Sample records for electrically switchable nanocapillary

  1. a bare Nanocapillary for DNA Separation and Genotyping analysis in Gel-Free solutions without application of external electric field

    PubMed Central

    Wang, Xiayan; Wang, Shili; Veerappan, Vijaykumar; Byun, Chang Kyu; Nguyen, Han; Gendhar, Brina; Allen, Randy D.; Liu, Shaorong

    2009-01-01

    In this work, we demonstrate DNA separation and genotyping analysis in gel-free solutions using a nanocapillary under pressure-driven conditions without application of an external electric field. The nanocapillary is a ~50-cm-long and 500-nm-radius bare fused silica capillary. After a DNA sample is injected, the analytes are eluted out in a chromatographic separation format. The elution order of DNA molecules follows strictly with their sizes, with the longer DNA being eluted out faster than the shorter ones. High resolutions are obtained for both short (a few bases) and long (tens of thousands of base pairs) DNA fragments. Effects of key experimental parameters, such as eluent composition and elution pressure, on separation efficiency and resolution are investigated. We also apply this technique for DNA separations of real-world genotyping samples to demonstrate its feasibility in biological applications. PCR products (without any purification) amplified from Arabidopsis plant genomic DNA crude preparations are directly injected into the nanocapillary, and PCR-amplified DNA fragments are well resolved, allowing for unambiguous identification of samples from heterozygous and homozygous individuals. Since the capillaries used to conduct the separations are uncoated, column lifetime is virtually unlimited. The only material that is consumed in these assays is the eluent, and hence the operation cost is low. PMID:18500828

  2. Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals

    DTIC Science & Technology

    2015-10-13

    Fabrication (3) Integrate Membrane & (4) Fill with Hydrogen Shaped Al Aluminum Oxide Nanocapillary Array CNT Coated Pore Wall Complete Gas Storage...nanocapillary arrays are produced through aluminum anodization . The nanocapillary arrays are capped with either a PEM or an alkaline (anion) exchange...24,600 psi)  Circumferential Stress  Proportional to  Pore radius  Wall thickness Aluminum AAO AAO /CNT Nanocapillary Array (Not to scale

  3. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings.

    PubMed

    Khandelwal, Hitesh; Loonen, Roel C G M; Hensen, Jan L M; Debije, Michael G; Schenning, Albertus P H J

    2015-07-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.

  4. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings

    PubMed Central

    Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2015-01-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy. PMID:26132328

  5. Stacked Switchable Element and Diode Combination

    DOEpatents

    Branz, H. M.; Wang, Q.

    2006-06-27

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

  6. Stacked switchable element and diode combination

    DOEpatents

    Branz, Howard M.; Wang, Qi

    2006-06-27

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship so that the semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a forming voltage to the switchable element (14).

  7. Stacked switchable element and diode combination with a low breakdown switchable element

    DOEpatents

    Wang, Qi [Littleton, CO; Ward, James Scott [Englewood, CO; Hu, Jian [Englewood, CO; Branz, Howard M [Boulder, CO

    2012-06-19

    A device (10) comprises a semiconductor diode (12) and a switchable element (14) positioned in stacked adjacent relationship. The semiconductor diode (12) and the switchable element (14) are electrically connected in series with one another. The switchable element (14) is switchable from a low-conductance state to a high-conductance state in response to the application of a low-density forming current and/or a low voltage.

  8. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  9. Current characteristics of λ-DNA molecules/polystyrene nanoparticles in TBE buffer solution through micro/nanofluidic capillaries under DC electric field

    NASA Astrophysics Data System (ADS)

    Duan, Yifei; Zhao, Wei; Xue, Jing; Sun, Dan; Wang, Kaige; Wang, Guiren; Li, Junjie; Bai, Jintao; Gu, Changzhi

    2017-03-01

    In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate single bio-molecules and analyze their characteristics. To accurately and flexibly control the movement of single-molecule within micro/nanofluidic channels which are the basic components of Lab-chips, the current signals in micro/nanocapillaries filled with solutions of DNA molecules or polystyrene (PS) nanoparticles are systematically studied. Experimental results indicate that the current response along the micro/nanocapillaries can be significantly influenced by the diameter of the capillaries and the pH value of the solutions. Specifically, when there is only a pure (TBE) solution, the electric conductance does not monotonically decrease with decreasing the diameter of the capillaries, but slightly increases with decreasing the capillary diameter. When λ-DNA molecules or PS nanoparticles are added into the TBE buffer, the size effect on the electric conductance of the solutions are quite different. Although in the former, the electric conductance behaves differently from that in the pure TBE solution and decreases with the decreasing diameter, in the latter, the change is similar to that in the pure TBE solution. Besides, an abnormal ‘falling’ of the electric conductance is observed in a capillary with diameter of 200 nm. The investigation will significantly enhance the understanding on the electric properties of the solutions of biomolecules and particles in micro/nanofluidics. This is especially helpful for designing functional Lab-chip devices.

  10. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  11. Ordered and Ultra-High Aspect Ratio Nanocapillary Arrays as a Model System

    DTIC Science & Technology

    2015-10-13

    formation and deep pore growth of anodized aluminum oxide ( AAO )-based nanocapillary arrays as the basis for high density, safe and high rate gas... anodized aluminum oxide , nanocapillary arrays 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME... Aluminum Page 7 Copyright © 2015 Mainstream Engineering Corporation CPE Mitigation Schemes  Control thermal and flow profile -> even anodization

  12. Switchable and non-switchable zero backscattering of dielectric nano-resonators

    DOE PAGES

    Wang, Feng; Wei, Qi -Huo; Htoon, Han

    2015-02-27

    Previous studies have shown that two-dimensional (2D) arrays of high-permittivity dielectric nanoparticles are capable of fully suppressing backward light scattering when the resonant frequencies of electrical and magnetic dipolar modes are coincident. In this paper, we numerically demonstrate that the zero-backscattering of 2D Si nanocuboid arrays can be engineered to be switchable or non-switchable in response to a variation in the environmental refractive index. For each cuboid width/length, there exist certain cuboid heights and orthogonal periodicity ratio for which the electrical and magnetic resonances exhibit similar spectra widths and equivalent sensitivities to the environmental index changes, so that the zero-backscatteringmore » is non-switchable upon environmental change. For some other cuboid heights and certain anisotropic periodicity ratios, the electric and magnetic modes exhibit different sensitivities to environmental index changes, making the zero-backscattering sensitive to environmental changes. We also show that by using two different types of nano-resonators in the unit cell, Fano resonances can be introduced to greatly enhance the switching sensitivity of zero-backscattering.« less

  13. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2015-02-01

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm-1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm-2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p-i-n structures induced by ion drift in the perovskite layer. The demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

  14. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    DOE PAGES

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; ...

    2014-12-08

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm –1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm –2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explainedmore » by the formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.« less

  15. Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn

    2015-12-22

    Evaluation of the tensile/compression limit of a solid under conditions of tension or compression is often performed to provide mechanical properties that are critical for structure design and assessment. Algara-Siller et al. recently demonstrated that when water is constrained between two sheets of graphene, it becomes a two-dimensional (2D) liquid and then is turned into an intriguing monolayer solid with a square pattern under high lateral pressure [ Nature , 2015 , 519 , 443 - 445 ]. From a mechanics point of view, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of the 2D monolayer water. Here, we perform a simulation study of the compression limit of 2D monolayer, bilayer, and trilayer water constrained in graphene nanocapillaries. At 300 K, a myriad of 2D ice polymorphs (both crystalline-like and amorphous) are formed from the liquid water at different widths of the nanocapillaries, ranging from 6.0 to11.6 Å. For monolayer water, the compression limit is typically a few hundred MPa, while for the bilayer and trilayer water, the compression limit is 1.5 GPa or higher, reflecting the ultrahigh van der Waals pressure within the graphene nanocapillaries. The compression-limit (phase) diagram is obtained at the nanocapillary width versus pressure (h-P) plane, based on the comprehensive molecular dynamics simulations at numerous thermodynamic states as well as on the Clapeyron equation. Interestingly, the compression-limit curves exhibit multiple local minima.

  16. Passive electrically switchable circuit element having improved tunability and method for its manufacture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickel, Patrick R; James, Conrad D

    2014-09-16

    A resistive switching device and methods for making the same are disclosed. In the above said device, a resistive switching layer is interposed between opposing electrodes. The resistive switching layer comprises at least two sub-layers of switchable insulative material characterized by different ionic mobilities.

  17. Ferroelectric nanostructure having switchable multi-stable vortex states

    DOEpatents

    Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  18. All-Silicon Switchable Magnetoelectric Effect through Interlayer Exchange Coupling.

    PubMed

    Liu, Hang; Sun, Jia-Tao; Fu, Hui-Xia; Sun, Pei-Jie; Feng, Y P; Meng, Sheng

    2017-07-19

    The magnetoelectric (ME) effect originating from the effective coupling between electric field and magnetism is an exciting frontier in nanoscale science such as magnetic tunneling junction (MTJ), ferroelectric/piezoelectric heterojunctions etc. The realization of switchable ME effect under external electric field in d0 semiconducting materials of single composition is needed especially for all-silicon spintronics applications because of its natural compatibility with current industry. We employ density functional theory (DFT) to reveal that the pristine Si(111)-3×3 R30° (Si3 hereafter) reconstructed surfaces of thin films with a thickness smaller than eleven bilayers support a sizeable linear ME effect with switchable direction of magnetic moment under external electric field. This is achieved through the interlayer exchange coupling effect in the antiferromagnetic regime, where the spin-up and spin-down magnetized density is located on opposite surfaces of Si3 thin films. The obtained coefficient for the linear ME effect can be four times larger than that of ferromagnetic Fe films, which fail to have the reversal switching capabilities. The larger ME effect originates from the spin-dependent screening of the spin-polarized Dirac fermion. The prediction will promote the realization of well-controlled and switchable data storage in all-silicon electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ion guiding accompanied by formation of neutrals in polyethylene terephthalate polymer nanocapillaries: Further insight into a self-organizing process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juhasz, Z.; Sulik, B.; Racz, R.

    2010-12-15

    A relatively large yield of neutralized atoms was observed when 3 keV Ar{sup 7+} ions were guided trough polyethylene terephthalate nanocapillaries. Time and deposited-charge dependence of the angular distribution of both the guided ions and the neutrals was measured simultaneously using a two-dimensional multichannel plate detector. The yield of neutrals increased significantly faster than that of guided ions and saturated typically at a few percent level. In accordance with earlier observations, both the yield and the mean emission angle of the guided ions exhibited strong oscillations. For the atoms, the equilibrium was achieved not only faster, but also without significantmore » oscillations in yield and angular position. A phase analysis of these time dependencies provides insight into the dynamic features of the self-organizing mechanisms, which leads to ion guiding in insulating nanocapillaries.« less

  20. Nanocapillaries for Open Tubular Chromatographic Separations of Proteins in Femtoliter to Picoliter Samples

    PubMed Central

    Wang, Xiayan; Cheng, Chang; Wang, Shili; Zhao, Meiping; Dasgupta, Purnendu K.; Liu, Shaorong

    2009-01-01

    We have recently examined the potential of bare nanocapillaries for free solution DNA separations and demonstrated efficiencies exceeding 106 theoretical plates/m. In the present work, we demonstrate the use of bare and hydroxypropylcellulose (HPC) coated open tubular nanocapillaries for protein separations. Using 1.5 μm inner diameter (i.d.) capillary columns, hydrodynamically injecting femto to picoliter (fL-pL) volumes of fluorescent or fluorescent dye labeled protein samples, utilizing a pneumatically pressurized chamber containing 1.0 mM sodium tetraborate solution eluent (typ. 200 psi) as the pump and performing on-column detection using a simple laser-induced fluorescence detector, we demonstrate efficiencies of close to a million theoretical plates/m while generating single digit μL volumes of waste for a complete chromatographic run. We achieve baseline resolution for a protein mixture consisting of transferrin, α-lactalbumin, insulin, and α -2-macroglobulin. PMID:19663450

  1. An Electrically Switchable Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, CA; Martin, PC; Schaef, T

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in amore » reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.« less

  2. An Electrically Switchable Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Martin, Paul F.; Schaef, Herbert T.

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ 5 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in amore » reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.« less

  3. An Electrically Switchable Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Fernandez, Carlos A.; Martin, Paul C.; Schaef, Todd; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-01

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  4. Integrated, nonvolatile, high-speed analog random access memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor)

    1994-01-01

    This invention provides an integrated, non-volatile, high-speed random access memory. A magnetically switchable ferromagnetic or ferrimagnetic layer is sandwiched between an electrical conductor which provides the ability to magnetize the magnetically switchable layer and a magneto resistive or Hall effect material which allows sensing the magnetic field which emanates from the magnetization of the magnetically switchable layer. By using this integrated three-layer form, the writing process, which is controlled by the conductor, is separated from the storage medium in the magnetic layer and from the readback process which is controlled by the magnetoresistive layer. A circuit for implementing the memory in CMOS or the like is disclosed.

  5. Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes

    PubMed Central

    Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-01-01

    The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969

  6. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W.; Kitano, Masao

    2016-03-01

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide ($\\mathrm{VO}_2$), the proposed metamaterial is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  7. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition.

    PubMed

    Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W; Kitano, Masao

    2016-03-07

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide (VO 2 ), the proposed meta-material is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  8. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  9. Chromogenic switchable glazing: Towards the development of the smart window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampert, C.M.

    1995-06-01

    The science and technology of chromogenic materials for switchable glazings in building applications is discussed. These glazings can be used for dynamic control of solar and visible energy. Currently many researchers and engineers are involved with the development of products in this field. A summary of activities in Japan, Europe, Australia, USA and Canada is made. The activities of the International Energy Agency are included. Both non-electrically activated and electrically activated glazings are discussed. Technologies covered in the first category are photochromics, and thermochromics and thermotropics. A discussion of electrically activated chromogenic glazings includes dispersed liquid crystals, dispersed particles andmore » electrochromics. A selection of device structures and performance characteristics are compared. A discussion of transparent conductors is presented. Technical issues concerning large-area development of smart windows are discussed.« less

  10. Quenching of giant hysteresis effects in La(1-z)Y(z)Hx switchable mirrors

    PubMed

    van Gogh AT; Nagengast; Kooij; Koeman; Griessen

    2000-09-04

    The giant intrinsic hysteresis as a function of hydrogen concentration x in the optical and electrical properties of the archetypal switchable mirror YHx is eliminated by alloying Y with the chemically similar La. The La(1-z)Y(z)Hx films with z/=0.86 is the large uniaxial lattice expansion that accompanies their fcc to hexagonal phase transition in combination with lateral clamping.

  11. 2D-3D switchable display based on a passive polymeric lenticular lens array and electrically suppressed ferroelectric liquid crystal.

    PubMed

    Shi, Liangyu; Srivastava, Abhishek Kumar; Wai Tam, Alwin Ming; Chigrinov, Vladimir Grigorievich; Kwok, Hoi Sing

    2017-09-01

    We reveal a 2D-3D switchable lens unit that is based on a polarization-sensitive microlens array and a polarization selector unit made of an electrically suppressed helix ferroelectric liquid crystal (ESHFLC) cell. The ESHFLCs offer a high contrast ratio (∼10k∶1) between the crossed polarizers at a low applied electric field (∼1.7  V/μm) with a small switching time (<50  μs). A special driving scheme, to switch between a 2D and 3D mode, has been developed to avoid unwanted issues related to DC accumulation in the ferroelectric liquid crystal without affecting its optical quality. The proposed lens unit is characterized by low power consumption, ultrafast response, and 3D crosstalk <5%, and can therefore find application in TVs, cell phones, etc.

  12. Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same

    DOEpatents

    Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le

    2003-12-16

    Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.

  13. Switchable diode effect in oxygen vacancy-modulated SrTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Pan, Xinqiang; Shuai, Yao; Wu, Chuangui; Luo, Wenbo; Sun, Xiangyu; Zeng, Huizhong; Bai, Xiaoyuan; Gong, Chaoguan; Jian, Ke; Zhang, Lu; Guo, Hongliang; Tian, Benlang; Zhang, Wanli

    2017-09-01

    SrTiO3 (STO) single crystal wafer was annealed in vacuum, and co-planar metal-insulator-metal structure of Pt/Ti/STO/Ti/Pt were formed by sputtering Pt/Ti electrodes onto the surface of STO after annealing. The forming-free resistive switching behavior with self-compliance property was observed in the sample. The sample showed switchable diode effect, which is explained by a simple model that redistribution of oxygen vacancies (OVs) under the external electric field results in the formation of n-n+ junction or n+-n junction (n donated n-type semiconductor; n+ donated heavily doped n-type semiconductor). The self-compliance property is also interpreted by the formation of n-n+/n+-n junction caused by the migration of the OVs under the electric field.

  14. Digitally switchable multi-focal lens using freeform optics.

    PubMed

    Wang, Xuan; Qin, Yi; Hua, Hong; Lee, Yun-Han; Wu, Shin-Tson

    2018-04-16

    Optical technologies offering electrically tunable optical power have found a broad range of applications, from head-mounted displays for virtual and augmented reality applications to microscopy. In this paper, we present a novel design and prototype of a digitally switchable multi-focal lens (MFL) that offers the capability of rapidly switching the optical power of the system among multiple foci. It consists of a freeform singlet and a customized programmable optical shutter array (POSA). Time-multiplexed multiple foci can be obtained by electrically controlling the POSA to switch the light path through different segments of the freeform singlet rapidly. While this method can be applied to a broad range of imaging and display systems, we experimentally demonstrate a proof-of-concept prototype for a multi-foci imaging system.

  15. Single nanopore transport of synthetic and biological polyelectrolytes in three-dimensional hybrid microfluidic/nanofluidic devices

    DOE PAGES

    King, Travis L.; Gatimu, Enid N.; Bohn, Paul W.

    2009-01-02

    This paper presents a study of electrokinetic transport in single nanopores integrated into vertically-stacked three-dimensional hybrid microfluidic/nanofluidic structures. In these devices single nanopores, created by focused ion beam (FIB) milling in thin polymer films, provide fluidic connection between two vertically separated, perpendicular microfluidic channels. Experiments address both systems in which the nanoporous membrane is composed of the same (homojunction) or different (heterojunction) polymer as the microfluidic channels. These devices are then used to study the electrokinetic transport properties of synthetic (i.e., polystyrene sulfonate and polyallylamine) and biological (i.e.,DNA) polyelectrolytes across these nanopores. Single nanopore transport of polyelectrolytes across these nanoporesmore » using both electrical current measurements and confocal microscopy. Both optical and electrical measurements indicate that electroosmotic transport is predominant over electrophoresis in single nanopores with d > 180 nm, consistent with results obtained under similar conditions for nanocapillary array membranes.« less

  16. Electrically switchable metadevices via graphene

    PubMed Central

    Balci, Osman; Kakenov, Nurbek; Karademir, Ertugrul; Balci, Sinan; Cakmakyapan, Semih; Polat, Emre O.; Caglayan, Humeyra; Özbay, Ekmel; Kocabas, Coskun

    2018-01-01

    Metamaterials bring subwavelength resonating structures together to overcome the limitations of conventional materials. The realization of active metadevices has been an outstanding challenge that requires electrically reconfigurable components operating over a broad spectrum with a wide dynamic range. However, the existing capability of metamaterials is not sufficient to realize this goal. By integrating passive metamaterials with active graphene devices, we demonstrate a new class of electrically controlled active metadevices working in microwave frequencies. The fabricated active metadevices enable efficient control of both amplitude (>50 dB) and phase (>90°) of electromagnetic waves. In this hybrid system, graphene operates as a tunable Drude metal that controls the radiation of the passive metamaterials. Furthermore, by integrating individually addressable arrays of metadevices, we demonstrate a new class of spatially varying digital metasurfaces where the local dielectric constant can be reconfigured with applied bias voltages. In addition, we reconfigure resonance frequency of split-ring resonators without changing its amplitude by damping one of the two coupled metasurfaces via graphene. Our approach is general enough to implement various metamaterial systems that could yield new applications ranging from electrically switchable cloaking devices to adaptive camouflage systems. PMID:29322094

  17. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oosthoek, J. L. M.; Kooi, B. J., E-mail: B.J.Kooi@rug.nl; Voogt, F. C.

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament ismore » formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.« less

  18. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    NASA Astrophysics Data System (ADS)

    Oosthoek, J. L. M.; Voogt, F. C.; Attenborough, K.; Verheijen, M. A.; Hurkx, G. A. M.; Gravesteijn, D. J.; Kooi, B. J.

    2015-02-01

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  19. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2016-12-07

    Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C 4 N 3 ) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H 2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC 5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC 49 , BC 7 , and BC 5 , have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.

  20. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films.

    PubMed

    Guo, Yiping; Guo, Bing; Dong, Wen; Li, Hua; Liu, Hezhou

    2013-07-12

    The diode and photovoltaic effects of BiFeO3 and Bi0.9Sr0.1FeO(3-δ) polycrystalline thin films were investigated by poling the films with increased magnitude and alternating direction. It was found that both electromigration of oxygen vacancies and polarization flipping are able to induce switchable diode and photovoltaic effects. For the Bi0.9Sr0.1FeO(3-δ) thin films with high oxygen vacancy concentration, reversibly switchable diode and photovoltaic effects can be observed due to the electromigration of oxygen vacancies under an electric field much lower than its coercive field. However, for the pure BiFeO3 thin films with lower oxygen vacancy concentration, the reversibly switchable diode and photovoltaic effect is hard to detect until the occurrence of polarization flipping. The switchable diode and photovoltaic effects can be explained well using the concepts of Schottky-like barrier-to-Ohmic contacts resulting from the combination of oxygen vacancies and polarization. The sign of photocurrent could be independent of the direction of polarization when the modulation of the energy band induced by oxygen vacancies is large enough to offset that induced by polarization. The photovoltaic effect induced by the electromigration of oxygen vacancies is unstable due to the diffusion of oxygen vacancies or the recombination of oxygen vacancies with hopping electrons. Our work provides deep insights into the nature of diode and photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities.

  1. Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene.

    PubMed

    Oh, Seung-Won; Baek, Jong-Min; Yoon, Tae-Hoon

    2016-11-14

    We propose a sunlight-switchable light shutter using liquid crystal/polymer composite doped with push-pull azobenzene. The proposed light shutter is switchable between the translucent and transparent states by application of an electric field or by UV irradiation. Switching by UV irradiation is based on the change of the liquid crystal (LC) clearing point by the photo-isomerization effect of push-pull azobenzene. Under sunlight, the light shutter can be switched from the translucent to the transparent state by the nematic-isotropic phase transition of the LC domains triggered by trans-cis photo-isomerization of the push-pull azobenzene molecules. When the amount of sunlight is low because of cloud cover or when there is no sunlight at sunset, the light shutter rapidly relaxes from its transparent state back to its initial translucent state by the isotropic-nematic phase transition induced by cis-trans back-isomerization of the push-pull azobenzene molecules.

  2. Switchable silver mirrors with long memory effects.

    PubMed

    Park, Chihyun; Seo, Seogjae; Shin, Haijin; Sarwade, Bhimrao D; Na, Jongbeom; Kim, Eunkyoung

    2015-01-01

    An electrochemically stable and bistable switchable mirror was achieved for the first time by introducing (1) a thiol-modified indium tin oxide (ITO) electrode for the stabilization of the metallic film and (2) ionic liquids as an anion-blocking layer, to achieve a long memory effect. The growth of the metallic film was denser and faster at the thiol-modified ITO electrode than at a bare ITO electrode. The electrochemical stability of the metallic film on the thiol-modified ITO was enhanced, maintaining the metallic state without rupture. In the voltage-off state, the metal film maintained bistability for a long period (>2 h) when ionic liquids were introduced as electrolytes for the switchable mirror. The electrical double layer in the highly viscous ionic liquid electrolyte seemed to effectively form a barrier to the bromide ions, to protect the metal thin film from them when in the voltage-off state.

  3. Highly Sensitive Switchable Heterojunction Photodiode Based on Epitaxial Bi2FeCrO6 Multiferroic Thin Films.

    PubMed

    Huang, Wei; Chakrabartty, Joyprokash; Harnagea, Catalin; Gedamu, Dawit; Ka, Ibrahima; Chaker, Mohamed; Rosei, Federico; Nechache, Riad

    2018-04-18

    Perovskite multiferroic oxides are promising materials for the realization of sensitive and switchable photodiodes because of their favorable band gap (<3.0 eV), high absorption coefficient, and tunable internal ferroelectric (FE) polarization. A high-speed switchable photodiode based on multiferroic Bi 2 FeCrO 6 (BFCO)/SrRuO 3 (SRO)-layered heterojunction was fabricated by pulsed laser deposition. The heterojunction photodiode exhibits a large ideality factor ( n = ∼5.0) and a response time as fast as 68 ms, thanks to the effective charge carrier transport and collection at the BFCO/SRO interface. The diode can switch direction when the electric polarization is reversed by an external voltage pulse. The time-resolved photoluminescence decay of the device measured at ∼500 nm demonstrates an ultrafast charge transfer (lifetime = ∼6.4 ns) in BFCO/SRO heteroepitaxial structures. The estimated responsivity value at 500 nm and zero bias is 0.38 mA W -1 , which is so far the highest reported for any FE thin film photodiode. Our work highlights the huge potential for using multiferroic oxides to fabricate highly sensitive and switchable photodiodes.

  4. Charge deposition dependence of electron transmission through PET nanocapillaries and a tapered glass microcapillary

    NASA Astrophysics Data System (ADS)

    Tanis, J. A.; Keerthisinghe, D.; Wickramarachchi, S. J.; Ikeda, T.; Stolterfoht, N.

    2018-05-01

    Charge deposition dependences of electron transmission through insulating PET nanocapillaries and a tapered glass microcapillary are reported and differences with HCI transmission are noted. Investigations were conducted for electrons with incident energies 500-1000 eV, corresponding to energies per charge similar to those used for HCI studies, incident on (1) an array of PET nanocapillaries (density ∼5 × 108/cm2) with diameters 100 nm in a foil of thickness 12 μm, and (2) on a tapered glass microcapillary with inlet/outlet diameters of 800/100 μm and a length of ∼35 mm. The transmission was measured for incident electrons at small sample tilt angles ranging from 0° to 5° with respect to the beam direction. For most angles, including those near zero degrees, there was an initial quiet period during which essentially no transmission was observed, followed by large rises in the transmission during relatively short periods of charge deposition before equilibrium of the transmission was reached. The resulting equilibrium was stable, blocked or had frequent oscillations depending on the incident energy and the capillary used. Observations for both capillaries show that a negative charge patch is needed to guide incident electrons through the capillaries similar to the manner in which HCIs are guided through capillaries.

  5. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.

    PubMed

    Flachsbart, Bruce R; Wong, Kachuen; Iannacone, Jamie M; Abante, Edward N; Vlach, Robert L; Rauchfuss, Peter A; Bohn, Paul W; Sweedler, Jonathan V; Shannon, Mark A

    2006-05-01

    The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.

  6. Temperature-Triggered Dielectric-Optical Duple Switch Based on an Organic-Inorganic Hybrid Phase Transition Crystal: [C5N2H16]2SbBr5.

    PubMed

    Mao, Chen-Yu; Liao, Wei-Qiang; Wang, Zhong-Xia; Zafar, Zainab; Li, Peng-Fei; Lv, Xing-Hui; Fu, Da-Wei

    2016-08-01

    Molecular optical-electrical duple switches (switch "ON" and "OFF" bistable states) represent a class of highly desirable intelligent materials because of their sensitive switchable physical and/or chemical responses, simple and environmentally friendly processing, light weights, and mechanical flexibility. In the current work, the phase transition of 1 (general formula R2MX5, [C5N2H16]2[SbBr5]) can be triggered by the order-disorder transition of the organic cations at 278.3 K. The temperature-induced phase transition causes novel bistable optical-electrical duple characteristics, which indicates that 1 might be an excellent candidate for a potential switchable optical-electrical (fluorescence/dielectric) material. In the dielectric measurements, remarkable bistable dielectric responses were detected, accompanied by striking anisotropy along various crystallographic axes. For the intriguing fluorescence emission spectra, the intensity and position changed significantly with the occurrence of the structural phase transition. We believe that these findings might further promote the application of halogenoantimonates(III) and halogenobismuthates(III) in the field of optoelectronic multifunctional devices.

  7. Optical Voltage Sensing Using DNA Origami

    PubMed Central

    2018-01-01

    We explore the potential of DNA nanotechnology for developing novel optical voltage sensing nanodevices that convert a local change of electric potential into optical signals. As a proof-of-concept of the sensing mechanism, we assembled voltage responsive DNA origami structures labeled with a single pair of FRET dyes. The DNA structures were reversibly immobilized on a nanocapillary tip and underwent controlled structural changes upon application of an electric field. The applied field was monitored through a change in FRET efficiency. By exchanging the position of a single dye, we could tune the voltage sensitivity of our DNA origami structure, demonstrating the flexibility and versatility of our approach. The experimental studies were complemented by coarse-grained simulations that characterized voltage-dependent elastic deformation of the DNA nanostructures and the associated change in the distance between the FRET pair. Our work opens a novel pathway for determining the mechanical properties of DNA origami structures and highlights potential applications of dynamic DNA nanostructures as voltage sensors. PMID:29430924

  8. Switchable Scattering Meta-Surfaces for Broadband Terahertz Modulation

    PubMed Central

    Unlu, M.; Hashemi, M. R.; Berry, C. W.; Li, S.; Yang, S.-H.; Jarrahi, M.

    2014-01-01

    Active tuning and switching of electromagnetic properties of materials is of great importance for controlling their interaction with electromagnetic waves. In spite of their great promise, previously demonstrated reconfigurable metamaterials are limited in their operation bandwidth due to their resonant nature. Here, we demonstrate a new class of meta-surfaces that exhibit electrically-induced switching in their scattering parameters at room temperature and over a broad range of frequencies. Structural configuration of the subwavelength meta-molecules determines their electromagnetic response to an incident electromagnetic radiation. By reconfiguration of the meta-molecule structure, the strength of the induced electric field and magnetic field in the opposite direction to the incident fields are varied and the scattering parameters of the meta-surface are altered, consequently. We demonstrate a custom-designed meta-surface with switchable scattering parameters at a broad range of terahertz frequencies, enabling terahertz intensity modulation with record high modulation depths and modulation bandwidths through a fully integrated, voltage-controlled device platform at room temperature. PMID:25028123

  9. Designing switchable near room-temperature multiferroics via the discovery of a novel magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Feng, J. S.; Xu, Ke; Bellaiche, Laurent; Xiang, H. J.

    2018-05-01

    Magnetoelectric (ME) coupling is the key ingredient for realizing the cross-control of magnetism and ferroelectricity in multiferroics. However, multiferroics are not only rare, especially at room-temperature, in nature but also the overwhelming majority of known multiferroics do not exhibit highly-desired switching of the direction of magnetization when the polarization is reversed by an electric field. Here, we report group theory analysis and ab initio calculations demonstrating, and revealing the origin of, the existence of a novel form of ME coupling term in a specific class of materials that does allow such switching. This term naturally explains the previously observed electric field control of magnetism in the first known multiferroics, i.e., the Ni–X boracite family. It is also presently used to design a switchable near room-temperature multiferroic (namely, LaSrMnOsO6 perovskite) having rather large ferroelectric polarization and spontaneous magnetization, as well as strong ME coupling.

  10. Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films.

    PubMed

    Ge, Chen; Jin, Kui-Juan; Zhang, Qing-Hua; Du, Jian-Yu; Gu, Lin; Guo, Hai-Zhong; Yang, Jing-Ting; Gu, Jun-Xing; He, Meng; Xing, Jie; Wang, Can; Lu, Hui-Bin; Yang, Guo-Zhen

    2016-12-21

    The defect chemistry of perovskite oxides involves the cause to most of their abundant functional properties, including interface magnetism, charge transport, ionic exchange, and catalytic activity. The possibility to achieve dynamic control over oxygen anion vacancies offers a unique opportunity for the development of appealing switchable devices, which at present are commonly based on ferroelectric materials. Herein, we report the discovery of a switchable photovoltaic effect, that the sign of the open voltage and the short circuit current can be reversed by inverting the polarity of the applied field, upon electrically tailoring the distribution of oxygen vacancies in perovskite oxide films. This phenomenon is demonstrated in lateral photovoltaic devices based on both ferroelectric BiFeO 3 and paraelectric SrTiO 3 films, under a reversed applied field whose magnitude is much smaller than the coercivity value of BiFeO 3 . The migration of oxygen vacancies was directly observed by employing an advanced annular bright-field scanning transmission electron microscopy technique with in situ biasing equipment. We conclude that the band bending induced by the motion of oxygen vacancies is the driving force for the reversible switching between two photovoltaic states. The present work can provide an active path for the design of novel switchable photovoltaic devices with a wide range of transition metal oxides in terms of the ionic degrees of freedom.

  11. Ferroelectrics: A pathway to switchable surface chemistry and catalysis

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab; Altman, Eric I.

