Sample records for electrically small folded

  1. Electrically Small Folded Slot Antenna Utilizing Capacitive Loaded Slot Lines

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Merritt, Shane; Minor, John S.; Zorman, Christian A.

    2007-01-01

    This paper presents an electrically small, coplanar waveguide fed, folded slot antenna that uses capacitive loading. Several antennas are fabricated with and without capacitive loading to demonstrate the ability of this design approach to reduce the resonant frequency of the antenna, which is analogous to reducing the antenna size. The antennas are fabricated on Cu-clad Rogers Duriod(TM) 6006 with multilayer chip capacitors to load the antennas. Simulated and measured results show close agreement, thus, validating the approach. The electrically small antennas have a measured return loss greater than 15 dB and a gain of 5.4, 5.6, and 2.7 dBi at 4.3, 3.95, and 3.65 GHz, respectively.

  2. The Effect of Surface Electrical Stimulation on Vocal Fold Position

    PubMed Central

    Humbert, Ianessa A.; Poletto, Christopher J.; Saxon, Keith G.; Kearney, Pamela R.; Ludlow, Christy L.

    2008-01-01

    Objectives/Hypothesis Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Design Prospective single effects study. Methods The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using ten different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Results Vocal fold angles changed only to a small extent during two electrode placements (p ≤ 0.05). When two sets of electrodes were placed vertically on the neck the mean true vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (p=0.03). Conclusions Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing and one position may produce a slight increase in true vocal fold opening. PMID:18043496

  3. Electrical design for origami solar panels and a small spacecraft test mission

    NASA Astrophysics Data System (ADS)

    Drewelow, James; Straub, Jeremy

    2017-05-01

    Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.

  4. Projected Growth in Small-Scale, Fossil-Fueled Distributed Generation: Potential Implications for the U.S. Greenhouse Gas Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Heath, Garvin A

    The generation capacity of small-scale (less than one megawatt) fossil-fueled electricity in the United States is anticipated to grow by threefold to twenty-fold from 2015 to 2040. However, in adherence with internationally agreed upon carbon accounting methods, the Environmental Protection Agency's (EPA's) U.S. Greenhouse Inventory (GHGI) does not currently attribute greenhouse gases (GHGs) from these small-scale distributed generation sources to the electric power sector and instead accounts for these emissions in the sector that uses the distributed generation (e.g., the commercial sector). In addition, no other federal electric-sector GHG emission data product produced by the EPA or the U.S. Energymore » Information Administration (EIA) can attribute these emissions to electricity. We reviewed the technical documentation for eight federal electric-sector GHG emission data products, interviewed the data product owners, collected their GHG emission estimates, and analyzed projections for growth in fossil-fueled distributed generation. We show that, by 2040, these small-scale generators could account for at least about 1%- 5% of total CO2 emissions from the U.S. electric power sector. If these emissions fall outside the electric power sector, the United States may not be able to completely and accurately track changes in electricity-related CO2 emissions, which could impact how the country sets GHG reduction targets and allocates mitigation resources. Because small-scale, fossil-fueled distributed generation is expected to grow in other countries as well, the results of this work also have implications for global carbon accounting.« less

  5. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading.

    PubMed

    Garcia, A M; Frank, E H; Grimshaw, P E; Grodzinsky, A J

    1996-09-15

    We have studied the contributions of diffusion, fluid flow and electrical migration to molecular transport through adult articular cartilage explants using neutral and charged solutes that were either radiolabeled (3H2O, [35S]sulfate, [3H]thymidine, [3H]raffinose, and a synthetic matrix metalloproteinase inhibitor) or fluorescently tagged (NSPA and Lissamine-dextran). In order to induce fluid flow within the cartilage matrix without mechanical deformation, electric current densities were applied across cartilage disks. These currents produced electroosmotic fluid velocities of 1-2 microns/s, magnitudes that have been reported to exist during joint loading in vivo. This fluid convection enhanced neutral solute flux relative to passive diffusion alone by a factor that increased with the size of the solute. While the enhancement factor for 3H2O was 2.3-fold, that for [3H]raffinose (594 Da) and similar sized neutral solutes was 10-fold, suggesting that the effect of fluid flow is important even for small solutes. The largest enhancement (25-fold) was seen for the neutral 10-kDa Lissamine-dextran, confirming that fluid convection is most important for large solutes. We also studied the electrophoretic contribution to solute flux, which is relevant to the presence of intratissue streaming potentials induced during loading in vivo. Using the negatively charged [35S]sulfate ion with a range of current densities, as much as a 10-fold enhancement in flux was observed. Values for the intrinsic transport properties of the solutes (e.g., diffusivity, electrical mobility, hydrodynamic hindrance factor) can be obtained from the data.

  6. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1996-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  7. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1994-12-27

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

  8. Method for fabricating fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  9. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, R.R.; Cowan, T.E.

    1996-06-11

    Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

  10. Finite element analysis of electroactive polymer and magnetoactive elastomer based actuation for origami folding

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ahmed, Saad; Masters, Sarah; Ounaies, Zoubeida; Frecker, Mary

    2017-10-01

    The incorporation of smart materials such as electroactive polymers and magnetoactive elastomers in origami structures can result in active folding using external electric and magnetic stimuli, showing promise in many origami-inspired engineering applications. In this study, 3D finite element analysis (FEA) models are developed using COMSOL Multiphysics software for three configurations that incorporate a combination of active and passive material layers, namely: (1) a single-notch unimorph folding configuration actuated using only external electric field, (2) a double-notch unimorph folding configuration actuated using only external electric field, and (3) a bifold configuration which is actuated using multi-field (electric and magnetic) stimuli. The objectives of the study are to verify the effectiveness of the FEA models to simulate folding behavior and to investigate the influence of geometric parameters on folding quality. Equivalent mechanical pressure and surface stress are used as external loads in the FEA to simulate electric and magnetic fields, respectively. Compared quantitatively with experimental data, FEA captured the folding performance of electric actuation well for notched configurations and magnetic actuation for a bifold structure, but underestimated electric actuation for the bifold structure. By investigating the impact of geometric parameters and locations to place smart materials, FEA can be used in design, avoiding trial-and-error iterations of experiments.

  11. Drop Migration and Demixing of Biphasic Aqueous Systems in an Applied Electric Field

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Raghavarao, Karumanchi S. M. S.

    1999-11-01

    Applying an electric field to a demixing emulsion of poly(ethylene glycol)(PEG) and dextran (or maltodextrin) in phosphate-buffered aqueous solution shortens the demixing time up to 6 fold. Phosphate ions partition into the dextran-rich phase imparting a small electrical potential between the phases. PEG-rich drops migrate cathodally, and their electrophoretic mobility is directly proportional to their radius and increases with increased ionization of phosphate. An electric field, either parallel or antiparallel to the gravity vector, can enhance demixing. A theory consistent with these observations states that drops move due to external and internal electroosmotic flow (tractor treading). Enhanced demixing in an electric field whose polarity opposes buoyancy is thought to be caused by initial increased drop growth during retardation by the electric field so that the drop becomes more buoyant. However, at infinite internal drop viscosity the theory does not extrapolate to the result for solid colloid particles.

  12. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers

    PubMed Central

    Ansari, M H; Karami, M Amin

    2018-01-01

    This paper studies the fabrication and testing of a magnet free piezoelectric energy harvester (EH) for powering biomedical devices and sensors inside the body. The design for the EH is a fan-folded structure consisting of bimorph piezoelectric beams folding on top of each other. An actual size experimental prototype is fabricated to verify the developed analytical models. The model is verified by matching the analytical results of the tip acceleration frequency response functions (FRF) and voltage FRF with the experimental results. The generated electricity is measured when the EH is excited by the heartbeat. A closed loop shaker system is utilized to reproduce the heartbeat vibrations. Achieving low fundamental natural frequency is a key factor to generate sufficient energy for pacemakers using heartbeat vibrations. It is shown that the natural frequency of the small-scale device is less than 20 Hz due to its unique fan-folded design. The experimental results show that the small-scale EH generates sufficient power for state of the art pacemakers. The 1 cm3 EH with18.4 gr tip mass generates more than16 μW of power from a normal heartbeat waveform. The robustness of the device to the heart rate is also studied by measuring the relation between the power output and the heart rate. PMID:29674807

  13. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers.

    PubMed

    Ansari, M H; Karami, M Amin

    2017-06-01

    This paper studies the fabrication and testing of a magnet free piezoelectric energy harvester (EH) for powering biomedical devices and sensors inside the body. The design for the EH is a fan-folded structure consisting of bimorph piezoelectric beams folding on top of each other. An actual size experimental prototype is fabricated to verify the developed analytical models. The model is verified by matching the analytical results of the tip acceleration frequency response functions (FRF) and voltage FRF with the experimental results. The generated electricity is measured when the EH is excited by the heartbeat. A closed loop shaker system is utilized to reproduce the heartbeat vibrations. Achieving low fundamental natural frequency is a key factor to generate sufficient energy for pacemakers using heartbeat vibrations. It is shown that the natural frequency of the small-scale device is less than 20 Hz due to its unique fan-folded design. The experimental results show that the small-scale EH generates sufficient power for state of the art pacemakers. The 1 cm 3 EH with18.4 gr tip mass generates more than16 μ W of power from a normal heartbeat waveform. The robustness of the device to the heart rate is also studied by measuring the relation between the power output and the heart rate.

  14. A mathematical model of the structure and evolution of small-scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, Charles E.

    1990-01-01

    A three-dimensional fluid model for the structure and evolution of small-scale discrete auroral arcs originating from Alfven waves is developed and used to study the nonlinear macroscopic plasma dynamics of these auroral arcs. The results of simulations show that stationary auroral arcs can be unstable to a collisionless tearing mode which may be responsible for the observed transverse structuring in the form of folds and curls. At late times, the plasma becomes turbulent having transverse electric field power spectra that tend toward a universal k exp -5/3 spectral form.

  15. Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling.

    PubMed

    Meng, Pan; Wang, Qingyun; Lu, Qishao

    2013-06-01

    Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as "fold/limit cycle" type of bursting, then anti-phase continuous spiking, followed by the "fold/torus" type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate "fold/Hopf" bursting via "fold/fold" hysteresis loop; whereas, the chemically coupled cells generate "fold/subHopf" bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast-slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.

  16. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers.

    PubMed

    Cullen, D Kacy; R Patel, Ankur; Doorish, John F; Smith, Douglas H; Pfister, Bryan J

    2008-12-01

    Neural-electrical interface platforms are being developed to extracellularly monitor neuronal population activity. Polyaniline-based electrically conducting polymer fibers are attractive substrates for sustained functional interfaces with neurons due to their flexibility, tailored geometry and controlled electro-conductive properties. In this study, we addressed the neurobiological considerations of utilizing small diameter (<400 microm) fibers consisting of a blend of electrically conductive polyaniline and polypropylene (PA-PP) as the backbone of encapsulated tissue-engineered neural-electrical relays. We devised new approaches to promote survival, adhesion and neurite outgrowth of primary dorsal root ganglion neurons on PA-PP fibers. We attained a greater than ten-fold increase in the density of viable neurons on fiber surfaces to approximately 700 neurons mm(-2) by manipulating surrounding surface charges to bias settling neuronal suspensions toward fibers coated with cell-adhesive ligands. This stark increase in neuronal density resulted in robust neuritic extension and network formation directly along the fibers. Additionally, we encapsulated these neuronal networks on PA-PP fibers using agarose to form a protective barrier while potentially facilitating network stability. Following encapsulation, the neuronal networks maintained integrity, high viability (>85%) and intimate adhesion to PA-PP fibers. These efforts accomplished key prerequisites for the establishment of functional electrical interfaces with neuronal populations using small diameter PA-PP fibers-specifically, improved neurocompatibility, high-density neuronal adhesion and neuritic network development directly on fiber surfaces.

  17. Folded waveguide coupler

    DOEpatents

    Owens, Thomas L.

    1988-03-01

    A resonant cavity waveguide coupler for ICRH of a magnetically confined plasma. The coupler consists of a series of inter-leaved metallic vanes disposed withn an enclosure analogous to a very wide, simple rectangular waveguide that has been "folded" several times. At the mouth of the coupler, a polarizing plate is provided which has coupling apertures aligned with selected folds of the waveguide through which rf waves are launched with magnetic fields of the waves aligned in parallel with the magnetic fields confining the plasma being heated to provide coupling to the fast magnetosonic wave within the plasma in the frequency usage of from about 50-200 mHz. A shorting plate terminates the back of the cavity at a distance approximately equal to one-half the guide wavelength from the mouth of the coupler to ensure that the electric field of the waves launched through the polarizing plate apertures are small while the magnetic field is near a maximum. Power is fed into the coupler folded cavity by means of an input coaxial line feed arrangement at a point which provides an impedance match between the cavity and the coaxial input line.

  18. Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.

  19. A detection method of subrecent to recent tectonic activity in the anticlinal system of the northern Negev, Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zilberman, E.; Wachs, D.

    Geomorphological and geophysical methods combined with borehole information were employed to search for possible subrecent small-scale vertical movement along the anticlinal fold belt of the central Negev, Israel. Such tectonic deformation might indicate displacement on the buried reverse faults underneath the anticlines. Variations in the thickness of the alluvial fill in the study area, which are in accordance with the fold structures, could be an indication of recent folding activity along the anticlinal system. In order to detect these thickness variations in the alluvial fill, seismic refraction and electrical resistivity measurements were carries out along the valley of Nahal Besor,more » which crosses the anticlinal belt. The thickness variations of the alluvial fill along the valley were not found to indicate any significant tectonic movement along the anticlines during the Pleistocene. The thickest alluvium was found overlying a karst bedrock, hence karst relief is suggested to be responsible for these variations.« less

  20. Lightweight Integrated Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Lockett, Tiffany Russell

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including CubeSats, which are currently extremely power limited. The Lightweight Integrated Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultraflexible solar arrays adhered to an inflatable or deployable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume.

  1. Design and adaptation of a folded split ring resonator antenna for use in an animal-borne sensor

    NASA Astrophysics Data System (ADS)

    Dodson, S. C.; Wiid, P. G.; Niesler, T. R.

    2018-03-01

    We present the design, optimisation and practical evaluation of a folded split ring resonator (FSRR) antenna for the purpose of radio communication with an animal-borne sensor. We show that the measurements agree with the simulated results and that we are able to produce an electrically small antenna with low mismatch, high radiation efficiency and a quasi-isotropic radiation pattern. We then adapt the topology of the design from a circular to a rectangular shape, to completely fit inside the sensor enclosure. A quasi-isotropic pattern is maintained as well as low mismatch by appropriate tuning. There is a decrease in radiation efficiency which may be countered by a thinner substrate and retuning. We conclude that the adapted FSRR antenna is a suitable design for our application.

  2. Robust Neurite Extension Following Exogenous Electrical Stimulation within Single Walled Carbon Nanotube-Composite Hydrogels

    PubMed Central

    Koppes, A. N.; Keating, K. W.; McGregor, A. L.; Koppes, R. A.; Kearns, K. R.; Ziemba, A. M.; McKay, C. A.; Zuidema, J. M.; Rivet, C. J.; Gilbert, R. J.; Thompson, D. M.

    2016-01-01

    The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: 1) nanofillers influence neurite extension and 2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10–100-μg/ml) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. PMID:27167609

  3. Small protein domains fold inside the ribosome exit tunnel.

    PubMed

    Marino, Jacopo; von Heijne, Gunnar; Beckmann, Roland

    2016-03-01

    Cotranslational folding of small protein domains within the ribosome exit tunnel may be an important cellular strategy to avoid protein misfolding. However, the pathway of cotranslational folding has so far been described only for a few proteins, and therefore, it is unclear whether folding in the ribosome exit tunnel is a common feature for small protein domains. Here, we have analyzed nine small protein domains and determined at which point during translation their folding generates sufficient force on the nascent chain to release translational arrest by the SecM arrest peptide, both in vitro and in live E. coli cells. We find that all nine protein domains initiate folding while still located well within the ribosome exit tunnel. © 2016 Federation of European Biochemical Societies.

  4. Study of wire electrical discharge machined folded-up corner cube retroreflector with a tunable cantilever beam

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Fan; Wang, Yen-Hung; Tsai, Jui-che

    2018-03-01

    This work has developed an approach to construct a corner cube retroreflector (CCR). A two-dimensional cutout pattern is first fabricated with wire electrical discharge machining process. It is then folded up into a three-dimensional CCR suspended on a cantilever beam. The folded-up CCR may be driven through external actuators for optical modulation; it can also mechanically respond to perturbation, acceleration, etc., to function as a sensor. Mechanical (static and dynamic modeling) and optical (ray tracing) analyses are also performed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Tim; Institut für Physikalische Chemie, Universität zu Köln, 50939 Köln; Schwab, Tobias

    A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDsmore » by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.« less

  6. An electrically resistive sheet of glial cells for amplifying signals of neuronal extracellular recordings

    PubMed Central

    Matsumura, R.; Yamamoto, H.; Niwano, M.; Hirano-Iwata, A.

    2016-01-01

    Electrical signals of neuronal cells can be recorded non-invasively and with a high degree of temporal resolution using multielectrode arrays (MEAs). However, signals that are recorded with these devices are small, usually 0.01%–0.1% of intracellular recordings. Here, we show that the amplitude of neuronal signals recorded with MEA devices can be amplified by covering neuronal networks with an electrically resistive sheet. The resistive sheet used in this study is a monolayer of glial cells, supportive cells in the brain. The glial cells were grown on a collagen-gel film that is permeable to oxygen and other nutrients. The impedance of the glial sheet was measured by electrochemical impedance spectroscopy, and equivalent circuit simulations were performed to theoretically investigate the effect of covering the neurons with such a resistive sheet. Finally, the effect of the resistive glial sheet was confirmed experimentally, showing a 6-fold increase in neuronal signals. This technique feasibly amplifies signals of MEA recordings. PMID:27703279

  7. Accurately controlled sequential self-folding structures by polystyrene film

    NASA Astrophysics Data System (ADS)

    Deng, Dongping; Yang, Yang; Chen, Yong; Lan, Xing; Tice, Jesse

    2017-08-01

    Four-dimensional (4D) printing overcomes the traditional fabrication limitations by designing heterogeneous materials to enable the printed structures evolve over time (the fourth dimension) under external stimuli. Here, we present a simple 4D printing of self-folding structures that can be sequentially and accurately folded. When heated above their glass transition temperature pre-strained polystyrene films shrink along the XY plane. In our process silver ink traces printed on the film are used to provide heat stimuli by conducting current to trigger the self-folding behavior. The parameters affecting the folding process are studied and discussed. Sequential folding and accurately controlled folding angles are achieved by using printed ink traces and angle lock design. Theoretical analyses are done to guide the design of the folding processes. Programmable structures such as a lock and a three-dimensional antenna are achieved to test the feasibility and potential applications of this method. These self-folding structures change their shapes after fabrication under controlled stimuli (electric current) and have potential applications in the fields of electronics, consumer devices, and robotics. Our design and fabrication method provides an easy way by using silver ink printed on polystyrene films to 4D print self-folding structures for electrically induced sequential folding with angular control.

  8. Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy.

    PubMed

    Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  9. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drung, D.; Krause, C.; Becker, U.

    2015-02-15

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibratemore » both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.« less

  10. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    NASA Astrophysics Data System (ADS)

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  11. JPRS Report, China.

    DTIC Science & Technology

    1989-06-16

    products showed a 1.3-fold increase, alu- minium showed a 1.3-fold increase, cement showed a 1.6-fold increase, and plate glass showed an 8 fold increase...paper and cardboard, washing machines, plastic goods, lightbulbs , home furnishings, electric fans, carpets, and large-scale, specialized weigh...significant increase in the production of beer, soft drinks, plastic goods, detergent, everyday glass products, dairy products, canned goods, and

  12. Optical and transport properties of dense liquid silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Tingting; Millot, Marius; Kraus, Richard G.

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequencymore » dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.« less

  13. Compact electro-optical module with polymer waveguides on a flexible substrate for high-density board-level communication

    NASA Astrophysics Data System (ADS)

    Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.

    2010-02-01

    We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.

  14. Self-folding polymeric containers for encapsulation and delivery of drugs

    PubMed Central

    Fernandes, Rohan; Gracias, David H.

    2012-01-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2 nm and fold polyhedra as small as 100 nm, with a surface patterning resolution of 15 nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. PMID:22425612

  15. Design and Fabrication of a Strain-Powered Microelectromechanical System (MEMS) Switch

    DTIC Science & Technology

    2014-09-01

    release showing uniform folding upwards; the top edge appears to be anchored to the substrate, which necessitated a mask rewrite after reducing...underdeveloped resist causing the switch to be anchored (left), thin-film shearing at the contact edge (right), and thin- film edge anchoring (right). Geometry...a “hip” joint and an “ ankle ” joint—while a center hinge was designed to fold down at a “knee” joint and make electrical contact with an electrical

  16. Self-folding polymeric containers for encapsulation and delivery of drugs.

    PubMed

    Fernandes, Rohan; Gracias, David H

    2012-11-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2nm and fold polyhedra as small as 100nm, with a surface patterning resolution of 15nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Modulating endogenous electric currents in human corneal wounds--a novel approach of bioelectric stimulation without electrodes.

    PubMed

    Reid, Brian; Graue-Hernandez, Enrique O; Mannis, Mark J; Zhao, Min

    2011-03-01

    To measure electric current in human corneal wounds and test the feasibility of pharmacologically enhancing the current to promote corneal wound healing. Using a noninvasive vibrating probe, corneal electric current was measured before and after wounding of the epithelium of donated postmortem human corneas. The effects of drug aminophylline and chloride-free solution on wound current were also tested. Unwounded cornea had small outward currents (0.07 μA/cm²). Wounding increased the current more than 5 fold (0.41 μA/cm²). Monitoring the wound current over time showed that it seemed to be actively regulated and maintained above normal unwounded levels for at least 6 hours. The time course was similar to that previously measured in rat cornea. Drug treatment or chloride-free solution more than doubled the size of wound currents. Electric current at human corneal wounds can be significantly increased with aminophylline or chloride-free solution. Because corneal wound current directly correlates with wound healing rate, our results suggest a role for chloride-free and/or aminophylline eyedrops to enhance healing of damaged cornea in patients with reduced wound healing such as the elderly or diabetic patient. This novel approach offers bioelectric stimulation without electrodes and can be readily tested in patients.

  18. Comparative histology of the adult electric organ among four species of the genus Campylomormyrus (Teleostei: Mormyridae).

    PubMed

    Paul, Christiane; Mamonekene, Victor; Vater, Marianne; Feulner, Philine G D; Engelmann, Jacob; Tiedemann, Ralph; Kirschbaum, Frank

    2015-04-01

    The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.

  19. Roles For Thermography In Utility Company Residential Energy Audits

    NASA Astrophysics Data System (ADS)

    Schott, William A.

    1981-01-01

    Basin Electric Power Cooperative, Bismarck, North Dakota, provides wholesale electricity to more than 100 rural electric cooperatives of the Missouri Pasin Region. The Cooperative, in cooperation with Aadland*Hoffmann*Pieri Energy Associates, Inc., Minneapolis, MN has developed a three-fold program which involves the analytical approach, the instructional approach and the motivational approach (A'IsM) to an energy audit. This three-fold program utilizes infrared thermography to pinpoint where heat loss is occurring in the home. The auditor can motivate the homeowner to initiate energy conserving improvements and practices by showing where money can be saved. Infrared thermography is a most valuable tool in helping the rural electrics conserve energy and the nation's natural resources. Over 180 energy auditors have been trained through this program in this area and 5,000 trained in the nation.

  20. Influence of the ventricular folds on a voice source with specified vocal fold motion1

    PubMed Central

    McGowan, Richard S.; Howe, Michael S.

    2010-01-01

    The unsteady drag on the vocal folds is the major source of sound during voiced speech. The drag force is caused by vortex shedding from the vocal folds. The influence of the ventricular folds (i.e., the “false” vocal folds that protrude into the vocal tract a short distance downstream of the glottis) on the drag and the voice source are examined in this paper by means of a theoretical model involving vortex sheets in a two-dimensional geometry. The effect of the ventricular folds on the output acoustic pressure is found to be small when the movement of the vocal folds is prescribed. It is argued that the effect remains small when fluid-structure interactions account for vocal fold movement. These conclusions can be justified mathematically when the characteristic time scale for change in the velocity of the glottal jet is large compared to the time it takes for a vortex disturbance to be convected through the vocal fold and ventricular fold region. PMID:20329852

  1. A model for structural changes of reconstituted fibroin gels during deformation

    NASA Astrophysics Data System (ADS)

    Jin, Peiran; Olmsted, Peter; Georgetown University, Physics Department Team

    Silk from silkworms has been used in the textile industry for thousands of years. Recently, a physical electrogel(e-gel) was made by reconstituting Bombyx mori silk into stable aqueous solutions and then applying small DC electric field. The e-gels exhibit distinctive strain hardening and are partially recoverable from strain. To explain these phenomena, we build a coarse grained model of fibroin protein polymers, which comprise crystallizable domains and amorphous domains. We find that the kinetics of unfolding and folding of crystalline domains changes the number and functionality of crosslinks in the physical network, and thus contributes to the strain hardening of the gel and the non-recoverable strain. Georgetown University and the Ives Foundation.

  2. Regulation of glottal closure and airflow in a three-dimensional phonation model: Implications for vocal intensity control

    PubMed Central

    Zhang, Zhaoyan

    2015-01-01

    Maintaining a small glottal opening across a large range of voice conditions is critical to normal voice production. This study investigated the effectiveness of vocal fold approximation and stiffening in regulating glottal opening and airflow during phonation, using a three-dimensional numerical model of phonation. The results showed that with increasing subglottal pressure the vocal folds were gradually pushed open, leading to increased mean glottal opening and flow rate. A small glottal opening and a mean glottal flow rate typical of human phonation can be maintained against increasing subglottal pressure by proportionally increasing the degree of vocal fold approximation for low to medium subglottal pressures and vocal fold stiffening at high subglottal pressures. Although sound intensity was primarily determined by the subglottal pressure, the results suggest that, to maintain small glottal opening as the sound intensity increases, one has to simultaneously tighten vocal fold approximation and/or stiffen the vocal folds, resulting in increased glottal resistance, vocal efficiency, and fundamental frequency. PMID:25698022

  3. Equivalent complex conductivities representing the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by external-electrode method

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa

    2017-12-01

    In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.

  4. Peptide Folding and Translocation Across the Water-Membrane Interface

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The ability of small peptides to organize at aqueous interfaces was examined by performing a series of large-scale, molecular dynamics computer simulations of several peptides composed of two amino acids, nonpolar leucine (L) and polar glutamine (Q). The peptides differed in size and sequence of the amino acids. Studies on dipeptides LL, LQ, QL and QQ were extended to two heptamers, LQQLLQL and LQLQLQL, designed to maximize interfacial stability of an alpha-helix and a beta-strand, respectively, by exposing polar side chains to water and nonpolar side chains to a nonpolar phase. Finally, a transition of an undecamer, composed entirely of leucine residues, from a disordered structure in water to an alpha-helix in a nonpolar phase representing the interior of the membrane was investigated. Complete folding of a peptide in solution was accomplished for the first time in computer simulations. The simulations revealed several basic principles governing the sequence-dependent organization of peptides at interfaces. Short peptides tend to accumulate at interfaces and acquire ordered structures, providing that they have a proper sequence of polar and nonpolar amino acids. The dominant factor determining the interfacial structure of peptides is the hydrophobic effect, which is manifested at aqueous interfaces as a tendency for polar and nonpolar groups of the solute to segregate into the aqueous and nonpolar phases, respectively. If peptides consist of nonpolar residue's only, they become inserted into the nonpolar phase. As demonstrated by the example of the leucine undecamer, such peptides fold into an alpha-helix as they partition into the nonpolar medium. The folding proceeds through an intermediate, called 3-10-helix, which remains in equilibrium with the alpha-helix. Once in the nonpolar environment, the peptides can readily change their orientation with respect to the interface from parallel to perpendicular, especially in response to local electric fields. The ability of nonpolar peptides to modify both the structure and orientation with respect to the interface from parallel to perpendicular, especially in response to local electric fields. The ability of nonpolar peptides to modify both the structure and orientation with changing external conditions may have provided a simple mechanism of transmitting signals from the environment to the interior of a cell.

  5. The effect of temperature on basal tension and thyroarytenoid muscle contraction in an isolated rat glottis model.

    PubMed

    Wang, Hsing-Won; Chu, Yueng-Hsiang; Chao, Pin-Zhir; Lee, Fei-Peng

    2014-10-01

    The pitch of voice is closely related to the vocal fold tension, which is the end result of coordinated movement of the intralaryngeal muscles, and especially the thyroarytenoid muscle. It is known that vocal quality may be affected by surrounding temperature; however, the effect of temperature on vocal fold tension is mostly unknown. Thus, the aim of this study was to evaluate the effect of temperature on isolated rat glottis and thyroarytenoid muscle contraction induced by electrical field stimulation. In vitro isometric tension of the glottis ring from 30 Sprague-Dawley rats was continuously recorded by the tissue bath method. Electrical field stimulation was applied to the glottis ring with two wire electrodes placed parallel to the glottis and connected to a direct-current stimulator. The tension changes of the rat glottis rings that were either untreated or treated with electrical field stimulation were recorded continuously at temperatures from 37 to 7 °C or from 7 to 37 °C. Warming from 7 to 37 °C increased the basal tension of the glottis rings and decreased the electrical field stimulation-induced glottis ring contraction, which was chiefly due to thyroarytenoid muscle contraction. In comparison, cooling from 37 to 7 °C decreased the basal tension and enhanced glottis ring contraction by electrical field stimulation. We concluded that warming increased the basal tension of the glottis in vitro and decreased the amplitude of electrical field stimulation-induced thyroarytenoid muscle contraction. Thus, vocal pitch and the fine tuning of vocal fold tension might be affected by temperature in vivo.

  6. Statistical Mechanical Foundation for the Two-State Transition in Protein Folding of Small Globular Proteins

    NASA Astrophysics Data System (ADS)

    Iguchi, Kazumoto

    We discuss the statistical mechanical foundation for the two-state transition in the protein folding of small globular proteins. In the standard arguments of protein folding, the statistical search for the ground state is carried out from astronomically many conformations in the configuration space. This leads us to the famous Levinthal's paradox. To resolve the paradox, Gō first postulated that the two-state transition - all-or-none type transition - is very crucial for the protein folding of small globular proteins and used the Gō's lattice model to show the two-state transition nature. Recently, there have been accumulated many experimental results that support the two-state transition for small globular proteins. Stimulated by such recent experiments, Zwanzig has introduced a minimal statistical mechanical model that exhibits the two-state transition. Also, Finkelstein and coworkers have discussed the solution of the paradox by considering the sequential folding of a small globular protein. On the other hand, recently Iguchi have introduced a toy model of protein folding using the Rubik's magic snake model, in which all folded structures are exactly known and mathematically represented in terms of the four types of conformations: cis-, trans-, left and right gauche-configurations between the unit polyhedrons. In this paper, we study the relationship between the Gō's two-state transition, the Zwanzig's statistical mechanics model and the Finkelsteinapos;s sequential folding model by applying them to the Rubik's magic snake models. We show that the foundation of the Gō's two-state transition model relies on the search within the equienergy surface that is labeled by the contact order of the hydrophobic condensation. This idea reproduces the Zwanzig's statistical model as a special case, realizes the Finkelstein's sequential folding model and fits together to understand the nature of the two-state transition of a small globular protein by calculating the physical quantities such as the free energy, the contact order and the specific heat. We point out the similarity between the liquid-gas transition in statistical mechanics and the two-state transition of protein folding. We also study morphology of the Rubik's magic snake models to give a prototype model for understanding the differences between α-helices proteins and β-sheets proteins.

  7. Geology of the fushun coalfield, Liaoning Province, People's Republic of China

    USGS Publications Warehouse

    Johnson, E.A.

    1990-01-01

    The Fushun coalfield is located in Liaoning Province 45 km east of Shenyang in a relatively small east-west-trending exposure of Mesozoic and Cenozoic rocks surrounded by Precambrian terrane. The coal is included in a sequence of early Tertiary rocks consisting of Paleocene basalt and tuff, and Eocene coal, oil shale and mudstone. These units have been folded into a syncline that plunges gently to the east. The overturned north limb of this fold has been partly removed by a thrust fault. The principal coal beds are low-sulfur subbituminous and bituminous in rank, are of limnic origin, and are contained in the 55-m-thick Eocene Guchengzi Formation. The field, which has been active since the turn of the century, has both open pit and underground mines. The largest operation is the West Open Pit mine, which measures 2.0 km wide, 6.6 km long, and 300 m deep. Coal is mined by means of power shovels, trucks, and an electric rail system. Oil shale from the Eocene Jijuntun Formation is also mined. ?? 1990.

  8. A mathematical model of the structure and evolution of small scale discrete auroral arcs

    NASA Technical Reports Server (NTRS)

    Seyler, C. E.

    1990-01-01

    A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.

  9. Steady-state structural fluctuation is a predictor of the necessity of pausing-mediated co-translational folding for small proteins.

    PubMed

    Huang, Wenxi; Liu, Wanting; Jin, Jingjie; Xiao, Qilan; Lu, Ruibin; Chen, Wei; Xiong, Sheng; Zhang, Gong

    2018-03-25

    Translational pausing coordinates protein synthesis and co-translational folding. It is a common factor that facilitates the correct folding of large, multi-domain proteins. For small proteins, pausing sites rarely occurs in the gene body, and the 3'-end pausing sites are only essential for the folding of a fraction of proteins. The determinant of the necessity of the pausings remains obscure. In this study, we demonstrated that the steady-state structural fluctuation is a predictor of the necessity of pausing-mediated co-translational folding for small proteins. Validated by experiments with 5 model proteins, we found that the rigid protein structures do not, while the flexible structures do need 3'-end pausings to fold correctly. Therefore, rational optimization of translational pausing can improve soluble expression of small proteins with flexible structures, but not the rigid ones. The rigidity of the structure can be quantitatively estimated in silico using molecular dynamic simulation. Nevertheless, we also found that the translational pausing optimization increases the fitness of the expression host, and thus benefits the recombinant protein production, independent from the soluble expression. These results shed light on the structural basis of the translational pausing and provided a practical tool for industrial protein fermentation. Copyright © 2017. Published by Elsevier Inc.

  10. Synchronous electrical stimulation of laryngeal muscles: an alternative for enhancing recovery of unilateral recurrent laryngeal nerve paralysis.

    PubMed

    Garcia Perez, Alejandro; Hernández López, Xochiquetzal; Valadez Jiménez, Víctor Manuel; Minor Martínez, Arturo; Ysunza, Pablo Antonio

    2014-07-01

    Although electrical stimulation of the larynx has been widely studied for treating voice disorders, its effectiveness has not been assessed under safety and comfortable conditions. This article describes design, theoretical issues, and preliminary evaluation of an innovative system for transdermal electrical stimulation of the larynx. The proposed design includes synchronization of electrical stimuli with laryngeal neuromuscular activity. To study whether synchronous electrical stimulation of the larynx could be helpful for improving voice quality in patients with dysphonia due to unilateral recurrent laryngeal nerve paralysis (URLNP). A 3-year prospective study was carried out at the Instituto Nacional de Rehabilitacion in the Mexico City. Ten patients were subjected to transdermal current electrical stimulation synchronized with the fundamental frequency of the vibration of the vocal folds during phonation. The stimulation was triggered during the phase of maximum glottal occlusion. A complete acoustic voice analysis was performed before and after the period of electrical stimulation. Acoustic analysis revealed significant improvements in all parameters after the stimulation period. Transdermal synchronous electrical stimulation of vocal folds seems to be a safe and reliable procedure for enhancing voice quality in patients with (URLNP). Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  11. On the Origin of Protein Superfamilies and Superfolds

    NASA Astrophysics Data System (ADS)

    Magner, Abram; Szpankowski, Wojciech; Kihara, Daisuke

    2015-02-01

    Distributions of protein families and folds in genomes are highly skewed, having a small number of prevalent superfamiles/superfolds and a large number of families/folds of a small size. Why are the distributions of protein families and folds skewed? Why are there only a limited number of protein families? Here, we employ an information theoretic approach to investigate the protein sequence-structure relationship that leads to the skewed distributions. We consider that protein sequences and folds constitute an information theoretic channel and computed the most efficient distribution of sequences that code all protein folds. The identified distributions of sequences and folds are found to follow a power law, consistent with those observed for proteins in nature. Importantly, the skewed distributions of sequences and folds are suggested to have different origins: the skewed distribution of sequences is due to evolutionary pressure to achieve efficient coding of necessary folds, whereas that of folds is based on the thermodynamic stability of folds. The current study provides a new information theoretic framework for proteins that could be widely applied for understanding protein sequences, structures, functions, and interactions.

  12. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  13. Towards the miniaturization of monolithic folded pendulums: a new approach to the implementation of small and light sensors for ground, space, and marine applications

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.

    2018-03-01

    The UNISA Folded Pendulum technological platform is very promising for the implementation of high sensitive, large band miniaturized mechanical seismometers and accelerometers in different materials. In fact, the symmetry of its mechanical architecture allows to take full advantage of one of the most relevant properties of the folded pendulum, that is the scalability. This property is very useful for the design of folded pendulums of small size and weight, provided with a suitable combination of physical and geometrical parameters. Using a lagrangian simplified model of folded pendulum, we present and discuss this idea, showing different possible approaches that may lead to the miniaturization of a folded pendulum. Finally we present a first prototype of miniaturized folded pendulum, discussing its characteristics and limitations, in connection with scientific ground, marine and space applications.

  14. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Small electric motors energy conservation standards and... CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their...

  15. Lightweight Inflatable Solar Array: Providing a Flexible, Efficient Solution to Space Power Systems for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Fabisinski, Leo; Justice, Stefanie

    2014-01-01

    Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.

  16. 75 FR 17036 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction AGENCY: Office of... standards for small electric motors, which was published on March 9, 2010. In that final rule, the U.S... titled ``Energy Conservation Standards for Small Electric Motors.'' 75 FR 10874. Since the publication of...

  17. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates. (a) Each...

  18. On the folding phenomenon of comet tail rays

    NASA Astrophysics Data System (ADS)

    Ershkovich, A. I.

    1982-01-01

    It is shown that the folding phenomenon of the comet tail rays is compatible with the Ferraro isorotation law if the comet tail magnetic field has no azimuthal component, that is, Bphi (the polar angle) equals zero. Considering electric drift due to convectional electric fields, a formula is obtained for the angular rate of a ray closure which reduces to that of Ness and Donn (1966) if the velocity profile across the tail is linear. The magnetic field B of approximately 20-40 gammas in the coma and less than about 10 gammas in the distant tail is estimated under typical solar wind conditions at 1 AU.

  19. Cooperative Tertiary Interaction Network Guides RNA Folding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Reza; Roh, Joon Ho; Kilburn, Duncan

    2013-04-08

    Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends onmore » the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.« less

  20. 10 CFR 431.442 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Electrical and Electronics Engineers, Inc. NEMA means National Electrical Manufacturers Association. Small... Small Electric Motors § 431.442 Definitions. The following definitions are applicable to this subpart: Alternative efficiency determination method, or AEDM, means, with respect to a small electric motor, a method...

  1. 10 CFR 431.442 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Electrical and Electronics Engineers, Inc. NEMA means National Electrical Manufacturers Association. Small... Small Electric Motors § 431.442 Definitions. The following definitions are applicable to this subpart: Alternative efficiency determination method, or AEDM, means, with respect to a small electric motor, a method...

  2. 10 CFR 431.442 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Electrical and Electronics Engineers, Inc. NEMA means National Electrical Manufacturers Association. Small... Small Electric Motors § 431.442 Definitions. The following definitions are applicable to this subpart: Alternative efficiency determination method, or AEDM, means, with respect to a small electric motor, a method...

  3. 10 CFR 431.442 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Electrical and Electronics Engineers, Inc. NEMA means National Electrical Manufacturers Association. Small... Small Electric Motors § 431.442 Definitions. The following definitions are applicable to this subpart: Alternative efficiency determination method, or AEDM, means, with respect to a small electric motor, a method...

  4. 10 CFR 431.442 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Electrical and Electronics Engineers, Inc. NEMA means National Electrical Manufacturers Association. Small... Small Electric Motors § 431.442 Definitions. The following definitions are applicable to this subpart: Alternative efficiency determination method, or AEDM, means, with respect to a small electric motor, a method...

  5. Structural classification of small, disulfide-rich protein domains.

    PubMed

    Cheek, Sara; Krishna, S Sri; Grishin, Nick V

    2006-05-26

    Disulfide-rich domains are small protein domains whose global folds are stabilized primarily by the formation of disulfide bonds and, to a much lesser extent, by secondary structure and hydrophobic interactions. Disulfide-rich domains perform a wide variety of roles functioning as growth factors, toxins, enzyme inhibitors, hormones, pheromones, allergens, etc. These domains are commonly found both as independent (single-domain) proteins and as domains within larger polypeptides. Here, we present a comprehensive structural classification of approximately 3000 small, disulfide-rich protein domains. We find that these domains can be arranged into 41 fold groups on the basis of structural similarity. Our fold groups, which describe broader structural relationships than existing groupings of these domains, bring together representatives with previously unacknowledged similarities; 18 of the 41 fold groups include domains from several SCOP folds. Within the fold groups, the domains are assembled into families of homologs. We define 98 families of disulfide-rich domains, some of which include newly detected homologs, particularly among knottin-like domains. On the basis of this classification, we have examined cases of convergent and divergent evolution of functions performed by disulfide-rich proteins. Disulfide bonding patterns in these domains are also evaluated. Reducible disulfide bonding patterns are much less frequent, while symmetric disulfide bonding patterns are more common than expected from random considerations. Examples of variations in disulfide bonding patterns found within families and fold groups are discussed.

  6. Laryngeal videostroboscopy in the dog model: a simplified technique and applications

    NASA Astrophysics Data System (ADS)

    Coleman, John R., Jr.; Reinisch, Lou; Smith, Shane; Deriso, Walter; Ossoff, Jacob; Huang, Shan; Garrett, C. Gaelyn

    1998-07-01

    Laryngeal videostroboscopy (LVS) allows the physician to examine the vibratory free edge of the vocal fold providing direct visualization of the vocal fold surface and indirect visualization of the substance of the vocal fold. Previously in dog LVS, electrical stimulation of the superior and recurrent laryngeal nerves or painful stimuli in the lightly anesthetized animal provided the impetus for glottic closure. In this paper we present a new technique for LVS in the dog model that involves mechanical traction on arytenoid adduction sutures to achieve vocal fold adduction. This method is safe, effective, and reproducible, and the potential applications are numerous.

  7. Last stand of single small field inflation

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Lehman, Landon; Martin, Adam; Downes, Sean

    2014-07-01

    By incorporating both the tensor-to-scalar ratio and the measured value of the spectral index, we set a bound on solo small field inflation of Δϕ/mPl≥1.00√r/0.1 . Unlike previous bounds which require monotonic ɛV, |ηV|<1, and 60 e-folds of inflation, the bound remains valid for nonmonotonic ɛV, |ηV|≳1, and for inflation which occurs only over the eight e-folds which have been observed on the cosmic microwave background. The negative value of the spectral index over the observed eight e-folds is what makes the bound strong; we illustrate this by surveying single field models and finding that for r ≳0.1 and eight e-folds of inflation, there is no simple potential which reproduces observed cosmic microwave background perturbations and remains sub-Planckian. Models that are sub-Planckian after eight e-folds must be patched together with a second epoch of inflation that fills out the remaining ˜50 e-folds. This second, post-cosmic microwave background epoch is characterized by extremely small ɛV and therefore an increasing scalar power spectrum. Using the fact that large power can overabundantly produce primordial black holes, we bound the maximum energy level of the second phase of inflation.

  8. Thermionic gas switch

    DOEpatents

    Hatch, G.L.; Brummond, W.A.; Barrus, D.M.

    1984-04-05

    The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.

  9. Folding propensity of intrinsically disordered proteins by osmotic stress

    DOE PAGES

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.; ...

    2016-10-11

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scatteringmore » (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.« less

  10. Folding propensity of intrinsically disordered proteins by osmotic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scatteringmore » (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.« less

  11. Folding free energy surfaces of three small proteins under crowding: validation of the postprocessing method by direct simulation

    NASA Astrophysics Data System (ADS)

    Qin, Sanbo; Mittal, Jeetain; Zhou, Huan-Xiang

    2013-08-01

    We have developed a ‘postprocessing’ method for modeling biochemical processes such as protein folding under crowded conditions (Qin and Zhou 2009 Biophys. J. 97 12-19). In contrast to the direct simulation approach, in which the protein undergoing folding is simulated along with crowders, the postprocessing method requires only the folding simulation without crowders. The influence of the crowders is then obtained by taking conformations from the crowder-free simulation and calculating the free energies of transferring to the crowders. This postprocessing yields the folding free energy surface of the protein under crowding. Here the postprocessing results for the folding of three small proteins under ‘repulsive’ crowding are validated by those obtained previously by the direct simulation approach (Mittal and Best 2010 Biophys. J. 98 315-20). This validation confirms the accuracy of the postprocessing approach and highlights its distinct advantages in modeling biochemical processes under cell-like crowded conditions, such as enabling an atomistic representation of the test proteins.

  12. 47 CFR 73.160 - Vertical plane radiation characteristics, f(θ).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., f(θ). (a) The vertical plane radiation characteristics show the relative field being radiated at a... the electrical height of the tower, not including the base insulator and pier. (In the case of a folded unipole tower, the entire radiating structure's electrical height is used.) (2) For a top-loaded...

  13. Analyzing structural variations along strike in a deep-water thrust belt

    NASA Astrophysics Data System (ADS)

    Totake, Yukitsugu; Butler, Robert W. H.; Bond, Clare E.; Aziz, Aznan

    2018-03-01

    We characterize a deep-water fold-thrust arrays imaged by a high-resolution 3D seismic dataset in the offshore NW Borneo, Malaysia, to understand the kinematics behind spatial arrangement of structural variations throughout the fold-thrust system. The seismic volume used covers two sub-parallel fold trains associated with a series of fore-thrusts and back-thrusts. We measured fault heave, shortening value, fold geometries (forelimb dip, interlimb angle and crest depth) along strike in individual fold trains. Heave plot on strike projection allows to identify individual thrust segments showing semi-elliptical to triangular to bimodal patterns, and linkages of these segments. The linkage sites are marked by local minima in cumulative heave. These local heave minima are compensated by additional structures, such as small imbricate thrusts and tight folds indicated by large forelimb dip and small interlimb angle. Complementary profiles of the shortening amount for the two fold trains result in smoother gradient of total shortening across the structures. We interpret this reflects kinematic interaction between two fold-thrust trains. This type of along-strike variation analysis provides comprehensive understanding of a fold-thrust system and may provide an interpretative strategy for inferring the presence of complex multiple faults in less well-imaged parts of seismic volumes.

  14. Single-molecule chemo-mechanical unfolding reveals multiple transition state barriers in a small single-domain protein

    NASA Astrophysics Data System (ADS)

    Guinn, Emily J.; Jagannathan, Bharat; Marqusee, Susan

    2015-04-01

    A fundamental question in protein folding is whether proteins fold through one or multiple trajectories. While most experiments indicate a single pathway, simulations suggest proteins can fold through many parallel pathways. Here, we use a combination of chemical denaturant, mechanical force and site-directed mutations to demonstrate the presence of multiple unfolding pathways in a simple, two-state folding protein. We show that these multiple pathways have structurally different transition states, and that seemingly small changes in protein sequence and environment can strongly modulate the flux between the pathways. These results suggest that in vivo, the crowded cellular environment could strongly influence the mechanisms of protein folding and unfolding. Our study resolves the apparent dichotomy between experimental and theoretical studies, and highlights the advantage of using a multipronged approach to reveal the complexities of a protein's free-energy landscape.

  15. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi, E-mail: sakanakura@nies.go.jp; Terazono, Atsushi, E-mail: terazono@nies.go.jp

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered duringmore » the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment.« less

  16. Resistance after firing protected electric match

    DOEpatents

    Montoya, Arsenio P.

    1981-11-10

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  17. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    NASA Astrophysics Data System (ADS)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  18. Research procedure for buck-boost converter for small electric vehicles

    NASA Astrophysics Data System (ADS)

    Vacheva, Gergana; Hinov, Nikolay; Penev, Dimitar

    2017-12-01

    In the current paper is developed a mathematical model realized in Matlab for describing a buck-boost converter for control of small electric vehicle. The model is presented with differential equations which describes the processes in the converter. Through the research of this model it can be accomplished the optimal work mode of a small electric vehicles. The proposed converter can be used in a wide range of applications like small electric vehicles, smart grids and different systems for energy storage.

  19. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Crowell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor controller that incorporates Hall-array sensing in a small, 42-gram package that provides 4096 absolute counts per motor revolution position sensing. The unit is the size of a miniature hockey puck, and is a 44-pin male connector that provides many I/O channels, including CANbus, RS-232 communications, general-purpose analog and digital I/O (GPIO), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier. This controller replaces air cooling with conduction cooling via a high-thermal-conductivity epoxy casting. A secondary advantage of the relatively good heat conductivity that comes with ultra-small size is that temperature differences within the controller become smaller, so that it is easier to measure the hottest temperature in the controller with fewer temperature sensors, or even one temperature sensor. Another size-sensitive design feature is in the approach to electrical noise immunity. At a very small size, where conduction paths are much shorter than in conventional designs, the ground becomes essentially isopotential, and so certain (space-consuming) electrical noise control components become unnecessary, which helps make small size possible. One winding-current sensor, applied to all of the windings in fast sequence, is smaller and wastes less power than the two or more sensors conventionally used to sense and control winding currents. An unexpected benefit of using only one current sensor is that it actually improves the precision of current control by using the "same" sensors to read each of the three phases. Folding the encoder directly into the controller electronics eliminates a great deal of redundant electronics, packaging, connectors, and hook-up wiring. The reduction of wires and connectors subtracts substantial bulk and eliminates their role in behaving as EMI (electro-magnetic interference) antennas. A shared knowledge by each motor controller of the state of all the motors in the system at 500 Hz also allows parallel processing of higher-level kinematic matrix calculations.

