrical stress presents the greatest challenge, some attention should be given to the fact that the polymeric insulation is also subjected to mechanical stress which can affect the electrical performance of the high-voltage cable system. Thus, the mechanical response to an ac stress induced by oscillating electrostatic forces could be an important factor with regard to long-term degradation of polymeric insulation. This paper presents preliminary mechanical relaxation measurements on XLPE and LDPE specimens taken from unaged transmission type cables.more » Dynamic mechanical relaxation showing radial profiles of the mechanical loss tangent and tensile modulus E{prime} are presented in a temperature range of 40 to 120 C.« less
Insulation defects in Riata implantable cardioverter-defibrillator leads.
Sato, Akinori; Chinushi, Masaomi; Iijima, Kenichi; Izumi, Daisuke; Furushima, Hiroshi
2012-01-01
The structures composing implantable cardioverter-defibrillator (ICD) leads have become more complicated and thinner with technological advances. Silicon insulation defects with and without clinically manifested electrical abnormalities have been reported in Riata leads (St. Jude Medical). The aim of this study was to assess the incidence and clinical implications of insulation defects in Riata leads implanted at our hospital. The subjects included 10 consecutive patients who received 8-French Riata ICD leads with dual-coil conductors (model 1580 or 1581) between 2006 and 2010 at our hospital. Operative records, chest X-rays and interrogation data were reviewed. In all cases, Atlas+ (St. Jude Medical) was used as an ICD generator and the Riata leads were implanted transvenously and fixed to the right ventricular apex. During a mean follow-up period of 52±9 (36-70) months, chest X-rays revealed insulation defects in Riata leads and conductor wires projecting from the bodies of the Riata leads in two of 10 (20%) patients. One of the patients received inappropriate ICD therapies due to T-wave oversensing based on attenuation of R waves and augmentation of T waves 41 months after implantation. In the other patient, an insulation defect without any clinically manifested electrical troubles was detected 50 months after implantation. Riata leads have a high incidence of insulation defects, which may be occasionally accompanied by inappropriate ICD discharges. For patients with Riata leads, careful observation of any changes in the lead-electrical measurements and a routine chest X-ray follow-up are necessary.
Improving health and energy efficiency through community-based housing interventions.
Howden-Chapman, Philippa; Crane, Julian; Chapman, Ralph; Fougere, Geoff
2011-12-01
Houses designed for one climate and cultural group may not be appropriate for other places and people. Our aim is to find cost-effective ways to improve the characteristics of older homes, ill-fitted for New Zealand's climate, in order to improve the occupants' health. We have carried out two community randomised trials, in partnership with local communities, which have focused on retrofitted insulation and more effective heating and have two other studies under way, one which focuses on electricity vouchers and the other on housing hazard remediation. The Housing, Insulation and Health Study showed that insulating 1,350 houses, built before insulation was required, improved the occupants' health and well being as well as household energy efficiency. In the Housing, Heating and Health Study we investigated the impact of installing more effective heating in insulated houses for 409 households, where there was a child with doctor-diagnosed asthma. Again, the study showed significant results in the intervention group; indoor temperatures increased and levels of NO(2) were halved. Children reported less poor health, lower levels of asthma symptoms and sleep disturbances by wheeze and dry cough. Children also had fewer days off school. Improving the energy efficiency of older housing leads to health improvements and energy efficiency improvements. Multidisciplinary studies of housing interventions can create compelling evidence to support policies for sustainable housing developments which improve health.
Rectenna that converts infrared radiation to electrical energy
Davids, Paul; Peters, David W.
2016-09-06
Technologies pertaining to converting infrared (IR) radiation to DC energy are described herein. In a general embodiment, a rectenna comprises a conductive layer. A thin insulator layer is formed on the conductive layer, and a nanoantenna is formed on the thin insulator layer. The thin insulator layer acts as a tunnel junction of a tunnel diode.
USAF/WL robust 300 C wire insulation system program status
NASA Technical Reports Server (NTRS)
Wong, Wing
1995-01-01
The objective of this program is to identify, develop, and demonstrate an optimum wire insulation system capable of continuous operation at 300 C which possesses a combination of superior electrical (AC or DC), mechanical, and physical properties over Kapton derived insulations described in MIL-W-81381 and those hybrid materials commonly known as TKT constructions.
High temperature liquid level sensor
Tokarz, Richard D.
1983-01-01
A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.
The Shock and Vibration Digest. Volume 18, Number 11
1986-11-01
instantaneous clearances for various conductor loadings and weather conditions. Composite insulators are now more widely used. They consists...ter under gunfire. However, their electrical and mechanical behaviors are mote complicated than those of analogous porcelain insulators because...mechanical considerations by discussing recent research papets. Tensile tests on composite insulators have shown that short-term tensile
USAF/WL robust 300 C wire insulation system program status
NASA Astrophysics Data System (ADS)
Wong, Wing
1995-11-01
The objective of this program is to identify, develop, and demonstrate an optimum wire insulation system capable of continuous operation at 300 C which possesses a combination of superior electrical (AC or DC), mechanical, and physical properties over Kapton derived insulations described in MIL-W-81381 and those hybrid materials commonly known as TKT constructions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingda; Song, Qichen; Zhao, Weiwei
The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less
Li, Mingda; Song, Qichen; Zhao, Weiwei; ...
2017-11-01
The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less
30 CFR 57.12011 - High-potential electrical conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-potential electrical conductors. 57.12011... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential electrical conductors shall be covered, insulated, or placed to prevent contact with low potential conductors. ...
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
30 CFR 57.12011 - High-potential electrical conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-potential electrical conductors. 57.12011... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential electrical conductors shall be covered, insulated, or placed to prevent contact with low potential conductors. ...
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
NASA Astrophysics Data System (ADS)
Wang, Yong Jian; Xu, Zuli; Sheng, Ping; Tong, Penger
2014-06-01
A systematic study of the electric-field-induced forces between a solid glass sphere and a flat gold-plated substrate filled with an insulating liquid has been carried out. Using atomic force microscopy, we measure the electrostatic force f(s, V) between the sphere and substrate as a function of the surface separation s and applied voltage V. The measured f(s, V) is found to be well described by an equation for a conducting sphere. Further force measurements for the "wet" porous glass spheres filled with an aqueous solution of urea and the dried porous glass spheres filled with (dry) air suggest that there is a water layer of a few nanometers in thickness adsorbed on the hydrophilic glass surface under ambient conditions. This adsorbed water layer is more conductive than the dielectric core of the glass sphere, making the sphere surface to be at a potential close to that of the cantilever electrode. As a result, the electric field is strongly concentrated in the gap region between the glass sphere and gold-plate substrate and thus their electrostatic attraction is enhanced. This surface conductivity effect is further supported by the thermal gravimetric analysis (TGA) and force response measurements to a time-dependent electric field. The experiment clearly demonstrates that the adsorption of a conductive water layer on a hydrophilic surface plays a dominant role in determining the electrostatic interaction between the dielectric sphere and substrate.
NASA Astrophysics Data System (ADS)
Hossain, I.; Jiang, J.; Matras, M.; Trociewitz, U. P.; Lu, J.; Kametani, F.; Larbalestier, D.; Hellstrom, E.
2017-12-01
In order to develop a high current density in coils, Bi-2212 wires must be electrically discrete in tight winding packs. It is vital to use an insulating layer that is thin, fulfils the dielectric requirements, and can survive the heat treatment whose maximum temperature reaches 890 °C in oxygen. A thin (20-30 µm) ceramic coating could be better as the insulating layer compared to alumino-silicate braided fiber insulation, which is about 150 μm thick and reacts with the Ag sheathed Bi-2212 wire during heat treatment. At present, TiO2 seems to be the most viable ceramic material for such a thin insulation because it is chemically compatible with Ag and Bi-2212 and its sintering temperature is lower than the maximum temperature used for the Bi-2212 heat treatment. However, recent tests of a large Bi-2212 coil insulated only with TiO2 showed severe electrical shorting between the wires after over pressure heat treatment (OPHT). The origin of the shorting was frequent silver protrusions into the porous TiO2 layer that electrically connected adjacent Bi-2212 wires. To understand the mechanism of this unexpected behaviour, we investigated the effect of sheath material and hydrostatic pressure on Ag protrusions. We found that Ag protrusions occur only when TiO2-insulated Ag-0.2%Mg sheathed wire (Ag(Mg) wire) undergoes OPHT at 50 bar. No Ag protrusions were observed when the TiO2-insulated Ag(Mg) wire was processed at 1 bar. The TiO2-insulated wires sheathed with pure Ag that underwent 50 bar OPHT were also free from Ag protrusions. A key finding is that the Ag protrusions from the Ag(Mg) sheath actually contain no MgO, suggesting that local depletion of MgO facilitates local, heterogeneous deformation of the sheath under hydrostatic overpressure. Our study also suggests that predensifying the Ag(Mg) wire before insulating it with TiO2 and doing the final OPHT can potentially limit Ag protrusions.