    2016-08-01

    It has been known for more than six decades that ferroelectricity can affect a material's surface physics and chemistry thereby potentially enhancing its catalytic properties. Ferroelectrics are a class of materials with a switchable electrical polarization that can affect surface stoichiometry and electronic structure and thus adsorption energies and modes; e.g., molecular versus dissociative. Therefore, ferroelectrics may be utilized to achieve switchable surface chemistry whereby surface properties are not fixed but can be dynamically controlled by, for example, applying an external electric field or modulating the temperature. Several important examples of applications of ferroelectric and polar materials in photocatalysis and heterogeneous catalysis are discussed. In photocatalysis, the polarization direction can control band bending at water/ferroelectric and ferroelectric/semiconductor interfaces, thereby facilitating charge separation and transfer to the electrolyte and enhancing photocatalytic activity. For gas-surface interactions, available results suggest that using ferroelectrics to support catalytically active transition metals and oxides is another way to enhance catalytic activity. Finally, the possibility of incorporating ferroelectric switching into the catalytic cycle itself is described. In this scenario, a dynamic collaboration of two polarization states can be used to drive reactions that have been historically challenging to achieve on surfaces with fixed chemical properties (e.g., direct NOx decomposition and the selective partial oxidation of methane). These predictions show that dynamic modulation of the polarization can help overcome some of the fundamental limitations on catalytic activity imposed by the Sabatier principle.

  12. Breakdown of water super-permeation in electrically insulating graphene oxide films: role of dual interlayer spacing.

    PubMed

    Kavitha, Maheshwari Kavirajan; Sakorikar, Tushar; Vayalamkuzhi, Pramitha; Jaiswal, Manu

    2018-08-10

    Conventional graphene oxide (GO) is characterized by low sp 2 content in a sp 3 rich matrix, which is responsible both for electrical insulation and water super-permeation. Upon reduction, electrical conduction is achieved at the expense of water permeation ability. Here, we demonstrate that charge conduction and water permeation can be simultaneously restricted in a functionalized form of GO. Gravimetric studies reveal that diffusion of water vapor through a glassy polymer membrane is arrested by loading a hydrophobic form of GO (H-GO) in the polymer matrix, even as such, water inhibition cannot be realized by substantially increasing the thickness of the bare polymer. As an application, the ability of the coating to impede the degradation of methyl ammonium lead iodide films under high humidity conditions is demonstrated. At the same time the H-GO film has a resistance over 10 7 times higher when compared to thermally reduced GO of similar sp 2 fraction. We attribute this unique behavior to the presence of a sub-micron matrix of GO with simultaneous presence of large (∼9.5 Å) and small (∼4.7 Å) interlayer spacing. This leads to disruption of the spatially distributed percolation pathways for electrical charge, and it also serves to block the nanocapillary networks for water molecules.

  13. Switchable silver mirrors with long memory effects† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc01912a Click here for additional data file. Click here for additional data file.

    PubMed Central

    Park, Chihyun; Seo, Seogjae; Shin, Haijin; Sarwade, Bhimrao D.; Na, Jongbeom

    2015-01-01

    An electrochemically stable and bistable switchable mirror was achieved for the first time by introducing (1) a thiol-modified indium tin oxide (ITO) electrode for the stabilization of the metallic film and (2) ionic liquids as an anion-blocking layer, to achieve a long memory effect. The growth of the metallic film was denser and faster at the thiol-modified ITO electrode than at a bare ITO electrode. The electrochemical stability of the metallic film on the thiol-modified ITO was enhanced, maintaining the metallic state without rupture. In the voltage-off state, the metal film maintained bistability for a long period (>2 h) when ionic liquids were introduced as electrolytes for the switchable mirror. The electrical double layer in the highly viscous ionic liquid electrolyte seemed to effectively form a barrier to the bromide ions, to protect the metal thin film from them when in the voltage-off state. PMID:28936310

  14. An L-section DC electric field switchable bulk acoustic wave solidly mounted resonator filter based on Ba0.5Sr0.5TiO3.

    PubMed

    Saddik, George N; York, Robert A

    2012-09-01

    This paper reports on the modeling, fabrication, and experimental results of a voltage switchable barium strontium titanate solidly mounted resonator filter at 6 GHz. The filter insertion loss was measured to be -4.26 dB and the return loss to be -13.5 dB. The 3-dB bandwidth was measured to be 72 MHz and the quality factor was calculated to be 83. The data were collected at a dc bias voltage of 10 V. Temperature data were also collected, and the filter demonstrated a 0.71-dB increase in insertion loss and a 7-MHz decrease in center frequency with increase in temperature.

  15. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dipole pinning effect on photovoltaic characteristics of ferroelectric BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Biswas, P. P.; Thirmal, Ch.; Pal, S.; Murugavel, P.

    2018-01-01

    Ferroelectric bismuth ferrite is an attractive candidate for switchable devices. The effect of dipole pinning due to the oxygen vacancy layer on the switching behavior of the BiFeO3 thin film fabricated by the chemical solution deposition method was studied after annealing under air, O2, and N2 environment. The air annealed film showed well defined and dense grains leading to a lower leakage current and superior electrical properties compared to the other two films. The photovoltage and transient photocurrent measured under positive and negative poling elucidated the switching nature of the films. Though the air and O2 annealed films showed a switchable photovoltaic response, the response was severely affected by oxygen vacancies in the N2 annealed film. In addition, the open circuit voltage was found to be mostly dependent on the polarization of BiFeO3 rather than the Schottky barriers at the interface. This work provides an important insight into the effect of dipole pinning caused by oxygen vacancies on the switchable photovoltaic effect of BiFeO3 thin films along with the importance of stoichiometric, defect free, and phase pure samples to facilitate meaningful practical applications.

  17. Switchable and Tunable Bulk Acoustic Wave Devices Based on Ferroelectric Material

    NASA Astrophysics Data System (ADS)

    Mansour, Almonir

    The explosive development of personal communications systems, navigation, satellite communications as well as personal computer and data processing systems together with the constant demand for higher speeds and larger bandwidths has driven fabrication technology to its limits. This, in turn, necessitates the development of novel functional materials for the fabrication of devices with superior performance and higher capacity at reduced manufacturing costs. Ferroelectric materials such as barium strontium titanate (BST) and strontium titanium oxide (STO) have received more attention by researchers and industry because of their field-induced piezoelectric property. This property gives these types of ferroelectric materials the ability to be switchable and tunable in the presence of an electric field. These features have allowed the ferroelectric materials to be used in many applications such as non-volatile memory and DRAMs, sensors, pyroelectric detectors, and tunable microwave devices. Therefore, with the ever increasing complexity in RF front-end receivers, and the demand for services (which in turn requires more functionalities), ferroelectric bulk acoustic wave (BAW) resonators and filters that are intrinsically switchable and tunable promise to reduce the size and complexity of component parts. In this work, we present the design, fabrication and experimental evaluation of switchable and tunable thin film bulk acoustic wave (BAW) resonators, filters and duplexers for radio frequency (RF) applications. The switchability and tunability of these devices come from utilizing the electrostrictive effect of ferroelectric materials such as barium strontium titanate (BST) with the application of an external DC-bias voltage. The BAW resonators, filters and duplexers in this work were fabricated on different substrates as solidly mounted resonator (SMR) structure with number of periodic layers of silicon dioxide and tantalum oxide as a Bragg reflector in order to acoustically isolate the resonator from the damping effect of the substrate, enhancing the quality factor and temperature compensation.

  18. AB-stacked square-like bilayer ice in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn

    2016-08-10

    Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.

  19. 2000 survey of window manufacturers on the subject of switchable glass

    NASA Astrophysics Data System (ADS)

    LaPointe, Michael R.; Sottile, Gregory M.

    2001-11-01

    The results of a 2000 survey of United States window manufacturers on the subject of switchable glass are discussed. The areas covered in this paper include awareness of the overall product category of switchable glass and various types of switchable glass, attitudes toward specific features of switchable glass, expectations for manufacturer production of such products, expectations for market penetration rates among end-product consumers, levels of price sensitivity among window manufacturers regarding switchable glass, and expectations for the pace of new product development within the window industry over the next five years.

  20. Device for removing foreign objects from anatomic organs

    NASA Technical Reports Server (NTRS)

    Angulo, Earl D. (Inventor)

    1992-01-01

    A device is disclosed for removing foreign objects from anatomic organs such as the ear canal or throat. It has a housing shaped like a flashlight, an electrical power source such as a battery or AC power from a wall socket, and a tip extending from the housing. The tip has at least one wire loop made from a shape-memory-effect alloy, such as Nitinol, switchably connected to the electrical power source such that when electric current flows through the wire loop the wire loop heats up and returns to a previously programmed shape such as a curet or tweezers so as to facilitate removal of the foreign object.

  1. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.

    PubMed

    Savaliya, Priten B; Thomas, Arun; Dua, Rishi; Dhawan, Anuj

    2017-10-02

    We propose the design of switchable plasmonic nanoantennas (SPNs) that can be employed for optical switching in the near-infrared regime. The proposed SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (vanadium dioxide). We compare the results of these SPNs with inverted SPN structures that consist of gold nanoantenna structures surrounded by a layer of vanadium dioxide (VO 2 ) on their outer surface. These nanoantennas demonstrate switching of electric-field intensity enhancement (EFIE) between two states (On and Off states), which can be induced thermally, optically or electrically. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO 2 film inside or around the nanoantennas, as the VO 2 film exhibits phase transition from its semiconductor state to the metallic state upon application of thermal, optical, or electrical energy. We employ finite-difference time-domain (FDTD) simulations to demonstrate switching in the EFIE for four different SPN geometries - nanorod-dipole, bowtie, planar trapezoidal toothed log-periodic, and rod-disk - and compare their near-field distributions for the On and Off states of the SPNs. We also demonstrate that the resonance wavelength of the EFIE spectra gets substantially modified when these SPNs switch between the two states.

  2. Voltage-controlled surface wrinkling of elastomeric coatings.

    PubMed

    van den Ende, Daan; Kamminga, Jan-Dirk; Boersma, Arjen; Andritsch, Thomas; Steeneken, Peter G

    2013-07-05

    Wrinkling of elastomeric coatings by an electric field is reported. The associated changes in the coating's optical properties yield switchable mirrors and windows. The field Ec needed to induce wrinkling is a factor of 4.4 lower than the theoretically predicted value, which is attributed to space-charge injection. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. NREL Develops Switchable Solar Window | News | NREL

    Science.gov Websites

    electricity at a high efficiency have been developed by scientists at the U.S. Department of Energy's National reversibly absorbed into the device. When solar energy heats up the device, the molecules are driven out, and the device is darkened. When the sun is not shining, the device is cooled back down, and the molecules

  4. Adaptive chromogenic materials and devices

    NASA Astrophysics Data System (ADS)

    Sixou, Pierre; Guillard, H.; Labonne, L.; Gandolfo, V.

    2003-03-01

    Electrically controllable glasses can be used to control daylight and solar energy in buildings and in automotives in order to improve quality of life and to save energy spent on lighting, cooling and heating. The paper discusses the case of switchable glazings using liquid crystal/polymer micro-composites. A comparison with other technologies (like inorganic electrochromics, thermotropic gels and dispersed particles) is drawn.

  5. Achieving dynamic switchable filter based on a transmutable metasurface using SMA

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Gao, Jinsong; Kang, Bonan

    2017-09-01

    We propose a switchable filter composed of transmutable array using shape memory alloys (SMA). It could exhibit a temperature induced morphology change spontaneously like the biological excitability, acting as a shutter that allows the incident energy to be selectively transmitted or reflected with in excess of 12dB isolation at the certain frequencies for both polarizations. Equivalent circuit models describe the operational principle qualitatively and the switching effect is underpinned by the full-wave analysis. A further physical mechanism is shown by contrasting the distributions of electric field and surface current on the surface at the same frequency for the two working modes. The experimental results consist with the theoretical simulations, indicating that the metasurface could serve as one innovative solution for manipulating the electromagnetic waves and enlighten the next generation of advanced electromagnetic materials with more freedom in the processes of design and manufacturing.

  6. Switching of the polarization of ferroelectric-ferroelastic gadolinium molybdate in a magnetic field

    NASA Astrophysics Data System (ADS)

    Yakushkin, E. D.

    2017-10-01

    A change in the character of the electric switching of polydomain ferroelectric-ferroelastic gadolinium molybdate in an external magnetic field has been detected. This change has been attributed to a magnetically stimulated increase in the pinning of domain walls. Under certain conditions, the loop of switchable polarization is degenerated into an ellipse characteristic of a linear insulator with leakage current.

  7. Ionic Conductivity, Structural Deformation and Programmable Anisotropy of DNA Origami in Electric Field

    PubMed Central

    Li, Chen-Yu; Hemmig, Elisa A.; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia

    2015-01-01

    The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules—a DNA origami plate— placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg2+ ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA. PMID:25623807

  8. Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field.

    PubMed

    Li, Chen-Yu; Hemmig, Elisa A; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia; Keyser, Ulrich F; Aksimentiev, Aleksei

    2015-02-24

    The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules, a DNA origami plate, placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg(2+) ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA.

  9. Anisotropy of domain switching in prepoled lead titanate zirconate ceramics under multiaxial electrical loading

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Ming; Li, Fa-Xin; Fang, Dai-Ning

    2007-01-01

    The authors report an observation of anisotropic domain switching process in prepoled lead titanate zirconate (PZT) ceramics under multiaxial electrical loading. Prepoled PZT blocks were obliquely cut to apply an electric field at discrete angles θ (0°-180°) to the initial poling direction. Both the coercive field and switchable polarization are found to decrease significantly when sinθ increases from zero to unity. The measured strain curves show that most domains that accomplished 180° domain switching actually experienced two successive 90° switching. The oriented domain texture after poling plus the induced nonuniform stress are used to explain the observed domain switching anisotropy.

  10. Size-Sorting Combined with Improved Nanocapillary-LC-MS for Identification of Intact Proteins up to 80 kDa

    PubMed Central

    Vellaichamy, Adaikkalam; Tran, John C.; Catherman, Adam D.; Lee, Ji Eun; Kellie, John F.; Sweet, Steve M.M.; Zamdborg, Leonid; Thomas, Paul M.; Ahlf, Dorothy R.; Durbin, Kenneth R.; Valaskovic, Gary A.; Kelleher, Neil L.

    2010-01-01

    Despite the availability of ultra-high resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for on-line LC-MS to drive high-throughput top-down proteomics in a fashion similar to bottom-up. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary-LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier-Transform mass spectrometer. Protein identification was enabled by nozzle-skimmer dissociation (NSD) and detection of fragment ions with <5 ppm mass accuracy for highly-specific database searching using custom software. This overall approach led to identification of proteins up to 80 kDa, with 10-60 proteins identified in single LC-MS runs of samples from yeast and human cell lines pre-fractionated by their molecular weight using a gel-based sieving system. PMID:20073486

  11. Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Nagarajan, V.; Junquera, J.; He, J. Q.; Jia, C. L.; Waser, R.; Lee, K.; Kim, Y. K.; Baik, S.; Zhao, T.; Ramesh, R.; Ghosez, Ph.; Rabe, K. M.

    2006-09-01

    Scaling of the structural order parameter, polarization, and electrical properties was investigated in model ultrathin epitaxial SrRuO3/PbZr0.2Ti0.8O3/SrRuO3/SrTiO3 heterostructures. High-resolution transmission electron microscopy images revealed the interfaces to be sharp and fully coherent. Synchrotron x-ray studies show that a high tetragonality (c /a˜1.058) is maintained down to 50Å thick films, suggesting indirectly that ferroelectricity is fully preserved at such small thicknesses. However, measurement of the switchable polarization (ΔP) using a pulsed probe setup and the out-of-plane piezoelectric response (d33) revealed a systematic drop from ˜140μC/cm2 and 60pm/V for a 150Å thick film to 11μC/cm2 and 7pm/V for a 50Å thick film. This apparent contradiction between the structural measurements and the measured switchable polarization is explained by an increasing presence of a strong depolarization field, which creates a pinned 180° polydomain state for the thinnest films. Existence of a polydomain state is demonstrated by piezoresponse force microscopy images of the ultrathin films. These results suggest that the limit for a ferroelectric memory device may be much larger than the fundamental limit for ferroelectricity.

  12. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture

    PubMed Central

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A.; Smith, Sean C.

    2015-01-01

    Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. Using first-principle calculations, we found that the adsorption energy of CO2 molecules on g-C4N3 nanosheets can be dramatically enhanced by injecting extra electrons into the adsorbent. At saturation CO2 capture coverage, the negatively charged g-C4N3 nanosheets achieve CO2 capture capacities up to 73.9 × 1013 cm−2 or 42.3 wt%. In contrast to other CO2 capture approaches, the process of CO2 capture/release occurs spontaneously without any energy barriers once extra electrons are introduced or removed, and these processes can be simply controlled and reversed by switching on/off the charging voltage. In addition, these negatively charged g-C4N3 nanosheets are highly selective for separating CO2 from mixtures with CH4, H2 and/or N2. These predictions may prove to be instrumental in searching for a new class of experimentally feasible high-capacity CO2 capture materials with ideal thermodynamics and reversibility. PMID:26621618

  13. Photo-switchable membrane and method

    DOEpatents

    Marshall, Kenneth L; Glowacki, Eric

    2013-05-07

    Switchable gas permeation membranes in which a photo-switchable low-molecular-weight liquid crystalline (LC) material acts as the active element, and a method of making such membranes. Different LC eutectic mixtures were doped with mesogenic azo dyes and infused into track-etched porous membranes with regular cylindrical pores. Photo-induced isothermal phase changes in the imbibed mesogenic material afforded large, reversible changes in the permeability of the photo-switchable membrane to nitrogen. For example, membranes imbibed with a photo-switchable cyanobiphenyl LC material demonstrated low permeability in the nematic state, while the photo-generated isotropic state demonstrated a 16.times.-greater sorption coefficient. Both states obey a high linear sorption behavior in accordance with Henry's Law. In contrast, membranes imbibed with a photo-switchable phenyl benzoate LC material showed the opposite permeability behavior to the biphenyl-imbibed membrane, along with nonlinear sorption behavior.

  14. Electro-Optic Effects in Colloidal Dispersion of Metal Nano-Rods in Dielectric Fluid

    PubMed Central

    Golovin, Andrii B.; Xiang, Jie; Park, Heung-Shik; Tortora, Luana; Nastishin, Yuriy A.; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2011-01-01

    In modern transformation optics, one explores metamaterials with properties that vary from point to point in space and time, suitable for application in devices such as an “optical invisibility cloak” and an “optical black hole”. We propose an approach to construct spatially varying and switchable metamaterials that are based on colloidal dispersions of metal nano-rods (NRs) in dielectric fluids, in which dielectrophoretic forces, originating in the electric field gradients, create spatially varying configurations of aligned NRs. The electric field controls orientation and concentration of NRs and thus modulates the optical properties of the medium. Using gold (Au) NRs dispersed in toluene, we demonstrate electrically induced change in refractive index on the order of 0.1. PMID:28879997

  15. Switchable vanadium oxide films by a sol-gel process

    NASA Astrophysics Data System (ADS)

    Partlow, D. P.; Gurkovich, S. R.; Radford, K. C.; Denes, L. J.

    1991-07-01

    Thin polycrystalline films of VO2 and V2O3 were deposited on a variety of substrates using a sol-gel process. The orientation, microstructure, optical constants, and optical and electrical switching behavior are presented. These films exhibited sharp optical switching behavior even on an amorphous substrate such as fused silica. The method yields reproducible results and is amenable to the coating of large substrates and curved surfaces such as mirrors and lenses.

  16. Review on electrochromic devices for automotive glazing

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya

    1991-12-01

    Electrochromic materials have been intensively studied for applications of various switchable optical systems. These materials exhibit adjustable optical absorption upon reversible oxidation/reduction processes. Since a reversible oxidation/reduction phenomenon is provided by electrically-driven electrochemical reactions, these materials are known as electrochromics. There are many publications including proceedings, books, and review articles written on electrochromic (EC) materials and their applications. This paper focuses on conventional and some new electrochromic devices (ECD), their specifications, and applications.

  17. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  18. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials

    NASA Astrophysics Data System (ADS)

    Stratford, K.; Henrich, O.; Lintuvuori, J. S.; Cates, M. E.; Marenduzzo, D.

    2014-06-01

    Colloidal particles dispersed in liquid crystals can form new materials with tunable elastic and electro-optic properties. In a periodic ‘blue phase’ host, particles should template into colloidal crystals with potential uses in photonics, metamaterials and transformational optics. Here we show by computer simulation that colloid/cholesteric mixtures can give rise to regular crystals, glasses, percolating gels, isolated clusters, twisted rings and undulating colloidal ropes. This structure can be tuned via particle concentration, and by varying the surface interactions of the cholesteric host with both the particles and confining walls. Many of these new materials are metastable: two or more structures can arise under identical thermodynamic conditions. The observed structure depends not only on the formulation protocol but also on the history of an applied electric field. This new class of soft materials should thus be relevant to design of switchable, multistable devices for optical technologies such as smart glass and e-paper.

  19. Strain engineered barium strontium titanate for tunable thin film resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khassaf, H.; Khakpash, N.; Sun, F.

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  20. HMSIW-based switchable units using super compact loaded shunt stubs and its applications on SIW/HMSIW switches

    NASA Astrophysics Data System (ADS)

    Chen, Haidong; Che, Wenquan; Zhang, Tianyu; Cao, Yue; Feng, Wenjie

    2018-06-01

    Half-mode substrate integrated waveguide (HMSIW) switchable unit, built by HMSIW section with loaded single or multi-microstrip shunt stub(s), was proposed in this work. Both shorted and opened stubs were studied, investigated and compared, bandwidth enhancement method for proposed switchable units was proposed and demonstrated. Based on these switchable units, narrowband and broadband HMSIW single-pole-single-through (SPST) switches, SIW SPST switch and SIW/HMSIW-based single-pole-double-through (SPDT) switch were designed, fabricated and measured. Good performances were observed experimentally for these proposed circuits, showing the advantages of proposed concept and an excellent candidate for switchable or reconfigurable SIW/HMSIW circuits or systems.

  1. Enhanced organic memory devices (OMEM) with a photochromic perhydro DTE as a transduction layer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cordes, Sandra; Kranz, Darius; Maibach, Eduard; Kempf, Maxim; Meerholz, Klaus

    2016-09-01

    In modern electronic systems memory elements are of fundamental importance for data storage. Especially solution-processable nonvolatile organic memories, which are inexpensive and can be manufactured on flexible substrates, are a promising alternative to brittle inorganic devices. Organic photochromic switchable compounds, mostly dithienylethenes (DTEs), are thermally stable, fatigue resistant and can undergo an electrically- or/and photo-induced ring-opening and -closing reaction which results in a change of energy levels. Due to the energetic difference in the highest occupied molecular orbital (HOMO) between the open and closed isomer, the DTE layer can be exploited as a switchable hole injection barrier that controls the electrical current in the diode. We demonstrated that a light-emitting organic memory (LE-OMEM) device with a perfluoro DTE transduction layer can be switched electrically via high current densities pulses and optically by irradiated light, with impressive current ON/OFF Ratios (OOR) of 10Λ2, 10Λ4 respectively. Currently we aim to minimize the barrier of the ON state and maximize the barrier of the OFF state by designing DTE molecules with larger differences in the HOMO energies of the two isomers yielding improved OOR values. By synthesizing perhydro derivates of DTE we achieved molecules with high HOMO levels and large ΔHOMO energies providing OMEM devices with excellent physical properties (OOR 1.4 x higher than perfluoro DTE). Due to the high HOMO level of the perhydro DTE utilization of hole transport layers (HTLs) is not necessary and thus manufacturing of OMEM devices is simplified.

  2. Switchable electric polarization and ferroelectric domains in a metal-organic-framework

    DOE PAGES

    Jain, Prashant; Stroppa, Alessandro; Nabok, Dmitrii; ...

    2016-09-30

    Multiferroics and magnetoelectrics with coexisting and coupled multiple ferroic orders are materials promising new technological advances. While most studies have focused on single-phase or heterostructures of inorganic materials, a new class of materials called metal–organic frameworks (MOFs) has been recently proposed as candidate materials demonstrating interesting new routes for multiferroism and magnetoelectric coupling. Herein, we report on the origin of multiferroicity of (CH 3) 2NH 2Mn(HCOO) 3 via direct observation of ferroelectric domains using second-harmonic generation techniques. For the first time, we observe how these domains are organized (sized in micrometer range), and how they are mutually affected by appliedmore » electric and magnetic fields. Lastly, calculations provide an estimate of the electric polarization and give insights into its microscopic origin.« less

  3. An optical system adopting liquid crystals with electrical tunability of wavelength and energy density for low level light therapy

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Wang, Yu-Jen; Chen, Hung-Shan; Lin, Yi-Hsin; Srivastava, Abhishek K.; Chigrinov, Vladimir G.

    2015-09-01

    We have developed a bistable negative lens by integrating a polarization switch of ferroelectric liquid crystals (FLCs) with a passively anisotropic focusing element. The proposed lens not only exhibits electrically tunable bistability but also fast response time of sub-milliseconds, which leads to good candidate of optical component in optical system for medical applications. In this paper, we demonstrate an optical system consisting of two FLC phase retarders and one LC lenses that exhibits both of electrically tunable wavelength and size of exposure area. The operating principles and the experimental results are discussed. The tunable spectrum, exposure area size and tunable irradiance are illustrated. Compared to conventional lenses with mechanical movements in the medical light therapy system, our electrically switchable optical system is more practical in the portable applications of light therapy (LLLT).

  4. CO2-Triggered Switchable Solvents, Surfactants, and Other Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Philip G.; Mercer, Sean; Heldebrant, David J.

    2012-06-14

    Waste CO2 at atmospheric pressure can be used to trigger dramatic changes in the properties of certain switchable materials. Compared to other triggers such as light, acids, oxidants, CO2 has the advantages that it is inexpensive, nonhazardous, non-accumulating in the system, easily removed, and it does not require the material to be transparent. Known CO2-triggered switchable materials 10 now include solvents, surfactants, solutes, catalysts, particles, polymers, and gels. The added flexibility of switchable materials represents a new strategy for minimizing energy and material consumption in process and product design.

  5. Tilted Orientation of Photochromic Dyes with Guest-Host Effect of Liquid Crystalline Polymer Matrix for Electrical UV Sensing

    PubMed Central

    Ranjkesh, Amid; Park, Min-Kyu; Park, Do Hyuk; Park, Ji-Sub; Choi, Jun-Chan; Kim, Sung-Hoon; Kim, Hak-Rin

    2015-01-01

    We propose a highly oriented photochromic dye film for an ultraviolet (UV)-sensing layer, where spirooxazine (SO) derivatives are aligned with the liquid crystalline UV-curable reactive mesogens (RM) using a guest-host effect. For effective electrical UV sensing with a simple metal-insulator-metal structure, our results show that the UV-induced switchable dipole moment amount of the SO derivatives is high; however, their tilting orientation should be controlled. Compared to the dielectric layer with the nearly planar SO dye orientation, the photochromic dielectric layer with the moderately tilted dye orientation shows more than seven times higher the UV-induced capacitance variation. PMID:26729116

  6. Transmission of low-energy negative ions through insulating nanocapillaries

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Liu, Zhonglin; Li, Pengfei; Jin, Bo; Song, Guangyin; Jin, Dingkun; Niu, Ben; Wei, Long; Ha, Shuai; Xie, Yiming; Ma, Yue; Wan, Chengliang; Cui, Ying; Zhou, Peng; Zhang, Hongqiang; Chen, Ximeng

    2018-04-01

    A simulation is performed to study the transmission of low-energy C l- ions through A l2O3 nanocapillaries. For the trajectory simulations, there are several processes involved: the image forces induced by the projectile; the electrostatic force from the deposited charges; the scattering from the inner surface and charge exchange. The simulation reproduces the main features of the experiments; i.e., the double peak structure in the transmitted angular distribution and the transmitted fractions of C l- , C l+ , and C l0 were found in the charge state distribution. The transmitted C l- ions are centered around the beam direction while the transmitted fractions of C l0 and C l+ are centered around the tilt angles. The role of the deposited charge is also studied by simulations. With the deposited charge, it is found that C l- is dominant in the transmission and the majority of the ions, centered around the tilt angle, are mainly from the single deflection by the negative charge patches on the inner surfaces of the capillaries, and only a few directly transmitted C l- ions are centered around the incident direction. There are also a few transmitted fractions of C l0 and C l+ from close surface scatterings. In the case that there are no negative charge patches, the simulation agrees with the experiment in detail: The majority of the directly transmitted C l- ions are centered around the incident direction while only a few scattered C l- ions are centered around the tilt angle from the single close collisions with the inner surfaces of the capillaries. There is a portion, comparable to the transmitted fraction of C l- , of the transmitted fractions of C l0 and C l+ , centered around the tilt angle, from the single scatterings with the inner surfaces of the capillaries. This confirms that at the present experimental conditions there are most probably no negative charge patches formed to guide the negative ions through insulating A l2O3 nanocapillaries.

  7. Pixel switching of epitaxial Pd/YHx/CaF2 switchable mirrors

    PubMed

    Kerssemakers; van der Molen SJ; Koeman; Gunther; Griessen

    2000-08-03

    Exposure of rare-earth films to hydrogen can induce a metal-insulator transition, accompanied by pronounced optical changes. This 'switchable mirror' effect has received considerable attention from theoretical, experimental and technological points of view. Most systems use polycrystalline films, but the synthesis of yttrium-based epitaxial switchable mirrors has also been reported. The latter form an extended self-organized ridge network during initial hydrogen loading, which results in the creation of micrometre-sized triangular domains. Here we observe homogeneous and essentially independent optical switching of individual domains in epitaxial switchable mirrors during hydrogen absorption. The optical switching is accompanied by topographical changes as the domains sequentially expand and contract; the ridges block lateral hydrogen diffusion and serve as a microscopic lubricant for the domain oscillations. We observe the correlated changes in topology and optical properties using in situ atomic force and optical microscopy. Single-domain phase switching is not observed in polycrystalline films, which are optically homogeneous. The ability to generate a tunable, dense pattern of switchable pixels is of technological relevance for solid-state displays based on switchable mirrors.

  8. Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solid-state molecular junctions.

    PubMed

    Li, Tao; Jevric, Martyn; Hauptmann, Jonas R; Hviid, Rune; Wei, Zhongming; Wang, Rui; Reeler, Nini E A; Thyrhaug, Erling; Petersen, Søren; Meyer, Jakob A S; Bovet, Nicolas; Vosch, Tom; Nygård, Jesper; Qiu, Xiaohui; Hu, Wenping; Liu, Yunqi; Solomon, Gemma C; Kjaergaard, Henrik G; Bjørnholm, Thomas; Nielsen, Mogens Brøndsted; Laursen, Bo W; Nørgaard, Kasper

    2013-08-14

    A new type of solid-state molecular junction is introduced, which employs reduced graphene oxide as a transparent top contact that permits a self-assembled molecular monolayer to be photoswitched in situ, while simultaneously enabling charge-transport measurements across the molecules. The electrical switching behavior of a less-studied molecular switch, dihydroazulene/vinylheptafulvene, is described, which is used as a test case. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-10-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron-hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  10. Electrically switchable photonic liquid crystal devices for routing of a polarized light wave

    NASA Astrophysics Data System (ADS)

    Rushnova, Irina I.; Melnikova, Elena A.; Tolstik, Alexei L.; Muravsky, Alexander A.

    2018-04-01

    The new mode of LC alignment based on photoalignment AtA-2 azo dye where the refractive interface between orthogonal orientations of the LC director exists without voltage and disappeared or changed with critical voltage has been proposed. The technology to fabricate electrically controlled liquid crystal elements for spatial separation and switching of linearly polarized light beams on the basis of the total internal reflection effect has been significantly improved. Its distinctive feature is the application of a composite alignment material comprising two sublayers of Nylon-6 and AtA-2 photoalignment azo dye offering patterned liquid crystal director orientation with high alignment quality value q = 0 . 998. The fabricated electrically controlled spatially structured liquid crystal devices enable implementation of propagation directions separation for orthogonally polarized light beams and their switching with minimal crosstalk.

  11. Piezoelectric and dielectric performance of poled lead zirconate titanate subjected to electric cyclic fatigue

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay; Mottern, Alexander M.

    2012-02-01

    Poled lead zirconate titanate (PZT) material as a single-layer plate was tested using a piezodilatometer under electric cyclic loading in both unipolar and bipolar modes. Its responses were evaluated using unipolar and bipolar measurements on the same setup. The mechanical strain and charge density loops exhibited various variations when the material was cycled for more than 108 cycles. The various quantities including loop amplitude, hysteresis, switchable polarization, and coercive field were characterized accordingly under the corresponding measurement conditions. At the same time, the offset polarization and bias electric field of the material were observed to be changed and the trend was found to be related to the measurement conditions also. Finally, the piezoelectric and dielectric coefficients were analyzed and their implications for the application of interest have been discussed.

  12. Layered Metal Nanoparticle Structures on Electrodes for Sensing, Switchable Controlled Uptake/Release, and Photo-electrochemical Applications.