  20. Small Power Systems Solar Electric Workshop Proceedings. Volume 1: Executive report. Volume 2: Invited papers

    NASA Technical Reports Server (NTRS)

    Ferber, R. (Editor); Evans, D. (Editor)

    1978-01-01

    The background, objectives and methodology used for the Small Power Systems Solar Electric Workshop are described, and a summary of the results and conclusions developed at the workshop regarding small solar thermal electric power systems is presented.

  1. Bioprinting: Functional droplet networks

    NASA Astrophysics Data System (ADS)

    Durmus, Naside Gozde; Tasoglu, Savas; Demirci, Utkan

    2013-06-01

    Tissue-mimicking printed networks of droplets separated by lipid bilayers that can be functionalized with membrane proteins are able to spontaneously fold and transmit electrical currents along predefined paths.

  2. High-contrast fluorescence imaging based on the polarization dependence of the fluorescence enhancement using an optical interference mirror slide.

    PubMed

    Yasuda, Mitsuru; Akimoto, Takuo

    2015-01-01

    High-contrast fluorescence imaging using an optical interference mirror (OIM) slide that enhances the fluorescence from a fluorophore located on top of the OIM surface is reported. To enhance the fluorescence and reduce the background light of the OIM, transverse-electric-polarized excitation light was used as incident light, and the transverse-magnetic-polarized fluorescence signal was detected. As a result, an approximate 100-fold improvement in the signal-to-noise ratio was achieved through a 13-fold enhancement of the fluorescence signal and an 8-fold reduction of the background light.

  3. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells.

    PubMed

    Ki, Dongwon; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2015-11-01

    The aim of this study was to investigate the combination of two technologies - pulsed electric field (PEF) pre-treatment and semi-continuous pre-fermentation of primary sludge (PS) - to produce volatile fatty acids (VFAs) as the electron donor for microbial electrolysis cells (MECs). Pre-fermentation with a 3-day solids retention time (SRT) led to the maximum generation of VFAs, with or without pretreatment of the PS through pulsed-electric-fields (PEF). PEF treatment before fermentation enhanced the accumulation of the preferred VFA, acetate, by 2.6-fold. Correspondingly, MEC anodes fed with centrate from 3-day pre-fermentation of PEF-treated PS had a maximum current density ∼3.1 A/m(2), which was 2.4-fold greater than the control pre-fermented centrate. Over the full duration of batch MEC experiments, using pre-fermented centrate led to successful performance in terms of Coulombic efficiency (95%), Coulombic recovery (80%), and COD-removal efficiency (85%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Folds on Europa: implications for crustal cycling and accommodation of extension.

    PubMed

    Prockter, L M; Pappalardo, R T

    2000-08-11

    Regional-scale undulations with associated small-scale secondary structures are inferred to be folds on Jupiter's moon Europa. Formation is consistent with stresses from tidal deformation, potentially triggering compressional instability of a region of locally high thermal gradient. Folds may compensate for extension elsewhere on Europa and then relax away over time.

  5. The IRE1/bZIP60 pathway are activated by potexvirus and potyvirus small membrane binding proteins

    USDA-ARS?s Scientific Manuscript database

    The endoplasmic reticulum provides an environment for protein synthesis, folding and distribution to all corners of the cell. With respect to protein synthesis and folding, quality production is central to maintaining homeostasis. When conditions occur that disrupt the folding capacity of the ER cau...

  6. Three key residues form a critical contact network in a protein folding transition state

    NASA Astrophysics Data System (ADS)

    Vendruscolo, Michele; Paci, Emanuele; Dobson, Christopher M.; Karplus, Martin

    2001-02-01

    Determining how a protein folds is a central problem in structural biology. The rate of folding of many proteins is determined by the transition state, so that a knowledge of its structure is essential for understanding the protein folding reaction. Here we use mutation measurements-which determine the role of individual residues in stabilizing the transition state-as restraints in a Monte Carlo sampling procedure to determine the ensemble of structures that make up the transition state. We apply this approach to the experimental data for the 98-residue protein acylphosphatase, and obtain a transition-state ensemble with the native-state topology and an average root-mean-square deviation of 6Å from the native structure. Although about 20 residues with small positional fluctuations form the structural core of this transition state, the native-like contact network of only three of these residues is sufficient to determine the overall fold of the protein. This result reveals how a nucleation mechanism involving a small number of key residues can lead to folding of a polypeptide chain to its unique native-state structure.

  7. Influence of the native topology on the folding barrier for small proteins

    NASA Astrophysics Data System (ADS)

    Prieto, Lidia; Rey, Antonio

    2007-11-01

    The possibility of downhill instead of two-state folding for proteins has been a very controversial topic which arose from recent experimental studies. From the theoretical side, this question has also been accomplished in different ways. Given the experimental observation that a relationship exists between the native structure topology of a protein and the kinetic and thermodynamic properties of its folding process, Gō-type potentials are an appropriate way to approach this problem. In this work, we employ an interaction potential from this family to get a better insight on the topological characteristics of the native state that may somehow determine the presence of a thermodynamic barrier in the folding pathway. The results presented here show that, indeed, the native topology of a small protein has a great influence on its folding behavior, mostly depending on the proportion of local and long range contacts the protein has in its native structure. Furthermore, when all the interactions present contribute in a balanced way, the transition results to be cooperative. Otherwise, the tendency to a downhill folding behavior increases.

  8. Electric emissions from electrical appliances.

    PubMed

    Leitgeb, N; Cech, R; Schröttner, J

    2008-01-01

    Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intracorporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration.

  9. Resistance after firing protected electric match. [Patent application

    DOEpatents

    Montoya, A.P.

    1980-03-20

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  10. A Method for Designing Conforming Folding Propellers

    NASA Technical Reports Server (NTRS)

    Litherland, Brandon L.; Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2017-01-01

    As the aviation vehicle design environment expands due to the in flux of new technologies, new methods of conceptual design and modeling are required in order to meet the customer's needs. In the case of distributed electric propulsion (DEP), the use of high-lift propellers upstream of the wing leading edge augments lift at low speeds enabling smaller wings with sufficient takeoff and landing performance. During cruise, however, these devices would normally contribute significant drag if left in a fixed or windmilling arrangement. Therefore, a design that stows the propeller blades is desirable. In this paper, we present a method for designing folding-blade configurations that conform to the nacelle surface when stowed. These folded designs maintain performance nearly identical to their straight, non-folding blade counterparts.

  11. Spectrally resolved single-molecule electrometry

    NASA Astrophysics Data System (ADS)

    Ruggeri, F.; Krishnan, M.

    2018-03-01

    Escape-time electrometry is a recently developed experimental technique that offers the ability to measure the effective electrical charge of a single biomolecule in solution with sub-elementary charge precision. The approach relies on measuring the average escape-time of a single charged macromolecule or molecular species transiently confined in an electrostatic fluidic trap. Comparing the experiments with the predictions of a mean-field model of molecular electrostatics, we have found that the measured effective charge even reports on molecular conformation, e.g., folded or disordered state, and non-uniform charge distribution in disordered proteins or polyelectrolytes. Here we demonstrate the ability to use the spectral dimension to distinguish minute differences in electrical charge between individual molecules or molecular species in a single simultaneous measurement, under identical experimental conditions. Using one spectral channel for referenced measurement, this kind of photophysical distinguishability essentially eliminates the need for accurate knowledge of key experimental parameters, otherwise obtained through intensive characterization of the experimental setup. As examples, we demonstrate the ability to detect small differences (˜5%) in the length of double-stranded DNA fragments as well as single amino acid exchange in an intrinsically disordered protein, prothymosin α.

  12. Universal two-dimensional characteristics in perovskite-type oxyhydrides ATiO2H (A = Li, Na, K, Rb, Cs)

    NASA Astrophysics Data System (ADS)

    Sato, Nobuya; Akashi, Ryosuke; Tsuneyuki, Shinji

    2017-07-01

    A series of unsynthesized perovskite-type oxyhydrides ATiO2H (A = Li, Na, K, Rb, Cs) are investigated by the density functional calculations. These oxyhydrides are stable in the sense of the formation energies for some possible synthesis reactions. They are crystallized into quite similar crystal structures with the long c-axis, and the corner-sharing TiO4H2 octahedra of the ideal perovskite-type structure are deformed into the 5-fold coordinated titanium atoms with the OH plane and the apical oxygen atoms. All of these oxyhydrides exhibit two-dimensional electronic states at the valence band maximum characterized by the in-plane oxygen 2p and the hydrogen 1s orbitals. While the c-axis becomes short as the ionic radius of the A atom becomes small and the two-dimensional characteristics are weakened, the electronic state at the valence band maximum is still characterized as the O-H in-plane state. Additionally, the Born effective charge tensors, spontaneous electric polarizations, dielectric tensors, and piezoelectric tensors are evaluated. It is found that the spontaneous electric polarizations of these oxyhydrides are much larger than that of tetragonal BaTiO3.

  13. 10 CFR 431.445 - Determination of small electric motor efficiency.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.445 Determination of small... the mechanical and electrical characteristics of that basic model, and (ii) Based on engineering or... Department of Energy records showing the method or methods used; the mathematical model, the engineering or...

  14. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... full load efficiency Capacitor-start capacitor-run and capacitor-start induction-run Open motors... 10 Energy 3 2014-01-01 2014-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation...

  15. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... full load efficiency Capacitor-start capacitor-run and capacitor-start induction-run Open motors... 10 Energy 3 2012-01-01 2012-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation...

  16. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... full load efficiency Capacitor-start capacitor-run and capacitor-start induction-run Open motors... 10 Energy 3 2013-01-01 2013-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation...

  17. Determining Science Teacher Candidates' Academic Knowledge and Misconceptions about Electric Current

    ERIC Educational Resources Information Center

    Sert Çibik, Ayse

    2017-01-01

    The aim of this study is two-fold. Its first aim is to determine science teacher candidates' knowledge (academic success) and misconceptions about electric current and its second aim is to compare these results across participants' year of study and gender. A total of 132 teacher candidates studying in their 2nd, 3rd, and 4th years in Gazi…

  18. Analysis of molecular chaperones using a Xenopus oocyte protein refolding assay.

    PubMed

    Heikkila, John J; Kaldis, Angelo; Abdulle, Rashid

    2006-01-01

    Heat shock proteins (Hsps) are molecular chaperones that aid in the folding and translocation of protein under normal conditions and protect cellular proteins during stressful situations. A family of Hsps, the small Hsps, can maintain denatured target proteins in a folding-competent state such that they can be refolded and regain biological activity in the presence of other molecular chaperones. Previous assays have employed cellular lysates as a source of molecular chaperones involved in folding. In this chapter, we describe the production and purification of a Xenopus laevis recombinant small Hsp, Hsp30C, and an in vivo luciferase (LUC) refolding assay employing microinjected Xenopus oocytes. This assay tests whether LUC can be maintained in a folding-competent state when heat denatured in the presence of a small Hsp or other molecular chaperone. For example, micro-injection of heat-denatured LUC alone into oocytes resulted in minimal reactivation of enzyme activity. However, LUC heat denatured in the presence of Hsp30C resulted in 100% recovery of enzyme activity after microinjection. The in vivo oocyte refolding system is more sensitive and requires less molecular chaperone than in vitro refolding assays. Also, this protocol is not limited to testing Xenopus molecular chaperones because small Hsps from other organisms have been used successfully.

  19. Ab initio folding of proteins using all-atom discrete molecular dynamics

    PubMed Central

    Ding, Feng; Tsao, Douglas; Nie, Huifen; Dokholyan, Nikolay V.

    2008-01-01

    Summary Discrete molecular dynamics (DMD) is a rapid sampling method used in protein folding and aggregation studies. Until now, DMD was used to perform simulations of simplified protein models in conjunction with structure-based force fields. Here, we develop an all-atom protein model and a transferable force field featuring packing, solvation, and environment-dependent hydrogen bond interactions. Using the replica exchange method, we perform folding simulations of six small proteins (20–60 residues) with distinct native structures. In all cases, native or near-native states are reached in simulations. For three small proteins, multiple folding transitions are observed and the computationally-characterized thermodynamics are in quantitative agreement with experiments. The predictive power of all-atom DMD highlights the importance of environment-dependent hydrogen bond interactions in modeling protein folding. The developed approach can be used for accurate and rapid sampling of conformational spaces of proteins and protein-protein complexes, and applied to protein engineering and design of protein-protein interactions. PMID:18611374

  20. Folding energy landscape and network dynamics of small globular proteins

    PubMed Central

    Hori, Naoto; Chikenji, George; Berry, R. Stephen; Takada, Shoji

    2009-01-01

    The folding energy landscape of proteins has been suggested to be funnel-like with some degree of ruggedness on the slope. How complex the landscape, however, is still rather unclear. Many experiments for globular proteins suggested relative simplicity, whereas molecular simulations of shorter peptides implied more complexity. Here, by using complete conformational sampling of 2 globular proteins, protein G and src SH3 domain and 2 related random peptides, we investigated their energy landscapes, topological properties of folding networks, and folding dynamics. The projected energy surfaces of globular proteins were funneled in the vicinity of the native but also have other quite deep, accessible minima, whereas the randomized peptides have many local basins, including some leading to seriously misfolded forms. Dynamics in the denatured part of the network exhibited basin-hopping itinerancy among many conformations, whereas the protein reached relatively well-defined final stages that led to their native states. We also found that the folding network has the hierarchic nature characterized by the scale-free and the small-world properties. PMID:19114654

  1. Folding energy landscape and network dynamics of small globular proteins.

    PubMed

    Hori, Naoto; Chikenji, George; Berry, R Stephen; Takada, Shoji

    2009-01-06

    The folding energy landscape of proteins has been suggested to be funnel-like with some degree of ruggedness on the slope. How complex the landscape, however, is still rather unclear. Many experiments for globular proteins suggested relative simplicity, whereas molecular simulations of shorter peptides implied more complexity. Here, by using complete conformational sampling of 2 globular proteins, protein G and src SH3 domain and 2 related random peptides, we investigated their energy landscapes, topological properties of folding networks, and folding dynamics. The projected energy surfaces of globular proteins were funneled in the vicinity of the native but also have other quite deep, accessible minima, whereas the randomized peptides have many local basins, including some leading to seriously misfolded forms. Dynamics in the denatured part of the network exhibited basin-hopping itinerancy among many conformations, whereas the protein reached relatively well-defined final stages that led to their native states. We also found that the folding network has the hierarchic nature characterized by the scale-free and the small-world properties.

  2. Combined fast multipole-QR compression technique for solving electrically small to large structures for broadband applications

    NASA Technical Reports Server (NTRS)

    Jandhyala, Vikram (Inventor); Chowdhury, Indranil (Inventor)

    2011-01-01

    An approach that efficiently solves for a desired parameter of a system or device that can include both electrically large fast multipole method (FMM) elements, and electrically small QR elements. The system or device is setup as an oct-tree structure that can include regions of both the FMM type and the QR type. An iterative solver is then used to determine a first matrix vector product for any electrically large elements, and a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large elements and the electrically small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is obtained that is within predefined limits. The matrix vector products that were last obtained are used to solve for the desired parameter.

  3. Formation of novel hydrogel bio-anode by immobilization of biocatalyst in alginate/polyaniline/titanium-dioxide/graphite composites and its electrical performance.

    PubMed

    Szöllősi, Attila; Hoschke, Ágoston; Rezessy-Szabó, Judit M; Bujna, Erika; Kun, Szilárd; Nguyen, Quang D

    2017-05-01

    A new bio-anode containing gel-entrapped bacteria in alginate/polyaniline/TiO 2 /graphite composites was constructed and electrically investigated. Alginate as dopant and template as well as entrapped gel was used for immobilization of microorganism cells. Increase of polyaniline concentration resulted an increase in the conductivity in gels. Addition of 0.01 and 0.02 g/mL polyaniline caused 6-fold and 10-fold higher conductivity, respectively. Furthermore, addition of 0.05 g/mL graphite powder caused 10-fold higher conductivity and 4-fold higher power density, respectively. The combination of polyaniline and graphite resulted 105-fold higher conductivity and 7-fold higher power-density output. Optimized concentrations of polyaniline and graphite powder were determined to be 0.02 g/mL and 0.05 g/mL, respectively. Modified hydrogel anode was successfully used in microbial fuel cell systems both in semi- and continuous operations modes. In semi-continuous mode, about 7.88 W/m 3 power density was obtained after 13 h of fermentation. The glucose consumption rate was calculated to be about 7 mg glucose/h/1.2·10 7  CFU immobilized cells. Similar power density was observed in the continuous operation mode of the microbial fuel cell, and it was operated stably for more than 7 days. Our results are very promising for development of an improved microbial fuel cell with new type of bio-anode that have higher power density and can operate for long term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Plasmon Spectroscopy Applied to Biomolecular Interactions in Membranes

    NASA Astrophysics Data System (ADS)

    Tollin, Gordon

    2010-03-01

    Plasmon-waveguide resonance (PWR) is an optical spectroscopy method that can provide information about materials immobilized on the surface of a plasmon resonator consisting of a right angle prism coated with thin layers of a metal (approx. 50 nm; usually silver) and a dielectric (approx. 500 nm; usually silica). The technique has been developed in our laboratory and is an extension of the more commonly used surface plasmon resonance (SPR) method, having higher sensitivity (20-50 fold) and resolution (10-20 fold). The dielectric layer allows plasmon excitation by light whose electric vector is polarized both perpendicular and parallel to the sensor surface, in contrast to SPR that can only utilize perpendicular polarized excitation. This allows both mass density and mass distribution to be characterized in uniaxially oriented deposited materials, such as biomembranes. We have utilized this technique to investigate binding interactions between membrane-incorporated protein receptors and their ligands (both proteins and small molecules), using both purified receptors inserted into lipid bilayers and membranes derived from cells expressing these receptors. Such studies have provided many new insights into biological signaling events. Inasmuch as many of these receptors are targets for approximately 50 percent of ethical drugs, PWR can be a useful methodology for drug discovery in the pharmaceutical industry. Examples of these experiments will be presented.

  5. Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease

    PubMed Central

    Moran, Corey S.; Schreurs, Charlotte; Lindeman, Jan H. N.; Walker, Philip J.; Nataatmadja, Maria; West, Malcolm; Holdt, Lesca M.; Hinterseher, Irene; Pilarsky, Christian; Golledge, Jonathan

    2015-01-01

    Abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) represent common causes of morbidity and mortality in elderly populations which were previously believed to have common aetiologies. The aim of this study was to assess the gene expression in human AAA and AOD. We performed microarrays using aortic specimen obtained from 20 patients with small AAAs (≤ 55mm), 29 patients with large AAAs (> 55mm), 9 AOD patients, and 10 control aortic specimens obtained from organ donors. Some differentially expressed genes were validated by quantitative-PCR (qRT-PCR)/immunohistochemistry. We identified 840 and 1,014 differentially expressed genes in small and large AAAs, respectively. Immune-related pathways including cytokine-cytokine receptor interaction and T-cell-receptor signalling were upregulated in both small and large AAAs. Examples of validated genes included CTLA4 (2.01-fold upregulated in small AAA, P = 0.002), NKTR (2.37-and 2.66-fold upregulated in small and large AAA with P = 0.041 and P = 0.015, respectively), and CD8A (2.57-fold upregulated in large AAA, P = 0.004). 1,765 differentially expressed genes were identified in AOD. Pathways upregulated in AOD included metabolic and oxidative phosphorylation categories. The UCP2 gene was downregulated in AOD (3.73-fold downregulated, validated P = 0.017). In conclusion, the AAA and AOD transcriptomes were very different suggesting that AAA and AOD have distinct pathogenic mechanisms. PMID:25944698

  6. Analysis of the Free-Energy Surface of Proteins from Reversible Folding Simulations

    PubMed Central

    Allen, Lucy R.; Krivov, Sergei V.; Paci, Emanuele

    2009-01-01

    Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical λ-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins. PMID:19593364

  7. Analysis of the free-energy surface of proteins from reversible folding simulations.

    PubMed

    Allen, Lucy R; Krivov, Sergei V; Paci, Emanuele

    2009-07-01

    Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical lambda-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins.

  8. Optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Gugang

    This thesis addresses the optical properties of novel carbon filamentary nanomaterials: single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and SWNTs with interior C60 molecules ("peapods"). Optical reflectance spectra of bundled SWNTs are discussed in terms of their electronic energy band structure. An Effective Medium Model for a composite material was found to provide a reasonable description of the spectra. Furthermore, we have learned from optical absorption studies of DWNTs and C60-peapods that the host tube and the encapsulant interact weakly; small shifts in interband absorption structure were observed. Resonant Raman scattering studies on SWNTs synthesized via the HiPCO process show that the "zone-folding" approximation for phonons and electrons works reasonably well, even for small diameter (d < 1 nm) tubes. The energy of optical transitions between van Hove singularities in the electronic density of states computed from the "zone-folding" model (with gamma0 = 2.9 eV) agree well with the resonant conditions for Raman scattering. Small diameter tubes were found to exhibit additional sharp Raman bands in the frequency range 500-1200 cm-1 with an, as yet, undetermined origin. The Raman spectrum of a DWNT was found to be well described by a superposition of the Raman spectra expected for inner and outer tubes, i.e., no charge transfer occurs and the weak van der Waals (vdW) interaction between tubes does not have significant impact on the phonons. A ˜7 cm-1 downshift of the small diameter, inner-tube tangential mode frequency was observed, however, but attributed to a tube wall curvature effect, rather than the vdW interaction. Finally, we studied the chemical doping of DWNTs, where the dopant (Br anions) is chemically bound to the outside of the outer tube. The doped DWNT system is a model for a cylindrical molecular capacitor. We found experimentally that 90% of the positive charge resides on the outer tube, so that most of electric field on the inner tube is screened, i.e., we have observed a molecular Faraday cage effect. A self-consistent theoretical model in the tight-binding approximation with a classical electrostatic energy term is in good agreement with our experimental results.

  9. Overvoltage effect on electrical discharge type in medium-conductivity water in inhomogeneous pulsed electric field

    NASA Astrophysics Data System (ADS)

    Panov, V. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Son, E. E.

    2018-01-01

    The transition between thermal and streamer discharges has been observed experimentally in water solution with conductivity 100 μS/cm applying positive voltage pulses to pin-to-rod electrodes. The transition happens at five-fold pulse amplitude. Considering streamer propagation as an ionization wave helped to establish relation between the parameters governing transition from one to another discharge mechanism.

  10. 78 FR 57137 - Energy Efficiency Program for Industrial Equipment: Interim Determination Classifying UL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... Verification Services Inc. as a Nationally Recognized Certification Program for Small Electric Motors AGENCY... conservation requirements for, among other things, electric motors and small electric motors, including test...\\ Section 345(c) of EPCA directs the Secretary of Energy to require manufacturers of electric motors ``to...

  11. Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring

    PubMed Central

    Lee, James S.; Shin, Keun-Young; Cheong, Oug Jae; Kim, Jae Hyun; Jang, Jyongsik

    2015-01-01

    We demonstrate an 80-μm-thick film (which is around 15% of the thickness of the human epidermis), which is a highly sensitive hybrid functional gauge sensor, and was fabricated from poly(vinylidene fluoride) (PVDF) and ZnO nanostructures with graphene electrodes. Using this film, we were able to simultaneously measure pressure and temperature in real time. The pressure was monitored from the change in the electrical resistance via the piezoresistance of the material, and the temperature was inferred based on the recovery time of the signal. Our thin film system enabled us to detect changes in pressure as small as 10 Pa which is pressure detection limit was 103-fold lower than the minimum level required for artificial skin, and to detect temperatures in the range 20–120°C. PMID:25601479

  12. Compact CH 4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser

    DOE PAGES

    Dong, Lei; Li, Chunguang; Sanchez, Nancy P.; ...

    2016-01-05

    A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less

  13. Compact CH 4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Lei; Li, Chunguang; Sanchez, Nancy P.

    A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less

  14. Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring.

    PubMed

    Lee, James S; Shin, Keun-Young; Cheong, Oug Jae; Kim, Jae Hyun; Jang, Jyongsik

    2015-01-20

    We demonstrate an 80-μm-thick film (which is around 15% of the thickness of the human epidermis), which is a highly sensitive hybrid functional gauge sensor, and was fabricated from poly(vinylidene fluoride) (PVDF) and ZnO nanostructures with graphene electrodes. Using this film, we were able to simultaneously measure pressure and temperature in real time. The pressure was monitored from the change in the electrical resistance via the piezoresistance of the material, and the temperature was inferred based on the recovery time of the signal. Our thin film system enabled us to detect changes in pressure as small as 10 Pa which is pressure detection limit was 10(3)-fold lower than the minimum level required for artificial skin, and to detect temperatures in the range 20-120 °C.

  15. Observations on the macroscopic anatomy of the intestinal tract and its mesenteric folds in the pampas deer (Ozotoceros bezoarticus, Linnaeus 1758).

    PubMed

    Pérez, W; Clauss, M; Ungerfeld, R

    2008-08-01

    We described the macroscopic anatomy of the intestines and their peritoneal folds of five adult pampas deer (Ozotoceros bezoarticus), a cervid species considered to ingest a high proportion of grass in its natural diet. The mean (+/-SD) body weight was 17 (+/-2) kg. The small intestine and the caecocolon measured 495 (+/-37) cm and 237 (+/-24) cm in length, respectively, with an average ratio (small intestine:caecocolon) of 1.9 (+/-0.1). The ascending colon had two and a half centripetal gyri, a central flexure and two centrifugal gyri. The spiral ansa, which was similar to an ellipse, was fixed to the whole left face of the mesenterium. Apart from the peritoneal folds described in the Nomina Anatomica Veterinaria, three additional, hitherto not described folds were found: a fold that fixed the caecum to the proximal ansa of the ascending colon, one that joined the terminal part of the proximal ansa to the last centrifugal gyrus of the spiral ansa of the ascending colon, and one that linked the ascending duodenum to the proximal ansa of the ascending colon. When compared with published data from other cervids of different feeding niches, it appears that, among cervids, the ratio of small intestine to the caecocolon length does not reflect the natural diet.

  16. An Analytical Performance Assessment of a Fuel Cell-powered, Small Electric Airplane

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Freeh, Joshua E.; Wickenheiser, Timothy J.

    2003-01-01

    Rapidly emerging fuel cell power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and with exception of water vapor zero emissions. This paper describes an analytical feasibility and performance assessment conducted by NASA's Glenn Research Center of a fuel cell-powered, propeller-driven, small electric airplane based on a model of the MCR 01 two-place kitplane.

  17. Small modular reactors are 'crucial technology'

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2018-03-01

    Small modular nuclear reactors (SMRs) offer a way for the UK to reduce carbon dioxide emissions from electricity generation, while allowing the country to meet the expected increase in demand for electricity from electric vehicles and other uses.

  18. Transdermal drug delivery enhanced by low voltage electropulsation (LVE).

    PubMed

    Sammeta, S M; Vaka, Siva Ram K; Murthy, S Narasimha

    2009-01-01

    The efficiency of low voltage electropulsation (LVE) technique for delivery of drugs and macromolecules across the skin was investigated. The in vitro studies were carried out across the porcine epidermis in Franz diffusion cells using salicylic acid and fluorescein labeled Dextran of molecular weight 10,000 Da (FD10K). LVE enhanced the transport of salicylic acid and FD10K by approximately 4-fold and approximately 2-fold, respectively over the control. The potential application of LVE in transdermal drug delivery was studied in the case of lidocaine hydrochloride. The transport of lidocaine hydrochloride was enhanced by approximately 8-fold over the control. The transport enhancement by LVE was compared with that of 1 min and 20 min constant DC iontophoresis at 0.5 mA/cm(2). Iontophoresis applied for 1 min delivers equivalent electrical dose as that of LVE (50 ms pulses for 20 min at 1 Hz) in the current set up. The transport by application of iontophoresis for 1 min was significantly less than the control (passive diffusion for 20 min). However, the application of iontophoresis for 20 min (electrical dose approximately 20-fold more than that of LVE) resulted in comparable drug transport as that of LVE. It is evident from the results of this experiment that the transdermal delivery of drugs could be enhanced by LVE which is a rather mild technique than electroporation or iontophoresis.

  19. Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells.

    PubMed

    Zhao, Yan; Cao, Weijia; Wang, Zhen; Zhang, Bowen; Chen, Kequan; Ouyang, Pingkai

    2016-02-01

    In this study, Actinobacillus succinogenes NJ113 microbial electrolysis cells (MECs) were used to enhance the reducing power responsible for succinic acid production from corncob hydrolysate. During corncob hydrolysate fermentation, electric MECs resulted in a 1.31-fold increase in succinic acid production and a 1.33-fold increase in the reducing power compared with those in non-electric MECs. When the hydrolysate was detoxified by combining Ca(OH)2, NaOH, and activated carbon, succinic acid production increased from 3.47 to 6.95 g/l. Using a constant potential of -1.8 V further increased succinic acid production to 7.18 g/l. A total of 18.09 g/l of succinic acid and a yield of 0.60 g/g total sugar were obtained after a 60-h fermentation when NaOH was used as a pH regulator. The improved succinic acid yield from corncob hydrolysate fermentation using A. succinogenes NJ113 in electric MECs demonstrates the great potential of using biomass as a feedstock to cost-effectively produce succinate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells.

    PubMed

    Pankiewicz, Urszula; Sujka, Monika; Kowalski, Radosław; Mazurek, Artur; Włodarczyk-Stasiak, Marzena; Jamroz, Jerzy

    2017-04-15

    The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The generation of magnetic fields and electric currents in cometary plasma tails

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.; Mendis, D. A.

    1976-01-01

    Due to the folding of the interplanetary magnetic field into the tail as a comet sweeps through the interplanetary medium, the magnetic field in the tail can be built up to the order of 100 gammas at a heliocentric distance of about 1 AU. This folding of magnetic flux tubes also results in a cross-tail electric current passing through a neutral sheet. When streams of enhanced plasma density merge with the main tail, cross-tail currents as large as 1 billion A may result. A condition could arise which causes a significant fraction of this current to be discharged through the inner coma, resulting in rapid ionization. The typical time scale for such outbursts of ionization is estimated to be of the order of 10,000 sec, which is in reasonable agreement with observation.

  2. Tuning the free-energy landscape of a WW domain by temperature, mutation, and truncation

    PubMed Central

    Nguyen, Houbi; Jäger, Marcus; Moretto, Alessandro; Gruebele, Martin; Kelly, Jeffery W.

    2003-01-01

    The equilibrium unfolding of the Formin binding protein 28 (FBP) WW domain, a stable three-stranded β-sheet protein, can be described as reversible apparent two-state folding. Kinetics studied by laser temperature jump reveal a third state at temperatures below the midpoint of unfolding. The FBP free-energy surface can be tuned between three-state and two-state kinetics by changing the temperature, by truncation of the C terminus, or by selected point mutations. FBP WW domain is the smallest three-state folder studied to date and the only one that can be freely tuned between three-state and apparent two-state folding by several methods (temperature, truncation, and mutation). Its small size (28–37 residues), the availability of a quantitative reaction coordinate (φT), the fast folding time scale (10s of μs), and the tunability of the folding routes by small temperature or sequence changes make this system the ideal prototype for studying more subtle features of the folding free-energy landscape by simulations or analytical theory. PMID:12651955

  3. Tuning the free-energy landscape of a WW domain by temperature, mutation, and truncation.

    PubMed

    Nguyen, Houbi; Jager, Marcus; Moretto, Alessandro; Gruebele, Martin; Kelly, Jeffery W

    2003-04-01

    The equilibrium unfolding of the Formin binding protein 28 (FBP) WW domain, a stable three-stranded beta-sheet protein, can be described as reversible apparent two-state folding. Kinetics studied by laser temperature jump reveal a third state at temperatures below the midpoint of unfolding. The FBP free-energy surface can be tuned between three-state and two-state kinetics by changing the temperature, by truncation of the C terminus, or by selected point mutations. FBP WW domain is the smallest three-state folder studied to date and the only one that can be freely tuned between three-state and apparent two-state folding by several methods (temperature, truncation, and mutation). Its small size (28-37 residues), the availability of a quantitative reaction coordinate (phi(T)), the fast folding time scale (10s of micros), and the tunability of the folding routes by small temperature or sequence changes make this system the ideal prototype for studying more subtle features of the folding free-energy landscape by simulations or analytical theory.

  4. How the folding rates of two- and multistate proteins depend on the amino acid properties.

    PubMed

    Huang, Jitao T; Huang, Wei; Huang, Shanran R; Li, Xin

    2014-10-01

    Proteins fold by either two-state or multistate kinetic mechanism. We observe that amino acids play different roles in different mechanism. Many residues that are easy to form regular secondary structures (α helices, β sheets and turns) can promote the two-state folding reactions of small proteins. Most of hydrophilic residues can speed up the multistate folding reactions of large proteins. Folding rates of large proteins are equally responsive to the flexibility of partial amino acids. Other properties of amino acids (including volume, polarity, accessible surface, exposure degree, isoelectric point, and phase transfer energy) have contributed little to folding kinetics of the proteins. Cysteine is a special residue, it triggers two-state folding reaction and but inhibits multistate folding reaction. These findings not only provide a new insight into protein structure prediction, but also could be used to direct the point mutations that can change folding rate. © 2014 Wiley Periodicals, Inc.

  5. Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.

    PubMed

    Liu, Yuping; He, Xiaoyun; Hanlon, Damien; Harvey, Andrew; Khan, Umar; Li, Yanguang; Coleman, Jonathan N

    2016-06-28

    Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles.

  6. Self-folding mechanics of graphene tearing and peeling from a substrate

    NASA Astrophysics Data System (ADS)

    He, Ze-Zhou; Zhu, Yin-Bo; Wu, Heng-An

    2018-06-01

    Understanding the underlying mechanism in the tearing and peeling processes of graphene is crucial for the further hierarchical design of origami-like folding and kirigami-like cutting of graphene. However, the complex effects among bending moduli, adhesion, interlayer interaction, and local crystal structure during origami-like folding and kirigami-like cutting remain unclear, resulting in challenges to the practical applications of existing theoretical and experimental findings as well as to potential manipulations of graphene in metamaterials and nanodevices. Toward this end, classical molecular dynamics (MD) simulations are performed with synergetic theoretical analysis to explore the tearing and peeling of self-folded graphene from a substrate driven by external force and by thermal activation. It is found that the elastic energy localized at the small folding ridge plays a significant role in the crack trajectory. Due to the extremely small bending modulus of monolayer graphene, its taper angle when pulled by an external force follows a scaling law distinct from that in case of bilayer graphene. With the increase in the initial width of the folding ridge, the self-folded graphene, motivated by thermal fluctuations, can be self-assembled by spontaneous self-tearing and peeling from a substrate. Simultaneously, the scaling law between the taper angle and adhesive energy is independent of the motivations for thermal activation-induced self-assembly and external force tearing, providing effective insights into the underlying physics for graphene-based origami-like folding and kirigami-like cutting.

  7. On the Signaling of Electrochemical Aptamer-Based Sensors: Collision- and Folding-Based Mechanisms

    PubMed Central

    Xiao, Yi; Uzawa, Takanori; White, Ryan J.; DeMartini, Daniel; Plaxco, Kevin W.

    2010-01-01

    Recent years have seen the emergence of a new class of electrochemical sensors predicated on target binding-induced folding of electrode-bound redox-modified aptamers and directed against targets ranging from small molecules to proteins. Previous studies of the relationship between gain and probe-density for these electrochemical, aptamer-based (E-AB) sensors suggest that signal transduction is linked to binding-induced changes in the efficiency with which the attached redox tag strikes the electrode. This, in turn, suggests that even well folded aptamers may support E-AB signaling if target binding sufficiently alters their flexibility. Here we investigate this using a thrombin-binding aptamer that undergoes binding-induced folding at low ionic strength but can be forced to adopt a folded conformation at higher ionic strength even in the absence of its protein target. We find that, under conditions in which the thrombin aptamer is fully folded prior to target binding, we still obtain a ca. 30% change in E-AB signal upon saturated target levels. In contrast, however, under conditions in which the aptamer is unfolded in the absence of target and thus undergoes binding-induced folding the observed signal change is twice as great. The ability of folded aptamers to support E-AB signaling, however, is not universal: a fully folded anti-IgE aptamer, for example, produces only an extremely small, ca. 2.5% signal change in the presence of target despite the larger steric bulk of this protein. Thus, while it appears that binding-induced changes in the dynamics in fully folded aptamers can support E-AB signaling, this signaling mechanism may not be general, and in order to ensure the design of high-gain sensors binding must be linked to a large-scale conformational change. PMID:20436787

  8. Comparison of two barium suspensions for dedicated small-bowel series.

    PubMed

    Davidson, J C; Einstein, D M; Herts, B R; Balfe, D M; Koehler, R E; Morgan, D E; Lieber, M; Baker, M E

    1999-02-01

    The in vivo radiographic features of two commercially available formulations of barium used as contrast media in dedicated small-bowel series were compared. Fifty-six consecutive outpatients referred for a dedicated small-bowel series were randomly administered either E-Z-Paque or Entrobar. Representative survey radiographs from each examination were randomized and reviewed by six gastrointestinal radiologists from three institutions. Each observer assigned a numeric score (1 = poor, 2 = fair, 3 = good, and 4 = excellent) that rated the quality of the radiograph with respect to these characteristics: definition of fold pattern, translucency, distention, and integrity of the barium column. Statistical analysis was performed for each characteristic using Wilcoxon's two-sample rank sum test. All six observers found a statistically significant difference between the two barium formulations for mean scores for definition of fold pattern and translucency. Mean scores for fold pattern were 3.3, 3.0, 3.2, 3.6, 3.3, and 3.4 for Entrobar and 2.1, 2.3, 2.4, 3.2, 2.6, and 2.7 for E-Z-Paque. Mean scores for translucency were 2.5, 2.7, 2.8, 3.1, 2.7, and 3.3 for Entrobar and 1.6, 1.7, 2.1, 2.3, 1.9, and 2.7 for E-Z-Paque. No statistically significant difference was found for mean score for distention or integrity of the barium column. On radiographs, Entrobar was found to have superior characteristics for visualization of fold pattern and translucency but offered no advantages for distention or integrity of the barium column. Improved translucency and definition of fold pattern may translate into improved sensitivity and confidence in diagnosing small-bowel abnormality.

  9. Protein Folding Simulations Combining Self-Guided Langevin Dynamics and Temperature-Based Replica Exchange

    DTIC Science & Technology

    2010-01-01

    formulations of molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage...ad hoc force term in the SGLD model. Introduction Molecular dynamics (MD) simulations of small proteins provide insight into the mechanisms and... molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage mini-protein. All

  10. Foldable graphene electronic circuits based on paper substrates.

    PubMed

    Hyun, Woo Jin; Park, O Ok; Chin, Byung Doo

    2013-09-14

    Graphene electronic circuits are prepared on paper substrates by using graphene nanoplates and applied to foldable paper-based electronics. The graphene circuits show a small change in conductance under various folding angles and maintain an electronic path on paper substrates after repetition of folding and unfolding. Foldable paper-based applications with graphene circuits exhibit excellent folding stability. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Exploring the Energy Landscapes of Protein Folding Simulations with Bayesian Computation

    PubMed Central

    Burkoff, Nikolas S.; Várnai, Csilla; Wells, Stephen A.; Wild, David L.

    2012-01-01

    Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence (marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and the expectation value of thermodynamic observables at any temperature, through a simple post processing of the output. Previous applications of the algorithm have yielded large efficiency gains over other sampling techniques, including parallel tempering. In this article, we describe a parallel implementation of the nested sampling algorithm and its application to the problem of protein folding in a Gō-like force field of empirical potentials that were designed to stabilize secondary structure elements in room-temperature simulations. We demonstrate the method by conducting folding simulations on a number of small proteins that are commonly used for testing protein-folding procedures. A topological analysis of the posterior samples is performed to produce energy landscape charts, which give a high-level description of the potential energy surface for the protein folding simulations. These charts provide qualitative insights into both the folding process and the nature of the model and force field used. PMID:22385859

  12. Exploring the energy landscapes of protein folding simulations with Bayesian computation.

    PubMed

    Burkoff, Nikolas S; Várnai, Csilla; Wells, Stephen A; Wild, David L

    2012-02-22

    Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence (marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and the expectation value of thermodynamic observables at any temperature, through a simple post processing of the output. Previous applications of the algorithm have yielded large efficiency gains over other sampling techniques, including parallel tempering. In this article, we describe a parallel implementation of the nested sampling algorithm and its application to the problem of protein folding in a Gō-like force field of empirical potentials that were designed to stabilize secondary structure elements in room-temperature simulations. We demonstrate the method by conducting folding simulations on a number of small proteins that are commonly used for testing protein-folding procedures. A topological analysis of the posterior samples is performed to produce energy landscape charts, which give a high-level description of the potential energy surface for the protein folding simulations. These charts provide qualitative insights into both the folding process and the nature of the model and force field used. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity

    PubMed Central

    An, Na; Fleming, Aaron M.; Middleton, Eric G.; Burrows, Cynthia J.

    2014-01-01

    Human telomeric DNA consists of tandem repeats of the sequence 5′-TTAGGG-3′ that can fold into various G-quadruplexes, including the hybrid, basket, and propeller folds. In this report, we demonstrate use of the α-hemolysin ion channel to analyze these subtle topological changes at a nanometer scale by providing structure-dependent electrical signatures through DNA–protein interactions. Whereas the dimensions of hybrid and basket folds allowed them to enter the protein vestibule, the propeller fold exceeds the size of the latch region, producing only brief collisions. After attaching a 25-mer poly-2′-deoxyadenosine extension to these structures, unraveling kinetics also were evaluated. Both the locations where the unfolding processes occur and the molecular shapes of the G-quadruplexes play important roles in determining their unfolding profiles. These results provide insights into the application of α-hemolysin as a molecular sieve to differentiate nanostructures as well as the potential technical hurdles DNA secondary structures may present to nanopore technology. PMID:25225404

  14. Generating electricity while walking with loads.

    PubMed

    Rome, Lawrence C; Flynn, Louis; Goldman, Evan M; Yoo, Taeseung D

    2005-09-09

    We have developed the suspended-load backpack, which converts mechanical energy from the vertical movement of carried loads (weighing 20 to 38 kilograms) to electricity during normal walking [generating up to 7.4 watts, or a 300-fold increase over previous shoe devices (20 milliwatts)]. Unexpectedly, little extra metabolic energy (as compared to that expended carrying a rigid backpack) is required during electricity generation. This is probably due to a compensatory change in gait or loading regime, which reduces the metabolic power required for walking. This electricity generation can help give field scientists, explorers, and disaster-relief workers freedom from the heavy weight of replacement batteries and thereby extend their ability to operate in remote areas.

  15. Point Focusing Thermal and Electric Applications Project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Landis, K. E. (Editor)

    1979-01-01

    Background and objectives used for the Workshop for Potential Military and Civil Users for Small Solar Thermal Electric Power Technologies are discussed. A summary of the results and conclusions developed at the workshop regarding small solar thermal electric power technologies is included.

  16. Mechanical development of folded chert beds in Monterey Formation, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, D.; Snyder, W.S.

    1988-03-01

    Small-scale folds in the upper siliceous facies of the Miocene Monterey Formation, at Lions Head, California (Santa Maria basin) are of tectonic origin. Folding is well developed in the chert-dominated zones and dies out rapidly in the adjacent siliceous mudstones. A tectonic origin is evidenced by the dominantly brittle deformation of the competent chert layers. Mechanically, the folds formed through a complex interrelationship between fracture and flexural slip. Opal-CT and quartz-chert layers display brittle fractures and rotated fracture blocks that responded to shortening. Thrusting of the chert layers is common in folds where fold propagation was impeded. Dilation breccia andmore » void space occur in the hinges and reflect room problems during development of these disharmonic folds. Subsequent diagenesis has partially healed the fractures and slip surfaces, creating the erroneous appearance that ductile deformation was an important factor in the formation of the folds.« less

  17. Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Graham, Zachary A; Bauman, William A; Cardozo, Christopher; Gater, David R

    2017-07-01

    Longitudinal design. The study determined the effects of two forms of exercise training on the abundance of two proteins, (glucose transporter-4 [GLUT-4], adenosine monophosphate kinase [AMPK]) involved in glucose utilization and the transcriptional coactivator that regulates the genes involved in energy metabolism and mitochondrial biogenesis (peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha [PGC-1α]), in muscles in men with chronic motor-complete spinal cord injury (SCI). Clinical trial at a Medical Center. Nine men with chronic motor-complete SCI participated in functional electrical stimulation lower extremity cycling (FES-LEC; n = 4) or arm cycling ergometer (arm-cycling ergometer [ACE]; n = 5) 5 days/week for 16 weeks. Whole body composition was measured by dual energy X-ray absorptiometry. An intravenous glucose tolerance test was performed to measure glucose effectiveness (Sg) and insulin sensitivity (Si). Muscle biopsies of the right vastus lateralis (VL) and triceps muscles were collected one week prior to and post the exercise training intervention. Neither training intervention altered body composition or carbohydrate metabolism. GLUT-4 increased by 3.8 fold in the VL after FES training and increased 0.6 fold in the triceps after ACE training. PGC-1α increased by 2.3 fold in the VL after FES training and 3.8 fold in the triceps after ACE training. AMPK increased by 3.4 fold in the VL after FES training and in the triceps after ACE training. FES-LEC and ACE training were associated with greater protein expressions in the trained muscles by effectively influencing the abundance of GLUT-4, AMPK and PGC-1α. Thus, FES-LEC training of paralyzed muscle can modulate protein expression similar to that of trained and innervated muscle.

  18. Folding kinematics expressed in fracture patterns: An example from the Anti-Atlas fold belt, Morocco

    NASA Astrophysics Data System (ADS)

    Ismat, Zeshan

    2008-11-01

    The Anti-Atlas fold belt, Morocco, formed during the same Variscan collisional event that produced the Valley-and-Ridge fold-thrust belt of the Appalachian mountains. Both are external belts of the Appalachian-Ouachita-Mauritanides chain and at the map scale have very similar topographic expressions. The Anti-Atlas, however, consists of map-scale folds that are buckle-related, detachment folds, whereas the Valley-and-Ridge folds developed in response to imbricate thrusting. For this reason, the Anti-Atlas is referred to as a fold belt rather than a fold-thrust belt. This paper examines Variscan folding processes in the Anti-Atlas Mountains. Folding in some layers occurred by sliding along a penetrative network of mesoscale fractures, i.e. cataclastic flow, during buckling. Layer-parallel shortening fractures were reactivated in the later stages of folding to accommodate limb rotation. Although 'boutonnieres', i.e. basement uplifts, punctuate the fold belt, the fracture patterns indicate that the uplifts failed to provide any 'bending' component. Folding is also interpreted to occur under low to moderate confining pressures because the fracture network includes conjugate shear fractures with very small (˜20°) dihedral angles.

  19. Prokaryotic Ubiquitin-Like Protein Modification

    PubMed Central

    Maupin-Furlow, Julie A.

    2016-01-01

    Prokaryotes form ubiquitin (Ub)-like isopeptide bonds on the lysine residues of proteins by at least two distinct pathways that are reversible and regulated. In mycobacteria, the C-terminal Gln of Pup (prokaryotic ubiquitin-like protein) is deamidated and isopeptide linked to proteins by a mechanism distinct from ubiquitylation in enzymology yet analogous to ubiquitylation in targeting proteins for destruction by proteasomes. Ub-fold proteins of archaea (SAMPs, small archaeal modifier proteins) and Thermus (TtuB, tRNA-two-thiouridine B) that differ from Ub in amino acid sequence, yet share a common β-grasp fold, also form isopeptide bonds by a mechanism that appears streamlined compared with ubiquitylation. SAMPs and TtuB are found to be members of a small group of Ub-fold proteins that function not only in protein modification but also in sulfur-transfer pathways associated with tRNA thiolation and molybdopterin biosynthesis. These multifunctional Ub-fold proteins are thought to be some of the most ancient of Ub-like protein modifiers. PMID:24995873

  20. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  1. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T [Albuquerque, NM

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  2. Twelve-fold increase in the number of usable ThO molecules for the ACME electron electric dipole measurement through STIRAP

    NASA Astrophysics Data System (ADS)

    Panda, C. D.; O'Leary, B. R.; Lasner, Z.; Petrik, E. S.; West, A. D.; Demille, D.; Doyle, J. M.; Gabrielse, G.

    2016-05-01

    The ACME Collaboration recently reported an order of magnitude improved limit on the electric dipole moment of the electron (eEDM), setting more stringent constraints on many time reversal (T) violating extensions to the Standard Model. The experiment was performed using spin precession measurements in a molecular beam of thorium oxide. We report here on a new method of preparing the coherent spin superposition state that serves as the initial state of the spin precession measurement using STImulated Raman Adiabatic Passage (STIRAP). We demonstrate a transfer efficiency of 75 % , giving a twelve-fold increase in signal. We discuss the particularities of implementing STIRAP in the ACME measurement and the methods we have used to overcome various challenges. This work was performed as part of the ACME Collaboration, to whom we are grateful for its contributions, and was supported by the NSF.

  3. On the polarizability dyadics of electrically small, convex objects

    NASA Astrophysics Data System (ADS)

    Lakhtakia, Akhlesh

    1993-11-01

    This communication on the polarizability dyadics of electrically small objects of convex shapes has been prompted by a recent paper published by Sihvola and Lindell on the polarizability dyadic of an electrically gyrotropic sphere. A mini-review of recent work on polarizability dyadics is appended.