NASA Astrophysics Data System (ADS)
Buică, G.; Beiu, C.; Antonov, A.; Dobra, R.; Păsculescu, D.
2017-06-01
The protecting electrical equipment in use are subject to various factors generated by the use, maintenance, storage and working environment, which may change the characteristics of protection against electric shock. The study presents the results of research on the behaviour over time of protective characteristics of insulating covers of material of work equipment in use, in order to determine the type and periodicity of safety tests. There were tested and evaluated safety equipment with plastic and insulating rubber covers used in operations of verifying functionality, safety and maintenance of machinery used in manufacturing industries and specific services from electric, energy and food sector.
Electric-field-driven phase transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Wu, B.; Zimmers, A.; Aubin, H.; Ghosh, R.; Liu, Y.; Lopez, R.
2011-12-01
We report on local probe measurements of current-voltage and electrostatic force-voltage characteristics of electric-field-induced insulator to metal transition in VO2 thin film. In conducting AFM mode, switching from the insulating to metallic state occurs for electric-field threshold E˜6.5×107Vm-1 at 300K. Upon lifting the tip above the sample surface, we find that the transition can also be observed through a change in electrostatic force and in tunneling current. In this noncontact regime, the transition is characterized by random telegraphic noise. These results show that electric field alone is sufficient to induce the transition; however, the electronic current provides a positive feedback effect that amplifies the phenomena.
Design of load-to-failure tests of high-voltage insulation breaks for ITER's cryogenic network
NASA Astrophysics Data System (ADS)
Langeslag, S. A. E.; Rodriguez Castro, E.; Aviles Santillana, I.; Sgobba, S.; Foussat, A.
2015-12-01
The development of new generation superconducting magnets for fusion research, such as the ITER experiment, is largely based on coils wound with so-called cable-in-conduit conductors. The concept of the cable-in-conduit conductor is based on a direct cooling principle, by supercritical helium, flowing through the central region of the conductor, in close contact with the superconducting strands. Consequently, a direct connection exists between the electrically grounded helium coolant supply line and the highly energised magnet windings. Various insulated regions, constructed out of high-voltage insulation breaks, are put in place to isolate sectors with different electrical potential. In addition to high voltages and significant internal helium pressure, the insulation breaks will experience various mechanical forces resulting from differential thermal contraction phenomena and electro-magnetic loads. Special test equipment was designed, prepared and employed to assess the mechanical reliability of the insulation breaks. A binary test setup is proposed, where mechanical failure is assumed when leak rate of gaseous helium exceeds 10-9·Pa·m3/s. The test consists of a load-to-failure insulation break charging, in tension, while immersed in liquid nitrogen at the temperature of 77 K. Leak tightness during the test is monitored by measuring the leak rate of the gaseous helium, directly surrounding the insulation break, with respect to the existing vacuum inside the insulation break. The experimental setup is proven effective, and various insulation breaks performed beyond expectations.
Engineering Design Handbook. Dielectric Embedding of Electrical or Electronic Components
1979-04-06
its excellent electrical properties are maintained at elevated temperatures. Even when the insulation is exposed to a direct flame, it burns to a...machine by one operator; these molds are generally equipped with insulated handles to prevent personal in- jury from burns . In electronic embedment...Excellent for large volume runs; tooling is minimal. Pres- ence of a shell or housing as- sures no exposed components, as can occur in casting. Some
Uchida, K; Xiao, J; Adachi, H; Ohe, J; Takahashi, S; Ieda, J; Ota, T; Kajiwara, Y; Umezawa, H; Kawai, H; Bauer, G E W; Maekawa, S; Saitoh, E
2010-11-01
Thermoelectric generation is an essential function in future energy-saving technologies. However, it has so far been an exclusive feature of electric conductors, a situation which limits its application; conduction electrons are often problematic in the thermal design of devices. Here we report electric voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, the magnetic insulator LaY(2)Fe(5)O(12) can convert a heat flow into a spin voltage. Attached Pt films can then transform this spin voltage into an electric voltage as a result of the inverse spin Hall effect. The experimental results require us to introduce a thermally activated interface spin exchange between LaY(2)Fe(5)O(12) and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.
DC conductivity of a suspension of insulating particles with internal rotation
NASA Astrophysics Data System (ADS)
Pannacci, N.; Lemaire, E.; Lobry, L.
2009-04-01
We analyse the consequences of Quincke rotation on the conductivity of a suspension. Quincke rotation refers to the spontaneous rotation of insulating particles dispersed in a slightly conducting liquid and subject to a high DC electric field: above a critical field, each particle rotates continuously around itself with an axis pointing in any direction perpendicular to the DC field. When the suspension is subject to an electric field lower than the threshold one, the presence of insulating particles in the host liquid decreases the bulk conductivity since the particles form obstacles to ion migration. But for electric fields higher than the critical one, the particles rotate and facilitate ion migration: the effective conductivity of the suspension is increased. We provide a theoretical analysis of the impact of Quincke rotation on the apparent conductivity of a suspension and we present experimental results obtained with a suspension of PMMA particles dispersed in weakly conducting liquids.
Processing of Al2O3/SrTiO3/PDMS Composites With Low Dielectric Loss
NASA Astrophysics Data System (ADS)
Yao, J. L.; Guo, M. J.; Qi, Y. B.; Zhu, H. X.; Yi, R. Y.; Gao, L.
2018-05-01
Polydimethylsiloxane (PDMS) is widely used in the electrical and electronic industries due to its excellent electrical insulation and biocompatible characteristics. However, the dielectric constant of pure PDMS is very low which restricts its applications. Herein, we report a series of PDMS/Al2O3/strontium titanate (ST) composites with high dielectric constant and low loss prepared by a simple experimental method. The composites exhibit high dielectric constant (relative dielectric constant is 4) after the composites are coated with insulated Al2O3 particles, and the dielectric constant gets further improved for composites with ST particles (dielectric constant reaches 15.5); a lower dielectric loss (tanδ= 0.05) is also found at the same time which makes co-filler composites suitable for electrical insulation products, and makes the experimental method more interesting in modern teaching.
Advanced concepts for transformers pressboard dielectric constant and mechanical strength
NASA Astrophysics Data System (ADS)
1982-03-01
Of the numerous electrical considerations in a material, the value of the dielectric constant serves as an important criterion in designing proper insulation systems. Ways to reduce the dielectric constant of solid (fibrous) insulating materials were investigated. A literature search was made on cellulosic and synthetic fibers and also additives which offered the potential for dielectric constant reduction of the solid insulation. Sample board structures were produced in the laboratory and tested for electrical, mechanical and chemical characteristics. Electrical tests determined the suitability of the material at transformer test and operating conditions. The mechanical tests established the physical characteristics of the modified board structures. Chemical tests checked the conductivity of the aqueous extract, acidity, and ash content. Further, compatibility with transformer oil and some aging tests were performed. An actual computer transformer design was made based on one of the modified board structures and the reduction in core steel and transformer losses were shown.
Antifuse with a single silicon-rich silicon nitride insulating layer
Habermehl, Scott D.; Apodaca, Roger T.
2013-01-22
An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0
Electricity remains a serious workplace hazard.
Proctor, Laura; Kuchibotla, Srin
2013-08-01
Anyone who works in an industrial environment or is employed in the utility, mass transit, industrial goods manufacturing, or telecommunications industry - as well as many others - may be at risk for electrocution. Electric shock costs workers' lives and results in painful and debilitating injuries every year. Lockout/tagout procedures protect against electrocution, as do rubber insulating gloves, which must be worn any time workers are exposed to energized parts operating at 50 volts or higher. Some newer styles of rubber insulating gloves not only protect against electric shock, but also offer the dexterity and flexibility workers need for hours of comfortable wear.
Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.
1991-04-23
The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.
Bolton, Richard D.; MacArthur, Duncan W.
1996-01-01
An electrostatic detector for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure.
Bolton, R.D.; MacArthur, D.W.
1996-08-27
An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.
Characteristics of corona impulses from insulated wires subjected to high ac voltages
NASA Technical Reports Server (NTRS)
Doreswamy, C. V.; Crowell, C. S.
1976-01-01
Corona discharges arise due to ionization of air or gas subject to high electric fields. The free electrons and ions contained in these discharges interact with molecules of insulating materials, resulting in chemical changes and destroying the electrical insulating properties. The paper describes some results of measurements aimed at determining corona pulse waveforms, their repetition rate, and amplitude distribution during various randomly-sampled identical time periods of a 60-Hz high-voltage wave. Described are properties of positive and negative corona impulses generated from typical conductors at various test high voltages. A possible method for calculating the energies, densities, and electromagnetic interferences by making use of these results is suggested.
Fischer, William H.
1984-01-01
A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a non-binding transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement and for moving without binding along corrugations of any slope less than vertical. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed parallel to the motion of travel of the inner conductor/insulating support assembly.