    PubMed

    Tel-Vered, Ran; Kahn, Jason S; Willner, Itamar

    2016-01-06

    Layered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals. The crosslinking of the metal NP composites with molecular receptors, or the imprinting of molecular recognition sites into the electropolymerized NP matrices lead to selective and chiroselective sensing interfaces. Furthermore, the electrosynthesis of redox-active, imprinted, bis-aniline bridged Au NP composites yields electrochemically triggered "sponges" for the switchable uptake and release of electron-acceptor substrates, and results in conductive surfaces of electrochemically controlled wettability. Also, photosensitizer-relay-crosslinked Au NP composites, or electrochemically polymerized layered semiconductor quantum dot/metal NP matrices on electrodes, are demonstrated as functional nanostructures for photoelectrochemical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ferroelectric self-assembled molecular materials showing both rectifying and switchable conductivity

    PubMed Central

    Gorbunov, Andrey V.; Garcia Iglesias, Miguel; Guilleme, Julia; Cornelissen, Tim D.; Roelofs, W. S. Christian; Torres, Tomas; González-Rodríguez, David; Meijer, E. W.; Kemerink, Martijn

    2017-01-01

    Advanced molecular materials that combine two or more physical properties are typically constructed by combining different molecules, each being responsible for one of the properties required. Ideally, single molecules could take care of this combined functionality, provided they are self-assembled correctly and endowed with different functional subunits whose strong electronic coupling may lead to the emergence of unprecedented and exciting properties. We present a class of disc-like semiconducting organic molecules that are functionalized with strong dipolar side groups. Supramolecular organization of these materials provides long-range polar order that supports collective ferroelectric behavior of the side groups as well as charge transport through the stacked semiconducting cores. The ferroelectric polarization in these supramolecular polymers is found to couple to the charge transport and leads to a bulk conductivity that is both switchable and rectifying. An intuitive model is developed and found to quantitatively reproduce the experimental observations. In a larger perspective, these results highlight the possibility of modulating material properties using the large electric fields associated with ferroelectric polarization. PMID:28975150

  14. Interplay of hot electrons from localized and propagating plasmons.

    PubMed

    Hoang, Chung V; Hayashi, Koki; Ito, Yasuo; Gorai, Naoki; Allison, Giles; Shi, Xu; Sun, Quan; Cheng, Zhenzhou; Ueno, Kosei; Goda, Keisuke; Misawa, Hiroaki

    2017-10-03

    Plasmon-induced hot-electron generation has recently received considerable interest and has been studied to develop novel applications in optoelectronics, photovoltaics and green chemistry. Such hot electrons are typically generated from either localized plasmons in metal nanoparticles or propagating plasmons in patterned metal nanostructures. Here we simultaneously generate these heterogeneous plasmon-induced hot electrons and exploit their cooperative interplay in a single metal-semiconductor device to demonstrate, as an example, wavelength-controlled polarity-switchable photoconductivity. Specifically, the dual-plasmon device produces a net photocurrent whose polarity is determined by the balance in population and directionality between the hot electrons from localized and propagating plasmons. The current responsivity and polarity-switching wavelength of the device can be varied over the entire visible spectrum by tailoring the hot-electron interplay in various ways. This phenomenon may provide flexibility to manipulate the electrical output from light-matter interaction and offer opportunities for biosensors, long-distance communications, and photoconversion applications.Plasmon-induced hot electrons have potential applications spanning photodetection and photocatalysis. Here, Hoang et al. study the interplay between hot electrons generated by localized and propagating plasmons, and demonstrate wavelength-controlled polarity-switchable photoconductivity.

  15. Effective Control of Bioelectricity Generation from a Microbial Fuel Cell by Logical Combinations of pH and Temperature

    PubMed Central

    Tang, Jiahuan; Liu, Ting; Yuan, Yong

    2014-01-01

    In this study, a microbial fuel cell (MFC) with switchable power release is designed, which can be logically controlled by combinations of the most physiologically important parameters such as “temperature” and “pH.” Changes in voltage output in response to temperature and pH changes were significant in which voltage output decreased sharply when temperature was lowered from 30°C to 10°C or pH was decreased from 7.0 to 5.0. The switchability of the MFC comes from the microbial anode whose activity is affected by the combined medium temperature and pH. Changes in temperature and pH cause reversible activation-inactivation of the bioanode, thus affecting the activity of the entire MFC. With temperature and pH as input signals, an AND logic operation is constructed for the MFC whose power density is controlled. The developed system has the potential to meet the requirement of power supplies producing electrical power on-demand for self-powered biosensors or biomedical devices. PMID:24741343

  16. Charge-controlled switchable CO adsorption on FeN4 cluster embedded in graphene

    NASA Astrophysics Data System (ADS)

    Omidvar, Akbar

    2018-02-01

    Electrical charging of an FeN4 cluster embedded in graphene (FeN4G) is proposed as an approach for electrocatalytically switchable carbon monoxide (CO) adsorption. Using density functional theory (DFT), we found that the CO molecule is strongly adsorbed on the uncharged FeN4G cluster. Our results show that the adsorption energy of a CO molecule on the FeN4G cluster is dramatically decreased by introducing extra electrons into the cluster. Once the charges are removed, the CO molecule is spontaneously adsorbed on the FeN4G absorbent. In the framework of frontier molecular orbital (FMO) analysis, the enhanced sensitivity and reactivity of the FeN4G cluster towards the CO molecule can be interpreted in terms of interaction between the HOMO of CO molecule and the LUMO of FeN4G cluster. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Our study indicates that the FeN4G nanomaterial is an excellent absorbent for controllable and reversible capture and release of the CO.

  17. Light-induced protein degradation in human-derived cells.

    PubMed

    Sun, Wansheng; Zhang, Wenyao; Zhang, Chao; Mao, Miaowei; Zhao, Yuzheng; Chen, Xianjun; Yang, Yi

    2017-05-27

    Controlling protein degradation can be a valuable tool for posttranslational regulation of protein abundance to study complex biological systems. In the present study, we designed a light-switchable degron consisting of a light oxygen voltage (LOV) domain of Avena sativa phototropin 1 (AsLOV2) and a C-terminal degron. Our results showed that the light-switchable degron could be used for rapid and specific induction of protein degradation in HEK293 cells by light in a proteasome-dependent manner. Further studies showed that the light-switchable degron could also be utilized to mediate the degradation of secreted Gaussia princeps luciferase (GLuc), demonstrating the adaptability of the light-switchable degron in different types of protein. We suggest that the light-switchable degron offers a robust tool to control protein levels and may serves as a new and significant method for gene- and cell-based therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.

    PubMed

    Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia

    2016-07-05

    Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.

  19. Electrically optofluidic zoom system with a large zoom range and high-resolution image.

    PubMed

    Li, Lei; Yuan, Rong-Ying; Wang, Jin-Hui; Wang, Qiong-Hua

    2017-09-18

    We report an electrically controlled optofluidic zoom system which can achieve a large continuous zoom change and high-resolution image. The zoom system consists of an optofluidic zoom objective and a switchable light path which are controlled by two liquid optical shutters. The proposed zoom system can achieve a large tunable focal length range from 36mm to 92mm. And in this tuning range, the zoom system can correct aberrations dynamically, thus the image resolution is high. Due to large zoom range, the proposed imaging system incorporates both camera configuration and telescope configuration into one system. In addition, the whole system is electrically controlled by three electrowetting liquid lenses and two liquid optical shutters, therefore, the proposed system is very compact and free of mechanical moving parts. The proposed zoom system has potential to take place of conventional zoom systems.

  20. Achievement of two logical states through a polymer/silicon interface for organic-inorganic hybrid memory

    NASA Astrophysics Data System (ADS)

    Chen, Jianhui; Chen, Bingbing; Shen, Yanjiao; Guo, Jianxin; Liu, Baoting; Dai, Xiuhong; Xu, Ying; Mai, Yaohua

    2017-11-01

    A hysteresis loop of minority carrier lifetime vs voltage is found in polystyrenesulfonate (PSS)/Si organic-inorganic hybrid heterojunctions, implying an interfacial memory effect. Capacitance-voltage and conductance-voltage hysteresis loops are observed and reveal a memory window. A switchable interface state, which can be controlled by charge transfer based on an electrochemical oxidation/deoxidation process, is suggested to be responsible for this hysteresis effect. We perform first-principle total-energy calculations on the influence of external electric fields and electrons or holes, which are injected into interface states on the adsorption energy of PSS on Si. It is demonstrated that the dependence of the interface adsorption energy difference on the electric field is the origin of this two-state switching. These results offer a concept of organic-inorganic hybrid interface memory being optically or electrically readable, low-cost, and compatible with the flexible organic electronics.

  1. Controllable rotating behavior of individual dielectric microrod in a rotating electric field.

    PubMed

    Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Chen, Xiaoming

    2017-06-01

    We report herein controllable rotating behavior of an individual dielectric microrod driven by a background rotating electric field. By disposing or removing structured floating microelectrode, the rigid rod suspended in electrolyte solution accordingly exhibits cofield or antifield rotating motion. In the absence of the ideally polarizable metal surface, the dielectric rod rotates opposite to propagation of electric field, with the measured rotating rate much larger than predicted by Maxwell-Wager interfacial polarization theory incorporating surface conduction of fixed bond charge. Surprisingly, with floating electrode embedded, a novel kind of cofield rotation mode occurs in the presence of induced double-layer polarization, due to the action of hydrodynamic torque from rotating induced-charge electroosmosis. This method of achieving switchable spin modes of dielectric particles would direct implications in constructing flexible electrokinetic framework for analyzing 3D profile of on-chip biomicrofluidic samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An Intrinsically Switchable Ladder-Type Ferroelectric BST-on-Si Composite FBAR Filter.

    PubMed

    Lee, Seungku; Mortazawi, Amir

    2016-03-01

    This paper presents a ladder-type bulk acoustic wave (BAW) intrinsically switchable filter based on ferroelectric thin-film bulk acoustic resonators (FBARs). The switchable filter can be turned on and off by the application of an external bias voltage due to the electrostrictive effect in thin-film ferroelectrics. In this paper, Barium Strontium Titanate (BST) is used as the ferroelectric material. A systematic design approach for switchable ladder-type ferroelectric filters is provided based on required filter specifications. A switchable filter is implemented in the form of a BST-on-Si composite structure to control the effective electromechanical coupling coefficient of FBARs. As an experimental verification, a 2.5-stage intrinsically switchable BST-on-Si composite FBAR filter is designed, fabricated, and measured. Measurement results for a typical BST-on-Si composite FBAR show a resonator mechanical quality factor (Q(m)) of 971, as well as a (Q(m)) × f of 2423 GHz. The filter presented here provides a measured insertion loss of 7.8 dB, out-of-band rejection of 26 dB, and fractional bandwidth of 0.33% at 2.5827 GHz when the filter is in the on state at a dc bias of 40 V. In its off state, the filter exhibits an isolation of 31 dB.

  3. Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles

    NASA Astrophysics Data System (ADS)

    Horiuchi, Sachio; Kagawa, Fumitaka; Hatahara, Kensuke; Kobayashi, Kensuke; Kumai, Reiji; Murakami, Youichi; Tokura, Yoshinori

    2012-12-01

    The imidazole unit is chemically stable and ubiquitous in biological systems; its proton donor and acceptor moieties easily bind molecules into a dipolar chain. Here we demonstrate that chains of these amphoteric molecules can often be bistable in electric polarity and electrically switchable, even in the crystalline state, through proton tautomerization. Polarization-electric field (P-E) hysteresis experiments reveal a high electric polarization ranging from 5 to 10 μC cm-2 at room temperature. Of these molecules, 2-methylbenzimidazole allows ferroelectric switching in two dimensions due to its pseudo-tetragonal crystal symmetry. The ferroelectricity is also thermally robust up to 400 K, as is that of 5,6-dichloro-2-methylbenzimidazole (up to ~373 K). In contrast, three other benzimidazoles exhibit double P-E hysteresis curves characteristic of antiferroelectricity. The diversity of imidazole substituents is likely to stimulate a systematic exploration of various structure-property relationships and domain engineering in the quest for lead- and rare-metal-free ferroelectric devices.

  4. Tunable and switchable all-fiber comb filter using a PBS-based two-stage cascaded Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2011-08-01

    We propose and demonstrate a novel tunable and switchable all-fiber comb filter by employing a polarization beam splitter (PBS)-based two-stage cascaded Mach-Zehnder (M-Z) interferometer. The proposed comb filter consists of a rotatable polarizer, a fiber PBS, a non-3-dB coupler and a 3-dB coupler. By simply adjusting the polarization state of the input light, the dual-function of channel spacing tunable and wavelength switchable (interleaving) operations can be efficiently obtained. The theoretical analysis is verified by the experimental results. A comb filter with both the channel spacing tunable from 0.18 nm to 0.36 nm and the wavelength switchable functions is experimentally demonstrated.

  5. Switchable adhesion for wafer-handling based on dielectric elastomer stack transducers

    NASA Astrophysics Data System (ADS)

    Grotepaß, T.; Butz, J.; Förster-Zügel, F.; Schlaak, H. F.

    2016-04-01

    Vacuum grippers are often used for the handling of wafers and small devices. In order to evacuate the gripper, a gas flow is created that can harm the micro structures on the wafer. A promising alternative to vacuum grippers could be adhesive grippers with switchable adhesion. There have been some publications of gecko-inspired adhesive devices. Most of these former works consist of a structured surface which adheres to the object manipulated and an actuator for switching the adhesion. Until now different actuator principles have been investigated, like smart memory alloys and pneumatics. In this work for the first time dielectric elastomer stack transducers (DEST) are combined with a structured surface. DESTs are a promising new transducer technology with many applications in different industry sectors like medical devices, human-machine-interaction and soft robotics. Stacked dielectric elastomer transducers show thickness contraction originating from the electromechanical pressure of two compliant electrodes compressing an elastomeric dielectric when a voltage is applied. Since DESTs and the adhesive surfaces previously described are made of elastomers, it is self-evident to combine both systems in one device. The DESTs are fabricated by a spin coating process. If the flat surface of the spinning carrier is substituted for example by a perforated one, the structured elastomer surface and the DEST can be fabricated in one process. By electrical actuation the DEST contracts and laterally expands which causes the gecko-like cilia to adhere on the object to manipulate. This work describes the assembly and the experimental results of such a device using switchable adhesion. It is intended to be used for the handling of glass wafers.

  6. Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer

    NASA Astrophysics Data System (ADS)

    Tang, Weiqing; Ke, Congming; Fu, Mingming; Wu, Yaping; Zhang, Chunmiao; Lin, Wei; Lu, Shiqiang; Wu, Zhiming; Yang, Weihuang; Kang, Junyong

    2018-03-01

    Group-IIIA metal-monochalcogenides with the enticing properties have attracted tremendous attention across various scientific disciplines. With the aim to satisfy the multiple demands of device applications, here we report a design framework on GaSe monolayer in an effort to tune the electronic and magnetic properties through a dual modulation of vacancy doping and electric field. A half-metallicity with a 100% spin polarization is generated in a Ga vacancy doped GaSe monolayer due to the nonbonding 4p electronic orbital of the surrounding Se atoms. The stability of magnetic moment is found to be determined by the direction of applied electric field. A switchable magnetic configuration in Ga vacancy doped GaSe monolayer is achieved under a critical electric field of 0.6 V/Å. Electric field induces redistribution of the electronic states. Finally, charge transfers are found to be responsible for the controllable magnetic structure in this system. The magnetic modulation on GaSe monolayer in this work offers some references for the design and fabrication of tunable two-dimensional spintronic device.

  7. Bio-inspired Nano-capillary Self-powered Fluid Transport in Nanocomposite (NBIT III)

    DTIC Science & Technology

    2017-02-22

    steel , ceramic axes and ball-bearing turbos exhibit less deformation at contact points and therefore a greater stress under the same load. Combined with...metal wedge, made from stainless steel (SUS310S) or super alloy (HAYNES230), was placed atop the HAP-PEG pellet to provide a pressure gradient that...between our team and Iljin materials, a Korean company, about development and commercialization of hydroxyl apatite bone cement . -We submitted a

  8. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2016-08-07

    Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.

  9. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications

    PubMed Central

    Li, Guoqiang; Mathine, David L.; Valley, Pouria; Äyräs, Pekka; Haddock, Joshua N.; Giridhar, M. S.; Williby, Gregory; Schwiegerling, Jim; Meredith, Gerald R.; Kippelen, Bernard; Honkanen, Seppo; Peyghambarian, Nasser

    2006-01-01

    Presbyopia is an age-related loss of accommodation of the human eye that manifests itself as inability to shift focus from distant to near objects. Assuming no refractive error, presbyopes have clear vision of distant objects; they require reading glasses for viewing near objects. Area-divided bifocal lenses are one example of a treatment for this problem. However, the field of view is limited in such eyeglasses, requiring the user to gaze down to accomplish near-vision tasks and in some cases causing dizziness and discomfort. Here, we report on previously undescribed switchable, flat, liquid-crystal diffractive lenses that can adaptively change their focusing power. The operation of these spectacle lenses is based on electrical control of the refractive index of a 5-μm-thick layer of nematic liquid crystal using a circular array of photolithographically defined transparent electrodes. It operates with high transmission, low voltage (<2 Vrms), fast response (<1 sec), diffraction efficiency > 90%, small aberrations, and a power-failure-safe configuration. These results represent significant advance in state-of-the-art liquid-crystal diffractive lenses for vision care and other applications. They have the potential of revolutionizing the field of presbyopia correction when combined with automatic adjustable focusing power. PMID:16597675

  10. Wavelength-switchable C-band erbium-doped fibre laser incorporating all-fibre Fabry-Perot interferometer fabricated by chemical etching

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    A switchable and stable triple-wavelength, ring-cavity, erbium-doped fibre laser incorporating an all-fibre Fabry-Perot interferometer (FPI) is designed and experimentally demonstrated. In the proposed fibre laser, the all-fibre FPI is fabricated using the chemical etching method and is used to generate the filter effect. The laser threshold is 88 mW. Switchable single-wavelength lasing at 1529.9, 1545.1 and 1560.2 nm can be realized with a power fluctuation less than 0.64 dB under 20 min of scanning time at room temperature. In addition, the wavelength-switchable dual-wavelength lasers can be tuned by changing the polarization state in the experiment, and the maximum power fluctuations for the 1545.1 and 1560.2 nm lasers are less than 1.19 and 1.57 dB at 26 °C, respectively. Furthermore, a triple-wavelength laser is obtained by adjusting the polarization controller. The results demonstrate that switchable single-, dual-, or triple-wavelength lasers can be generated through the proposed fibre laser.

  11. Switchable polarization in an unzipped graphene oxide monolayer.

    PubMed

    Noor-A-Alam, Mohammad; Shin, Young-Han

    2016-08-14

    Ferroelectricity in low-dimensional oxide materials is generally suppressed at the scale of a few nanometers, and has attracted considerable attention from both fundamental and technological aspects. Graphene is one of the thinnest materials (one atom thick). Therefore, engineering switchable polarization in non-polar pristine graphene could potentially lead to two-dimensional (2D) ferroelectric materials. In the present study, based on density functional theory, we show that an unzipped graphene oxide (UGO) monolayer can exhibit switchable polarization due to its foldable bonds between the oxygen atom and two carbon atoms underneath the oxygen. We find that a free standing UGO monolayer exhibits antiferroelectric switchable polarization. A UGO monolayer can be obtained as an intermediate product during the chemical exfoliation process of graphene. Interestingly, despite its dimensionality, our estimated polarization in a UGO monolayer is comparable to that in bulk ferroelectric materials (e.g., ferroelectric polymers). Our calculations could help realize antiferroelectric switchable polarization in 2D materials, which could find various potential applications in nanoscale devices such as sensors, actuators, and capacitors with high energy-storage density.

  12. Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Yang, Yue; Wang, Liping, E-mail: liping.wang@asu.edu

    2014-08-18

    We numerically demonstrate a switchable metamaterial absorber/emitter by thermally turning on or off the excitation of magnetic resonance upon the phase transition of vanadium dioxide (VO{sub 2}). Perfect absorption peak exists around the wavelength of 5 μm when the excitation of magnetic resonance is supported with the insulating VO{sub 2} spacer layer. The wavelength-selective absorption is switched off when the magnetic resonance is disabled with metallic VO{sub 2} that shorts the top and bottom metallic structures. The resonance wavelength can be tuned with different geometry, and the switchable metamaterial exhibits diffuse behaviors at oblique angles. The results would facilitate the designmore » of switchable metamaterials for active control in energy and sensing applications.« less

  13. In situ Charge Density Imaging of Metamaterials made with Switchable Two dimensionalElectron Gas at Oxide Heterointerfaces

    DTIC Science & Technology

    2017-11-28

    AFRL-AFOSR-JP-TR-2018-0028 In-situ Charge-Density Imaging of Metamaterials from Switchable 2D electron gas CHANG BEOM EOM UNIVERSITY OF WISCONSIN...Imaging of Metamaterials made with Switchable Two-dimensional Electron Gas at Oxide Heterointerfaces 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1...using pulsed laser deposition atomic with in-situ reflection high-energy electron diffraction (RHEED). We have also demonstrated that the inline

  14. Effect of hydrogen-switchable mirrors on the Casimir force.

    PubMed

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-03-23

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials.

  15. Effect of hydrogen-switchable mirrors on the Casimir force

    PubMed Central

    Iannuzzi, Davide; Lisanti, Mariangela; Capasso, Federico

    2004-01-01

    We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a hydrogen-switchable mirror. Hydrogen-switchable mirrors are shiny metals that can become transparent upon hydrogenation. Despite such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials. PMID:15024111

  16. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2017-12-09

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  17. Transition Metal Switchable Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  18. Transition metal redox switches for reversible "on/off" and "slow/fast" single-molecule magnet behaviour in dysprosium and erbium bis-diamidoferrocene complexes.

    PubMed

    Dickie, Courtney M; Laughlin, Alexander L; Wofford, Joshua D; Bhuvanesh, Nattamai S; Nippe, Michael

    2017-12-01

    Single-molecule magnets (SMMs) are considered viable candidates for next-generation data storage and quantum computing. Systems featuring switchability of their magnetization dynamics are particularly interesting with respect to accessing more complex logic gates and device architectures. Here we show that transition metal based redox events can be exploited to enable reversible switchability of slow magnetic relaxation of magnetically anisotropic lanthanide ions. Specifically, we report anionic homoleptic bis-diamidoferrocene complexes of Dy 3+ (oblate) and Er 3+ (prolate) which can be reversibly oxidized by one electron to yield their respective charge neutral redox partners (Dy: [1] - , 1 ; Er: [2] - , 2 ). Importantly, compounds 1 and 2 are thermally stable which allowed for detailed studies of their magnetization dynamics. We show that the Dy 3+ [1] - / 1 system can function as an "on"/"off" or a "slow"/"fast" redox switchable SMM system in the absence or presence of applied dc fields, respectively. The Er 3+ based [2] - / 2 system features "on"/"off" switchability of SMM properties in the presence of applied fields. Results from electrochemical investigations, UV-vis-NIR spectroscopy, and 57 Fe Mössbauer spectroscopy indicate the presence of significant electronic communication between the mixed-valent Fe ions in 1 and 2 in both solution and solid state. This comparative evaluation of redox-switchable magnetization dynamics in low coordinate lanthanide complexes may be used as a potential blueprint toward the development of future switchable magnetic materials.

  19. Large Excitonic Reflectivity of Monolayer MoSe2 Encapsulated in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Scuri, Giovanni; Zhou, You; High, Alexander A.; Wild, Dominik S.; Shu, Chi; De Greve, Kristiaan; Jauregui, Luis A.; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D.; Park, Hongkun

    2018-01-01

    We demonstrate that a single layer of MoSe2 encapsulated by hexagonal boron nitride can act as an electrically switchable mirror at cryogenic temperatures, reflecting up to 85% of incident light at the excitonic resonance. This high reflectance is a direct consequence of the excellent coherence properties of excitons in this atomically thin semiconductor. We show that the MoSe2 monolayer exhibits power-and wavelength-dependent nonlinearities that stem from exciton-based lattice heating in the case of continuous-wave excitation and exciton-exciton interactions when fast, pulsed laser excitation is used.

  20. Self-organized layered hydrogenation in black Mg2NiHx switchable mirrors.

    PubMed

    Lohstroh, W; Westerwaal, R J; Noheda, B; Enache, S; Giebels, I A M E; Dam, B; Griessen, R

    2004-11-05

    In addition to a mirrorlike (Mg2Ni) and a transparent (Mg2NiH4) state, thin films of Mg2NiHx exhibit a remarkable black state with low reflection over the entire visible spectrum, essentially zero transmission and a low electrical resistivity. Such a black state is not explicable for a homogeneous layer since a large absorption coefficient always yields substantial reflection. We show that it results from a self-organized and reversible double layering of metallic Mg2NiH0.3 and semiconducting Mg2NiH4.

  1. Investigation of the effect of temperature on aging behavior of Fe-doped lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Promsawat, Napatporn; Promsawat, Methee; Janphuang, Pattanaphong; Marungsri, Boonruang; Luo, Zhenhua; Pojprapai, Soodkhet

    The aging degradation behavior of Fe-doped Lead zirconate titanate (PZT) subjected to different heat-treated temperatures was investigated over 1000h. The aging degradation in the piezoelectric properties of PZT was indicated by the decrease in piezoelectric charge coefficient, electric field-induced strain and remanent polarization. It was found that the aging degradation became more pronounced at temperature above 50% of the PZT’s Curie temperature. A mathematical model based on the linear logarithmic stretched exponential function was applied to explain the aging behavior. A qualitative aging model based on polar macrodomain switchability was proposed.

  2. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2017-12-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  3. Transition Metal Switchable Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  4. In-situ Manipulation and Imaging of Switchable Two-dimensional Electron Gas at Oxide Heterointerfaces

    DTIC Science & Technology

    2016-11-30

    AFRL-AFOSR-JP-TR-2017-0016 In-situ Manipulation and Imaging of Switchable Two-dimensional Electron Gas at Oxide Heterointerfaces CHANG BEOM EOM...Imaging of Switchable Two-dimensional Electron Gas at Oxide Heterointerfaces 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-4046 5c.  PROGRAM...NOTES 14. ABSTRACT The recent discovery of a two-dimensional electron gas (2DEG) at the interface between insulating perovskite oxides SrTiO3 and LaAlO3

  5. Development of an automated electrical power subsystem testbed for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.

  6. Low-Energy Water Recovery from Subsurface Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Chul; Kim, Gyu Dong; Hendren, Zachary

    A novel non-aqueous phase solvent (NAS) desalination process was proposed and developed in this research project. The NAS desalination process uses less energy than thermal processes, doesn’t require any additional chemicals for precipitation, and can be utilized to treat high TDS brine. In this project, our experimental work determined that water solubility changes and selective absorption are the key characteristics of NAS technology for successful desalination. Three NAS desalination mechanisms were investigated: (1) CO2 switchable, (2) high-temp absorption to low-temp desorption (thermally switchable), and (3) low-temp absorption to high-temp desorption (thermally switchable). Among these mechanisms, thermally switchable (low-temp absorption tomore » high-temp desorption) showed the highest water recovery and relatively high salt rejection. A test procedure for semi-continuous, bench scale NAS desalination process was also developed and used to assess performance under a range of conditions.« less

  7. Insights into the relationship between CO₂ switchability and basicity: examples of melamine and its derivatives.

    PubMed

    Yin, Hongyao; Feng, Yujun; Liu, Hanbin; Mu, Meng; Fei, Chenhong

    2014-08-26

    Owing to its wide availability, nontoxicity, and low cost, CO2 working as a trigger to reversibly switch material properties, including polarity, ionic strength, hydrophilicity, viscosity, surface charge, and degree of polymerization or cross-linking, has attracted an increasing attention in recent years. However, a quantitative correlation between basicity of these materials and their CO2 switchability has been less documented though it is of great importance for fabricating switchable system. In this work, the "switch-on" and "switch-off" abilities of melamine and its amino-substituted derivatives by introducing and removing CO2 are studied, and then their quantitative relationship with basicity is established, so that performances of other organobases can be quantitatively predicted. These findings are beneficial for forecasting the CO2 stimuli-responsive behavior of other organobases and the design of CO2-switchable materials.

  8. Controllable light filters using an all-solid-state switchable mirror with a Mg-Ir thin film for preterm infant incubators

    NASA Astrophysics Data System (ADS)

    Tajima, Kazuki; Shimoike, Mika; Li, Heng; Inagaki, Masumi; Izumi, Hitomi; Akiyama, Misaki; Matsushima, Yukiko; Ohta, Hidenobu

    2013-04-01

    We have fabricated a controllable light filter using an all-solid-state switchable mirror incorporating a Mg-Ir thin film for use in preterm infant incubators. The solid-state switchable mirror device was fabricated by depositing a multilayer on a glass substrate. The mixed hydride of MgH2 and Mg6Ir2H11 created from the Mg-Ir thin film is red in the transparent state. The optical switching speeds between the reflective and transparent red states depended on applied voltage. The device showed three states, namely, reflective, black, and transparent red, due to the properties of the switchable mirror material. These results suggest that the material could be used as a controllable light filter for preterm infant incubators, since it eliminates the light wavelength that disturbs regular sleep-wake cycles of preterm infants.

  9. Superheating of monolayer ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-04-01

    The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.

  10. Superheating of monolayer ice in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Wu, HengAn

    2017-04-07

    The freezing and melting of low-dimensional materials, either via a first-order phase transition or without any discontinuity in thermodynamic, still remain a matter of debate. Melting (superheating) in two-dimensional (2D) ice is fundamentally different from that in bulk counterpart. Here, we perform comprehensive molecular dynamics simulations of the superheating of monolayer ice in graphene nanocapillaries to understand the nature of melting transition in 2D water/ice. We find four different superheating (melting) scenarios can happen in the superheating of monolayer square-like ice, which are closely related to the lateral pressure and the channel width. The anomalous two-stage melting transition with arisen coexistence phase is found, which reveals the unknown extraordinary characteristics of melting in 2D water/ice. Under ultrahigh lateral pressure, the intermediate monolayer triangular amorphous ice will be formed during the superheating of monolayer square-like ice with both continuous-like and first-order phase transitions. Whereas, under low lateral pressure, the melting in monolayer square-like ice manifests typical discontinuity with notable hysteresis-loop in potential energy during the heating/cooling process. Moreover, we also find that highly puckered monolayer square-like ice can transform into bilayer AB-stacked amorphous ice with square pattern in the superheating process. The superheating behavior under high lateral pressure can be partly regarded as the compression limit of superheated monolayer water. The intrinsic phenomena in our simulated superheating of monolayer ice may be significant for understanding the melting behavior in 2D water/ice.

  11. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, YinBo; Wang, FengChao, E-mail: wangfc@ustc.edu.cn; Wu, HengAn

    Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates thatmore » the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the “buckling failure” of the square-ice-nanotube columns, which is dominated by the lateral pressure.« less

  12. Dynamic Time Multiplexing Fabrication of Holographic Polymer Dispersed Liquid Crystals for Increased Wavelength Sensitivity

    NASA Technical Reports Server (NTRS)

    Fontecchio, Adam K. (Inventor); Rai, Kashma (Inventor)

    2017-01-01

    Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically-switchable beam steering capability is disclosed. XXXX Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband 10 HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more 15 motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting 20 a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically switchable beam steering capability is disclosed.

  13. Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Nan; Cheng, Qiang, E-mail: qiangcheng@emfield.org; Zhao, Jie

    2014-02-03

    We propose switchable zero-index metamaterials (ZIMs) implemented by split ring resonators (SRRs) loaded with positive-intrinsic-negative (PIN) diode switching elements. We demonstrate that ZIMs can be achieved at around 10 GHz when the PIN diode is switched off. When the PIN diode is switched on, however, the designed metamaterials have impedance matching to the free space, which is useful to reduce the reflections at the interface of two media. The switchable ZIMs are suitable for a wide variety of applications like the beam forming and directive radiation. Experimental results validate the switching ability of the proposed ZIMs.

  14. Block copolymer micelles as switchable templates for nanofabrication.

    PubMed

    Krishnamoorthy, Sivashankar; Pugin, Raphaël; Brugger, Juergen; Heinzelmann, Harry; Hoogerwerf, Arno C; Hinderling, Christian

    2006-04-11

    Block copolymer inverse micelles from polystyrene-block-poly-2-vinylpyridine (PS-b-P2VP) deposited as monolayer films onto surfaces show responsive behavior and are reversibly switchable between two states of different topography and surface chemistry. The as-coated films are in the form of arrays of nanoscale bumps, which can be transformed into arrays of nanoscale holes by switching through exposure to methanol. The use of these micellar films to act as switchable etch masks for the structuring of the underlying material to form either pillars or holes depending on the switching state is demonstrated.

  15. Use of a conformational switching aptamer for rapid and specific ex vivo identification of central nervous system lymphoma in a xenograft model

    NASA Astrophysics Data System (ADS)

    Georges, Joseph F.; Liu, Xiaowei; Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A.; Joy, Anna; Spetzler, Robert F.; Feuerstein, Burt G.; Anderson, Trent; Preul, Mark C.; Yan, Hao; Nakaji, Peter

    2018-02-01

    Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 10 minutes of incubation. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

  16. DigiLens color sequential filtering for microdisplay-based projection applications

    NASA Astrophysics Data System (ADS)

    Sagan, Stephen F.; Smith, Ronald T.; Popovich, Milan M.