  4. Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna

    NASA Astrophysics Data System (ADS)

    Palacios, Edgar; Park, Spencer; Butun, Serkan; Lauhon, Lincoln; Aydin, Koray

    2017-07-01

    By thinning transition metal dichalcogenides (TMDCs) to monolayer form, a direct bandgap semiconductor emerges which opens up opportunities for use in optoelectronic devices. However, absorption and radiative emission is drastically reduced which hinders their applicability for practical devices. One way to address this challenge is to design plasmonic resonators that localize electric fields within or near the two-dimensional (2D) material to confine excitation fields and increase Purcell factors. Previous studies have successfully utilized this method for enhancing radiative emission in 2D-TMDCs by using large area plasmonic arrays that exhibit complex plasmonic interactions due to near and far-field couplings that take place over many periods. In this study, we demonstrate the photoluminescence enhancements in monolayer MoS2 under single Au nanoantennas which only exhibit near-field interactions. Here, the enhancements originate from excitation of near-field plasmons confined within 20 nm of monolayer MoS2 which yields a peak photoluminescence enhancement of 8-fold and an area corrected photoluminescence enhancement >980 fold. Additionally, simulated enhancement trends are found to agree well with experimental results to understand the optimal design requirements. Our results will provide a better understanding of local emission enhancements in 2D materials over small areas of MoS2 that are essential for future applications of truly compact optoelectronic devices based on two-dimensional or reduced dimensionality materials.

  5. Haustral fold registration in CT colonography and its application to registration of virtual stretched view of the colon

    NASA Astrophysics Data System (ADS)

    Fukano, Eiichiro; Oda, Masahiro; Kitasaka, Takayuki; Suenaga, Yasuhito; Takayama, Tetsuji; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Nawano, Shigeru; Mori, Kensaku

    2010-03-01

    This paper proposes a method for making correspondence between the supine and the prone positions of the colon in CT volumes. In CT colonography, two CT volumes in the supine and the prone positions are often taken to observe the whole colonic wall by comparing them. However, the colonic wall is soft and changes its shape when a patient changes positions. Therefore, physicians need to take the positional relations into account when comparing the two CT volumes. Calculation of the positional relations between the two positions of the colon can reduce load of physicians. A large number of haustral folds exists in the colon and the order doesn't change even when a patient change positions. Therefore, haustral folds are suitable for registering the supine and the prone positions of the colon. We also find sharply bending points of the centerline of the colon as landmarks for brief registration. The precise registration is then performed by finding positional correspondence of the haustral folds in the supine and the prone positions. In correspondence search, we first find the correspondence among long haustral folds, followed by small haustral folds. As the result of experiment using six pairs of 3D abdominal CT volumes, 65.1% of the correspondence of large haustral folds were correct, 25.6% were incorrect, and 9.3% could not be judged. On the other hand, 13.3% of the correspondence of small haustral folds were correct, 42.9% were incorrect, and 32.7% could not be judged.

  6. Rheology of the lithosphere and the folding caused by horizontal compression

    NASA Astrophysics Data System (ADS)

    Birger, B. I.

    2015-05-01

    The laboratory tests of rock specimens show that transient creep, at which deformations increase with time whereas strain rate decreases occurs when creep strains are sufficiently small. Since plate tectonics only permits small deformations in the lithospheric plates, the creep of the lithosphere is transient (non-steady-state). In this work, we study how the rheology of the lithosphere that possesses elasticity, brittleness (pseudo-plasticity), and creep affects the folding in the Earth's crust. Folding is caused by horizontal compression that results from the collision between the lithospheric plates. The effective viscosity characterizing the transient creep is lower than in the case of a steady-state creep and depends on the characteristic time of the considered process. The allowance for transient creep gives the distribution of the rheological properties of the horizontally compressed lithosphere in which the upper crust is brittle, whereas the lower crust and mantle lithosphere are dominated by transient creep. It is shown that the flows that arise in the lithosphere due to the instability under horizontal compression and cause folding are small-scale. These flows are concentrated in the upper brittle crust, they determine the short-wave Earth's surface topography, penetrate into the lower, creep-dominated crust to a shallow depth, and do not penetrate into the mantle. Therefore, these flows do not deform the Moho.

  7. Small covers of graph-associahedra and realization of cycles

    NASA Astrophysics Data System (ADS)

    Gaifullin, A. A.

    2016-11-01

    An oriented connected closed manifold M^n is called a URC-manifold if for any oriented connected closed manifold N^n of the same dimension there exists a nonzero-degree mapping of a finite-fold covering \\widehat{M}^n of M^n onto N^n. This condition is equivalent to the following: for any n-dimensional integral homology class of any topological space X, a multiple of it can be realized as the image of the fundamental class of a finite-fold covering \\widehat{M}^n of M^n under a continuous mapping f\\colon \\widehat{M}^n\\to X. In 2007 the author gave a constructive proof of Thom's classical result that a multiple of any integral homology class can be realized as an image of the fundamental class of an oriented smooth manifold. This construction yields the existence of URC-manifolds of all dimensions. For an important class of manifolds, the so-called small covers of graph-associahedra corresponding to connected graphs, we prove that either they or their two-fold orientation coverings are URC-manifolds. In particular, we obtain that the two-fold covering of the small cover of the usual Stasheff associahedron is a URC-manifold. In dimensions 4 and higher, this manifold is simpler than all the previously known URC-manifolds. Bibliography: 39 titles.

  8. Electrical conductivity of H2O-NaCl fluids to 10 kbar

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Keppler, H.

    2016-12-01

    Magnetotelluric studies often reveal zones of elevated electrical conductivity in the mantle wedge above subducting slabs, in the deep crust below fold belts, or below active volcanoes. Since both aqueous fluids and hydrous silivate melts may be highly conductive, they may both account for these observations. Distinguishing between these two posssibilities, however, is difficult. One reason for this problem is that while there are very good conductivity data for silicate melts, such data do not exist for aqueous fluids under the relevant conditions of pressure, temperature and solute concentration. Most crustal and mantle fluids likely contain some NaCl, which greatly enhances conductivity due to its partial dissociation into Na+ and Cl-. We therefore studied the electrical conductivity of 0.01, 0.1 and 1 m NaCl solutions in water to 10 kbar and 600 °C. The measurements were carried out in externally-heated diamond cells containing two gaskets separated by an insulating ring of diamond, following a method described by Ni et al. (2014). The two gaskets were used as electrodes and full impedance spectra were measured from 30 Hz to 10 MHz using a Solartron 1260 impedance analyzer. Electrical conductivity was generally found to increase with pressure temperature, and fluid density. The conductivity increase observed upon variation of NaCl concentration from 0.1m to 1m was smaller than from 0.01m to 0.1m, which reflects the reduced degree of dissociation at high NaCl concentration. In general, the data show that already a very small fraction of NaCl-bearing aqueous fluid is sufficient to enhance bulk conductivities to values that would be expected for a high degree of partial melting. Accordingly, aqueous fluids may be distinguished from hydrous melts by comparing magnetotelluric and seismic data. H2O-NaCl fluids may enhance electrical conductivities with little disturbance of vp or vp/vs ratios.

  9. Viscoelastic properties of rabbit vocal folds after augmentation.

    PubMed

    Hertegård, Stellan; Dahlqvist, Ake; Laurent, Claude; Borzacchiello, Assunta; Ambrosio, Luigi

    2003-03-01

    Vocal fold function is closely related to tissue viscoelasticity. Augmentation substances may alter the viscoelastic properties of vocal fold tissues and hence their vibratory capacity. We sought to investigate the viscoelastic properties of rabbit vocal folds in vitro after injections of various augmentation substances. Polytetrafluoroethylene (Teflon), cross-linked collagen (Zyplast), and cross-linked hyaluronan, hylan b gel (Hylaform) were injected into the lamina propria and the thyroarytenoid muscle of rabbit vocal folds. Dynamic viscosity of the injected vocal fold as a function of frequency was measured with a Bohlin parallel-plate rheometer during small-amplitude oscillation. All injected vocal folds showed a decreasing dynamic viscosity with increasing frequency. Vocal fold samples injected with hylan b gel showed the lowest dynamic viscosity, quite close to noninjected control samples. Vocal folds injected with polytetrafluoroethylene showed the highest dynamic viscosity followed by the collagen samples. The data indicated that hylan b gel in short-term renders the most natural viscoelastic properties to the vocal fold among the substances tested. This is of importance to restore/preserve the vibratory capacity of the vocal folds when glottal insufficiency is treated with injections.

  10. 78 FR 72077 - Energy Efficiency Program for Industrial Equipment: Final Determination Classifying UL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Verification Services Inc. as a Nationally Recognized Certification Program for Small Electric Motors AGENCY... FURTHER INFORMATION CONTACT: Mr. Lucas Adin, U.S. Department of Energy, Building Technologies Office, Mail... conservation requirements for, among other things, electric motors and small electric motors, including test...

  11. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... determination method (AEDM) for small electric motors, including the statistical requirements to substantiate... restriction to a particular application or type of application; or (2) Standard operating characteristics or... application, and which can be used in most general purpose applications. [[Page 652

  12. 75 FR 16576 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  13. 77 FR 21835 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  14. 76 FR 21947 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  15. Two states or not two states: Single-molecule folding studies of protein L

    NASA Astrophysics Data System (ADS)

    Aviram, Haim Yuval; Pirchi, Menahem; Barak, Yoav; Riven, Inbal; Haran, Gilad

    2018-03-01

    Experimental tools of increasing sophistication have been employed in recent years to study protein folding and misfolding. Folding is considered a complex process, and one way to address it is by studying small proteins, which seemingly possess a simple energy landscape with essentially only two stable states, either folded or unfolded. The B1-IgG binding domain of protein L (PL) is considered a model two-state folder, based on measurements using a wide range of experimental techniques. We applied single-molecule fluorescence resonance energy transfer (FRET) spectroscopy in conjunction with a hidden Markov model analysis to fully characterize the energy landscape of PL and to extract the kinetic properties of individual molecules of the protein. Surprisingly, our studies revealed the existence of a third state, hidden under the two-state behavior of PL due to its small population, ˜7%. We propose that this minority intermediate involves partial unfolding of the two C-terminal β strands of PL. Our work demonstrates that single-molecule FRET spectroscopy can be a powerful tool for a comprehensive description of the folding dynamics of proteins, capable of detecting and characterizing relatively rare metastable states that are difficult to observe in ensemble studies.

  16. Revealing the distinct folding phases of an RNA three-helix junction.

    PubMed

    Plumridge, Alex; Katz, Andrea M; Calvey, George D; Elber, Ron; Kirmizialtin, Serdal; Pollack, Lois

    2018-05-14

    Remarkable new insight has emerged into the biological role of RNA in cells. RNA folding and dynamics enable many of these newly discovered functions, calling for an understanding of RNA self-assembly and conformational dynamics. Because RNAs pass through multiple structures as they fold, an ensemble perspective is required to visualize the flow through fleetingly populated sets of states. Here, we combine microfluidic mixing technology and small angle X-ray scattering (SAXS) to measure the Mg-induced folding of a small RNA domain, the tP5abc three helix junction. Our measurements are interpreted using ensemble optimization to select atomically detailed structures that recapitulate each experimental curve. Structural ensembles, derived at key stages in both time-resolved studies and equilibrium titrations, reproduce the features of known intermediates, and more importantly, offer a powerful new structural perspective on the time-progression of folding. Distinct collapse phases along the pathway appear to be orchestrated by specific interactions with Mg ions. These key interactions subsequently direct motions of the backbone that position the partners of tertiary contacts for later bonding, and demonstrate a remarkable synergy between Mg and RNA across numerous time-scales.

  17. How long does it take to equilibrate the unfolded state of a protein?

    PubMed Central

    Levy, Ronald M; Dai, Wei; Deng, Nan-Jie; Makarov, Dmitrii E

    2013-01-01

    How long does it take to equilibrate the unfolded state of a protein? The answer to this question has important implications for our understanding of why many small proteins fold with two state kinetics. When the equilibration within the unfolded state U is much faster than the folding, the folding kinetics will be two state even if there are many folding pathways with different barriers. Yet the mean first passage times (MFPTs) between different regions of the unfolded state can be much longer than the folding time. This seems to imply that the equilibration within U is much slower than the folding. In this communication we resolve this paradox. We present a formula for estimating the time to equilibrate the unfolded state of a protein. We also present a formula for the MFPT to any state within U, which is proportional to the average lifetime of that state divided by the state population. This relation is valid when the equilibration within U is very fast as compared with folding as it often is for small proteins. To illustrate the concepts, we apply the formulas to estimate the time to equilibrate the unfolded state of Trp-cage and MFPTs within the unfolded state based on a Markov State Model using an ultra-long 208 microsecond trajectory of the miniprotein to parameterize the model. The time to equilibrate the unfolded state of Trp-cage is ∼100 ns while the typical MFPTs within U are tens of microseconds or longer. PMID:23963761

  18. Theory and simulation of explicit solvent effects on protein folding in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    England, Jeremy L.

    The aim of this work is to develop theoretical tools for understanding what happens to water that is confined in amphipathic cavities, and for testing the consequences of this understanding for protein folding in vitro and in vivo. We begin in the first chapter with a brief review of the theoretical and simulation literature on the hydrophobic effect and the aqueous solvation of charged species that also puts forward a simple theoretical framework within which various solvation phenomena reported in past studies may be unified. Subsequently, in the second chapter we also review past computational and theoretical work on the specific question of how chaperonin complexes assist the folding of their substrates. With the context set, we turn in Chapter 3 to the case of an open system with water trapped between hydrophobic plates that experiences a uniform electric field normal to and between the plates. Classic bulk theory of electrostriction in polarizable fluids tells us that the electric field should cause an increase in local water density as it rises, yet some simulations have suggested the opposite. We present a mean-field Potts model we have developed to explain this discrepancy, and show how such a simple, coarse-grained lattice description can capture the fundamental consequences of the fact that external electric fields can frustrate the hydrogen bond network in confined water. Chapter 4 continues to pursue the issue of solvent evacuation between hydrophobic plates, but focuses on the impact of chemical denaturants on hydrophobic effects using molecular dynamics simulations of hydrophobic dewetting. We find that while urea and guanidinium have similar qualitative effects at the bulk level, they seem to differ in the microscopic mechanism by which they denature proteins, although both inhibit the onset of dewetting. Lastly, Chapters 5 and 6 examine the potential importance of solvent-mediated forces to protein folding in vivo. Chapter 5 develops a Landau-Ginzburg-type model for solvent free energy and lays out a theoretical argument for a mechanism by which chaperonins may promote the folding of their substrates through a local enhancement of the hydrophobic effect. With this argument in hand, we show results in Chapter 6 from molecular dynamics simulations we performed of different mutants of the bacterial chaperonin GroEL, which demonstrate that the hydrophilicity of the chaperonin cavity correlates with the experimentally measured ability of the cavity to facilitate folding.

  19. Electricity generation in microbial fuel cells using neutral red as an electronophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, D.H.; Zeikus, J.G.

    2000-04-01

    Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. Inmore » microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator was 10-fold more than the amount produced when thionin was the electron mediator. The amount of electrical energy generated and the amount of current produced from glucose in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge was used in the fuel cell, stable and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Their results are discussed in relation to factors that may improve the relatively low electrical efficiencies obtained with microbial fuel cells.« less

  20. Impacts of road conditions on the energy consumption of electric vehicular flow

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao

    2017-04-01

    In this paper, we use the electricity consumption model for electric vehicular flow [H. Xiao, H. J. Huang and T. Q. Tang, Mod. Phys. Lett. B 30 (2016) 1650325] to study the effects of road conditions on the electricity consumption of electric vehicular flow during the evolutions of shock, rarefaction wave and small perturbation. The numerical results indicate that road conditions have negative influences on the electricity consumption during the evolutions of shock and rarefaction wave (i.e. the electricity consumption increases when road conditions become better) and positive impacts on the electricity consumption during the evolution of small perturbation when the traffic flow is unstable (i.e. the electricity consumption produces oscillation, but its amplitude decreases when road conditions become better).

  1. Electrical connector composite housing and method of making same

    DOEpatents

    Silva, Frank A.

    1979-01-01

    A sleeve-like insert of conductive elastomeric material of a type which serves as an internal shield in electrical connectors for connecting high voltage cables has an end portion folded upon itself, the enfolded portion being substantially permanently retained in its desired position by allowing insulative elastomeric material to fill apertures in the end portion and become bonded thereto in a void free manner, during molding of an insulating outer sleeve-like jacket about the insert.

  2. 76 FR 50663 - Revisions to Form, Procedures and Criteria for Certification of Qualifying Facility Status for a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... facilities. List of Subjects in 18 CFR Part 292 Electric power, Electric power plants, Electric utilities... to Form, Procedures and Criteria for Certification of Qualifying Facility Status for a Small Power... small power production or cogeneration facility. DATES: August 16, 2011. FOR FURTHER INFORMATION CONTACT...

  3. Electric Fields at the Active Site of an Enzyme: Direct Comparison of Experiment with Theory

    NASA Astrophysics Data System (ADS)

    Suydam, Ian T.; Snow, Christopher D.; Pande, Vijay S.; Boxer, Steven G.

    2006-07-01

    The electric fields produced in folded proteins influence nearly every aspect of protein function. We present a vibrational spectroscopy technique that measures changes in electric field at a specific site of a protein as shifts in frequency (Stark shifts) of a calibrated nitrile vibration. A nitrile-containing inhibitor is used to deliver a unique probe vibration to the active site of human aldose reductase, and the response of the nitrile stretch frequency is measured for a series of mutations in the enzyme active site. These shifts yield quantitative information on electric fields that can be directly compared with electrostatics calculations. We show that extensive molecular dynamics simulations and ensemble averaging are required to reproduce the observed changes in field.

  4. Aromatic claw: A new fold with high aromatic content that evades structural prediction: Aromatic Claw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachleben, Joseph R.; Adhikari, Aashish N.; Gawlak, Grzegorz

    2016-11-10

    We determined the NMR structure of a highly aromatic (13%) protein of unknown function, Aq1974 from Aquifex aeolicus (PDB ID: 5SYQ). The unusual sequence of this protein has a tryptophan content five times the normal (six tryptophan residues of 114 or 5.2% while the average tryptophan content is 1.0%) with the tryptophans occurring in a WXW motif. It has no detectable sequence homology with known protein structures. Although its NMR spectrum suggested that the protein was rich in β-sheet, upon resonance assignment and solution structure determination, the protein was found to be primarily α-helical with a small two-stranded β-sheet withmore » a novel fold that we have termed an Aromatic Claw. As this fold was previously unknown and the sequence unique, we submitted the sequence to CASP10 as a target for blind structural prediction. At the end of the competition, the sequence was classified a hard template based model; the structural relationship between the template and the experimental structure was small and the predictions all failed to predict the structure. CSRosetta was found to predict the secondary structure and its packing; however, it was found that there was little correlation between CSRosetta score and the RMSD between the CSRosetta structure and the NMR determined one. This work demonstrates that even in relatively small proteins, we do not yet have the capacity to accurately predict the fold for all primary sequences. The experimental discovery of new folds helps guide the improvement of structural prediction methods.« less

  5. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human.

    PubMed

    Akazawa, Takanori; Uchida, Yasuo; Miyauchi, Eisuke; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2018-01-02

    Cynomolgus monkeys have been widely used for the prediction of drug absorption in humans. The purpose of this study was to clarify the regional protein expression levels of cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UGTs), and transporters in small intestine of cynomolgus monkey using liquid chromatography-tandem mass spectrometry, and to compare them with the corresponding levels in human. UGT1A1 in jejunum and ileum were >4.57- and >3.11-fold and UGT1A6 in jejunum and ileum were >16.1- and >8.57-fold, respectively, more highly expressed in monkey than in human. Also, jejunal expression of monkey CYP3A8 (homologue of human CYP3A4) was >3.34-fold higher than that of human CYP3A4. Among apical drug efflux transporters, BCRP showed the most abundant expression in monkey and human, and the expression levels of BCRP in monkey and human were >1.74- and >1.25-fold greater than those of P-gp and >2.76- and >4.50-fold greater than those of MRP2, respectively. These findings should be helpful to understand species differences of the functions of CYPs, UGTs, and transporters between monkey and human. The UGT1A1/1A6 data would be especially important because it is difficult to identify isoforms responsible for species differences of intestinal glucuronidation by means of functional studies due to overlapping substrate specificity.

  6. Impedance Spectrum in Cortical Tissue: Implications for Propagation of LFP Signals on the Microscopic Level

    PubMed Central

    Miceli, Stéphanie

    2017-01-01

    Brain research investigating electrical activity within neural tissue is producing an increasing amount of physiological data including local field potentials (LFPs) obtained via extracellular in vivo and in vitro recordings. In order to correctly interpret such electrophysiological data, it is vital to adequately understand the electrical properties of neural tissue itself. An ongoing controversy in the field of neuroscience is whether such frequency-dependent effects bias LFP recordings and affect the proper interpretation of the signal. On macroscopic scales and with large injected currents, previous studies have found various grades of frequency dependence of cortical tissue, ranging from negligible to strong, within the frequency band typically considered relevant for neuroscience (less than a few thousand hertz). Here, we performed a detailed investigation of the frequency dependence of the conductivity within cortical tissue at microscopic distances using small current amplitudes within the typical (neuro)physiological micrometer and sub-nanoampere range. We investigated the propagation of LFPs, induced by extracellular electrical current injections via patch-pipettes, in acute rat brain slice preparations containing the somatosensory cortex in vitro using multielectrode arrays. Based on our data, we determined the cortical tissue conductivity over a 100-fold increase in signal frequency (5–500 Hz). Our results imply at most very weak frequency-dependent effects within the frequency range of physiological LFPs. Using biophysical modeling, we estimated the impact of different putative impedance spectra. Our results indicate that frequency dependencies of the order measured here and in most other studies have negligible impact on the typical analysis and modeling of LFP signals from extracellular brain recordings. PMID:28197543

  7. Impedance Spectrum in Cortical Tissue: Implications for Propagation of LFP Signals on the Microscopic Level.

    PubMed

    Miceli, Stéphanie; Ness, Torbjørn V; Einevoll, Gaute T; Schubert, Dirk

    2017-01-01

    Brain research investigating electrical activity within neural tissue is producing an increasing amount of physiological data including local field potentials (LFPs) obtained via extracellular in vivo and in vitro recordings. In order to correctly interpret such electrophysiological data, it is vital to adequately understand the electrical properties of neural tissue itself. An ongoing controversy in the field of neuroscience is whether such frequency-dependent effects bias LFP recordings and affect the proper interpretation of the signal. On macroscopic scales and with large injected currents, previous studies have found various grades of frequency dependence of cortical tissue, ranging from negligible to strong, within the frequency band typically considered relevant for neuroscience (less than a few thousand hertz). Here, we performed a detailed investigation of the frequency dependence of the conductivity within cortical tissue at microscopic distances using small current amplitudes within the typical (neuro)physiological micrometer and sub-nanoampere range. We investigated the propagation of LFPs, induced by extracellular electrical current injections via patch-pipettes, in acute rat brain slice preparations containing the somatosensory cortex in vitro using multielectrode arrays. Based on our data, we determined the cortical tissue conductivity over a 100-fold increase in signal frequency (5-500 Hz). Our results imply at most very weak frequency-dependent effects within the frequency range of physiological LFPs. Using biophysical modeling, we estimated the impact of different putative impedance spectra. Our results indicate that frequency dependencies of the order measured here and in most other studies have negligible impact on the typical analysis and modeling of LFP signals from extracellular brain recordings.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Meng-Lin; Peng, J. S.; Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw

    We studied the digestive ripening of thiol-capped gold nanoparticles under simultaneous action of electric field and reflux heating in a silicone oil bath at 130 °C, using transmission electron microscopy. Observation revealed that a polydispersed gold nanoparticle system reached the state of nearly monodispersity under the action of an electric field and the thiol-capped gold nanoparticles carried negative charges. The electric field caused the increase of the particle size for the nearly monodispersed gold nanoparticle system. The self-assembly of the nearly monodisperse gold nanoparticles under the action of an electric field of a high field intensity was observed. The gold nanoparticlesmore » tended to form self-assembled nanostructures of six-fold symmetry. This study provides a new route for system engineering to control the particle size of metallic nanoparticles by electric field and digestive ripening.« less

  9. Insights into Stability and Folding of GNRA and UNCG Tetraloops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics.

    PubMed

    Haldar, Susanta; Kührová, Petra; Banáš, Pavel; Spiwok, Vojtěch; Šponer, Jiří; Hobza, Pavel; Otyepka, Michal

    2015-08-11

    RNA hairpins capped by 5'-GNRA-3' or 5'-UNCG-3' tetraloops (TLs) are prominent RNA structural motifs. Despite their small size, a wealth of experimental data, and recent progress in theoretical simulations of their structural dynamics and folding, our understanding of the folding and unfolding processes of these small RNA elements is still limited. Theoretical description of the folding and unfolding processes requires robust sampling, which can be achieved by either an exhaustive time scale in standard molecular dynamics simulations or sophisticated enhanced sampling methods, using temperature acceleration or biasing potentials. Here, we study structural dynamics of 5'-GNRA-3' and 5'-UNCG-3' TLs by 15-μs-long standard simulations and a series of well-tempered metadynamics, attempting to accelerate sampling by bias in a few chosen collective variables (CVs). Both methods provide useful insights. The unfolding and refolding mechanisms of the GNRA TL observed by well-tempered metadynamics agree with the (reverse) folding mechanism suggested by recent replica exchange molecular dynamics simulations. The orientation of the glycosidic bond of the GL4 nucleobase is critical for the UUCG TL folding pathway, and our data strongly support the hypothesis that GL4-anti forms a kinetic trap along the folding pathway. Along with giving useful insight, our study also demonstrates that using only a few CVs apparently does not capture the full folding landscape of the RNA TLs. Despite using several sophisticated selections of the CVs, formation of the loop appears to remain a hidden variable, preventing a full convergence of the metadynamics. Finally, our data suggest that the unfolded state might be overstabilized by the force fields used.

  10. Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; O'Connell, Michael J.; Smith, Kenneth; Colbert, Daniel T.

    2009-01-01

    In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant.

  11. Sodium heat engine system: Space application

    NASA Astrophysics Data System (ADS)

    Betz, Bryan H.; Sungu, Sabri; Vu, Hung V.

    1994-08-01

    This paper explores the possibility of utilizing the Sodium Heat Engine (SHE) or known as AMTEC (Alkali Metal Thermoelectric Converter), for electrical power generation in ``near earth'' geosynchronous orbit. The Sodium Heat Engine principle is very flexible and adapts well to a variety of physical geometries. The proposed system can be easily folded and then deployed into orbit without the need for on site assembly in space. Electric power generated from SHE engine can be used in communication satellites, in space station, and other applications such as electrical recharging of vehicles in space is one of the applications the Sodium Heat Engine could be adapted to serve.

  12. A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System

    PubMed Central

    Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.

    2010-01-01

    A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066

  13. The effects of neuromuscular electrical stimulation at different frequencies on the activations of deep abdominal stabilizing muscles.

    PubMed

    Cho, Hee Kyung; Jung, Gil Su; Kim, Eun Hyuk; Cho, Yun Woo; Kim, Sang Woo; Ahn, Sang Ho

    2016-01-01

    Low back pain is associated with transversus abdominis (TrA) dysfunction. Recently, it was proposed that Neuromuscular Electrical Stimulation (NMES) could be used to stimulate deep abdominal muscle contractions and improve lumbopelvic stability. The purpose of this study was to determine the optimal stimulation frequency required during NMES for the activation of deep abdominal muscles. Twenty healthy volunteers between the ages of 24 and 32 were included. The portable research-stimulator was applied using a 10 second contraction time, and a 10 second resting time at 20 Hz, 50 Hz, and 80 Hz. Changes in muscle thicknesses were determined for the TrA, obliquus internus (OI), and obliquus externus (OE) by real time ultrasound imaging. Significant thickness increases in the TrA, OI, and OE were observed during NMES versus the resting state (p < 0.05). Of the frequencies examined, 50 Hz NMES produced the greatest increase in TrA thickness (1.33 fold as compared with 1.22 fold at 20 Hz and 1.21 fold at 80 Hz) (p < 0.05). Our results indicate that NMES can preferentially stimulate contractions in deep abdominal stabilizing muscles. Most importantly, 50 Hz NMES produced greater muscle thickness increases than 20 or 80 Hz.

  14. Observations of Convective and Dynamical Instabilities in Tropopause Folds and their Contribution to Stratosphere-Troposphere Exchange

    NASA Technical Reports Server (NTRS)

    Cho, John Y. N.; Newell, Reginald E.; Bui, T. Paul; Browell, Edward V.; Fenn, Martha A.; Gary, Bruce L.; Mahoney, Michael J.; Gregory, Gerald L.; Sachse, Glen W.; Vay, Stephanie A.

    1999-01-01

    With aircraft-mounted in-situ and remote sensing instruments for dynamical, thermal. and chemical measurements, we studied two cases of tropopause folding. In both folds we found Kelvin-Helmholtz billows with horizontal wavelength of about 900 m and thickness of about 120 m. In one case the instability was effectively mixing the bottomside of the fold, leading to the transfer of stratospheric air into the troposphere. Also we discovered in both cases small-scale secondary ozone maxima shortly after the aircraft ascended past the topside of the fold that corresponded to regions of convective instability. We interpreted this phenomenon as convectively breaking gravity waves. Therefore, we posit that convectively breaking gravity waves acting on tropopause folds must be added to the list of important irreversible mixing mechanisms leading to stratosphere-troposphere exchange.

  15. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: Experiment and simulation

    PubMed Central

    Zhang, Zhaoyan; Hieu Luu, Trung

    2012-01-01

    Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed. PMID:22978891

  16. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: experiment and simulation.

    PubMed

    Zhang, Zhaoyan; Luu, Trung Hieu

    2012-09-01

    Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed.

  17. Numerical solution of fluid-structure interaction represented by human vocal folds in airflow

    NASA Astrophysics Data System (ADS)

    Valášek, J.; Sváček, P.; Horáček, J.

    2016-03-01

    The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.

  18. Synchrotron radiation circular dichroism spectroscopy study of recombinant T β4 folding

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Chin; Chu, Hsueh-Liang; Chen, Peng-Jen; Chang, Chia-Ching

    Thymosin beta 4 (T β4) is a 43-amino acid small peptide, has been demonstrated that it can promote cardiac repair, wound repair, tissue protection, and involve in the proliferation of blood cell precursor stem cells of bone marrow. Moreover, T β4 has been identified as a multifunction intrinsically disordered protein, which is lacking the stable tertiary structure. Owing to the small size and disordered character, the T β4 protein degrades rapidly and the storage condition is critical. Therefore, it is not easy to reveal its folding mechanism of native T β4. However, recombinant T β4 protein (rT β4), which fused with a 5-kDa peptide in its amino-terminal, is stable and possesses identical function of T β4. Therefore, rT β4 can be used to study its folding mechanism. By using over-critical folding process, stable folding intermediates of rT β4 can be obtained. Structure analysis of folding intermediates by synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies indicate that rT β4 is a random coli major protein and its hydrophobic region becomes compact gradually. Moreover, the rT β4 folding is a two state transition. Thermal denaturation analysis indicates that rT β4 lacks stable tertiary structure. These results indicated that rT β4, similar to T β4, is an intrinsically disordered protein. Research is supported by MOST, Taiwan. MOST 103-2112-M-009-011-MY3. Corresponding author: Chia-Ching Chang; ccchang01@faculty.nctu.edu.tw.

  19. Fold in Origami and Unfold Math

    ERIC Educational Resources Information Center

    Georgeson, Joseph

    2011-01-01

    Students enjoy origami and like making everything from paper cranes to footballs out of small, colorful squares of paper. They can invent their own shapes and are intrigued by the polyhedrons that they can construct. Paper folding is fun, but where is the math? Unless teachers develop lessons that address mathematical objectives, origami could be…

  20. Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guu, Tom S.Y.; Liu, Zheng; Ye, Qiaozhen

    Hepatitis E virus (HEV), a small, non-enveloped RNA virus in the family Hepeviridae, is associated with endemic and epidemic acute viral hepatitis in developing countries. Our 3.5-{angstrom} structure of a HEV-like particle (VLP) shows that each capsid protein contains 3 linear domains that form distinct structural elements: S, the continuous capsid; P1, 3-fold protrusions; and P2, 2-fold spikes. The S domain adopts a jelly-roll fold commonly observed in small RNA viruses. The P1 and P2 domains both adopt {beta}-barrel folds. Each domain possesses a potential polysaccharide-binding site that may function in cell-receptor binding. Sugar binding to P1 at the capsidmore » protein interface may lead to capsid disassembly and cell entry. Structural modeling indicates that native T = 3 capsid contains flat dimers, with less curvature than those of T = 1 VLP. Our findings significantly advance the understanding of HEV molecular biology and have application to the development of vaccines and antiviral medications.« less

  1. Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites

    DOE PAGES

    Zhai, Kun; Wu, Yan; Shen, Shipeng; ...

    2017-09-12

    Multiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba 2-x Sr x Mg 2Fe 12O 22 family with magnetization, ferroelectricity andmore » neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.« less

  2. An Enhanced Platform to Analyse Low-Affinity Amyloid β Protein by Integration of Electrical Detection and Preconcentrator.

    PubMed

    Yoo, Yong Kyoung; Yoon, Dae Sung; Kim, Gangeun; Kim, Jinsik; Han, Sung Il; Lee, Junwoo; Chae, Myung-Sic; Lee, Sang-Myung; Lee, Kyu Hyoung; Hwang, Kyo Seon; Lee, Jeong Hoon

    2017-10-30

    Sensitivity and limit of detection (LOD) enhancement are essential criteria for the development of ultrasensitive molecular sensors. Although various sensor types have been investigated to enhance sensitivity and LOD, analyte detection and its quantification are still challenging, particularly for protein-protein interactions with low association constants. To solve this problem, here, we used ion concentration polarization (ICP)-based preconcentration to increase the local concentration of analytes in a microfluidic platform for LOD improvement. This was the first demonstration of a microfluidic device with an integrated ICP preconcentrator and interdigitated microelectrode (IME) sensor to detect small changes in surface binding between antigens and antibodies. We detected the amyloid beta (Aβ) protein, an Alzheimer's disease marker, with low binding affinity to its antibodies by adopting ICP preconcentration phenomena. We demonstrated that a combination of ICP preconcentrator and IME sensor increased the LOD by 13.8-fold to femtomolar level (8.15 fM), which corresponds to a significant advance for clinical applications.

  3. Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Kun; Wu, Yan; Shen, Shipeng

    Multiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba 2-x Sr x Mg 2Fe 12O 22 family with magnetization, ferroelectricity andmore » neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.« less

  4. Compact CH{sub 4} sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Lei, E-mail: donglei@sxu.edu.cn; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006; Li, Chunguang

    A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 μm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH{sub 4} sensor with a small footprint (32 × 20 × 17 cm{sup 3}) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH{sub 4} concentrations, respectively. An Allan-Werle deviation analysis shows that the measurement precision can reach 1.4 ppb for amore » 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH{sub 4} sensor system.« less

  5. A small molecule chemical chaperone optimizes its unfolded state contraction and denaturant like properties

    NASA Astrophysics Data System (ADS)

    Sharma, Sunny; Sarkar, Suparna; Paul, Simanta Sarani; Roy, Syamal; Chattopadhyay, Krishnananda

    2013-12-01

    Protein aggregation is believed to occur through the formation of misfolded conformations. It is expected that, in order to minimize aggregation, an effective small molecule chaperone would destabilize these intermediates. To study the mechanism of a chemical chaperone, we have designed a series of mutant proteins in which a tryptophan residue experiences different local environments and solvent exposures. We show that these mutants correspond to a series of conformationally altered proteins with varying degree of misfolding stress and aggregation propensities. Using arginine as a model small molecule, we show that a combination of unfolded state contraction and denaturant like properties results in selective targeting and destabilization of the partially folded proteins. In comparison, the effect of arginine towards the folded like control mutant, which is not aggregation prone, is significantly less. Other small molecules, lacking either of the above two properties, do not offer any specificity towards the misfolded proteins.

  6. Small molecules enhance CRISPR genome editing in pluripotent stem cells.

    PubMed

    Yu, Chen; Liu, Yanxia; Ma, Tianhua; Liu, Kai; Xu, Shaohua; Zhang, Yu; Liu, Honglei; La Russa, Marie; Xie, Min; Ding, Sheng; Qi, Lei S

    2015-02-05

    The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application.

    PubMed

    Boldon, Lauren; Laliberte, Fallon; Liu, Li

    2015-01-01

    In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics' equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  8. Stress orientation and fracturing during three-dimensional buckling: Numerical simulation and application to chocolate-tablet structures in folded turbidites, SW Portugal

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.

    2010-10-01

    Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.

  9. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Elzie Lynn

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less

  10. Thermodynamic properties of an extremely rapid protein folding reaction.

    PubMed

    Schindler, T; Schmid, F X

    1996-12-24

    The cold-shock protein CspB from Bacillus subtilis is a very small beta-barrel protein, which folds with a time constant of 1 ms (at 25 degrees C) in a U reversible N two-state reaction. To elucidate the energetics of this extremely fast reaction we investigated the folding kinetics of CspB as a function of both temperature and denaturant concentration between 2 and 45 degrees C and between 1 and 8 M urea. Under all these conditions unfolding and refolding were reversible monoexponential reactions. By using transition state theory, data from 327 kinetic curves were jointly analyzed to determine the thermodynamic activation parameters delta H H2O++, delta S H2O++, delta G H2O++, and delta C p H2O++ for unfolding and refolding and their dependences on the urea concentration. 90% of the total change in heat capacity and 96% of the change in the m value (m = d delta G/d[urea]) occur between the unfolded state and the activated state. This suggests that for CspB the activated state of folding is unusually well structured and almost equivalent to the native protein in its interactions with the solvent. As a consequence of this native-like activated state a strong temperature-dependent enthalpy/entropy compensation is observed for the refolding kinetics, and the barrier to refolding shifts from being largely enthalpic at low temperature to largely entropic at high temperature. This shift originates not from the changes in the folding protein chains itself, but from the changes in the protein-solvent interactions. We speculate that the absence of intermediates and the native-like activated state in the folding of CspB are correlated with the small size and the structural type of this protein. The stabilization of a small beta-sheet as in CspB requires extensive non-local interactions, and therefore incomplete sheets are unstable. As a consequence, the critical activated state is reached only very late in folding. The instability of partially folded structure is a means to avoid misfolding prior to the rate-limiting step, and a native-like activated state reduces the risk of non-productive side reactions during the final steps to the native state.

  11. Microvascular lesions of the true vocal fold.

    PubMed

    Postma, G N; Courey, M S; Ossoff, R H

    1998-06-01

    Microvascular lesions, also called varices or capillary ectasias, in contrast to vocal fold polyps with telangiectatic vessels, are relatively small lesions arising from the microcirculation of the vocal fold. Varices are most commonly seen in female professional vocalists and may be secondary to repetitive trauma, hormonal variations, or repeated inflammation. Microvascular lesions may either be asymptomatic or cause frank dysphonia by interrupting the normal vibratory pattern, mass, or closure of the vocal folds. They may also lead to vocal fold hemorrhage, scarring, or polyp formation. Laryngovideostroboscopy is the key in determining the functional significance of vocal fold varices. Management of patients with a varix includes medical therapy, speech therapy, and occasionally surgical vaporization. Indications for surgery are recurrent hemorrhage, enlargement of the varix, development of a mass in conjunction with the varix or hemorrhage, and unacceptable dysphonia after maximal medical and speech therapy due to a functionally significant varix.

  12. Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array.

    PubMed

    Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei-Qing; Zeng, Hui-Yong

    2012-09-24

    We report initially the design, fabrication and measurement of using waveguided electric metamaterials (MTM) in the design of closely-spaced microtrip antenna arrays with mutual coupling reduction. The complementary spiral ring resonators (CSRs) which exhibit single negative resonant permittivity around 3.5GHz are used as the basic electric MTM element. For verification, two CSRs with two and three concentric rings are considered, respectively. By properly arranging these well engineered waveguided MTMs between two H-plane coupled patch antennas, both numerical and measured results indicate that more than 8.4 dB mutual coupling reduction is obtained. The mechanism has been studied from a physical insight. The electric MTM element is electrically small, enabling the resultant antenna array to exhibit a small separation (λo/8 at the operating wavelength) and thus a high directivity. The proposed strategy opens an avenue to new types of antenna with super performances and can be generalized for other electric resonators.

  13. Elephant trunk in a small-calibre true lumen for chronic aortic dissection: cause of haemolytic anaemia?

    PubMed

    Araki, Haruna; Kitamura, Tadashi; Horai, Tetsuya; Shibata, Ko; Miyaji, Kagami

    2014-12-01

    The elephant trunk technique for aortic dissection is useful for reducing false lumen pressure; however, a folded vascular prosthesis inside the aorta can cause haemolysis. The purpose of this study was to investigate whether an elephant trunk in a small-calibre lumen can cause haemolysis. Inpatient and outpatient records were retrospectively reviewed. Two cases of haemolytic anaemia after aortic surgery using the elephant trunk technique were identified from 2011 to 2013. A 64-year-old man, who underwent graft replacement of the ascending aorta for acute Stanford type A aortic dissection, presented with enlargement of the chronic dissection of the descending aorta and moderate aortic regurgitation. A two-stage surgery was scheduled. Total arch replacement with an elephant trunk in the true lumen and concomitant aortic valve replacement were performed. Postoperatively, he developed severe haemolytic anaemia because of the folded elephant trunk. The anaemia improved after the second surgery, including graft replacement of the descending aorta. Similarly, a 61-year-old man, who underwent total arch replacement for acute Stanford type A aortic dissection, presented with enlargement of the chronic dissection of the descending aorta. Graft replacement of the descending aorta with an elephant trunk inserted into the true lumen was performed. The patient postoperatively developed haemolytic anaemia because of the folded elephant trunk, which improved after additional stent grafting into the elephant trunk. A folded elephant trunk in a small-calibre lumen can cause haemolysis. Therefore, inserting an elephant trunk in a small-calibre true lumen during surgery for chronic aortic dissection should be avoided. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Modified natural clinoptilolite detoxifies small mammal's organism loaded with lead II: genetic, cell, and physiological effects.

    PubMed

    Topashka-Ancheva, Margarita; Beltcheva, Michaela; Metcheva, Roumiana; Rojas, J Antonio Heredia; Rodriguez-De la Fuente, Abraham O; Gerasimova, Tsvetelina; Rodríguez-Flores, Laura E; Teodorova, Svetla E

    2012-06-01

    The detoxification capacity of the clinoptilolite modification KLS-10-MA used as food additive in small mammals, chronically lead-exposed, was proven for the first time. The modified clinoptilolite was prepared based on natural Bulgarian clinoptilolite deposits. As a powder, it was mechanically mixed at 12.5% concentration with the conventional forage for small rodents. Lead in the form of aqueous solution of Pb(NO(3))(2) was diluted in the drinking water. In the ecotoxicological experiment covering 90 days, imprinting control region laboratory mice were used. They were allocated into four groups: group 1, (control): animals fed with conventional food for small rodents and water; group 2: animals fed with conventional food + clinosorbent KLS-10-MA and water; group 3: animals fed with conventional food and water + Pb(NO(3))(2); and group 4: animals fed with conventional food + KLS-10-MA and water + Pb(NO(3))(2). A group of non-exposed healthy animals was fed with conventional forage mixed with KLS-10-MA to prove eventual toxicity of the sorbent and influence on growth performance. The changes in the chromosome structure, mitotic index, erythrocyte form, erythropoiesis, and body weight gain were recorded. On day 90, the following relations were established: Pb-exposed and clinoptilolite-supplemented mice exhibited 2.3-fold lower chromosome aberrations frequency, 2.5-fold higher mitotic index, and 1.5-fold higher percentage normal erythrocytes 1.3-fold higher body weight compared to Pb-exposed and unsupplemented animals. The obtained data showed that the sorbent is practically non-toxic. The results of the present study encourage a further elaboration of a reliable drug based on the tested substance in the cases of chronic lead intoxication.

  15. Information and redundancy in the burial folding code of globular proteins within a wide range of shapes and sizes.

    PubMed

    Ferreira, Diogo C; van der Linden, Marx G; de Oliveira, Leandro C; Onuchic, José N; de Araújo, Antônio F Pereira

    2016-04-01

    Recent ab initio folding simulations for a limited number of small proteins have corroborated a previous suggestion that atomic burial information obtainable from sequence could be sufficient for tertiary structure determination when combined to sequence-independent geometrical constraints. Here, we use simulations parameterized by native burials to investigate the required amount of information in a diverse set of globular proteins comprising different structural classes and a wide size range. Burial information is provided by a potential term pushing each atom towards one among a small number L of equiprobable concentric layers. An upper bound for the required information is provided by the minimal number of layers L(min) still compatible with correct folding behavior. We obtain L(min) between 3 and 5 for seven small to medium proteins with 50 ≤ Nr ≤ 110 residues while for a larger protein with Nr = 141 we find that L ≥ 6 is required to maintain native stability. We additionally estimate the usable redundancy for a given L ≥ L(min) from the burial entropy associated to the largest folding-compatible fraction of "superfluous" atoms, for which the burial term can be turned off or target layers can be chosen randomly. The estimated redundancy for small proteins with L = 4 is close to 0.8. Our results are consistent with the above-average quality of burial predictions used in previous simulations and indicate that the fraction of approachable proteins could increase significantly with even a mild, plausible, improvement on sequence-dependent burial prediction or on sequence-independent constraints that augment the detectable redundancy during simulations. © 2016 Wiley Periodicals, Inc.

  16. Acceleration of protein folding by four orders of magnitude through a single amino acid substitution

    PubMed Central

    Roderer, Daniel J. A.; Schärer, Martin A.; Rubini, Marina; Glockshuber, Rudi

    2015-01-01

    Cis prolyl peptide bonds are conserved structural elements in numerous protein families, although their formation is energetically unfavorable, intrinsically slow and often rate-limiting for folding. Here we investigate the reasons underlying the conservation of the cis proline that is diagnostic for the fold of thioredoxin-like thiol-disulfide oxidoreductases. We show that replacement of the conserved cis proline in thioredoxin by alanine can accelerate spontaneous folding to the native, thermodynamically most stable state by more than four orders of magnitude. However, the resulting trans alanine bond leads to small structural rearrangements around the active site that impair the function of thioredoxin as catalyst of electron transfer reactions by more than 100-fold. Our data provide evidence for the absence of a strong evolutionary pressure to achieve intrinsically fast folding rates, which is most likely a consequence of proline isomerases and molecular chaperones that guarantee high in vivo folding rates and yields. PMID:26121966

  17. Introducing the Levinthal's Protein Folding Paradox and Its Solution

    ERIC Educational Resources Information Center

    Martínez, Leandro

    2014-01-01

    The protein folding (Levinthal's) paradox states that it would not be possible in a physically meaningful time to a protein to reach the native (functional) conformation by a random search of the enormously large number of possible structures. This paradox has been solved: it was shown that small biases toward the native conformation result…

  18. Fusion Propulsion and Power for Future Flight

    NASA Technical Reports Server (NTRS)

    Froning, H. D., Jr.

    1996-01-01

    There are innovative magnetic and electric confinement fusion power and propulsion system designs with potential for: vacuum specific impulses of 1500-2000 seconds with rocket engine thrust/mass ratios of 5-10 g's; environmentally favorable exhaust emissions if aneutronic fusion propellants can be used; a 2 to 3-fold reduction in the mass of hypersonic airliners and SSTO aerospace planes; a 10 to 20 fold reduction in Mars expedition mass and cost (if propellant from planetary atmospheres is used); and feasibility or in-feasibility of these systems could be confirmed with a modest applied research and exploratory development cost.

  19. Small space station electrical power system design concepts

    NASA Technical Reports Server (NTRS)

    Jones, G. M.; Mercer, L. N.

    1976-01-01

    A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.

  20. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  1. Electrically detected magnetic resonance in a W-band microwave cavity

    NASA Astrophysics Data System (ADS)

    Lang, V.; Lo, C. C.; George, R. E.; Lyon, S. A.; Bokor, J.; Schenkel, T.; Ardavan, A.; Morton, J. J. L.

    2011-03-01

    We describe a low-temperature sample probe for the electrical detection of magnetic resonance in a resonant W-band (94 GHz) microwave cavity. The advantages of this approach are demonstrated by experiments on silicon field-effect transistors. A comparison with conventional low-frequency measurements at X-band (9.7 GHz) on the same devices reveals an up to 100-fold enhancement of the signal intensity. In addition, resonance lines that are unresolved at X-band are clearly separated in the W-band measurements. Electrically detected magnetic resonance at high magnetic fields and high microwave frequencies is therefore a very sensitive technique for studying electron spins with an enhanced spectral resolution and sensitivity.

  2. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.