NASA Astrophysics Data System (ADS)
Sima, Wenxia; Jiang, Xiongwei; Peng, Qingjun; Sun, Potao
2018-05-01
Electrical breakdown is an important physical phenomenon in electrical equipment and electronic devices. Many related models and theories of electrical breakdown have been proposed. However, a widely recognized understanding on the following phenomenon is still lacking: impulse breakdown strength which varies with waveform parameters, decrease in the breakdown strength of AC voltage with increasing frequency, and higher impulse breakdown strength than that of AC. In this work, an improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers is proposed based on the Harmonic oscillator model. Simulation and experimental results show that, the energy of trapped charges obtained from AC stress is higher than that of impulse voltage, and the absorbed activation energy increases with the increase in the electric field frequency. Meanwhile, the frequency-dependent relative dielectric constant ε r and dielectric loss tanδ also affect the absorption of activation energy. The absorbed activation energy and modified trap level synergistically determine the breakdown strength. The mechanism analysis of breakdown strength under various voltage waveforms is consistent with the experimental results. Therefore, the proposed model of activation energy absorption in the present work may provide a new possible method for analyzing and explaining the breakdown phenomenon in semi-crystalline insulating polymers.
NASA Astrophysics Data System (ADS)
Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong
2011-11-01
Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.
NASA Astrophysics Data System (ADS)
Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong
2012-04-01
Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.
Izzati, Wan Akmal; Arief, Yanuar Z; Adzis, Zuraimy; Shafanizam, Mohd
2014-01-01
Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.
Duncan, D.B.
1992-12-29
The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.
Duncan, David B.
1992-01-01
The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.
Non-volatile resistive switching in the Mott insulator (V1-xCrx)2O3
NASA Astrophysics Data System (ADS)
Querré, M.; Tranchant, J.; Corraze, B.; Cordier, S.; Bouquet, V.; Députier, S.; Guilloux-Viry, M.; Besland, M.-P.; Janod, E.; Cario, L.
2018-05-01
The discovery of non-volatile resistive switching in Mott insulators related to an electric-field-induced insulator to metal transition (IMT) has paved the way for their use in a new type of non-volatile memories, the Mott memories. While most of the previous studies were dedicated to uncover the resistive switching mechanism and explore the memory potential of chalcogenide Mott insulators, we present here a comprehensive study of resistive switching in the canonical oxide Mott insulator (V1-xCrx)2O3. Our work demonstrates that this compound undergoes a non-volatile resistive switching under electric field. This resistive switching is induced by a Mott transition at the local scale which creates metallic domains closely related to existing phases of the temperature-pressure phase diagram of (V1-xCrx)2O3. Our work demonstrates also reversible resistive switching in (V1-xCrx)2O3 crystals and thin film devices. Preliminary performances obtained on 880 nm thick layers with 500 nm electrodes show the strong potential of Mott memories based on the Mott insulator (V1-xCrx)2O3.
NASA Astrophysics Data System (ADS)
Jamail, Nor Akmal Mohd; Piah, Mohamed Afendi Mohamed; Muhamad, Nor Asiah
2012-09-01
Nondestructive and time domain dielectric measurement techniques such as polarization and depolarization current (PDC) measurements have recently been widely used as a potential tool for determining high-voltage insulation conditions by analyzing the insulation conductivity. The variation in the conductivity of an insulator was found to depend on several parameters: the difference between the polarization and depolarization currents, geometric capacitance, and the relative permittivity of the insulation material. In this paper the conductivities of different types of oil-paper insulation material are presented. The insulation conductivities of several types of electrical apparatus were simulated using MATLAB. Conductivity insulation was found to be high at high polarizations and at the lowest depolarization current. It was also found to increase with increasing relative permittivity as well as with decreasing geometric capacitance of the insulating material.
Investigation of Re-X glass ceramic for acceleration insulating columns
NASA Astrophysics Data System (ADS)
Faltens, A.; Rosenblum, S.
1985-05-01
In an induction linac the accelerating voltage appears along a voltage-graded vacuum insulator column which is a performance limiting and major cost component. Re-X glass ceramic insulators have the long-sought properties of allowing cast-in gradient electrodes, good breakdown characteristics, and compatibility with high vacuum systems. Re-X is a glass ceramic developed by General Electric for use in the manufacture of electrical apparatus, such as vacuum arc interrupters. We have examined vacuum outgassing behavior and voltage breakdown in vacuum and find excellent performance. The housings are in the shape of tubes with type 430 stainless steel terminations. Due to a matched coefficient of thermal expansion between metal and insulator, no vacuum leaks have resulted from any welding operation. The components should be relatively inexpensive to manufacture in large sizes and appear to be a very attractive accelerator column. We are planning to use a standard GE housing in our MBE-4 induction linac.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Z. X.; Huang, C. J.; Li, L. F.
2014-01-27
In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical propertiesmore » of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.« less
Radiation-hard electrical coil and method for its fabrication
Grieggs, R.J.; Blake, R.D.; Gac, F.D.
1982-06-29
A radiation-hard insulated electrical coil and method for making the same are disclosed. In accordance with the method, a conductor, preferably copper, is wrapped with an aluminum strip and then tightly wound into a coil. The aluminum-wrapped coil is then annealed to relax the conductor in the coiled configuration. The annealed coil is then immersed in an alkaline solution to dissolve the aluminum strip, leaving the bare conductor in a coiled configuration with all of the windings closely packed yet uniformly spaced from one another. The coil is then insulated with a refractory insulating material. In the preferred embodiment, the coil is insulated by coating it with a vitreous enamel and subsequently potting the enamelled coil in a castable ceramic concrete. The resulting coil is substantially insensitive to radiation and may be operated continuously in high radiation environments for long periods of time.
Kale, Akshay; Song, Le; Lu, Xinyu; Yu, Liandong; Hu, Guoqing; Xuan, Xiangchun
2018-03-01
Insulator-based dielectrophoresis (iDEP) exploits in-channel hurdles and posts etc. to create electric field gradients for various particle manipulations. However, the presence of such insulating structures also amplifies the Joule heating in the fluid around themselves, leading to both temperature gradients and electrothermal flow. These Joule heating effects have been previously demonstrated to weaken the dielectrophoretic focusing and trapping of microscale and nanoscale particles. We find that the electrothermal flow vortices are able to entrain submicron particles for a localized enrichment near the insulating tips of a ratchet microchannel. This increase in particle concentration is reasonably predicted by a full-scale numerical simulation of the mass transport along with the coupled charge, heat and fluid transport. Our model also predicts the electric current and flow pattern in the fluid with a good agreement with the experimental observations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ahmadi-Majlan, Kamyar; Chen, Tongjie; Lim, Zheng Hui; Conlin, Patrick; Hensley, Ricky; Chrysler, Matthew; Su, Dong; Chen, Hanghui; Kumah, Divine P.; Ngai, Joseph H.
2018-05-01
We present electrical and structural characterization of epitaxial LaTiO3/SrTiO3 heterostructures integrated directly on Si(100). By reducing the thicknesses of the heterostructures, an enhancement in carrier-carrier scattering is observed in the Fermi liquid behavior, followed by a metal to insulator transition in the electrical transport. The insulating behavior is described by activated transport, and its onset occurs near an occupation of 1 electron per Ti site within the SrTiO3, providing evidence for a Mott driven transition. We also discuss the role that structure and gradients in strain could play in enhancing the carrier density. The manipulation of Mott metal-insulator behavior in oxides grown directly on Si opens the pathway to harnessing strongly correlated phenomena in device technologies.
Photocapacitive image converter
NASA Technical Reports Server (NTRS)
Miller, W. E.; Sher, A.; Tsuo, Y. H. (Inventor)
1982-01-01
An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.
Peg supported thermal insulation panel
Nowobilski, Jeffert J.; Owens, William J.
1985-01-01
A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.
Enhancement of Electrical Conductivity in Multicomponent Nanocomposites.
NASA Astrophysics Data System (ADS)
Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Liu, Feng
To date, very limited theoretical or numerical analyses have been carried out to understand the electrical percolation properties in multicomponent nanocomposite systems. In this work, a disk-stick percolation model was developed to investigate the electrical percolation behavior of an electrically insulating matrix reinforced with one-dimensional (1D) and two-dimensional (2D) conductors via Monte Carlo simulation. The effective electrical conductivity was evaluated through Kirchhoff's current law by transforming it into an equivalent resistor network. The percolation threshold, equivalent resistance and conductivity were obtained from the distribution of nodal voltages by solving a system of linear equations with Gaussian elimination method. The effects of size, aspect ratio, relative concentration and contact patterns of 1D/2D inclusions on conductivity performance were examined. Our model is able to predict the electrical percolation threshold and evaluate the conductivity for hybrid systems with multiple components. The results suggest that carbon-based nanocomposites can have a high potential for applications where favorable electrical properties and low specific weight are required. We acknowledge the financial support from DOE-BES (No. DE-FG02-04ER46148).