    2000-10-01

    Application Specific Integrated Filters (ASIFs), based on a unique holographic polymer dispersed liquid crystal (H-PDLC) material system offering high efficiency, fast switching and low power, are being developed for microdisplay based projection applications. A new photonics technology based H-PDLC materials combined with the ability to be electrically switched on and off offers a new approach to color sequential filtering of a white light source for microdisplay-based front and rear projection display applications. Switchable Bragg gratings created in the PDLC are fundamental building blocks. Combined with the well- defined spectral and angular characteristics of Bragg gratings, these selectable filters can provide a large color gamut and a dynamically adjustable white balance. These switchable Bragg gratings can be reflective or transmissive and in each case can be designed to operate in either additive or subtractive mode. The spectral characteristics of filters made from a stack of these Bragg gratings can be configured for a specific lamp spectrum to give high diffractive efficiency over the broad bandwidths required for an illumination system. When it is necessary to reduce the spectral bandwidth, it is possible to use the properties of reflection Bragg holograms to construct very narrow band high efficiency filters. The basic properties and key benefits of ASIFs in projection displays are reviewed.

  17. Tuning the Electronic, Optical, and Magnetic Properties of Monolayer GaSe with a Vertical Electric Field

    NASA Astrophysics Data System (ADS)

    Ke, Congming; Wu, Yaping; Guo, Guang-Yu; Lin, Wei; Wu, Zhiming; Zhou, Changjie; Kang, Junyong

    2018-04-01

    Inspired by two-dimensional material with their unique physical properties and innovative device applications, here we report a design framework on monolayer GaSe, an important member of the two-dimensional material family, in an effort to tune the electronic, optical, and magnetic properties through a vertical electric field. A transition from indirect to direct band gap in monolayer GaSe is found with an electric field of 0.09 V /Å . The giant Stark effect results in a reduction of the band gap with a Stark coefficient of 3.54 Å. Optical and dielectric properties of monolayer GaSe are dependent on the vertical electric field. A large regulation range for polarization E ∥c ^ is found for the static dielectric constant. The optical anisotropy with the dipole transition from E ∥c ^ to E ⊥c ^ is achieved. Induced by the spin-orbit coupling, spin-splitting energy at the valence band maximum increases linearly with the electric field. The effective mass of holes is highly susceptible to the vertical electric field. Switchable spin-polarization features in spin texture of monolayer GaSe are predicted. The tunable electronic, optical, and magnetic properties of monolayer GaSe hold great promise for applications in both the optoelectronic and spintronic devices.

  18. Gadolinium nanoparticle based switchable mirrors: quenching of hydrogenation-dehydrogenation hysteresis.

    PubMed

    Aruna, I; Mehta, B R; Malhotra, L K

    2007-06-01

    A continuous and reversible 'structural, optical, and electronic' transition between the reflecting metallic dihydride and transparent semiconducting trihydride states observed in rare earth metals on hydrogenation make these materials and their hydrides suitable for switchable mirror, sensing, and other technological applications. Recently Pd capped Gd nanoparticle based 'new generation' switchable mirrors have been fabricated with extended color neutrality, better optical contrast, and faster kinetics in comparison to the polycrystalline, epitaxial, alloy, and multilayer films. The present report aims at investigating the effect of nanoparticle nature on the hydrogenation-dehydrogenation hysteresis in switchable mirrors by carrying out in situ measurement of optical transmittance and electrode potentials during electrochemical hydrogen loading-deloading of Gd nanoparticle samples. Interestingly, Gd nanoparticle samples were observed to exhibit quenched hysteresis. The quenching of hysteresis in hydrogen-induced properties has been attributed to the absence of structural transition upon hydrogenation, reduction in topographical interlocking of the grains and elimination of lateral clamping of the slack nanoparticle layer to the substrate.

  19. Mechanics of responsive polymers via conformationally switchable molecules

    NASA Astrophysics Data System (ADS)

    Brighenti, Roberto; Artoni, Federico; Vernerey, Franck; Torelli, Martina; Pedrini, Alessandro; Domenichelli, Ilaria; Dalcanale, Enrico

    2018-04-01

    Active materials are those capable of giving some physical reaction under external stimuli coming from the environment such as temperature, pH, light, mechanical stress, etc. Reactive polymeric materials can be obtained through the introduction of switchable molecules in their network, i.e. molecules having two distinct stable conformations: if properly linked to the hosting polymer chains, the switching from one state to the other can promote a mechanical reaction of the material, detectable at the macroscale, and thus enables us to tune the response according to a desired functionality. In the present paper, the main aspects of the mechanical behavior of polymeric materials with embedded switchable molecules-properly linked to the polymer's chains-are presented and discussed. Starting from the micro mechanisms occurring in such active material, a continuum model is developed, providing a straightforward implementation in computational approaches. Finally, some experimental outcomes related to a switchable molecules (known as quinoxaline cavitands) added to an elastomeric PDMS under chemical stimuli, are presented and quantitatively discussed through the use of the developed mechanical framework.

  20. Reversible non-volatile switch based on a TCNQ charge transfer complex

    NASA Technical Reports Server (NTRS)

    DiStefano, Salvador (Inventor); Moacanin, Jovan (Inventor); Nagasubramanian, Ganesan (Inventor)

    1993-01-01

    A solid-state synaptic memory matrix (10) having switchable weakly conductive connections at each node (24) whose resistances can be selectably increased or decreased over several orders of magnitude by control signals of opposite polarity, and which will remain stable after the signals are removed, comprises an insulated substrate (16), a set of electrical conductors (14) upon which is deposited a layer (18) of an organic conducting polymer, which changes from an insulator to a conductor upon the transfer of electrons, such as polymerized pyrrole doped with 7,7,8,8-tetracyanoquinodimethane (TCNQ), covered by a second set of conductors (20) laid at right angles to the first.

  1. Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches.

    PubMed

    Bal, Kristof M; Neyts, Erik C

    2018-03-28

    A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.

  2. 2D Spin Crossover Nanoparticles described by the Ising-like model solved in Local Mean-Field Approximation

    NASA Astrophysics Data System (ADS)

    Eddine Allal, Salah; Linares, Jorge; Boukheddaden, K.; Dahoo, Pierre Richard; de Zela, F.

    2017-12-01

    Some six-coordinate iron (II) coordination compounds exhibit thermal-, optical-, electrical-, magnetic- and pressure-induced switching between the diamagnetic low-spin (LS, S=0) and the paramagnetic high-spin (HS; S=2) states [1]. This may lead to potential application of these complexes in molecular devices such as temperature and pressure sensors [2]. An Ising-like model has been proposed to explain the occurrence of the thermal hysteresis behaviour [3,4] of this switchable solids. In this contribution, the local mean field approximation is applied to solve the Hamiltonian modelling interactions pertaining to 2D nanoparticles embedded in a magnetically-inactive matrix.

  3. Quantum fluctuations and the closing of the Coulomb gap in a correlated insulator.

    PubMed

    Roy, A S; Hoekstra, A F Th; Rosenbaum, T F; Griessen, R

    2002-12-30

    The "switchable mirror" yttrium hydride is one of the few strongly correlated systems with a continuous Mott-Hubbard metal-insulator transition. We systematically map out the low temperature electrical transport from deep in the insulator to the quantum critical point using persistent photoconductivity as a drive parameter. Both activated hopping over a Coulomb gap and power-law quantum fluctuations must be included to describe the data. Collapse of the data onto a universal curve within a dynamical scaling framework (with corrections) requires znu=6.0+/-0.5, where nu and z are the static and dynamical critical exponents, respectively.

  4. Electric power distribution and load transfer system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)

    1987-01-01

    A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.

  5. Electric power distribution and load transfer system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)

    1989-01-01

    A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.

  6. A hard oxide semiconductor with a direct and narrow bandgap and switchable p-n electrical conduction.

    PubMed

    Ovsyannikov, Sergey V; Karkin, Alexander E; Morozova, Natalia V; Shchennikov, Vladimir V; Bykova, Elena; Abakumov, Artem M; Tsirlin, Alexander A; Glazyrin, Konstantin V; Dubrovinsky, Leonid

    2014-12-23

    An oxide semiconductor (perovskite-type Mn2 O3 ) is reported which has a narrow and direct bandgap of 0.45 eV and a high Vickers hardness of 15 GPa. All the known materials with similar electronic band structures (e.g., InSb, PbTe, PbSe, PbS, and InAs) play crucial roles in the semiconductor industry. The perovskite-type Mn2 O3 described is much stronger than the above semiconductors and may find useful applications in different semiconductor devices, e.g., in IR detectors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Trapping of drops by wetting defects

    PubMed Central

    't Mannetje, Dieter; Ghosh, Somnath; Lagraauw, Rudy; Otten, Simon; Pit, Arjen; Berendsen, Christian; Zeegers, Jos; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics. PMID:24721935

  8. Giant switchable Rashba effect in oxide heterostructures

    DOE PAGES

    Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; ...

    2015-03-01

    One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, inducesmore » a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.« less

  9. Hybrid metamaterials for electrically triggered multifunctional control

    PubMed Central

    Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.

    2016-01-01

    Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems. PMID:27807342

  10. Electrically switchable organo–inorganic hybrid for a white-light laser source

    PubMed Central

    Huang, Jui-Chieh; Hsiao, Yu-Cheng; Lin, Yu-Ting; Lee, Chia-Rong; Lee, Wei

    2016-01-01

    We demonstrate a spectrally discrete white-light laser device based on a photonic bandgap hybrid, which is composed of a soft photonic crystal; i.e., a layer of dye-doped cholesteric liquid crystal (CLC), sandwiched between two imperfect but identical, inorganic multilayer photonic crystals. With a sole optical pump, a mono-, bi-, or tri-chromatic laser can be obtained and, through the soft photonic crystal regulated by an applied voltage, the hybrid possesses electrical tunability in laser wavelength. The three emitted spectral peaks originate from two bandedges of the CLC reflection band as well as one of the photonic defect modes in dual-mode lasing. Thanks to the optically bistable nature of CLC, such a white-light laser device can operate in quite an energy-saving fashion. This technique has potential to fulfill the present mainstream in the coherent white-light source. PMID:27324219

  11. Ferroelectric domain wall motion induced by polarized light

    PubMed Central

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  12. Choice-Based Segmentation as an Enrollment Management Tool

    ERIC Educational Resources Information Center

    Young, Mark R.

    2002-01-01

    This article presents an approach to enrollment management based on target marketing strategies developed from a choice-based segmentation methodology. Students are classified into "switchable" or "non-switchable" segments based on their probability of selecting specific majors. A modified multinomial logit choice model is used to identify…

  13. Use of a conformational switching aptamer for rapid and specific ex vivo identification of central nervous system lymphoma in a xenograft model.

    PubMed

    Georges, Joseph F; Liu, Xiaowei; Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A; Joy, Anna; Spetzler, Robert F; Feuerstein, Burt G; Preul, Mark C; Anderson, Trent; Yan, Hao; Nakaji, Peter

    2015-01-01

    Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

  14. Light-switchable systems for remotely controlled drug delivery.

    PubMed

    Shim, Gayong; Ko, Seungbeom; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Lee, Jaiwoo; Kwon, Taekhyun; Choi, Han-Gon; Kim, Young Bong; Oh, Yu-Kyoung

    2017-12-10

    Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Virtual screening on an α-helix to β-strand switchable region of the FGFR2 extracellular domain revealed positive and negative modulators.

    PubMed

    Diaz, Constantino; Corentin, Herbert; Thierry, Vermat; Chantal, Alcouffe; Tanguy, Bozec; David, Sibrac; Jean-Marc, Herbert; Pascual, Ferrara; Françoise, Bono; Edgardo, Ferran

    2014-11-01

    The secondary structure of some protein segments may vary between α-helix and β-strand. To predict these switchable segments, we have developed an algorithm, Switch-P, based solely on the protein sequence. This algorithm was used on the extracellular parts of FGF receptors. For FGFR2, it predicted that β4 and β5 strands of the third Ig-like domain were highly switchable. These two strands possess a high number of somatic mutations associated with cancer. Analysis of PDB structures of FGF receptors confirmed the switchability prediction for β5. We thus evaluated if compound-driven α-helix/β-strand switching of β5 could modulate FGFR2 signaling. We performed the virtual screening of a library containing 1.4 million of chemical compounds with two models of the third Ig-like domain of FGFR2 showing different secondary structures for β5, and we selected 32 compounds. Experimental testing using proliferation assays with FGF7-stimulated SNU-16 cells and a FGFR2-dependent Erk1/2 phosphorylation assay with FGFR2-transfected L6 cells, revealed activators and inhibitors of FGFR2. Our method for the identification of switchable proteinic regions, associated with our virtual screening approach, provides an opportunity to discover new generation of drugs with under-explored mechanism of action. © 2014 Wiley Periodicals, Inc.

  16. Electro-osmotic flow in coated nanocapillaries: a theoretical investigation.

    PubMed

    Marini Bettolo Marconi, Umberto; Monteferrante, Michele; Melchionna, Simone

    2014-12-14

    Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated with charged polymers. The theoretical treatment is based on a three-dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated with a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent to the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determines their dependence on the ionic concentration.

  17. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    DOEpatents

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  18. Biphasic Synergistic Gel Materials with Switchable Mechanics and Self-Healing Capacity.

    PubMed

    Zhao, Ziguang; Liu, Yuxia; Zhang, Kangjun; Zhuo, Shuyun; Fang, Ruochen; Zhang, Jianqi; Jiang, Lei; Liu, Mingjie

    2017-10-16

    A fabrication strategy for biphasic gels is reported, which incorporates high-internal-phase emulsions. Closely packed micro-inclusions within the elastic hydrogel matrix greatly improve the mechanical properties of the materials. The materials exhibit excellent switchable mechanics and shape-memory performance because of the switchable micro- inclusions that are incorporated into the hydrogel matrix. The produced materials demonstrated a self-healing capacity that originates from the noncovalent effect of the biphasic heteronetwork. The aforementioned characteristics suggest that the biphasic gels may serve as ideal composite gel materials with validity in a variety of applications, such as soft actuators, flexible devices, and biological materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Application of semiempirical electronic structure theory to compute the force generated by a single surface-mounted switchable rotaxane.

    PubMed

    Sohlberg, Karl; Bazargan, Gloria; Angelo, Joseph P; Lee, Choongkeun

    2017-01-01

    Herein we report a study of the switchable [3]rotaxane reported by Huang et al. (Appl Phys Lett 85(22):5391-5393, 1) that can be mounted to a surface to form a nanomechanical, linear, molecular motor. We demonstrate the application of semiempirical electronic structure theory to predict the average and instantaneous force generated by redox-induced ring shuttling. Detailed analysis of the geometric and electronic structure of the system reveals technical considerations essential to success of the approach. The force is found to be in the 100-200 pN range, consistent with published experimental estimates. Graphical Abstract A single surface-mounted switchable rotaxane.

  20. Enhanced optical discrimination system based on switchable retroreflective films

    NASA Astrophysics Data System (ADS)

    Schultz, Phillip; Heikenfeld, Jason

    2016-04-01

    Reported herein is the design, characterization, and demonstration of a laser interrogation and response optical discrimination system based on large-area corner-cube retroreflective films. The switchable retroreflective films use light-scattering liquid crystal to modulate retroreflected intensity. The system can operate with multiple wavelengths (visible to infrared) and includes variable divergence optics for irradiance adjustments and ease of system alignment. The electronic receiver and switchable retroreflector offer low-power operation (<4 mW standby) on coin cell batteries with rapid interrogation to retroreflected signal reception response times (<15 ms). The entire switchable retroreflector film is <1 mm thick and is flexible for optimal placement and increased angular response. The system was demonstrated in high ambient lighting conditions (daylight, 18k lux) with a visible 10-mW output 635-nm source out to a distance of 400 m (naked eye detection). Nighttime demonstrations were performed using a 1.5-mW, 850-nm infrared laser diode out to a distance of 400 m using a night vision camera. This system could have tagging and conspicuity applications in commercial or military settings.

  1. Phase-field modeling of switchable diode-like current-voltage characteristics in ferroelectric BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y., E-mail: yxc238@psu.edu; Randall, C. A.; Chen, L. Q.

    2014-05-05

    A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO{sub 3}/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO{sub 3} containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from −1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount tomore » 10{sup 2}. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.« less

  2. The effect of switchable water additives on clay settling.

    PubMed

    Chen, Chien-Shun; Lau, Ying Yin; Mercer, Sean M; Robert, Tobias; Horton, J Hugh; Jessop, Philip G

    2013-01-01

    The recycling of process water from strip mining extractions is a very relevant task both industrially and environmentally. The sedimentation of fine tailings during such processes, however, can often require long periods of time and/or the addition of flocculants which make later water recycling difficult. We propose the use of switchable water additives as reversible flocculants for clay/water suspensions. Switchable water additives are compounds such as diamines that make it possible to reversibly control the ionic strength of an aqueous solution. Addition of CO(2) to such an aqueous solution causes the ionic strength to rise dramatically, and the change is reversed upon removal of the CO(2). These additives, while in the presence of CO(2), promote the aggregation of clay tailings, reduce settling times, and greatly increase the clarity of the liberated water. The removal of CO(2) from the liberated water regenerates a low ionic strength solution that does not promote clay aggregation and settling until CO(2) is added again. Such reversible behavior would be useful in applications such as oil sands separations in which the recycled water must not promote aggregation. When added to kaolinite and montmorillonite clay suspensions, switchable water provided process waters of lower turbidity than those additives from inorganic salts or by CO(2)-treatment alone. When recollected, the switchable water supernatant was shown to be recyclable over three cycles for enhanced settling of kaolinite. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Liquid crystal devices based on photoalignment and photopatterning materials

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir

    2014-02-01

    Liquid crystal (LC) display and photonics devices based on photo-alignment and photo-patterning LC cells are developed. A fast switchable grating based on ferroelectric liquid crystals and orthogonal planar alignment by means of photo alignments. Both 1D and 2D gratings have been constructed. The proposed diffracting element provides fast response time of around 20 μs, contrast of 7000:1 and high diffraction efficiency, at the electric field of 6V/μm. A switchable LC Fresnel zone lens was also developed with the efficiency of ~42% that can be further improved, and the switching time for the 3 μm thick cell is ~6.7 ms which is relatively fast in comparison of existing devices. Thus, because of the photoalignment technology the fabrication of Fresnel lens became considerably simpler than others. A thin high spatial resolution, photo-patterned micropolarizer array for complementary metal-oxide-semiconductor (CMOS) image sensors was implemented for the complete optical visualization of so called "invisible" objects, which are completely transparent (reflective) and colorless. Four Stokes parameters, which fully characterized the reflected light beam can be simultaneously detected using the array of photo-patterned polarizers on CMOS sensor plate. The cheap, high resolution photo-patterned LC matrix sensor was developed to be able successfully compete with the expensive and low reliable wire grid polarizer patterned arrays currently used for the purpose.

  4. Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection

    NASA Astrophysics Data System (ADS)

    Kilaru, M. K.; Cumby, B.; Heikenfeld, J.

    2009-01-01

    Corner cube and spherical retroreflectors are ubiquitous in conspicuity and range-finding applications since they reflect light back to the illumination source with unmatched efficiency. We report here a switchable electrowetting retroreflector platform that provides multiple novel features, including (a) using <0.5 μJ/cm2 electrical energy to switch from a light scattering state, (b) low loss and wide spectrum as limited only by the absorption spectrum of water, (c) use of ultrasimple self-assembly of 103-105 liquid lenslets/in.2 on a polymer/Al corner-cube substrate, and (d) change in retroreflected irradiance of >10:1 over a ±30° field of view.

  5. Glucose Suppresses Biological Ferroelectricity in Aortic Elastin

    PubMed Central

    Liu, Yuanming; Wang, Yunjie; Chow, Ming-Jay; Chen, Nataly Q.; Ma, Feiyue; Zhang, Yanhang; Li, Jiangyu

    2013-01-01

    Elastin is an intriguing extracellular matrix protein present in all connective tissues of vertebrates, rendering essential elasticity to connective tissues subjected to repeated physiological stresses. Using piezoresponse force microscopy, we show that the polarity of aortic elastin is switchable by an electrical field, which may be associated with the recently discovered biological ferroelectricity in the aorta. More interestingly, it is discovered that the switching in aortic elastin is largely suppressed by glucose treatment, which appears to freeze the internal asymmetric polar structures of elastin, making it much harder to switch, or suppressing the switching completely. Such loss of ferroelectricity could have important physiological and pathological implications from aging to arteriosclerosis that are closely related to glycation of elastin. PMID:23679639

  6. Resistive Switching Memory Phenomena in PEDOT PSS: Coexistence of Switchable Diode Effect and Write Once Read Many Memory

    PubMed Central

    Nguyen, Viet Cuong; Lee, Pooi See

    2016-01-01

    We study resistive switching memory phenomena in conducting polymer PEDOT PSS. In the same film, there are two types of memory behavior coexisting; namely, the switchable diode effect and write once read many memory. This is the first report on switchable diode phenomenon based on conducting organic materials. The effect was explained as charge trapping of PEDOT PSS film and movement of proton. The same PEDOT PSS device also exhibits write once read many memory (WORM) phenomenon which arises due to redox reaction that reduces PEDOT PSS and renders it non-conducting. The revelation of these two types of memory phenomena in PEDOT PSS highlights the remarkable versatility of this conducting conjugated polymer. PMID:26806868

  7. Enhanced spectral efficiency using bandwidth switchable SAW filtering for mobile satellite communications systems

    NASA Technical Reports Server (NTRS)

    Peach, Robert; Malarky, Alastair

    1990-01-01

    Currently proposed mobile satellite communications systems require a high degree of flexibility in assignment of spectral capacity to different geographic locations. Conventionally this results in poor spectral efficiency which may be overcome by the use of bandwidth switchable filtering. Surface acoustic wave (SAW) technology makes it possible to provide banks of filters whose responses may be contiguously combined to form variable bandwidth filters with constant amplitude and phase responses across the entire band. The high selectivity possible with SAW filters, combined with the variable bandwidth capability, makes it possible to achieve spectral efficiencies over the allocated bandwidths of greater than 90 percent, while retaining full system flexibility. Bandwidth switchable SAW filtering (BSSF) achieves these gains with a negligible increase in hardware complexity.

  8. Switchable dual-wavelength fiber laser based on PCF Sagnac loop and broadband FBG

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Feng, Suchun; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-11-01

    Switchable dual-wavelength fiber laser with photonic crystal fiber (PCF) Sagnac loop and broadband fiber Bragg grating (BFBG) at room temperature is demonstrated. By adjusting the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength lasing operations by exploiting polarization hole burning (PHB) and spectral hole burning effects (SHB).

  9. Switchable Shape Memory Alloys (SMA) Thermal Materials Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Williams, Martha; Fesmire, James

    2014-01-01

    Develop 2-way switchable thermal systems for use in systems that function in cold to hot temperature ranges using different alloy designs for SMA system concepts. In this project, KSC will specifically address designs of two proof of concept SMA systems with transition temperatures in the 65-95 C range and investigate cycle fatigue and "memory loss" due to thermal cycling.

  10. Improved performance of Mg-Y alloy thin film switchable mirrors after coating with a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    La, Mao; Zhou, Huaijuan; Li, Ning; Xin, Yunchuan; Sha, Ren; Bao, Shanhu; Jin, Ping

    2017-05-01

    The magnesium based switchable mirrors can reversibly change their optical properties between the transparent and the reflective state as a result of hydrogenation and dehydrogenation. These films can potentially be applied as new energy-saving windows, by controlling the transmittance of solar radiation through the regulation of their reflective state. In this study, magnesium-yttrium (Mg-Y) alloy thin films were prepared using a DC magnetron sputtering method. However, the luminous transmittance in the transparent state and the switching durability of switchable mirrors are too poor to satisfy practical demands. In order to improve the films switching durability, luminous transmittance and the surface functionalization, polytetrafluoroethylene (PTFE) was coated with thermal vacuum deposition for use as the top layer of Mg-Y/Pd switchable mirrors. The PTFE layer had a porous network structure and exhibited a superhydrophobic surface with a water contact angle of approximately 152°. By characterization, PTFE thin films shows the excellent protection role against the oxidization of Mg, the switching durability of the films were improved 3 times, and also shows the antireflection role the luminous transmission of films was enhanced by 7% through the top covered with PTFE.

  11. Switchable polarity solvent for liquid phase microextraction of Cd(II) as pyrrolidinedithiocarbamate chelates from environmental samples.

    PubMed

    Yilmaz, Erkan; Soylak, Mustafa

    2015-07-30

    A switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO2 (Dry ice) via proton transfer reaction has been used for the microextraction of cadmium(II) as pyrrolidinedithiocarbamate (APDC) chelate. Cd(II)-APDC chelate was extracted into the switchable polarity solvent drops by adding 2 mL 10 M sodium hydroxide solution. Analytical parameters affecting the complex formation and microextraction efficiency such as pH, amount of ligand, volume of switchable polarity solvent and NaOH, sample volume were optimized. The effects of foreign ions were found tolerably. Under optimum conditions, the detection limit was 0.16 μg L(-1) (3Sb/m, n = 7) and the relative standard deviation was 5.4% (n = 7). The method was validated by the analysis of certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SPS-WW2 waste water, 1573a Tomato Leaves and Oriental Basma Tobacco Leaves (INCT-OBTL-5)) and addition/recovery tests. The method was successfully applied to determination of cadmium contents of water, vegetable, fruit and cigarette samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation.

    PubMed

    Ling, Yonghong; Huang, Lirong; Hong, Wei; Liu, Tongjun; Jing, Luan; Liu, Wenbin; Wang, Ziyong

    2017-11-27

    Realizing versatile functionalities in a single photonic device is crucial for photonic integration. We here propose a polarization-switchable and wavelength-controllable multi-functional metasurface. By changing the polarization state of incident light, its functionality can be switched between the flat focusing lens and exciting surface-plasmon-polariton (SPP) wave. Interestingly, by tuning the wavelength of incident light, the generated SPP waves can also be controlled at desired interfaces, traveling along the upper or lower interface of the metasurface, or along both of them, depending on whether the incident light satisfies the first or second Kerker condition. This polarization-switchable and wavelength-controllable multifunctional metasurface may provide flexibility in designing tunable or multifunctional metasurfaces and may find potential applications in highly integrated photonic systems.

  13. ``Smart'' Surfaces of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Meng, Dong

    2009-03-01

    ``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.

  14. Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In2Se3.

    PubMed

    Cui, Chaojie; Hu, Wei-Jin; Yan, Xingxu; Addiego, Christopher; Gao, Wenpei; Wang, Yao; Wang, Zhe; Li, Linze; Cheng, Yingchun; Li, Peng; Zhang, Xixiang; Alshareef, Husam N; Wu, Tom; Zhu, Wenguang; Pan, Xiaoqing; Li, Lain-Jong

    2018-02-14

    Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-In 2 Se 3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In 2 Se 3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric In 2 Se 3 , a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

  15. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Geoff; Yabuki, Tomohide; Monachon, Christian; Wu, Junqiao; Dames, Chris

    2017-12-01

    Interest in new thermal diodes, regulators, and switches has been rapidly growing because these components have the potential for rich transport phenomena that cannot be achieved using traditional thermal resistors and capacitors. Each of these thermal components has a signature functionality: Thermal diodes can rectify heat currents, thermal regulators can maintain a desired temperature, and thermal switches can actively control the heat transfer. Here, we review the fundamental physical mechanisms of switchable and nonlinear heat transfer which have been harnessed to make thermal diodes, switches, and regulators. The review focuses on experimental demonstrations, mainly near room temperature, and spans the fields of heat conduction, convection, and radiation. We emphasize the changes in thermal properties across phase transitions and thermal switching using electric and magnetic fields. After surveying fundamental mechanisms, we present various nonlinear and active thermal circuits that are based on analogies with well-known electrical circuits, and analyze potential applications in solid-state refrigeration and waste heat scavenging.

  16. Magnetically-induced electric polarization in an organo-metallic magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapf, W S; Fabris, F W; Balakirev, F F

    2009-01-01

    The coupling between magnetic order and ferroelectricity has been under intense investigation in a wide range of transition metal oxides. The strongest coupling is obtained in so-called magnetically induced multiferroics where ferroelectricity arises directly from magnetic order that breaks inversion symmetry. However, it has been difficult to find non-oxide based materials in which these effects occur. Here we present a study of copper dimethyl sulfoxide dichloride (CDC), an organometallic quantum magnet containing S =1/1 Cu spins, in which a switchable electric polarization arises from field-tuned magnetic order. Fast magnetic field pulses allow us to perform sensitive measurements of the electricmore » polarization and demonstrate that the electric state is present only if the magnetic order is non-collinear. Furthermore, we show that the electric polarization can be switched in a stunning hysteretic fashion. Because the magnetic order in CDC is mediated by large organic molecules, our study shows that magnetoelectric interactions can exist in this important class of materials, opening the road to designing magnetoelectrics and multiferroics using large molecules as building blocks. Further, we demonstrate that CDC undergoes a magnetoelectric quantum phase transition -the first of its kind, where both ferroelectric and magnetic order emerge simultaneously as a function of magnetic field at very low temperatures.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Hiroki; Kitanaka, Yuuki; Inoue, Ryotaro

    We investigate the mechanism of a switchable diode behavior observed in ferroelectric SrRuO{sub 3}/BiFeO{sub 3} (BFO)/SrRuO{sub 3} capacitors. We experimentally demonstrate that the switchable diode effect observed in the capacitors is induced by the polarization reversal in the BFO film. The conductivity in an Ohmic region in different oxidation states provides direct evidence that electron hole acts as the majority carrier, delivering p-type conduction. Density functional theory (DFT) calculations show that the p-type conduction arises from an unoccupied gap state of Fe{sup 4+} in an FeO{sub 5} pyramid which is derived from Bi vacancy. Our experimental and DFT study leadsmore » to the conclusion that the switchable diode effect originates from an asymmetric band bending in the top and bottom depletion layers modulated by ferroelectric polarization and oxygen vacancies.« less

  18. Optical analysis of time-averaged multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens.

    PubMed

    McLeod, Euan; Arnold, Craig B

    2008-07-10

    Current methods for generating Bessel beams are limited to fixed beam sizes or, in the case of conventional adaptive optics, relatively long switching times between beam shapes. We analyze the multiscale Bessel beams created using an alternative rapidly switchable device: a tunable acoustic gradient index (TAG) lens. The shape of the beams and their nondiffracting, self-healing characteristics are studied experimentally and explained theoretically using both geometric and Fourier optics. By adjusting the electrical driving signal, we can tune the ring spacings, the size of the central spot, and the working distance of the lens. The results presented here will enable researchers to employ dynamic Bessel beams generated by TAG lenses.

  19. Field-Free Programmable Spin Logics via Chirality-Reversible Spin-Orbit Torque Switching.

    PubMed

    Wang, Xiao; Wan, Caihua; Kong, Wenjie; Zhang, Xuan; Xing, Yaowen; Fang, Chi; Tao, Bingshan; Yang, Wenlong; Huang, Li; Wu, Hao; Irfan, Muhammad; Han, Xiufeng

    2018-06-21

    Spin-orbit torque (SOT)-induced magnetization switching exhibits chirality (clockwise or counterclockwise), which offers the prospect of programmable spin-logic devices integrating nonvolatile spintronic memory cells with logic functions. Chirality is usually fixed by an applied or effective magnetic field in reported studies. Herein, utilizing an in-plane magnetic layer that is also switchable by SOT, the chirality of a perpendicular magnetic layer that is exchange-coupled with the in-plane layer can be reversed in a purely electrical way. In a single Hall bar device designed from this multilayer structure, three logic gates including AND, NAND, and NOT are reconfigured, which opens a gateway toward practical programmable spin-logic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phase-change memory function of correlated electrons in organic conductors

    NASA Astrophysics Data System (ADS)

    Oike, H.; Kagawa, F.; Ogawa, N.; Ueda, A.; Mori, H.; Kawasaki, M.; Tokura, Y.

    2015-01-01

    Phase-change memory (PCM), a promising candidate for next-generation nonvolatile memories, exploits quenched glassy and thermodynamically stable crystalline states as reversibly switchable state variables. We demonstrate PCM functions emerging from a charge-configuration degree of freedom in strongly correlated electron systems. Nonvolatile reversible switching between a high-resistivity charge-crystalline (or charge-ordered) state and a low-resistivity quenched state, charge glass, is achieved experimentally via heat pulses supplied by optical or electrical means in organic conductors θ -(BEDT-TTF)2X . Switching that is one order of magnitude faster is observed in another isostructural material that requires faster cooling to kinetically avoid charge crystallization, indicating that the material's critical cooling rate can be useful guidelines for pursuing a faster correlated-electron PCM function.

  1. Performance of NCAP projection displays

    NASA Astrophysics Data System (ADS)

    Jones, Philip J.; Tomita, Akira; Wartenberg, Mark

    1991-08-01

    Prototypes of projection displays based on dispersions of liquid crystal in polymer matrices are beginning to appear. The principle of operation depends on electrically switchable light scattering. They are potentially much brighter than current cathode ray tube (CRT) or twisted nematic liquid crystal (TN LC) cell based displays. Comparisons of efficacy and efficiency show this. The contrast and brightness of such displays depend on a combination of the f- number of the projection system and the scattering characteristics of the light valve. Simplified equations can be derived to show these effects. The degree of scattering of current NCAP formulations is sufficient to produce good contrast projection displays, at convenient voltages, that are around three times brighter than TN LC projectors because of the lack of polarizers in the former.