    PubMed

    Kharaziha, Mahshid; Shin, Su Ryon; Nikkhah, Mehdi; Topkaya, Seda Nur; Masoumi, Nafiseh; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-08-01

    In the past few years, a considerable amount of effort has been devoted toward the development of biomimetic scaffolds for cardiac tissue engineering. However, most of the previous scaffolds have been electrically insulating or lacked the structural and mechanical robustness to engineer cardiac tissue constructs with suitable electrophysiological functions. Here, we developed tough and flexible hybrid scaffolds with enhanced electrical properties composed of carbon nanotubes (CNTs) embedded aligned poly(glycerol sebacate):gelatin (PG) electrospun nanofibers. Incorporation of varying concentrations of CNTs from 0 to 1.5% within the PG nanofibrous scaffolds (CNT-PG scaffolds) notably enhanced fiber alignment and improved the electrical conductivity and toughness of the scaffolds while maintaining the viability, retention, alignment, and contractile activities of cardiomyocytes (CMs) seeded on the scaffolds. The resulting CNT-PG scaffolds resulted in stronger spontaneous and synchronous beating behavior (3.5-fold lower excitation threshold and 2.8-fold higher maximum capture rate) compared to those cultured on PG scaffold. Overall, our findings demonstrated that aligned CNT-PG scaffold exhibited superior mechanical properties with enhanced CM beating properties. It is envisioned that the proposed hybrid scaffolds can be useful for generating cardiac tissue constructs with improved organization and maturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The Impact of Utility Tariff Evolution on Behind-the-Meter PV Adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J; Gagnon, Pieter J; Frew, Bethany A

    This analysis uses a new method to link the NREL Regional Energy Deployment System (ReEDS) capacity expansion model with the NREL distributed generation market demand model (dGen) to explore the impact that the evolution of retail electricity tariffs can have on the adoption of distributed photovoltaics (DPV). The evolution most notably takes the form of decreased mid-day electricity costs, as low-cost PV reduces the marginal cost of electricity during those hours and the changes are subsequently communicated to electricity consumers through tariffs. We find that even under the low PV prices of the new SunShot targets the financial performance ofmore » DPV under evolved tariffs still motivates behind-the-meter adoption, despite significant reduction in the costs of electricity during afternoon periods driven by deployment of cheap utility-scale PV. The amount of DPV in 2050 in these low-cost futures ranged from 206 GW to 263 GW, a 13-fold and 16-fold increase over 2016 adoption levels respectively. From a utility planner's perspective, the representation of tariff evolution has noteworthy impacts on forecasted DPV adoption in scenarios with widespread time-of-use tariffs. Scenarios that projected adoption under a portfolio of time-of-use tariffs, but did not represent the evolution of those tariffs, predicted up to 36 percent more DPV in 2050, compared to scenarios that did not represent that evolution. Lastly, we find that a reduction in DPV deployment resulting from evolved tariffs had a negligible impact on the total generation from PV - both utility-scale and distributed - in the scenarios we examined. Any reduction in DPV generation was replaced with utility-scale PV generation, to arrive at the quantity that makes up the least-cost portfolio.« less

  4. Shaping up the protein folding funnel by local interaction: lesson from a structure prediction study.

    PubMed

    Chikenji, George; Fujitsuka, Yoshimi; Takada, Shoji

    2006-02-28

    Predicting protein tertiary structure by folding-like simulations is one of the most stringent tests of how much we understand the principle of protein folding. Currently, the most successful method for folding-based structure prediction is the fragment assembly (FA) method. Here, we address why the FA method is so successful and its lesson for the folding problem. To do so, using the FA method, we designed a structure prediction test of "chimera proteins." In the chimera proteins, local structural preference is specific to the target sequences, whereas nonlocal interactions are only sequence-independent compaction forces. We find that these chimera proteins can find the native folds of the intact sequences with high probability indicating dominant roles of the local interactions. We further explore roles of local structural preference by exact calculation of the HP lattice model of proteins. From these results, we suggest principles of protein folding: For small proteins, compact structures that are fully compatible with local structural preference are few, one of which is the native fold. These local biases shape up the funnel-like energy landscape.

  5. Shaping up the protein folding funnel by local interaction: Lesson from a structure prediction study

    PubMed Central

    Chikenji, George; Fujitsuka, Yoshimi; Takada, Shoji

    2006-01-01

    Predicting protein tertiary structure by folding-like simulations is one of the most stringent tests of how much we understand the principle of protein folding. Currently, the most successful method for folding-based structure prediction is the fragment assembly (FA) method. Here, we address why the FA method is so successful and its lesson for the folding problem. To do so, using the FA method, we designed a structure prediction test of “chimera proteins.” In the chimera proteins, local structural preference is specific to the target sequences, whereas nonlocal interactions are only sequence-independent compaction forces. We find that these chimera proteins can find the native folds of the intact sequences with high probability indicating dominant roles of the local interactions. We further explore roles of local structural preference by exact calculation of the HP lattice model of proteins. From these results, we suggest principles of protein folding: For small proteins, compact structures that are fully compatible with local structural preference are few, one of which is the native fold. These local biases shape up the funnel-like energy landscape. PMID:16488978

  6. Absolute comparison of simulated and experimental protein-folding dynamics

    NASA Astrophysics Data System (ADS)

    Snow, Christopher D.; Nguyen, Houbi; Pande, Vijay S.; Gruebele, Martin

    2002-11-01

    Protein folding is difficult to simulate with classical molecular dynamics. Secondary structure motifs such as α-helices and β-hairpins can form in 0.1-10µs (ref. 1), whereas small proteins have been shown to fold completely in tens of microseconds. The longest folding simulation to date is a single 1-µs simulation of the villin headpiece; however, such single runs may miss many features of the folding process as it is a heterogeneous reaction involving an ensemble of transition states. Here, we have used a distributed computing implementation to produce tens of thousands of 5-20-ns trajectories (700µs) to simulate mutants of the designed mini-protein BBA5. The fast relaxation dynamics these predict were compared with the results of laser temperature-jump experiments. Our computational predictions are in excellent agreement with the experimentally determined mean folding times and equilibrium constants. The rapid folding of BBA5 is due to the swift formation of secondary structure. The convergence of experimentally and computationally accessible timescales will allow the comparison of absolute quantities characterizing in vitro and in silico (computed) protein folding.

  7. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric propulsion system. The CMAC neural network approximates the hyper-plane generated from the instantaneous optimization algorithm and produces torque commands for the internal combustion engine and electric motor. The CMAC neural network controller saves on the required memory as compared to a large look-up table by two orders of magnitude. The CMAC controller also prevents the need to compute a hyper-plane or complex logic every time step.

  8. Emplacement of the Rocche Rosse rhyolite lava flow (Lipari, Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Bullock, Liam A.; Gertisser, Ralf; O'Driscoll, Brian

    2018-05-01

    The Rocche Rosse lava flow marks the most recent rhyolitic extrusion on Lipari island (Italy), and preserves evidence for a multi-stage emplacement history. Due to the viscous nature of the advancing lava (108 to 1010 Pa s), indicators of complex emplacement processes are preserved in the final flow. This study focuses on structural mapping of the flow to highlight the interplay of cooling, crust formation and underlying slope in the development of rhyolitic lavas. The flow is made up of two prominent lobes, small (< 0.2 m) to large (> 0.2 m) scale folding and a channelled geometry. Foliations dip at 2-4° over the flatter topography close to the vent, and up to 30-50° over steeper mid-flow topography. Brittle faults, tension gashes and conjugate fractures are also evident across flow. Heterogeneous deformation is evident through increasing fold asymmetry from the vent due to downflow cooling and stagnation. A steeper underlying topography mid-flow led to development of a channelled morphology, and compression at topographic breaks resulted in fold superimposition in the channel. We propose an emplacement history that involved the evolution through five stages, each associated with the following flow regimes: (1) initial extrusion, crustal development and small scale folding; (2) extensional strain, stretching lineations and channel development over steeper topography; (3) compression at topographic break, autobrecciation, lobe development and medium scale folding; (4) progressive deformation with stagnation, large-scale folding and re-folding; and (5) brittle deformation following flow termination. The complex array of structural elements observed within the Rocche Rosse lava flow facilitates comparisons to be made with actively deforming rhyolitic lava flows at the Chilean volcanoes of Chaitén and Cordón Caulle, offering a fluid dynamic and structural framework within which to evaluate our data.

  9. Pressure-jump small-angle x-ray scattering detected kinetics of staphylococcal nuclease folding.

    PubMed Central

    Woenckhaus, J; Köhling, R; Thiyagarajan, P; Littrell, K C; Seifert, S; Royer, C A; Winter, R

    2001-01-01

    The kinetics of chain disruption and collapse of staphylococcal nuclease after positive or negative pressure jumps was monitored by real-time small-angle x-ray scattering under pressure. We used this method to probe the overall conformation of the protein by measuring its radius of gyration and pair-distance-distribution function p(r) which are sensitive to the spatial extent and shape of the particle. At all pressures and temperatures tested, the relaxation profiles were well described by a single exponential function. No fast collapse was observed, indicating that the rate limiting step for chain collapse is the same as that for secondary and tertiary structure formation. Whereas refolding at low pressures occurred in a few seconds, at high pressures the relaxation was quite slow, approximately 1 h, due to a large positive activation volume for the rate-limiting step for chain collapse. A large increase in the system volume upon folding implies significant dehydration of the transition state and a high degree of similarity in terms of the packing density between the native and transition states in this system. This study of the time-dependence of the tertiary structure in pressure-induced folding/unfolding reactions demonstrates that novel information about the nature of protein folding transitions and transition states can be obtained from a combination of small-angle x-ray scattering using high intensity synchrotron radiation with the high pressure perturbation technique. PMID:11222312

  10. Stochastic mixed-mode oscillations in a three-species predator-prey model

    NASA Astrophysics Data System (ADS)

    Sadhu, Susmita; Kuehn, Christian

    2018-03-01

    The effect of demographic stochasticity, in the form of Gaussian white noise, in a predator-prey model with one fast and two slow variables is studied. We derive the stochastic differential equations (SDEs) from a discrete model. For suitable parameter values, the deterministic drift part of the model admits a folded node singularity and exhibits a singular Hopf bifurcation. We focus on the parameter regime near the Hopf bifurcation, where small amplitude oscillations exist as stable dynamics in the absence of noise. In this regime, the stochastic model admits noise-driven mixed-mode oscillations (MMOs), which capture the intermediate dynamics between two cycles of population outbreaks. We perform numerical simulations to calculate the distribution of the random number of small oscillations between successive spikes for varying noise intensities and distance to the Hopf bifurcation. We also study the effect of noise on a suitable Poincaré map. Finally, we prove that the stochastic model can be transformed into a normal form near the folded node, which can be linked to recent results on the interplay between deterministic and stochastic small amplitude oscillations. The normal form can also be used to study the parameter influence on the noise level near folded singularities.

  11. Electric field generated by longitudinal axial microtubule vibration modes with high spatial resolution microtubule model

    NASA Astrophysics Data System (ADS)

    Cifra, M.; Havelka, D.; Deriu, M. A.

    2011-12-01

    Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. It recently was determined from anisotropic elastic network modeling of entire microtubules that the frequencies of microtubule longitudinal axial eigenmodes lie in the region of tens of GHz for the physiologically common microtubule lengths. We calculated electric field generated by axial longitudinal vibration modes of microtubule, which model is based on subnanometer precision of charge distribution. Due to elastoelectric nature of the vibrations, the vibration wavelength is million-fold shorter than that of the electromagnetic field in free space and the electric field around the microtubule manifests rich spatial structure with multiple minima. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of reactions via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play a role in biological self-organization.

  12. Retinal projections in the electric catfish (Malapterurus electricus).

    PubMed

    Ebbesson, S O; O'Donnel, D

    1980-01-01

    The poorly developed visual system of the electric catfish was studied with silver-degeneration methods. Retinal projections were entirely contralateral to the hypothalamic optic nucleus, the lateral geniculate nucleus, the dorsomedial optic nucleus, the pretectal nuclei including the cortical nucleus, and the optic tectum. The small size and lack of differentiation of the visual system in the electric catfish suggest a relatively small role for this sensory system in this species.

  13. Influence of carbon nanoparticle modification on the mechanical and electrical properties of epoxy in small volumes.

    PubMed

    Leopold, Christian; Augustin, Till; Schwebler, Thomas; Lehmann, Jonas; Liebig, Wilfried V; Fiedler, Bodo

    2017-11-15

    The influence of nanoparticle morphology and filler content on the mechanical and electrical properties of carbon nanoparticle modified epoxy is investigated regarding small volumes. Three types of particles, representing spherical, tubular and layered morphologies are used. A clear size effect of increasing true failure strength with decreasing volume is found for neat and carbon black modified epoxy. Carbon nanotube (CNT) modified epoxy exhibits high potential for strength increase, but dispersion and purity are critical. In few layer graphene modified epoxy, particles are larger than statistically distributed defects and initiate cracks, counteracting any size effect. Different toughness increasing mechanisms on the nano- and micro-scale depending on particle morphology are discussed based on scanning electron microscopy images. Electrical percolation thresholds in the small volume fibres are significantly higher compared to bulk volume, with CNT being found to be the most suitable morphology to form electrical conductive paths. Good correlation between electrical resistance change and stress strain behaviour under tensile loads is observed. The results show the possibility to detect internal damage in small volumes by measuring electrical resistance and therefore indicate to the high potential for using CNT modified polymers in fibre reinforced plastics as a multifunctional, self-monitoring material with improved mechanical properties. Copyright © 2017. Published by Elsevier Inc.

  14. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.

    PubMed

    Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-05-05

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.

  15. Response of lead-acid batteries to chopper-controlled discharge: Preliminary results

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1978-01-01

    The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses up to 25 percent compared to constant current discharges at the same average discharge current of 100 amperes. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-ampere pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.

  16. Response of lead-acid batteries to chopper-controlled discharge

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1978-01-01

    The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses at up to 25 percent compared to constant current discharges at the same average discharge current of 100 A. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-A pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.

  17. Folding of the four-helix bundle FF domain from a compact on-pathway intermediate state is governed predominantly by water motion.

    PubMed

    Sekhar, Ashok; Vallurupalli, Pramodh; Kay, Lewis E

    2012-11-20

    Friction plays a critical role in protein folding. Frictional forces originating from random solvent and protein fluctuations both retard motion along the folding pathway and activate protein molecules to cross free energy barriers. Studies of friction thus may provide insights into the driving forces underlying protein conformational dynamics. However, the molecular origin of friction in protein folding remains poorly understood because, with the exception of the native conformer, there generally is little detailed structural information on the other states participating in the folding process. Here, we study the folding of the four-helix bundle FF domain that proceeds via a transiently formed, sparsely populated compact on-pathway folding intermediate whose structure was elucidated previously. Because the intermediate is stabilized by both native and nonnative interactions, friction in the folding transition between intermediate and folded states is expected to arise from intrachain reorganization in the protein. However, the viscosity dependencies of rates of folding from or unfolding to the intermediate, as established by relaxation dispersion NMR spectroscopy, clearly indicate that contributions from internal friction are small relative to those from solvent, so solvent frictional forces drive the folding process. Our results emphasize the importance of solvent dynamics in mediating the interconversion between protein configurations, even those that are highly compact, and in equilibrium folding/unfolding fluctuations in general.

  18. Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal

    PubMed Central

    Chandrakesan, Parthasarathy; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Taylor, Vivian E.; Li, James D.; Ali, Naushad; Sureban, Sripathi M.; Qante, Michael; Wang, Timothy C.; Bronze, Michael S.; Houchen, Courtney W.

    2015-01-01

    To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1+ cells, we FACS-sorted Dclk1+ cells from mouse small intestinal epithelium using transgenic mice expressing YFP under the control of the Dclk1 promoter (Dclk1-CreER;Rosa26-YFP). Analysis of sorted YFP+ cells demonstrated marked enrichment (~6000 fold) for Dclk1 mRNA compared with YFP− cells. Dclk1+ population display ~6 fold enrichment for the putative quiescent stem cell marker Bmi1. We observed significantly greater expression of pluripotency genes, pro-survival genes, and quiescence markers in the Dclk1+ population. A significant increase in self-renewal capability (14-fold) was observed in in vitro isolated Dclk1+ cells. The unique genetic report presented in this manuscript suggests that Dclk1+ cells may maintain quiescence, pluripotency, and metabolic activity for survival/longevity. Functionally, these reserve characteristics manifest in vitro, with Dclk1+ cells exhibiting greater ability to self-renew. These findings indicate that quiescent stem-like functionality is a feature of Dclk1-expressing tuft cells. PMID:26362399

  19. Piezoelectric devices for generating low power

    NASA Astrophysics Data System (ADS)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  20. Towards endoscopic ultrafast laser microsurgery of vocal folds

    NASA Astrophysics Data System (ADS)

    Hoy, Christopher L.; Everett, W. Neil; Yildirim, Murat; Kobler, James; Zeitels, Steven M.; Ben-Yakar, Adela

    2012-03-01

    Vocal fold scarring is a predominant cause of voice disorders yet lacks a reliable treatment method. The injection of soft biomaterials to improve mechanical compliance of the vocal folds has emerged as a promising treatment. Here, we study the use of precise femtosecond laser microsurgery to ablate subsurface voids, with a goal of eventually creating a plane in dense subepithelial scar tissue into which biomaterials can be injected for their improved localization. Specifically, we demonstrate the ablation of small subepithelial voids in porcine vocal fold tissue up to 120 µm below the surface such that larger voids in the active area of vocal fold mucosa (~3×10 mm2) can eventually be ablated in about 3 min. We use sub-µJ, 776-nm pulses from a compact femtosecond fiber laser system operating at a 500-kHz repetition rate. The use of relatively high repetition rates, with a small number of overlapping pulses, is critical to achieving ablation in a very short time while still avoiding significant heat deposition. Additionally, we use the same laser for nonlinear optical imaging to provide visual feedback of tissue structure and to confirm successful ablation. The ablation parameters, including pulse duration, pulse energy, spot size, and scanning speed, are comparable to the specifications in our recently developed miniaturized femtosecond laser surgery probes, illustrating the feasibility of developing an ultrafast laser surgical instrument.

  1. Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Miyashita, S.; Iwase, E.

    2017-12-01

    This paper proposes a micro self-folding using a self-rolling up deformation. In the fabrication method at micro scale, self-folding is an especially useful method of easily fabricating complex three-dimensional (3D) structures from engineered two-dimensional (2D) sheets. However, most self-folded structures are limited to 3D structures with a hollow region. Therefore, we made 3D structures with a small hollow region by self-rolling up a 2D sheet consisting of SU-8 and a temperature-responsive hybrid hydrogel of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The temperature-responsive hydrogel can provide repetitive deformation, which is a good feature for micro soft robots or actuators, using hydrogel shrinking and swelling. Our micro self-rolling up method is a self-folding method for a 3D structure performed by rolling up a 2D flat sheet, like making a croissant, through continuous self-folding. We used our method to fabricate 3D structures with a small hollow region, such as cylindrical, conical, and croissant-like ellipsoidal structures, and 3D structures with a hollow region, such as spiral shapes. All the structures showed repetitive deformation, forward rolling up in 20 °C cold water and backward rolling up in 40 °C hot water. The results demonstrate that self-rolling up deformation can be useful in the field of micro soft devices.

  2. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    PubMed

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  3. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    PubMed Central

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  4. Development of the consumption behavior that promotes sustainable society: Focusing on recycling of small waste home appliances

    NASA Astrophysics Data System (ADS)

    Ichinose, Takae

    2015-04-01

    Hiroshima University High School (HUHS) became the first UNESCO Associated School in Japan in 1953, and since then it has practiced ESD in various educational activities in all ranges of education. As a teacher of home economics, I have focused on consumer affairs and encouraged my students to consider what each of them can do as an individual consumer in order to create a sustainable society. In Japan, several acts related to consumer affairs have been enforced in recent years. "Act on Promotion of Consumer Education" was enforced in December 2012, and construction of the "Consumer Citizen Society" was proposed. It places emphasis not only on environmental concerns but also on the initiative of consumers and its influence on social and economic trends. In addition, "Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment" was enforced in April, 2013. It aims at protecting living environment and healthy development of the national economy by appropriate treatment of waste materials and effective use of resources. For my lessons on "food, clothing and shelter in relation to consumption behavior and environmental problems", I took up "the recycling of small waste home appliances" as the teaching materials to raise awareness on resources recycling. The purpose of the lessons is three-fold: (1) to make students aware of environmental load; (2) to deepen the understanding of the influence which excessive consumption has on developing countries; (3) to encourage the students to think positively toward the solution of the problems. I am currently practicing the lessons, and I have shown below the summary of the instruction. Lesson 1: Give a quiz based on the database on environmental label from Ministry of the Environment website. Then show a film on whereabouts of the hi-tech industrial waste (e-waste). After the film, show some everyday products for which mineral resources are used in order to impress the idea of "urban mine". Lesson 2: Show a video site on "Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment" uploaded by the Ministry of the Environment. The video site is shown with reference to "Basel Convention" and "Waste Electrical and Electronic Equipment Directive", which have been already taught in social study class. After the video, tell the students what DOWA Holdings Co., Ltd. group has accomplished with its DOWA ecosystem as a frontrunner of the recycling of small waste home appliances, and make the students think about the responsibilities of consumers. Through these lessons, I expect my students to be aware of the influence of their consumption behavior and think over eco-friendly lifestyles and support for developing countries. Consideration for others, not only for people at present but for future generations, will surely cultivate willingness to contribute to sustainable development.

  5. Effect of Electric Field on CO2 Photoreduction by TiO2 Film

    NASA Astrophysics Data System (ADS)

    Huang, Zhengfeng; Cheng, Xudong; Dong, Peimei; Zhang, Xiwen

    2017-02-01

    To mitigate the greenhouse effect, many studies have been carried out to improve the CO2 conversion efficiency of TiO2. Modification of TiO2 has been intensively investigated, but the influence of an electric field on photoreduction by this material remains largely unknown. Accordingly, in this study, we explored the effect of an electric field on the photoreduction process using a porous TiO2-Ti material. The results indicated that the CO yield improved 85-fold (equivalent to 4772 μmol/g h) when a 30-kV voltage was applied during the reduction process. To make the electric field effect fully functional, we also explored the effect of water on the photoreduction process, finding that TiO2 showed the highest conversion rate when the humidity was controlled at 50% relative humidity (RH).

  6. Dumbo: A pachydermal rocket motor

    NASA Technical Reports Server (NTRS)

    Kirk, Bill

    1991-01-01

    A brief historical account is given of the Dumbo nuclear reactor, a type of folded flow reactor that could be used for rocket propulsion. Much of the information is given in viewgraph form. Viewgraphs show details of the reactor system, fuel geometry, and key characteristics of the system (folded flow, use of fuel washers, large flow area, small fuel volume, hybrid modulator, and cermet fuel).

  7. Resistant Starch: Variation among High Amylose Rice Varieties and Its Relationship with Apparent Amylose Content, Pasting Properties and Cooking Methods

    USDA-ARS?s Scientific Manuscript database

    Resistant starch (RS), which is not hydrolyzed in the small intestines, has proposed health benefits. We evaluated a set of 40 high amylose rice varieties for RS levels in cooked rice and approximately a 1.9-fold difference was found. The highest ones had more than two-fold greater RS concentration ...

  8. Endocide-Induced Abnormal Growth Forms of Invasive Giant Salvinia (Salvinia molesta).

    PubMed

    Li, Shiyou; Wang, Ping; Su, Zushang; Lozano, Emily; LaMaster, Olivia; Grogan, Jason B; Weng, Yuhui; Decker, Thomas; Findeisen, John; McGarrity, Monica

    2018-05-22

    Giant salvinia (Salvinia molesta) is one of the most noxious invasive species in the world. The fern is known to have primary, secondary, and tertiary growth forms, which are also commonly hypothesized as growth stages. The identification of these forms is primarily based on the size and folding status of the floating leaves. However, we identified 12 forms in the greenhouse and the field. Our experiments showed that the folding of floating leaves is a reversible trait dependent on water access. The floating leaves quickly fold in response to water shortage, reducing water loss and needs, decreasing growth, and avoiding trichome damage. The leaves re-open to allow trichomes repel water and enhance growth when having adequate water supply. Larger secondary or tertiary forms do not produce small-leaf primary forms without high intensity stress. These results do not support the hypothesis that three growth forms represent sequential growth stages. The abnormal small-leaf forms are the result of endocide-induced autotoxicity and some of them never grow into other forms. The development of abnormal forms and reversible leaf folding strategy in response to high stress along with rapid asexual reproduction are major adaptive traits contributing to the invasiveness of S. molesta.

  9. Atomic-level characterization of the structural dynamics of proteins.

    PubMed

    Shaw, David E; Maragakis, Paul; Lindorff-Larsen, Kresten; Piana, Stefano; Dror, Ron O; Eastwood, Michael P; Bank, Joseph A; Jumper, John M; Salmon, John K; Shan, Yibing; Wriggers, Willy

    2010-10-15

    Molecular dynamics (MD) simulations are widely used to study protein motions at an atomic level of detail, but they have been limited to time scales shorter than those of many biologically critical conformational changes. We examined two fundamental processes in protein dynamics--protein folding and conformational change within the folded state--by means of extremely long all-atom MD simulations conducted on a special-purpose machine. Equilibrium simulations of a WW protein domain captured multiple folding and unfolding events that consistently follow a well-defined folding pathway; separate simulations of the protein's constituent substructures shed light on possible determinants of this pathway. A 1-millisecond simulation of the folded protein BPTI reveals a small number of structurally distinct conformational states whose reversible interconversion is slower than local relaxations within those states by a factor of more than 1000.

  10. Statistical properties of a folded elastic rod

    NASA Astrophysics Data System (ADS)

    Bayart, Elsa; Deboeuf, Stéphanie; Boué, Laurent; Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar

    2010-03-01

    A large variety of elastic structures naturally seem to be confined into environments too small to accommodate them; the geometry of folded structures span a wide range of length-scales. The elastic properties of these confined systems are further constrained by self-avoidance as well as by the dimensionality of both structures and container. To mimic crumpled paper, we devised an experimental setup to study the packing of a dimensional elastic object in 2D geometries: an elastic rod is folded at the center of a circular Hele-Shaw cell by a centripetal force. The initial configuration of the rod and the acceleration of the rotating disk allow to span different final folded configurations while the final rotation speed controls the packing intensity. Using image analysis we measure geometrical and mechanical properties of the folded configurations, focusing on length, curvature and energy distributions.

  11. Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore

    PubMed Central

    Park, Doo Hyun; Zeikus, J. Gregory

    2000-01-01

    Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells. PMID:10742202

  12. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Test specimens shall be 3 in. in width and 9 in. in length. They shall be free from folds or wrinkles..., Tentative Methods of Conditioning Plastics and Electrical Insulating Materials for Testing. (c) Procedure... flame. The sample shall be free from wrinkles or distortion when the holder is closed. The specimen...

  13. 16 CFR 1611.4 - Flammability test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Test specimens shall be 3 in. in width and 9 in. in length. They shall be free from folds or wrinkles..., Tentative Methods of Conditioning Plastics and Electrical Insulating Materials for Testing. (c) Procedure... flame. The sample shall be free from wrinkles or distortion when the holder is closed. The specimen...

  14. Predictors for presence and abundance of small mammals in households of villages endemic for commensal rodent plague in Yunnan Province, China

    PubMed Central

    Yin, Jia-Xiang; Geater, Alan; Chongsuvivatwong, Virasakdi; Dong, Xing-Qi; Du, Chun-Hong; Zhong, You-Hong; McNeil, Edward

    2008-01-01

    Background Ninety-one rodent plague epidemics have occurred in Lianghe county, Yunnan Province, China, between 1990 and 2006. This study aimed to identify predictors for the presence and abundance of small mammals in households of villages endemic for rodent plague in Lianghe county. Results Rattus flavipectus and Suncus murinus were the two species captured in 110 households. Keeping cats decreased the number of captures of R. flavipectus by one to two thirds and the chance of reported small mammal sightings in houses by 60 to 80%. Food availability was associated with fewer captures. Keeping food in sacks decreased the small mammal captures, especially of S. murinus 4- to 8-fold. Vegetables grown around house and maize grown in the village reduced the captures of S. murinus and R. flavipectus by 73 and 45%, respectively. An outside toilet and garbage piles near the house each reduced R. flavipectus captures by 39 and 37%, respectively, while raising dogs and the presence of communal latrines in the village increased R. flavipectus captures by 76 and 110% but were without detectable effect on small mammal sightings. Location adjacent to other houses increased captures 2-fold but reduced the chance of sightings to about half. In addition, raising ducks increased the chance of sighting small mammals 2.7-fold. Even after adjusting for these variables, households of the Dai had higher captures than those of the Han and other ethnic groups. Conclusion Both species captures were reduced by availability of species-specific foods in the environment, whereas other predictors for capture of the two species differed. Other than the beneficial effect of cats, there were also discrepancies between the effects on small mammal captures and those on sightings. These differences should be considered during the implementation and interpretation of small mammal surveys. PMID:19068139

  15. Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations

    PubMed Central

    Porto, Markus; Bastolla, Ugo

    2010-01-01

    Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction. PMID:20463869

  16. Mediation of the effect of malaria in pregnancy on stillbirth and neonatal death in an area of low transmission: observational data analysis.

    PubMed

    Moore, Kerryn A; Fowkes, Freya J I; Wiladphaingern, Jacher; Wai, Nan San; Paw, Moo Kho; Pimanpanarak, Mupawjay; Carrara, Verena I; Raksuansak, Jathee; Simpson, Julie A; White, Nicholas J; Nosten, François; McGready, Rose

    2017-05-10

    Malaria in pregnancy is preventable and contributes significantly to the estimated 5.5 million stillbirths and neonatal deaths that occur annually. The contribution of malaria in pregnancy in areas of low transmission has not been quantified, and the roles of maternal anaemia, small-for-gestational-age status, and preterm birth in mediating the effect of malaria in pregnancy on stillbirth and neonatal death are poorly elucidated. We analysed observational data routinely collected at antenatal clinics on the Thai-Myanmar border (1986-2015). We used Cox regression and sequential mediation analysis to determine the effect of falciparum and vivax malaria in pregnancy on antepartum (death in utero) and intrapartum (death during labour) stillbirth and neonatal mortality as well as mediation through maternal anaemia, preterm birth, and small-for-gestational-age status. Of 61,836 women, 9350 (15%) had malaria in pregnancy, and 526 (0.8%) had stillbirths. In a sub-set of 9090 live born singletons followed from birth there were 153 (1.7%) neonatal deaths. The hazard of antepartum stillbirth increased 2.24-fold [95% confidence interval: 1.47, 3.41] following falciparum malaria (42% mediated through small-for-gestational-age status and anaemia), driven by symptomatic falciparum malaria (hazard ratio, HR: 2.99 [1.83, 4.89]) rather than asymptomatic falciparum malaria (HR: 1.35 [0.61, 2.96]). The hazard of antepartum stillbirth increased 2.21-fold [1.12, 4.33] following symptomatic vivax malaria (24% mediated through small-for-gestational-age status and anaemia) but not asymptomatic vivax malaria (HR: 0.54 [0.20, 1.45]). There was no association between falciparum or vivax malaria in pregnancy and intrapartum stillbirth (falciparum HR: 1.03 [0.58, 1.83]; vivax HR: 1.18 [0.66, 2.11]). Falciparum and vivax malaria in pregnancy increased the hazard of neonatal death 2.55-fold [1.54, 4.22] and 1.98-fold [1.10, 3.57], respectively (40% and 50%, respectively, mediated through small-for-gestational-age status and preterm birth). Prevention of malaria in pregnancy, new and existing interventions to prevent small-for-gestational-age status and maternal anaemia, and improved capacity for managing preterm and small-for-gestational-age newborns will reduce the number of malaria-associated stillbirths and neonatal deaths in malaria-endemic areas.

  17. Evidence that dirty electricity is causing the worldwide epidemics of obesity and diabetes.

    PubMed

    Milham, Samuel

    2014-01-01

    The epidemics of obesity and diabetes most apparent in recent years had their origins with Thomas Edison's development of distributed electricity in New York City in 1882. His original direct current (DC) generators suffered serious commutator brush arcing which is a major source of high-frequency voltage transients (dirty electricity). From the onset of the electrical grid, electrified populations have been exposed to dirty electricity. Diesel generator sets are a major source of dirty electricity today and are used almost universally to electrify small islands and places unreachable by the conventional electric grid. This accounts for the fact that diabetes prevalence, fasting plasma glucose and obesity are highest on small islands and other places electrified by generator sets and lowest in places with low levels of electrification like sub-Saharan Africa and east and Southeast Asia.

  18. Electricity Customers

    EPA Pesticide Factsheets

    Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity, although it could increase.

  19. Energy landscape of knotted protein folding

    PubMed Central

    Sułkowska, Joanna I.; Noel, Jeffrey K.; Onuchic, Jose N.

    2012-01-01

    Recent experiments have conclusively shown that proteins are able to fold from an unknotted, denatured polypeptide to the knotted, native state without the aid of chaperones. These experiments are consistent with a growing body of theoretical work showing that a funneled, minimally frustrated energy landscape is sufficient to fold small proteins with complex topologies. Here, we present a theoretical investigation of the folding of a knotted protein, 2ouf, engineered in the laboratory by a domain fusion that mimics an evolutionary pathway for knotted proteins. Unlike a previously studied knotted protein of similar length, we see reversible folding/knotting and a surprising lack of deep topological traps with a coarse-grained structure-based model. Our main interest is to investigate how evolution might further select the geometry and stiffness of the threading region of the newly fused protein. We compare the folding of the wild-type protein to several mutants. Similarly to the wild-type protein, all mutants show robust and reversible folding, and knotting coincides with the transition state ensemble. As observed experimentally, our simulations show that the knotted protein folds about ten times slower than an unknotted construct with an identical contact map. Simulated folding kinetics reflect the experimentally observed rollover in the folding limbs of chevron plots. Successful folding of the knotted protein is restricted to a narrow range of temperature as compared to the unknotted protein and fits of the kinetic folding data below folding temperature suggest slow, nondiffusive dynamics for the knotted protein. PMID:22891304

  20. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    PubMed Central

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; Ramanathan, Arvind; Zhang, Weixing; Shelat, Anang A.; Zuo, Jian; Kriwacki, Richard W.

    2015-01-01

    Disordered proteins are highly prevalent in biological systems, they control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule:disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of-principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A). PMID:26507530

  1. Discovery of Small Molecules that Inhibit the Disordered Protein, p27 Kip1

    DOE PAGES

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; ...

    2015-10-28

    In disordered proteins we see that they are highly prevalent in biological systems. They control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27 Kip1 (p27). Moreover, two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groupsmore » of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule: disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of- principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A).« less

  2. Nonpeptide-Based Small-Molecule Probe for Fluorogenic and Chromogenic Detection of Chymotrypsin.

    PubMed

    Wu, Lei; Yang, Shu-Hou; Xiong, Hao; Yang, Jia-Qian; Guo, Jun; Yang, Wen-Chao; Yang, Guang-Fu

    2017-03-21

    We report herein a nonpeptide-based small-molecule probe for fluorogenic and chromogenic detection of chymotrypsin, as well as the primary application for this probe. This probe was rationally designed by mimicking the peptide substrate and optimized by adjusting the recognition group. The refined probe 2 exhibits good specificity toward chymotrypsin, producing about 25-fold higher enhancement in both the fluorescence intensity and absorbance upon the catalysis by chymotrypsin. Compared with the most widely used peptide substrate (AMC-FPAA-Suc) of chymotrypsin, probe 2 shows about 5-fold higher binding affinity and comparable catalytical efficiency against chymotrypsin. Furthermore, it was successfully applied for the inhibitor characterization. To the best of our knowledge, probe 2 is the first nonpeptide-based small-molecule probe for chymotrypsin, with the advantages of simple structure and high sensitivity compared to the widely used peptide-based substrates. This small-molecule probe is expected to be a useful molecular tool for drug discovery and chymotrypsin-related disease diagnosis.

  3. 77 FR 9303 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...

  4. Improved computer-aided detection of small polyps in CT colonography using interpolation for curvature estimationa

    PubMed Central

    Liu, Jiamin; Kabadi, Suraj; Van Uitert, Robert; Petrick, Nicholas; Deriche, Rachid; Summers, Ronald M.

    2011-01-01

    Purpose: Surface curvatures are important geometric features for the computer-aided analysis and detection of polyps in CT colonography (CTC). However, the general kernel approach for curvature computation can yield erroneous results for small polyps and for polyps that lie on haustral folds. Those erroneous curvatures will reduce the performance of polyp detection. This paper presents an analysis of interpolation’s effect on curvature estimation for thin structures and its application on computer-aided detection of small polyps in CTC. Methods: The authors demonstrated that a simple technique, image interpolation, can improve the accuracy of curvature estimation for thin structures and thus significantly improve the sensitivity of small polyp detection in CTC. Results: Our experiments showed that the merits of interpolating included more accurate curvature values for simulated data, and isolation of polyps near folds for clinical data. After testing on a large clinical data set, it was observed that sensitivities with linear, quadratic B-spline and cubic B-spline interpolations significantly improved the sensitivity for small polyp detection. Conclusions: The image interpolation can improve the accuracy of curvature estimation for thin structures and thus improve the computer-aided detection of small polyps in CTC. PMID:21859029

  5. Effect of strong electric field on the conformational integrity of insulin.

    PubMed

    Wang, Xianwei; Li, Yongxiu; He, Xiao; Chen, Shude; Zhang, John Z H

    2014-10-02

    A series of molecular dynamics (MD) simulations up to 1 μs for bovine insulin monomer in different external electric fields were carried out to study the effect of external electric field on conformational integrity of insulin. Our results show that the secondary structure of insulin is kept intact under the external electric field strength below 0.15 V/nm, but disruption of secondary structure is observed at 0.25 V/nm or higher electric field strength. Although the starting time of secondary structure disruption of insulin is not clearly correlated with the strength of the external electric field ranging between 0.15 and 0.60 V/nm, long time MD simulations demonstrate that the cumulative effect of exposure time under the electric field is a major cause for the damage of insulin's secondary structure. In addition, the strength of the external electric field has a significant impact on the lifetime of hydrogen bonds when it is higher than 0.60 V/nm. The fast evolution of some hydrogen bonds of bovine insulin in the presence of the 1.0 V/nm electric field shows that different microwaves could either speed up protein folding or destroy the secondary structure of globular proteins deponding on the intensity of the external electric field.

  6. PROTERAN: animated terrain evolution for visual analysis of patterns in protein folding trajectory.

    PubMed

    Zhou, Ruhong; Parida, Laxmi; Kapila, Kush; Mudur, Sudhir

    2007-01-01

    The mechanism of protein folding remains largely a mystery in molecular biology, despite the enormous effort from many groups in the past decades. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates such as the fraction of native contacts, the radius of gyration and so on. In this paper, we present an integrated approach towards understanding the folding process via visual analysis of patterns of these reaction coordinates. The three disparate processes (1) protein folding simulation, (2) pattern elicitation and (3) visualization of patterns, work in tandem. Thus as the protein folds, the changing landscape in the pattern space can be viewed via the visualization tool, PROTERAN, a program we developed for this purpose. We first present an incremental (on-line) trie-based pattern discovery algorithm to elicit the patterns and then describe the terrain metaphor based visualization tool. Using two example small proteins, a beta-hairpin and a designed protein Trp-cage, we next demonstrate that this combined pattern discovery and visualization approach extracts crucial information about protein folding intermediates and mechanism.

  7. In silico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level

    PubMed Central

    Yang, Changwon; Kulkarni, Mandar; Lim, Manho

    2017-01-01

    Abstract The reversible folding of the thrombin-binding DNA aptamer G-quadruplexes (GQs) (TBA-15) starting from fully unfolded states was demonstrated using a prolonged time scale (10–12 μs) parallel tempering metadynamics (PTMetaD) simulation method in conjunction with a modified version of the AMBER bsc1 force field. For unbiased descriptions of the folding free energy landscape of TBA-15, this force field was minimally modified. From this direct folding simulation using the modified bsc1 force field, reasonably converged free energy landscapes were obtained in K+-rich aqueous solution (150 mM), providing detailed atomistic pictures of GQ folding mechanisms for TBA-15. This study found that the TBA folding occurred via multiple folding pathways with two major free energy barriers of 13 and 15 kcal/mol in the presence of several intermediate states of G-triplex variants. The early formation of these intermediates was associated with a single K+ ion capturing. Interestingly, these intermediate states appear to undergo facile transitions among themselves through relatively small energy barriers. PMID:29112755

  8. Improving breakdown voltage performance of SOI power device with folded drift region

    NASA Astrophysics Data System (ADS)

    Qi, Li; Hai-Ou, Li; Ping-Jiang, Huang; Gong-Li, Xiao; Nian-Jiong, Yang

    2016-07-01

    A novel silicon-on-insulator (SOI) high breakdown voltage (BV) power device with interlaced dielectric trenches (IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer, which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges (holes) at the corner of IDT. The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V. Project supported by the Guangxi Natural Science Foundation of China (Grant Nos. 2013GXNSFAA019335 and 2015GXNSFAA139300), Guangxi Experiment Center of Information Science of China (Grant No. YB1406), Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing of China, Key Laboratory of Cognitive Radio and Information Processing (Grant No. GXKL061505), Guangxi Key Laboratory of Automobile Components and Vehicle Technology of China (Grant No. 2014KFMS04), and the National Natural Science Foundation of China (Grant Nos. 61361011, 61274077, and 61464003).

  9. [Self-made "electric chair" for sexually motivated child abuse of children].

    PubMed

    Rothschild, Markus A; Vendura, Klaus; Kell, Gerald

    2007-01-01

    A 52-year-old man had altered a wooden folding chair by placing two electrodes and a circuit underneath the seat. Using a remote control, he was able to give electric shocks to a person sitting on the chair. He used this device on more than 50 children, video-taping their reactions for his own pleasure. There are no reports that any of the children suffered a lasting damage to their health. The construction as well as the function and the electrical parameters of the chair were examined by forensic specialists. According to their expertise, the construction was not able to cause a potentially life-threatening condition when used with healthy children. The perpetrator was convicted for bodily harm etc.

  10. Stream response to repeated coseismic folding, Tiptonville dome, New Madrid seismic zone

    NASA Astrophysics Data System (ADS)

    Guccione, M. J.; Mueller, K.; Champion, J.; Shepherd, S.; Carlson, S. D.; Odhiambo, B.; Tate, A.

    2002-03-01

    Fluvial response to tectonic deformation is dependent on the amount and style of surface deformation and the relative size of the stream. Active folding in the New Madrid seismic zone (NMSZ) forms the Tiptonville dome, a 15-km long and 5-km wide surface fold with up to 11 m of late Holocene structural relief. The fold is crossed by streams of varying size, from the Mississippi River to small flood-plain streams. Fluvial response of these streams to repeated coseismic folding has only been preserved for the past 2.3 ka, since the Tiptonville meander of the Mississippi River migrated across the area forming the present flood plain. This surface comprises a sandy point-bar deposit locally overlain by clayey overbank and silty sand crevasse-splay deposits, an abandoned chute channel infilled with laminated sandy silt and silty clay, and an abandoned neck cutoff filled with a sandy cutoff bar and silty clay oxbow lake deposits. Dating various stream responses to coseismic folding has more tightly constrained the timing of earthquake events in the central NMSZ and provides a means of partitioning the deformation amount into individual seismic events. Three earthquakes have been dated in the Reelfoot Lake area, ca. A.D. 900, 1470, and 1812. The latter two earthquakes had large local coseismic deformation. Both of these events were responsible for numerous stream responses such as shifting depocenters, modification of Mississippi River channel geometry, and derangement of small streams. Overbank sedimentation ceased on the dome as it was uplifted above the normal flood stage, and sedimentation of crevasse-splay deposits from the Mississippi River, colluvium from the scarp, and lacustrine sediment accumulated in the adjacent Reelfoot basin. The much larger Mississippi River channel responded to uplift by increasing its sinuosity across the uplift relative to both upstream and downstream, increasing its width/depth ratio across and downstream of the uplift, and decreasing the width/depth ratio upstream of the uplift. Despite the size of the Mississippi River, it has not yet attained equilibrium since the latest uplift 190 years ago. Small channels that could not downcut through the uplift were filled, locally reversed flow direction, or formed a lake where they were dammed. Uplift and stream response to folding along the Tiptonville dome is less dramatic between 2.3 and 0.53 ka. During this interval, abandoned channel fill and overbank deposition across the dome suggests that it was not a high-relief feature. One earthquake event occurred during this interval (ca. A.D. 900), but coseismic stream response was probably limited to a slight aggradation of a small flood-plain stream.

  11. Viscoelasticity of rabbit vocal folds after injection augmentation.

    PubMed

    Dahlqvist, Ake; Gärskog, Ola; Laurent, Claude; Hertegård, Stellan; Ambrosio, Luigi; Borzacchiello, Assunta

    2004-01-01

    Vocal fold function is related to the viscoelasticity of the vocal fold tissue. Augmentation substances used for injection treatment of voice insufficiency may alter the viscoelastic properties of vocal folds and their vibratory capacity. The objective was to compare the mechanical properties (viscoelasticity) of various injectable substances and the viscoelasticity of rabbit vocal folds, 6 months after injection with one of these substances. Animal model. Cross-linked collagen (Zyplast), double cross-linked hyaluronan (hylan B gel), dextranomers in hyaluronan (DHIA), and polytetrafluoroethylene (Teflon) were injected into rabbit vocal folds. Six months after the injection, the animals were killed and the right- and left-side vocal folds were removed. Dynamic viscosity of the injected substances and the vocal folds was measured with a Bohlin parallel-plate rheometer during small-amplitude oscillation. All injected vocal folds showed a decreasing dynamic viscosity with increasing frequency. Hylan B gel and DiHA showed the lowest dynamic viscosity values, and vocal folds injected with these substances also showed the lowest dynamic viscosity (similar to noninjected control samples). Teflon (and vocal folds injected with Teflon) showed the highest dynamic viscosity values, followed by the collagen samples. Substances with low viscoelasticity alter the mechanical properties of the vocal fold to a lesser degree than substances with a high viscoelasticity. The data indicated that hylan B gel and DiHA render the most natural viscoelastic properties to the vocal folds. These substances seem to be appropriate for preserving or restoring the vibratory capacity of the vocal folds when glottal insufficiency is treated with augmentative injections.

  12. Unraveling metamaterial properties in zigzag-base folded sheets.

    PubMed

    Eidini, Maryam; Paulino, Glaucio H

    2015-09-01

    Creating complex spatial objects from a flat sheet of material using origami folding techniques has attracted attention in science and engineering. In the present work, we use the geometric properties of partially folded zigzag strips to better describe the kinematics of known zigzag/herringbone-base folded sheet metamaterials such as Miura-ori. Inspired by the kinematics of a one-degree of freedom zigzag strip, we introduce a class of cellular folded mechanical metamaterials comprising different scales of zigzag strips. This class of patterns combines origami folding techniques with kirigami. Using analytical and numerical models, we study the key mechanical properties of the folded materials. We show that our class of patterns, by expanding on the design space of Miura-ori, is appropriate for a wide range of applications from mechanical metamaterials to deployable structures at small and large scales. We further show that, depending on the geometry, these materials exhibit either negative or positive in-plane Poisson's ratios. By introducing a class of zigzag-base materials in the current study, we unify the concept of in-plane Poisson's ratio for similar materials in the literature and extend it to the class of zigzag-base folded sheet materials.

  13. Method for evaluating toner adhesion on copier paper

    Treesearch

    C. Tim Scott; Roland Gleisner; Jeanne Dahlke-Bauman

    2000-01-01

    A new instrument and technique developed at the USDA Forest Service, Forest Products Laboratory to evaluate the adhesion of inks on paper was used to study toner loss on copier papers. This instrument creates a fold with a very small radius in the printed region of a paper specimen. This fold is repeatedly rolled through the specimen until the desired degree of wear is...

  14. The small angle x-ray scattering of globular proteins in solution during heat denaturation

    NASA Astrophysics Data System (ADS)

    Banuelos, Jose; Urquidi, Jacob

    2008-10-01

    The ability of proteins to change their conformation in response to changes in their environment has consequences in biological processes like metabolism, chemical regulation in cells, and is believed to play a role in the onset of several neurodegenerative diseases. Factors such as a change in temperature, pressure, and the introduction of ions into the aqueous environment of a protein can give rise to the folding/unfolding of a protein. As a protein unfolds, the ratio of nonpolar to polar groups exposed to water changes, affecting a protein's thermodynamic properties. Using small angle x-ray scattering (SAXS), we are currently studying the intermediate protein conformations that arise during the folding/unfolding process as a function of temperature for five globular proteins. Trends in the observed intermediate structures of these globular proteins, along with correlations with data on protein thermodynamics may help elucidate shared characteristics between all proteins in the folding/unfolding process. Experimental design considerations will be discussed and preliminary results for some of these systems will be presented.

  15. Strain and vorticity analysis using small-scale faults and associated drag folds

    NASA Astrophysics Data System (ADS)

    Gomez-Rivas, Enrique; Bons, Paul D.; Griera, Albert; Carreras, Jordi; Druguet, Elena; Evans, Lynn

    2007-12-01

    Small-scale faults with associated drag folds in brittle-ductile rocks can retain detailed information on the kinematics and amount of deformation the host rock experienced. Measured fault orientation ( α), drag angle ( β) and the ratio of the thickness of deflected layers at the fault ( L) and further away ( T) can be compared with α, β and L/ T values that are calculated with a simple analytical model. Using graphs or a numerical best-fit routine, one can then determine the kinematic vorticity number and initial fault orientation that best fits the data. The proposed method was successfully tested on both analogue experiments and numerical simulations with BASIL. Using this method, a kinematic vorticity number of one (dextral simple shear) and a minimum finite strain of 2.5-3.8 was obtained for a population of antithetic faults with associated drag folds in a case study area at Mas Rabassers de Dalt on Cap de Creus in the Variscan of the easternmost Pyrenees, Spain.

  16. Limited fluid in carbonate-shale hosted thrust faults of the Rocky Mountain Fold-and-Thrust Belt (Sun River Canyon, Montana)

    NASA Astrophysics Data System (ADS)

    OBrien, V. J.; Kirschner, D. L.