Explosion resistant insulator and method of making same
Meyer, Jeffry R.; Billings, Jr., John S.; Spindle, Harvey E.; Hofmann, Charles F.
1983-01-01
An electrical insulator assembly and method of manufacturing same, having a generally cylindrical or conical body portion formed of a breakable cast solid insulation system and a reinforcing member having a corrugated configuration and formed of a web or mesh type reinforcing fabric. When the breakable body member has been broken, the corrugated configured reinforcing web member provides a path of escape for pressurized insulating fluid while limiting the movement of body member fragments in the direction of escape of the pressurized fluid.
Effects of Electrical Insulation Breakdown Voltage And Partial Discharge
NASA Astrophysics Data System (ADS)
Bahrim, F. S.; Rahman, N. F. A.; Haris, H. C. M.; Salim, N. A.
2018-03-01
During the last few decades, development of new materials using composite materials has been of much interest. The Cross-linked Polyethylene (XLPE) which is insulated power cables has been widely used. This paper describes the theoretical analysis, fundamental experiments and application experiments for the XLPE cable insulation. The composite that has been tested is a commercial XLPE and Polypropylene with 30% fiber glass. The results of breakdown strength and partial discharge (PD) behavior described the insulating performance of the composite.
Electron gas at the interface between two antiferromagnetic insulating manganites
NASA Astrophysics Data System (ADS)
Calderón, M. J.; Salafranca, J.; Brey, L.
2008-07-01
We study theoretically the magnetic and electric properties of the interface between two antiferromagnetic and insulating manganites: La0.5Ca0.5MnO3 , a strong correlated insulator, and CaMnO3 , a band insulator. We find that a ferromagnetic and metallic electron gas is formed at the interface between the two layers. We confirm the metallic character of the interface by calculating the in-plane conductance. The possibility of increasing the electron-gas density by selective doping is also discussed.
Electrical insulating liquid: A review
NASA Astrophysics Data System (ADS)
Mahanta, Deba Kumar; Laskar, Shakuntala
Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.
30 CFR 77.1914 - Electrical equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical equipment. 77.1914 Section 77.1914... Shaft Sinking § 77.1914 Electrical equipment. (a) Electric equipment employed below the collar of a.... (b) The insulation of all electric conductors employed below the collar of any slope or shaft during...
30 CFR 77.1914 - Electrical equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical equipment. 77.1914 Section 77.1914... Shaft Sinking § 77.1914 Electrical equipment. (a) Electric equipment employed below the collar of a.... (b) The insulation of all electric conductors employed below the collar of any slope or shaft during...
30 CFR 77.1914 - Electrical equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical equipment. 77.1914 Section 77.1914... Shaft Sinking § 77.1914 Electrical equipment. (a) Electric equipment employed below the collar of a.... (b) The insulation of all electric conductors employed below the collar of any slope or shaft during...
30 CFR 77.1914 - Electrical equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical equipment. 77.1914 Section 77.1914... Shaft Sinking § 77.1914 Electrical equipment. (a) Electric equipment employed below the collar of a.... (b) The insulation of all electric conductors employed below the collar of any slope or shaft during...
30 CFR 77.1914 - Electrical equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical equipment. 77.1914 Section 77.1914... Shaft Sinking § 77.1914 Electrical equipment. (a) Electric equipment employed below the collar of a.... (b) The insulation of all electric conductors employed below the collar of any slope or shaft during...
Peg supported thermal insulation panel
Nowobilski, J.J.; Owens, W.J.
1985-04-30
A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.
Design development and construction of the RFX field shaping winding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitarin, G.; Guarnieri, M.; Stella, A.
1989-03-01
The paper describes the development work on the design and the manufacture of the RFX Field Shaping Winding, from the preliminary analysis and the tests on prototypes to the final design. The winding consists of 16 coils, with 24 copper turns each and of diameters up to 5.5 m. The maximum current is 6.25 kA and the maximum voltage to earth is 35 kV. Each coil is supported in 24 radial locations and the electrodynamic load on a single coil is approximately 40 kN/m in normal operation. Fiberglass impregnated with epoxy resin, reinforced in places with polymide tape, has beenmore » used for the insulation. The high levels of the electrical and mechanical strength specified present conflicting constraints, which have required some care in the structural design and the definition of insulation system and impregnation technology. Although the use of copper coils with this kid of insulation may seem obvious and well established, indeed the stringent operational requirements have posed a number of problems which have demanded extensive work on the design and prototype development.« less
Electrical connector composite housing and method of making same
Silva, Frank A.
1979-01-01
A sleeve-like insert of conductive elastomeric material of a type which serves as an internal shield in electrical connectors for connecting high voltage cables has an end portion folded upon itself, the enfolded portion being substantially permanently retained in its desired position by allowing insulative elastomeric material to fill apertures in the end portion and become bonded thereto in a void free manner, during molding of an insulating outer sleeve-like jacket about the insert.
Modification of electrical properties of topological insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Peter Anand
Ion implantation or deposition can be used to modify the bulk electrical properties of topological insulators. More particularly, ion implantation or deposition can be used to compensate for the non-zero bulk conductivity due to extrinsic charge carriers. The direct implantation of deposition/annealing of dopants allows better control over carrier concentrations for the purposes of achieving low bulk conductivity. Ion implantation or deposition enables the fabrication of inhomogeneously doped structures, enabling new types of device designs.
High temperature electrical conductivity of rigid polyurethane foam
NASA Astrophysics Data System (ADS)
Johnson, R. T., Jr.
1984-03-01
The temperature dependence of the electrical conductivity of three rigid polyurethane foams prepared using different formulations was measured to approx. 320 C. The materials exhibit similar conductivity characteristics, showing a pronounced increase in conductivity with increasing temperature. The insulating characteristics to approx. 200 C are better than that for phenolic materials (glass fabric reinforced), and are similar to those for silicone materials (glass microsphere reinforced). At higher temperatures (500 to 600 C), the phenolics and silicones are better insulators.
2018-01-01
Partial discharges (PD) measurement provides valuable information for the condition assessment of the insulation status of high-voltage (HV) electrical installations. During the last three decades, several PD sensors and measuring techniques have been developed to perform accurate diagnostics when PD measurements are carried out on-site and on-line. For utilities, the most attractive characteristics of on-line measurements are that once the sensors are installed in the grid, the electrical service is uninterrupted and that electrical systems are tested in real operating conditions. In medium-voltage (MV) and HV installations, one of the critical points where an insulation defect can occur is inside metal-clad switchgears (including the cable terminals connected to them). Thus, this kind of equipment is increasingly being monitored to carry out proper maintenance based on their condition. This paper presents a study concerning the application of different electromagnetic measuring techniques (compliant with IEC 62478 and IEC 60270 standards), together with the use of suitable sensors, which enable the evaluation of the insulation condition mainly in MV switchgears. The main scope is to give a general overview about appropriate types of electromagnetic measuring methods and sensors to be applied, while considering the level of detail and accuracy in the diagnosis and the particular fail-save requirements of the electrical installations where the switchgears are located. PMID:29495601
Manifold, bus support and coupling arrangement for solid oxide fuel cells
Parry, G.W.
1988-04-21
Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.
Electron Emission Properties of Insulator Materials Pertinent to the International Space Station
NASA Technical Reports Server (NTRS)
Thomson, C. D.; Zavyalov, V.; Dennison, J. R.; Corbridge, Jodie
2004-01-01
We present the results of our measurements of the electron emission properties of selected insulating and conducting materials used on the International Space Station (ISS). Utah State University (USU) has performed measurements of the electron-, ion-, and photon-induced electron emission properties of conductors for a few years, and has recently extended our capabilities to measure electron yields of insulators, allowing us to significantly expand current spacecraft material charging databases. These ISS materials data are used here to illustrate our various insulator measurement techniques that include: i) Studies of electron-induced secondary and backscattered electron yield curves using pulsed, low current electron beams to minimize deleterious affects of insulator charging. ii) Comparison of several methods used to determine the insulator 1st and 2nd crossover energies. These incident electron energies induce unity total yield at the transition between yields greater than and less than one with either negative or positive charging, respectively. The crossover energies are very important in determining both the polarity and magnitude of spacecraft surface potentials. iii) Evolution of electron emission energy spectra as a function of insulator charging used to determine the surface potential of insulators. iv) Surface potential evolution as a function of pulsed-electron fluence to determine how quickly insulators charge, and how this can affect subsequent electron yields. v) Critical incident electron energies resulting in electrical breakdown of insulator materials and the effect of breakdown on subsequent emission, charging and conduction. vi) Charge-neutralization techniques such as low-energy electron flooding and UV light irradiation to dissipate both positive and negative surface potentials during yield measurements. Specific ISS materials being tested at USU include chromic and sulfuric anodized aluminum, RTV-silicone solar array adhesives, solar cell cover glasses, Kapton, and gold. Further details of the USU testing facilities, the instrumentation used for insulator measurements, and the NASA/SEE Charge Collector materials database are provided in other Spacecraft Charging Conference presentations (Dennison, 2003b). The work presented was supported in part by the NASA Space Environments and Effects (SEE) Program, the Boeing Corporation, and a NASA Graduate Fellowship. Samples were supplied by Boeing, the Environmental Effects Group at Marshall Space Flight Center, and Sheldahl, Inc.