  2. A switchable polymer layer: Chain folding in end-charged polymer brushes

    NASA Astrophysics Data System (ADS)

    Heine, David; Wu, David T.

    2001-03-01

    We use a self-consistent field approximation to model the configurations of end-charged homopolymer and block copolymer brushes in response to an external electric field due to charges on the grafting surface. By varying the charge density on the grafting surface, we can cause the chains either to extend outward, greatly increasing the brush height, or to loop back to the grafting surface. We show that such a copolymer brush can present one block at the exposed surface in the extended state and present the other block in the retracted state. This occurs for both a solvated brush and a dry brush. We also compare these results to those of a modified Alexander-de Gennes model for the end-charged homopolymer brush.

  3. Alternative and Efficient Extraction Methods for Marine-Derived Compounds

    PubMed Central

    Grosso, Clara; Valentão, Patrícia; Ferreres, Federico; Andrade, Paula B.

    2015-01-01

    Marine ecosystems cover more than 70% of the globe’s surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extraction techniques, such as supercritical fluid extraction, pressurized solvent extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed electric field-assisted extraction, enzyme-assisted extraction, and extraction with switchable solvents and ionic liquids, applied in the search for marine compounds. Only studies published in the 21st century are considered. PMID:26006714

  4. Inducing and manipulating magnetization in 2D zinc–oxide by strain and external voltage

    NASA Astrophysics Data System (ADS)

    Taivansaikhan, P.; Tsevelmaa, T.; Rhim, S. H.; Hong, S. C.; Odkhuu, D.

    2018-04-01

    Two-dimensional (2D) structures that exhibit intriguing magnetic phenomena such as perpendicular magnetic anisotropy and its switchable feature are of great interests in spintronics research. Herein, the density functional theory studies reveal the critical impacts of strain and external gating on vacancy-induced magnetism and its spin direction in a graphene-like single layer of zinc oxide (ZnO). In contrast to the pristine and defective ZnO with an O-vacancy, the presence of a Zn-vacancy induces significant magnetic moments to its first neighboring O and Zn atoms due to the charge deficit. We further predict that the direction of magnetization easy axis reverses from an in-plane to perpendicular orientation under a practically achievable biaxial compressive strain of only ~1–2% or applying an electric field by means of the charge density modulation. This magnetization reversal is mainly driven by the strain- and electric-field-induced changes in the spin–orbit coupled d states of the first-neighbor Zn atom to a Zn-vacancy. These findings open interesting prospects for exploiting strain and electric field engineering to manipulate magnetism and magnetization orientation of 2D materials.

  5. An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications

    DOE PAGES

    Nguyen, Ngoc A.; Meek, Kelly M.; Bowland, Christopher C.; ...

    2017-12-28

    We report an approach for programming electrical conductivity of a bio-based leathery skin devised with a layer of 60 nm metallic nanoparticles. Lignin-based renewable shape-memory materials were made, for the first time, to program and restore the materials’ electrical conductivity after repeated deformation up to 100% strain amplitude, at a temperature 60–115 °C above the glass transition temperature (T g) of the rubbery matrix. We cross-linked lignin macromolecules with an acrylonitrile–butadiene rubbery melt in high quantities ranging from 40 to 60 wt % and processed the resulting thermoplastics into thin films. Chemical and physical networks within the polymeric materials significantlymore » enhanced key characteristics such as mechanical stiffness, strain fixity, and temperature-stimulated recovery of shape. The branched structures of the guaiacylpropane-dominant softwood lignin significantly improve the rubber’s T g and produced a film with stored and recoverable elastic work density that was an order of magnitude greater than those of the neat rubber and of samples made with syringylpropane-rich hardwood lignin. The devices could exhibit switching of conductivity before and after shape recovery.« less

  6. Electrically tunable superconducting terahertz metamaterial with low insertion loss and high switchable ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chun; Zhang, Caihong, E-mail: chzhang@nju.edu.cn; Hu, Guoliang

    2016-07-11

    With the emergence and development of artificially structured electromagnetic materials, active terahertz (THz) metamaterial devices have attracted significant attention in recent years. Tunability of transmission is desirable for many applications. For example, short-range wireless THz communications and ultrafast THz interconnects require switches and modulators. However, the tunable range of transmission amplitude of existing THz metamaterial devices is not satisfactory. In this article, we experimentally demonstrate an electrically tunable superconducting niobium nitride metamaterial device and employ a hybrid coupling model to analyze its optical transmission characteristics. The maximum transmission coefficient at 0.507 THz is 0.98 and decreases to 0.19 when themore » applied voltage increases to 0.9 V. A relative transmittance change of 80.6% is observed, making this device an efficient narrowband THz switch. Additionally, the frequency of the peak is red shifted from 0.507 to 0.425 THz, which means that the device can be used to select the frequency. This study offers an alternative tuning method to existing optical, thermal, magnetic-field, and electric-field tuning, delivering a promising approach for designing active and miniaturized THz devices.« less

  7. An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ngoc A.; Meek, Kelly M.; Bowland, Christopher C.

    We report an approach for programming electrical conductivity of a bio-based leathery skin devised with a layer of 60 nm metallic nanoparticles. Lignin-based renewable shape-memory materials were made, for the first time, to program and restore the materials’ electrical conductivity after repeated deformation up to 100% strain amplitude, at a temperature 60–115 °C above the glass transition temperature (T g) of the rubbery matrix. We cross-linked lignin macromolecules with an acrylonitrile–butadiene rubbery melt in high quantities ranging from 40 to 60 wt % and processed the resulting thermoplastics into thin films. Chemical and physical networks within the polymeric materials significantlymore » enhanced key characteristics such as mechanical stiffness, strain fixity, and temperature-stimulated recovery of shape. The branched structures of the guaiacylpropane-dominant softwood lignin significantly improve the rubber’s T g and produced a film with stored and recoverable elastic work density that was an order of magnitude greater than those of the neat rubber and of samples made with syringylpropane-rich hardwood lignin. The devices could exhibit switching of conductivity before and after shape recovery.« less

  8. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    PubMed

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  9. Direct Imaging of Charge Density Modulation in Switchable Two-Dimensional Electron Gas at the Oxide Hetero-Interfaces by Using Electron Bean Inline Holography

    DTIC Science & Technology

    2015-08-16

    Switchable Two-Dimensional Electron Gas at the Oxide Hetero-Interfaces by Using Electron Bean Inline Holography 5a. CONTRACT NUMBER FA2386-13-1-4136...Hetero-Interfaces by Using Electron Bean Inline Holography 5a. CONTRACT NUMBER FA2386-13-1-4136 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F

  10. Robust Quantum Computing using Molecules with Switchable Dipole

    DTIC Science & Technology

    2010-06-15

    REPORT Robust quantum computing using molecules with switchable dipole 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Of the many systems studied to...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Ultracold polar molecules, quantum computing , phase gates...From - To) 30-Aug-2006 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Aug-2009 Robust quantum computing using molecules with

  11. Switchable antifouling coatings and uses thereof

    DOEpatents

    Denton, Michele L. Baca; Dirk, Shawn M.; Johnson, Ross Stefan

    2017-02-28

    The present invention relates to antifouling coatings capable of being switched by using heat or ultraviolet light. Prior to switching, the coating includes an onium cation component having antimicrobial and antibacterial properties. Upon switching, the coating is converted to a conjugated polymer state, and the cationic component is released with any adsorbed biofilm layer. Thus, the coatings herein have switchable and releasable properties. Methods of making and using such coatings are also described.

  12. Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples.

    PubMed

    Zhu, Wenting; Peng, Hailong; Luo, Mei; Yu, Ningxiang; Xiong, Hua; Wang, Ronghui; Li, Yanbin

    2018-09-30

    Zipper-like on/off-switchable and magnetic molecularly imprinted microspheres (SM-MIMs) were constructed using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers for 17β-estradiol (17β-E 2 ) recognition and extraction. The imprinted polymer interactions between poly(AAm) (PAAm) and poly(AMPS) (PAMPS) with on/off-switchable property to temperature, exhibited dissociation at relatively higher temperatures (such as 30 °C) and helped 17β-E 2 enter into imprinted sites, leading to higher binding capability. Conversely, the interpolymer complexes between PAAm and PAMPS formed and blocked 17β-E 2 access to imprinted sites at lower temperature (such as 20 °C). SM-MIMs were used as dispersive solid phase extraction (SPE) adsorbent with HPLC for 17β-E 2 pretreatment and detection in food samples, and low limit detection (2.52 µg L -1 ) and quantification (10.76 µg L -1 ) with higher recovery were obtained. Therefore, SM-MIMs may be a promising adsorbent for 17β-E 2 pretreatment in food samples owing to its advantages of on/off-switchable recognition, eco-friendly elution, and efficient separation. Copyright © 2018. Published by Elsevier Ltd.

  13. Optically switchable photonic metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, R. F.; MacDonald, K. F.; Hobson, P. A.

    2015-08-24

    We experimentally demonstrate an optically switchable gallium-based metasurface, in which a reversible light-induced transition between solid and liquid phases occurring in a confined nanoscale surface layer of the metal drives significant changes in reflectivity and absorption. The metasurface architecture resonantly enhances the metal's “active plasmonic” phase-change nonlinearity by an order of magnitude, offering high contrast all-optical switching in the near-infrared range at low, μW μm{sup −2}, excitation intensities.

  14. Smart Mirrors for Photorefractive Control of Light with Tim Bunning, RX - Agile Filters Application

    DTIC Science & Technology

    2016-11-08

    AFRL-AFOSR-UK-TR-2017-0008 Smart Mirrors for photorefractive control of light with Tim Bunning, RX-- Agile filters application Luciano De Sio...photorefractive control of light with Tim Bunning, RX-- Agile filters application 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0050 5c.  PROGRAM...photorefractive, switchable optical filters , liquide crystalline composite materials, Switchable reflective holographic gratings, polymer-dispersed liquid

  15. Switchable radioactive neutron source device

    DOEpatents

    Boyar, Robert E.; DeVolpi, Alexander; Stanford, George S.; Rhodes, Edgar A.

    1989-01-01

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.

  16. Novel Material Systems and Methodologies for Transient Thermal Management

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of multifunctional and thermally switchable systems to address reduced mass and components, and tailored for both structural and transient thermal applications. Active, passive, and novel combinations of the two functional approaches are being developed along two lines of research investigation: switchable systems and transient heat spreading. The approach is to build in thermal functionality to structural elements to lay the foundation for a revolution in the way high energy space systems are designed.

  17. Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ying; Srivastava, A. K., E-mail: abhishek-srivastava-lu@yahoo.co.in; Chigrinov, V. G.

    In this article, we reveal a theoretical and experimental illustration of the Ferroelectric liquid crystal (FLC) grating fabricated by mean of patterned alignment based on photo-alignment. The complexity related to the mismatching of the predefined alignment domains on the top and bottom substrate has been avoided by incorporating only one side photo aligned substrate while the other substrate does not have any alignment layer. Depending on the easy axis in the said alignment domains and the azimuth plane of the impinging polarized light, the diffracting element can be tuned in two modes i.e. DIFF/OFF switchable and DIFF/TRANS switchable modes, whichmore » can be applied to different applications. The diffraction profile has been illustrated theoretically that fits well with the experimental finding and thus the proposed diffraction elements with fast response time and high diffraction efficiency could find application in many modern devices.« less

  18. Liquid-crystal-based switchable polarizers for sensor protection.

    PubMed

    Wu, C S; Wu, S T

    1995-11-01

    Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately ±10°. In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.

  19. Switchable cucurbituril-bipyridine beacons.

    PubMed

    Sinha, Mantosh K; Reany, Ofer; Parvari, Galit; Karmakar, Ananta; Keinan, Ehud

    2010-08-09

    4-Aminobipyridine derivatives form strong inclusion complexes with cucurbit[6]uril, exhibiting remarkably large enhancements in fluorescence intensity and quantum yields. The remarkable complexation-induced pK(a) shift (DeltapK(a)=3.3) highlights the strong charge-dipole interaction upon binding. The reversible binding phenomenon can be used for the design of switchable beacons that can be incorporated into cascades of binding networks. This concept is demonstrated herein by three different applications: 1) a switchable fluorescent beacon for chemical sensing of transition metals and other ligands; 2) direct measurement of binding constants between cucurbit[6]uril and various nonfluorescent guest molecules; and 3) quantitative monitoring of biocatalytic reactions and determination of their kinetic parameters. The latter application is illustrated by the hydrolysis of an amide catalyzed by penicillin G acylase and by the elimination reaction of a beta-cabamoyloxy ketone catalyzed by aldolase antibody 38C2.

  20. Liquid-crystal-based switchable polarizers for sensor protection

    NASA Astrophysics Data System (ADS)

    Wu, Chiung-Sheng; Wu, Shin-Tson

    1995-11-01

    Linear polarizers are generally employed in conjunction with advanced liquid-crystal filters for the protection of human eyes and optical sensors. For detection sensitivity under a no-threat condition to be maximized, the polarizer should remain in a clear state with a minimum insertion loss. When threats are present, it should be quickly switched to function as a linear polarizer with a high extinction ratio. Two types of switchable polarizer for sensor protection are demonstrated. The polarization conversion type exhibits a high optical efficiency in its clear state, a high extinction ratio in the linear polarizer state, and a fast switching speed, except that its field of view is limited to approximately +/-10 deg In contrast, an improved switchable dichroic polarizer functions effectively over a much wider field of view. However, its extinction ratio and optical efficiency in its clear state are lower than those of the polarization conversion type.

  1. Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines

    NASA Astrophysics Data System (ADS)

    Elbaz, Johann; Cecconello, Alessandro; Fan, Zhiyuan; Govorov, Alexander O.; Willner, Itamar

    2013-06-01

    DNA nanotechnology is a rapidly developing research area in nanoscience. It includes the development of DNA machines, tailoring of DNA nanostructures, application of DNA nanostructures for computing, and more. Different DNA machines were reported in the past and DNA-guided assembly of nanoparticles represents an active research effort in DNA nanotechnology. Several DNA-dictated nanoparticle structures were reported, including a tetrahedron, a triangle or linear nanoengineered nanoparticle structures; however, the programmed, dynamic reversible switching of nanoparticle structures and, particularly, the dictated switchable functions emerging from the nanostructures, are missing elements in DNA nanotechnology. Here we introduce DNA catenane systems (interlocked DNA rings) as molecular DNA machines for the programmed, reversible and switchable arrangement of different-sized gold nanoparticles. We further demonstrate that the machine-powered gold nanoparticle structures reveal unique emerging switchable spectroscopic features, such as plasmonic coupling or surface-enhanced fluorescence.

  2. Photo-switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    DTIC Science & Technology

    2015-11-05

    AFRL-AFOSR-VA-TR-2015-0396 (HBCU) Photo-switchable Donor-Acceptor for Organic Photovoltaic Cells Luis Echegoyen UNIVERSITY OF TEXAS AT EL PASO Final...Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-12-1-0053 5c...demonstrated using impedance spectroscopy for several triphenylamine-fullerene dyads, but their performance in photovoltaic devices was not remarkable, likely

  3. Switchable radioactive neutron source device

    DOEpatents

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  4. Reversible conversion of valence-tautomeric copper metal-organic frameworks dependent single-crystal-to-single-crystal oxidation/reduction: a redox-switchable catalyst for C-H bonds activation reaction.

    PubMed

    Huang, Chao; Wu, Jie; Song, Chuanjun; Ding, Ran; Qiao, Yan; Hou, Hongwei; Chang, Junbiao; Fan, Yaoting

    2015-06-28

    Upon single-crystal-to-single-crystal (SCSC) oxidation/reduction, reversible structural transformations take place between the anionic porous zeolite-like Cu(I) framework and a topologically equivalent neutral Cu(I)Cu(II) mixed-valent framework. The unique conversion behavior of the Cu(I) framework endowed it as a redox-switchable catalyst for the direct arylation of heterocycle C-H bonds.

  5. Layer by layer assembled films between hemoglobin and multiwall carbon nanotubes for pH-switchable biosensing.

    PubMed

    Pan, Zhongqin; Liu, Xiaojun; Xie, Jing; Bao, Ning; He, Hong; Li, Xiaodong; Zeng, Jiang; Gu, Haiying

    2015-05-01

    Although pH-switchable behaviors have been reported based on multilayer films modified electrodes, their pH-switchable biosensing is still difficult due to the existence of the electroactive mediator. In this study, we report the pH-dependable determination of hydrogen peroxide (H2O2) based on a four-bilayer film fabricated through layer by layer assembly between hemoglobin (Hb) and multiwall carbon nanotubes (MWCNTs). We observed that response of electroactive probe Fe(CN)6(3-) at the multilayer films was very sensitive and reversible to pH values of phosphate buffer solutions phosphate buffer solution with cyclic voltammetry. The reduction peak height of Fe(CN)6(3-) at the multilayer film could reach ∼221μA at pH 3.0 while 0μA at pH 9.0. The linear range for the detection of H2O2 at pH 3.0 was from 12.5μM to 10.4mM, which was much wider than that at pH 9.0. Our results demonstrated that the detection of H2O2 with the proposed modified electrode is dependent on pH values of phosphate buffer solution. Moreover, the component of multilayer films has impacts on the performance of biosensors with pH-switchable behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    PubMed

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-08

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.

  7. Voltage-controlled ferromagnetism and magnetoresistance in LaCoO3/SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Hu, Chengqing; Park, Keun Woo; Posadas, Agham; Jordan-Sweet, Jean L.; Demkov, Alexander A.; Yu, Edward T.

    2013-11-01

    A LaCoO3/SrTiO3 heterostructure grown on Si (001) is shown to provide electrically switchable ferromagnetism, a large, electrically tunable magnetoresistance, and a vehicle for achieving and probing electrical control over ferromagnetic behavior at submicron dimensions. Fabrication of devices in a field-effect transistor geometry enables application of a gate bias voltage that modulates strain in the heterostructure via the converse piezoelectric effect in SrTiO3, leading to an artificial inverse magnetoelectric effect arising from the dependence of ferromagnetism in the LaCoO3 layer on strain. Below the Curie temperature of the LaCoO3 layer, this effect leads to modulation of resistance in LaCoO3 as large as 100%, and magnetoresistance as high as 80%, both of which arise from carrier scattering at ferromagnetic-nonmagnetic interfaces in LaCoO3. Finite-element numerical modeling of electric field distributions is used to explain the dependence of carrier transport behavior on gate contact geometry, and a Valet-Fert transport model enables determination of spin polarization in the LaCoO3 layer. Piezoresponse force microscopy is used to confirm the existence of piezoelectric response in SrTiO3 grown on Si (001). It is also shown that this structure offers the possibility of achieving exclusive-NOR logic functionality within a single device.

  8. Switchable and tunable film bulk acoustic resonator fabricated using barium strontium titanate active layer and Ta{sub 2}O{sub 5}/SiO{sub 2} acoustic reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sbrockey, N. M., E-mail: sbrockey@structuredmaterials.com; Tompa, G. S.; Kalkur, T. S.

    2016-08-01

    A solidly mounted acoustic resonator was fabricated using a Ba{sub 0.60}Sr{sub 0.40}TiO{sub 3} (BST) film deposited by metal organic chemical vapor deposition. The device was acoustically isolated from the substrate using a Bragg reflector consisting of three pairs of Ta{sub 2}O{sub 5}/SiO{sub 2} layers deposited by chemical solution deposition. Transmission electron microscopy verified that the Bragg reflector was not affected by the high temperatures and oxidizing conditions necessary to process high quality BST films. Electrical characterization of the resonator demonstrated a quality factor (Q) of 320 and an electromechanical coupling coefficient (K{sub t}{sup 2}) of 7.0% at 11 V.

  9. Ferroelectric thin film acoustic devices with electrical multiband switching ability.

    PubMed

    Ptashnik, Sergey V; Mikhailov, Anatoliy K; Yastrebov, Alexander V; Petrov, Peter K; Liu, Wei; Alford, Neil McN; Hirsch, Soeren; Kozyrev, Andrey B

    2017-11-10

    Design principles of a new class of microwave thin film bulk acoustic resonators with multiband resonance frequency switching ability are presented. The theory of the excitation of acoustic eigenmodes in multilayer ferroelectric structures is considered, and the principle of selectivity for resonator with an arbitrary number of ferroelectric layers is formulated. A so called "criterion function" is suggested that allows to determine the conditions for effective excitation at one selected resonance mode with suppression of other modes. The proposed theoretical approach is verifiedusing thepreexisting experimental data published elsewhere. Finally, the possible application of the two ferroelectric layers structures for switchable microwave overtone resonators, binary and quadrature phase-shift keying modulators are discussed. These devices could play a pivotal role in the miniaturization of microwave front-end antenna circuits.

  10. New Materials for Smart Structures: a US: Japan Global Initiative

    DTIC Science & Technology

    2004-03-01

    realization of the MPB in the Gallate:Scandate system and in the modified bismuth lanthanum ferrate lead titanate systems. A major puzzle in BiFeO3 which has...magnetization. A new major clue as to the origin of the high switchable polarization is provided by our most recent work on the modified bismuth lanthanum ...ferrate: gallate solid solutions with MPBs. In suitable composition switchability is only possible with limited electrode in a larger disk, and the fully

  11. Simulation and Micro-Fabrication of Optically Switchable Split Ring Resonators

    DTIC Science & Technology

    2007-01-01

    Simulation and micro-fabrication of optically switchable split ring resonators T.F. Gundogdu a,*, Mutlu Gökkavas b, Kaan Güven b, M. Kafesaki a...mail address: tamara@iesl.forth.gr (T.F. Gundogdu ). 1569-4410/$ – see front matter # 2007 Published by Elsevier B.V. doi:10.1016/j.photonics...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 T.F. Gundogdu et al. / Photonics and

  12. A symmetry breaking phase transition-triggered high-temperature solid-state quadratic nonlinear optical switch coupled with a switchable dielectric constant in an organic-inorganic hybrid compound.

    PubMed

    Mei, Guang-Quan; Zhang, Han-Yue; Liao, Wei-Qiang

    2016-09-25

    An organic-inorganic hybrid compound, [NH3(CH2)5NH3]SbCl5, exhibits a switchable second harmonic generation (SHG) effect between SHG-OFF and SHG-ON states and tunable dielectric behaviors between high and low dielectric states, connected with the changes in the dynamics of 1,5-pentanediammonium cations during its centrosymmetric-to-noncentrosymmetric symmetry breaking phase transition at 365.4 K.

  13. Polyelectrolyte brushes on dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Antila, Hanne; Luijten, Erik

    When chains of charged polymers are grafted to a solid surface, a polyelectrolyte (PE) brush results. These types of PE assemblies have a wide range of applications ranging from fuel cells and switchable electrodes to drug delivery. Many of these applications stem from the ability of PE brushes to respond to external stimuli: the brush properties can be tuned, for example, by varying electric field, PE grafting density, pH, salt concentration or salt valency. Accordingly, deciphering the brush behavior under different conditions has been a subject of considerable experimental, theoretical, and computational research efforts. However, the effect of the dielectric properties of the substrate on the PE brush has received much less attention. We use coarse-grained molecular dynamics simulations to show how varying the dielectric mismatch between the solvent and the substrate can significantly affect the brush. We demonstrate how tuning this mismatch can either diminish or enhance the effects of other control parameters, such as pH, on the brush properties. Furthermore, we investigate how dielectric properties of the substrate affect the brush, and the ion distribution and mobility within the brush, when the brush is exposed to an electric field.

  14. Generation of laser-induced periodic surface structures in indium-tin-oxide thin films and two-photon lithography of ma-N photoresist by sub-15 femtosecond laser microscopy for liquid crystal cell application

    NASA Astrophysics Data System (ADS)

    Klötzer, Madlen; Afshar, Maziar; Feili, Dara; Seidel, Helmut; König, Karsten; Straub, Martin

    2015-03-01

    Indium-tin-oxide (ITO) is a widely used electrode material for liquid crystal cell applications because of its transparency in the visible spectral range and its high electrical conductivity. Important examples of applications are displays and optical phase modulators. We report on subwavelength periodic structuring and precise laser cutting of 150 nm thick indium-tin-oxide films on glass substrates, which were deposited by magnetron reactive DC-sputtering from an indiumtin target in a low-pressure oxygen atmosphere. In order to obtain nanostructured electrodes laser-induced periodic surface structures with a period of approximately 100 nm were generated using tightly focused high-repetition rate sub-15 femtosecond pulsed Ti:sapphire laser light, which was scanned across the sample by galvanometric mirrors. Three-dimensional spacers were produced by multiphoton photopolymerization in ma-N 2410 negative-tone photoresist spin-coated on top of the ITO layers. The nanostructured electrodes were aligned in parallel to set up an electrically switchable nematic liquid crystal cell.

  15. Charge collection microscopy of in-situ switchable PRAM line cells in a scanning electron microscope: Technique development and unique observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oosthoek, J. L. M.; Schuitema, R. W.; Brink, G. H. ten

    2015-03-15

    An imaging method has been developed based on charge collection in a scanning electron microscope (SEM) that allows discrimination between the amorphous and crystalline states of Phase-change Random Access Memory (PRAM) line cells. During imaging, the cells are electrically connected and can be switched between the states and the resistance can be measured. This allows for electrical characterization of the line cells in-situ in the SEM. Details on sample and measurement system requirements are provided which turned out to be crucial for the successful development of this method. Results show that the amorphous or crystalline state of the line cellsmore » can be readily discerned, but the spatial resolution is relatively poor. Nevertheless, it is still possible to estimate the length of the amorphous mark, and also for the first time, we could directly observe the shift of the amorphous mark from one side of the line cell to the other side when the polarity of the applied (50 ns) RESET pulse was reversed.« less

  16. Background-free millimeter-wave ultra-wideband signal generation based on a dual-parallel Mach-Zehnder modulator.

    PubMed

    Zhang, Fangzheng; Pan, Shilong

    2013-11-04

    A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.

  17. Operation mode switchable charge-trap memory based on few-layer MoS2

    NASA Astrophysics Data System (ADS)

    Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-03-01

    Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.

  18. Using the ferroelectric/ferroelastic effect at cryogenic temperatures for set-and-hold actuation

    NASA Astrophysics Data System (ADS)

    Steeves, J. B.; Golinveaux, F. S.; Lynch, C. S.

    2018-06-01

    The ferroelectric and ferroelastic properties of lead-zirconate-titanate (PZT) based stack actuators have been characterized at temperatures down to 25 K and under various levels of constant compressive stress. Experiments indicate that the coercive field and magnitude of strain at the coercive field display an inverse relationship with temperature. A factor of 5.5 increase in coercive field, and a factor of 4.3 increase in strain is observed at 25 K in comparison to the room-temperature conditions. This information was used to induce non-180° domain wall motion in the material through the application of electric fields at or near the coercive field. The change in remanent strain accompanying these effects was shown to increase in magnitude as temperature decreased, reaching values of 2000 ppm at 25 K. This behavior was also shown to be temporally stable even under compressive loads. Additionally, it was demonstrated that the material can be returned to its original strain state through a repolarizing electric field. This switchable behavior could be exploited for future set-and-hold type actuators operating at cryogenic temperatures.

  19. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.

    PubMed

    Kahn, Jason S; Hu, Yuwei; Willner, Itamar

    2017-04-18

    The base sequence of nucleic acids encodes structural and functional information into the DNA biopolymer. External stimuli such as metal ions, pH, light, or added nucleic acid fuel strands provide triggers to reversibly switch nucleic acid structures such as metal-ion-bridged duplexes, i-motifs, triplex nucleic acids, G-quadruplexes, or programmed double-stranded hybrids of oligonucleotides (DNA). The signal-triggered oligonucleotide structures have been broadly applied to develop switchable DNA nanostructures and DNA machines, and these stimuli-responsive assemblies provide functional scaffolds for the rapidly developing area of DNA nanotechnology. Stimuli-responsive hydrogels undergoing signal-triggered hydrogel-to-solution transitions or signal-controlled stiffness changes attract substantial interest as functional matrices for controlled drug delivery, materials exhibiting switchable mechanical properties, acting as valves or actuators, and "smart" materials for sensing and information processing. The integration of stimuli-responsive oligonucleotides with hydrogel-forming polymers provides versatile means to exploit the functional information encoded in the nucleic acid sequences to yield stimuli-responsive hydrogels exhibiting switchable physical, structural, and chemical properties. Stimuli-responsive DNA-based nucleic acid structures are integrated in acrylamide polymer chains and reversible, switchable hydrogel-to-solution transitions of the systems are demonstrated by applying external triggers, such as metal ions, pH-responsive strands, G-quadruplex, and appropriate counter triggers that bridge and dissociate the polymer chains. By combining stimuli-responsive nucleic acid bridges with thermosensitive poly(N-isopropylacrylamide) (pNIPAM) chains, systems undergoing reversible solution ↔ hydrogel ↔ solid transitions are demonstrated. Specifically, by bridging acrylamide polymer chains by two nucleic acid functionalities, where one type of bridging unit provides a stimuli-responsive element and the second unit acts as internal "bridging memory", shape-memory hydrogels undergoing reversible and switchable transitions between shaped hydrogels and shapeless quasi-liquid states are demonstrated. By using stimuli-responsive hydrogel cross-linking units that can assemble the bridging units by two different input signals, the orthogonally-triggered functions of the shape-memory were shown. Furthermore, a versatile approach to assemble stimuli-responsive DNA-based acrylamide hydrogel films on surfaces is presented. The method involves the activation of the hybridization chain-reaction (HCR) by a surface-confined promoter strand, in the presence of acrylamide chains modified with two DNA hairpin structures and appropriate stimuli-responsive tethers. The resulting hydrogel-modified surfaces revealed switchable stiffness properties and signal-triggered catalytic functions. By applying the method to assemble the hydrogel microparticles, substrate-loaded, stimuli-responsive microcapsules are prepared. The signal-triggered DNA-based hydrogel microcapsules are applied as drug carriers for controlled release. The different potential applications and future perspectives of stimuli responsive hydrogels are discussed. Specifically, the use of these smart materials and assemblies as carriers for controlled drug release and as shape-memory matrices for information storage and inscription and the use of surface-confined stimuli-responsive hydrogels, exhibiting switchable stiffness properties, for catalysis and controlled growth of cells are discussed.

  20. Switchable photosystem-II designer algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  1. Passband switchable microwave photonic multiband filter

    PubMed Central

    Ge, Jia; Fok, Mable P.

    2015-01-01

    A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity. PMID:26521693

  2. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

    DOE PAGES

    Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle; ...

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less

  3. Passband switchable microwave photonic multiband filter.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-02

    A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity.

  4. Switchable dual-wavelength SLM narrow linewidth fiber laser based on nonlinear amplifying loop mirror

    NASA Astrophysics Data System (ADS)

    Fu, Pan; Feng, Xiao-qiang; Lu, Baole; Qi, Xin-yuan; Chen, Haowei; Sun, Bo; Jiang, Man; Wang, Kaile; Bai, Jintao

    2018-01-01

    We demonstrate a stable switchable dual-wavelength single longitudinal mode (SLM) narrow linewidth ytterbium-doped fiber (YDF) laser using a nonlinear amplifying fiber loop mirror (NALM) at 1064 nm. The NALM of intensity-dependent transmission acts as a saturable absorber filter and an amplitude equalizer to suppress mode competition and the fiber Bragg grating (FBG) pair is used as one wavelength selection component. By properly adjusting the polarization controllers (PCs), the switchable dual-wavelength SLM fiber laser can be operated steadily at room temperature. The optical signal-to-noise ratio (OSNR) is better than 50 dB for both lasing wavelengths. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 17.07 kHz and 18.64 kHz with a 20 dB linewidth, which means the laser linewidth is approximate 853 Hz and 932 Hz FWHM. Correspondingly, the measured relative intensity noise (RIN) is less than -120 dB/Hz at frequencies over 5.0 MHz.

  5. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    PubMed

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  6. Adhesion of Photoactive Microalgae to Surfaces is Switchable by Light

    NASA Astrophysics Data System (ADS)

    Bäumchen, Oliver; Kreis, Christian; Le Blay, Marine; Linne, Christine; Makowski, Marcin

    The natural habitats of many microorganisms are confined geometries, such as the interstitial space of rocks and soil, where interactions with interfaces and surfaces are of paramount importance. We performed in vivo force spectroscopy experiments on the unicellular biflagellated microalga Chlamydomonas, a prime model organism in cell- and microbiology, and discovered that the flagella-mediated adhesion to surfaces can be switched on and off by light. Time-resolved micropipette experiments show that the light-switchable adhesiveness of the flagella is a completely reversible process that is based on a redistribution of adhesion-promoting flagella-membrane proteins within seconds. Light-switchable adhesion enables the cell to regulate the transition between planktonic and surface-associated state, which possibly represents a significant biological advantage for photoactive microorganisms. In terms of the colonization of surfaces and the formation of biofilms, the findings might have immediate economic and environmental relevance in biotechnological settings, such as photo-bioreactors for the sustainable production of biofuels.

  7. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide.

    PubMed

    Wheeler, Lance M; Moore, David T; Ihly, Rachelle; Stanton, Noah J; Miller, Elisa M; Tenent, Robert C; Blackburn, Jeffrey L; Neale, Nathan R

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.

  8. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less

  9. In situ alcoholysis of triacylglycerols by application of switchable-polarity solvents. A new derivatization procedure for the gas-chromatographic analysis of vegetable oils.