    2001-12-01

    It is widely accepted that fluids play a fundamental role in the movement of thrust faults in foreland fold-and-thrust belts. We have begun a combined structure-geochemistry study of faults in the Rocky Mountain fold-and-thrust belt in order to provide more insight into the occurrence and role(s) of fluid in the deformation of thrust faults. We focus on faults exposed in the Sun River Canyon of Montana, an area that contains some of the best exposures of the Rocky Mountain fold-and-thrust belt in the U.S. Samples were collected from two well exposed thrusts in the Canyon -- the Diversion and French thrusts. Both faults have thrust Mississippian dolostones over Cretaceous shales. Displacement exceeds several kilometers. Numerous small-displacement, subsidiary faults characterize the deformation in the hanging wall carbonates. The footwall shales accommodated more penetrative deformation, resulting in well developed foliation and small-scale folds. Stable isotope data have been obtained from host rock samples and veins from these faults. The data delimit an arcuate trend in oxygen-carbon isotope space. Approximately 50 host rock carbonate samples from the hanging walls have carbon and oxygen isotope values ranging from +3 to 0 and 28 to 19 per mil, respectively. There is no apparent correlation between isotopic values and distance from thrust fault at either locality. Fifteen samples of fibrous slickensides on small-displacement faults in the hanging walls have similar carbon and lower oxygen isotope values (down to 16 per mil). And 15 veins that either post-date thrusting or are of indeterminate origin have carbon and oxygen isotope values down to -3 and12 per mil, respectively. The isotopic data collected during the initial stages of this project are similar to some results obtained several hundred kilometers north in the Front Ranges of the Canadian Rockies (Kirschner and Kennedy, JGR 2000) and in carbonate fold-thrust belts of the Swiss Helvetic Alps and Italian Apennines. These data are consistent with limited infiltration of fluid through fractures and minor faults into hanging walls of large-displacement thrust faults.

  17. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects.

    PubMed

    Liang, Di; Fiorentino, Marco; Okumura, Tadashi; Chang, Hsu-Hao; Spencer, Daryl T; Kuo, Ying-Hao; Fang, Alexander W; Dai, Daoxin; Beausoleil, Raymond G; Bowers, John E

    2009-10-26

    We demonstrate an electrically-pumped hybrid silicon microring laser fabricated by a self-aligned process. The compact structure (D = 50 microm) and small electrical and optical losses result in lasing threshold as low as 5.4 mA and up to 65 degrees C operation temperature in continuous-wave (cw) mode. The spectrum is single mode with large extinction ratio and small linewidth observed. Application as on-chip optical interconnects is discussed from a system perspective.

  18. Electron-phonon coupling and phonon subbands in small, electrically heated metal wires

    NASA Astrophysics Data System (ADS)

    Perrin, N.; Wybourne, M. N.

    1996-02-01

    The initial work of Perrin and Budd is extended to small metal wires in which the usual bulk phonon spectrum is modified into a series of acoustic subbands at low temperature. We analyze the contribution of the subbands to the lack of equilibrium between the electrons and the phonons in the wire heated by an applied electric field. The resulting electrical behavior of the wire is also considered and compared to experimental results.

  19. The Est3 protein associates with yeast telomerase through an OB-fold domain

    PubMed Central

    Lee, Jaesung S.; Mandell, Edward K.; Tucey, Timothy M.; Morris, Danna K.; Victoria, Lundblad

    2009-01-01

    The Est3 protein is a small regulatory subunit of yeast telomerase which is dispensable for enzyme catalysis but essential for telomere replication in vivo. Using structure prediction combined with in vivo characterization, we show here that Est3 consists of a predicted OB (oligo-saccharide/oligo-nucleotide binding) fold. Mutagenesis of predicted surface residues was used to generate a functional map of one surface of Est3, which identified a site that mediates association with the telomerase complex. Surprisingly, the predicted OB-fold of Est3 is structurally similar to the OB-fold of the mammalian TPP1 protein, despite the fact that Est3 and TPP1, as components of telomerase and a telomere capping complex, respectively, perform functionally distinct tasks at chromosome ends. The analysis performed on Est3 may be instructive in generating comparable missense mutations on the surface of the OB-fold domain of TPP1. PMID:19172754

  20. The bifurcations of nearly flat origami

    NASA Astrophysics Data System (ADS)

    Santangelo, Christian

    Self-folding origami structures provide one means of fabricating complex, three-dimensional structures from a flat, two-dimensional sheet. Self-folding origami structures have been fabricated on scales ranging from macroscopic to microscopic and can have quite complicated structures with hundreds of folds arranged in complex patterns. I will describe our efforts to understand the mechanics and energetics of self-folding origami structures. Though the dimension of the configuration space of an origami structure scales with the size of the boundary and not with the number of vertices in the interior of the structure, a typical origami structure is also floppy in the sense that there are many possible ways to assign fold angles consistently. I will discuss our theoretical progress in understanding the geometry of the configuration space of origami. For random origami, the number of possible bifurcations grows surprisingly quickly even when the dimension of the configuration space is small. EFRI ODISSEI-1240441, DMR-0846582.

  1. Single-molecule Protein Unfolding in Solid State Nanopores

    PubMed Central

    Talaga, David S.; Li, Jiali

    2009-01-01

    We use single silicon nitride nanopores to study folded, partially folded and unfolded single proteins by measuring their excluded volumes. The DNA-calibrated translocation signals of β-lactoglobulin and histidine-containing phosphocarrier protein match quantitatively with that predicted by a simple sum of the partial volumes of the amino acids in the polypeptide segment inside the pore when translocation stalls due to the primary charge sequence. Our analysis suggests that the majority of the protein molecules were linear or looped during translocation and that the electrical forces present under physiologically relevant potentials can unfold proteins. Our results show that the nanopore translocation signals are sensitive enough to distinguish the folding state of a protein and distinguish between proteins based on the excluded volume of a local segment of the polypeptide chain that transiently stalls in the nanopore due to the primary sequence of charges. PMID:19530678

  2. Enhanced Broadband Vibration Energy Harvesting Using a Multimodal Nonlinear Magnetoelectric Converter

    NASA Astrophysics Data System (ADS)

    Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping

    2016-07-01

    In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).

  3. 78 FR 20176 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... electricity from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small irrigation..., geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower... from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and solar energy...

  4. 18 CFR 292.309 - Termination of obligation to purchase from qualifying facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... POLICIES ACT OF 1978 WITH REGARD TO SMALL POWER PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying Cogeneration and Small Power Production Facilities Under Section 210 of the Public... into a new contract or obligation to purchase electric energy from a qualifying cogeneration facility...

  5. 18 CFR 292.309 - Termination of obligation to purchase from qualifying facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... POLICIES ACT OF 1978 WITH REGARD TO SMALL POWER PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying Cogeneration and Small Power Production Facilities Under Section 210 of the Public... into a new contract or obligation to purchase electric energy from a qualifying cogeneration facility...

  6. 18 CFR 292.309 - Termination of obligation to purchase from qualifying facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... POLICIES ACT OF 1978 WITH REGARD TO SMALL POWER PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying Cogeneration and Small Power Production Facilities Under Section 210 of the Public... into a new contract or obligation to purchase electric energy from a qualifying cogeneration facility...

  7. 18 CFR 292.309 - Termination of obligation to purchase from qualifying facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... POLICIES ACT OF 1978 WITH REGARD TO SMALL POWER PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying Cogeneration and Small Power Production Facilities Under Section 210 of the Public... into a new contract or obligation to purchase electric energy from a qualifying cogeneration facility...

  8. 18 CFR 292.309 - Termination of obligation to purchase from qualifying facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... POLICIES ACT OF 1978 WITH REGARD TO SMALL POWER PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying Cogeneration and Small Power Production Facilities Under Section 210 of the Public... into a new contract or obligation to purchase electric energy from a qualifying cogeneration facility...

  9. Small and Shaping the Future Energy Eco-house System

    NASA Astrophysics Data System (ADS)

    Furukawa, Ryuzo; Takahashi, Hideyuki; Sato, Yoshinori; Sasaki, Hiroshi; Isu, Norifumi; Ohtsuka, Masuo; Tohji, Kazuyuki

    2010-11-01

    The objective of this research is to develop the elemental technology of the small and thin energy collection system from water, wind, and others in the house, and examine them at the eco-house which will be built at Tohoku University on March 2010. This small energy storage system will contribute to reduce 10% of greenhouse gas emission from household electricity. This project is done by three following groups. 1st group (NEC-Tokin Co. Ltd.) will develop the technologies on the accumulation of electric power pressured from low electric power in which electricity is generated and on the cooperation with AC power supply used for domestic use for this eco-house system. 2nd group (INAX Co. Ltd.) will develop the elemental technology of the slight energy collection system from tap water in the home using a small hydroelectric generator for this eco-house system. 3rd group (Shoei Co. Ltd.) will develop the technologies on existent magnetic gear device, health appliances (Exercise bike), wind power generator, for this eco-house system. Tokoku University compiles these groups. Furthermore, I develop a search of unused small energy and the use technology, and propose a new energy supply system using solar cell and Li ion secondary battery.

  10. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

    PubMed

    Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-04-24

    Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.

  11. Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.

    2013-01-01

    Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).

  12. Revealing the global map of protein folding space by large-scale simulations

    NASA Astrophysics Data System (ADS)

    Sinner, Claude; Lutz, Benjamin; Verma, Abhinav; Schug, Alexander

    2015-12-01

    The full characterization of protein folding is a remarkable long-standing challenge both for experiment and simulation. Working towards a complete understanding of this process, one needs to cover the full diversity of existing folds and identify the general principles driving the process. Here, we want to understand and quantify the diversity in folding routes for a large and representative set of protein topologies covering the full range from all alpha helical topologies towards beta barrels guided by the key question: Does the majority of the observed routes contribute to the folding process or only a particular route? We identified a set of two-state folders among non-homologous proteins with a sequence length of 40-120 residues. For each of these proteins, we ran native-structure based simulations both with homogeneous and heterogeneous contact potentials. For each protein, we simulated dozens of folding transitions in continuous uninterrupted simulations and constructed a large database of kinetic parameters. We investigate folding routes by tracking the formation of tertiary structure interfaces and discuss whether a single specific route exists for a topology or if all routes are equiprobable. These results permit us to characterize the complete folding space for small proteins in terms of folding barrier ΔG‡, number of routes, and the route specificity RT.

  13. Transparent Conductive Nanofiber Paper for Foldable Solar Cells

    PubMed Central

    Nogi, Masaya; Karakawa, Makoto; Komoda, Natsuki; Yagyu, Hitomi; Nge, Thi Thi

    2015-01-01

    Optically transparent nanofiber paper containing silver nanowires showed high electrical conductivity and maintained the high transparency, and low weight of the original transparent nanofiber paper. We demonstrated some procedures of optically transparent and electrically conductive cellulose nanofiber paper for lightweight and portable electronic devices. The nanofiber paper enhanced high conductivity without any post treatments such as heating or mechanical pressing, when cellulose nanofiber dispersions were dropped on a silver nanowire thin layer. The transparent conductive nanofiber paper showed high electrical durability in repeated folding tests, due to dual advantages of the hydrophilic affinity between cellulose and silver nanowires, and the entanglement between cellulose nanofibers and silver nanowires. Their optical transparency and electrical conductivity were as high as those of ITO glass. Therefore, using this conductive transparent paper, organic solar cells were produced that achieved a power conversion of 3.2%, which was as high as that of ITO-based solar cells. PMID:26607742

  14. Characterization of LANDSAT-4 TM and MSS Image Quality for Interpretation of Agricultural and Forest Resources

    NASA Technical Reports Server (NTRS)

    Degloria, S. D.; Colwell, R. N.

    1984-01-01

    Systematic analysis of both image and numeric data shows that the overall spectral, spatial, and radiometric quality of the TM data are excellent. Spectral variations in fallow fields are due to the vaiability in soil moisture and surface roughness resulting from the various stages of field preparation for small grains production. Spectrally, the addition of the first TM short wave infrared band (Band 5) significantly enhanced ability to discriminate different crop types. Bands 1, 5, and 6 contain saturated pixels due to high albedo effects, low moisture conditions, and high radiant temperatures of granite and dry, bare soil on south facing slopes, respectively. Spatially, the two fold decrease in interpixel distance and four fold decrease in area per pixel between the TM and MSS allow for improved discrimination of small fields, boundary conditions, road and stream networks in rough terrain, and small forest clearings resulting from various forest management practices.

  15. Bioinspired morphing wings for extended flight envelope and roll control of small drones.

    PubMed

    Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D

    2017-02-06

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

  16. Bioinspired morphing wings for extended flight envelope and roll control of small drones

    PubMed Central

    Heitz, G.; Noca, F.; Floreano, D.

    2017-01-01

    Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882

  17. NREL Provides PV Holiday Lights for Christmas Tree

    Science.gov Websites

    annual holiday event that began in 1913. The solar array generates electricity during the day by converting sunlight directly into electricity. The electricity is fed directly to the local electrical small part of the electricity used by the Pageant each night, but it's an excellent public demonstration

  18. Pressure induced polymerization of acetylide anions in CaC2 and 107 fold enhancement of electrical conductivity.

    PubMed

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; Yang, Youyou; Wang, Yajie; Wu, Jiajia; Dong, Xiao; Wang, Chun-Hai; Tulk, Christopher A; Molaison, Jamie J; Ivanov, Ilia N; Feygenson, Mikhail; Yang, Wenge; Guthrie, Malcolm; Zhao, Yusheng; Mao, Ho-Kwang; Jin, Changqing

    2017-01-01

    Transformation between different types of carbon-carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2 ) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6- are identified with gas chromatography-mass spectrometry and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. The polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.

  19. Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Delozier, Donavon M.; Connell, John W.; Watson, Kent A.

    2004-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have potential applications on large, deployable, ultra-light weight Gossamer spacecraft as thin film membranes on antennas, solar sails, thermal/optical coatings, multi-layer insulation blankets, etc.. The challenge has been to develop a method to impart robust electrical conductivity into these materials without increasing solar absorptivity (alpha ) or decreasing optical transparency or film flexibility. Since these spacecraft will require significant compaction prior to launch, the film portion of the spacecraft will require folding. The state-of-the-art clear, conductive coating (e.g. indium-tin-oxide, ITO) is brittle and cannot tolerate folding. In this report, doping a polymer with single-walled carbon nanotubes (SWNTs) using two different methods afforded materials with good flexibility and surface conductivities in the range sufficient for ESC mitigation. A coating method afforded materials with minimal effects on the mechanical, optical, and thermo-optical properties as compared to dispersal of SWNTs in the matrix. The chemistry and physical properties of these nanocomposites are discussed.

  20. Electric field responsive origami structures using electrostriction-based active materials

    NASA Astrophysics Data System (ADS)

    Ahmed, Saad; Arrojado, Erika; Sigamani, Nirmal; Ounaies, Zoubeida

    2015-04-01

    The objective of origami engineering is to combine origami principles with advanced materials to yield active origami shapes, which fold and unfold in response to external stimuli. We are investigating the use of P(VDF-TrFE-CTFE), a relaxor ferroelectric terpolymer, to realize origami-inspired folding and unfolding of structures and to actuate so-called action origami structures. To accomplish these two objectives, we have explored different approaches to the P(VDF-TrFECTFE) polymer actuator construction, ranging from unimorph to multilayered stacks. Electromechanical characterization of the terpolymer-based actuators is conducted with a focus on free strain, force-displacement and blocked force. Moreover dynamic thickness strains of P(VDF-TrFE-CTFE) terpolymer at different frequencies ranging from 0.1Hz to 10Hz is also measured. Quantifying the performance of terpolymer-based actuators is important to the design of action origami structures. Following these studies, action origami prototypes based on catapult, flapping butterfly wings and barking fox are actuated and characterization of these prototypes are conducted by studying impact of various parameters such as electric field magnitude and frequency, number of active layers, and actuator dimensions.

  1. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting.

    PubMed

    Sun, Yongfu; Cheng, Hao; Gao, Shan; Liu, Qinghua; Sun, Zhihu; Xiao, Chong; Wu, Changzheng; Wei, Shiqiang; Xie, Yi

    2012-12-19

    Thermoelectric materials can realize significant energy savings by generating electricity from untapped waste heat. However, the coupling of the thermoelectric parameters unfortunately limits their efficiency and practical applications. Here, a single-layer-based (SLB) composite fabricated from atomically thick single layers was proposed to optimize the thermoelectric parameters fully. Freestanding five-atom-thick Bi(2)Se(3) single layers were first synthesized via a scalable interaction/exfoliation strategy. As revealed by X-ray absorption fine structure spectroscopy and first-principles calculations, surface distortion gives them excellent structural stability and a much increased density of states, resulting in a 2-fold higher electrical conductivity relative to the bulk material. Also, the surface disorder and numerous interfaces in the Bi(2)Se(3) SLB composite allow for effective phonon scattering and decreased thermal conductivity, while the 2D electron gas and energy filtering effect increase the Seebeck coefficient, resulting in an 8-fold higher figure of merit (ZT) relative to the bulk material. This work develops a facile strategy for synthesizing atomically thick single layers and demonstrates their superior ability to optimize the thermoelectric energy harvesting.

  2. Developmental and environmental regulation of antifreeze proteins in the mealworm beetle Tenebrio molitor.

    PubMed

    Graham, L A; Walker, V K; Davies, P L

    2000-11-01

    The yellow mealworm beetle, Tenebrio molitor, contains a family of small Cys-rich and Thr-rich thermal hysteresis proteins that depress the hemolymph freezing point below the melting point by as much as 5. 5 degrees C (DeltaT = thermal hysteresis). Thermal hysteresis protein expression was evaluated throughout development and after exposure to altered environmental conditions. Under favorable growth conditions, small larvae (11-13 mg) had only low levels of thermal hysteresis proteins or thermal hysteresis protein message, but these levels increased 10-fold and 18-fold, respectively, by the final larval instar (> 190 mg), resulting in thermal hysteresis > 3 degrees C. Exposure of small larvae (11-13 mg) to 4 weeks of cold (4 degrees C) caused an approximately 20-fold increase in thermal hysteresis protein concentration, well in excess of the less than threefold developmental increase seen after 4 weeks at 22 degrees C. Exposure of large larvae (100-120 mg) to cold caused 12-fold and sixfold increases in thermal hysteresis protein message and protein levels, respectively, approximately double the maximum levels they would have attained in the final larval instar at 22 degrees C. Thus, thermal hysteresis increased to similar levels (> 4 degrees C) in the cold, irrespective of the size of the larvae (the overwintering stage). At pupation, thermal hysteresis protein message levels decreased > 20-fold and remained low thereafter, but thermal hysteresis activity decreased much more slowly. Exposure to cold did not reverse this decline. Desiccation or starvation of larvae had comparable effects to cold exposure, but surprisingly, short daylength photoperiod or total darkness had no effect on either thermal hysteresis or message levels. As all environmental conditions that caused increased thermal hysteresis also inhibited growth, we postulate that developmental arrest is a primary factor in the regulation of T. molitor thermal hysteresis proteins.

  3. Nanoprobe-Enhanced, Split Aptamer-Based Electrochemical Sandwich Assay for Ultrasensitive Detection of Small Molecules.

    PubMed

    Zhao, Tao; Liu, Ran; Ding, Xiaofan; Zhao, Juncai; Yu, Haixiang; Wang, Lei; Xu, Qing; Wang, Xuan; Lou, Xinhui; He, Miao; Xiao, Yi

    2015-08-04

    It is quite challenging to improve the binding affinity of antismall molecule aptamers. We report that the binding affinity of anticocaine split aptamer pairs improved by up to 66-fold by gold nanoparticles (AuNP)-attached aptamers due to the substantially increased local concentration of aptamers and multiple and simultaneous ligand interactions. The significantly improved binding affinity enables the detection of small molecule targets with unprecedented sensitivity, as demonstrated in nanoprobe-enhanced split aptamer-based electrochemical sandwich assays (NE-SAESA). NE-SAESA replaces the traditional molecular reporter probe with AuNPs conjugated to multiple reporter probes. The increased binding affinity allowed us to use 1,000-fold lower reporter probe concentrations relative to those employed in SAESA. We show that the near-elimination of background in NE-SAESA effectively improves assay sensitivity by ∼1,000-100,000-fold for ATP and cocaine detection, relative to equivalent SAESA. With the ongoing development of new strategies for the selection of aptamers, we anticipate that our sensor platform should offer a generalizable approach for the high-sensitivity detection of diverse targets. More importantly, we believe that NE-SAESA represents a novel strategy to improve the binding affinity between a small molecule and its aptamer and potentially can be extended to other detection platforms.

  4. Electrical transmission between mammalian neurons is supported by a small fraction of gap junction channels.

    PubMed

    Curti, Sebastian; Hoge, Gregory; Nagy, James I; Pereda, Alberto E

    2012-06-01

    Electrical synapses formed by gap junctions between neurons create networks of electrically coupled neurons in the mammalian brain, where these networks have been found to play important functional roles. In most cases, interneuronal gap junctions occur at remote dendro-dendritic contacts, making difficult accurate characterization of their physiological properties and correlation of these properties with their anatomical and morphological features of the gap junctions. In the mesencephalic trigeminal (MesV) nucleus where neurons are readily accessible for paired electrophysiological recordings in brain stem slices, our recent data indicate that electrical transmission between MesV neurons is mediated by connexin36 (Cx36)-containing gap junctions located at somato-somatic contacts. We here review evidence indicating that electrical transmission between these neurons is supported by a very small fraction of the gap junction channels present at cell-cell contacts. Acquisition of this evidence was enabled by the unprecedented experimental access of electrical synapses between MesV neurons, which allowed estimation of the average number of open channels mediating electrical coupling in relation to the average number of gap junction channels present at these contacts. Our results indicate that only a small proportion of channels (~0.1 %) appear to be conductive. On the basis of similarities with other preparations, we postulate that this phenomenon might constitute a general property of vertebrate electrical synapses, reflecting essential aspects of gap junction function and maintenance.

  5. Paleomagnetic, structural, and seismological evidence for oblique-slip deformation in fault-related folds in the Rocky Mountain Foreland, Colorado Plateau, and central Coast Ranges

    NASA Astrophysics Data System (ADS)

    Tetreault, Joya Liana

    The two geologic questions I address in this research are: do fault-related folds accommodate oblique-slip shortening, and how is oblique-slip deformation absorbed within the folded strata? If the strata is deforming as a strike-slip shear zone, then we should be able to observe material rotations produced by strike-slip shear by measuring paleomagnetic vertical-axis rotations. I have approached these problems by applying paleomagnetic vertical-axis rotations, minor fault analyses, and focal mechanism strain inversions to identify evidence of strike-slip shear and to quantify oblique-slip deformation within fault-related folds in the Rocky Mountain Foreland, Colorado Plateau, and the central Coast Ranges. Clockwise paleomagnetic vertical-axis rotations and compressive paleostress rotations of 15-40º in the forelimb of the Grayback Monocline, northeastern Front Range Colorado, indicate that this Laramide fold is absorbing right-lateral shear from a N90E regional shortening direction. This work shows that paleomagnetic vertical-axis rotations in folded strata can be used to identify strike-slip motion on an underlying fault, and that oblique-slip deformation is localized in the forelimb of the fold. I applied the same paleomagnetic methods to identify oblique-slip on the underlying faults of the Nacimiento, East Kaibab, San Rafael, and Grand Hogback monoclines of the Colorado Plateau. The absence of paleomagnetic rotations and structural evidence for small displacements at the Nacimiento and East Kaibab monoclines indicate minor (<1km) right-lateral slip is being accommodated in these folds. Paleomagnetic vertical-axis rotations are found in the forelimbs of the San Rafael and Grand Hogback monoclines, yielding strike-slip displacements of ˜5km within these two folds. These results are consistent with a northeast Laramide compressive stress direction. In the Coalinga anticline, central Coast Ranges, California, clockwise paleomagnetic rotations and an 8º counterclockwise deflection of the maximum shortening direction (derived from focal mechanisms strain inversions of the upper 7km) are compatible with right-lateral shear. The maximum shortening direction in the area of the mainshock rupture is fold-normal, indicating that strike-slip displacement is confined to the main fault plane and not distributed to the hanging wall. The San Andreas Fault is therefore partitioning a small amount of strike-slip to the Coalinga anticline.

  6. 18 CFR 292.304 - Rates for purchases.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying Cogeneration and Small... reasonable to the electric consumer of the electric utility and in the public interest; and (ii) Not... requires any electric utility to pay more than the avoided costs for purchases. (b) Relationship to avoided...

  7. 18 CFR 292.311 - Reinstatement of obligation to purchase.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... electric energy, a qualifying cogeneration facility, a qualifying small power production facility, a State... utility's obligation to purchase electric energy under this section. Such application shall set forth the... application reinstating the electric utility's obligation to purchase electric energy under this section if...

  8. 18 CFR 292.311 - Reinstatement of obligation to purchase.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... electric energy, a qualifying cogeneration facility, a qualifying small power production facility, a State... utility's obligation to purchase electric energy under this section. Such application shall set forth the... application reinstating the electric utility's obligation to purchase electric energy under this section if...

  9. Solar Energy and Other Appropriate Technologies for Small ...

    EPA Pesticide Factsheets

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change resulting from the use of fossil fuels in Puerto Rico. In Puerto Rico, petroleum (65%), natural gas (18%) and coal (16%) are imported to generate electricity resulting in electrical rates that are more than twice the US average. In 2012, only 1% of electricity came from renewable energy (US Energy Information Administration). One major cost for electricity for small communities in Puerto Rico is the transfer, treatment and distribution of drinking water. These small communities (Non-PRASA communities) are not able to afford electrical costs and many have abandoned their groundwater sources and reverted to unfiltered surface water systems, creating serious public health risks and non-compliance. Many Non-PRASA groundwater systems (141 out of 247) could use solar-powered pumps to extract and deliver groundwater. Solar power would also extend the life of system electrical components by improving the quality of electrical power supply. Solar power as a renewable energy source for Non-PRASA water systems is a viable approach that also reduces the impact of climate change in the Caribbean.

  10. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application

    PubMed Central

    Boldon, Lauren; Laliberte, Fallon; Liu, Li

    2015-01-01

    In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques. PMID:25721341

  11. Space Electric Research Test in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1964-06-21

    Technicians prepare the Space Electric Research Test (SERT-I) payload for a test in Tank Number 5 of the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust, but once lofted into orbit by workhorse chemical rockets, they are capable of small, continuous thrust for periods up to several years. The electron bombardment thruster operated at a 90-percent efficiency during testing in the Electric Propulsion Laboratory. The package was rapidly rotated in a vacuum to simulate its behavior in space. The SERT-I mission, launched from Wallops Island, Virginia, was the first flight test of Kaufman’s ion engine. SERT-I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. The Electric Propulsion Laboratory included two large space simulation chambers, one of which is seen here. Each uses twenty 2.6-foot diameter diffusion pumps, blowers, and roughing pumps to remove the air inside the tank to create the thin atmosphere. A helium refrigeration system simulates the cold temperatures of space.

  12. On the mechanism of ray closure in comet tails

    NASA Astrophysics Data System (ADS)

    Ershkovich, A. I.

    The folding phenomenon of comet tail rays is explained by means of an electric drift due to convectional electric fields. This mechanism results in an angular rate of closure which reduces to that obtained by Ness and Donn (1966) if the velocity profile across the tail is linear and the plasma conductivity is ideal. Observations of both the ray closure and the disconnection events point to the phenomenon of anomalous resistivity. Magnetic fields of about 30-40 gammas in the coma and of 10 gammas in the distant tail (at 1 AU) are estimated from the MHD momentum equation.

  13. Non-Foster Circuits for High Performance Antennas: Advantages and Practical Limitations

    NASA Astrophysics Data System (ADS)

    Jacob, Minu Mariam

    The demand for miniaturized, broadband communication systems has created a need for electrically small, broadband antennas. However, all passive electrically small antennas have a fundamental gain-bandwidth limitation related to their electrical size, as first described by Wheeler and Chu. This limitation can be overcome using active non-Foster circuits (negative inductors and/or negative capacitors), which can deliver a broadband input match with active matching techniques, or can help reduce phase dispersion using negative delay effects. This thesis will illustrate the advantages of non-Foster circuits in obtaining broadband small antennas, in addition to examining their practical limitations due to noise in receive applications, and nonlinearity in transmit applications.

  14. Development of Electrothermal Pulsed Plasma Thrusters for Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Yushuke; Yamamoto, Tsuyoshi; Yamada, Minetsugu

    2008-12-31

    The Project of Osaka-Institute-of-Technology Electric-Rocket-Engine onboard Small Space Ship (PROITERES) was started at Osaka Institute of Technology. In PROITERES, a 10-kg small satellite with electrothermal pulsed plasma thrusters (PPTs), named JOSHO, will be launched in 2010. The main mission is powered flight of small satellite by electric thruster itself. Electrothermal PPTs were studied with both experiments and numerical simulations. An electrothermal PPT with a side-fed propellant feeding mechanism achieved a total impulse of 3.6 Ns with a repetitive 10000-shot operation. An unsteady numerical simulation showed the existence of considerable amount of ablation delaying to the discharge. However, it was alsomore » shown that this phenomenon should not be regarded as the 'late time ablation' for electrothermal PPTs.« less

  15. Mass transport through vertically aligned large diameter MWCNT embedded in parylene

    PubMed Central

    Krishnakumar, P; Tiwari, P B; Staples, S; Luo, T; Darici, Y; He, J; Lindsay, SM

    2013-01-01

    We have fabricated porous membranes using a parylene encapsulated vertically aligned forest of multi-walled carbon nanotube (MWCNT, about 7nm inner diameter). The transport of charged particles in electrolyte through these membranes was studied by applying electric field and pressure. Under an electric field in the range of 4.4×104 V/m, electrophoresis instead of electroomosis is found to be the main mechanism for ion transport. Small molecules and 5 nm gold nanoparticles can be driven through the membranes by an electric field. However, small biomolecules, like DNA oligomers, cannot. Due to the weak electric driving force, the interactions between charged particles and the hydrophobic CNT inner surface play important roles in the transport, leading to enhanced selectivity for small molecules. Simple chemical modification on the CNT ends also induces an obvious effect on the translocation of single strand DNA oligomer and gold nanoparticle under a modest pressure (<294 Pa). PMID:23064678

  16. Sistemas Eolicos Pequenos para Generacion de Electridad (Spanish version of Small Wind Electric Systems: A U.S. Consumer's Guide) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-07-01

    This Spanish version of the popular Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system tomore » the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.« less

  17. Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-06-01

    Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connectmore » a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.« less

  18. Occupational Exposure of Veterinarians to Waste Anesthetic Gases

    DTIC Science & Technology

    1987-05-07

    The two most frequently used anesthetic gases, methoxyflurane and halothane. were chosen to be studied.) Exposures during 38 surgeries were /"studied...use of anesthetic agent for small animals. The halothane concentrations were higher than the methoxyflurane concentrations because of the out of - ,&t...exposures by 2.7 fold for methoxyflurane and 43 fold for halothane. However, during back to back surgeries a gradual build-up of anesthetic gas was found

  19. Dynamics of one-state downhill protein folding.

    PubMed

    Li, Peng; Oliva, Fabiana Y; Naganathan, Athi N; Muñoz, Victor

    2009-01-06

    The small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 micros, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 micros), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding.

  20. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.

    PubMed

    Zhang, Yi; Kitazawa, Soichiro; Peran, Ivan; Stenzoski, Natalie; McCallum, Scott A; Raleigh, Daniel P; Royer, Catherine A

    2016-11-23

    Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.

  1. Developing hydropower in Washington state. Volume 2: An electricity marketing manual

    NASA Astrophysics Data System (ADS)

    James, J. W.; McCoy, G. A.

    1982-03-01

    An electricity marketing manual for the potential small and micro-hydroelectric project developer within the state of Washington is presented. Public utility regulatory policies (PURPA) requires electric utilities to interconnect with and pay a rate based on their full avoided costs for the purchase of electrical output from qualifying small power production facilities. The determination of avoided costs, as business organizational considerations, utility interface concerns, interconnection requirements, metering options, and liability and wheeling are discussed. The utility responses are summarized, legislation which is of importance to hydropower developers and the powers and functions of the authorities responsible for enforcing the mandate of PURPA are described.

  2. A ``NEW'' Solid-Core Reactor Fuel Form that Maximizes the Performance of Nuclear Thermal and Electric Rockets

    NASA Astrophysics Data System (ADS)

    Rom, Frank E.; Finnegan, Patrick M.

    1994-07-01

    The ``NEW'' solid-core fuel form is the old Vapor Transport (VT) fuel pin investigated at NASA about 30 years ago. It is simply a tube sealed at both ends partially filled with UO2. During operation the UO2 forms an annular layer on the inside of the tube by vaporization and condensation. This form is an ideal structure for overall strength and retention of fission products. All of the structural material lies between the fuel (including fission products) and the reactor coolant. The isothermal inside fuel surface temperature that results from the vaporization and condensation of fuel during operation eliminates hotspots, significantly increasing the design fuel pin surface temperature. For NTP, W-UO2 fuel pins yield higher operating temperatures than for other fuel forms, because W has about a ten-fold lower vaporization rate compared to any other known material. The use of perigee propulsion using W-UO2 fuel pins can result in a more than ten-fold reduction in reactor power. Lower reactor power, together with zero fission product release potential, and the simplicity of fabrication of VT fuel pins should greatly simplify and reduce the cost of development of NTP. For NEP, VT fuel pins can increase fast neutron spectrum reactor life with no fission product release. Thermal spectrum NEP reactors using W184 or Mo VT fuel pins, with only small amounts of high neutron absorbing additives, offer benefits because of much lower fissionable fuel requirements. The VT fuel pin has application to commercial power reactors with similar benefits.

  3. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons.

    PubMed

    Nodari, Francesco; Hsu, Fong-Fu; Fu, Xiaoyan; Holekamp, Terrence F; Kao, Lung-Fa; Turk, John; Holy, Timothy E

    2008-06-18

    Among mice, pheromones and other social odor cues convey information about sex, social status, and identity; however, the molecular nature of these cues is essentially unknown. To identify these cues, we screened chromatographic fractions of female mouse urine for their ability to cause reproducible firing rate increases in the pheromone-detecting vomeronasal sensory neurons (VSNs) using multielectrode array (MEA) recording. Active compounds were found to be remarkably homogenous in their basic properties, with most being of low molecular weight, moderate hydrophobicity, low volatility, and possessing a negative electric charge. Purification and structural analysis of active compounds revealed multiple sulfated steroids, of which two were identified as sulfated glucocorticoids, including corticosterone 21-sulfate. Sulfatase-treated urine extracts lost >80% of their activity, indicating that sulfated compounds are the predominant VSN ligands in female mouse urine. As measured by MEA recording, a collection of 31 synthetic sulfated steroids triggered responses 30-fold more frequently than did a similarly sized stimulus set containing the majority of all previously reported VSN ligands. Collectively, VSNs detected all major classes of sulfated steroids, but individual neurons were sensitive to small variations in chemical structure. VSNs from both males and females detected sulfated steroids, but knock-outs for the sensory transduction channel TRPC2 did not detect these compounds. Urine concentrations of the two sulfated glucocorticoids increased many fold in stressed animals, indicating that information about physiological status is encoded by the urine concentration of particular sulfated steroids. These results provide an unprecedented characterization of the signals available for chemical communication among mice.

  4. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons

    PubMed Central

    Nodari, Francesco; Hsu, Fong-Fu; Fu, Xiaoyan; Holekamp, Terrence F.; Kao, Lung-Fa; Turk, John; Holy, Timothy E.

    2009-01-01

    Among mice, pheromones and other social odor cues convey information about sex, social status, and identity; however, the molecular nature of these cues is largely unknown. To identify these cues, we screened chromatographic fractions of female mouse urine for their ability to cause reproducible firing rate increases in the pheromone-detecting vomeronasal sensory neurons (VSNs) using multielectrode array (MEA) recording. Active compounds were found to be remarkably homogenous in their basic properties, with most being of low molecular weight, moderate hydrophobicity, low volatility, and possessing a negative electric charge. Purification and structural analysis of active compounds revealed multiple sulfated steroids, of which two were identified as sulfated glucocorticoids, including corticosterone 21-sulfate. Sulfatase-treated urine extracts lost more than 80% of their activity, indicating that sulfated compounds are the predominant VSN ligands in female mouse urine. As measured by MEA recording, a collection of 31 synthetic sulfated steroids triggered responses 30-fold more frequently than did a similarly-sized stimulus set containing the majority of all previously-reported VSN ligands. Collectively, VSNs detected all major classes of sulfated steroids, but individual neurons were sensitive to small variations in chemical structure. VSNs from both males and females detected sulfated steroids, but knockouts for the sensory transduction channel TRPC2 did not detect these compounds. Urine concentrations of the two sulfated glucocorticoids increased many-fold in stressed animals, indicating that information about physiological status is encoded by the urine concentration of particular sulfated steroids. These results provide an unprecedented characterization of the signals available for chemical communication among mice. PMID:18562612

  5. False Color Aurora

    NASA Image and Video Library

    1997-09-23

    Data from NASA's Galileo spacecraft were used to produce this false-color composite of Jupiter's northern aurora on the night side of the planet. The height of the aurora, the thickness of the auroral arc, and the small-scale structure are revealed for the first time. Images in Galileo's red, green, and clear filters are displayed in red, green, and blue respectively. The smallest resolved features are tens of kilometers in size, which is a ten-fold improvement over Hubble Space Telescope images and a hundred-fold improvement over ground-based images. The glow is caused by electrically charged particles impinging on the atmosphere from above. The particles travel along Jupiter's magnetic field lines, which are nearly vertical at this latitude. The auroral arc marks the boundary between the "closed" field lines that are attached to the planet at both ends and the "open" field lines that extend out into interplanetary space. At the boundary the particles have been accelerated over the greatest distances, and the glow is especially intense. The latitude-longitude lines refer to altitudes where the pressure is 1 bar. The image shows that the auroral emissions originate about 500 kilometers (about 310 miles) above this surface. The colored background is light scattered from Jupiter's bright crescent, which is out of view to the right. North is at the top. The images are centered at 57 degrees north and 184 degrees west and were taken on April 2, 1997 at a range of 1.7 million kilometers (1.05 million miles) by Galileo's Solid State Imaging (SSI) system. http://photojournal.jpl.nasa.gov/catalog/PIA00603

  6. Growth of a Large-Area, Free-Standing, Highly Conductive and Fully Foldable Silver Film with Inverted Pyramids for Wearable Electronics Applications.

    PubMed

    Yu, Xiao; Li, Zihua; Liu, Yong; Zhao, Wenxia; Xu, Ruimei; Wang, Donghai; Shen, Hui

    2017-02-15

    A promising new concept is the application of flexible and foldable conductive film or paper for wearable electronics, in which silver nanowires, carbon nanotubes, and graphene are primarily used as conductive materials. However, their insufficient nanostructure contacts lead to poor electrical conductivity and mechanical fracture. Here, we demonstrate a simple and innovative strategy for fabricating a free-standing silver film with inverted pyramids by replicating pyramids on a textured silicon wafer under a hydrothermal reaction. In this unique structure, the inverted pyramids on the film surface can provide sufficient buffer space for a mechanically foldable and unfoldable cushion, and the continuous film ensures an uninterrupted electron transport pathway. As a result, the silver film with inverted pyramids can exhibit extremely high conductivity, with a sheet resistance as low as 2.55 × 10 -3 Ω/sq, corresponding to an electrical conductivity of 4.2 × 10 5 S cm -1 for a 9.2-μm-thick film (67.7% of bulk silver's conductivity). Surprisingly, this film has outstanding mechanical folding stability, with less than a 0.5% deviation from the initial resistance after 35,000 repetitive folding and unfolding cycles when tested at the folding site. The film is free-standing, thin, flexible, foldable, and suitable for cutting and patterned growth, which makes it suitable for wearable electronics, showing a much wider range of applications than substrate-based ones.

  7. Development of reactor configurations for an electrofuels platform utilizing genetically modified iron oxidizing bacteria for the reduction of CO2 to biochemicals.

    PubMed

    Guan, Jingyang; Berlinger, Sarah A; Li, Xiaozheng; Chao, Zhongmou; Sousa E Silva, Victor; Banta, Scott; West, Alan C

    2017-03-10

    Electrofuels processes are potentially promising platforms for biochemical production from CO 2 using renewable energy. When coupled to solar panels, this approach could avoid the inefficiencies of photosynthesis and there is no competition with food agriculture. In addition, these systems could potentially be used to store intermittent or stranded electricity generated from other renewable sources. Here we develop reactor configurations for continuous electrofuels processes to convert electricity and CO 2 to isobutyric acid (IBA) using genetically modified (GM) chemolithoautotrophic Acidithiobacillus ferrooxidans. These cells oxidize ferrous iron which can be electrochemically reduced. During two weeks of cultivation on ferrous iron, stable cell growth and continuous IBA production from CO 2 were achieved in a process where media was circulated between electrochemical and biochemical rectors. An alternative process with an additional electrochemical cell for accelerated ferrous production was developed, and this system achieved an almost three-fold increase in steady state cell densities, and an almost 4-fold increase in the ferrous iron oxidation rate. Combined, this led to an almost 8-fold increase in the steady state volumetric productivity of IBA up to 0.063±0.012mg/L/h, without a decline in energy efficiency from previous work. Continued development of reactor configurations which can increase the delivery of energy to the genetically modified cells will be required to increase product titers and volumetric productivities. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Small, Optically-Driven Power Source

    NASA Technical Reports Server (NTRS)

    Cockrum, Richard H.; Wang, Ke-Li J.

    1988-01-01

    Power transmitted along fiber-optic cables. Transmitted as infrared light along fiber-optic cable, converted to electricity to supply small electronic circuit. Power source and circuit remains electrically isolated from each other for safety or reduces electromagnetic interference. Array of diodes made by standard integrated-circuit techniques and packaged for mounting at end of fiber-optic cable.

  9. 10 CFR 431.445 - Determination of small electric motor efficiency.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) General requirements. The average full-load efficiency of each basic model of small electric motor must be... this section, provided, however, that an AEDM may be used to determine the average full-load efficiency of one or more of a manufacturer's basic models only if the average full-load efficiency of at least...

  10. 10 CFR 431.445 - Determination of small electric motor efficiency.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) General requirements. The average full-load efficiency of each basic model of small electric motor must be... this section, provided, however, that an AEDM may be used to determine the average full-load efficiency of one or more of a manufacturer's basic models only if the average full-load efficiency of at least...

  11. Origin of intraformational folds in the Jurassic Todilto Limestone, Ambrosia Lake uranium mining district, McKinley and Valencia counties, New Mexico

    USGS Publications Warehouse

    Green, M.W.

    1982-01-01

    The Todilto Limestone of Middle Jurassic age in the Ambrosia Lake uranium mining district of McKinley and Valencia Counties, New Mexico, is the host formation for numerous small- to medium-sized uranium deposits in joints, shear zones, and fractures within small- to large-scale intraformational folds. The folds probably were formed as a result of differential sediment loading when eolian sand dunes of the overlying Summerville Formation of Middle Jurassic age migrated over soft, chemically precipitated, lime muds of the Todilto shortly after their deposition in a regressive, mixed fresh and saline lacustrine or marine environment of deposition. Encroachment of Summerville eolian dunes over soft Todilto lime muds was apparently a local phenomenon and was restricted to postulated beltlike zones which trended radially across the Todilto coastline toward the receding body of water. Intraformational folding is believed to be confined to the pathways of individual eolian dunes or clusters of dunes within the dune belts. During the process of sediment loading by migrating sand dunes, layers of Todilto lime mud were differentially compacted, contorted, and dewatered, producing both small- and large-scale plastic deformation structures, including convolute laminations, mounds, rolls, folds, and small anticlines and synclines. With continued compaction and dewatering, the mud, in localized areas, reached a point of desaturation at which sediment plasticity was lost. Prolonged loading by overlying dune sands thus caused faulting, shearing, fracturing, and jointing of contorted limestone beds. These areas or zones of deformation within the limestone became the preferred sites of epigenetic uranium mineralization because of the induced transmissivity created by sediment rupture. Along most of the prograding Todilto coastline, adjacent to the eolian dune belts, both interdune and coastal sabkha environments dominated during Todilto-Summerville time. Sediments in coastal areas consisted mainly of clay, silt, sandy silt, and very fine-grained sand, which was apparently derived from the winnowing of the finer grained fraction of sediment from adjacent dune fields during periods of eolian activity. Most of the sabkha sediments were probably carried in airborne suspension to the low-lying, ground-water-saturated coastal areas, where they were deposited as relatively uniform blanket-like layers. Deposition of sabkha deposits was apparently slow and uniform over most of the Todilto coastal areas and crested only small-scale deformation features in underlying Todilto rocks. Large-scale deformation features and uranium deposits are both notably absent in the Todilto where it is overlain by finer textured sabkha deposits in the Summerville.

  12. An Investigation into the Potential Benefits of Distributed Electric Propulsion on Small UAVs at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Baris, Engin

    Distributed electric propulsion systems benefit from the inherent scale independence of electric propulsion. This property allows the designer to place multiple small electric motors along the wing of an aircraft instead of using a single or several internal combustion motors with gear boxes or other power train components. Aircraft operating at low Reynolds numbers are ideal candidates for benefiting from increased local flow velocities as provided by distributed propulsion systems. In this study, a distributed electric propulsion system made up of eight motor/propellers was integrated into the leading edge of a small fixed wing-body model to investigate the expected improvements on the aerodynamics available to small UAVs operating at low Reynolds numbers. Wind tunnel tests featuring a Design of Experiments (DOE) methodology were used for aerodynamic characterization. Experiments were performed in four modes: all-propellers-on, wing-tip-propellers-alone-on, wing-alone mode, and two-inboard-propellers-on-alone mode. In addition, the all-propeller-on, wing-alone, and a single-tractor configuration were analyzed using VSPAERO, a vortex lattice code, to make comparisons between these different configurations. Results show that the distributed propulsion system has higher normal force, endurance, and range features, despite a potential weight penalty.

  13. An electric-eel-inspired soft power source from stacked hydrogels.

    PubMed

    Schroeder, Thomas B H; Guha, Anirvan; Lamoureux, Aaron; VanRenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-13

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  14. An electric-eel-inspired soft power source from stacked hydrogels

    NASA Astrophysics Data System (ADS)

    Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron; Vanrenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-01

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  15. 47 CFR 80.925 - Electric light.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Electric light. 80.925 Section 80.925... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.925 Electric light. (a) If the vessel is navigated at night an electric light or dial lights which clearly illuminate the...

  16. 47 CFR 80.925 - Electric light.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Electric light. 80.925 Section 80.925... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.925 Electric light. (a) If the vessel is navigated at night an electric light or dial lights which clearly illuminate the...

  17. 47 CFR 80.925 - Electric light.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Electric light. 80.925 Section 80.925... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.925 Electric light. (a) If the vessel is navigated at night an electric light or dial lights which clearly illuminate the...

  18. 47 CFR 80.925 - Electric light.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Electric light. 80.925 Section 80.925... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.925 Electric light. (a) If the vessel is navigated at night an electric light or dial lights which clearly illuminate the...

  19. 47 CFR 80.925 - Electric light.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Electric light. 80.925 Section 80.925... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.925 Electric light. (a) If the vessel is navigated at night an electric light or dial lights which clearly illuminate the...

  20. The shear modulus of the human vocal fold, preliminary results from 20 larynxes.

    PubMed

    Goodyer, Eric; Hemmerich, Sandra; Müller, Frank; Kobler, James B; Hess, Markus

    2007-01-01

    Quantification of the elastic properties of the human vocal fold provides invaluable data for researchers deriving mathematical models of phonation, developing tissue engineering therapies, and as normative data for comparison between healthy and scarred tissue. This study measured the shear modulus of excised cadaver vocal folds from 20 subjects. Twenty freshly excised human larynxes were evaluated less than four days post-mortem. They were split along the saggital plane and mounted without tension. Shear modulus was obtained by two different methods. For method 1 cyclical shear stress was applied transversely to the mid-membranous portion of the vocal fold, and shear modulus derived by applying a simple shear model. For method 2 the apparatus was configured as an indentometer, and shear modulus obtained from the stress/strain data by applying an established analytical technique. Method 1 shear model for male larynxes yielded a range from 246 to 3,356 Pa, with a mean value of 1,008 and SD of 380. The range for female larynxes was 286-3,332 Pa, with a mean value of 1,237 and SD of 768. Method 2 indentometer model for male larynxes yielded a range from 552 to 2,741 Pa, with a mean value of 1,000 and SD of 460. The range for female larynxes was 509-1,989 Pa, with a mean value of 1,332 and SD of 428. We have successfully demonstrated two methodologies that are capable of directly measuring the shear modulus of the human vocal fold, without dissecting out the vocal fold cover tissue. The sample size of nine female and 11 male larynxes is too small to validate a general conclusion. The high degree of variability in this small cohort of subjects indicates that factors such as age, health status, and post-mortem delay may be significant; and that there is range of 'normality' for vocal fold tissue.

  1. Desalting by crystallization: detection of attomole biomolecules in picoliter buffers by mass spectrometry.

    PubMed

    Gong, Xiaoyun; Xiong, Xingchuang; Wang, Song; Li, Yanyan; Zhang, Sichun; Fang, Xiang; Zhang, Xinrong

    2015-10-06

    Sensitive detection of biomolecules in small-volume samples by mass spectrometry is, in many cases, challenging because of the use of buffers to maintain the biological activities of proteins and cells. Here, we report a highly effective desalting method for picoliter samples. It was based on the spontaneous separation of biomolecules from salts during crystallization of the salts. After desalting, the biomolecules were deposited in the tip of the quartz pipet because of the evaporation of the solvent. Subsequent detection of the separated biomolecules was achieved using solvent assisted electric field induced desorption/ionization (SAEFIDI) coupled with mass spectrometry. It allowed for direct desorption/ionization of the biomolecules in situ from the tip of the pipet. The organic component in the assistant solvent inhibited the desorption/ionization of salts, thus assured successful detection of biomolecules. Proteins and peptides down to 50 amol were successfully detected using our method even if there were 3 × 10(5) folds more amount of salts in the sample. The concentration and ion species of the salts had little influence on the detection results.