Magnon-mediated current drag across a magnetic insulator
NASA Astrophysics Data System (ADS)
Shi, Jing
Electric current transmission can occur in a magnetic insulator via spin current inter-conversions at heavy metal/magnetic insulator interfaces. In magnetic insulators, spin current is carried by spin wave excitations or their quanta, magnons. This marvelous phenomenon was first theoretically predicted and dubbed as the magnon-mediated current drag in 2012 by Zhang et al.. Following a breakthrough in materials growth, i.e. yttrium iron garnet films or YIG ranging from 30 to 80 nm in thickness sandwiched between two heavy metal films, we successfully showed the nonlocal DC current transmission in such sandwich structures via spin current rather than charge current. To exclude the leakage effect, the experiments are conducted at temperatures below 250 K where the resistance between the metal layers exceeds 20 Gohms. In addition, by replacing the top Pt electrode with beta-Ta which is known to reverse the sign in the spin Hall angle, we found that the nonlocal signal reverses the polarity, which is a direct demonstration of the spin current nature. Furthermore, the temperature dependence of the nonlocal signal confirms the role of magnons in this effect. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. SC0012670.
The metal-insulator triple point in vanadium dioxide
NASA Astrophysics Data System (ADS)
Cobden, David
2014-03-01
The metal-insulator transition (MIT) in vanadium dioxide is a candidate for optical and electrical switching applications. However, being a first-order solid-state phase transition makes it challenging to study reproducibly in any detail. The combination of the change in unit cell shape, symmetry reduction, long range of elastic distortion, and latent heat leads to domain structure, hysteresis, and cracking of even the highest quality samples. At the MIT two stable insulating phases (M1 and M2) occur in addition to the metallic phase (R), but their phase stability diagram was poorly known. To establish it precisely we studied single-crystal nanobeams of VO2 in a purpose-built nanomechanical strain apparatus. We were able to measure the transition temperature accurately to be 65.0 +- 0.1 oC, to determine the phase boundary slopes, and to detect the intermediate metastable triclinic (T) phase where it is metastable towards M2. We were surprised to find that the transition occurs precisely at the solid-state triple point of the metallic and two insulating phases, a fact that is not explained by existing theories. See J.H. Park et al, Nature 500, 431-4 (August 2013), doi:10.1038/nature12425. Supported by US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, award DE-SC0002197.
Bhattacharya, Rupak; Mondal, Richarj; Khatua, Pradip; Rudra, Alok; Kapon, Eli; Malzer, Stefan; Döhler, Gottfried; Pal, Bipul; Bansal, Bhavtosh
2015-01-30
We study a specific type of lifetime broadening resulting in the well-known exponential "Urbach tail" density of states within the energy gap of an insulator. After establishing the frequency and temperature dependence of the Urbach edge in GaAs quantum wells, we show that the broadening due to the zero-point optical phonons is the fundamental limit to the Urbach slope in high-quality samples. In rough analogy with Welton's heuristic interpretation of the Lamb shift, the zero-temperature contribution to the Urbach slope can be thought of as arising from the electric field of the zero-point longitudinal-optical phonons. The value of this electric field is experimentally measured to be 3 kV cm-1, in excellent agreement with the theoretical estimate.
NASA Technical Reports Server (NTRS)
Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.
1992-01-01
The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite.
30 CFR 56.12010 - Isolation or insulation of communication conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conductors. 56.12010 Section 56.12010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12010 Isolation or insulation of communication conductors. Telephone and low... energized power conductors or any other power source. ...
30 CFR 56.12010 - Isolation or insulation of communication conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conductors. 56.12010 Section 56.12010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12010 Isolation or insulation of communication conductors. Telephone and low... energized power conductors or any other power source. ...
Environmental Aging of Polymer-Nano Composites and Release of Carbon Nanotube
Epoxies are widely used in various applications, including coatings, electronics insulations, and waterproofing applications due to their excellent properties such as good adhesion, electrical insulation, and heat resistance along with the strong mechanical property. Currently, n...
49 CFR 229.81 - Emergency pole; shoe insulation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Emergency pole; shoe insulation. 229.81 Section 229.81 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical...
40 CFR 98.300 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... insulated with or containing sulfur hexafluoride (SF6) or perfluorocarbons (PFCs) used within an electric...-pressure and hermetically sealed-pressure switchgear and gas-insulated lines containing SF6 or PFCs. (4...) Other containers of SF6 or PFC. ...
40 CFR 98.300 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... insulated with or containing sulfur hexafluoride (SF6) or perfluorocarbons (PFCs) used within an electric...-pressure and hermetically sealed-pressure switchgear and gas-insulated lines containing SF6 or PFCs. (4...) Other containers of SF6 or PFC. ...
40 CFR 98.300 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... insulated with or containing sulfur hexafluoride (SF6) or perfluorocarbons (PFCs) used within an electric...-pressure and hermetically sealed-pressure switchgear and gas-insulated lines containing SF6 or PFCs. (4...) Other containers of SF6 or PFC. ...
40 CFR 98.300 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... insulated with or containing sulfur hexafluoride (SF6) or perfluorocarbons (PFCs) used within an electric...-pressure and hermetically sealed-pressure switchgear and gas-insulated lines containing SF6 or PFCs. (4...) Other containers of SF6 or PFC. ...
NASA Astrophysics Data System (ADS)
Li, L.; Chen, M. Y.; Zhu, X. C.; Gao, Z. W.; Zhang, H. D.; Li, G. X.; Zhang, J.; Yu, C. L.; Feng, Y. M.
2018-01-01
The breakdown characteristics of oil-paper insulation in AC, DC and compound field at different temperatures were studied. The breakdown mechanism of oil-paper insulation at different temperatures and in AC and DC electric fields was analyzed. The breakdown characteristic mechanisms of the oil-paper insulation in the compound field at different temperatures were obtained: the dielectric strength of oil-paper compound insulation is changed gradually from dependence on oil dielectric strength to dependence on paperboard dielectric strength at low temperature. The dielectric strength of oil-paper compound insulation is always related to the oil dielectric strength closely at high temperature with decrease of AC content.
On effective holographic Mott insulators
NASA Astrophysics Data System (ADS)
Baggioli, Matteo; Pujolàs, Oriol
2016-12-01
We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of `traffic-jam'-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.
Electronic-Power-Transformer Design Guide
NASA Technical Reports Server (NTRS)
Schwarze, G. E.; Lagadinos, J. C.; Ahearn, J. F.
1983-01-01
Compilation of information on design procedures, electrical properties, and fabrication. Guide provides information on design procedures; magnetic and insulating material electrical properties; impregnating, encapsulating and processing techniques.
Workshop on multifactor aging mechanisms and models
NASA Astrophysics Data System (ADS)
Agarwal, V. K.
1992-10-01
There have been considerable efforts to understand the aging and failure mechanisms of insulation in electrical systems. However, progress has been slow because of the complex nature of the subject particularly when dealing with multiple stresses e.g. electrical, thermal, mechanical, radiation, humidity and other environmental factors. When an insulating material is exposed to just one stress factor e.g. electric field, one must devise test(s) which are not only economically efficient and practical but which take into account the nature of electric field (ac, dc and pulsed), duration and level or field strength, and field configurations. Any additional stress factor(s) make the matrix of measurements and the understanding of resulting degradation processes more complex, time consuming and expensive.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... assemblies in the ECS with burned Boeing Material Specification (BMS) 8-39 polyurethane foam insulation. This... duct assemblies in the ECS wrapped with BMS 8-39 polyurethane foam insulation, a material of which the... electrical arc from igniting the BMS 8-39 polyurethane foam insulation on the duct assemblies of the ECS...