    PubMed

    Saliu, Francesco; Orlandi, Marco

    2013-10-01

    We describe a new use of switchable-polarity solvents for the simultaneous derivatization and extraction of triacylglycerols from vegetable oils before gas-chromatographic analysis. Different equimolecular mixtures of the commercially available amidine 1,8-diazabicyclo[5.4.0]undec-7-ene and n-alkyl alcohols were tested. Triolein was used as a model compound. Very good results were achieved by using butanol (recovery of butyl oleate was 89 ± 4%). The procedure was applied for the characterization of the fatty acid profile of different vegetable oils. No statistically significant differences from the results obtained with the application of two traditional methods were evidenced. Moreover, the use of switchable-polarity solvents showed many advantages: owing to the basicity of the amidines, no catalyst was required; the transterification reaction was conducted under mild conditions, one step and in situ; no particular matrix interferences were evidenced; the solvent was recovered.

  10. pH-switchable electrochemical sensing platform based on chitosan-reduced graphene oxide/concanavalin a layer for assay of glucose and urea.

    PubMed

    Song, Yonghai; Liu, Hongyu; Tan, Hongliang; Xu, Fugang; Jia, Jianbo; Zhang, Lixue; Li, Zhuang; Wang, Li

    2014-02-18

    A facile and effective electrochemical sensing platform for the detection of glucose and urea in one sample without separation was developed using chitosan-reduced graphene oxide (CS-rGO)/concanavalin A (Con A) as a sensing layer. The CS-rGO/Con A with pH-dependent surface net charges exhibited pH-switchable response to negatively charged Fe(CN)6(3-). The principle for glucose and urea detection was essentially based on in situ pH-switchable enzyme-catalyzed reaction in which the oxidation of glucose catalyzed by glucose oxidase or the hydrolyzation of urea catalyzed by urease resulted in a pH change of electrolyte solution to give different electrochemical responses toward Fe(CN)6(3-). It was verified by cyclic voltammograms, differential pulse voltammograms, and electrochemical impedance spectroscopy. The resistance to charge transfer or amperometric current changed proportionally toward glucose concentration from 1.0 to 10.0 mM and urea concentration from 1.0 to 7.0 mM. On the basis of human serum experiments, the sensing platform was proved to be suitable for simultaneous assay of glucose and urea in a practical biosystem. This work not only gives a way to detect glucose and urea in one sample without separation but also provides a potential strategy for the detection of nonelectroactive species based on the enzyme-catalyzed reaction and pH-switchable biosensor.

  11. High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity

    PubMed Central

    Fabian, Gabriella; Farago, Nora; Feher, Liliana Z.; Nagy, Lajos I.; Kulin, Sandor; Kitajka, Klara; Bito, Tamas; Tubak, Vilmos; Katona, Robert L.; Tiszlavicz, Laszlo; Puskas, Laszlo G.

    2011-01-01

    Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment. PMID:22016648

  12. Relative quantitative comparisons of the extracellular protein profiles of Staphylococcus aureus UAMS-1 and its sarA, agr, and sarA agr regulatory mutants using one-dimensional polyacrylamide gel electrophoresis and nanocapillary liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Jones, Richard C; Deck, Joanna; Edmondson, Ricky D; Hart, Mark E

    2008-08-01

    One-dimensional polyacrylamide gel electrophoresis followed by nanocapillary liquid chromatography coupled with mass spectrometry was used to analyze proteins isolated from Staphylococcus aureus UAMS-1 after 3, 6, 12, and 24 h of in vitro growth. Protein abundance was determined using a quantitative value termed normalized peptide number, and overall, proteins known to be associated with the cell wall were more abundant early on in growth, while proteins known to be secreted into the surrounding milieu were more abundant late in growth. In addition, proteins from spent media and cell lysates of strain UAMS-1 and its isogenic sarA, agr, and sarA agr regulatory mutant strains during exponential growth were identified, and their relative abundances were compared. Extracellular proteins known to be regulated by the global regulators sarA and agr displayed protein levels in accordance with what is known regarding the effects of these regulators. For example, cysteine protease (SspB), endopeptidase (SspA), staphopain (ScpA), and aureolysin (Aur) were higher in abundance in the sarA and sarA agr mutants than in strain UAMS-1. The immunoglobulin G (IgG)-binding protein (Sbi), immunodominant staphylococcal antigen A (IsaA), IgG-binding protein A (Spa), and the heme-iron-binding protein (IsdA) were most abundant in the agr mutant background. Proteins whose abundance was decreased in the sarA mutant included fibrinogen-binding protein (Fib [Efb]), IsaA, lipase 1 and 2, and two proteins identified as putative leukocidin F and S subunits of the two-component leukotoxin family. Collectively, this approach identified 1,263 proteins (matches of two peptides or more) and provided a convenient and reliable way of identifying proteins and comparing their relative abundances.

  13. Reconfigurable liquid metal circuits by Laplace pressure shaping

    NASA Astrophysics Data System (ADS)

    Cumby, Brad L.; Hayes, Gerard J.; Dickey, Michael D.; Justice, Ryan S.; Tabor, Christopher E.; Heikenfeld, Jason C.

    2012-10-01

    We report reconfigurable circuits formed by liquid metal shaping with <10 pounds per square inch (psi) Laplace and vacuum pressures. Laplace pressure drives liquid metals into microreplicated trenches, and upon release of vacuum, the liquid metal dewets into droplets that are compacted to 10-100× less area than when in the channel. Experimental validation includes measurements of actuation speeds exceeding 30 cm/s, simple erasable resistive networks, and switchable 4.5 GHz antennas. Such capability may be of value for next generation of simple electronic switches, tunable antennas, adaptive reflectors, and switchable metamaterials.

  14. Thermally switchable dielectrics

    DOEpatents

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  15. Switchable molecular magnets

    PubMed Central

    SATO, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes. PMID:22728438

  16. Preparation of a Magnetically Switchable Bioelectrocatalytic System Employing Cross-Linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinwoo; Lee, Dohun; Oh, Eunkeu

    2005-11-18

    Nanostructured magnetic materials (NMMs)[1] have attracted much attention recently because of their broad biotechnological applications including support matrices for enzyme immobilization,[2] immunoassays,[3] drug delivery,[4] and biosensors.[ 5] Specifically, the easy separation and controlled placement of NMMs by means of an external magnetic field enables their application in the development of immobilized enzyme processes[2] and the construction of magnetically controllable bio-electrocatalytic systems.[5, 6] Herein, we demonstrate the use of immobilized enzymes in NMMs for magnetically switchable bio-electrocatalysis.

  17. Switchable static friction of piezoelectric composite—silicon wafer contacts

    NASA Astrophysics Data System (ADS)

    van den Ende, D. A.; Fischer, H. R.; Groen, W. A.; van der Zwaag, S.

    2013-04-01

    The meso-scale surface roughness of piezoelectric fiber composites can be manipulated by applying an electric field to a piezocomposite with a polished surface. In the absence of an applied voltage, the tips of the embedded piezoelectric ceramic fibers are below the surface of the piezocomposite and a silicon wafer counter surface rests solely on the matrix region of the piezocomposite surface. When actuated, the piezoelectric ceramic fibers protrude from the surface and the wafer rests solely on these protrusions. A threefold decrease in engineering static friction coefficient upon actuation of the piezocomposite was observed: from μ* = 1.65 to μ* = 0.50. These experimental results could be linked to the change in contact surface area and roughness using capillary adhesion theory, which relates the adhesive force to the number and size of the contacting asperities for the different surface states.

  18. Active graphene-silicon hybrid diode for terahertz waves.

    PubMed

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  19. Active graphene–silicon hybrid diode for terahertz waves

    PubMed Central

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene–silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices. PMID:25959596

  20. Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidaux, Yves, E-mail: yves.bidaux@alpeslasers.ch; Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich; Bismuto, Alfredo, E-mail: alfredo.bismuto@alpeslasers.ch

    2015-11-30

    In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolutionmore » molecular spectroscopy, a N{sub 2}O absorption spectrum has been measured.« less

  1. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331

  2. Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.

    PubMed

    Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong

    2011-02-01

    In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.

  3. Stimuli-enabled zipper-like graphene interface for auto-switchable bioelectronics.

    PubMed

    Mishra, Sachin; Ashaduzzaman, Md; Mishra, Prashant; Swart, Hendrik C; Turner, Anthony P F; Tiwari, Ashutosh

    2017-03-15

    Graphene interfaces with multi-stimuli responsiveness are of particular interest due to their diverse super-thin interfacial behaviour, which could be well suited to operating complex physiological systems in a single miniaturised domain. In general, smart graphene interfaces switch bioelectrodes from the hydrophobic to hydrophilic state, or vice versa, upon triggering. In the present work, a stimuli encoded zipper-like graphene oxide (GrO)/polymer interface was fabricated with in situ poly(N-isopropylacrylamide-co-diethylaminoethylmethylacrylate), i.e., poly(NIPAAm-co-DEAEMA) directed hierarchical self-assembly of GrO and glucose oxidase (GOx). The designed interface exhibited reversible on/off-switching of bio-electrocatalysis on changing the pH between 5 and 8, via phase transition from super hydrophilic to hydrophobic. The study further indicated that the zipper-like interfacial bioelectrochemical properties could be tuned over a modest change of temperature (i.e., 20-40°C). The resulting auto-switchable interface has implications for the design of novel on/off-switchable biodevices with 'in-built' self-control. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    PubMed

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  5. Tunable and switchable dual-waveband ultrafast fiber laser with 100 GHz repetition-rate.

    PubMed

    Tan, Xiao-Mei; Chen, Hong-Jie; Cui, Hu; Lv, Yao-Kun; Zhao, Guan-Kai; Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2017-07-10

    We demonstrate a tunable and switchable dual-waveband 100 GHz high-repetition-rate (HRR) ultrafast fiber laser based on dissipative four-wave-mixing (DFWM) mode-locked technique. Each waveband maintains HRR operation. The DFWM effect was realized by combining a Fabry-Perot (F-P) filter and a piece of highly nonlinear fiber (HNLF). The tunable and switchable operations were achieved by nonlinear polarization rotation (NPR) technique. Through appropriately controlling the filtering effect induced by NPR, the laser could operate at two kinds of tunable regimes. One is that the spacing between these two wavebands could be tuned while keeping their center at 1559 nm. The other is that the central position of the entire dual-waveband is tunable while with the same separation between these two wavebands of 13.2 nm. Moreover, the laser could switch between these two wavebands. Correspondingly, the center of the single-waveband has a tuning range of 15.2 nm. This versatile ultrafast fiber laser may find applications in fields of optical frequency combs, high speed optical communications, where HRR pulses are necessary.

  6. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals.

    PubMed

    Tercjak, Agnieszka; Gutierrez, Junkal; Ocando, Connie; Mondragon, Iñaki

    2010-03-16

    Conductive properties of different thermosetting materials modified with nematic 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) liquid crystal and rutile TiO(2) nanoparticles were successfully studied by means of tunneling atomic force miscroscopy (TUNA). Taking into account the liquid crystal state of the HBC at room temperature, depending on both the HBC content and the presence of TiO(2) nanoparticles, designed materials showed different TUNA currents passed through the sample. The addition of TiO(2) nanoparticles into the systems multiply the detected current if compared to the thermosetting systems without TiO(2) nanoparticles and simultaneously stabilized the current passed through the sample, making the process reversible since the absolute current values were almost the same applying both negative and positive voltage. Moreover, thermosetting systems modified with liquid crystals with and without TiO(2) nanoparticles are photoluminescence switchable materials as a function of temperature gradient during repeatable heating/cooling cycle. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals can allow them to find potential application in the field of photoresponsive devices, with a high contrast ratio between transparent and opaque states.

  7. Switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin

    2018-05-01

    In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.

  8. Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy

    PubMed Central

    Eom, Seunghyun; Memon, Muhammad Usman; Lim, Sungjoon

    2017-01-01

    In this paper, we have proposed a frequency-switchable complementary split-ring resonator (CSRR)-loaded quarter-mode substrate-integrated-waveguide (QMSIW) band-pass filter. For frequency switching, a microfluidic channel and liquid metal are used. The liquid metal used is eutectic gallium-indium (EGaIn), consisting of 24.5% indium and 75.5% gallium. The microfluidic channels are built using the elastomer polydimethylsiloxane (PDMS) and three-dimensional-printed microfluidic channel frames. The CSRR-loaded QMSIW band-pass filter is designed to have two states. Before the injection of the liquid metal, the measured center frequency and fractional bandwidths are 2.205 GHz and 6.80%, respectively. After injection, the center frequency shifts from 2.205 GHz to 2.56 GHz. Although the coupling coefficient is practically unchanged, the fractional bandwidth changes from 6.8% to 9.38%, as the CSRR shape changes and the external quality factor decreases. After the removal of the liquid metal, the measured values are similar to the values recorded before the liquid metal was injected. The repeatability of the frequency-switchable mechanism is, therefore, verified. PMID:28350355

  9. SWITCHABLE POLARITY SOLVENTS AS DRAW SOLUTES FOR FORWARD OSMOSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick F. Stewart; Mark L. Stone; Aaron D. Wilson

    2013-03-01

    Switchable polarity solvents (SPS), mixtures of carbon dioxide, water, and tertiary amines, are presented as viable forward osmosis (FO) draw solutes allowing a novel SPS FO process. In this study substantial osmotic strengths of SPS are measured with freezing point osmometry and were demonstrated to induce competitive ?uxes at high salt concentrations on a laboratory-scale FO unit utilizing a ?at sheet cellulose triacetate (CTA) membrane. Under the experimental conditions the SPS degrades the CTA membrane; however experiments with polyamide reverse osmosis (RO) membranes display stability towards SPS. Once the draw is diluted the major fraction of the switchable polarity solventmore » can be mechanically separated from the puri?ed water after polar to nonpolar phase shift induced by introduction of 1 atm carbon dioxide to 1 atm of air or nitrogen with mild heating. Trace amounts of SPS can be removed from the separated water with RO in a process that avoids solution concentration polarization. The separated nonpolar phase can be regenerated to a full strength draw and recycled with the re-addition of 1 atm of carbon dioxide.« less

  10. A Multi-Addressable Dyad with Switchable CMY Colors for Full-Color Rewritable Papers.

    PubMed

    Qin, Tianyou; Han, Jiaqi; Geng, Yue; Ju, Le; Sheng, Lan; Zhang, Sean Xiao-An

    2018-06-23

    Reversible multicolor displays on solid media using single molecule pigments have been a long-awaited goal. Herein, a new and simple molecular dyad, which can undergo switchable CMY color changes both in solution and solid substrate upon exposure to light, water/acid, and nucleophiles, is designed and synthesized. The stimuli used in this work can be applied independent of each other, which is beneficial for color changes without mutual interference. As a comparison, the mixtures of the two molecular switching motifs forming the basis of the dyad were also studied. The dyad greatly outperforms the corresponding mixed system with respect to reversible color-switching on the paper substrate. Its potential for full-color rewritable paper with excellent reversibility has been demonstrated. Legible multicolor prints, that is, high color contrast and resolution, good dispersion, excellent reversibility, were achieved using common water-jet and light-based printers. This work provides a very promising approach for further development of full-color switchable molecules, materials and displays. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adhesion of Chlamydomonas microalgae to surfaces is switchable by light

    NASA Astrophysics Data System (ADS)

    Kreis, Christian Titus; Le Blay, Marine; Linne, Christine; Makowski, Marcin Michal; Bäumchen, Oliver

    2018-01-01

    Microalgae are photoactive microbes that live in liquid-infused environments, such as soil, temporary pools and rocks, where they encounter and colonize a plethora of surfaces. Their photoactivity manifests itself in a variety of processes, including light-directed motility (phototaxis), the growth of microalgal populations, and their photosynthetic machinery. Although microbial responses to light have been widely recognized, any influence of light on cell-surface interactions remains elusive. Here, we reveal that the unspecific adhesion of microalgae to surfaces can be reversibly switched on and off by light. Using a micropipette force spectroscopy technique, we measured in vivo single-cell adhesion forces and show that the microalga's flagella provide light-switchable adhesive contacts with the surface. This light-induced adhesion to surfaces is an active and completely reversible process that occurs on a timescale of seconds. Our results suggest that light-switchable adhesiveness is a natural functionality of microalgae to regulate the transition between the planktonic and the surface-associated state, which yields an adhesive adaptation to optimize the photosynthetic efficiency in conjunction with phototaxis.

  12. Elastic recoil detection analysis for the determination of hydrogen concentration profiles in switchable mirrors

    NASA Astrophysics Data System (ADS)

    Huisman, M. C.; van der Molen, S. J.; Vis, R. D.

    1999-10-01

    Switchable mirrors [J.N. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker, D.G. de Groot, N.J. Koeman, Nature 380 (1996) 231; J.N Huiberts, J.H. Rector, R.J. Wijngaarden, S. Jetten, D. de Groot, B. Dam, N.J.. Koeman, R. Griessen, B. Hjörvarsson, S Olafsson, Y.S. Cho, J. Alloys and Compounds 239 (1996) 158; F.J.A. den Broeder, S.J. van der Molen, M. Kremers, J. N. Huiberts, D.G. Nagengast, A.T.M. van Gogh, W.H. Huisman, N. J. Koeman, B. Dam, J.H. Rector, S. Plota, M. Haaksma, R.M.N. Hanzen, R.M. Jungblut, P.A. Duine, R. Griessen, Nature 394 (1998) 656] made of thin films of Y, La or rare-earth (RE) metals exhibit spectacular changes in their optical and electrical properties upon hydrogen loading. The study of these materials has indicated that the occurring phenomena are highly sensitive to the actual hydrogen concentration in these materials. In this paper elastic recoil detection analysis (ERDA) is used as a tool to measure hydrogen concentrations on a micrometer scale. The measurements have been performed using a 4He 2+ ion beam from a 1.7 MV Pelletron accelerator. The ion beam can be focused routinely to a spot size of approximately 10 μm 2. The experimental set-up enables the simultaneous measurement of Rutherford backscattering spectrometry (RBS) as well as particle induced X-ray emission (PIXE) spectra, which provide complementary information. The results of ERDA measurements on laterally diffused YH x (0< x<3) samples with a qualitatively known hydrogen concentration profile are presented and discussed. The calibration of the microbeam set-up and possible improvement of the measurement technique are described.

  13. Interface modulated currents in periodically proton exchanged Mg doped lithium niobate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4

    2016-03-21

    Conductivity in Mg doped lithium niobate (Mg:LN) plays a key role in the reduction of photorefraction and is therefore widely exploited in optical devices. However, charge transport through Mg:LN and across interfaces such as electrodes also yields potential electronic applications in devices with switchable conductivity states. Furthermore, the introduction of proton exchanged (PE) phases in Mg:LN enhances ionic conductivity, thus providing tailorability of conduction mechanisms and functionality dependent on sample composition. To facilitate the construction and design of such multifunctional electronic devices based on periodically PE Mg:LN or similar ferroelectric semiconductors, fundamental understanding of charge transport in these materials, asmore » well as the impact of internal and external interfaces, is essential. In order to gain insight into polarization and interface dependent conductivity due to band bending, UV illumination, and chemical reactivity, wedge shaped samples consisting of polar oriented Mg:LN and PE phases were investigated using conductive atomic force microscopy. In Mg:LN, three conductivity states (on/off/transient) were observed under UV illumination, controllable by the polarity of the sample and the externally applied electric field. Measurements of currents originating from electrochemical reactions at the metal electrode–PE phase interfaces demonstrate a memresistive and rectifying capability of the PE phase. Furthermore, internal interfaces such as domain walls and Mg:LN–PE phase boundaries were found to play a major role in the accumulation of charge carriers due to polarization gradients, which can lead to increased currents. The insight gained from these findings yield the potential for multifunctional applications such as switchable UV sensitive micro- and nanoelectronic devices and bistable memristors.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo Hailu; Zhou Xinxing; Shu Weixing

    We theorize an enhanced and switchable spin Hall effect (SHE) of light near the Brewster angle on reflection and demonstrate it experimentally. The obtained spin-dependent splitting reaches 3200 nm near the Brewster angle, which is 50 times larger than the previously reported values in refraction. We find that the amplifying factor in weak measurement is not a constant, which is significantly different from that in refraction. As an analogy of SHE in an electronic system, a switchable spin accumulation in SHE of light is detected. We were able to switch the direction of the spin accumulations by slightly adjusting themore » incident angle.« less

  15. Smart window using a thermally and optically switchable liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Won; Kim, Sang-Hyeok; Baek, Jong-Min; Yoon, Tae-Hoon

    2018-02-01

    Light shutter technologies that can control optical transparency have been studied extensively for developing curtain-free smart windows. We introduce thermally and optically switchable light shutters using LCs doped with push-pull azobenzene, which is known to speed up thermal relaxation. The liquid crystal light shutter can be switched between translucent and transparent states or transparent and opaque states by phase transition through changing temperature or photo-isomerization of doped azobenzene. The liquid crystal light shutter can be used for privacy windows with an initial translucent state or energy-saving windows with an initial transparent state.

  16. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response

    PubMed Central

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Politano, Antonio; Knap, Wojciech; Vitiello, Miriam S.

    2016-01-01

    The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be “engineered” from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5–8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting. PMID:26847823

  17. Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices.

    PubMed

    Wang, Yu-Jen; Chen, Po-Ju; Liang, Xiao; Lin, Yi-Hsin

    2017-03-27

    Augmented reality (AR), which use computer-aided projected information to augment our sense, has important impact on human life, especially for the elder people. However, there are three major challenges regarding the optical system in the AR system, which are registration, vision correction, and readability under strong ambient light. Here, we solve three challenges simultaneously for the first time using two liquid crystal (LC) lenses and polarizer-free attenuator integrated in optical-see-through AR system. One of the LC lens is used to electrically adjust the position of the projected virtual image which is so-called registration. The other LC lens with larger aperture and polarization independent characteristic is in charge of vision correction, such as myopia and presbyopia. The linearity of lens powers of two LC lenses is also discussed. The readability of virtual images under strong ambient light is solved by electrically switchable transmittance of the LC attenuator originating from light scattering and light absorption. The concept demonstrated in this paper could be further extended to other electro-optical devices as long as the devices exhibit the capability of phase modulations and amplitude modulations.

  18. Title: Studies on drug switchability showed heterogeneity in methodological approaches: a scoping review.

    PubMed

    Belleudi, Valeria; Trotta, Francesco; Vecchi, Simona; Amato, Laura; Addis, Antonio; Davoli, Marina

    2018-05-16

    Several drugs share the same therapeutic indication, including those undergoing patent expiration. Concerns on the interchangeability are frequent in clinical practice, challenging the evaluation of switchability through observational research. To conduct a scoping review of observational studies on drug switchability to identify methodological strategies adopted to deal with bias and confounding. We searched PubMed, EMBASE, and Web of Science (updated 1/31/2017) to identify studies evaluating switchability in terms of effectiveness/safety outcomes or compliance. Three reviewers independently screened studies extracting all characteristics. Strategies to address confounding, particularly, previous drug use and switching reasons were considered. All findings were summarized in descriptive analyses. Thirty-two studies, published in the last 10 years, met the inclusion criteria. Epilepsy, cardiovascular and rheumatology were the most frequently represented clinical areas. 75% of the studies reported data on effectiveness/safety outcomes. The most frequent study design was cohort (65.6%) followed by case-control (21.9%) and self-controlled (12.5%). Case-control and case-crossover studies showed homogeneous methodological strategies to deal with bias and confounding. Among cohort studies, the confounding associated with previous drug use was addressed introducing variables in multivariate model (47.3%) or selecting only adherent patients (14.3%). Around 30% of cohort studies did not report reasons for switching. In the remaining 70%, clinical parameters or previous occurrence of outcomes were measured to identify switching connected with lack of effectiveness or adverse events. This study represents a starting point for researchers and administrators who are approaching the investigation and assessment of issues related to interchangeability of drugs. Copyright © 2018. Published by Elsevier Inc.

  19. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  20. Detection and size analysis of proteins with switchable DNA layers.

    PubMed

    Rant, Ulrich; Pringsheim, Erika; Kaiser, Wolfgang; Arinaga, Kenji; Knezevic, Jelena; Tornow, Marc; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard

    2009-04-01

    We introduce a chip-compatible scheme for the label-free detection of proteins in real-time that is based on the electrically driven conformation switching of DNA oligonucleotides on metal surfaces. The switching behavior is a sensitive indicator for the specific recognition of IgG antibodies and antibody fragments, which can be detected in quantities of less than 10(-18) mol on the sensor surface. Moreover, we show how the dynamics of the induced molecular motion can be monitored by measuring the high-frequency switching response. When proteins bind to the layer, the increase in hydrodynamic drag slows the switching dynamics, which allows us to determine the size of the captured proteins. We demonstrate the identification of different antibody fragments by means of their kinetic fingerprint. The switchDNA method represents a generic approach to simultaneously detect and size target molecules using a single analytical platform.

  1. Reconfigurable nanomechanical photonic metamaterials

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay I.; Plum, Eric

    2016-01-01

    The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules, and their arrays fabricated on elastic dielectric membranes can be reconfigured to achieve optical modulation at high frequencies, potentially reaching the gigahertz range. Mechanical and optical resonances enhance the magnitude of actuation and optical response within these nanostructures, which can be driven by electric signals of only a few volts or optical signals with power of only a few milliwatts. We envisage switchable, electro-optical, magneto-optical and nonlinear metamaterials that are compact and silicon-nanofabrication-technology compatible with functionalities surpassing those of natural media by orders of magnitude in some key design parameters.

  2. Photonic ultrawideband impulse radio generation and modulation over a fiber link using a phase modulator and a delay interferometer.

    PubMed

    Shao, Jing; Sun, Junqiang

    2012-08-15

    We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.

  3. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  4. Electrically driven hybrid photonic metamaterials for multifunctional control

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Liu, Liu; Campbell, Sawyer D.; Yue, Taiwei; Ren, Qiang; Mayer, Theresa S.; Werner, Douglas H.

    2017-08-01

    The unique light-matter interaction in metamaterials, a type of artificial medium in which the geometrical features of subunits dominate their optical responses, have been utilized to achieve exotic material properties that are rare or nonexistent in natural materials. Furthermore, to extend their behaviors, active materials have been introduced into metamaterial systems to advance tunability, switchability and nonlinearity. Nevertheless, practical examples of versatile photonic metamaterials remain exceedingly rare for two main reasons. On the one hand, in sharp contrast to the broad material options available at lower frequencies, it is less common to find active media in the optical regime that can provide pronounced dielectric property changes under external stimuli, such as electric and magnetic fields. Vanadium dioxide (VO2), offering a large refractive index variation over a broad frequency range due to its near room temperature insulator-to-metal transition (IMT), has been favored in recent studies on tunable metamaterials. On the other hand, it turns out that regulating responses of hybrid metamaterials to external forces in an integrated manner is not a straightforward task. Recently, metamaterial-enabled devices (i.e., metadevices) with `self-sufficient' or `self-contained' electrical and optical properties have enabled complex functionalities. Here, we present a design methodology along with the associated experimental validation of a VO2 thin film integrated optical metamaterial absorber as a hybrid photonic platform for electrically driven multifunctional control, including reflectance switching, a rewritable memory process and manageable localized camouflage. The nanoengineered topologically continuous metal structure simultaneously supports the optical resonance and electrical functionality that actuates the phase transition in VO2 through the process of Joule heating. This work provides a universal approach to creating self-sufficient and highly-versatile nanophotonic systems.

  5. Metasurface quantum-cascade laser with electrically switchable polarization

    DOE PAGES

    Xu, Luyao; Chen, Daguan; Curwen, Christopher A.; ...

    2017-04-20

    Dynamic control of a laser’s output polarization state is desirable for applications in polarization sensitive imaging, spectroscopy, and ellipsometry. Using external elements to control the polarization state is a common approach. Less common and more challenging is directly switching the polarization state of a laser, which, however, has the potential to provide high switching speeds, compactness, and power efficiency. Here, we demonstrate a new approach to achieve direct and electrically controlled polarization switching of a semiconductor laser. This is enabled by integrating a polarization-sensitive metasurface with a semiconductor gain medium to selectively amplify a cavity mode with the designed polarizationmore » state, therefore leading to an output in the designed polarization. Here, the demonstration is for a terahertz quantum-cascade laser, which exhibits electrically controlled switching between two linear polarizations separated by 80°, while maintaining an excellent beam with a narrow divergence of ~3°×3° and a single-mode operation fixed at ~3.4 THz, combined with a peak power as high as 93 mW at a temperature of 77 K. The polarization-sensitive metasurface is composed of two interleaved arrays of surface-emitting antennas, all of which are loaded with quantum-cascade gain materials. Each array is designed to resonantly interact with one specific polarization; when electrical bias is selectively applied to the gain material in one array, selective amplification of one polarization occurs. The amplifying metasurface is used along with an output coupler reflector to build a vertical-external-cavity surface-emitting laser whose output polarization state can be switched solely electrically. In conclusion, this work demonstrates the potential of exploiting amplifying polarization-sensitive metasurfaces to create lasers with desirable polarization states—a concept which is applicable beyond the terahertz and can potentially be applied to shorter wavelengths.« less

  6. Metasurface quantum-cascade laser with electrically switchable polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Luyao; Chen, Daguan; Curwen, Christopher A.

    Dynamic control of a laser’s output polarization state is desirable for applications in polarization sensitive imaging, spectroscopy, and ellipsometry. Using external elements to control the polarization state is a common approach. Less common and more challenging is directly switching the polarization state of a laser, which, however, has the potential to provide high switching speeds, compactness, and power efficiency. Here, we demonstrate a new approach to achieve direct and electrically controlled polarization switching of a semiconductor laser. This is enabled by integrating a polarization-sensitive metasurface with a semiconductor gain medium to selectively amplify a cavity mode with the designed polarizationmore » state, therefore leading to an output in the designed polarization. Here, the demonstration is for a terahertz quantum-cascade laser, which exhibits electrically controlled switching between two linear polarizations separated by 80°, while maintaining an excellent beam with a narrow divergence of ~3°×3° and a single-mode operation fixed at ~3.4 THz, combined with a peak power as high as 93 mW at a temperature of 77 K. The polarization-sensitive metasurface is composed of two interleaved arrays of surface-emitting antennas, all of which are loaded with quantum-cascade gain materials. Each array is designed to resonantly interact with one specific polarization; when electrical bias is selectively applied to the gain material in one array, selective amplification of one polarization occurs. The amplifying metasurface is used along with an output coupler reflector to build a vertical-external-cavity surface-emitting laser whose output polarization state can be switched solely electrically. In conclusion, this work demonstrates the potential of exploiting amplifying polarization-sensitive metasurfaces to create lasers with desirable polarization states—a concept which is applicable beyond the terahertz and can potentially be applied to shorter wavelengths.« less

  7. Solid-state structures and properties of scandium hydride; hydrogen storage and switchable mirrors application

    NASA Astrophysics Data System (ADS)

    Khodja, Khadidja; Bouhadda, Youcef; Seddik, Larbi; Benyelloul, Kamel

    2016-05-01

    First-principles calculation has been performed on the rare earth hydride ScH2 for hydrogen storage and switchable mirror applications, using the pseudo-potentials and plane waves based on the density-functional theory (DFT). The electronic and structural properties are studied within both local-density and generalized gradient approximations for exchange energy. The formation energy and the optical properties have been investigated and discussed. Our calculated results are generally in good agreement with theoretical and experimental data. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  8. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    NASA Astrophysics Data System (ADS)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  9. A power-efficient switchable CML driver at 10 Gbps

    NASA Astrophysics Data System (ADS)

    Peipei, Chen; Lei, Li; Huihua, Liu

    2016-02-01

    High static power limits the application of conventional current-mode logic(CML). This paper presents a power-efficient switchable CML driver, which achieves a significant current saving by 75% compared with conventional ones. Implemented in the 130 nm CMOS technology process, the proposed CML driver just occupies an area about 0.003 mm2 and provides a robust differential signal of 1600 mV for 10 Gbps optical line terminal (OLT) with a total current of 10 mA. The peak-to-peak jitter is about 4 ps (0.04TUI) and the offset voltage is 347.2 mV @ 1600 mVPP.

  10. A Polarization Reconfigurable Slot Antenna with a Novel Switchable Feeding Network

    NASA Astrophysics Data System (ADS)

    Xie, Peng; Wang, Guang Ming

    2017-12-01

    A polarization reconfigurable slot antenna is proposed in this paper. The antenna consists of a microstrip line-to-slotline transition structure, two radiation slots and a switchable feeding network. The feeding network is a gradually changed ring slot with six switching diodes on it. By controlling the diodes states, the antenna can generate y-direction polarization, z-direction polarization, left-hand circular polarization and right-hand circular polarization. Detailed design considerations of the proposed antenna, simulated and measured results are presented and discussed. Measured results agree well with simulated. The results proved that the antenna can realize polarization reconfiguration effectively at 5 GHz.