  2. A hybrid MD-kMC algorithm for folding proteins in explicit solvent.

    PubMed

    Peter, Emanuel Karl; Shea, Joan-Emma

    2014-04-14

    We present a novel hybrid MD-kMC algorithm that is capable of efficiently folding proteins in explicit solvent. We apply this algorithm to the folding of a small protein, Trp-Cage. Different kMC move sets that capture different possible rate limiting steps are implemented. The first uses secondary structure formation as a relevant rate event (a combination of dihedral rotations and hydrogen-bonding formation and breakage). The second uses tertiary structure formation events through formation of contacts via translational moves. Both methods fold the protein, but via different mechanisms and with different folding kinetics. The first method leads to folding via a structured helical state, with kinetics fit by a single exponential. The second method leads to folding via a collapsed loop, with kinetics poorly fit by single or double exponentials. In both cases, folding times are faster than experimentally reported values, The secondary and tertiary move sets are integrated in a third MD-kMC implementation, which now leads to folding of the protein via both pathways, with single and double-exponential fits to the rates, and to folding rates in good agreement with experimental values. The competition between secondary and tertiary structure leads to a longer search for the helix-rich intermediate in the case of the first pathway, and to the emergence of a kinetically trapped long-lived molten-globule collapsed state in the case of the second pathway. The algorithm presented not only captures experimentally observed folding intermediates and kinetics, but yields insights into the relative roles of local and global interactions in determining folding mechanisms and rates.

  3. Small intestinal model for electrically propelled capsule endoscopy

    PubMed Central

    2011-01-01

    The aim of this research is to propose a small intestine model for electrically propelled capsule endoscopy. The electrical stimulus can cause contraction of the small intestine and propel the capsule along the lumen. The proposed model considered the drag and friction from the small intestine using a thin walled model and Stokes' drag equation. Further, contraction force from the small intestine was modeled by using regression analysis. From the proposed model, the acceleration and velocity of various exterior shapes of capsule were calculated, and two exterior shapes of capsules were proposed based on the internal volume of the capsules. The proposed capsules were fabricated and animal experiments were conducted. One of the proposed capsules showed an average (SD) velocity in forward direction of 2.91 ± 0.99 mm/s and 2.23 ± 0.78 mm/s in the backward direction, which was 5.2 times faster than that obtained in previous research. The proposed model can predict locomotion of the capsule based on various exterior shapes of the capsule. PMID:22177218

  4. Arytenoid lateralization for management of combined laryngeal paralysis and laryngeal collapse in small dogs.

    PubMed

    Nelissen, Pieter; White, Richard A S

    2012-02-01

    To identify combined laryngeal paralysis and collapse in small dogs and describe postoperative outcome after arytenoid lateralization. Case series. Small nonbrachycephalic breed dogs with laryngeal paralysis and collapse (n = 6). Medical records of small breed dogs with airway problems and undergoing laryngeal surgery (January-December 2008) were reviewed. Dogs with combined laryngeal paralysis and laryngeal collapse (LPLC) had arytenoid lateralization. The immediate, 4 week and 6 month postoperative outcomes were described. Direct visual laryngeal exam under a light plane of anesthesia revealed bilateral failure of arytenoid and vocal fold movement and concurrent bilateral medial folding with contact of the cuneiform processes in all dogs. None of the dogs had intra- or immediate postoperative complications after arytenoid lateralization. Two dogs required a 2nd contralateral procedure. Follow-up after 6 months revealed marked improvement in clinical signs related to upper airway obstruction, but all dogs continued to have mild respiratory noise. Concurrent laryngeal paralysis and collapse should be considered as part of the differential diagnosis for small, nonbrachycephalic dogs with upper airway disease. Arytenoid lateralization resulted in improvement of clinical signs related to obstructive airway disease. © Copyright 2011 by The American College of Veterinary Surgeons.

  5. 18 CFR 292.312 - Termination of obligation to sell to qualifying facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sell electric energy to a qualifying small power production facility, an existing qualifying...) Competing retail electric suppliers are willing and able to sell and deliver electric energy to the... is not required by State law to sell electric energy in its service territory. [Order 688, 71 FR...

  6. 18 CFR 292.312 - Termination of obligation to sell to qualifying facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sell electric energy to a qualifying small power production facility, an existing qualifying...) Competing retail electric suppliers are willing and able to sell and deliver electric energy to the... is not required by State law to sell electric energy in its service territory. [Order 688, 71 FR...

  7. Radiometric Dating of Folds: A new approach to determine the timing of deformation at shallow-crustal conditions, with examples from the Mexican Fold-Thrust Belt

    NASA Astrophysics Data System (ADS)

    Fitz Diaz, E.; van der Pluijm, B. A.

    2012-12-01

    We are developing a robust method to obtain absolute ages of folds that were formed at shallow crustal conditions. The method takes advantage of illite neocrystallization in folded, clay-bearing layers and the ability to obtain accurate retention and total gas ages from small size fractions using encapsulated Ar analysis, analogous to prior work on fault gouge dating. We illustrate our approach in folded Cretaceous shale-bentonitic layers that are interbedded with carbonates of the Zimapán and the Tampico-Misantla cretaceous basins in central-eastern Mexico. Basinal carbonates were buried by syntectonic turbidites and inverted during the formation of the Mexican Fold-Thrust in the Late Cretaceous. Results were obtained from four chevron folds that are representative of different stages of deformation, burial/temperature conditions and location within this thin-skinned orogenic wedge: two from the Zimapán Basin (Folds 1 and 2) in the west and two from the Tampico-Misantla Basin (Folds 3 and 4) in the east. Mineralogic compositions and variations in illite-polytypes, crystallite-size (CS) and Ar/Ar ages were obtained from size fractions in limbs and hinges of folded layers. Ar retention ages produce a folding age of ~81 Ma for Fold 1 and ~69 Ma for Fold 2, which are fully consistent with stratigraphic limits from syn-orogenic turbidities and observed overprinting events in the Mexican Fold-Thrust Belt. The total gas age of Fold 3, on the easternmost margin of the Tampico-Misantla Basin is similar to that of Fold 2, indicating that the second event is regional in scale. In addition to presenting a new, reliable method to constrain the timing of local deformation, we interpret folding and associated clay neo-mineralization in terms of the regional burial history, and localization and propagation of deformation within a heterogeneous orogenic wedge involving progressive deformation of two basins separated by a platform block.

  8. Vocal fold tissue failure: preliminary data and constitutive modeling.

    PubMed

    Chan, Roger W; Siegmund, Thomas

    2004-08-01

    In human voice production (phonation), linear small-amplitude vocal fold oscillation occurs only under restricted conditions. Physiologically, phonation more often involves large-amplitude oscillation associated with tissue stresses and strains beyond their linear viscoelastic limits, particularly in the lamina propria extracellular matrix (ECM). This study reports some preliminary measurements of tissue deformation and failure response of the vocal fold ECM under large-strain shear The primary goal was to formulate and test a novel constitutive model for vocal fold tissue failure, based on a standard-linear cohesive-zone (SL-CZ) approach. Tissue specimens of the sheep vocal fold mucosa were subjected to torsional deformation in vitro, at constant strain rates corresponding to twist rates of 0.01, 0.1, and 1.0 rad/s. The vocal fold ECM demonstrated nonlinear stress-strain and rate-dependent failure response with a failure strain as low as 0.40 rad. A finite-element implementation of the SL-CZ model was capable of capturing the rate dependence in these preliminary data, demonstrating the model's potential for describing tissue failure. Further studies with additional tissue specimens and model improvements are needed to better understand vocal fold tissue failure.

  9. Insilico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level.

    PubMed

    Yang, Changwon; Kulkarni, Mandar; Lim, Manho; Pak, Youngshang

    2017-12-15

    The reversible folding of the thrombin-binding DNA aptamer G-quadruplexes (GQs) (TBA-15) starting from fully unfolded states was demonstrated using a prolonged time scale (10-12 μs) parallel tempering metadynamics (PTMetaD) simulation method in conjunction with a modified version of the AMBER bsc1 force field. For unbiased descriptions of the folding free energy landscape of TBA-15, this force field was minimally modified. From this direct folding simulation using the modified bsc1 force field, reasonably converged free energy landscapes were obtained in K+-rich aqueous solution (150 mM), providing detailed atomistic pictures of GQ folding mechanisms for TBA-15. This study found that the TBA folding occurred via multiple folding pathways with two major free energy barriers of 13 and 15 kcal/mol in the presence of several intermediate states of G-triplex variants. The early formation of these intermediates was associated with a single K+ ion capturing. Interestingly, these intermediate states appear to undergo facile transitions among themselves through relatively small energy barriers. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Vocal Fold Epithelial Barrier in Health and Injury A Research Review

    PubMed Central

    Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.

    2015-01-01

    Purpose Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially hazardous insults including environmental or systemic-based irritants such as pollutants and reflux, surgical procedures, and vibratory trauma. Small disruptions in the epithelial barrier may have a large impact on susceptibility to injury and overall vocal health. The purpose of this article is to provide a broad-based review of our current knowledge of the vocal fold epithelial barrier. Methods A comprehensive review of the literature was conducted. Details of the structure of the vocal fold epithelial barrier are presented and evaluated in the context of function in injury and pathology. The importance of the epithelial-associated vocal fold mucus barrier is also introduced. Results/Conclusions Information presented in this review is valuable for clinicians and researchers as it highlights the importance of this understudied portion of the vocal folds to overall vocal health and disease. Prevention and treatment of injury to the epithelial barrier is a significant area awaiting further investigation. PMID:24686981

  11. Effect of level difference between left and right vocal folds on phonation: Physical experiment and theoretical study.

    PubMed

    Tokuda, Isao T; Shimamura, Ryo

    2017-08-01

    As an alternative factor to produce asymmetry between left and right vocal folds, the present study focuses on level difference, which is defined as the distance between the upper surfaces of the bilateral vocal folds in the inferior-superior direction. Physical models of the vocal folds were utilized to study the effect of the level difference on the phonation threshold pressure. A vocal tract model was also attached to the vocal fold model. For two types of different models, experiments revealed that the phonation threshold pressure tended to increase as the level difference was extended. Based upon a small amplitude approximation of the vocal fold oscillations, a theoretical formula was derived for the phonation threshold pressure. This theory agrees with the experiments, especially when the phase difference between the left and right vocal folds is not extensive. Furthermore, an asymmetric two-mass model was simulated with a level difference to validate the experiments as well as the theory. The primary conclusion is that the level difference has a potential effect on voice production especially for patients with an extended level of vertical difference in the vocal folds, which might be taken into account for the diagnosis of voice disorders.

  12. Plasticity in the Oxidative Folding Pathway of the High Affinity Nerita Versicolor Carboxypeptidase Inhibitor (NvCI).

    PubMed

    Esperante, Sebastián A; Covaleda, Giovanni; Trejo, Sebastián A; Bronsoms, Sílvia; Aviles, Francesc X; Ventura, Salvador

    2017-07-14

    Nerita Versicolor carboxypeptidase inhibitor (NvCI) is the strongest inhibitor reported so far for the M14A subfamily of carboxypeptidases. It comprises 53 residues and a protein fold composed of a two-stranded antiparallel β sheet connected by three loops and stabilized by three disulfide bridges. Here we report the oxidative folding and reductive unfolding pathways of NvCI. Much debate has gone on whether protein conformational folding guides disulfide bond formation or instead they are disulfide bonds that favour the arrangement of local or global structural elements. We show here that for NvCI both possibilities apply. Under physiological conditions, this protein folds trough a funnelled pathway involving a network of kinetically connected native-like intermediates, all sharing the disulfide bond connecting the two β-strands. In contrast, under denaturing conditions, the folding of NvCI is under thermodynamic control and follows a "trial and error" mechanism, in which an initial quasi-stochastic population of intermediates rearrange their disulfide bonds to attain the stable native topology. Despite their striking mechanistic differences, the efficiency of both folding routes is similar. The present study illustrates thus a surprising plasticity in the folding of this extremely stable small disulfide-rich inhibitor and provides the basis for its redesign for biomedical applications.

  13. Folding associated with extensional faulting: Sheep Range detachment, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guth, P.L.

    1985-01-01

    The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least threemore » landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.« less

  14. On the polymer physics origins of protein folding thermodynamics.

    PubMed

    Taylor, Mark P; Paul, Wolfgang; Binder, Kurt

    2016-11-07

    A remarkable feature of the spontaneous folding of many small proteins is the striking similarity in the thermodynamics of the folding process. This process is characterized by simple two-state thermodynamics with large and compensating changes in entropy and enthalpy and a funnel-like free energy landscape with a free-energy barrier that varies linearly with temperature. One might attribute the commonality of this two-state folding behavior to features particular to these proteins (e.g., chain length, hydrophobic/hydrophilic balance, attributes of the native state) or one might suspect that this similarity in behavior has a more general polymer-physics origin. Here we show that this behavior is also typical for flexible homopolymer chains with sufficiently short range interactions. Two-state behavior arises from the presence of a low entropy ground (folded) state separated from a set of high entropy disordered (unfolded) states by a free energy barrier. This homopolymer model exhibits a funneled free energy landscape that reveals a complex underlying dynamics involving competition between folding and non-folding pathways. Despite the presence of multiple pathways, this simple physics model gives the robust result of two-state thermodynamics for both the cases of folding from a basin of expanded coil states and from a basin of compact globule states.

  15. On the polymer physics origins of protein folding thermodynamics

    NASA Astrophysics Data System (ADS)

    Taylor, Mark P.; Paul, Wolfgang; Binder, Kurt

    2016-11-01

    A remarkable feature of the spontaneous folding of many small proteins is the striking similarity in the thermodynamics of the folding process. This process is characterized by simple two-state thermodynamics with large and compensating changes in entropy and enthalpy and a funnel-like free energy landscape with a free-energy barrier that varies linearly with temperature. One might attribute the commonality of this two-state folding behavior to features particular to these proteins (e.g., chain length, hydrophobic/hydrophilic balance, attributes of the native state) or one might suspect that this similarity in behavior has a more general polymer-physics origin. Here we show that this behavior is also typical for flexible homopolymer chains with sufficiently short range interactions. Two-state behavior arises from the presence of a low entropy ground (folded) state separated from a set of high entropy disordered (unfolded) states by a free energy barrier. This homopolymer model exhibits a funneled free energy landscape that reveals a complex underlying dynamics involving competition between folding and non-folding pathways. Despite the presence of multiple pathways, this simple physics model gives the robust result of two-state thermodynamics for both the cases of folding from a basin of expanded coil states and from a basin of compact globule states.

  16. Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations.

    PubMed

    Lei, Hongxing; Wu, Chun; Liu, Haiguang; Duan, Yong

    2007-03-20

    High-accuracy ab initio folding has remained an elusive objective despite decades of effort. To explore the folding landscape of villin headpiece subdomain HP35, we conducted two sets of replica exchange molecular dynamics for 200 ns each and three sets of conventional microsecond-long molecular dynamics simulations, using AMBER FF03 force field and a generalized-Born solvation model. The protein folded consistently to the native state; the lowest C(alpha)-rmsd from the x-ray structure was 0.46 A, and the C(alpha)- rmsd of the center of the most populated cluster was 1.78 A at 300 K. ab initio simulations have previously not reached this level. The folding landscape of HP35 can be partitioned into the native, denatured, and two intermediate-state regions. The native state is separated from the major folding intermediate state by a small barrier, whereas a large barrier exists between the major folding intermediate and the denatured states. The melting temperature T(m) = 339 K extracted from the heat-capacity profile was in close agreement with the experimentally derived T(m) = 342 K. A comprehensive picture of the kinetics and thermodynamics of HP35 folding emerges when the results from replica exchange and conventional molecular dynamics simulations are combined.

  17. Electron Bombardment Ion Thruster

    NASA Image and Video Library

    1970-08-21

    Researchers at the Lewis Research Center had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. Over the ensuing decades Lewis researchers continued to advance the original ion thruster concept. A Space Electric Rocket Test (SERT) spacecraft was launched in June 1964 to test Kaufman’s engine in space. SERT I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. This was followed in 1966 by the even more successful SERT II, which operated on and off for over ten years. Lewis continued studying increasingly more powerful ion thrusters. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust and are therefore not capable of lifting a spaceship from the surface of the Earth. Once lofted into orbit, however, electric engines are can produce small, continuous streams of thrust for several years.

  18. Variable tolerance to copper in two species from San Francisco Bay

    USGS Publications Warehouse

    Luoma, S.N.; Cain, D.J.; Ho, K.; Hutchinson, A.

    1983-01-01

    In static toxicity experiments, tolerance to soluble Cu of the bivalve, Macoma balthica, and the copepod, Acartia clausi, varied substantially among populations sampled within San Francisco Bay. Intraspecific tolerance differed ten-fold or more for both species over relatively small distances, suggesting geographical isolation of populations is not a prerequisite for the development of intraspecific differences in tolerance by aquatic organisms.In static toxicity experiments, tolerance to soluble Cu of the bivalve, Macoma balthica, and the copepod, Acartia clausi, varied substantially among populations sampled within San Francisco Bay. Intraspecific tolerance differed ten-fold or more for both species over relatively small distances, suggesting geographical isolation of populations is not a prerequisite for the development of intraspecific differences in tolerance by aquatic organisms. Refs.

  19. Consistency restrictions on maximal electric-field strength in quantum field theory.

    PubMed

    Gavrilov, S P; Gitman, D M

    2008-09-26

    Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

  20. Fluidic Active Transducer for Electricity Generation

    PubMed Central

    Yang, YoungJun; Park, Junwoo; Kwon, Soon-Hyung; Kim, Youn Sang

    2015-01-01

    Flows in small size channels have been studied for a long time over multidisciplinary field such as chemistry, biology and medical through the various topics. Recently, the attempts of electricity generation from the small flows as a new area for energy harvesting in microfluidics have been reported. Here, we propose for the first time a new fluidic electricity generator (FEG) by modulating the electric double layer (EDL) with two phase flows of water and air without external power sources. We find that an electric current flowed by the forming/deforming of the EDL with a simple separated phase flow of water and air at the surface of the FEG. Electric signals between two electrodes of the FEG are checked from various water/air passing conditions. Moreover, we verify the possibility of a self-powered air slug sensor by applying the FEG in the detection of an air slug. PMID:26511626

  1. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network.

    PubMed

    Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S

    2005-01-01

    A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission.

  2. Study on a Haptic Sensor Using MCF (Magnetic Compound Fluid) Electric Conductive Rubber

    NASA Astrophysics Data System (ADS)

    Zheng, Yaoyang; Shimada, Kunio

    To provide a new composite material having a high degree of sensitivity regarding both electrical conduction and temperature for the field of robotics or sensing, we have developed magnetic rubber that contains a network-like magnetic cluster. We compared the temperature response of MCF rubber with others rubbers made under various experimental conditions, allowing us to find an optimum condition for making MCF rubber. The temperature response was obtained by an experimental equation. We also compared the electric conductivity of MCF rubber with that of ordinary electric conductive rubber and found that its electric sensitivity was lower at a small deformation, but increased at larger deformations. Therefore, MCF rubber has proven itself effective as a switching sensor when a small deformation is applied.

  3. The microscopic model of BiFeO3

    NASA Astrophysics Data System (ADS)

    Fishman, R. S.

    2018-05-01

    Many years and great effort have been spent constructing the microscopic model for the room temperature multiferroic BiFeO3. However, earlier models implicitly assumed that the cycloidal wavevector q was confined to one of the three-fold symmetric axes in the hexagonal plane normal to the electric polarization. Because recent measurements indicate that q can be rotated by a magnetic field, it is essential to properly treat the anisotropy that confines q at low fields. We propose that the anisotropy energy -K3S6sin6 θ cos 6 ϕ confines the wavevectors q to the three-fold axis ϕ = 0 and ± 2 π / 3 within the hexagonal plane with θ = π / 2 .

  4. Characterization of Ocular Iontophoretic Drug Transport of Ionic and Non-ionic Compounds in Isolated Rabbit Cornea and Conjunctiva.

    PubMed

    Sekijima, Hidehisa; Ehara, Junya; Hanabata, Yusuke; Suzuki, Takumi; Kimura, Soichiro; Lee, Vincent H L; Morimoto, Yasunori; Ueda, Hideo

    2016-06-01

    Ocular iontophoresis (IP) in isolated rabbit cornea and conjunctiva was examined in terms of transport enhancement, tissue viability and integrity using electrophysiological parameters by the Ussing-type chamber technique. Lidocaine hydrochloride (LC, a cationic compound), sodium benzoate (BA, anionic compound), and fluorescein isothiocyanate labeled dextran (molecular weight 4400 Da, FD-4, hydrophilic large compound) were used as model permeants. Direct electric current was applied at 0.5-5.0 mA/cm(2) for the cornea and 0.5-20 mA/cm(2) for the conjunctiva for 30 min. LC and BA fluxes across the cornea and conjunctiva were significantly increased by the application of electric current up to 2.3- and 2.5-fold and 4.0- and 3.4-fold, respectively, and returned to their baseline level on stopping the current. Furthermore, a much higher increase by IP application was obtained for the FD-4 transport. The increased FD-4 flux in the conjunctiva returned to baseline on stopping the current, whereas the flux in the cornea was sustained at a higher level after stopping the current. The transepithelial electric resistance of the cornea and conjunctiva was lowered by electric current application but fully recovered after stopping the current up to 2.0 mA/cm(2) for the cornea and 10 mA/cm(2) for the conjunctiva, suggesting that the corneal and conjunctival viability and integrity are maintained even after application of these current densities. These results indicate that ocular IP may be a useful non-invasive technique to achieve drug delivery of hydrophilic large molecules into the eyes.

  5. Structural Insights into DD-Fold Assembly and Caspase-9 Activation by the Apaf-1 Apoptosome.

    PubMed

    Su, Tsung-Wei; Yang, Chao-Yu; Kao, Wen-Pin; Kuo, Bai-Jiun; Lin, Shan-Meng; Lin, Jung-Yaw; Lo, Yu-Chih; Lin, Su-Chang

    2017-03-07

    Death domain (DD)-fold assemblies play a crucial role in regulating the signaling to cell survival or death. Here we report the crystal structure of the caspase recruitment domain (CARD)-CARD disk of the human apoptosome. The structure surprisingly reveals that three 1:1 Apaf-1:procaspase-9 CARD protomers form a novel helical DD-fold assembly on the heptameric wheel-like platform of the apoptosome. The small-angle X-ray scattering and multi-angle light scattering data also support that three protomers could form an oligomeric complex similar to the crystal structure. Interestingly, the quasi-equivalent environment of CARDs could generate different quaternary CARD assemblies. We also found that the type II interaction is conserved in all DD-fold complexes, whereas the type I interaction is found only in the helical DD-fold assemblies. This study provides crucial insights into the caspase activation mechanism, which is tightly controlled by a sophisticated and highly evolved CARD assembly on the apoptosome, and also enables better understanding of the intricate DD-fold assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Thermoreversible Folding as a Route to the Unique Shape-Memory Character in Ductile Polymer Networks.

    PubMed

    McBride, Matthew K; Podgorski, Maciej; Chatani, Shunsuke; Worrell, Brady T; Bowman, Christopher N

    2018-06-21

    Ductile, cross-linked films were folded as a means to program temporary shapes without the need for complex heating cycles or specialized equipment. Certain cross-linked polymer networks, formed here with the thiol-isocyanate reaction, possessed the ability to be pseudoplastically deformed below the glass transition, and the original shape was recovered during heating through the glass transition. To circumvent the large forces required to plastically deform a glassy polymer network, we have utilized folding, which localizes the deformation in small creases, and achieved large dimensional changes with simple programming procedures. In addition to dimension changes, three-dimensional objects such as swans and airplanes were developed to demonstrate applying origami principles to shape memory. We explored the fundamental mechanical properties that are required to fold polymer sheets and observed that a yield point that does not correspond to catastrophic failure is required. Unfolding occurred during heating through the glass transition, indicating the vitrification of the network that maintained the temporary, folded shape. Folding was demonstrated as a powerful tool to simply and effectively program ductile shape-memory polymers without the need for thermal cycling.

  7. Programmable matter by folding

    PubMed Central

    Hawkes, E.; An, B.; Benbernou, N. M.; Tanaka, H.; Kim, S.; Demaine, E. D.; Rus, D.; Wood, R. J.

    2010-01-01

    Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to meet the goal. This paper considers achieving programmable sheets that can form themselves in different shapes autonomously by folding. Past approaches to creating transforming machines have been limited by the small feature sizes, the large number of components, and the associated complexity of communication among the units. We seek to mitigate these difficulties through the unique concept of self-folding origami with universal crease patterns. This approach exploits a single sheet composed of interconnected triangular sections. The sheet is able to fold into a set of predetermined shapes using embedded actuation. To implement this self-folding origami concept, we have developed a scalable end-to-end planning and fabrication process. Given a set of desired objects, the system computes an optimized design for a single sheet and multiple controllers to achieve each of the desired objects. The material, called programmable matter by folding, is an example of a system capable of achieving multiple shapes for multiple functions. PMID:20616049

  8. Programmable matter by folding.

    PubMed

    Hawkes, E; An, B; Benbernou, N M; Tanaka, H; Kim, S; Demaine, E D; Rus, D; Wood, R J

    2010-07-13

    Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to meet the goal. This paper considers achieving programmable sheets that can form themselves in different shapes autonomously by folding. Past approaches to creating transforming machines have been limited by the small feature sizes, the large number of components, and the associated complexity of communication among the units. We seek to mitigate these difficulties through the unique concept of self-folding origami with universal crease patterns. This approach exploits a single sheet composed of interconnected triangular sections. The sheet is able to fold into a set of predetermined shapes using embedded actuation. To implement this self-folding origami concept, we have developed a scalable end-to-end planning and fabrication process. Given a set of desired objects, the system computes an optimized design for a single sheet and multiple controllers to achieve each of the desired objects. The material, called programmable matter by folding, is an example of a system capable of achieving multiple shapes for multiple functions.

  9. Analysis of the Flight Motions of a Small Deployable Glider Configuration

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.

    1975-01-01

    An investigation was conducted at the request of the U.S. Air Force Avionics Laboratory to analyze the flight characteristics of a small uncontrolled glider with folding wings. The study consisted of wind-tunnel tests of an actual glider and a theoretical analysis of the performance, stability, and trimmability of the configuration.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha

    In disordered proteins we see that they are highly prevalent in biological systems. They control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27 Kip1 (p27). Moreover, two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groupsmore » of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule: disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of- principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A).« less

  11. Geologic interpretation of LANDSAT satellite images for the Qattara Depression area, Egypt

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdel-Hady, M. A.; Elghawaby, M. A.; Khawasik, S. M.; Elshazly, M. M. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. For the first time the regional geological units are given. Faults, fractures, and folds are included, as well as drainage lines which help to visualize the environmental impact of the Qattara project for electric power generation and to assess the regional questions involved in its implementation.

  12. 10 CFR 431.444 - Test procedures for the measurement of energy efficiency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the following test methods: (1) Single-phase small electric motors: either IEEE Std 114, (incorporated...) Polyphase small electric motors less than or equal to 1 horsepower (0.746 kW): IEEE Std 112 (incorporated by... (0.746 kW): IEEE Std 112 (incorporated by reference, see § 431.443), Test Method B. ...

  13. Millikan's Oil-Drop Experiment: A Centennial Setup Revisited in Virtual World

    ERIC Educational Resources Information Center

    Gagnon, Michel

    2012-01-01

    Early in the last century, Robert Millikan developed a precise method of determining the electric charge carried by oil droplets. Using a microscope and a small incandescent lamp, he observed the fall of charged droplets under the influence of an electric field inside a small observation chamber. In so doing, Millikan demonstrated the existence of…

  14. Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Goertz, C. K.; Gurnett, D. A.; Maynard, N. C.; Burch, J. L.

    1985-01-01

    Nearly simultaneous measurements of auroral zone electric fields are obtained by the Dynamics Explorer spacecraft at altitudes below 900 km and above 4,500 km during magnetic conjunctions. The measured electric fields are usually perpendicular to the magnetic field lines. The north-south meridional electric fields are projected to a common altitude by a mapping function which accounts for the convergence of the magnetic field lines. When plotted as a function of invariant latitude, graphs of the projected electric fields measured by both DE-1 and DE-2 show that the large-scale electric field is the same at both altitudes, as expected. Superimposed on the large-scale fields, however, are small-scale features with wavelengths less than 100 km which are larger in magnitude at the higher altitude. Fourier transforms of the electric fields show that the magnitudes depend on wavelength. Outside of the auroral zone the electric field spectrums are nearly identical. But within the auroral zone the high and low altitude electric fields have a ratio which increases with the reciprocal of the wavelength. The small-scale electric field variations are associated with field-aligned currents. These currents are measured with both a plasma instrument and magnetometer on DE-1.

  15. Hybrid thermoelectric solar collector design and analysis

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Shaheen, K. E.

    1982-01-01

    A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.

  16. Spectral functions at small energies and the electrical conductivity in hot quenched lattice QCD.

    PubMed

    Aarts, Gert; Allton, Chris; Foley, Justin; Hands, Simon; Kim, Seyong

    2007-07-13

    In lattice QCD, the maximum entropy method can be used to reconstruct spectral functions from Euclidean correlators obtained in numerical simulations. We show that at finite temperature the most commonly used algorithm, employing Bryan's method, is inherently unstable at small energies and gives a modification that avoids this. We demonstrate this approach using the vector current-current correlator obtained in quenched QCD at finite temperature. Our first results indicate a small electrical conductivity above the deconfinement transition.

  17. Electrically Controlled Valve With Small Motor

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic; Nelson, Richard O.

    1992-01-01

    Design of electrically controlled valve exploits force-multiplying principle to overcome large back-pressure force resisting initial opening. Design makes possible to open valve by use of relatively small motor adequate for rest of valve motion, but otherwise not large enough to open valve. In simple linear lifting, small horizontal forces applied to pair of taut cables to lift large weight through short distance. In rotary lifting, similar effect achieved by rotating, about an axis, disk to which initially axial cables attached.

  18. Intraoperative laryngeal electromyography in children with vocal fold immobility: a simplified technique.

    PubMed

    Scott, Andrew R; Chong, Peter Siao Tick; Randolph, Gregory W; Hartnick, Christopher J

    2008-01-01

    The primary objective of this study was to determine whether a simplified technique for intraoperative laryngeal electromyography was feasible using standard nerve integrity monitoring electrodes and audiovisual digital recording equipment. Our secondary objective was to determine if laryngeal electromyography data provided any additional information that significantly influenced patient management. Between February 2006 and February 2007, 10 children referred to our institution with vocal fold immobility underwent intraoperative laryngeal electromyography of the thyroarytenoid muscles. A retrospective chart review of these 10 patients was performed after institutional review board approval. Standard nerve integrity monitoring electrodes can be used to perform intraoperative laryngeal electromyography of the thyroarytenoid muscles in children. In 5 of 10 cases reviewed, data from laryngeal electromyography recordings meaningfully influenced the care of children with vocal fold immobility and affected clinical decision-making, sometimes altering management strategies. In the remaining 5 children, data supported clinical impressions but did not alter treatment plans. Two children with idiopathic bilateral vocal fold paralysis initially presented with a lack of electrical activity on one or both sides but went on to develop motor unit action potentials that preceded recovery of motion in both vocal folds. Our findings suggest that standard nerve monitoring equipment can be used to perform intraoperative laryngeal electromyography and that electromyographic data can assist clinicians in the management of complex patients. Additionally, there may be a role for the use of serial intraoperative measurements in predicting recovery from vocal fold paralysis in the pediatric age group.

  19. Small organic molecule based flow battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huskinson, Brian; Marshak, Michael; Aziz, Michael J.

    The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., gridscale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.

  20. Electric current heating calibration of a laser holographic nondestructive test system

    NASA Technical Reports Server (NTRS)

    Liu, H.-K.; Kurtz, R. L.

    1975-01-01

    Holographic NDT was used to measure small surface displacements controlled by electric heating by detecting the difference of the interference fringe patterns as viewed through the hologram on a real time basis. A perforated aluminum test plate, with the holes used to position thin metal foils, was used in the experiment. One of the foils was connected to an electric power source and small displacements of the foil were caused and controlled by Ohmic heating. An He-Ne laser was used to perform the holography.

  1. Crystal Structure, Electric Polarization and Heat Capacity Measurements on Small R-Ion Multiferroic Hexagonal RMnO3

    NASA Astrophysics Data System (ADS)

    Yu, Tian; Gao, Peng; Wu, Tao; Tyson, Trevor; Lalancette, Roger

    2013-03-01

    Crystal structure, electric polarization and heat capacity measurements on the hexagonal multiferroic RMnO3 reveal that small R ion (Lu and lower cation size) systems are ferroelectric and possess the same space-group as YMnO3. Combined local and long range structural measurements were conducted by XAFS, PDF and single crystal and powder XRD methods. The influence of the Mn-O and R-O distribution on the electric polarization is discussed. Point charge estimates of the electrical polarization are given for comparison with the YMnO3 system. This work is supported by DOE Grant DE-FG02-07ER46402.

  2. Electrical Injuries

    MedlinePlus

    ... long you were exposed. Other factors include how healthy you are, and how quickly you get treatment. Causes of electrical injuries include Lightning strikes Faulty electrical appliances Work-related exposures Contact with household wiring or power lines Accidents in small children, when they bite ...

  3. 78 FR 77343 - Small Business Size Standards: Utilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... (such as solar, wind, biomass, geothermal) as well as other industries, where power generation is...: namely NAICS 221114 (Solar Electric Power Generation), NAICS 221115 (Wind Electric Power Generation... Electric Power 4 million 250 employees. Generation. megawatt hours. [[Page 77348

  4. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.

    PubMed

    Michnick, S W; Shakhnovich, E

    1998-01-01

    Nucleation-growth theory predicts that fast-folding peptide sequences fold to their native structure via structures in a transition-state ensemble that share a small number of native contacts (the folding nucleus). Experimental and theoretical studies of proteins suggest that residues participating in folding nuclei are conserved among homologs. We attempted to determine if this is true in proteins with highly diverged sequences but identical folds (superfamilies). We describe a strategy based on comparisons of residue conservation in natural superfamily sequences with simulated sequences (generated with a Monte-Carlo sequence design strategy) for the same proteins. The basic assumptions of the strategy were that natural sequences will conserve residues needed for folding and stability plus function, the simulated sequences contain no functional conservation, and nucleus residues make native contacts with each other. Based on these assumptions, we identified seven potential nucleus residues in ubiquitin superfamily members. Non-nucleus conserved residues were also identified; these are proposed to be involved in stabilizing native interactions. We found that all superfamily members conserved the same potential nucleus residue positions, except those for which the structural topology is significantly different. Our results suggest that the conservation of the nucleus of a specific fold can be predicted by comparing designed simulated sequences with natural highly diverged sequences that fold to the same structure. We suggest that such a strategy could be used to help plan protein folding and design experiments, to identify new superfamily members, and to subdivide superfamilies further into classes having a similar folding mechanism.

  5. High-Resolution Mapping of a Repeat Protein Folding Free Energy Landscape.

    PubMed

    Fossat, Martin J; Dao, Thuy P; Jenkins, Kelly; Dellarole, Mariano; Yang, Yinshan; McCallum, Scott A; Garcia, Angel E; Barrick, Doug; Roumestand, Christian; Royer, Catherine A

    2016-12-06

    A complete description of the pathways and mechanisms of protein folding requires a detailed structural and energetic characterization of the conformational ensemble along the entire folding reaction coordinate. Simulations can provide this level of insight for small proteins. In contrast, with the exception of hydrogen exchange, which does not monitor folding directly, experimental studies of protein folding have not yielded such structural and energetic detail. NMR can provide residue specific atomic level structural information, but its implementation in protein folding studies using chemical or temperature perturbation is problematic. Here we present a highly detailed structural and energetic map of the entire folding landscape of the leucine-rich repeat protein, pp32 (Anp32), obtained by combining pressure-dependent site-specific 1 H- 15 N HSQC data with coarse-grained molecular dynamics simulations. The results obtained using this equilibrium approach demonstrate that the main barrier to folding of pp32 is quite broad and lies near the unfolded state, with structure apparent only in the C-terminal region. Significant deviation from two-state unfolding under pressure reveals an intermediate on the folded side of the main barrier in which the N-terminal region is disordered. A nonlinear temperature dependence of the population of this intermediate suggests a large heat capacity change associated with its formation. The combination of pressure, which favors the population of folding intermediates relative to chemical denaturants; NMR, which allows their observation; and constrained structure-based simulations yield unparalleled insight into protein folding mechanisms. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Vitamin D status and vascular dementia due to cerebral small vessel disease in the elderly Asian Indian population.

    PubMed

    Prabhakar, Puttachandra; Chandra, Sadanandavalli Retnaswami; Supriya, Manjunath; Issac, Thomas Gregor; Prasad, Chandrajit; Christopher, Rita

    2015-12-15

    Vitamin D plays vital roles in human health and recent studies have shown its beneficial effect on brain functioning. The present study was designed to evaluate the association of vitamin D with vascular dementia (VaD) due to cerebral small vessel disease (SVD) in Asian Indian population. 140 VaD patients aged ≥ 60 years with neuroimaging evidence of SVD, and 132 age and gender-matched controls, were investigated. Vitamin D status was estimated by measuring serum 25-hydroxy vitamin D. Logistic regression model revealed that deficient levels of vitamin D (<12 ng/ml) were associated with 2.2-fold increase in odds of VaD after adjustment with covariates. Hypertension was independently associated with 11.3-fold increased odds of VaD. In hypertensives with vitamin D deficiency and insufficiency (12-20 ng/ml), the odds were increased to 31.6-fold and 14.4-fold, respectively. However, in hypertensives with vitamin D sufficiency (>20 ng/ml), the odds of VaD were increased by 3.8-fold only. Pearson correlation showed that serum vitamin D was inversely associated with systolic and diastolic blood pressure (r=-0.401 and -0.411, p<0.01, respectively) in vitamin D-deficient subjects. Since the combined presence of hypertension and vitamin D deficiency increases the probability of developing VaD, screening for vitamin D status in addition to regular monitoring of blood pressure, could reduce the risk of VaD associated with cerebral SVD in the elderly Asian Indian subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping

    NASA Astrophysics Data System (ADS)

    Henke, Paul S.; Mak, Chi H.

    2014-08-01

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg2+ that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.

  8. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping.

    PubMed

    Henke, Paul S; Mak, Chi H

    2014-08-14

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg(2+) that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.

  9. Folding and Stabilization of Native-Sequence-Reversed Proteins

    PubMed Central

    Zhang, Yuanzhao; Weber, Jeffrey K; Zhou, Ruhong

    2016-01-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols. PMID:27113844

  10. Folding and Stabilization of Native-Sequence-Reversed Proteins

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhao; Weber, Jeffrey K.; Zhou, Ruhong

    2016-04-01

    Though the problem of sequence-reversed protein folding is largely unexplored, one might speculate that reversed native protein sequences should be significantly more foldable than purely random heteropolymer sequences. In this article, we investigate how the reverse-sequences of native proteins might fold by examining a series of small proteins of increasing structural complexity (α-helix, β-hairpin, α-helix bundle, and α/β-protein). Employing a tandem protein structure prediction algorithmic and molecular dynamics simulation approach, we find that the ability of reverse sequences to adopt native-like folds is strongly influenced by protein size and the flexibility of the native hydrophobic core. For β-hairpins with reverse-sequences that fail to fold, we employ a simple mutational strategy for guiding stable hairpin formation that involves the insertion of amino acids into the β-turn region. This systematic look at reverse sequence duality sheds new light on the problem of protein sequence-structure mapping and may serve to inspire new protein design and protein structure prediction protocols.

  11. Folded path LWIR system for SWAP constrained platforms

    NASA Astrophysics Data System (ADS)

    Fleet, Erin F.; Wilson, Michael L.; Linne von Berg, Dale; Giallorenzi, Thomas; Mathieu, Barry

    2014-06-01

    Folded path reflection and catadioptric optics are of growing interest, especially in the long wave infrared (LWIR), due to continuing demands for reductions in imaging system size, weight and power (SWAP). We present the optical design and laboratory data for a 50 mm focal length low f/# folded-path compact LWIR imaging system. The optical design uses 4 concentric aspheric mirrors, each of which is described by annular aspheric functions well suited to the folded path design space. The 4 mirrors are diamond turned onto two thin air-spaced aluminum plates which can be manually focused onto the uncooled LWIR microbolometer array detector. Stray light analysis will be presented to show how specialized internal baffling can be used to reduce stray light propagation through the folded path optical train. The system achieves near diffraction limited performance across the FOV with a 15 mm long optical train and a 5 mm back focal distance. The completed system is small enough to reside within a 3 inch diameter ball gimbal.

  12. Beyond the Bend: Exploring the Conformational Landscape of Decyl, Undecyl, and Dodecylbenzene

    NASA Astrophysics Data System (ADS)

    Hewett, Daniel M.; Zwier, Timothy S.

    2017-06-01

    Alkylbenzenes are important components in the combustion process: they make up 20-30% of petroleum fuels and are intermediates on the pathway to soot formation. Understanding their conformational preferences is a vital step in understanding the processes by which fuels begin their journey from small, simple hydrocarbons into the large, graphitic masses of soot. Previous work done in our group, in collaboration with the Sibert group, found that the smallest alkylbenzene which folds its chain back over the ring is octylbenzene. The population of the lone folded structure in octylbenzene is low; however, theory predicts a rapid stabilization of the folded conformations relative to more extended structures as the chain length is increased, suggesting a likely shift in population towards folded structures. This talk will focus on our exploration of this possibility by discussing the UV excitation and single conformation IR spectra of decyl, undecyl, and dodecylbenzene, where increasing chain length allows for multiple stable folded configurations.

  13. In vivo cross-sectional imaging of the phonating larynx using long-range Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.

    2016-03-01

    Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.

  14. Effects of surface tension and intraluminal fluid on mechanics of small airways.

    PubMed

    Hill, M J; Wilson, T A; Lambert, R K

    1997-01-01

    Airway constriction is accompanied by folding of the mucosa to form ridges that run axially along the inner surface of the airways. The mucosa has been modeled (R. K. Lambert. J. Appl. Physiol. 71:666-673, 1991) as a thin elastic layer with a finite bending stiffness, and the contribution of its bending stiffness to airway elastance has been computed. In this study, we extend that work by including surface tension and intraluminal fluid in the model. With surface tension, the pressure on the inner surface of the elastic mucosa is modified by the pressure difference across the air-liquid interface. As folds form in the mucosa, intraluminal fluid collects in pools in the depressions formed by the folds, and the curvature of the air-liquid interface becomes nonuniform. If the amount of intraluminal fluid is small, < 2% of luminal volume, the pools of intraluminal fluid are small, the air-liquid interface nearly coincides with the surface of the mucosa, and the area of the air-liquid interface remains constant as airway cross-sectional area decreases. In that case, surface energy is independent of airway area, and surface tension has no effect on airway mechanics. If the amount of intraluminal fluid is > 2%, the area of the air-liquid interface decreases as airway cross-sectional area decreases. and surface tension contributes to airway compression. The model predicts that surface tension plus intraluminal fluid can cause an instability in the area-pressure curve of small airways. This instability provides a mechanism for abrupt airway closure and abrupt reopening at a higher opening pressure.

  15. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    PubMed

    Petrie, Michael A; Kimball, Amy L; McHenry, Colleen L; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.

  16. Folding of guanine quadruplex molecules-funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies.

    PubMed

    Šponer, Jiří; Bussi, Giovanni; Stadlbauer, Petr; Kührová, Petra; Banáš, Pavel; Islam, Barira; Haider, Shozeb; Neidle, Stephen; Otyepka, Michal

    2017-05-01

    Guanine quadruplexes (GQs) play vital roles in many cellular processes and are of much interest as drug targets. In contrast to the availability of many structural studies, there is still limited knowledge on GQ folding. We review recent molecular dynamics (MD) simulation studies of the folding of GQs, with an emphasis paid to the human telomeric DNA GQ. We explain the basic principles and limitations of all types of MD methods used to study unfolding and folding in a way accessible to non-specialists. We discuss the potential role of G-hairpin, G-triplex and alternative GQ intermediates in the folding process. We argue that, in general, folding of GQs is fundamentally different from funneled folding of small fast-folding proteins, and can be best described by a kinetic partitioning (KP) mechanism. KP is a competition between at least two (but often many) well-separated and structurally different conformational ensembles. The KP mechanism is the only plausible way to explain experiments reporting long time-scales of GQ folding and the existence of long-lived sub-states. A significant part of the natural partitioning of the free energy landscape of GQs comes from the ability of the GQ-forming sequences to populate a large number of syn-anti patterns in their G-tracts. The extreme complexity of the KP of GQs typically prevents an appropriate description of the folding landscape using just a few order parameters or collective variables. We reconcile available computational and experimental studies of GQ folding and formulate basic principles characterizing GQ folding landscapes. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Molecular mechanism for the effects of trehalose on beta-hairpin folding revealed by molecular dynamics simulation.

    PubMed

    Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2008-11-01

    Recent work has shown that trehalose can facilitate and inhibit protein folding, but little is known about the molecular basis of these effects. Molecular-level insights into how the osmolyte affects protein folding are of significance for the rational design of small molecular additives for enhancing or hindering the folding of proteins. To investigate the molecular mechanisms of the facilitation and inhibition effects of trehalose on protein folding, molecular dynamics (MD) simulation of a beta-hairpin peptide (Trp-Arg-Tyr-Tyr-Glu-Ser-Ser-Leu-Glu-Pro-Glu-Pro-Asp) in different trehalose concentrations (0-0.26 mol/L) is performed using an all-atom model. It is found that at a proper trehalose concentration (0.065 mol/L), the peptide folds faster than that in water, but it cannot fold to the beta-hairpin at higher trehalose concentrations. Free energy landscape analysis indicates the presence of three intermediate states in both pure water and in 0.065 mol/L trehalose, but the potential energy barriers in the folding pathway decrease greatly in 0.065 mol/L trehalose, so the peptide folding is facilitated. Moreover, at this trehalose concentration, there is a favorable balance between the peptide backbone hydrogen bonds (H-bonds) and the peptide-trehalose H-bonds, leading to the stabilization of the folded peptide. At higher trehalose concentrations, however, trehalose molecules cluster in the peptide region and interact with the peptide via many H-bonds that prevent the peptide from folding to its native structure. The energy landscape analysis indicates that the potential energy barriers increase so greatly that the peptide cannot overcome it, getting trapped in a local free energy basin. The work reported herein has elucidated the molecular mechanism of the peptide folding in the presence of trehalose.

  18. Performance of a Thermoelectric Device with Integrated Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Barry, Matthew M.; Agbim, Kenechi A.; Chyu, Minking K.

    2015-06-01

    Thermoelectric devices (TEDs) convert heat directly into electrical energy, making them well suited for waste heat recovery applications. An integrated thermoelectric device (iTED) is a restructured TED that allows more heat to enter the p-n junctions, thus producing a greater power output . An iTED has heat exchangers incorporated into the hot-side interconnectors with flow channels directing the working fluid through the heat exchangers. The iTED was constructed of p- and n-type bismuth-telluride semiconductors and copper interconnectors and rectangular heat exchangers. The performance of the iTED in terms of , produced voltage and current , heat input and conversion efficiency for various flow rates (), inlet temperatures (C) ) and load resistances () with a constant cold-side temperature ( = 0C) was conducted experimentally. An increase in had a greater effect on the performance than did an increase in . A 3-fold increase in resulted in a 3.2-, 3.1-, 9.7-, 3.5- and 2.8-fold increase in and respectively. For a constant of 50C, a 3-fold increase in from 3300 to 9920 resulted in 1.6-, 1.6-, 2.6-, 1.5- and 1.9-fold increases in , , , and respectively.

  19. 3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

    DOE PAGES

    Lewis, Brett B.; Winkler, Robert; Sang, Xiahan; ...

    2017-04-07

    Here, we investigate the growth, purity, grain structure/morphology, and electrical resistivity of 3D platinum nanowires synthesized via electron beam induced deposition with and without an in situ pulsed laser assist process which photothermally couples to the growing Pt–C deposits. Notably, we demonstrate: 1) higher platinum concentration and a coalescence of the otherwise Pt–C nanogranular material, 2) a slight enhancement in the deposit resolution and 3) a 100-fold improvement in the conductivity of suspended nanowires grown with the in situ photothermal assist process, while retaining a high degree of shape fidelity.

  20. Enhanced magnetoelectric effect in M-type hexaferrites by Co substitution into trigonal bi-pyramidal sites

    NASA Astrophysics Data System (ADS)

    Beevers, J. E.; Love, C. J.; Lazarov, V. K.; Cavill, S. A.; Izadkhah, H.; Vittoria, C.; Fan, R.; van der Laan, G.; Dhesi, S. S.

    2018-02-01

    The magnetoelectric effect in M-type Ti-Co doped strontium hexaferrite has been studied using a combination of magnetometry and element specific soft X-ray spectroscopies. A large increase (>×30) in the magnetoelectric coefficient is found when Co2+ enters the trigonal bi-pyramidal site. The 5-fold trigonal bi-pyramidal site has been shown to provide an unusual mechanism for electric polarization based on the displacement of magnetic transition metal (TM) ions. For Co entering this site, an off-centre displacement of the cation may induce a large local electric dipole as well as providing an increased magnetostriction enhancing the magnetoelectric effect.

  1. Industrial Education. Mini-Course Cluster: Bikes, Electricity, Small Engines. [Grade 9].

    ERIC Educational Resources Information Center

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides three units to be used in a one semester course in grade 9 on the subjects of bikes, electricity, and small engines. The section on bicycles is divided into two parts, mechanical and power (i.e. motorcycles) and covers the topics of…

  2. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Kumar, Ashish; Tripathi, Ambuj; Tyagi, Chetna; Avasthi, D. K.

    2018-04-01

    In this work, swift heavy ion irradiation induced effects on the electrical properties of single layer graphene are reported. The modulation in minimum conductivity point in graphene with in-situ electrical measurement during ion irradiation was studied. It is found that the resistance of graphene layer decreases at lower fluences up to 3 × 1011 ions/cm2, which is accompanied by the five-fold increase in electron and hole mobilities. The ion irradiation induced increase in electron and hole mobilities at lower fluence up to 1 × 1011 ions/cm2 is verified by separate Hall measurements on another irradiated graphene sample at the selected fluence. In contrast to the adverse effects of irradiation on the electrical properties of materials, we have found improvement in electrical mobility after irradiation. The increment in mobility is explained by considering the defect annealing in graphene after irradiation at a lower fluence regime. The modification in carrier density after irradiation is also observed. Based on findings of the present work, we suggest ion beam irradiation as a useful tool for tuning of the electrical properties of graphene.