The effects of γ-ray on charging behaviour using polyimide
NASA Astrophysics Data System (ADS)
Qin, Sichen; Tu, Youping; Tan, Tian; Wang, Shaohe; Yuan, Zhikang; Wang, Cong; Li, Laifeng; Wu, Zhixiong
2018-06-01
Insulation material is a key component of electrical equipment in satellites; its electrical properties determine the reliability and lifetime of the whole satellite. High-energy radioactive rays in space affect the molecular structure of the polymeric insulating materials. Under the action of plasma, high energy particles, along with the magnetic fields experienced in orbits, electric charges get injected into and trapped by the insulating material creating distortions in the electric field and even electrostatic discharges. Polyimides have been widely used for insulation in spacecraft. Choosing Co-60 gamma ray with irradiation doses of 1 MGy and 5 MGy to simulate the radiation environment of space, we investigated the effect of radiation on charging behaviour. The thermal stimulated current (TSC) from a high electric field over a wide range of temperatures was measured from which the activation energy was calculated. These results for the two sources show that the percentage increase in total charge was 133.3% and 119.4%. The γ, β 3, and α charge peaks of specimens after an irradiation dose of 1 MGy rose. In comparison, the β 2 peak of the 5 MGy-dosed specimens was enhanced. Also, there is almost no change in the γ, β 3, and α peaks. To understand the mechanism behind the TSC changes, the resulting physicochemical characteristics of an irradiated specimen were observed employing various analyses of chemical characteristics (x-ray photoelectron spectroscopy, differential scanning calorimetry and x-ray diffraction). Compared with the non-dosed specimen, the relative content of C–N and the glass transition temperature of the 1 MGy sample decreased, and the crystallinity increased, thus increasing the γ and α peak intensities. Compared with the 1 MGy sample, only the glass transition temperature had risen, thereby enhancing the β peak intensity. With the foregoing, a theoretical base for the selection and modification of insulation materials for spacecraft is provided.
Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J
2011-09-01
In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.
Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.
1994-01-01
A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.
Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.
1994-11-22
A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.
NASA Astrophysics Data System (ADS)
Oliver, Sean; Fairfield, Jessamyn; Lee, Sunghun; Bellew, Allen; Stone, Iris; Ruppalt, Laura; Boland, John; Vora, Patrick
Resistive switching is ideal for use in non-volatile memory where information is stored in a metallic or insulating state. Nanowire junctions formed at the intersection of two Ni/NiO core/shell nanowires have emerged as a leading candidate structure where resistive switching occurs due to the formation and destruction of conducting filaments. However, significant knowledge gaps remain regarding the conduction mechanisms as measurements are typically only performed at room temperature. Here, we combine temperature-dependent current-voltage (IV) measurements from 15 - 300 K with magnetoresistance studies and achieve new insight into the nature of the conducting filaments. We identify a novel semiconducting state that behaves as a quantum point contact and find evidence for a possible electric-field driven phase transition. The insulating state exhibits unexpectedly complex IV characteristics that highlight the disordered nature of the ruptured filament while we find clear signs of anisotropic magnetoresistance in the metallic state. Our results expose previously unobserved behaviors in nanowire resistive switching devices and pave the way for future applications where both electrical and magnetic switching can be achieved in a single device. This work was supported by ONR Grant N-00014-15-1-2357.
NASA Astrophysics Data System (ADS)
Qi, Jingshan; Li, Xiao; Qian, Xiaofeng
2016-06-01
Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.
Electric-field-driven phase transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Wu, B.; Zimmers, A.; Aubin, H.; Gosh, R.; Liu, Y.; Lopez, R.
2011-03-01
In recent years, various strongly correlated materials have shown sharp switching from insulator to metallic state in their I(V) transport curves. Determining if this is purely an out of equilibrium phenomena (due to the strong electric field applied throughout the sample) or simply a Joule heating issue is still an open question. To address this issue, we have first measured local I(V) curves in vanadium dioxide (VO2) Mott insulator at various temperatures using a conducting AFM setup and determined the voltage threshold of the insulator to metal switching. By lifting the tip above the surface (> 35 nm) , wehavethenmeasuredthepurelyelectrostaticforcebetweenthetipandsamplesurfaceasthevoltagebetweenthesetwowasincreased . Inaverynarrowtemperaturerange (below 360 K) , atipheightrange (below 60 nm) andavoltageappliedrange (above 8 V) , weobservedswitchingintheelectrostaticforce (telegraphicnoisevs . timeandvs . voltage) . ThispurelyelectricfieldeffectshowsthattheswitchingphenomenonisstillpresentevenwithoutJouleheatinginVO 2 .
Bechtold, Dieter; Bartke, Dietrich; Kramer, Peter; Kretzschmar, Reiner; Vollbert, Jurgen
1999-01-01
The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).
Contaminant trap for gas-insulated apparatus
Adcock, James L.; Pace, Marshall O.; Christophorou, Loucas G.
1984-01-01
A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.
Insulator-based DEP with impedance measurements for analyte detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davalos, Rafael V.; Simmons, Blake A.; Crocker, Robert W.
2010-03-16
Disclosed herein are microfluidic devices for assaying at least one analyte specie in a sample comprising at least one analyte concentration area in a microchannel having insulating structures on or in at least one wall of the microchannel which provide a nonuniform electric field in the presence of an electric field provided by off-chip electrodes; and a pair of passivated sensing electrodes for impedance detection in a detection area. Also disclosed are assay methods and methods of making.
Electrical transport of spin-polarized carriers in disordered ultrathin films.
Hernandez, L M; Bhattacharya, A; Parendo, Kevin A; Goldman, A M
2003-09-19
Slow, nonexponential relaxation of electrical transport accompanied by memory effects has been induced in quench-condensed ultrathin amorphous Bi films by the application of a parallel magnetic field. This behavior, which is very similar to space-charge limited current flow, is found in extremely thin films well on the insulating side of the thickness-tuned superconductor-insulator transition. It may be the signature of a collective state that forms when the carriers are spin polarized at low temperatures and in high magnetic fields.
Defect design of insulation systems for photovoltaic modules
NASA Technical Reports Server (NTRS)
Mon, G. R.
1981-01-01
A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.
High-frequency effects in antiferromagnetic Sr3Ir2O7
NASA Astrophysics Data System (ADS)
Williamson, Morgan; Seinige, Heidi; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim
Antiferromagnetic (AFM) spintronics is one of many promising routes for `beyond the CMOS' technologies where unique properties of AFM materials are exploited to achieve new and improved functionalities. AFMs are especially interesting for high-speed memory applications thanks to their high natural frequencies. Here we report the effects of high-frequency (microwave) currents on transport properties of antiferromagnetic Mott insulator Sr3Ir2O7. The microwaves at 3-7 GHz were found to affect the material's current-voltage characteristic and produce resonance-like features that we tentatively associate with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, by NSF Grants DMR-1207577, DMR-1265162, DMR-1600057, and DMR-1122603, and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-2626.
NASA Astrophysics Data System (ADS)
Sosnowski, M.; Eager, G. S., Jr.
1983-06-01
Threshold voltage of oil-impregnated paper insulated cables are investigaed. Experimental work was done on model cables specially manufactured for this project. The cables were impregnated with mineral and with synthetic oils. Standard impulse breakdown voltage tests and impulse voltage breakdown tests with dc prestressing were performed at room temperature and at 1000C. The most important result is the finding of very high level of threshold voltage stress for oil-impregnated paper insulated cables. This threshold voltage is approximately 1.5 times higher than the threshold voltage or crosslinked polyethylene insulated cables.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CELLULOSE INSULATION... can occur where cellulose insulation is improperly installed too close to the sides or over the top of recessed electrical light fixtures, or installed too close to the exhaust flues from heat producing devices...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CELLULOSE INSULATION... can occur where cellulose insulation is improperly installed too close to the sides or over the top of recessed electrical light fixtures, or installed too close to the exhaust flues from heat producing devices...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CELLULOSE INSULATION... can occur where cellulose insulation is improperly installed too close to the sides or over the top of recessed electrical light fixtures, or installed too close to the exhaust flues from heat producing devices...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS CELLULOSE INSULATION... can occur where cellulose insulation is improperly installed too close to the sides or over the top of recessed electrical light fixtures, or installed too close to the exhaust flues from heat producing devices...
Battery cell thermal-conductive coating increases efficiency
NASA Technical Reports Server (NTRS)
Doyle, H. M.
1973-01-01
Thin coating of high-temperature epoxy resin provides necessary electrical insulation, as well as good thermal conductivity between battery cells. Insulation increases efficiency of nickel-cadmium battery, as it would any multicell battery assembly in which cell-to-cell thermal balance is critical.
49 CFR 229.83 - Insulation or grounding of metal parts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation or grounding of metal parts. 229.83 Section 229.83 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical...
Fully synthetic taped insulation cables
Forsyth, Eric B.; Muller, Albert C.
1984-01-01
A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.
Robust 300 C wire insulation system
NASA Technical Reports Server (NTRS)
Nairus, John G.
1994-01-01
The objective of this program is to identify, develop, and demonstrate an optimum wire insulation system that is capable of continuous operation at 300 C. The system is to possess a combination of superior electrical (AC or DC), mechanical, and physical properties over the KAPTON (trademark) derived insulations described in MIL-W-81381 and those hybrid constructions identified in Air Force contract F33615-89-C-5606, commonly known as TKT constructions.
Development of radiation resistant electrical cable insulations
NASA Technical Reports Server (NTRS)
Lee, B. S.; Soo, P.; Mackenzie, D. R.