  11. Direct generation of vector vortex beams with switchable radial and azimuthal polarizations in a monolithic Nd:YAG microchip laser

    NASA Astrophysics Data System (ADS)

    He, Hong-Sen; Chen, Zhen; Dong, Jun

    2017-05-01

    A hollow focus lens (HFL) has been designed to effectively produce a focused annular beam for high-intensity pumping. By applying the central-dark pump beam, a monolithic Nd:YAG microchip laser without any extra optical elements is demonstrated to generate vector vortex beams with switchable radially polarized (RP) and azimuthally polarized (AP) states by easily controlling the pump power. The order and handedness of the output vortex beam remain stable during the switching of the RP and AP states. The monolithic Nd:YAG microchip laser provides a new laser source for applications such as material processing and optical manipulation.

  12. Controlled higher-order transverse mode conversion from a fiber laser by polarization manipulation

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Yi, Qian; Yang, Lingling; Zhao, Chujun; Wen, Shuangchun

    2018-02-01

    We report a vectorial fiber laser with controlled transverse mode conversion by intra-cavity polarization manipulation. By combining a q-plate and two quarter-wave plates (QWPs), we can generate a switchable polarization state output represented by the higher-order Poincaré sphere (l = +1, l = -1), and distinguish the fourfold degenerate LP11 mode. The four transverse vector modes can be obtained and switched in a flexible way, and the slope efficiency of the fiber laser can reach up to 39.4%. This compactness, high efficiency, and switchable operation potential will benefit a range of applications, such as materials processing, particle manipulation, etc.

  13. On-demand Hydrogen Production from Organosilanes at Ambient Temperature Using Heterogeneous Gold Catalysts

    NASA Astrophysics Data System (ADS)

    Mitsudome, Takato; Urayama, Teppei; Kiyohiro, Taizo; Maeno, Zen; Mizugaki, Tomoo; Jitsukawa, Koichiro; Kaneda, Kiyotomi

    2016-11-01

    An environmentally friendly (“green”), H2-generation system was developed that involved hydrolytic oxidation of inexpensive organosilanes as hydrogen storage materials with newly developed heterogeneous gold nanoparticle catalysts. The gold catalyst functioned well at ambient temperature under aerobic conditions, providing efficient production of pure H2. The newly developed size-selective gold nanoparticle catalysts could be separated easily from the reaction mixture containing organosilanes, allowing an on/off-switchable H2-production by the introduction and removal of the catalyst. This is the first report of an on/off-switchable H2-production system employing hydrolytic oxidation of inexpensive organosilanes without requiring additional energy.

  14. Mechanically switchable polymer fibers for sensing in biological conditions

    NASA Astrophysics Data System (ADS)

    McMillan, Sean; Rader, Chris; Jorfi, Mehdi; Pickrell, Gary; Foster, E. Johan

    2017-02-01

    The area of in vivo sensing using optical fibers commonly uses materials such as silica and polymethyl methacrylate, both of which possess much higher modulus than human tissue. The mechanical mismatch between materials and living tissue has been seen to cause higher levels of glial encapsulation, scarring, and inflammation, leading to failure of the implanted medical device. We present the use of a fiber made from polyvinyl alcohol (PVA) for use as an implantable sensor as it is an easy to work with functionalized polymer that undergoes a transition from rigid to soft when introduced to water. This ability to switch from stiff to soft reduces the severity of the immune response. The fabricated PVA fibers labeled with fluorescein for sensing applications showed excellent response to various stimuli while exhibiting mechanical switchability. For the dry fibers, a tensile storage modulus of 4700 MPa was measured, which fell sharply to 145 MPa upon wetting. The fibers showed excellent response to changing pH levels, producing values that were detectable in a range consistent with those seen in the literature and in proposed applications. The results show that these mechanically switchable fibers are a viable option for future sensing applications.

  15. S- Cis Diene Conformation: A New Bathochromic Shift Strategy for Near-Infrared Fluorescence Switchable Dye and the Imaging Applications.

    PubMed

    Chen, Hsiang-Jung; Chew, Chee Ying; Chang, En-Hao; Tu, Yu-Wei; Wei, Li-Yu; Wu, Bo-Han; Chen, Chien-Hung; Yang, Ya-Ting; Huang, Su-Chin; Chen, Jen-Kun; Chen, I-Chia; Tan, Kui-Thong

    2018-04-18

    In this paper, we present a novel charge-free fluorescence-switchable near-infrared (IR) dye based on merocyanine for target specific imaging. In contrast to the typical bathochromic shift approach by extending π-conjugation, the bathochromic shift of our merocyanine dye to the near-IR region is due to an unusual S- cis diene conformer. This is the first example where a fluorescent dye adopts the stable S- cis conformation. In addition to the novel bathochromic shift mechanism, the dye exhibits fluorescence-switchable properties in response to polarity and viscosity. By incorporating a protein-specific ligand to the dye, the probes (for SNAP-tag and hCAII proteins) exhibited dramatic fluorescence increase (up to 300-fold) upon binding with its target protein. The large fluorescence enhancement, near-IR absorption/emission, and charge-free scaffold enabled no-wash and site-specific imaging of target proteins in living cells and in vivo with minimum background fluorescence. We believe that our unconventional approach for a near-IR dye with the S- cis diene conformation can lead to new strategies for the design of near-IR dyes.

  16. On/off-switchable anti-neoplastic nanoarchitecture

    NASA Astrophysics Data System (ADS)

    Patra, Hirak K.; Imani, Roghayeh; Jangamreddy, Jaganmohan R.; Pazoki, Meysam; Iglič, Aleš; Turner, Anthony P. F.; Tiwari, Ashutosh

    2015-09-01

    Throughout the world, there are increasing demands for alternate approaches to advanced cancer therapeutics. Numerous potentially chemotherapeutic compounds are developed every year for clinical trial and some of them are considered as potential drug candidates. Nanotechnology-based approaches have accelerated the discovery process, but the key challenge still remains to develop therapeutically viable and physiologically safe materials suitable for cancer therapy. Here, we report a high turnover, on/off-switchable functionally popping reactive oxygen species (ROS) generator using a smart mesoporous titanium dioxide popcorn (TiO2 Pops) nanoarchitecture. The resulting TiO2 Pops, unlike TiO2 nanoparticles (TiO2 NPs), are exceptionally biocompatible with normal cells. Under identical conditions, TiO2 Pops show very high photocatalytic activity compared to TiO2 NPs. Upon on/off-switchable photo activation, the TiO2 Pops can trigger the generation of high-turnover flash ROS and can deliver their potential anticancer effect by enhancing the intracellular ROS level until it crosses the threshold to open the ‘death gate’, thus reducing the survival of cancer cells by at least six times in comparison with TiO2 NPs without affecting the normal cells.

  17. An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires.

    PubMed

    Baig, Sarwat A; Boland, Jessica L; Damry, Djamshid A; Tan, H Hoe; Jagadish, Chennupati; Joyce, Hannah J; Johnston, Michael B

    2017-04-12

    Progress in the terahertz (THz) region of the electromagnetic spectrum is undergoing major advances, with advanced THz sources and detectors being developed at a rapid pace. Yet, ultrafast THz communication is still to be realized, owing to the lack of practical and effective THz modulators. Here, we present a novel ultrafast active THz polarization modulator based on GaAs semiconductor nanowires arranged in a wire-grid configuration. We utilize an optical pump-terahertz probe spectroscopy system and vary the polarization of the optical pump beam to demonstrate ultrafast THz modulation with a switching time of less than 5 ps and a modulation depth of -8 dB. We achieve an extinction of over 13% and a dynamic range of -9 dB, comparable to microsecond-switchable graphene- and metamaterial-based THz modulators, and surpassing the performance of optically switchable carbon nanotube THz polarizers. We show a broad bandwidth for THz modulation between 0.1 and 4 THz. Thus, this work presents the first THz modulator which combines not only a large modulation depth but also a broad bandwidth and picosecond time resolution for THz intensity and phase modulation, making it an ideal candidate for ultrafast THz communication.

  18. Micropatterned photoalignment for wavefront controlled switchable optical devices

    NASA Astrophysics Data System (ADS)

    Glazar, Nikolaus

    Photoalignment is a well-established technique for surface alignment of the liquid crystal director. Previously, chrome masks were necessary for patterned photoalignment but were difficult to use, costly, and inflexible. To extend the capabilities of photoalignment we built an automated maskless multi-domain photoalignment device based on a DMD (digital multimirror device) projection system. The device is capable of creating arbitrary photoalignment patterns with micron-sized features. Pancharatnam-Berry phase (PB-phase) is a geometric phase that arises from cyclic change of polarization state. By varying the azimuthal anchoring angle in a hybrid-aligned liquid crystal cell we can control the spatial variation of the PB-phase shift. Using our automated photoalignment device to align the liquid crystal arbitrary wave front manipulations are possible. The PB-phase shift effect is maximized when the cell is tuned to have a half-wave retardation and disappears at full-wave retardation, so the cell can be switched on and off by applying a voltage. Two wavefront controlled devices developed using this technique will be discussed: A switchable liquid crystal phase shift mask for creating sub-diffraction sized photolithographic features, and a transparent diffractive display that utilizes a switchable liquid crystal diffraction grating.

  19. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jian; Yang, Yanfu, E-mail: yangyanfu@hotmail.com; Zhang, Jianyu

    We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that withmore » the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.« less

  20. On/off-switchable anti-neoplastic nanoarchitecture

    PubMed Central

    Patra, Hirak K.; Imani, Roghayeh; Jangamreddy, Jaganmohan R.; Pazoki, Meysam; Iglič, Aleš; Turner, Anthony P. F.; Tiwari, Ashutosh

    2015-01-01

    Throughout the world, there are increasing demands for alternate approaches to advanced cancer therapeutics. Numerous potentially chemotherapeutic compounds are developed every year for clinical trial and some of them are considered as potential drug candidates. Nanotechnology-based approaches have accelerated the discovery process, but the key challenge still remains to develop therapeutically viable and physiologically safe materials suitable for cancer therapy. Here, we report a high turnover, on/off-switchable functionally popping reactive oxygen species (ROS) generator using a smart mesoporous titanium dioxide popcorn (TiO2 Pops) nanoarchitecture. The resulting TiO2 Pops, unlike TiO2 nanoparticles (TiO2 NPs), are exceptionally biocompatible with normal cells. Under identical conditions, TiO2 Pops show very high photocatalytic activity compared to TiO2 NPs. Upon on/off-switchable photo activation, the TiO2 Pops can trigger the generation of high-turnover flash ROS and can deliver their potential anticancer effect by enhancing the intracellular ROS level until it crosses the threshold to open the ‘death gate’, thus reducing the survival of cancer cells by at least six times in comparison with TiO2 NPs without affecting the normal cells. PMID:26415561

  1. Probing the size of proteins with glass nanopores

    NASA Astrophysics Data System (ADS)

    Steinbock, L. J.; Krishnan, S.; Bulushev, R. D.; Borgeaud, S.; Blokesch, M.; Feletti, L.; Radenovic, A.

    2014-11-01

    Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing process.Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05001k

  2. Hmb(off/on) as a switchable thiol protecting group for native chemical ligation.

    PubMed

    Qi, Yun-Kun; Tang, Shan; Huang, Yi-Chao; Pan, Man; Zheng, Ji-Shen; Liu, Lei

    2016-05-04

    A new thiol protecting group Hmb(off/on) is described, which has a switchable activity that may be useful in the chemical synthesis of proteins. When placed on the side chain of Cys, Cys(Hmb(off)) is stable to trifluoroacetic acid (TFA) in the process of solid-phase peptide synthesis. When Cys(Hmb(off)) is treated with neutral aqueous buffers, it is cleanly converted to acid-labile Cys(Hmb(on)), which can later be fully deprotected by TFA to generate free Cys. The utility of Cys(Hmb(off/on)) is demonstrated by the chemical synthesis of an erythropoietin segment, EPO[Cys(98)-Arg(166)]-OH through native chemical ligation.

  3. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications.

    PubMed

    Liu, Qingkun; Cui, Yanxia; Gardner, Dennis; Li, Xin; He, Sailing; Smalyukh, Ivan I

    2010-04-14

    We demonstrate the bulk self-alignment of dispersed gold nanorods imposed by the intrinsic cylindrical micelle self-assembly in nematic and hexagonal liquid crystalline phases of anisotropic fluids. External magnetic field and shearing allow for alignment and realignment of the liquid crystal matrix with the ensuing long-range orientational order of well-dispersed plasmonic nanorods. This results in a switchable polarization-sensitive plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The device-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of properties arising from combining the switchable nanoscale structure of anisotropic fluids with the surface plasmon resonance properties of the plasmonic nanorods.

  4. Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.

    2009-11-01

    Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  5. Switchable dual-wavelength erbium-doped fiber laser based on the photonic crystal fiber loop mirror and chirped fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Guo; Lou, Shu-Qin; Wang, Li-Wen; Li, Hong-Lei; Guo, Tieying; Jian, Shui-Sheng

    2010-03-01

    The switchable dual-wavelength erbium-doped fiber laser (EDFL) with a two-mode photonic crystal fiber (PCF) loop mirror and a chirped fiber Bragg grating (CFBG) at room temperature is proposed and experimentally demonstrated. The two-mode PCF loop mirror is formed by inserting a piece of two-mode PCF into a Sagnac loop mirror, with the air-holes of the PCF intentionally collapsing at the splices. By adjusting the state of the polarization controller (PC) appropriately, the laser can be switched between the stable single- and dual-wavelength operations by means of the polarization hole burning (PHB) and spectral hole burning (SHB) effects.

  6. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT

    PubMed Central

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.; Hufnagel, Lars

    2016-01-01

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5–12-fold compared with their conventional diffraction-limited LS analogs. PMID:26984498

  7. Direct observation of fatigue in epitaxially grown Pb(Zr,Ti)O3 thin films using second harmonic piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Murari, Nishit M.; Hong, Seungbum; Lee, Ho Nyung; Katiyar, Ram. S.

    2011-08-01

    Here, we present a direct observation of fatigue phenomena in epitaxially grown Pb(Zr0.2Ti0.8)O3 (PZT) thin films using second harmonic piezoresponse force microscopy (SH-PFM). We observed strong correlation between the SH-PFM amplitude and phase signals with the remnant piezoresponse at different switching cycles. The SH-PFM results indicate that the average fraction of switchable domains decreases globally and the phase delays of polarization switching differ locally. In addition, we found that the fatigue developed uniformly over the whole area without developing region-by-region suppression of switchable polarization as in polycrystalline PZT thin films.

  8. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    PubMed Central

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  9. Switchable narrow linewidth fiber laser with LP11 transverse mode output

    NASA Astrophysics Data System (ADS)

    Shen, Ya; Ren, Guobin; Yang, Yuguang; Yao, Shuzhi; Wu, Yue; Jiang, Youchao; Xu, Yao; Jin, Wenxing; Zhu, Bofeng; Jian, Shuisheng

    2018-01-01

    We experimentally demonstrate a switchable narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser with LP11 transverse mode output. The laser is based on a mode selective all-fiber fused coupler which is composed of a single-mode fiber (SMF) and a two-mode fiber (TMF). By controlling the polarization state of the output light, the laser can provide narrow linewidth SLM output with LP11 transverse mode at two specific wavelengths, which correspond to two transmission peaks of the chirped moiré fiber grating (CMFBG). The 20 dB linewidth of the fiber laser for each wavelength is approximately 7.2 and 6.4 kHz.

  10. Switchable Ni–Mn–Ga Heusler nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zayak, Alexey T.; Beckman, Scott P.; Tiago, Murilo L.

    2008-10-02

    Here, we examined bulk-like Heusler nanocrystals using real-space pseudopotentials constructed within density functional theory. The nanocrystals were made of various compositions of Ni-Mn-Ga in the size range from 15 up to 169 atoms. Among these compositions, the closest to the stoichiometric Ni 2MnGa were found to be the most stable. The Ni-based nanocrystals retained a tendency for tetragonal distortion, which is inherited from the bulk properties. Surface effects suppress the tetragonal structure in the smaller Ni-based nanocrystals, while bigger nanocrystals develop a bulk-like tetragonal distortion. We suggest the possibility of switchable Ni-Mn-Ga nanocrystals, which could be utilized for magnetic nano-shape-memorymore » applications.« less

  11. Lance Wheeler | NREL

    Science.gov Websites

    solution-phase phenomena of nanomaterials Switchable photovoltaics Solar thermochemical fuel production methylammonium lead halide perovskites during thermal processing from solution," Energy & Environmental

  12. A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles

    PubMed Central

    Chen, Haiwei; Tan, Guanjun; Huang, Yuge; Weng, Yishi; Choi, Tae-Hoon; Yoon, Tae-Hoon; Wu, Shin-Tson

    2017-01-01

    We demonstrate a simple yet high performance phase grating with switchable diffraction angles using a fringe field switching (FFS) liquid crystal (LC) cell. The LC rubbing angle is parallel to the FFS electrodes (i.e. α = 0°), leading to symmetric LC director distribution in a voltage-on state. Such a grating exhibits three unique features: 1) Two grating periods can be formed by controlling the applied voltage, resulting in switchable diffraction angles. In our design, the 1st diffraction order occurs at 4.3°, while the 2nd order appears at 8.6°. 2) The required voltage to achieve peak diffraction efficiency (η~32%) for the 1st order is only 4.4 V at λ = 633 nm as compared to 70 V for a conventional FFS-based phase grating in which α ≈ 7°, while the 2nd order (η~27%) is 15 V. 3). The measured rise and decay time for the 1st order is 7.62 ms and 6.75 ms, and for the 2nd order is 0.75 ms and 3.87 ms, respectively. To understand the physical mechanisms, we also perform device simulations. Good agreement between experiment and simulation is obtained. PMID:28054592

  13. Maximal switchability of centralized networks

    NASA Astrophysics Data System (ADS)

    Vakulenko, Sergei; Morozov, Ivan; Radulescu, Ovidiu

    2016-08-01

    We consider continuous time Hopfield-like recurrent networks as dynamical models for gene regulation and neural networks. We are interested in networks that contain n high-degree nodes preferably connected to a large number of N s weakly connected satellites, a property that we call n/N s -centrality. If the hub dynamics is slow, we obtain that the large time network dynamics is completely defined by the hub dynamics. Moreover, such networks are maximally flexible and switchable, in the sense that they can switch from a globally attractive rest state to any structurally stable dynamics when the response time of a special controller hub is changed. In particular, we show that a decrease of the controller hub response time can lead to a sharp variation in the network attractor structure: we can obtain a set of new local attractors, whose number can increase exponentially with N, the total number of nodes of the nework. These new attractors can be periodic or even chaotic. We provide an algorithm, which allows us to design networks with the desired switching properties, or to learn them from time series, by adjusting the interactions between hubs and satellites. Such switchable networks could be used as models for context dependent adaptation in functional genetics or as models for cognitive functions in neuroscience.

  14. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-22

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  15. Switchable skin window induced by optical clearing method for dermal blood flow imaging

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Rui; Zhu, Dan

    2013-06-01

    Optical imaging techniques have shown tremendous potential for assessing cutaneous microcirculation, but the imaging depth and contrast is limited by the strong scattering of skin. Current skin windows have to be fulfilled by surgical operation and suffer from some side effects. In this study, a switchable skin window was developed by topical application of an optical clearing agent (OCA) and saline on rat skin in vivo. The validity of the skin window was evaluated by the laser speckle contrast imaging technique, and the safety of OCA to the body was tested through histologic examinations. The results indicated that administration of OCA or saline on rat skin in vivo can open or close the window of skin repeatedly for three days. With the repair effect of hyaluronic acid and Vaseline, it is able to repeatedly visualize the dermal blood vessels and flow distribution. Long-term observation shows that there is no abnormal reflection in micro-structure, body weight, organ coefficients, histopathologic lesions, or toxic reactions compared with a control group. This switchable window will provide an effective tool not only for cutaneous microcirculation with laser speckle contrast imaging, but also for diagnosis and treatment of peripheral vascular diseases, including tumor research with various optical imaging techniques.

  16. Nanoscale Ultrasound-Switchable FRET-Based Liposomes for Near-Infrared Fluorescence Imaging in Optically Turbid Media.

    PubMed

    Zhang, Qimei; Morgan, Stephen P; Mather, Melissa L

    2017-09-01

    A new approach for fluorescence imaging in optically turbid media centered on the use of nanoscale ultrasound-switchable FRET-based liposome contrast agents is reported. Liposomes containing lipophilic carbocyanine dyes as FRET pairs with emission wavelengths located in the near-infrared window are prepared. The efficacy of FRET and self-quenching for liposomes with a range of fluorophore concentrations is first calculated from measurement of the liposome emission spectra. Exposure of the liposomes to ultrasound results in changes in the detected fluorescent signal, the nature of which depends on the fluorophores used, detection wavelength, and the fluorophore concentration. Line scanning of a tube containing the contrast agents with 1 mm inner diameter buried at a depth of 1 cm in a heavily scattering tissue phantom demonstrates an improvement in image spatial resolution by a factor of 6.3 as compared with images obtained in the absence of ultrasound. Improvements are also seen in image contrast with the highest obtained being 9% for a liposome system containing FRET pairs. Overall the results obtained provide evidence of the potential the nanoscale ultrasound-switchable FRET-based liposomes studied here have for in vivo fluorescence imaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  18. Enhanced electrical properties in bilayered ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Long, WeiJie; Chen, YaQing; Guo, DongJie

    2013-03-01

    Sr2Bi4Ti5O18 (SBTi) single layered and Sr2Bi4Ti5O18/Pb(Zr0.53Ti0.47)O3 (SBTi/PZT) bilayered thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD). The related structural characterizations and electrical properties have been comparatively investigated. X-ray diffraction reveals that both films have crystallized into perovskite phases and scanning electron microscopy shows the sharp interfaces. Both films show well-saturated ferroelectric hysteresis loops, however, compared with the single layered SBTi films, the SBTi/PZT bilayered films have significantly increased remnant polarization ( P r) and decreased coercive field ( E c), with the applied field of 260 kV/cm. The measured P r and E c of SBTi and SBTi/PZT films were 7.9 μC/cm2, 88.1 kV/cm and 13.0 μC/cm2, 51.2 kV/cm, respectively. In addition, both films showed good fatigue-free characteristics, the switchable polarization decreased by 9% and 11% of the initial values after 2.2×109 switching cycles for the SBTi single layered films and the SBTi/PZT bilayered films, respectively. Our results may provide some guidelines for further optimization of multilayered ferroelectric thin films.

  19. Redox control of molecular motion in switchable artificial nanoscale devices.

    PubMed

    Credi, Alberto; Semeraro, Monica; Silvi, Serena; Venturi, Margherita

    2011-03-15

    The design, synthesis, and operation of molecular-scale systems that exhibit controllable motions of their component parts is a topic of great interest in nanoscience and a fascinating challenge of nanotechnology. The development of this kind of species constitutes the premise to the construction of molecular machines and motors, which in a not-too-distant future could find applications in fields such as materials science, information technology, energy conversion, diagnostics, and medicine. In the past 25 years the development of supramolecular chemistry has enabled the construction of an interesting variety of artificial molecular machines. These devices operate via electronic and molecular rearrangements and, like the macroscopic counterparts, they need energy to work as well as signals to communicate with the operator. Here we outline the design principles at the basis of redox switching of molecular motion in artificial nanodevices. Redox processes, chemically, electrically, or photochemically induced, can indeed supply the energy to bring about molecular motions. Moreover, in the case of electrically and photochemically induced processes, electrochemical and photochemical techniques can be used to read the state of the system, and thus to control and monitor the operation of the device. Some selected examples are also reported to describe the most representative achievements in this research area.

  20. Optical properties of metal-hydride switchable films

    NASA Astrophysics Data System (ADS)

    Griessen, Ronald

    2001-03-01

    In 1996 we discovered that yttrium-, lanthanum-, and rare-earth-hydride (REHx) films [1] protected by a thin palladium layer, exhibit spectacular changes in their optical properties when the hydrogen concentration x is increased from 2 to 3. For example, a 500 nm thick YH2 film is metallic and shiny while YH3 is yellowish and transparent. The transition is reversible, fast [2, 3], and can simply be induced by adding or removing hydrogen from the gas phase, an electrolyte or from an H containing liquid. The optical switching that occurs near the metal-insulator transition of these hydrides is remarkably robust as it is not affected by structural or compositional disorder. It occurs in polycrystalline and epitaxial films, in alloys with cubic or hexagonal crystal structures,and deuterides [4] switch as well as hydrides. At small length scales epitaxial YHx films exhibit surprising structural properties which open the way to pixel-by-pixel optical switching [5]. Colour-neutral switchable mirrors based on RE-Mg alloys [6] can be used in all-solid-state switchable devices. Newest results for Rare-Earth free switchable mirrors will be presented. [1] J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot and N. J. Koeman, Nature 380 (1996) 231; [2] S. J. van der Molen, J. W. J. Kerssemakers, J. H. Rector, N. J. Koeman, B. Dam, R. Griessen, J. Appl. Phys. 86 (1999) 6107; [3] F. J. A. den Broeder, S. J. van der Molen, et al., Nature 394 (1998)656; [4] A. T. M. van Gogh, E. S. Kooij, R. Griessen, Phys. Rev. Lett. 83 (1999) 4614; [5] J. W. J. Kerssemakers, S. J. van der Molen and R. Griessen, Nature 406 (2000) 489; [6] P. van der Sluis, M. Ouwerkerk and P. A. Duine, Appl. Phys. Lett. 70 (1997) 3356.

  1. Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications

    PubMed Central

    Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon

    2015-01-01

    In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch. PMID:26690443

  2. Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.

    PubMed

    Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan

    2013-03-25

    We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.

  3. Compact Mach-Zehnder interferometer based on photonic crystal fiber and its application in switchable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-08-01

    The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  4. Switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror.

    PubMed

    Liu, Shuo; Yan, Fengping; Feng, Ting; Wu, Beilei; Dong, Ze; Chang, Gee-Kung

    2014-08-20

    A kind of switchable and spacing-tunable dual-wavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror is presented and experimentally demonstrated. By adjusting the polarization controllers (PCs), stable dual-wavelength operation is obtained at the 2 μm band. The optical signal-to-noise ratio (OSNR) is better than 56 dB. The wavelength tuning is performed by applying static strain into the fiber Bragg grating. A tuning range from 0 to 5.14 nm is achieved for the dual-wavelength spacing. By adjusting the PCs properly, the fiber laser can also operate in single-wavelength state with the OSNR for each wavelength more than 50 dB.

  5. Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications.

    PubMed

    Eom, Seung-Hyun; Seo, Yunsik; Lim, Sungjoon

    2015-12-10

    In this paper, we propose a paper-based pattern switchable antenna system using inkjet-printing technology for bi-direction sensor applications. The proposed antenna system is composed of two directional bow-tie antennas and a switching network. The switching network consists of a single-pole-double-throw (SPDT) switch and a balun element. A double-sided parallel-strip line (DSPSL) is employed to convert the unbalanced microstrip mode to the balanced strip mode. Two directional bow-tie antennas have different radiation patterns because of the different orientation of the reflectors and antennas. It is demonstrated from electromagnetic (EM) simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT switch.

  6. Thermally Switchable Thin Films of an ABC Triblock Copolymer of Poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.

    2011-01-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  7. Switchable multi-wavelength fiber laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng

    2015-08-01

    A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.

  8. Protein analysis by time-resolved measurements with an electro-switchable DNA chip

    PubMed Central

    Langer, Andreas; Hampel, Paul A.; Kaiser, Wolfgang; Knezevic, Jelena; Welte, Thomas; Villa, Valentina; Maruyama, Makiko; Svejda, Matej; Jähner, Simone; Fischer, Frank; Strasser, Ralf; Rant, Ulrich

    2013-01-01

    Measurements in stationary or mobile phases are fundamental principles in protein analysis. Although the immobilization of molecules on solid supports allows for the parallel analysis of interactions, properties like size or shape are usually inferred from the molecular mobility under the influence of external forces. However, as these principles are mutually exclusive, a comprehensive characterization of proteins usually involves a multi-step workflow. Here we show how these measurement modalities can be reconciled by tethering proteins to a surface via dynamically actuated nanolevers. Short DNA strands, which are switched by alternating electric fields, are employed as capture probes to bind target proteins. By swaying the proteins over nanometre amplitudes and comparing their motional dynamics to a theoretical model, the protein diameter can be quantified with Angström accuracy. Alterations in the tertiary protein structure (folding) and conformational changes are readily detected, and even post-translational modifications are revealed by time-resolved molecular dynamics measurements. PMID:23839273

  9. Robust ferromagnetism carried by antiferromagnetic domain walls

    NASA Astrophysics Data System (ADS)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  10. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets.

    PubMed

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-10-30

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 x 10(8) bound targets per cm(2) sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format.

  11. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets

    PubMed Central

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-01-01

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 × 108 bound targets per cm2 sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format. PMID:17951434

  12. Interfacial electrofluidics in confined systems

    PubMed Central

    Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G.F.)

    2016-01-01

    Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films. PMID:27221211

  13. Polarization fatigue of BiFeO3 films with ferromagnetic metallic electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Wang, Ji; Li, Chen; Wen, Zheng; Xu, Qingyu; Du, Jun

    2017-05-01

    BiFeO3 (BFO) thin films were epitaxially grown on (001) SrTiO3 substrates using LaNiO3 as bottom electrode by pulsed laser deposition. The ferroelectric properties of BFO layer with ferromagnetic Ni21Fe79 (NiFe) or non-magnetic Pt electrode are investigated. Well saturated polarization-electric field (P-E) hysteresis loops are observed. Significant fatigue and associated drastic decrease in switchable polarization have been observed with cycling number exceeds 106, which can be explained by the domain wall pinning due to the oxygen vacancies trapping. With increasing cycle number to above 107, the polarization is rejuvenated. The polarization for BFO layer with NiFe electrode recovers to the initial value, while only about 75% of initial polarization is recovered for BFO layer with Pt electrode. Furthermore, the imprint is alleviated and the P-E hysteresis loops become more symmetric after the polarization recovery. The difference can be understood by the different interface state of NiFe/BFO and Pt/BFO.

  14. Prediction of a native ferroelectric metal

    PubMed Central

    Filippetti, Alessio; Fiorentini, Vincenzo; Ricci, Francesco; Delugas, Pietro; Íñiguez, Jorge

    2016-01-01

    Over 50 years ago, Anderson and Blount discussed symmetry-allowed polar distortions in metals, spawning the idea that a material might be simultaneously metallic and ferroelectric. While many studies have ever since considered such or similar situations, actual ferroelectricity—that is, the existence of a switchable intrinsic electric polarization—has not yet been attained in a metal, and is in fact generally deemed incompatible with the screening by mobile conduction charges. Here we refute this common wisdom and show, by means of first-principles simulations, that native metallicity and ferroelectricity coexist in the layered perovskite Bi5Ti5O17. We show that, despite being a metal, Bi5Ti5O17 can sustain a sizable potential drop along the polar direction, as needed to reverse its polarization by an external bias. We also reveal striking behaviours, as the self-screening mechanism at work in thin Bi5Ti5O17 layers, emerging from the interplay between polar distortions and carriers in this compound. PMID:27040076

  15. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy

    NASA Astrophysics Data System (ADS)

    Kapsalidis, Filippos; Shahmohammadi, Mehran; Süess, Martin J.; Wolf, Johanna M.; Gini, Emilio; Beck, Mattias; Hundt, Morten; Tuzson, Béla; Emmenegger, Lukas; Faist, Jérôme

    2018-06-01

    We report on the design, fabrication, and performance of dual-wavelength distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at several wavelengths in the mid-infrared (mid-IR) spectrum. In this work, two new designs are presented: for the first one, called "Neighbour" DFB, two single-mode DFB QCLs are fabricated next to each other, with minimal lateral distance, to allow efficient beam-coupling into multi-pass gas cells. In addition, the minimal distance allows either laser to be used as an integrated heater for the other, allowing to extend the tuning range of its neighbour without any electrical cross-talk. For the second design, the Vernier effect was used to realize a switchable DFB laser, with two target wavelengths which are distant by about 300 cm^{-1}. These devices are promising laser sources for Tunable Diode Laser Absorption Spectroscopy applications targeting simultaneous detection of multiple gasses, with distant spectral features, in compact and mobile setups.

  16. Switchable Polymer Based Thin Film Coils as a Power Module for Wireless Neural Interfaces.

    PubMed

    Kim, S; Zoschke, K; Klein, M; Black, D; Buschick, K; Toepper, M; Tathireddy, P; Harrison, R; Solzbacher, F

    2007-05-01

    Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro batteries as well as biological micro fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.

  17. Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching

    DOE PAGES

    Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; ...

    2015-01-14

    The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-lossmore » spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.« less

  18. Nonvolatile memory characteristics of organic thin film transistors using poly(2-hydroxyethyl methacrylate)-based polymer multilayer dielectric

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chih; Su, Yan-Kuin; Yu, Hsin-Chieh; Huang, Chun-Yuan; Huang, Tsung-Syun

    2011-10-01

    A wide hysteresis width characteristic (memory window) was observed in the organic thin film transistors (OTFTs) using poly(2-hydroxyethyl methacrylate) (PHEMA)-based polymer multilayers. In this study, a strong memory effect was also found in the pentacene-based OTFTs and the electric characteristics were improved by introducing PHEMA/poly(methyl methacrylate) (PMMA)/PHEMA trilayer to replace the conventional PHEMA monolayer or PMMA/PHEMA and PHEMA/PMMA bilayer as the dielectric layers of OTFTs. The memory effect was originated from the electron trapping and slow polarization of the dielectrics. The hydroxyl (-OH) groups inside the polymer dielectric were the main charge storage sites of the electrons. This charge-storage phenomenon could lead to a wide flat-band voltage shift (memory window, △VFB = 22 V) which is essential for the OTFTs' memory-related applications. Moreover, the fabricated transistors also exhibited significant switchable channel current due to the charge-storage and slow charge relaxation.