  3. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO3/Pb(Mg,Nb,Ti)O3 magneto-electric heterostructure.

    PubMed

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi

    2016-06-08

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.

  4. Magnetic and electric control of multiferroic properties in monodomain crystals of BiFeO3

    NASA Astrophysics Data System (ADS)

    Tokunaga, Masashi

    One of the important goals for multiferroics is to develop the non-volatile magnetic memories that can be controlled by electric fields with low power consumption. Among numbers of multiferroic materials, BiFeO3 has been the most extensively studied because of its substantial ferroelectric polarization and magnetic order up to above room temperature. Recent high field experiments on monodomain crystals of BiFeO3 revealed the existence of additional electric polarization normal to the three-fold rotational axis. This transverse component is coupled with the cycloidal magnetic domain, and hence, can be controlled by external magnetic fields. Application of electric fields normal to the trigonal axis modifies volume fraction of these multiferroic domains, which involves change in resistance of the sample, namely exhibits the bipolar resistive memory effect. In this talk, I will introduce the effects of magnetic and electric fields on magnetoelectric and structural properties observed in monodomain crystals of BiFeO3. This work was supported by JSPS Grant Number 16K05413 and by a research Grant from The Murata Science Foundation.

  5. Performance of a Fuel-Cell-Powered, Small Electric Airplane Assessed

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2004-01-01

    Rapidly emerging fuel-cell-power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and - with the exception of water vapor - zero emissions. An analytical feasibility and performance assessment was conducted by NASA Glenn Research Center's Airbreathing Systems Analysis Office of a fuel-cell-powered, propeller-driven, small electric airplane based on a model of the MCR-01 two-place kitplane (Dyn'Aero, Darois, France). This assessment was conducted in parallel with an ongoing effort by the Advanced Technology Products Corporation and the Foundation for Advancing Science and Technology Education. Their project - partially funded by a NASA grant - is to design, build, and fly the first manned, continuously propelled, nongliding electric airplane. In our study, an analytical performance model of a proton exchange membrane (PEM) fuel cell propulsion system was developed and applied to a notional, two-place light airplane modeled after the MCR-01 kitplane. The PEM fuel cell stack was fed pure hydrogen fuel and humidified ambient air via a small automotive centrifugal supercharger. The fuel cell performance models were based on chemical reaction analyses calibrated with published data from the fledgling U.S. automotive fuel cell industry. Electric propeller motors, rated at two shaft power levels in separate assessments, were used to directly drive a two-bladed, variable-pitch propeller. Fuel sources considered were compressed hydrogen gas and cryogenic liquid hydrogen. Both of these fuel sources provided pure, contaminant-free hydrogen for the PEM cells.

  6. Operation Sun Beam, Shot Small Boy. Project Officer's report - Project 6. 9. Correlation of present and previous electric-field measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reno; Fowles, H.M.

    On most previous nuclear detonations, signatures and quantitative measurements of the electric-field signals associated with the detonations was obtained at distances such that normal radiation field characteristics apply. On Small Boy, measurements were made from stations located much closer in, such as to be inside, on the boundary of and just outside the limits of the ionized sphere created by the nuclear burst. The electric-field characteristics in these regions were unknown. In the hope of providing continuity from the region of the unknown into the reasonably well-understood region of the radiation field, this project was requested to make the typicalmore » radiation-field type of measurement that had been made on previous detonations. This report covers the signature characteristics and quantitative measurements of the electric-field signal from Small Boy as seen from outside the immediate region of theoretical generating mechanism.« less

  7. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method.

    PubMed

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-14

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At 2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  8. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-01

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  9. Citronellal assumes a folded conformation in solution due to dispersion interactions: A joint NMR-DFT analysis

    NASA Astrophysics Data System (ADS)

    Nardini, Viviani; Dias, Luis Gustavo; Palaretti, Vinicius; da Silva, Gil Valdo José

    2018-04-01

    Citronellal, an acyclic monoterpenoid, is a small molecule suitable for systematic scanning of its conformational geometric parameters in solution or in the gas phase. We have studied the conformational distribution of citronellal by correlating its structure and theoretical chemical shifts with nuclear magnetic resonance data. Interestingly, folded conformations were the most relevant, as confirmed by NOE experiments. We concluded that the conformational distribution is due to intramolecular dispersion interactions.

  10. USSR Report, Consumer Goods and Domestic Trade, No. 70.

    DTIC Science & Technology

    1983-06-30

    equipment, the use of chemicals in production, the assimilation of advanced technology , the introduction of new materials and the further improvement of the...for children by 6.1-fold, small boots and half boots by 40.8 percent, insulated footwear by 20 percent, fashionable footwear by 33.7 percent and...especially fashion - able and especially elegant footwear by 3.9-fold. The orders of trade organizations for children’s footwear in accordance with the

  11. Identification of the protein folding transition state from molecular dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Muff, S.; Caflisch, A.

    2009-03-01

    The rate of protein folding is governed by the transition state so that a detailed characterization of its structure is essential for understanding the folding process. In vitro experiments have provided a coarse-grained description of the folding transition state ensemble (TSE) of small proteins. Atomistic details could be obtained by molecular dynamics (MD) simulations but it is not straightforward to extract the TSE directly from the MD trajectories, even for small peptides. Here, the structures in the TSE are isolated by the cut-based free-energy profile (cFEP) using the network whose nodes and links are configurations sampled by MD and direct transitions among them, respectively. The cFEP is a barrier-preserving projection that does not require arbitrarily chosen progress variables. First, a simple two-dimensional free-energy surface is used to illustrate the successful determination of the TSE by the cFEP approach and to explain the difficulty in defining boundary conditions of the Markov state model for an entropically stabilized free-energy minimum. The cFEP is then used to extract the TSE of a β-sheet peptide with a complex free-energy surface containing multiple basins and an entropic region. In contrast, Markov state models with boundary conditions defined by projected variables and conventional histogram-based free-energy profiles are not able to identify the TSE of the β-sheet peptide.

  12. An electricity consumption model for electric vehicular flow

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao

    2016-09-01

    In this paper, we apply the relationships between the macro and micro variables of traffic flow to develop an electricity consumption model for electric vehicular flow. We use the proposed model to study the quantitative relationships between the electricity consumption/total power and speed/density under uniform flow, and the electricity consumptions during the evolution processes of shock, rarefaction wave and small perturbation. The numerical results indicate that the proposed model can perfectly describe the electricity consumption for electric vehicular flow, which shows that the proposed model is reasonable.

  13. Can an ammonium-based room temperature ionic liquid counteract the urea-induced denaturation of a small peptide?

    PubMed

    Ghosh, Soumadwip; Dey, Souvik; Patel, Mahendra; Chakrabarti, Rajarshi

    2017-03-15

    The folding/unfolding equilibrium of proteins in aqueous medium can be altered by adding small organic molecules generally termed as co-solvents. Denaturants such as urea are instrumental in the unfolding of proteins while protecting osmolytes favour the folded ensemble. Recently, room temperature ionic liquids (ILs) have been shown to counteract the deleterious effect of urea on proteins. In this paper, using atomistic molecular dynamics we show that a ternary mixture containing a particular ammonium-based IL, triethylammonium acetate (TEAA), and urea (in 1 : 5 molar ratio) helps a small 15-residue S-peptide analogue regain most of its native structure, whereas a binary aqueous mixture containing a large amount of urea alone completely distorts it. Our simulations show that the denaturant urea directly interacts with the peptide backbone in the binary mixture while for the ternary mixture both urea as well as the IL are preferentially excluded from the peptide surface.

  14. Energy performance assessment of virtualization technologies using small environmental monitoring sensors.

    PubMed

    Liu, Lu; Masfary, Osama; Antonopoulos, Nick

    2012-01-01

    The increasing trends of electrical consumption within data centres are a growing concern for business owners as they are quickly becoming a large fraction of the total cost of ownership. Ultra small sensors could be deployed within a data centre to monitor environmental factors to lower the electrical costs and improve the energy efficiency. Since servers and air conditioners represent the top users of electrical power in the data centre, this research sets out to explore methods from each subsystem of the data centre as part of an overall energy efficient solution. In this paper, we investigate the current trends of Green IT awareness and how the deployment of small environmental sensors and Site Infrastructure equipment optimization techniques which can offer a solution to a global issue by reducing carbon emissions.

  15. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Čaja, Alexander

    2015-05-01

    Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  16. Folding-paper-based preconcentrator for low dispersion of preconcentration plug

    NASA Astrophysics Data System (ADS)

    Lee, Kyungjae; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Kim, Cheonjung; Lee, Jeong Hoon

    2017-12-01

    Ion concentration polarization (ICP) has been widely studied for collecting target analytes as it is a powerful preconcentrator method employed for charged molecules. Although the method is quite robust, simple, cheap, and yields a high preconcentration factor, a major hurdle to be addressed is extracting the preconcentrated samples without dispersing the plug. This study investigates a 3D folding-paper-based ICP preconcentrator for preconcentrated plug extraction without the dispersion effect. The ICP preconcentrator is printed on a cellulose paper with pre-patterned hydrophobic wax. To extract and isolate the preconcentration plug with minimal dispersion, a 3D pop-up structure is fabricated via water drain, and a preconcentration factor of 300-fold for 10 min is achieved. By optimizing factors such as the electric field, water drain, and sample volume, the technique was enhanced by facilitating sample preconcentration and isolation, thereby providing the possibility for extensive applications in analytical devices such as lateral flow assays and FTAR cards.

  17. Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity

    PubMed Central

    Wang, Ning; Chen, Haijun; He, Hongcai; Norimatsu, Wataru; Kusunoki, Michiko; Koumoto, Kunihito

    2013-01-01

    Authors reported an effective path to increase the electrical conductivity while to decrease the thermal conductivity, and thus to enhance the ZT value by nano-inclusions. By this method, the ZT value of Nb-doped SrTiO3 was enhanced 9-fold by yttria stabilized zirconia (YSZ) nano-inclusions. YSZ inclusions, located inside grain and in triple junction, can reduce the thermal conductivity by effective interface phonon scattering, enhance the electrical conductivity by promoting the abnormal grain growth, and thus lead to the obvious enhancement of ZT value, which strongly suggests that, it is possible to not only reduce the thermal conductivity, but also increase the electrical conductivity by nano-inclusions with low thermal conductivity. This study will give some useful enlightenment to the preparation of high-performance oxide thermoelectric materials. PMID:24316665

  18. MEASUREMENT OF SMALL MECHANICAL VIBRATIONS OF BRAIN TISSUE EXPOSED TO EXTREMELY-LOW-FREQUENCY ELECTRIC FIELDS

    EPA Science Inventory

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...

  19. 75 FR 51870 - Wheego Electric Cars, Inc.; Receipt of Application for Temporary Exemption From Advanced Air Bag...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ...-0118] Wheego Electric Cars, Inc.; Receipt of Application for Temporary Exemption From Advanced Air Bag... with the procedures in 49 CFR part 555, Wheego Electric Cars, Inc., has petitioned the agency for a... requirements submitted by a manufacturer of a small electric car. II. Overview of Wheego's Petition for...

  20. Emergence of higher order rotational symmetry in the hidden order phase of URu 2Si 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanchanavatee, N.; Janoschek, M.; Huang, K.

    2016-09-30

    Electrical resistivity measurements were performed in this paper as functions of temperature, magnetic field, and angle θ between the magnetic field and the c-axis of a URu 2Si 2 single crystal. The resistivity exhibits a two-fold oscillation as a function of θ at high temperatures, which undergoes a 180°-phase shift (sign change) with decreasing temperature at around 35 K. The hidden order transition is manifested as a minimum in the magnetoresistance and amplitude of the two-fold oscillation. Interestingly, the resistivity also showed four-fold, six-fold, and eight-fold symmetries at the hidden order transition. These higher order symmetries were also detected atmore » low temperatures, which could be a sign of the formation of another pseudogap phase above the superconducting transition, consistent with recent evidence for a pseudogap from point-contact spectroscopy measurements and NMR. Measurements of the magnetisation of single crystalline URu 2Si 2 with the magnetic field applied parallel and perpendicular to the crystallographic c-axis revealed regions with linear temperature dependencies between the hidden order transition temperature and about 25 K. Finally, this T-linear behaviour of the magnetisation may be associated with the formation of a precursor phase or ‘pseudogap’ in the density of states in the vicinity of 30–35 K.« less

  1. Modular synthetic inverters from zinc finger proteins and small RNAs

    DOE PAGES

    Hsia, Justin; Holtz, William J.; Maharbiz, Michel M.; ...

    2016-02-17

    Synthetic zinc finger proteins (ZFPs) can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA) to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three “off the shelf” ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. In conclusion, our chosenmore » parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here.« less

  2. Characteristics of electricity generation and biodegradation in tidal river sludge-used microbial fuel cells.

    PubMed

    Touch, Narong; Hibino, Tadashi; Nagatsu, Yoshiyuki; Tachiuchi, Kouhei

    2014-04-01

    The electricity generation behavior of microbial fuel cell (MFC) using the sludge collected from the riverbank of a tidal river, and the biodegradation of the sludge by the electricity generation are evaluated. Although the maximum current density (150-300 mA/m(2)) was higher than that of MFC using freshwater sediment (30 mA/m(2)), the output current was greatly restricted by the mass transfer limitation. However, our results also indicate that placing the anode in different locations in the sludge could reduce the mass transfer limitation. After approximately 3 months, the removal efficiency of organic carbon was approximately 10%, demonstrated that MFC could also enhance the biodegradation of the sludge by nearly 10-fold comparing with the natural biodegradation. We also found that the biodegradation could be identified by the behavior of oxygen consumption of the sludge. Importantly, the oxygen consumption of the sludge became higher along with the electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Pressure induced polymerization of acetylide anions in CaC 2 and 10 7 fold enhancement of electrical conductivity

    DOE PAGES

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; ...

    2016-08-17

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6– are identified with gas chromatography-mass spectrometrymore » and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. As a result, the polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less

  4. Effect of interactions with the chaperonin cavity on protein folding and misfolding†

    PubMed Central

    Sirur, Anshul; Knott, Michael; Best, Robert B.

    2015-01-01

    Recent experimental and computational results have suggested that attractive interactions between a chaperonin and an enclosed substrate can have an important effect on the protein folding rate: it appears that folding may even be slower inside the cavity than under unconfined conditions, in contrast to what we would expect from excluded volume effects on the unfolded state. Here we examine systematically the dependence of the protein stability and folding rate on the strength of such attractive interactions between the chaperonin and substrate, by using molecular simulations of model protein systems in an idealised attractive cavity. Interestingly, we find a maximum in stability, and a rate which indeed slows down at high attraction strengths. We have developed a simple phenomenological model which can explain the variations in folding rate and stability due to differing effects on the free energies of the unfolded state, folded state, and transition state; changes in the diffusion coefficient along the folding coordinate are relatively small, at least for our simplified model. In order to investigate a possible role for these attractive interactions in folding, we have studied a recently developed model for misfolding in multidomain proteins. We find that, while encapsulation in repulsive cavities greatly increases the fraction of misfolded protein, sufficiently strong attractive protein-cavity interactions can strongly reduce the fraction of proteins reaching misfolded traps. PMID:24077053

  5. Controlling protein molecular dynamics: How to accelerate folding while preserving the native state

    NASA Astrophysics Data System (ADS)

    Jensen, Christian H.; Nerukh, Dmitry; Glen, Robert C.

    2008-12-01

    The dynamics of peptides and proteins generated by classical molecular dynamics (MD) is described by using a Markov model. The model is built by clustering the trajectory into conformational states and estimating transition probabilities between the states. Assuming that it is possible to influence the dynamics of the system by varying simulation parameters, we show how to use the Markov model to determine the parameter values that preserve the folded state of the protein and at the same time, reduce the folding time in the simulation. We investigate this by applying the method to two systems. The first system is an imaginary peptide described by given transition probabilities with a total folding time of 1μs. We find that only small changes in the transition probabilities are needed to accelerate (or decelerate) the folding. This implies that folding times for slowly folding peptides and proteins calculated using MD cannot be meaningfully compared to experimental results. The second system is a four residue peptide valine-proline-alanine-leucine in water. We control the dynamics of the transitions by varying the temperature and the atom masses. The simulation results show that it is possible to find the combinations of parameter values that accelerate the dynamics and at the same time preserve the native state of the peptide. A method for accelerating larger systems without performing simulations for the whole folding process is outlined.

  6. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation

    PubMed Central

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L.; Freund, Stefan M.; Menzel, Andreas; Fersht, Alan R.; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution. PMID:25946337

  7. Deconvoluting Protein (Un)folding Structural Ensembles Using X-Ray Scattering, Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics Simulation.

    PubMed

    Nasedkin, Alexandr; Marcellini, Moreno; Religa, Tomasz L; Freund, Stefan M; Menzel, Andreas; Fersht, Alan R; Jemth, Per; van der Spoel, David; Davidsson, Jan

    2015-01-01

    The folding and unfolding of protein domains is an apparently cooperative process, but transient intermediates have been detected in some cases. Such (un)folding intermediates are challenging to investigate structurally as they are typically not long-lived and their role in the (un)folding reaction has often been questioned. One of the most well studied (un)folding pathways is that of Drosophila melanogaster Engrailed homeodomain (EnHD): this 61-residue protein forms a three helix bundle in the native state and folds via a helical intermediate. Here we used molecular dynamics simulations to derive sample conformations of EnHD in the native, intermediate, and unfolded states and selected the relevant structural clusters by comparing to small/wide angle X-ray scattering data at four different temperatures. The results are corroborated using residual dipolar couplings determined by NMR spectroscopy. Our results agree well with the previously proposed (un)folding pathway. However, they also suggest that the fully unfolded state is present at a low fraction throughout the investigated temperature interval, and that the (un)folding intermediate is highly populated at the thermal midpoint in line with the view that this intermediate can be regarded to be the denatured state under physiological conditions. Further, the combination of ensemble structural techniques with MD allows for determination of structures and populations of multiple interconverting structures in solution.

  8. Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell

    PubMed Central

    Charlier, Cyril; Alderson, T. Reid; Courtney, Joseph M.; Ying, Jinfa; Anfinrud, Philip

    2018-01-01

    In general, small proteins rapidly fold on the timescale of milliseconds or less. For proteins with a substantial volume difference between the folded and unfolded states, their thermodynamic equilibrium can be altered by varying the hydrostatic pressure. Using a pressure-sensitized mutant of ubiquitin, we demonstrate that rapidly switching the pressure within an NMR sample cell enables study of the unfolded protein under native conditions and, vice versa, study of the native protein under denaturing conditions. This approach makes it possible to record 2D and 3D NMR spectra of the unfolded protein at atmospheric pressure, providing residue-specific information on the folding process. 15N and 13C chemical shifts measured immediately after dropping the pressure from 2.5 kbar (favoring unfolding) to 1 bar (native) are close to the random-coil chemical shifts observed for a large, disordered peptide fragment of the protein. However, 15N relaxation data show evidence for rapid exchange, on a ∼100-μs timescale, between the unfolded state and unstable, structured states that can be considered as failed folding events. The NMR data also provide direct evidence for parallel folding pathways, with approximately one-half of the protein molecules efficiently folding through an on-pathway kinetic intermediate, whereas the other half fold in a single step. At protein concentrations above ∼300 μM, oligomeric off-pathway intermediates compete with folding of the native state. PMID:29666248

  9. Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: Improved backbone hydration and interactions between charged side chains

    PubMed Central

    Han, Wei; Schulten, Klaus

    2012-01-01

    PACE, a hybrid force field which couples united-atom protein models with coarse-grained (CG) solvent, has been further optimized, aiming to improve itse ciency for folding simulations. Backbone hydration parameters have been re-optimized based on hydration free energies of polyalanyl peptides through atomistic simulations. Also, atomistic partial charges from all-atom force fields were combined with PACE in order to provide a more realistic description of interactions between charged groups. Using replica exchange molecular dynamics (REMD), ab initio folding using the new PACE has been achieved for seven small proteins (16 – 23 residues) with different structural motifs. Experimental data about folded states, such as their stability at room temperature, melting point and NMR NOE constraints, were also well reproduced. Moreover, a systematic comparison of folding kinetics at room temperature has been made with experiments, through standard MD simulations, showing that the new PACE may speed up the actual folding kinetics 5-10 times. Together with the computational speedup benefited from coarse-graining, the force field provides opportunities to study folding mechanisms. In particular, we used the new PACE to fold a 73-residue protein, 3D, in multiple 10 – 30 μs simulations, to its native states (Cα RMSD ~ 0.34 nm). Our results suggest the potential applicability of the new PACE for the study of folding and dynamics of proteins. PMID:23204949

  10. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics.

    PubMed

    Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador

    2016-02-04

    Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.

  11. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics

    PubMed Central

    Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador

    2016-01-01

    Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level. PMID:26841954

  12. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics

    NASA Astrophysics Data System (ADS)

    Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador

    2016-02-01

    Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.

  13. Universality and diversity of folding mechanics for three-helix bundle proteins.

    PubMed

    Yang, Jae Shick; Wallin, Stefan; Shakhnovich, Eugene I

    2008-01-22

    In this study we evaluate, at full atomic detail, the folding processes of two small helical proteins, the B domain of protein A and the Villin headpiece. Folding kinetics are studied by performing a large number of ab initio Monte Carlo folding simulations using a single transferable all-atom potential. Using these trajectories, we examine the relaxation behavior, secondary structure formation, and transition-state ensembles (TSEs) of the two proteins and compare our results with experimental data and previous computational studies. To obtain a detailed structural information on the folding dynamics viewed as an ensemble process, we perform a clustering analysis procedure based on graph theory. Moreover, rigorous p(fold) analysis is used to obtain representative samples of the TSEs and a good quantitative agreement between experimental and simulated Phi values is obtained for protein A. Phi values for Villin also are obtained and left as predictions to be tested by future experiments. Our analysis shows that the two-helix hairpin is a common partially stable structural motif that gets formed before entering the TSE in the studied proteins. These results together with our earlier study of Engrailed Homeodomain and recent experimental studies provide a comprehensive, atomic-level picture of folding mechanics of three-helix bundle proteins.

  14. ortho- and meta-substituted aromatic thiols are efficient redox buffers that increase the folding rate of a disulfide-containing protein.

    PubMed

    Gough, Jonathan D; Barrett, Elvis J; Silva, Yenia; Lees, Watson J

    2006-08-20

    Thiol based redox buffers are used to enhance the folding rates of disulfide-containing proteins in vitro. Traditionally, small molecule aliphatic thiols such as glutathione are employed. Recently, we have demonstrated that aromatic thiols can further enhance protein-folding rates. In the presence of para-substituted aromatic thiols the folding rate of a disulfide-containing protein was increased by 4-23 times over that measured for glutathione. However, several important practical issues remain to be addressed. Aromatic thiols have never been tested in the presence of denaturants such as guanidine hydrochloride. Only two of the para-substituted aromatic thiols previously examined are commercially available. To expand the number of aromatic thiols for protein folding, several commercially available meta- and ortho-substituted aromatic thiols were studied. Furthermore, an ortho-substituted aromatic thiol, easily obtained from inexpensive starting materials, was investigated. Folding rates of scrambled ribonuclease A at pH 6.0, 7.0 and 7.7, with ortho- and meta-substituted aromatic thiols, were up to 10 times greater than those with glutathione. In the presence of the common denaturant guanidine hydrochloride (0.5M) aromatic thiols provided 100% yield of active protein while maintaining equivalent folding rates.

  15. Mutational analysis of the folding transition state of the C-terminal domain of ribosomal protein L9: a protein with an unusual beta-sheet topology.

    PubMed

    Li, Ying; Gupta, Ruchi; Cho, Jae-Hyun; Raleigh, Daniel P

    2007-01-30

    The C-terminal domain of ribosomal protein L9 (CTL9) is a 92-residue alpha-beta protein which contains an unusual three-stranded mixed parallel and antiparallel beta-sheet. The protein folds in a two-state fashion, and the folding rate is slow. It is thought that the slow folding may be caused by the necessity of forming this unusual beta-sheet architecture in the transition state for folding. This hypothesis makes CTL9 an interesting target for folding studies. The transition state for the folding of CTL9 was characterized by phi-value analysis. The folding of a set of hydrophobic core mutants was analyzed together with a set of truncation mutants. The results revealed a few positions with high phi-values (> or = 0.5), notably, V131, L133, H134, V137, and L141. All of these residues were found in the beta-hairpin region, indicating that the formation of this structure is likely to be the rate-limiting step in the folding of CTL9. One face of the beta-hairpin docks against the N-terminal helix. Analysis of truncation mutants of this helix confirmed its importance in folding. Mutations at other sites in the protein gave small phi-values, despite the fact that some of them had major effects on stability. The analysis indicates that formation of the antiparallel hairpin is critical and its interactions with the first helix are also important. Thus, the slow folding is not a consequence of the need to fully form the unusual three-stranded beta-sheet in the transition state. Analysis of the urea dependence of the folding rates indicates that mutations modulate the unfolded state. The folding of CTL9 is broadly consistent with the nucleation-condensation model of protein folding.

  16. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    PubMed

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Rheometric properties of canine vocal fold tissues: Variation with anatomic location

    PubMed Central

    Kimura, Miwako; Mau, Ted; Chan, Roger W.

    2010-01-01

    Objective To evaluate the in vitro rheometric properties of the canine vocal fold lamina propria and muscle at phonatory frequencies, and their changes with anatomic location. Methods Six canine larynges were harvested immediately postmortem. Viscoelastic shear properties of anterior, middle, and posterior portions of the vocal fold cover (lamina propria) as well as those of the medial thyroarytenoid (TA) muscle (vocalis muscle) were quantified by a linear, controlled-strain simple-shear rheometer. Measurements of elastic shear modulus (G’) and dynamic viscosity (η’) of the specimens were conducted with small-amplitude sinusoidal shear deformation over a frequency range of 1 Hz to 250 Hz. Results All specimens showed similar frequency dependence of the viscoelastic functions, with G’ gradually increasing with frequency and η’ decreasing with frequency monotonically. G’ and η’ of the canine vocalis muscle were significantly higher than those of the canine vocal fold cover, and η’ of the canine vocal fold cover was significantly higher than that of the human vocal fold cover. There were no significant differences in G’ and in η’ between different portions of the canine vocal fold cover. Conclusion These preliminary data based on the canine model suggested that the vocalis muscle, while in a relaxed state in vitro, is significantly stiffer and more viscous than the vocal fold cover during vibration at phonatory frequencies. For large-amplitude vocal fold vibration involving the medial portion of the TA muscle, such distinct differences in viscoelastic properties of different layers of the vocal fold should be taken into account in multi-layered biomechanical models of phonation. PMID:21035291

  18. High dose microCT does not contribute towards improved microPET/CT image quantitative accuracy and can limit longitudinal scanning of small animals

    NASA Astrophysics Data System (ADS)

    McDougald, Wendy A.; Collins, Richard; Green, Mark; Tavares, Adriana A. S.

    2017-10-01

    Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT) imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1) to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2) to evaluate the absorbed dose associated with varying CT parameters. Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA) software implemented by Mediso. Measured Hounsfield Unit (HU) in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC), uniformity and quantitative bias were also measured. Results: Only less than 2% and 1% of CT acquisition protocols yielded water HU values < -80 and air HU values < -840, respectively. Four out of eleven CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration. Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed towards improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  19. Lateral mode coupling to reduce the electrical impedance of small elements required for high power ultrasound therapy phased arrays.

    PubMed

    Hynynen, Kullervo; Yin, Jianhua

    2009-03-01

    A method that uses lateral coupling to reduce the electrical impedance of small transducer elements in generating ultrasound waves was tested. Cylindrical, radially polled transducer elements were driven at their length resonance frequency. Computer simulation and experimental studies showed that the electrical impedance of the transducer element could be controlled by the cylinder wall thickness, while the operation frequency was determined by the cylinder length. Acoustic intensity (averaged over the cylinder diameter) over 10 W / cm(2) (a therapeutically relevant intensity) was measured from these elements.

  20. Conference Proceedings: Annual Review of Progress in Applied Computational Electromagnetics (ACES󈨢) (10th) Held in Monterey, California on March 21-26, 1994. Volume 2

    DTIC Science & Technology

    1994-01-01

    These enhancements have allowed us to use GEMACS to model very small ( electrical ) features such as 0.1V pins on printed circuit boards without the...34Enhancements and Limitations of the Code NEC for Modeling Electrically Small Antennas," Lawrence Livermore National Laboratory, Report UCID-20970, January... electrical lengths of the coupling paths arc also shown in Figure 6. The "LB" indicates the large box dimensions (1/4.4 scale model ) and "SB" Indicates the

  1. Ultrafast microfluidic mixer for tracking the early folding kinetics of human telomere G-quadruplex.

    PubMed

    Li, Ying; Liu, Chao; Feng, Xiaojun; Xu, Youzhi; Liu, Bi-Feng

    2014-05-06

    The folding of G-quadruplex is hypothesized to undergo a complex process, from the formation of a hairpin structure to a triplex intermediate and to the final G-quadruplex. Currently, no experimental evidence has been found for the hairpin formation, because it folds in the time regime of 10-100 μs, entailing the development of microfluidic mixers with a mixing time of less than 10 μs. In this paper, we reported an ultrarapid micromixer with a mixing time of 5.5 μs, which represents the fastest turbulent micromixer to our best knowledge. Evaluations of the micromixer were conducted to confirm its mixing efficiency for small molecules and macromolecules. This new micromixer enabled us to interrogate the hairpin formation in the early folding process of human telomere G-quadruplex. The experimental kinetic evidence for the formation of hairpin was obtained for the first time.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wołek, Karol; Cieplak, Marek, E-mail: mc@ifpan.edu.pl

    In structure-based models of proteins, one often assumes that folding is accomplished when all contacts are established. This assumption may frequently lead to a conceptual problem that folding takes place in a temperature region of very low thermodynamic stability, especially when the contact map used is too sparse. We consider six different structure-based models and show that allowing for a small, but model-dependent, percentage of the native contacts not being established boosts the folding temperature substantially while affecting the time scales of folding only in a minor way. We also compare other properties of the six models. We show thatmore » the choice of the description of the backbone stiffness has a substantial effect on the values of characteristic temperatures that relate both to equilibrium and kinetic properties. Models without any backbone stiffness (like the self-organized polymer) are found to perform similar to those with the stiffness, including in the studies of stretching.« less

  3. Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins.

    PubMed

    Naranjo, Yandi; Pons, Miquel; Konrat, Robert

    2012-01-01

    The number of existing protein sequences spans a very small fraction of sequence space. Natural proteins have overcome a strong negative selective pressure to avoid the formation of insoluble aggregates. Stably folded globular proteins and intrinsically disordered proteins (IDPs) use alternative solutions to the aggregation problem. While in globular proteins folding minimizes the access to aggregation prone regions, IDPs on average display large exposed contact areas. Here, we introduce the concept of average meta-structure correlation maps to analyze sequence space. Using this novel conceptual view we show that representative ensembles of folded and ID proteins show distinct characteristics and respond differently to sequence randomization. By studying the way evolutionary constraints act on IDPs to disable a negative function (aggregation) we might gain insight into the mechanisms by which function-enabling information is encoded in IDPs.

  4. Supramolecular Architectures and Mimics of Complex Natural Folds Derived from Rationally Designed alpha-Helical Protein Structures

    NASA Astrophysics Data System (ADS)

    Tavenor, Nathan Albert

    Protein-based supramolecular polymers (SMPs) are a class of biomaterials which draw inspiration from and expand upon the many examples of complex protein quaternary structures observed in nature: collagen, microtubules, viral capsids, etc. Designing synthetic supramolecular protein scaffolds both increases our understanding of natural superstructures and allows for the creation of novel materials. Similar to small-molecule SMPs, protein-based SMPs form due to self-assembly driven by intermolecular interactions between monomers, and monomer structure determines the properties of the overall material. Using protein-based monomers takes advantage of the self-assembly and highly specific molecular recognition properties encodable in polypeptide sequences to rationally design SMP architectures. The central hypothesis underlying our work is that alpha-helical coiled coils, a well-studied protein quaternary folding motif, are well-suited to SMP design through the addition of synthetic linkers at solvent-exposed sites. Through small changes in the structures of the cross-links and/or peptide sequence, we have been able to control both the nanoscale organization and the macroscopic properties of the SMPs. Changes to the linker and hydrophobic core of the peptide can be used to control polymer rigidity, stability, and dimensionality. The gaps in knowledge that this thesis sought to fill on this project were 1) the relationship between the molecular structure of the cross-linked polypeptides and the macroscopic properties of the SMPs and 2) a means of creating materials exhibiting multi-dimensional net or framework topologies. Separate from the above efforts on supramolecular architectures was work on improving backbone modification strategies for an alpha-helix in the context of a complex protein tertiary fold. Earlier work in our lab had successfully incorporated unnatural building blocks into every major secondary structure (beta-sheet, alpha-helix, loops and beta-turns) of a small protein with a tertiary fold. Although the tertiary fold of the native sequence was mimicked by the resulting artificial protein, the thermodynamic stability was greatly compromised. Most of this energetic penalty derived from the modifications present in the alpha-helix. The contribution within this thesis was direct comparison of several alpha-helical design strategies and establishment of the thermodynamic consequences of each.

  5. Ferromagnetic, folded electrode composite as a soft interface to the skin for long-term electrophysiological recording.

    PubMed

    Jang, Kyung-In; Jung, Han Na; Lee, Jung Woo; Xu, Sheng; Liu, Yu Hao; Ma, Yinji; Jeong, Jae-Woong; Song, Young Min; Kim, Jeonghyun; Kim, Bong Hun; Banks, Anthony; Kwak, Jean Won; Yang, Yiyuan; Shi, Dawei; Wei, Zijun; Feng, Xue; Paik, Ungyu; Huang, Yonggang; Ghaffari, Roozbeh; Rogers, John A

    2016-10-25

    This paper introduces a class of ferromagnetic, folded, soft composite material for skin-interfaced electrodes with releasable interfaces to stretchable, wireless electronic measurement systems. These electrodes establish intimate, adhesive contacts to the skin, in dimensionally stable formats compatible with multiple days of continuous operation, with several key advantages over conventional hydrogel based alternatives. The reported studies focus on aspects ranging from ferromagnetic and mechanical behavior of the materials systems, to electrical properties associated with their skin interface, to system-level integration for advanced electrophysiological monitoring applications. The work combines experimental measurement and theoretical modeling to establish the key design considerations. These concepts have potential uses across a diverse set of skin-integrated electronic technologies.

  6. Bioaccumulation of the Selected Metal Ions in Saccharomyces cerevisiae Cells Under Treatment of the Culture with Pulsed Electric Field (PEF).

    PubMed

    Pankiewicz, Urszula; Sujka, Monika; Jamroz, Jerzy

    2015-12-01

    The obtained results demonstrated an influence of PEF on increase in accumulation of various ions in S. cerevisiae cells. Optimization of particular PEF parameters and ions concentrations in the medium caused twofold increase in accumulation of magnesium and zinc ions and 3.5-fold higher accumulation of calcium ions in the cells. In the case of ion couple, accumulation of magnesium and zinc was, respectively, 1.5-fold and twofold higher in comparison to the control cultures. Yeast cells biomass enriched with Mg(2+), Zn(2+), Ca(2+) as well as Mg(2+) and Zn(2+) (simultaneously) may be an alternative for pharmacological supplementation applied in deficiency of these cations.

  7. Interior of Vacuum Tank at the Electric Propulsion Laboratory

    NASA Image and Video Library

    1961-08-21

    Interior of the 20-foot diameter vacuum tank at the NASA Lewis Research Center’s Electric Propulsion Laboratory. Lewis researchers had been studying different electric rocket propulsion methods since the mid-1950s. Harold Kaufman created the first successful ion engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory, which began operation in 1961, contained two large vacuum tanks capable of simulating a space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank included a 10-foot diameter test compartment to test electric thrusters with condensable propellants. The portals along the chamber floor lead to the massive exhauster equipment that pumped out the air to simulate the low pressures found in space.

  8. A Global Regulation Inducing the Shape of Growing Folded Leaves

    PubMed Central

    Couturier, Etienne; Courrech du Pont, Sylvain; Douady, Stéphane

    2009-01-01

    Shape is one of the important characteristics for the structures observed in living organisms. Whereas biologists have proposed models where the shape is controlled on a molecular level [1], physicists, following Turing [2] and d'Arcy Thomson [3], have developed theories where patterns arise spontaneously [4]. Here, we propose that volume constraints restrict the possible shapes of leaves. Focusing on palmate leaves (with lobes), the central observation is that developing leaves first grow folded inside a bud, limited by the previous and subsequent leaves. We show that the lobe perimeters end at the border of this small volume. This induces a direct relationship between the way it was folded and the final unfolded shape of the leaf. These dependencies can be approximated as simple geometrical relationships that we confirm on both folded embryonic and unfolded mature leaves. We find that independent of their position in the phylogenetic tree, these relationships work for folded species, but do not work for non-folded species. This global regulation for the leaf growth could come from a mechanical steric constraint. Such steric regulation should be more general and considered as a new simple means of global regulation. PMID:19956690

  9. Transient intermediates are populated in the folding pathways of single-domain two-state folding protein L

    NASA Astrophysics Data System (ADS)

    Maity, Hiranmay; Reddy, Govardhan

    2018-04-01

    Small single-domain globular proteins, which are believed to be dominantly two-state folders, played an important role in elucidating various aspects of the protein folding mechanism. However, recent single molecule fluorescence resonance energy transfer experiments [H. Y. Aviram et al. J. Chem. Phys. 148, 123303 (2018)] on a single-domain two-state folding protein L showed evidence for the population of an intermediate state and it was suggested that in this state, a β-hairpin present near the C-terminal of the native protein state is unfolded. We performed molecular dynamics simulations using a coarse-grained self-organized-polymer model with side chains to study the folding pathways of protein L. In agreement with the experiments, an intermediate is populated in the simulation folding pathways where the C-terminal β-hairpin detaches from the rest of the protein structure. The lifetime of this intermediate structure increased with the decrease in temperature. In low temperature conditions, we also observed a second intermediate state, which is globular with a significant fraction of the native-like tertiary contacts satisfying the features of a dry molten globule.

  10. Transition Pathway and Its Free-Energy Profile: A Protocol for Protein Folding Simulations

    PubMed Central

    Lee, In-Ho; Kim, Seung-Yeon; Lee, Jooyoung

    2013-01-01

    We propose a protocol that provides a systematic definition of reaction coordinate and related free-energy profile as the function of temperature for the protein-folding simulation. First, using action-derived molecular dynamics (ADMD), we investigate the dynamic folding pathway model of a protein between a fixed extended conformation and a compact conformation. We choose the pathway model to be the reaction coordinate, and the folding and unfolding processes are characterized by the ADMD step index, in contrast to the common a priori reaction coordinate as used in conventional studies. Second, we calculate free-energy profile as the function of temperature, by employing the replica-exchange molecular dynamics (REMD) method. The current method provides efficient exploration of conformational space and proper characterization of protein folding/unfolding dynamics from/to an arbitrary extended conformation. We demonstrate that combination of the two simulation methods, ADMD and REMD, provides understanding on molecular conformational changes in proteins. The protocol is tested on a small protein, penta-peptide of met-enkephalin. For the neuropeptide met-enkephalin system, folded, extended, and intermediate sates are well-defined through the free-energy profile over the reaction coordinate. Results are consistent with those in the literature. PMID:23917881

  11. The role of finite displacements in vocal fold modeling.

    PubMed

    Chang, Siyuan; Tian, Fang-Bao; Luo, Haoxiang; Doyle, James F; Rousseau, Bernard

    2013-11-01

    Human vocal folds experience flow-induced vibrations during phonation. In previous computational models, the vocal fold dynamics has been treated with linear elasticity theory in which both the strain and the displacement of the tissue are assumed to be infinitesimal (referred to as model I). The effect of the nonlinear strain, or geometric nonlinearity, caused by finite displacements is yet not clear. In this work, a two-dimensional model is used to study the effect of geometric nonlinearity (referred to as model II) on the vocal fold and the airflow. The result shows that even though the deformation is under 1 mm, i.e., less than 10% of the size of the vocal fold, the geometric nonlinear effect is still significant. Specifically, model I underpredicts the gap width, the flow rate, and the impact stress on the medial surfaces as compared to model II. The study further shows that the differences are caused by the contact mechanics and, more importantly, the fluid-structure interaction that magnifies the error from the small-displacement assumption. The results suggest that using the large-displacement formulation in a computational model would be more appropriate for accurate simulations of the vocal fold dynamics.

  12. [Vascular lesions of vocal folds--part 1: horizontal vascular lesions].

    PubMed

    Voigt-Zimmermann, S; Arens, C

    2014-12-01

    In recent decades, the endoscopic methods and technologies for laryngeal examination have improved so much that not only epithelial changes, but also vascular changes are recognizable at earlier stages. When comparing newer and older literature, the associated increasingly differentiated descriptions of such visible vascular changes of the vocal folds lead to terminological blurring and shifts of meaning. This complicates the technical-scientific discourse. The aim of the present work is a theoretical and conceptual clarification of early vascular changes of vocal folds. Horizontal changes of benigne vascular diseases, e. g. vessel ectasia, meander, increasing number and branching of vessels, change of direction may develop in to manifest vascular lesions, like varicosis, polyps and in case of ruptures to haemorrhages of vocal folds. These beginning and reversible vascular changes, when early detected and discussed basing on etiological knowledge, may lead to more differentiated prognostic statements and adequate therapeutic decisions, e. g. phonosurgery, functional voice therapy, voice hygiene and voice rest. Vertical vascular changes, like vessel loops, occur primarily in laryngeal papilloma, pre-cancerous and cancerous changes of the vocal folds. Already in small cancerous lesions of the vocal folds the vascular architecture is completely destroyed. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Visceral injury in electrical shock trauma: proposed guideline for the management of abdominal electrocution and literature review

    PubMed Central

    Marques, Evelyne GSC; Júnior, Gerson A Pereira; Neto, Bruno F Muller; Freitas, Rodrigo A; Yaegashi, Lygia B; Almeida, Carlos E Fagotti; Júnior, Jayme Adriano Farina

    2014-01-01

    Victims of electrical burns account for approximately 5% of admissions to major burn centers. The first case of visceral injury caused by electrical burns was described in 1927 by Simonin, who reported perforation of the small intestine. Other rare cases were reported over the following years. The colon and small intestine were the organs most frequently affected. Less frequently involved organs were the heart, esophagus, stomach, pancreas, liver, gallbladder, lung, and kidney. We highlight the potential fatal visceral injuries after the electrical trauma. This study provides a review on this topic and proposes a management flowchart that should be adopted by the multidisciplinary team to treat these patients. Conclusion: Visceral injuries are rare in electrical burns victims, but it can be severe and are associated with high rates of morbidity and mortality, sometimes requiring a more interventional approach. PMID:24624308

  14. MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes

    NASA Technical Reports Server (NTRS)

    Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner

    2016-01-01

    Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.

  15. Electric Field Encephalography as a tool for functional brain research: a modeling study.

    PubMed

    Petrov, Yury; Sridhar, Srinivas

    2013-01-01

    We introduce the notion of Electric Field Encephalography (EFEG) based on measuring electric fields of the brain and demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp, EFEG sensors provided 2-3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback applications. It also may lead to major improvements in source localization precision. Source localization simulations for the spherical and Boundary Element Method (BEM) head models demonstrated that the localization errors are reduced two-fold when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental approaches to utilize this new tool for functional brain research.

  16. TOUCHSTONE II: a new approach to ab initio protein structure prediction.

    PubMed

    Zhang, Yang; Kolinski, Andrzej; Skolnick, Jeffrey

    2003-08-01

    We have developed a new combined approach for ab initio protein structure prediction. The protein conformation is described as a lattice chain connecting C(alpha) atoms, with attached C(beta) atoms and side-chain centers of mass. The model force field includes various short-range and long-range knowledge-based potentials derived from a statistical analysis of the regularities of protein structures. The combination of these energy terms is optimized through the maximization of correlation for 30 x 60,000 decoys between the root mean square deviation (RMSD) to native and energies, as well as the energy gap between native and the decoy ensemble. To accelerate the conformational search, a newly developed parallel hyperbolic sampling algorithm with a composite movement set is used in the Monte Carlo simulation processes. We exploit this strategy to successfully fold 41/100 small proteins (36 approximately 120 residues) with predicted structures having a RMSD from native below 6.5 A in the top five cluster centroids. To fold larger-size proteins as well as to improve the folding yield of small proteins, we incorporate into the basic force field side-chain contact predictions from our threading program PROSPECTOR where homologous proteins were excluded from the data base. With these threading-based restraints, the program can fold 83/125 test proteins (36 approximately 174 residues) with structures having a RMSD to native below 6.5 A in the top five cluster centroids. This shows the significant improvement of folding by using predicted tertiary restraints, especially when the accuracy of side-chain contact prediction is >20%. For native fold selection, we introduce quantities dependent on the cluster density and the combination of energy and free energy, which show a higher discriminative power to select the native structure than the previously used cluster energy or cluster size, and which can be used in native structure identification in blind simulations. These procedures are readily automated and are being implemented on a genomic scale.

  17. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet.

    PubMed

    Andriamihaja, Mireille; Davila, Anne-Marie; Eklou-Lawson, Mamy; Petit, Nathalie; Delpal, Serge; Allek, Fadhila; Blais, Anne; Delteil, Corine; Tomé, Daniel; Blachier, François

    2010-11-01

    Hyperproteic diets are used in human nutrition to obtain body weight reduction. Although increased protein ingestion results in an increased transfer of proteins from the small to the large intestine, there is little information on the consequences of the use of such diets on the composition of large intestine content and on epithelial cell morphology and metabolism. Rats were fed for 15 days with either a normoproteic (NP, 14% protein) or a hyperproteic isocaloric diet (HP, 53% protein), and absorptive colonocytes were observed by electron microscopy or isolated for enzyme activity studies. The colonic luminal content was recovered for biochemical analysis. Absorbing colonocytes were characterized by a 1.7-fold reduction in the height of the brush-border membranes (P = 0.0001) after HP diet consumption when compared with NP. This coincided in the whole colon content of HP animals with a 1.8-fold higher mass content (P = 0.0020), a 2.2-fold higher water content (P = 0.0240), a 5.2-fold higher protease activity (P = 0.0104), a 5.5-fold higher ammonia content (P = 0.0008), and a more than twofold higher propionate, valerate, isobutyrate, and isovalerate content (P < 0.05). The basal oxygen consumption of colonocytes was similar in the NP and HP groups, but ammonia was found to provoke a dose-dependent decrease of oxygen consumption in the isolated absorbing colonocytes. The activity of glutamine synthetase (which condenses ammonia and glutamate) was found to be much higher in colonocytes than in small intestine enterocytes and was 1.6-fold higher (P = 0.0304) in colonocytes isolated from HP animals than NP. Glutaminase activity remained unchanged. Thus hyperproteic diet ingestion causes marked changes both in the luminal environment of colonocytes and in the characteristics of these cells, demonstrating that hyperproteic diet interferes with colonocyte metabolism and morphology. Possible causal relationships between energy metabolism, reduced height of colonocyte brush-border membranes, and reduced water absorption are discussed.

  18. The insulin-like effect of vanadate on lipolysis in rat adipocytes is not accompanied by an insulin-like effect on tyrosine phosphorylation.

    PubMed

    Mooney, R A; Bordwell, K L; Luhowskyj, S; Casnellie, J E

    1989-01-01

    Tyrosine phosphorylation of the insulin receptor and other intracellular proteins in rat adipocytes was examined using an immunoblot technique with antiphosphotyrosine antibody. Insulin at 10(-7) M increased the tyrosine phosphorylation of the 95K subunit of the insulin receptor (15-fold) and proteins of 180K (7-fold) and 60K (23-fold). Increases in insulin-dependent phosphorylation of the three proteins were detectable at 10(-10) M insulin and attained steady state within 30 sec of insulin (10(-7) M) addition. Small effects of insulin (less than 30% increases) were observed on proteins of 120K and 53K. In contrast to insulin, the effects of vanadate on tyrosine phosphorylation were small and nonspecific. Vanadate increased tyrosine phosphorylation of the 95K insulin receptor beta-subunit and the 120K and 60K proteins similarly, with increases of 1.5- to 3-fold at 1 mM and 2-fold or less at 200 and 50 microM. Vanadate-dependent tyrosine phosphorylation of the 180K protein increased to a maximum of only 30% at 200 microM. Tyrosine phosphorylation of the 53K protein was somewhat larger, approaching 4-fold at 1 mM vanadate. The concentration of insulin and vanadate that inhibited isoproterenol-dependent lipolysis were not comparable to those that increased tyrosine phosphorylation. Vanadate at 1 mM was more potent as an antilipolytic agent than 10(-9) M insulin (93% vs. 81%), yet increased tyrosine phosphorylation of the 95K insulin receptor beta-subunit only as effectively as 10(-10) M insulin (which inhibited lipolysis only 42%). The dissimilar responses were even more pronounced when antilipolysis was compared to tyrosine phosphorylation of the 180K and 60K proteins. For example, insulin at 10(-9) M increased tyrosine phosphorylation of the 180K protein 2.9-fold, while 1 mM vanadate had a negligible effect (10% increase). Thus, vanadate exerts an insulin-like effect on lipolysis, yet its effects on tyrosine phosphorylation differ from those of insulin.

  19. SHEATHED TUBE AND APPARATUS AND METHOD OF PRODUCTION THEREOF

    DOEpatents

    Ohlinger, L.A.

    1959-08-18

    A tubular fuel element covered inside and out by a unitary covering tube originally about twice its length and of small enough diameter to fit snugly inside the fuel tube is described. The covering tube is then reentrantly folded back by a pressure-die mechanism over both ends of the fuel tube and againsts outside until the folded back ends of the covering tube meet where they are welded in a single seam running circumferentially around the middle of the resulting assembly.