1994-01-01
Two new polyethylene cable insulations have been formulated for nuclear applications and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb2O3 as additives. The test results show that the concept of using inorganic antioxidants to retard radiation initiated oxidation (RIO) is viable. PbO is more effective than Sb2O3 in minimizing RIO.
Waveguide embedded plasmon laser with multiplexing and electrical modulation
Ma, Ren-min; Zhang, Xiang
2017-08-29
This disclosure provides systems, methods, and apparatus related to nanometer scale lasers. In one aspect, a device includes a substrate, a line of metal disposed on the substrate, an insulating material disposed on the line of metal, and a line of semiconductor material disposed on the substrate and the insulating material. The line of semiconductor material overlaying the line of metal, disposed on the insulating material, forms a plasmonic cavity.
On the use of doped polyethylene as an insulating material for HVDC cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, M.S.
1996-12-31
The merits of HVDC cables with polymeric insulation are well recognized. However, the development of such cables is still hampered due to the problems resulting from the complicated dependence of the electrical conductivity of the polymer on the temperature and the dc electric field and the effects of space charge accumulation in this material. Different methods have been suggested to solve these problems yet none of these methods seem to give a conclusive solution. The present report provides, firstly a critical review of the previous works reported in the literature concerning the development of HVDC cables with polymeric insulation. Differentmore » aspects of those works are examined and discussed. Secondly, an account is given on an investigation using low density polyethylene (LDPE) doped with an inorganic additive as a candidate insulating material for HVDC cables. Preliminary results from measurements of dc breakdown strength and insulation resistivity of both the undoped and the doped materials are presented. It is shown that the incorporation of an inorganic additive into LDPE has improved the performance of the doped material under polarity reversal dc conditions at room temperature. Moreover, the dependency of the insulation resistivity on temperature for the doped material appears to be beneficially modified.« less
A quantized microwave quadrupole insulator with topologically protected corner states
NASA Astrophysics Data System (ADS)
Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav
2018-03-01
The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.
29 CFR 1915.132 - Portable electric tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...
29 CFR 1915.132 - Portable electric tools.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...
29 CFR 1915.132 - Portable electric tools.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...
29 CFR 1915.132 - Portable electric tools.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...
29 CFR 1915.132 - Portable electric tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...
Izzati, Wan Akmal; Adzis, Zuraimy; Shafanizam, Mohd
2014-01-01
Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends. PMID:24558326
Crunteanu, Aurelian; Givernaud, Julien; Leroy, Jonathan; Mardivirin, David; Champeaux, Corinne; Orlianges, Jean-Christophe; Catherinot, Alain; Blondy, Pierre
2010-12-01
Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal-insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal-insulator transition in VO 2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs) in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO 2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO 2 -based switching (more than 260 million cycles without failure) compared with the voltage-activated mode (breakdown at around 16 million activation cycles). The evolution of the electrical self-oscillations of a VO 2 -based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.
Sialons as high temperature insulators
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Kuo, Y. S.
1978-01-01
Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.
MHD Electrode and wall constructions
Way, Stewart; Lempert, Joseph
1984-01-01
Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-01-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998
From organized high throughput data to phenomenological theory: The example of dielectric breakdown
NASA Astrophysics Data System (ADS)
Kim, Chiho; Pilania, Ghanshyam; Ramprasad, Rampi
Understanding the behavior (and failure) of dielectric insulators experiencing extreme electric fields is critical to the operation of present and emerging electrical and electronic devices. Despite its importance, the development of a predictive theory of dielectric breakdown has remained a challenge, owing to the complex multiscale nature of this process. Here, we focus on the intrinsic dielectric breakdown field of insulators--the theoretical limit of breakdown determined purely by the chemistry of the material, i.e., the elements the material is composed of, the atomic-level structure, and the bonding. Starting from a benchmark dataset (generated from laborious first principles computations) of the intrinsic dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical relationships between the breakdown field and easily accessible material properties. The models are shown to be general, and can hence guide the screening and systematic identification of high electric field tolerant materials.
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-08-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.
NASA Astrophysics Data System (ADS)
García, H.; González, M. B.; Mallol, M. M.; Castán, H.; Dueñas, S.; Campabadal, F.; Acero, M. C.; Sambuco Salomone, L.; Faigón, A.
2018-04-01
The γ-radiation effects on the electrical characteristics of metal-insulator-semiconductor capacitors based on HfO2, and on the resistive switching characteristics of the structures have been studied. The HfO2 was grown directly on silicon substrates by atomic layer deposition. Some of the capacitors were submitted to a γ ray irradiation using three different doses (16 kGy, 96 kGy and 386 kGy). We studied the electrical characteristics in the pristine state of the capacitors. The radiation increased the interfacial state densities at the insulator/semiconductor interface, and the slow traps inside the insulator near the interface. However, the leakage current is not increased by the irradiation, and the conduction mechanism is Poole-Frenkel for all the samples. The switching characteristics were also studied, and no significant differences were obtained in the performance of the devices after having been irradiated, indicating that the fabricated capacitors present good radiation hardness for its use as a RS element.
Cost of a recall of a single-center experience managing the Riata defibrillator lead.
Hussain, Sarah; Moorman, Liza; Moorman, J Randall; DiMarco, John P; Malhotra, Rohit; Darby, Andrew; Bilchick, Kenneth; Mangrum, J Michael; Ferguson, John D; Mason, Pamela K
2015-01-15
Riata and Riata ST defibrillator leads (St. Jude Medical, Sylmar, California) were recalled in 2011 due to increased risk of insulation failure leading to externalized cables. Fluoroscopic screening can identify insulation failure, although the relation between mechanical failure and electrical failure is unclear. At the time of the recall, the University of Virginia developed a screening program, including fluoroscopic evaluation, education sessions, device interrogation, and remote monitoring for patients with this defibrillator lead. The aim of this study was to review the outcomes of the screening program, including costs, which were absorbed by our institution. Costs were calculated using Medicare reimbursement estimates. Forty-eight patients participated in the screening program. At initial screening, 31% were found to have evidence of insulation failure but electrical function was normal in all leads. The cost of this program was $35,358.72. The cost per diagnosis of mechanical lead failure was $2,357.25. During 2 years of follow-up, 1 patient experienced Riata lead electrical failure without fluoroscopic evidence of insulation failure. Patients were more likely to have a lead revision if there was evidence of insulation failure. Lead revisions occurred at the time of generator change in 88% of patients with insulation failure but in only 14% of patients with a fluoroscopically normal lead (p = 0.04). The cost of recall-related defibrillator lead revisions was $81,704.55. In conclusion, our Riata screening program added expense without clear benefit to patients. In fact, patients may have been put at more risk by undergoing defibrillator lead revisions based solely on the results of the fluoroscopic screening. Copyright © 2015 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2014 CFR
2014-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2010 CFR
2010-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2012 CFR
2012-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Code of Federal Regulations, 2011 CFR
2011-01-01
... electric system, e.g., a substation transformer, heat exchanger or a transmission structure. Force account... which is combined with equipment to form an electric system, e.g., poles, insulators, or conductors...
Electrically insulating films deposited on V-4%Cr-4%Ti by reactive CVD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.H.
1998-04-01
In the design of liquid-metal blankets for magnetic fusion reactors, corrosion resistance of structural materials and the magnetohydrodynamic forces and their influence on thermal hydraulics and corrosion are major concerns. Electrically insulating CaO films deposited on V-4%Cr-4%Ti exhibit high-ohmic insulator behavior even though a small amount of vanadium from the alloy become incorporated into the film. However, when vanadium concentration in the film is > 15 wt.%, the film becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. The objective of this study is to evaluate electrically insulatingmore » films that were deposited on V-4%Cr-4%Ti by a reactive chemical vapor deposition (CVD) method. To this end, CaO and Ca-V-O coatings were produced on vanadium alloys by CVD and by a metallic-vapor process to investigate the electrical resistance of the coatings. The authors found that the Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film > 0.9, and semiconductor or conductor behavior when R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, they conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.« less
A Plasmonic based Ultracompact Polarization Beam Splitter on Silicon-on-Insulator Waveguides
Tan, Qilong; Huang, Xuguang; Zhou, Wen; Yang, Kun
2013-01-01
An ultracompact polarization beam splitter (PBS) is designed on silicon-on-insulator (SOI) platform based on the localized surface plasmons (LSPs) excited by particular polarization light. The device uses nanoscale silver cylinders as the polarization selection between two silicon waveguides of a directional coupler. The transverse-magnetic (TM) polarization light excites localized surface plasmons and is coupled into the cross port of the directional coupler with a low insert loss, while the transverse-electric (TE) polarization light is under restriction. The PBS has a coupling layer with 50 nm width and 1.1 μm length supporting broadband operation. The simulation calculations show that 22.06dB and 23.06dB of extinction ratios for the TE and TM polarizations were obtained, together with insertion losses of 0.09dB and 0.40dB. PMID:23856635
Pressure-induced superconductivity in the giant Rashba system BiTeI
VanGennep, D.; Linscheid, A.; Jackson, D. E.; ...