  20. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  1. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo

    NASA Astrophysics Data System (ADS)

    Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.

    2016-03-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.

  2. BATMAV: a 2-DOF bio-inspired flapping flight platform

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Seelecke, Stefan

    2010-04-01

    Due to the availability of small sensors, Micro-Aerial Vehicles (MAVs) can be used for detection missions of biological, chemical and nuclear agents. Traditionally these devices used fixed or rotary wings, actuated with electric DC motortransmission, a system which brings the disadvantage of a heavier platform. The overall objective of the BATMAV project is to develop a biologically inspired bat-like MAV with flexible and foldable wings for flapping flight. This paper presents a flight platform that features bat-inspired wings which are able to actively fold their elbow joints. A previous analysis of the flight physics for small birds, bats and large insects, revealed that the mammalian flight anatomy represents a suitable flight platform that can be actuated efficiently using Shape Memory Alloy (SMA) artificial-muscles. A previous study of the flight styles in bats based on the data collected by Norberg [1] helped to identify the required joint angles as relevant degrees of freedom for wing actuation. Using the engineering theory of robotic manipulators, engineering kinematic models of wings with 2 and 3-DOFs were designed to mimic the wing trajectories of the natural flier Plecotus auritus. Solid models of the bat-like skeleton were designed based on the linear and angular dimensions resulted from the kinematic models. This structure of the flight platform was fabricated using rapid prototyping technologies and assembled to form a desktop prototype with 2-DOFs wings. Preliminary flapping test showed suitable trajectories for wrist and wingtip that mimic the flapping cycle of the natural flyer.

  3. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  4. Optimization of Hybrid-Electric Propulsion Systems for Small Remotely-Piloted Aircraft

    DTIC Science & Technology

    2011-03-24

    automobile manufacturer has developed its version of a HEV. In 2008, a group from the University of Padova, Italy designed a surface-mounted permanent...File:Hybridpeak.png [8] Ernest H. Wakefield, History of the Electric Automobile : Hybrid Electric Vehicles. Warrendale, PA: Society of Automotive

  5. Pilot Program of Online Learning in Three Small High Schools: Considerations of Learning Styles

    ERIC Educational Resources Information Center

    Garthwait, Abigail

    2014-01-01

    This case study was conducted in three schools in Maine, United States. The goal of this qualitative research was two-fold: to describe the process used by a small educational consortium as it initiated formal online education, and to view this experience through the lens of students' preferred learning styles. The United States does not have a…

  6. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  7. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity

    PubMed Central

    Cheng, Leo K; Komuro, Rie; Austin, Travis M; Buist, Martin L; Pullan, Andrew J

    2007-01-01

    One of the major aims of the International Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health. We present here a small facet of this broad plan that applies to the gastrointestinal system. Specifically, we present an anatomically and physiologically based modelling framework that is capable of simulating normal and pathological electrical activity within the stomach and small intestine. The continuum models used within this framework have been created using anatomical information derived from common medical imaging modalities and data from the Visible Human Project. These models explicitly incorporate the various smooth muscle layers and networks of interstitial cells of Cajal (ICC) that are known to exist within the walls of the stomach and small bowel. Electrical activity within individual ICCs and smooth muscle cells is simulated using a previously published simplified representation of the cell level electrical activity. This simulated cell level activity is incorporated into a bidomain representation of the tissue, allowing electrical activity of the entire stomach or intestine to be simulated in the anatomically derived models. This electrical modelling framework successfully replicates many of the qualitative features of the slow wave activity within the stomach and intestine and has also been used to investigate activity associated with functional uncoupling of the stomach. PMID:17457969

  8. Energy Performance Assessment of Virtualization Technologies Using Small Environmental Monitoring Sensors

    PubMed Central

    Liu, Lu; Masfary, Osama; Antonopoulos, Nick

    2012-01-01

    The increasing trends of electrical consumption within data centres are a growing concern for business owners as they are quickly becoming a large fraction of the total cost of ownership. Ultra small sensors could be deployed within a data centre to monitor environmental factors to lower the electrical costs and improve the energy efficiency. Since servers and air conditioners represent the top users of electrical power in the data centre, this research sets out to explore methods from each subsystem of the data centre as part of an overall energy efficient solution. In this paper, we investigate the current trends of Green IT awareness and how the deployment of small environmental sensors and Site Infrastructure equipment optimization techniques which can offer a solution to a global issue by reducing carbon emissions. PMID:22778660

  9. Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations.

    PubMed

    Biyun, Shi; Cho, Samuel S; Thirumalai, D

    2011-12-21

    Globally RNA folding occurs in multiple stages involving chain compaction and subsequent rearrangement by a number of parallel routes to the folded state. However, the sequence-dependent details of the folding pathways and the link between collapse and folding are poorly understood. To obtain a comprehensive picture of the thermodynamics and folding kinetics we used molecular simulations of coarse-grained model of a pseudoknot found in the conserved core domain of the human telomerase (hTR) by varying both temperature (T) and ion concentration (C). The phase diagram in the [T,C] plane shows that the boundary separating the folded and unfolded state for the finite 47-nucleotide system is relatively sharp, implying that from a thermodynamic perspective hTR behaves as an apparent two-state system. However, the folding kinetics following single C-jump or T-quench is complicated, involving multiple channels to the native state. Although globally folding kinetics triggered by T-quench and C-jump are similar, the kinetics of chain compaction are vastly different, which reflects the role of initial conditions in directing folding and collapse. Remarkably, even after substantial reduction in the overall size of hTR, the ensemble of compact conformations are far from being nativelike, suggesting that the search for the folded state occurs among the ensemble of low-energy fluidlike globules. The rate of unfolding, which occurs in a single step, is faster upon C-decrease compared to a jump in temperature. To identify "hidden" states that are visited during the folding process we performed simulations by periodically interrupting the approach to the folded state by lowering C. These simulations show that hTR reaches the folded state through a small number of connected clusters that are repeatedly visited during the pulse sequence in which the folding or unfolding is interrupted. The results from interrupted folding simulations, which are in accord with non-equilibrium single-molecule folding of a large ribozyme, show that multiple probes are needed to reveal the invisible states that are sampled by RNA as it folds. Although we have illustrated the complexity of RNA folding using hTR as a case study, general arguments and qualitative comparisons to time-resolved scattering experiments on Azoarcus group I ribozyme and single-molecule non-equilibrium periodic ion-jump experiments establish the generality of our findings. © 2011 American Chemical Society

  10. Quasi-static Design of Electrically Small Ultra-Wideband Antennas

    DTIC Science & Technology

    2017-02-01

    this design reduces the width of the antenna, which implies that the bulb shape can be non -spherical at high frequencies. The stored energy in an...conclusion. The Quasi-static Antenna Design Algorithm generates three UWB non -spherical bulb shapes. The non -spherical bulb shape performs as well...TECHNICAL REPORT 3056 February 2017 Quasi-static Design of Electrically Small Ultra-Wideband Antennas Thomas O. Jones III Approved for public

  11. A Normative Model of Work Team Effectiveness

    DTIC Science & Technology

    1983-11-01

    Hawthc-ne studies at Western Electric Corporation, Harold Leavitt (1975) observed: Far and away the most powerful and beloved tool of applied behavioral ...scientists is the small face-to-face group. Since the Western Electric researches, behavioral scientists have been learning to understand, exploit and...integration of literature on small group behavior , see McGrath and Altman (1966). Current reviews are provided by Hare (1976), MicGrath and Kravitz (1982

  12. Initial Feasibility Report on Decentralized Small Cogeneration for Navy Shore Bases.

    DTIC Science & Technology

    1984-02-01

    PURPA ), they generally had stand-alone generating capacity sufficient to meet all the electrical needs of the building A’’ ".w...electric utilties since the enactment of PURPA . An example of a recent small cogeneration application uses the 60-kW Thermo Electron cogeneration...utilities are naturally not enthusias- tic about cogeneration. However, PURPA was enacted to ensure that cogenerators receive just, reasonable, and

  13. Oxygen Therapy

    MedlinePlus

    ... 85-95% pure oxygen. The concentrator runs on electricity or a battery. A concentrator for home usually ... systems deliver 100% oxygen, and do not require electricity. A small canister can be filled from the ...

  14. Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generatingmore » systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)« less

  15. Electric Propulsion Apparatus

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2013-01-01

    An electric propulsion machine includes an ion thruster having an annular discharge chamber housing an anode having a large surface area. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, a second electric propulsion thruster may be disposed in a cylindrical space disposed within an interior of the annulus.

  16. Microwave absorption in powders of small conducting particles for heating applications.

    PubMed

    Porch, Adrian; Slocombe, Daniel; Edwards, Peter P

    2013-02-28

    In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.

  17. Viroporins, Examples of the Two-Stage Membrane Protein Folding Model.

    PubMed

    Martinez-Gil, Luis; Mingarro, Ismael

    2015-06-26

    Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding model as a leading thread to analyze the mechanism and forces behind the membrane insertion and folding of viroporins. We start by describing the transmembrane segment architecture of viroporins, including the number and sequence characteristics of their membrane-spanning domains. Next, we connect the differences found among viroporin families to their viral genome organization, and finalize focusing on the pathways used by viroporins in their way to the membrane and on the transmembrane helix-helix interactions required to achieve proper folding and assembly.

  18. Microgravity and Signaling Molecules in Rat Osteoblasts: Downstream of Receptor Tyrosine Kinase, G-Protein-Coupled Receptor, and Small GTP-Binding Proteins

    NASA Technical Reports Server (NTRS)

    Kumel, Yasuhiro; Shimokawa, Hitoyata; Morita, Sadao; Katano, Hisako; Akiyama, Hideo; Hirano, Masahiko; Ohya, Keiichi; Sams, Clarence F.; Whitson, Peggy A.

    2005-01-01

    Rat osteoblasts were cultured for 4 and 5 days aboard Space Shuttle and solubilized on board. The mRNA levels of the post-receptor signaling molecules were analyzed by quantitative RT-PCR. The G-protein alpha subunit G(alpha)q mRNA levels were elevated 3-fold by microgravity. G(alpha)q stimulates PLC(beta), and then PKC. PKC(delta) and PKC(theta) mRNA levels were increased 2- to 5-fold by microgravity The mRNA levels of SOS and Ras GRF were increased 4 to 5-fold by microgravity, while Ras GAP was not altered. Spaceflight-induced bone loss might be attributed to microgravity modulation of the signaling pathway in osteoblasts.

  19. Temperature dependence of strain energy and thermodynamic properties of V2 O5 -based single-walled nanotubes: Zone-folding approach.

    PubMed

    Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A

    2016-06-15

    A zone-folding approach is applied to estimate the thermodynamic properties of V2 O5 -based nanotubes. The results obtained are compared with those from the direct calculations. It is shown that the zone-folding approximation allows an accurate estimation of nanotube thermodynamic properties and gives a gain in computation time compared to their direct calculations. Both approaches show that temperature effects do not change the relative stability of V2 O5 free layers and nanotubes derived from the α- and γ-phase. The internal energy thermal contributions into the strain energy of nanotubes are small and can be ignored. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.

    PubMed

    Disney, Matthew D; Angelbello, Alicia J

    2016-12-20

    The discovery of RNA catalysis in the 1980s and the dissemination of the human genome sequence at the start of this century inspired investigations of the regulatory roles of noncoding RNAs in biology. In fact, the Encyclopedia of DNA Elements (ENCODE) project has shown that only 1-2% of the human genome encodes protein, yet 75% is transcribed into RNA. Functional studies both preceding and following the ENCODE project have shown that these noncoding RNAs have important roles in regulating gene expression, developmental timing, and other critical functions. RNA's diverse roles are often a consequence of the various folds that it adopts. The single-stranded nature of the biopolymer enables it to adopt intramolecular folds with noncanonical pairings to lower its free energy. These folds can be scaffolds to bind proteins or to form frameworks to interact with other RNAs. Not surprisingly, dysregulation of certain noncoding RNAs has been shown to be causative of disease. Given this as the background, it is easy to see why it would be useful to develop methods that target RNA and manipulate its biology in rational and predictable ways. The antisense approach has afforded strategies to target RNAs via Watson-Crick base pairing and has typically focused on targeting partially unstructured regions of RNA. Small molecule strategies to target RNA would be desirable not only because compounds could be lead optimized via medicinal chemistry but also because structured regions within an RNA of interest could be targeted to directly interfere with RNA folds that contribute to disease. Additionally, small molecules have historically been the most successful drug candidates. Until recently, the ability to design small molecules that target non-ribosomal RNAs has been elusive, creating the perception that they are "undruggable". In this Account, approaches to demystify targeting RNA with small molecules are described. Rather than bulk screening for compounds that bind to singular targets, which is the purview of the pharmaceutical industry and academic institutions with high throughput screening facilities, we focus on methods that allow for the rational design of small molecules toward biological RNAs. One enabling and foundational technology that has been developed is two-dimensional combinatorial screening (2DCS), a library-versus-library selection approach that allows the identification of the RNA motif binding preferences of small molecules from millions of combinations. A landscape map of the 2DCS-defined and annotated RNA motif-small molecule interactions is then placed into Inforna, a computational tool that allows one to mine these interactions against an RNA of interest or an entire transcriptome. Indeed, this approach has been enabled by tools to annotate RNA structure from sequence, an invaluable asset to the RNA community and this work, and has allowed for the rational identification of "druggable" RNAs in a target agnostic fashion.

  1. Kinetics of ultraweak light emission from human erythroleukemia K562 cells upon electroporation.

    PubMed

    Maccarrone, M; Fantini, C; Agrò, A F; Rosato, N

    1998-11-11

    Electroporation involves the application of an electric pulse that creates transient aqueous channels (electropores) across the lipid bilayer membranes. Here, we describe an instrument set up suitable to record ultraweak light emission from human erythroleukemia K562 cells during and immediately after delivery of electric pulses. Most of light was emitted in the first seconds after each pulse, following a complex decay which can be fitted by a double exponential equation characterized by two different time constants (T1 and T2), both in the order of seconds. T1 was approximately 10-fold shorter than T2 and both time constants were dependent on field strength of the electric pulse. The effect of various antioxidants on the amount of emitted photons and on T1 and T2 values was investigated, in order to shed some light on the chemical species responsible for cellular luminescence.

  2. Watering Graphene for Devices and Electricity

    NASA Astrophysics Data System (ADS)

    Guo, Wanlin; Yin, Jun; Li, Xuemei; Zhang, Zhuhua

    2013-03-01

    Graphene bring us into a fantastic two-dimensional (2D) age of nanotechnology, which can be fabricated and applied at wafer scale, visible at single layer but showing exceptional properties distinguished from its bulk form graphite, linking the properties of atomic layers with the engineering scale of our mankind. We shown that flow-induced-voltage in graphene can be 20 folds higher than in graphite, not only due to the giant Seebeck coefficient of single layer graphene, but also the exceptional interlayer interaction in few layer graphene. Extremely excitingly, water flow over graphene can generate electricity through unexpected interaction of the ions in the water with the graphene. We also find extraordinary mechanical-electric-magnetic coupling effects in graphene and BN systems. Such extraordinary multifield coupling effects in graphene and functional nanosystems open up new vistas in nanotechnology for efficient energy conversion, self-powering flexible devices and novel functional systems.

  3. Stretchable electronics based on Ag-PDMS composites

    PubMed Central

    Larmagnac, Alexandre; Eggenberger, Samuel; Janossy, Hanna; Vörös, Janos

    2014-01-01

    Patterned structures of flexible, stretchable, electrically conductive materials on soft substrates could lead to novel electronic devices with unique mechanical properties allowing them to bend, fold, stretch or conform to their environment. For the last decade, research on improving the stretchability of circuits on elastomeric substrates has made significant progresses but designing printed circuit assemblies on elastomers remains challenging. Here we present a simple, cost-effective, cleanroom-free process to produce large scale soft electronic hardware where standard surface-mounted electrical components were directly bonded onto all-elastomeric printed circuit boards, or soft PCBs. Ag-PDMS tracks were stencil printed onto a PDMS substrate and soft PCBs were made by bonding the top and bottom layers together and filling punched holes with Ag-PDMS to create vias. Silver epoxy was used to bond commercial electrical components and no mechanical failure was observed after hundreds of stretching cycles. We also demonstrate the fabrication of a stretchable clock generator. PMID:25434843

  4. Giant Enhancement in Radiative Heat Transfer in Sub-30 nm Gaps of Plane Parallel Surfaces.

    PubMed

    Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Song, Bai; Reddy, Pramod; Meyhofer, Edgar

    2018-06-13

    Radiative heat transfer rates that exceed the blackbody limit by several orders of magnitude are expected when the gap size between plane parallel surfaces is reduced to the nanoscale. To date, experiments have only realized enhancements of ∼100 fold as the smallest gap sizes in radiative heat transfer studies have been limited to ∼50 nm by device curvature and particle contamination. Here, we report a 1,200-fold enhancement with respect to the far-field value in the radiative heat flux between parallel planar silica surfaces separated by gaps as small as ∼25 nm. Achieving such small gap sizes and the resultant dramatic enhancement in near-field energy flux is critical to achieve a number of novel near-field based nanoscale energy conversion systems that have been theoretically predicted but remain experimentally unverified.

  5. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  6. Expression and Purification of EPHA2 Tyrosine Kinase Domain for Crystallographic and NMR Studies.

    PubMed

    Gande, Santosh L; Saxena, Krishna; Sreeramulu, Sridhar; Linhard, Verena; Kudlinzki, Denis; Heinzlmeir, Stephanie; Reichert, Andreas J; Skerra, Arne; Kuster, Bernhard; Schwalbe, Harald

    2016-12-02

    The receptor tyrosine kinase EPHA2 is overexpressed in several cancers (breast, head and neck, non-small-cell lung cancer). Small-molecule-based inhibition of the EPHA2 kinase domain (KD) is seen as an important strategy for therapeutic intervention. However, obtaining structural information by crystallography or NMR spectroscopy for drug discovery is severely hampered by the lack of pure, homogeneous protein. Here, different fragments of the EPHA2 KD were expressed and purified from both bacterial (Escherichia coli, BL21(DE3) cells) and insect cells (Spodoptera frugiperda, Sf9 cells). 1 H, 15 N HSQC was used to determine the proper folding and homogeneity of all the constructs. Protein from E. coli was well-folded but unstable, and it did not crystallize. However, a construct (D596-G900) produced in Sf9 cells yielded homogenous, well-folded protein that crystallized readily, thereby resulting in eleven new EPHA2-ligand crystal structures. We have also established a strategy for selective and uniform 15 N-amino acid labeling of EPHA2 KD in Sf9 cells for investigating dynamics and EPHA2-drug interactions by NMR. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents.

    PubMed

    Holub, Justin M

    2017-09-01

    Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.

    PubMed

    Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z

    2017-03-01

    A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.

  9. Determination of Cole-Cole parameters using only the real part of electrical impedivity measurements.

    PubMed

    Miranda, David A; Rivera, S A López

    2008-05-01

    An algorithm is presented to determine the Cole-Cole parameters of electrical impedivity using only measurements of its real part. The algorithm is based on two multi-fold direct inversion methods for the Cole-Cole and Debye equations, respectively, and a genetic algorithm for the optimization of the mean square error between experimental and calculated data. The algorithm has been developed to obtain the Cole-Cole parameters from experimental data, which were used to screen cervical intra-epithelial neoplasia. The proposed algorithm was compared with different numerical integrations of the Kramers-Kronig relation and the result shows that this algorithm is the best. A high immunity to noise was obtained.

  10. A Model of the Turbulent Electric Dynamo in Multi-Phase Media

    NASA Astrophysics Data System (ADS)

    Dementyeva, Svetlana; Mareev, Evgeny

    2016-04-01

    Many terrestrial and astrophysical phenomena witness the conversion of kinetic energy into electric energy (the energy of the quasi-stationary electric field) in conducting media, which is natural to treat as manifestations of electric dynamo by analogy with well-known theory of magnetic dynamo. Such phenomena include thunderstorms and lightning in the Earth's atmosphere and atmospheres of other planets, electric activity caused by dust storms in terrestrial and Martian atmospheres, snow storms, electrical discharges occurring in technological setups, connected with intense mixing of aerosol particles like in the milling industry. We have developed a model of the large-scale turbulent electric dynamo in a weakly conducting medium, containing two heavy-particle components. We have distinguished two main classes of charging mechanisms (inductive and non-inductive) in accordance with the dependence or independence of the electric charge, transferred during a particle collision, on the electric field intensity and considered the simplified models which demonstrate the possibility of dynamo realization and its specific peculiarities for these mechanisms. Dynamo (the large-scale electric field growth) appears due to the charge separation between the colliding and rebounding particles. This process is may be greatly intensified by the turbulent mixing of particles with different masses and, consequently, different inertia. The particle charge fluctuations themselves (small-scale dynamo), however, do not automatically mean growth of the large-scale electric field without a large-scale asymmetry. Such an asymmetry arises due to the dependence of the transferred charge magnitude on the electric field intensity in the case of the inductive mechanism of charge separation, or due to the gravity and convection for non-inductive mechanisms. We have found that in the case of the inductive mechanism the large-scale dynamo occurs if the medium conductivity is small enough while the electrification process determined by the turbulence intensity and particles sizes is strong enough. The electric field strength grows exponentially. For the non-inductive mechanism we have found the conditions when the electric field strength grows but linearly in time. Our results show that turbulent electric dynamo could play a substantial role in the electrification processes for different mechanisms of charge generation and separation. Thunderstorms and lightning are the most frequent and spectacular manifestations of electric dynamo in the atmosphere, but turbulent electric dynamo may also be the reason of electric discharges occurring in dust and snow storms or even in technological setups with intense mixing of small particles.

  11. Comparative analysis of the folding dynamics and kinetics of an engineered knotted protein and its variants derived from HP0242 of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Wang, Liang-Wei; Liu, Yu-Nan; Lyu, Ping-Chiang; Jackson, Sophie E.; Hsu, Shang-Te Danny

    2015-09-01

    Understanding the mechanism by which a polypeptide chain thread itself spontaneously to attain a knotted conformation has been a major challenge in the field of protein folding. HP0242 is a homodimeric protein from Helicobacter pylori with intertwined helices to form a unique pseudo-knotted folding topology. A tandem HP0242 repeat has been constructed to become the first engineered trefoil-knotted protein. Its small size renders it a model system for computational analyses to examine its folding and knotting pathways. Here we report a multi-parametric study on the folding stability and kinetics of a library of HP0242 variants, including the trefoil-knotted tandem HP0242 repeat, using far-UV circular dichroism and fluorescence spectroscopy. Equilibrium chemical denaturation of HP0242 variants shows the presence of highly populated dimeric and structurally heterogeneous folding intermediates. Such equilibrium folding intermediates retain significant amount of helical structures except those at the N- and C-terminal regions in the native structure. Stopped-flow fluorescence measurements of HP0242 variants show that spontaneous refolding into knotted structures can be achieved within seconds, which is several orders of magnitude faster than previously observed for other knotted proteins. Nevertheless, the complex chevron plots indicate that HP0242 variants are prone to misfold into kinetic traps, leading to severely rolled-over refolding arms. The experimental observations are in general agreement with the previously reported molecular dynamics simulations. Based on our results, kinetic folding pathways are proposed to qualitatively describe the complex folding processes of HP0242 variants.

  12. Variability of normal vocal fold dynamics for different vocal loading in one healthy subject investigated by phonovibrograms.

    PubMed

    Doellinger, Michael; Lohscheller, Joerg; McWhorter, Andrew; Kunduk, Melda

    2009-03-01

    We investigate the potential of high-speed digital imaging technique (HSI) and the phonovibrogram (PVG) analysis in normal vocal fold dynamics by studying the effects of continuous voice use (vocal loading) during the workday. One healthy subject was recorded at sustained phonation 13 times within 2 consecutive days in the morning before and in the afternoon after vocal loading, respectively. Vocal fold dynamics were extracted and visualized by PVGs. The characteristic PVG patterns were extracted representing vocal fold vibration types. The parameter values were then analyzed by statistics regarding vocal load, left-right PVG asymmetries, anterior-posterior PVG asymmetries, and opening-closing differences. For the first time, the direct impact of vocal load could be determined by analyzing vocal fold dynamics. For same vocal loading conditions, equal dynamical behavior of the vocal folds were confirmed. Comparison of recordings performed in the morning with the recordings after work revealed significant changes in vibration behavior, indicating impact of occurring vocal load. Left-right asymmetries in vocal fold dynamics were found confirming earlier assumptions. Different dynamics between opening and closing procedure as well as for anterior and posterior parts were found. Constant voice usage stresses the vocal folds even in healthy subjects and can be detected by applying the PVG technique. Furthermore, left-right PVG asymmetries do occur in healthy voice to a certain extent. HSI in combination with PVG analysis seems to be a promising tool for investigation of vocal fold fatigue and pathologies resulting in small forms of dynamical changes.

  13. The equilibrium properties and folding kinetics of an all-atom Go model of the Trp-cage.

    PubMed

    Linhananta, Apichart; Boer, Jesse; MacKay, Ian

    2005-03-15

    The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial alpha-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.

  14. The equilibrium properties and folding kinetics of an all-atom Go xAF model of the Trp-cage

    NASA Astrophysics Data System (ADS)

    Linhananta, Apichart; Boer, Jesse; MacKay, Ian

    2005-03-01

    The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go ¯ model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial α-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.

  15. Separating the effects of internal friction and transition state energy to explain the slow, frustrated folding of spectrin domains

    PubMed Central

    Wensley, Beth G.; Kwa, Lee Gyan; Shammas, Sarah L.; Rogers, Joseph M.; Browning, Stuart; Yang, Ziqi; Clarke, Jane

    2012-01-01

    The elongated three-helix bundle domains spectrin R16 and R17 fold some two to three orders of magnitude more slowly than their homologue R15. We have shown that this slow folding is due, at least in part, to roughness in the free-energy landscape of R16 and R17. We have proposed that this roughness is due to a frustrated search for the correct docking of partly preformed helices. However, this accounts for only a small part of the slowing of folding and unfolding. Five residues on the A helix of R15, when inserted together into R16 or R17, increase the folding rate constants, reduce landscape roughness, and alter the folding mechanism to one resembling R15. The effect of each of these mutations individually is investigated here. No one mutation causes the behavior seen for the five in combination. However, two mutations, E18F and K25V, significantly increase the folding and unfolding rates of both R16 and R17 but without a concomitant loss in landscape roughness. E18F has the greatest effect on the kinetics, and a Φ-value analysis of the C helix reveals that the folding mechanism is unchanged. For both E18F and K25V the removal of the charge and resultant transition state stabilization is the main origin of the faster folding. Consequently, the major cause of the unusually slow folding of R16 and R17 is the non-native burial of the two charged residues in the transition state. The slowing due to landscape roughness is only about fivefold. PMID:22711800

  16. Separating the effects of internal friction and transition state energy to explain the slow, frustrated folding of spectrin domains.

    PubMed

    Wensley, Beth G; Kwa, Lee Gyan; Shammas, Sarah L; Rogers, Joseph M; Browning, Stuart; Yang, Ziqi; Clarke, Jane

    2012-10-30

    The elongated three-helix bundle domains spectrin R16 and R17 fold some two to three orders of magnitude more slowly than their homologue R15. We have shown that this slow folding is due, at least in part, to roughness in the free-energy landscape of R16 and R17. We have proposed that this roughness is due to a frustrated search for the correct docking of partly preformed helices. However, this accounts for only a small part of the slowing of folding and unfolding. Five residues on the A helix of R15, when inserted together into R16 or R17, increase the folding rate constants, reduce landscape roughness, and alter the folding mechanism to one resembling R15. The effect of each of these mutations individually is investigated here. No one mutation causes the behavior seen for the five in combination. However, two mutations, E18F and K25V, significantly increase the folding and unfolding rates of both R16 and R17 but without a concomitant loss in landscape roughness. E18F has the greatest effect on the kinetics, and a Φ-value analysis of the C helix reveals that the folding mechanism is unchanged. For both E18F and K25V the removal of the charge and resultant transition state stabilization is the main origin of the faster folding. Consequently, the major cause of the unusually slow folding of R16 and R17 is the non-native burial of the two charged residues in the transition state. The slowing due to landscape roughness is only about fivefold.

  17. Electrical neuromodulation for disabling angina pectoris related to isolated stenoses of small epicardial coronary arteries.

    PubMed

    Jessurun, G A; Hautvast, R W; DeJongste, M J; Meyler, W J; van Boven AJ; Crijns, H J

    1999-07-01

    Patients with symptomatic small vessel coronary artery disease may be inadequate candidates for revascularization procedures. They may suffer from refractory angina, which does not respond to maximal anti-anginal drug therapy. In addition to patients with end stage coronary artery disease and syndrome X, this newly defined group of subjects with an isolated stenosis of a small coronary artery may benefit from electrical neurostimulation. We describe two patients with intractable angina caused by a significant narrowing of a diagonal branch. This treatment modality should be considered as an alternative method for unsatisfactory revascularization procedures.

  18. Scattering Manipulation and Camouflage of Electrically Small Objects through Metasurfaces

    NASA Astrophysics Data System (ADS)

    Vellucci, S.; Monti, A.; Toscano, A.; Bilotti, F.

    2017-03-01

    In this paper, we discuss the intriguing possibility of tailoring the scattering response of an electrically small object for camouflage and illusion applications using metasurfaces. As a significant example, we focus our attention on the cylindrical geometry and derive the analytical conditions needed to camouflage the geometrical and electrical characteristics of dielectric and metallic cylinders coated with ideal metasurfaces. A closed-form expression of the camouflaging metasurface depending on the cylinder's characteristics is derived. Furthermore, the frequency behavior and the limitations of this technique are discussed with the aid of relevant examples. In order to overcome these limitations, a solution based on the use of lossy metasurfaces is proposed.

  19. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.

    PubMed

    Chan, Roger W; Titze, Ingo R

    2006-04-01

    Analytical and computer simulation studies have shown that the acoustic impedance of the vocal tract as well as the viscoelastic properties of vocal fold tissues are critical for determining the dynamics and the energy transfer mechanism of vocal fold oscillation. In the present study, a linear, small-amplitude oscillation theory was revised by taking into account the propagation of a mucosal wave and the inertive reactance (inertance) of the supraglottal vocal tract as the major energy transfer mechanisms for flow-induced self-oscillation of the vocal fold. Specifically, analytical results predicted that phonation threshold pressure (Pth) increases with the viscous shear properties of the vocal fold, but decreases with vocal tract inertance. This theory was empirically tested using a physical model of the larynx, where biological materials (fat, hyaluronic acid, and fibronectin) were implanted into the vocal fold cover to investigate the effect of vocal fold tissue viscoelasticity on Pth. A uniform-tube supraglottal vocal tract was also introduced to examine the effect of vocal tract inertance on Pth. Results showed that Pth decreased with the inertive impedance of the vocal tract and increased with the viscous shear modulus (G") or dynamic viscosity (eta') of the vocal fold cover, consistent with theoretical predictions. These findings supported the potential biomechanical benefits of hyaluronic acid as a surgical bioimplant for repairing voice disorders involving the superficial layer of the lamina propria, such as scarring, sulcus vocalis, atrophy, and Reinke's edema.

  20. Chemical Denaturants Smoothen Ruggedness on the Free Energy Landscape of Protein Folding.

    PubMed

    Malhotra, Pooja; Jethva, Prashant N; Udgaonkar, Jayant B

    2017-08-08

    To characterize experimentally the ruggedness of the free energy landscape of protein folding is challenging, because the distributed small free energy barriers are usually dominated by one, or a few, large activation free energy barriers. This study delineates changes in the roughness of the free energy landscape by making use of the observation that a decrease in ruggedness is accompanied invariably by an increase in folding cooperativity. Hydrogen exchange (HX) coupled to mass spectrometry was used to detect transient sampling of local energy minima and the global unfolded state on the free energy landscape of the small protein single-chain monellin. Under native conditions, local noncooperative openings result in interconversions between Boltzmann-distributed intermediate states, populated on an extremely rugged "uphill" energy landscape. The cooperativity of these interconversions was increased by selectively destabilizing the native state via mutations, and further by the addition of a chemical denaturant. The perturbation of stability alone resulted in seven backbone amide sites exchanging cooperatively. The size of the cooperatively exchanging and/or unfolding unit did not depend on the extent of protein destabilization. Only upon the addition of a denaturant to a destabilized mutant variant did seven additional backbone amide sites exchange cooperatively. Segmentwise analysis of the HX kinetics of the mutant variants further confirmed that the observed increase in cooperativity was due to the smoothing of the ruggedness of the free energy landscape of folding of the protein by the chemical denaturant.

  1. Residues of chromium, nickel, cadmium and lead in Rook Corvus frugilegus eggshells from urban and rural areas of Poland.

    PubMed

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2014-08-15

    We examined the concentrations of chromium (Cr), nickel (Ni), cadmium (Cd) and lead (Pb) in Rook Corvus frugilegus eggshells from 43 rookeries situated in rural and urban areas of western (=intensive agriculture) and eastern (=extensive agriculture) Poland. We found small ranges in the overall level of Cr (the difference between the extreme values was 1.8-fold; range of concentrations=5.21-9.40 Cr ppm), Ni (3.5-fold; 1.15-4.07 Ni ppm), and Cd (2.6-fold; 0.34-0.91 Cd ppm), whereas concentrations of Pb varied markedly, i.e. 6.7-fold between extreme values (1.71-11.53 Pb ppm). Eggshell levels of these four elements did not differ between rural rookeries from western and eastern Poland, but eggshells from rookeries in large/industrial cities had significantly higher concentrations of Cr, Ni and Pb than those from small towns and villages. Our study suggests that female Rooks exhibited an apparent variation in the intensity of trace metal bioaccumulation in their eggshells, that rapid site-dependent bioaccumulation of Cu, Cr, Ni and Pb occurs as a result of the pollution gradient (rural

  2. Electric-field controlled capture or release of phosgene molecule on graphene-based materials: First principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Sun, Hao; Wang, Fengdi; Zhang, Wanqiao; Ma, Junmei; Tang, Shuwei; Gong, Hongwei; Zhang, Jingping

    2018-01-01

    Phosgene, one of the common chemicals in many industry areas, is extremely harmful to human and the environment. Thus, it is necessary to design the advanced materials to detect or remove phosgene effectively. In fact, detection or adsorption of some small gas molecules are not the most difficult to actualize. Whereas, one of the primary challenges is the gas molecules desorption from the adsorbent for the purpose of recycling of substrate materials since the small gas molecules interacts strongly with the substrates. In this work, the interaction between the phosgene molecule and pristine or Mn-doped graphene sheets with different electric field and charge state are investigated by using first-principles simulations. Our results show that the adsorption energy of phosgene on Mn-doped graphene is dramatically weakened by applying an external negative electric field but is obviously enhanced by introducing a positive electric field. These processes can be easily controlled by transform the direction of the electric field. Thus, introducing an external electric field or charge in the system may be an excellent method to control the phosgene molecule adsorption and desorption on Mn-doped graphene sheet. All energy needed is just a small quantity of electricity, which satisfies well the requirement of green chemistry and sustainable development. The mechanism and reason of reversible adsorption/desorption is also revealed in terms of energy, charge distribution and orbital analysis. Such spontaneous adsorption or desorption makes Mn-doped graphene to be used as an excellent reusable scavenger of phosgene.

  3. Utility involvement in cogeneration and small power production since PURPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallaron, S.A.

    One of the objectives of PURPA was more efficient energy production through cogeneration and the use of renewable resources. Under PURPA regulations, cogeneration and small power-producing plants may file for qualifying status to receive benefits allowed by the National Energy Act. There has been a steady increase in the number of qualifying facilities (QFs) and some electric utilities have increased ownership of small power-producing facilities as well as electric purchases from QFs. QFs are not only exempt from federal and state utility regulations under PURPA, but they also may be eligible for an exemption from the provisions of the Fuelmore » Use Act of 1978 which prohibits or limits use of oil and natural gas in power plants and other major fuel-burning installations. To obtain QF status under PURPA, small power-producing facilities are limited to a capacity of 80 MW or less and must use some combination of biomass, waste, geothermal, or other renewable resource as the primary energy source. Cogenerators are not limited in size or fuel. The purchase of electricity from cogenerators and small power producers can be an attractive alternative for utilities in meeting future demands.« less

  4. A bio-inspired electrocommunication system for small underwater robots.

    PubMed

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  5. Characterization of the Hole Transport and Electrical Properties in the Small-Molecule Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, L. G.; Zhu, J. J.; Liu, X. L.; Cheng, L. F.

    2017-10-01

    In this paper, we investigate the hole transport and electrical properties in a small-molecule organic material N, N'-bis(1-naphthyl)- N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), which is frequently used in organic light-emitting diodes. It is shown that the thickness-dependent current density versus voltage ( J- V) characteristics of sandwich-type NPB-based hole-only devices cannot be described well using the conventional mobility model without carrier density or electric field dependence. However, a consistent and excellent description of the thickness-dependent and temperature-dependent J- V characteristics of NPB hole-only devices can be obtained with a single set of parameters by using our recently introduced improved model that take into account the temperature, carrier density, and electric field dependence of the mobility. For the small-molecule organic semiconductor studied, we find that the width of the Gaussian distribution of density of states σ and the lattice constant a are similar to the values reported for conjugated polymers. Furthermore, we show that the boundary carrier density has an important effect on the J- V characteristics. Both the maximum of carrier density and the minimum of electric field appear near the interface of NPB hole-only devices.

  6. Guiding the folding pathway of DNA origami

    NASA Astrophysics Data System (ADS)

    Dunn, Katherine E.; Dannenberg, Frits; Ouldridge, Thomas E.; Kwiatkowska, Marta; Turberfield, Andrew J.; Bath, Jonathan

    2015-09-01

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short `staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its rapid development and become a reliable manufacturing technology.

  7. Guiding the folding pathway of DNA origami.

    PubMed

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan

    2015-09-03

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its rapid development and become a reliable manufacturing technology.

  8. Protein domain definition should allow for conditional disorder

    PubMed Central

    Yegambaram, Kavestri; Bulloch, Esther MM; Kingston, Richard L

    2013-01-01

    Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding. PMID:23963781

  9. Resolution of the unfolded state.

    NASA Astrophysics Data System (ADS)

    Beaucage, Gregory

    2008-03-01

    The unfolded states in proteins and nucleic acids remain weakly understood despite their importance to protein folding; misfolding diseases (Parkinson's & Alzheimer's); natively unfolded proteins (˜ 30% of eukaryotic proteins); and to understanding ribozymes. Research has been hindered by the inability to quantify the residual (native) structure present in an unfolded protein or nucleic acid. Here, a scaling model is proposed to quantify the degree of folding and the unfolded state (Beaucage, 2004, 2007). The model takes a global view of protein structure and can be applied to a number of analytic methods and to simulations. Three examples are given of application to small-angle scattering from pressure induced unfolding of SNase (Panick, 1998), from acid unfolded Cyt c (Kataoka, 1993) and from folding of Azoarcus ribozyme (Perez-Salas, 2004). These examples quantitatively show 3 characteristic unfolded states for proteins, the statistical nature of a folding pathway and the relationship between extent of folding and chain size during folding for charge driven folding in RNA. Beaucage, G., Biophys. J., in press (2007). Beaucage, G., Phys. Rev. E. 70, 031401 (2004). Kataoka, M., Y. Hagihara, K. Mihara, Y. Goto J. Mol. Biol. 229, 591 (1993). Panick, G., R. Malessa, R. Winter, G. Rapp, K. J. Frye, C. A. Royer J. Mol. Biol. 275, 389 (1998). Perez-Salas U. A., P. Rangan, S. Krueger, R. M. Briber, D. Thirumalai, S. A. Woodson, Biochemistry 43 1746 (2004).

  10. How cooperative are protein folding and unfolding transitions?

    PubMed Central

    Malhotra, Pooja

    2016-01-01

    Abstract A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two‐state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non‐cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier‐less “downhill” folding, as well as for continuous “uphill” unfolding transitions, indicate that gradual non‐cooperative processes may be ubiquitous features on the free energy landscape of protein folding. PMID:27522064

  11. Folding behavior of ribosomal protein S6 studied by modified Go¯ -like model

    NASA Astrophysics Data System (ADS)

    Wu, L.; Zhang, J.; Wang, J.; Li, W. F.; Wang, W.

    2007-03-01

    Recent experimental and theoretical studies suggest that, although topology is the determinant factor in protein folding, especially for small single-domain proteins, energetic factors also play an important role in the folding process. The ribosomal protein S6 has been subjected to intensive studies. A radical change of the transition state in its circular permutants has been observed, which is believed to be caused by a biased distribution of contact energies. Since the simplistic topology-only Gō -like model is not able to reproduce such an observation, we modify the model by introducing variable contact energies between residues based on their physicochemical properties. The modified Gō -like model can successfully reproduce the Φ -value distributions, folding nucleus, and folding pathways of both the wild-type and circular permutants of S6. Furthermore, by comparing the results of the modified and the simplistic models, we find that the hydrophobic effect constructs the major force that balances the loop entropies. This may indicate that nature maintains the folding cooperativity of this protein by carefully arranging the location of hydrophobic residues in the sequence. Our study reveals a strategy or mechanism used by nature to get out of the dilemma when the native structure, possibly required by biological function, conflicts with folding cooperativity. Finally, the possible relationship between such a design of nature and amyloidosis is also discussed.

  12. Enhanced sampling molecular dynamics simulation captures experimentally suggested intermediate and unfolded states in the folding pathway of Trp-cage miniprotein.

    PubMed

    Shao, Qiang; Shi, Jiye; Zhu, Weiliang

    2012-09-28

    The ability of molecular dynamics simulation to capturing the transient states within the folding pathway of protein is important to the understanding of protein folding mechanism. In the present study, the integrated-tempering-sampling molecular dynamics (ITS-MD) simulation was performed to investigate the transient states including intermediate and unfolded ones in the folding pathway of a miniprotein, Trp-cage. Three force fields (FF03, FF99SB, and FF96) were tested, and both intermediate and unfolded states with their characteristics in good agreement with experiments were observed during the simulations, which supports the hypothesis that observable intermediates might present in the folding pathway of small polypeptides. In addition, it was demonstrated that FF03 force field as combined with ITS-MD is in overall a more proper force field than the others in reproducing experimentally recorded properties in UVRS, ECD, and NMR, Photo-CIDNP NMR, and IR T-jump experiments, and the folding∕unfolding thermodynamics parameters, such as ΔG(U), ΔC(p), and ΔH(U) (T(m)). In summary, the present study showed that using suitable force field and energy sampling method, molecular dynamics simulation could capture the transient states within the folding pathway of protein which are consistent with the experimental measurements, and thus provide information of protein folding mechanism and thermodynamics.

  13. LEO Flight Testing of GaAs on Si Solar Cells Aboard MISSES

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Clark, Eric B.; Ringel, Steven A.; Andre, Carrie L.; Smith, Mark A.; Scheiman, David A.; Jenkins, Phillip P.; Maurer, William F.; Fitzgerald, Eugene A.; Walters, R. J.

    2004-01-01

    Previous research efforts have demonstrated small area (0.04 cm) GaAs on Si (GaAs/Si) solar cells with AM0 efficiencies in excess of 17%. These results were achieved on Si substrates coated with a step graded buffer of Si(x),Ge(1-x) alloys graded to 100% Ge. Recently, a 100-fold increase in device area was accomplished for these devices in preparation for on-orbit testing of this technology aboard Materials International Space Station Experiment number 5 (MISSE5). The GaAs/Si MISSE5 experiment contains five (5) GaAs/Si test devices with areas of lcm(exp 2) and 4cm(exp 4) as well as two (2) GaAs on GaAs control devices. Electrical performance data, measured on-orbit for three (3) of the test devices and one (1) of the control devices, will be telemetered to ground stations daily. After approximately one year on orbit, the MISSE5 payload will be returned to Earth for post flight evaluation. This paper will discuss the development of the GaAs/Si devices for the MISSE5 flight experiment and will present recent ground and on-orbit performance data.

  14. Permeation enhancement via thiolation: in vitro and ex vivo evaluation of hyaluronic acid-cysteine ethyl ester.

    PubMed

    Laffleur, Flavia; Psenner, Julia; Suchaoin, Wongsakorn

    2015-07-01

    It was the aim of this study to evaluate the permeation-enhancing effect of synthesized thiolated hyaluronic acid (HA). HA, a naturally found polysaccharide, was chemically modified with l-cysteine ethyl ether (C) via amide bond formation. In vitro permeation enhancement was tested on Caco-2 cells with two compounds, sulforhodamine (SR) and fluorescein isothiocyanate-dextran (FD4). Cytotoxicity assays as lactate dehydrogenase and thiazolyl blue tetrazolium bromide (MTT) were performed on colon carcinoma cell line. Transepithelial electrical resistance (TEER) measurements were conducted. Ex vivo evaluation was accomplished on rat intestinal mucosa in order to predict the permeation enhancing effect with SR, sodium fluorescein (SF), and FD4, respectively. The MTT as well as lactate dehydrogenase revealed no toxicity over time periods of 3 and 12 h, respectively. The bioconjugate is biocompatible and safe to use. Furthermore, TEER measurements showed the integrity of tight junctions. The in vitro permeation studies on cell studies exhibit 1.28-fold enhancement for SR and 1.47-fold enhancement for FD4 with hyaluronic acid-cysteine ethyl ester (HAC) in comparison to unmodified one. The ex vivo transport studies exhibit 1.9-fold enhancement for SF, 1.31-fold enhancement for Rhodamine123, and 1.3-fold enhancement for FD4 with HAC in comparison to unmodified one, respectively. Thus, the promising results encourage further investigations and exploitation of this versatile polysaccharide. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Unraveling the Rat Intestine, Spleen and Liver Genome-Wide Transcriptome after the Oral Administration of Lavender Oil by a Two-Color Dye-Swap DNA Microarray Approach

    PubMed Central

    Kubo, Hiroko; Shibato, Junko; Saito, Tomomi; Ogawa, Tetsuo; Rakwal, Randeep; Shioda, Seiji

    2015-01-01

    The use of lavender oil (LO) – a commonly, used oil in aromatherapy, with well-defined volatile components linalool and linalyl acetate – in non-traditional medicine is increasing globally. To understand and demonstrate the potential positive effects of LO on the body, we have established an animal model in this current study, investigating the orally administered LO effects genome wide in the rat small intestine, spleen, and liver. The rats were administered LO at 5 mg/kg (usual therapeutic dose in humans) followed by the screening of differentially expressed genes in the tissues, using a 4×44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a dye-swap approach, a novelty of this study. Fourteen days after LO treatment and compared with a control group (sham), a total of 156 and 154 up (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, 174 and 66 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, and 222 and 322 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes showed differential expression at the mRNA level in the small intestine, spleen and liver, respectively. The reverse transcription-polymerase chain reaction (RT-PCR) validation of highly up- and down-regulated genes confirmed the regulation of the Papd4, Lrp1b, Alb, Cyr61, Cyp2c, and Cxcl1 genes by LO as examples in these tissues. Using bioinformatics, including Ingenuity Pathway Analysis (IPA), differentially expressed genes were functionally categorized by their Gene Ontology (GO) and biological function and network analysis, revealing their diverse functions and potential roles in LO-mediated effects in rat. Further IPA analysis in particular unraveled the presence of novel genes, such as Papd4, Or8k5, Gprc5b, Taar5, Trpc6, Pld2 and Onecut3 (up-regulated top molecules) and Tnf, Slc45a4, Slc25a23 and Samt4 (down-regulated top molecules), to be influenced by LO treatment in the small intestine, spleen and liver, respectively. These results are the first such inventory of genes that are affected by lavender essential oil (LO) in an animal model, forming the basis for further in-depth bioinformatics and functional analyses and investigation. PMID:26161641

  16. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO3/Pb(Mg,Nb,Ti)O3 magneto-electric heterostructure

    PubMed Central

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi

    2016-01-01

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to ‘set’ and ‘reset’ the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature. PMID:27271984

  17. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz

    2018-05-01

    The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.

  18. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO 3/Pb(Mg,Nb,Ti)O 3 magneto-electric heterostructure

    DOE PAGES

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; ...

    2016-06-08

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O 3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO 3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier loweringmore » by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.« less

  19. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.

    PubMed

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Hanein, Yael

    2014-11-26

    Chemical vapor deposition (CVD)-grown entangled carbon nanotube (CNT) sheets are characterized by high electrical conductivity and durability to bending and folding. However, since freestanding CNT sheets are mechanically weak, they cannot be used as stand-alone flexible films. In this work, polyimide (PI) infiltration into entangled cup-stacked CNT (CSCNT) sheets was studied to form electrically conducting, robust, and flexible films for space applications. The infiltration process preserved CNTs' advantageous properties (i.e., conductivity and flexibility), prevented CNT agglomeration, and enabled CNT patterning. In particular, the CNT-PI films exhibited ohmic electrical conductance in both the lateral and vertical directions, with a sheet resistivity as low as 122 Ω/□, similar to that of as-grown CNT sheets, with minimal effect of the insulating matrix. Moreover, this high conductivity was preserved under mechanical and thermal manipulations. These properties make the reported CNT-PI films excellent candidates for applications where flexibility, thermal stability, and electrical conductivity are required. Particularly, the developed CNT-PI films were found to be durable in space environment hazards such as high vacuum, thermal cycling, and ionizing radiation, and hence they are suggested as an alternative for the electrostatic discharge (ESD) protection layer in spacecraft thermal blankets.

  20. Selection and development of small solar thermal power applications

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Kuehn, T. J.; Gurfield, R. M.

    1979-01-01

    The paper discusses the approach of the JPL Point Focusing Thermal and Electric Power Applications Project to selecting and developing applications for point-focusing distributed-receiver solar thermal electric power systems. Six application categories are defined. Results of application studies of U.S. utilities are presented. The economic value of solar thermal power systems was found to range from $900 to $2100/kWe in small community utilities of the Southwest.

Top