2017-01-27
We present that at ambient pressure, BiTeI exhibits a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to ~40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with T c values asmore » high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute T c and find that our data is consistent with phonon-mediated superconductivity.« less
NASA Technical Reports Server (NTRS)
2001-01-01
Through a partnership with Unitika Ltd., NASA's Langley Research Center created a foam based on high temperature resistant polyimide chemistry. Licensed non-exclusively to SORDAL, Inc., the low-density foam, named TEEK, can be processed into forms or used to fill structures such as honeycomb. TEEK offers superior insulation and support qualities, with heat and flame resistance abilities.TEEK is a practical selection for hull insulation in the shipbuilding industry, with numerous potential applications in aerospace applications, fire-resistant construction materials, and a wide range of consumer products that will improve safety and energy efficiency. Other opportunities are available in the areas of automotive coatings and sealants, electrical components, and recreational equipment. SORDAL has introduced its new product in several different forms, under the name "SOLREX". The company is developing a new product called SORDAL Paper(TM) that will be used in conjunction with the polyimide foam to offer thermal protection in various products, such as fire resistant garments and prosthetics.
Pressure-induced superconductivity in the giant Rashba system BiTeI.
VanGennep, D; Linscheid, A; Jackson, D E; Weir, S T; Vohra, Y K; Berger, H; Stewart, G R; Hennig, R G; Hirschfeld, P J; Hamlin, J J
2017-03-08
At ambient pressure, BiTeI exhibits a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to ∼40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with T c values as high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute T c and find that our data is consistent with phonon-mediated superconductivity.
Superconductivity and ferromagnetism in topological insulators
NASA Astrophysics Data System (ADS)
Zhang, Duming
Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to exist when topological insulators are interfaced with superconductors. The observation of Majorana fermions would not only be fundamentally important, but would also lead to applications in fault-tolerant topological quantum computation. By interfacing topological insulator nanoribbons with superconducting electrodes, we observe distinct signatures of proximity-induced superconductivity, which is found to be present in devices with channel lengths that are much longer than the normal transport characteristic lengths. This might suggest preferential coupling of the proximity effect to a ballistic surface channel of the topological insulator. In addition, when the electrodes are in the superconducting state, we observe periodic magnetoresistance oscillations which suggest the formation of vortices in the proximity-induced region of the nanoribbons. Our results demonstrate that proximity-induced superconductivity and vortices can be realized in our nanoribbon geometry, which accomplishes a first important step towards the search for Majorana fermions in condensed matter. In Chapter 5, I will discuss experiments on a magnetically-doped topological insulator (Mn-doped Bi2Se3) to induce a surface state gap. The metallic Dirac cone surface states of a topological insulator are expected to be protected against small perturbations by time-reversal symmetry. However, these surface states can be dramatically modified and a finite energy gap can be opened at the Dirac point by breaking the time-reversal symmetry via magnetic doping. The interplay between magnetism and topological surface states is predicted to yield novel phenomena of fundamental interest such as a topological magneto-electric effect, a quantized anomalous Hall effect, and the induction of magnetic monopoles. Our systematic measurements reveal a close correlation between the onset of ferromagnetism and quantum corrections to diffusive transport, which crosses over from the symplectic (weak anti-localization) to the unitary (weak localization) class. A comprehensive interpretation of data obtained from electrical transport, angle-resolved photoemission spectroscopy, superconducting quantum interference device magnetometry, and scanning tunneling microscopy indicates that the ferromagnetism responsible for modifications in the surface states occurs in nanoscale regions on the surface where magnetic atoms segregate during sample growth. This suggests that some aspects of the observed magnetoconductance may indeed originate from surface transport despite the non-ideal nature of the samples. These observations are consistent with the prediction of a time-reversal symmetry breaking gap, which is further supported by angle-resolved photoemission spectroscopy measurements.
77 FR 43382 - Millstone Power Station, Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... sources consisting primarily of fire retardant cable insulation and limited floor based combustibles. The... smoke detectors. The licensee stated that the smoke and heat detection systems were designed and... insulation and that potential ignition sources for these areas includes electrical faults. The licensee...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stored eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
77 FR 20511 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... heat damage to the inner wall of the thrust reversers, which could result in separation of adjacent... the upper and lower inner wall insulation blankets, measuring the electrical conductivity on the..., doing various concurrent actions (including replacing the inner wall blanket insulation, installing...
7 CFR 1436.6 - Eligible storage or handling equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... stored eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...
The mechanical stability of polyimide films at high pH
NASA Technical Reports Server (NTRS)
Croall, Catharine I.; St.clair, Terry L.
1990-01-01
Polyimide insulated electrical wire has been widely used in the aerospace industry in commercial, military, and to a lesser degree, general aviation aircraft since the early 1970s. Wiring failures linked to insulation damage have drawn much attention in the media and concerns have developed regarding the long term stability and safety of polyimide insulated electrical wire. The mechanical durability and chemical stability of polyimide insulated wire are affected by hydrolysis, notch propagation, wet and dry arc tracking, topcoat flaking, and degradation due to high pH fluids. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as KAPTON (tradename), APICAL (tradename), LARC-TPI, and UPILEX (tradename) R and S, as well as a number of experimental films prepared at NASA-Langley. Material properties investigated include viscosity, solubility, moisture absorption, glass transition temperature, dielectric constant, and mechanical properties before and after exposure to various conditions.
NASA Astrophysics Data System (ADS)
Jaouad, A.; Aimez, V.; Aktik, Ç.; Bellatreche, K.; Souifi, A.
2004-05-01
Metal-insulator-semiconductor (MIS) capacitors were fabricated on n-GaAs(100) substrate using (NH4)2S surface passivation and low-frequency plasma-enhanced chemical vapor deposited silicon nitride as gate insulators. The electrical properties of the fabricated MIS capacitors were analyzed using high-frequency capacitance-voltage and conductance-voltage measurements. The high concentration of hydrogen present during low-frequency plasma deposition of silicon nitride enhances the passivation of GaAs surface, leading to the unpinning of the Fermi level and to a good modulation of the surface potential by gate voltage. The electrical properties of the insulator-semiconductor interface are improved after annealing at 450 °C for 60 s, as a significant reduction of the interface fixed charges and of the interface states density is put into evidence. The minimum interface states density was found to be about 3×1011 cm-2 eV-1, as estimated by the Terman method. .
NASA Astrophysics Data System (ADS)
Utegulov, B. B.
2018-02-01
In the work the study of the developed method was carried out for reliability by analyzing the error in indirect determination of the insulation parameters in an asymmetric network with an isolated neutral voltage above 1000 V. The conducted studies of the random relative mean square errors show that the accuracy of indirect measurements in the developed method can be effectively regulated not only by selecting a capacitive additional conductivity, which are connected between phases of the electrical network and the ground, but also by the selection of measuring instruments according to the accuracy class. When choosing meters with accuracy class of 0.5 with the correct selection of capacitive additional conductivity that are connected between the phases of the electrical network and the ground, the errors in measuring the insulation parameters will not exceed 10%.
NASA Astrophysics Data System (ADS)
Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon
2014-08-01
It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.
NASA Technical Reports Server (NTRS)
Bever, R. S.
1984-01-01
Nondestructive high voltage test techniques (mostly electrical methods) are studied to prevent total or catastrophic breakdown of insulation systems under applied high voltage in space. Emphasis is on the phenomenon of partial breakdown or partial discharge (P.D.) as a symptom of insulation quality, notably partial discharge testing under D.C. applied voltage. Many of the electronic parts and high voltage instruments in space experience D.C. applied stress in service, and application of A.C. voltage to any portion thereof would be prohibited. Suggestions include: investigation of the ramp test method for D.C. partial discharge measurements; testing of actual flight-type insulation specimen; perfect plotting resin samples with controlled defects for test; several types of plotting resins and recommendations of the better ones from the electrical characteristics; thermal and elastic properties are also considered; testing of commercial capaciters; and approximate acceptance/rejection/rerating criteria for sample test elements for space use, based on D.C. partial discharge.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jian Cang; Li, Rui; Zeng, Bo; Cheng, Jie; Zheng, Lei; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng
2015-04-01
The critical pulse width (τc) is a pulse width at which the surface flashover threshold (Ef) is equal to the bulk breakdown threshold (EBD) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854-857]. In this paper, the mechanism of τc is interpreted in perspective of the threshold and the time delay (td) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τc: (1) EBD is lower than Ef; (2) td of bulk breakdown is shorter than td of surface flashover. In addition, factors which have influences on τc are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τc is expected to increase: (1) factors causing EBD to decrease, such as increasing the pulse number or employing a dielectric of lower EBD; (2) factors causing Ef to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing EBD and Ef to increase together, but Ef increases faster than EBD, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τc for solid insulation design is presented and the significance of τc on solid insulation design and on solid demolition are discussed.
Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo
2017-05-03
Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.