  19. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    NASA Astrophysics Data System (ADS)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  20. Wide and ultra-wide bandgap oxides: where paradigm-shift photovoltaics meets transparent power electronics

    NASA Astrophysics Data System (ADS)

    Pérez-Tomás, Amador; Chikoidze, Ekaterine; Jennings, Michael R.; Russell, Stephen A. O.; Teherani, Ferechteh H.; Bove, Philippe; Sandana, Eric V.; Rogers, David J.

    2018-03-01

    Oxides represent the largest family of wide bandgap (WBG) semiconductors and also offer a huge potential range of complementary magnetic and electronic properties, such as ferromagnetism, ferroelectricity, antiferroelectricity and high-temperature superconductivity. Here, we review our integration of WBG and ultra WBG semiconductor oxides into different solar cells architectures where they have the role of transparent conductive electrodes and/or barriers bringing unique functionalities into the structure such above bandgap voltages or switchable interfaces. We also give an overview of the state-of-the-art and perspectives for the emerging semiconductor β- Ga2O3, which is widely forecast to herald the next generation of power electronic converters because of the combination of an UWBG with the capacity to conduct electricity. This opens unprecedented possibilities for the monolithic integration in solar cells of both self-powered logic and power electronics functionalities. Therefore, WBG and UWBG oxides have enormous promise to become key enabling technologies for the zero emissions smart integration of the internet of things.

  1. Robust ferromagnetism carried by antiferromagnetic domain walls

    PubMed Central

    Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji

    2017-01-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565

  2. Oxygen vacancies induced switchable and nonswitchable photovoltaic effects in Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3} /La{sub 0.7}Sr{sub 0.3}MnO{sub 3} sandwiched capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, R. L., E-mail: gaorongli2008@163.com, E-mail: jrsun@iphy.ac.cn; Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing 100190; Yang, H. W.

    2014-01-20

    The short circuit photocurrent (I{sub sc}) was found to be strongly dependent on the oxygen vacancies (V{sub Os}) distribution in Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} heterostructures. In order to manipulate the V{sub Os} accumulated at either the Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3} or the Bi{sub 0.9}La{sub 0.1}FeO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} interface by pulse voltages, switchable or nonswitchable photocurrent can be observed without or with changing the polarization direction. The sign of photocurrent could be independent of the direction of polarization when the variation of diffusion current and the modulation of the Schottky barrier at the Ag/Bi{sub 0.9}La{sub 0.1}FeO{submore » 3} interface induced by oxygen vacancies are large enough to offset those induced by polarization. Our work provides deep insights into the nature of photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities.« less

  3. The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Yu, Shuai; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Tang, Liping; Yuan, Baohong

    2017-01-01

    Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing. PMID:28208666

  4. Borophene as a Promising Material for Charge-Modulated Switchable CO2 Capture.

    PubMed

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2017-06-14

    Ideal carbon dioxide (CO 2 ) capture materials for practical applications should bind CO 2 molecules neither too weakly to limit good loading kinetics nor too strongly to limit facile release. Although charge-modulated switchable CO 2 capture has been proposed to be a controllable, highly selective, and reversible CO 2 capture strategy, the development of a practical gas-adsorbent material remains a great challenge. In this study, by means of density functional theory (DFT) calculations, we have examined the possibility of conductive borophene nanosheets as promising sorbent materials for charge-modulated switchable CO 2 capture. Our results reveal that the binding strength of CO 2 molecules on negatively charged borophene can be significantly enhanced by injecting extra electrons into the adsorbent. At saturation CO 2 capture coverage, the negatively charged borophene achieves CO 2 capture capacities up to 6.73 × 10 14 cm -2 . In contrast to the other CO 2 capture methods, the CO 2 capture/release processes on negatively charged borophene are reversible with fast kinetics and can be easily controlled via switching on/off the charges carried by borophene nanosheets. Moreover, these negatively charged borophene nanosheets are highly selective for separating CO 2 from mixtures with CH 4 , H 2 , and/or N 2 . This theoretical exploration will provide helpful guidance for identifying experimentally feasible, controllable, highly selective, and high-capacity CO 2 capture materials with ideal thermodynamics and reversibility.

  5. Detection of nitro-based and peroxide-based explosives by fast polarity-switchable ion mobility spectrometer with ion focusing in vicinity of Faraday detector.

    PubMed

    Zhou, Qinghua; Peng, Liying; Jiang, Dandan; Wang, Xin; Wang, Haiyan; Li, Haiyang

    2015-05-29

    Ion mobility spectrometer (IMS) has been widely deployed for on-site detection of explosives. The common nitro-based explosives are usually detected by negative IMS while the emerging peroxide-based explosives are better detected by positive IMS. In this study, a fast polarity-switchable IMS was constructed to detect these two explosive species in a single measurement. As the large traditional Faraday detector would cause a trailing reactant ion peak (RIP), a Faraday detector with ion focusing in vicinity was developed by reducing the detector radius to 3.3 mm and increasing the voltage difference between aperture grid and its front guard ring to 591 V, which could remove trailing peaks from RIP without loss of signal intensity. This fast polarity-switchable IMS with ion focusing in vicinity of Faraday detector was employed to detect a mixture of 10 ng 2,4,6-trinitrotoluene (TNT) and 50 ng hexamethylene triperoxide diamine (HMTD) by polarity-switching, and the result suggested that [TNT-H](-) and [HMTD+H](+) could be detected in a single measurement. Furthermore, the removal of trailing peaks from RIP by the Faraday detector with ion focusing in vicinity also promised the accurate identification of KClO4, KNO3 and S in common inorganic explosives, whose product ion peaks were fairly adjacent to RIP.

  6. Significant differences in ion and electron guiding through highly insulating capillaries

    NASA Astrophysics Data System (ADS)

    Stolterfoht, N.; Tanis, J.

    2018-04-01

    Outstanding phenomena of capillary guiding are discussed in accordance with a recent review in the field. Experiments concerning highly charged ions of a few keV energy guided through insulating nanocapillaries are shown. Studies of the temporal evolution of ion transmission are presented. Attention is focused on oscillatory structures in the ion emission and the independence of the ion guiding on the beam intensity. A few experiments of electron guiding are presented showing a significantly different temporal evolution of the transmitted intensity. The onset of the electron transmission is very sudden accompanied by a considerable energy loss within the capillary. To achieve more insight into the different guiding mechanisms, theoretical aspects of the capillary guiding are analyzed. A scenario is offered to explain the abrupt rise of transmitted electrons. Altogether, these studies show that ion and electron guiding are accomplished through different manifestations of the charge build up that underlies both.

  7. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong [Berkeley, CA; He, Rongrui [El Cerrito, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yiying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  8. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  9. Switchable focus using a polymeric lenticular microlens array and a polarization rotator.

    PubMed

    Ren, Hongwen; Xu, Su; Liu, Yifan; Wu, Shin-Tson

    2013-04-08

    We demonstrate a flat polymeric lenticular microlens array using a mixture of rod-like diacrylate monomer and positive dielectric anisotropy nematic liquid crystal (LC). To create gradient refractive index profile in one microlens, we generate fringing fields from a planar top electrode and two striped bottom electrodes. After UV stabilization, the film is optically anisotropic and can stand alone. We then laminate this film on a 90° twisted-nematic LC cell, which works as a dynamic polarization rotator. The static polymeric lenticular lens exhibits focusing effect only to the extraordinary ray, but no optical effect to the ordinary ray. Such an integrated lens system offers several advantages, such as low voltage, fast response time, and temperature insensitivity, and can be used for switchable 2D/3D displays.

  10. Switchable polarization-sensitive surface plasmon resonance of highly stable gold nanorods liquid crystals composites

    NASA Astrophysics Data System (ADS)

    Liu, Qingkun; Qian, Jun; Cai, Fuhong; Smalyukh, Ivan I.; He, Sailing

    2011-12-01

    In this work, we demonstrate the bulk self-alignment of gold nanorods (GNRs) dispersed in lyotropic nematic liquid crystals (LCs) with high optical absorption coefficient at the surface plasmon resonant wavelength. The polymer-coated GNRs which show spontaneous long-range orientational ordering along the director of LC host exhibit long-term stability as well as high concentration. External magnetic field and shearing allow for alignment and realignment of the orientation of gold nanorods by changing the director of the liquid crystal matrix. This results in a switchable polarization-sensitive surface plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The devise-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of surface plasmon resonance of nanoparticles.

  11. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2011-11-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  12. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng

    2009-06-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.

  13. A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Zhang, Liaolin; Sharafudeen, Kaniyarakkal; Qiu, Jianrong

    2013-10-01

    A switchable dual-wavelength CW erbium-doped fiber laser with two cascaded fiber Bragg gratings has been proposed and demonstrated experimentally at room temperature. The laser uses a linear resonant cavity configuration incorporating a Sagnac loop with a polarization controller (PC) and can switch flexibly to output a single wavelength or dual wavelengths based on the polarization hole burning (PHB) effect. The slope efficiency and maximum output power can reach 23% and 96 mW, respectively. The two lasing peaks of the laser, with a narrow linewidth output and an optical signal-to-noise ratio of more than 50 dB, are located in the C and L bands of the optical communication window, respectively. The laser shows good stability with respect to the wavelength and output power.

  14. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2012-03-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  15. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter.

    PubMed

    Zhang, Z X; Xu, Z W; Zhang, L

    2012-11-19

    We report the generation of tunable single- and dual-wavelength dissipative solitons in an all-normal-dispersion mode-locked Yb-doped fiber laser, to the best of our knowledge, for the first time. Besides single-wavelength mode-locking, dual-wavelength mode-locking was achieved using an in-line birefringence fiber filter with periodic multiple passbands, which not only allows multiple wavelengths to oscillate simultaneously but also performs spectrum modulation on highly chirped dissipative pulse. Furthermore, taking advantage of the tunability of the birefringence fiber filter, wavelength tuning for both single- and dual-wavelength dissipative soliton mode-locking was realized. The dual-wavelength operation is also switchable. The all-fiber dissipative laser with flexible outputs can meet diverse application needs.

  16. Application of a 1,1,3,3-tetramethylguanidine (TMG)/MeOH-CO2 in situ derivatization procedure for the gas chromatographic characterization of the fatty acid profile in olive oil.

    PubMed

    Saliu, F; Anzano, M; Franzetti, A

    2015-03-01

    1,1,3,3-Tetramethylguanidine (TMG), methanol and carbon dioxide were investigated as switchable polarity solvents (SPS) in the simultaneous derivatization and extraction of triacylglycerols for the gas chromatographic (GC) characterization of olive oil. Three commercial olive oils were used as test samples. Results of the developed method did not differ statistically from those provided by reference derivatization procedures. The transesterification reaction was carried out under a very mild condition, one step and in situ, and no particular matrix interferences were evidenced. The method represented the first example of the use of a switchable polarity mixture for the preparation of methyl ester derivatives of fatty acids (FAME).

  17. Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production.

    PubMed

    Boyd, Alaina R; Champagne, Pascale; McGinn, Patrick J; MacDougall, Karen M; Melanson, Jeremy E; Jessop, Philip G

    2012-08-01

    A switchable hydrophilicity solvent (SHS) was studied for its effectiveness at extracting lipids from freeze-dried samples of Botryococcus braunii microalgae. The SHS N,N-dimethylcyclohexylamine extracted up to 22 wt.% crude lipid relative to the freeze-dried cell weight. The solvent was removed from the extract with water saturated with carbon dioxide at atmospheric pressure and recovered from the water upon de-carbonation of the mixture. Liquid chromatography-mass spectrometry (LC-MS) showed that the extracted lipids contained high concentrations of long chain tri-, di- and mono-acylglycerols, no phospholipids, and only 4-8% of residual solvent. Unlike extractions with conventional organic solvents, this new method requires neither distillation nor the use of volatile, flammable or chlorinated organic solvents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Integrated all-optical infrared switchable plasmonic quantum cascade laser.

    PubMed

    Kohoutek, John; Bonakdar, Alireza; Gelfand, Ryan; Dey, Dibyendu; Nia, Iman Hassani; Fathipour, Vala; Memis, Omer Gokalp; Mohseni, Hooman

    2012-05-09

    We report a type of infrared switchable plasmonic quantum cascade laser, in which far field light in the midwave infrared (MWIR, 6.1 μm) is modulated by a near field interaction of light in the telecommunications wavelength (1.55 μm). To achieve this all-optical switch, we used cross-polarized bowtie antennas and a centrally located germanium nanoslab. The bowtie antenna squeezes the short wavelength light into the gap region, where the germanium is placed. The perturbation of refractive index of the germanium due to the free carrier absorption produced by short wavelength light changes the optical response of the antenna and the entire laser intensity at 6.1 μm significantly. This device shows a viable method to modulate the far field of a laser through a near field interaction.

  19. Optical frequency switching scheme for a high-speed broadband THz measurement system based on the photomixing technique.

    PubMed

    Song, Hajun; Hwang, Sejin; Song, Jong-In

    2017-05-15

    This study presents an optical frequency switching scheme for a high-speed broadband terahertz (THz) measurement system based on the photomixing technique. The proposed system can achieve high-speed broadband THz measurements using narrow optical frequency scanning of a tunable laser source combined with a wavelength-switchable laser source. In addition, this scheme can provide a larger output power of an individual THz signal compared with that of a multi-mode THz signal generated by multiple CW laser sources. A swept-source THz tomography system implemented with a two-channel wavelength-switchable laser source achieves a reduced time for acquisition of a point spread function and a higher depth resolution in the same amount of measurement time compared with a system with a single optical source.

  20. High-speed switchable lens enables the development of a volumetric stereoscopic display

    PubMed Central

    Love, Gordon D.; Hoffman, David M.; Hands, Philip J.W.; Gao, James; Kirby, Andrew K.; Banks, Martin S.

    2011-01-01

    Stereoscopic displays present different images to the two eyes and thereby create a compelling three-dimensional (3D) sensation. They are being developed for numerous applications including cinema, television, virtual prototyping, and medical imaging. However, stereoscopic displays cause perceptual distortions, performance decrements, and visual fatigue. These problems occur because some of the presented depth cues (i.e., perspective and binocular disparity) specify the intended 3D scene while focus cues (blur and accommodation) specify the fixed distance of the display itself. We have developed a stereoscopic display that circumvents these problems. It consists of a fast switchable lens synchronized to the display such that focus cues are nearly correct. The system has great potential for both basic vision research and display applications. PMID:19724571

  1. Photo-switchable two-dimensional nanofluidic ionic diodes.

    PubMed

    Wang, Lili; Feng, Yaping; Zhou, Yi; Jia, Meijuan; Wang, Guojie; Guo, Wei; Jiang, Lei

    2017-06-01

    The bottom-up assembly of ion-channel-mimetic nanofluidic devices and materials with two-dimensional (2D) nano-building blocks paves a straightforward way towards the real-world applications of the novel transport phenomena on a nano- or sub-nanoscale. One immediate challenge is to provide the 2D nanofluidic systems with adaptive responsibilities and asymmetric ion transport characteristics. Herein, we introduce a facile and general strategy to provide a graphene-oxide-based 2D nanofluidic system with photo-switchable ionic current rectification (ICR). The degree of ICR can be prominently enhanced upon UV irradiation and it can be perfectly retrieved under irradiation with visible light. A maximum ICR ratio of about 48 was achieved. The smart and functional nanofluidic devices have applications in energy conversion, chemical sensing, water treatment, etc .

  2. Switchable Schottky diode characteristics induced by electroforming process in Mn-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Nam, Yoonseung; Hwang, Inrok; Oh, Sungtaek; Lee, Sangik; Lee, Keundong; Hong, Sahwan; Kim, Jinsoo; Choi, Taekjib; Ho Park, Bae

    2013-04-01

    We investigated the asymmetric current-voltage (I-V) characteristics and accompanying unipolar resistive switching of pure ZnO and Mn(1%)-doped ZnO (Mn:ZnO) films sandwiched between Pt electrodes. After electroforming, a high resistance state of the Mn:ZnO capacitor revealed switchable diode characteristics whose forward direction was determined by the polarity of the electroforming voltage. Linear fitting of the I-V curves highlighted that the rectifying behavior was influenced by a Schottky barrier at the Pt/Mn:ZnO interface. Our results suggest that formation of conducting filaments from the cathode during the electroforming process resulted in a collapse of the Schottky barrier (near the cathode), and rectifying behaviors dominated by a remnant Schottky barrier near the anode.

  3. High quality factor, fully switchable terahertz superconducting metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scalari, G., E-mail: scalari@phys.ethz.ch; Maissen, C.; Faist, J.

    2014-12-29

    We present a complementary THz metasurface realised with Niobium thin film which displays a quality factor Q = 54 and a fully switchable behaviour as a function of the temperature. The switching behaviour and the high quality factor are due to a careful design of the metasurface aimed at maximising the ohmic losses when the Nb is above the critical temperature and minimising the radiative coupling. The superconductor allows the operation of the cavity with high Q and the use of inductive elements with a high aspect ratio. Comparison with three dimensional finite element simulations highlights the crucial role of the inductivemore » elements and of the kinetic inductance of the Cooper pairs in achieving the high quality factor and the high field enhancement.« less

  4. Development and characterization of amorphous acrylate networks for use as switchable adhesives inspired from shapememory behavior

    NASA Astrophysics Data System (ADS)

    Lakhera, Nishant

    Several types of insects and animals such as spiders and geckos are inherently able to climb along vertical walls and ceilings. This remarkable switchable adhesive behavior has been attributed to the fibrillar structures on their feet, with size ranging from few nanometers to a few micrometers depending on the species. Several studies have attempted to create synthetic micro-patterned surfaces trying to imitate this adhesive behavior seen in nature. The experimental procedures are scattered, with sole purpose of trying to increase adhesion, thereby making direct comparison between studies very difficult. There is a lack of fundamental understanding on adhesion of patterned surfaces. The influence of critical parameters like material modulus, glass transition temperature, viscoelastic effects, temperature and water absorption on adhesion is not fully explored and characterized. These parameters are expected to have a decisive influence on adhesion behavior of the polymer. Previous studies have utilized conventional "off-the-shelf" materials like epoxy, polyurethanes etc. It is however, impossible to change the material modulus, glass transition temperature etc. of these polymer systems without changing the base constituents itself, thereby explaining the gaps in the current research landscape. The purpose of this study was to use acrylate shape-memory polymers (SMPs) for their ability to be tailored to specific mechanical properties by control of polymer chemistry, without changing the base constituents. Polymer networks with tailorable glass transition, material modulus, water absorption etc. were developed and adhesion studies were performed to investigate the influence of temperature, viscoelastic effects, material modulus on the adhesion behavior of flat acrylate polymer surfaces. The knowledge base gained from these studies was utilized to better understand the fundamental mechanisms associated with adhesion behavior of patterned acrylate surfaces. Thermally induced switchable adhesion and water induced switchable adhesion of patterned acrylate surfaces was investigated. The viscoelastic energy dissipation occurring during the detachment phase was shown to dramatically increase adhesion under both thermally induced and water induced conditions. This effect was most pre-dominant at the glass transition temperature of the material. Increase in pre-load force and unloading velocity were also shown to increase the adhesive capability of the patterned acrylate SMPs.

  5. Thermally switchable meta-material absorber involving vanadium dioxide semiconductor-metal transition for thermo photovoltaic conversion

    NASA Astrophysics Data System (ADS)

    Bendelala, Fathi; Cheknane, Ali; Hilal, Hikmat S.

    2018-01-01

    A new switchable absorber design using meta-materials for thermo photovoltaic applications is proposed here. Conventional absorbents are normally non-adjustable with narrow band-widths and polarization-dependence. The present study describes an alternative infrared absorber structure with tunable characteristics. The absorber is based on VO2 which exhibits transition from semiconductor to metallic conductor by thermal effect. With this design, the results show that wide-band absorption can be achieved. The absorption bandwidth can be improved from 15.94 to 36.75 THz. With 40.42% relative shift in the peak frequency, a maximum absorption efficiency of 99% can be achieved. This structure design is polarization-independent of normal incident radiations, and may accommodate radiations from wide oblique angles. These new features make the new thermally adjustable absorber potentially useful in thermo-photovoltaic conversion devices.

  6. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures.

    PubMed

    Hull, Jonathan F; Himeda, Yuichiro; Wang, Wan-Hui; Hashiguchi, Brian; Periana, Roy; Szalda, David J; Muckerman, James T; Fujita, Etsuko

    2012-03-18

    Green plants convert CO(2) to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO(2) and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO(2), formate and formic acid. This system is energy-efficient and green because it operates near ambient conditions, uses water as a solvent, produces high-pressure CO-free hydrogen, and uses pH to control hydrogen production or consumption. The extraordinary and switchable catalytic activity is attributed to the multifunctional ligand, which acts as a proton-relay and strong π-donor, and is rationalized by theoretical and experimental studies.

  7. Thermoresponsive electrospun fibers for water harvesting applications

    NASA Astrophysics Data System (ADS)

    Thakur, Neha; Baji, Avinash; Ranganath, Anupama Sargur

    2018-03-01

    Temperature triggered switchable cellulose acetate-poly(N-isopropylacrylamide) (CA-PNIPAM) core-shell and blend nanofibers are fabricated for controlled moisture harvesting applications. Core-shell fibers are fabricated using a co-axial electrospinning setup whereas the conventional electrospinning setup is employed for fabricating the blend fibers. Investigation of their wettability behaviour demonstrated that the blend fibers are superhydrophilic whereas the core-shell fibers are hydrophilic at ambient temperature. Furthermore, both the samples have an ability to switch between the two states viz. hydrophilic to hydrophobic state based on thermal stimulus. The core-shell fibers are shown to have higher moisture sorption ability compared to the blend fibers. This study investigates the mechanism behind the switchable wettability behaviour of the core-shell fibers and demonstrates the crucial role played by the functional groups present on the surface layer of fibers in governing their moisture collection efficiency.

  8. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion.

    PubMed

    Graule, M A; Chirarattananon, P; Fuller, S B; Jafferis, N T; Ma, K Y; Spenko, M; Kornbluh, R; Wood, R J

    2016-05-20

    For aerial robots, maintaining a high vantage point for an extended time is crucial in many applications. However, available on-board power and mechanical fatigue constrain their flight time, especially for smaller, battery-powered aircraft. Perching on elevated structures is a biologically inspired approach to overcome these limitations. Previous perching robots have required specific material properties for the landing sites, such as surface asperities for spines, or ferromagnetism. We describe a switchable electroadhesive that enables controlled perching and detachment on nearly any material while requiring approximately three orders of magnitude less power than required to sustain flight. These electroadhesives are designed, characterized, and used to demonstrate a flying robotic insect able to robustly perch on a wide range of materials, including glass, wood, and a natural leaf. Copyright © 2016, American Association for the Advancement of Science.

  9. Design of protein switches based on an ensemble model of allostery.

    PubMed

    Choi, Jay H; Laurent, Abigail H; Hilser, Vincent J; Ostermeier, Marc

    2015-04-22

    Switchable proteins that can be regulated through exogenous or endogenous inputs have a broad range of biotechnological and biomedical applications. Here we describe the design of switchable enzymes based on an ensemble allosteric model. First, we insert an enzyme domain into an effector-binding domain such that both domains remain functionally intact. Second, we induce the fusion to behave as a switch through the introduction of conditional conformational flexibility designed to increase the conformational entropy of the enzyme domain in a temperature- or pH-dependent fashion. We confirm the switching behaviour in vitro and in vivo. Structural and thermodynamic studies support the hypothesis that switching result from an increase in conformational entropy of the enzyme domain in the absence of effector. These results support the ensemble model of allostery and embody a strategy for the design of protein switches.

  10. Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting.

    PubMed

    Rhee, Dongjoon; Lee, Won-Kyu; Odom, Teri W

    2017-06-01

    Soft skin layers on elastomeric substrates are demonstrated to support mechano-responsive wrinkle patterns that do not exhibit cracking under applied strain. Soft fluoropolymer skin layers on pre-strained poly(dimethylsiloxane) slabs achieved crack-free surface wrinkling at high strain regimes not possible by using conventional stiff skin layers. A side-by-side comparison between the soft and hard skin layers after multiple cycles of stretching and releasing revealed that the soft skin layer enabled dynamic control over wrinkle topography without cracks or delamination. We systematically characterized the evolution of wrinkle wavelength, amplitude, and orientation as a function of tensile strain to resolve the crack-free structural transformation. We demonstrated that wrinkled surfaces can guide water spreading along wrinkle orientation, and hence switchable, anisotropic wetting was realized. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of an active metasurface using terahertz ellipsometry

    DOE PAGES

    Karl, Nicholas; Heimbeck, Martin S.; Everitt, Henry O.; ...

    2017-11-06

    Switchable metasurfaces fabricated on a doped epi-layer have become an important platform for developing techniques to control terahertz (THz) radiation, as a DC bias can modulate the transmission characteristics of the metasurface. To model and understand this performance in new device configurations accurately, a quantitative understanding of the bias-dependent surface characteristics is required. In this work, we perform THz variable angle spectroscopic ellipsometry on a switchable metasurface as a function of DC bias. By comparing these data with numerical simulations, we extract a model for the response of the metasurface at any bias value. Using this model, we predict amore » giant bias-induced phase modulation in a guided wave configuration. Lastly, these predictions are in qualitative agreement with our measurements, offering a route to efficient modulation of THz signals.« less

  12. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials.

    PubMed

    Schäfer, Christian G; Lederle, Christina; Zentel, Kristina; Stühn, Bernd; Gallei, Markus

    2014-11-01

    In this work, the preparation of highly thermoresponsive and fully reversible stretch-tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate-co-ethyl acrylate) (PDEGMEMA-co-PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt-shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano- and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV-induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross-linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA-containing colloidal architectures, application of the melt-shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli-responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Superphobicity/philicity Janus Fabrics with Switchable, Spontaneous, Directional Transport Ability to Water and Oil Fluids

    PubMed Central

    Zhou, Hua; Wang, Hongxia; Niu, Haitao; Lin, Tong

    2013-01-01

    Herein we demonstrate that switchable, spontaneous, directional-transport ability to both water and oil fluids can be created on fabric materials through wet-chemistry coating and successive UV irradiation treatment. When the fabric showed directional transport to a liquid, it prevented liquids of higher surface tension from penetration, but allowed liquids of lower surface tension to permeate, from either side. The directional transport ability can be switched from one fluid to another simply by heating the fabric at an elevated temperature and then re-irradiating the fabric with UV light for required period of time. By attaching liquid drops vertically upwards to a horizontally-laid fabric, we further demonstrated that this novel directional fluid transport was an automatic process driven by surface property alone, irrespective of gravity's effect. This novel fabric may be useful for development of “smart” textiles and functional membranes for various applications. PMID:24129357

  14. Switchable in-line monitor for multi-dimensional multiplexed photonic integrated circuit.

    PubMed

    Chen, Guanyu; Yu, Yu; Ye, Mengyuan; Zhang, Xinliang

    2016-06-27

    A flexible monitor suitable for the discrimination of on-chip transmitted mode division multiplexed (MDM) and wavelength division multiplexed (WDM) signals is proposed and fabricated. By selectively extracting part of the incoming signals through the tunable wavelength and mode dependent drop filter, the in-line and switchable monitor can discriminate the wavelength, mode and power information of the transmitted signals. Being different from a conventional mode and wavelength demultiplexer, the monitor is specifically designed to ensure a flexible in-line monitoring. For demonstration, three mode and three wavelength multiplexed signals are successfully processed. Assisted by the integrated photodetectors (PDs), both the measured photo currents and eye diagrams validate the performance of the proposed device. The bit error ratio (BER) measurement results show less than 0.4 dB power penalty between different modes and ~2 dB power penalty for single wavelength and WDM cases under 10-9 BER level.

  15. Microsecond switchable thermal antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher

    2014-07-21

    We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heatingmore » less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.« less

  16. Self-Assembly of a Tripodal Triszwitterion Forms a pH-Switchable Hydrogel that Can Reversibly Encapsulate Hydrophobic Guests in Water.

    PubMed

    Jana, Poulami; Schmuck, Carsten

    2017-01-05

    The development of supramolecular smart materials, which exhibit physicochemical structural changes in response to external stimuli is of current interest for various applications. Herein, we have developed the novel tripodal triszwitterion 1, derived from a C 3 -symmetric benzene-1,3,5-tricarboxamide (BTA) core, which forms a thermo-reversible and pH-switchable transparent hydrogel through intermolecular self-complementary zwitterionic interactions at a neutral pH value. The hierarchical supramolecular self-aggregation was fully analyzed by microscopy (AFM, field emission scanning electron microscopy (FESEM)), viscosity, dynamic light scattering (DLS), and rheology studies. Moreover, compound 1 enables to encapsulate hydrophobic guests, such as the dye Nile red in aqueous medium at pH 6, which makes it an interesting candidate for drug delivery and controlled release. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structure-Function Study of Tertiary Amines as Switchable Polarity Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaron D. Wilson; Frederick F. Stewart

    2014-02-01

    A series of tertiary amines have been screened for their function as switchable polarity solvents (SPS). The relative ratios of tertiary amine and carbonate species as well as maximum possible concentration were determined through quantitative 1H and 13C NMR spectroscopy. The viscosities of the polar SPS solutions were measured and ranged from near water in dilute systems through to gel formation at high concentrations. The van't Hoff indices for SPS solutions were measured through freezing point depression studies as a proxy for osmotic pressures. A new form of SPS with an amine : carbonate ratio significantly greater than unity hasmore » been identified. Tertiary amines that function as SPS at ambient pressures appear to be limited to molecules with fewer than 12 carbons. The N,N-dimethyl-n-alkylamine structure has been identified as important to the function of an SPS.« less

  18. Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.

    PubMed

    Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang

    2018-02-01

    A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.

  19. Switchable and tunable dual-wavelength Er-doped fiber ring laser with single-frequency lasing wavelengths

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan

    2018-02-01

    We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.

  20. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Chen, Ming; Jian, Shuisheng

    2009-08-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. One fiber Bragg grating (FBG) directly written in a polarization-maintaining and photosensitive erbiumdoped fiber (PMPEDF) as the wavelength-selective component is used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining fiber Bragg grating (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.202 nm by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a saturable absorber (SA). The optical signal-tonoise ratio (OSNR) of the laser is over 40 dB. The amplitude variation in nearly one and half an hour is less than 0.5 dB for both wavelengths.

  1. Study of true-remanent polarization using remanent hysteresis task and resistive leakage analysis in ferroelectric 0.64Pb(Mg1/3Nb2/3)O3-0.36PbTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Joseph, Abhilash J.; Kumar, Binay

    2018-03-01

    The conventionally reported value of remanent polarization (Pr) contains contribution from non-remanent components which are not usable for memory device applications. This report presents techniques which extract the true-remanent (intrinsic) component of polarization after eliminating the non-remanent component in ferroelectric ceramics. For this, "remanent hysteresis task" and "positive-up-negative-down technique" were performed which utilized the switchable properties of polarizations to nullify the contributions from the non-remanent (non-switchable) components. The report also addresses the time-dependent leakage behavior of the ceramics focusing on the presence of resistive leakage (a time-dependent parameter) present in the ceramics. The techniques presented here are especially useful for polycrystalline ceramics where leakage current leads to an erroneous estimation of Pr.

  2. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m 3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water frommore » oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  3. Programmable Phase Transitions in a Photonic Microgel System: Linking Soft Interactions to a Temporal pH Gradient.

    PubMed

    Go, Dennis; Rommel, Dirk; Chen, Lisa; Shi, Feng; Sprakel, Joris; Kuehne, Alexander J C

    2017-02-28

    Soft amphoteric microgel systems exhibit a rich phase behavior. Crystalline phases of these material systems are of interest because they exhibit photonic stop-gaps, giving rise to iridescent color. Such microgel systems are promising for applications in soft, switchable, and programmable photonic filters and devices. We here report a composite microgel system consisting of a hard and fluorescently labeled core and a soft, amphoteric microgel shell. At pH above the isoelectric point (IEP), these colloids easily crystallize into three-dimensional colloidal assemblies. By adding a cyclic lactone to the system, the temporal pH profile can be controlled, and the microgels can be programmed to melt, while they lose charge. When the microgels gain the opposite charge, they recrystallize into assemblies of even higher order. We provide a model system to study the dynamic phase behavior of soft particles and their switchable and programmable photonic effects.

  4. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE PAGES

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; ...

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m 3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water frommore » oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  5. Dynamic control of chirality in phosphine ligands for enantioselective catalysis

    PubMed Central

    Zhao, Depeng; Neubauer, Thomas M.; Feringa, Ben L.

    2015-01-01

    Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly achieved through ligand design with chiral bisphosphines being widely applied as privileged ligands. Switchable phosphine ligands, in which chirality is modulated through an external trigger signal, might offer attractive possibilities to change enantioselectivity in a catalytic process in a non-invasive manner avoiding renewed ligand synthesis. Here we demonstrate that a photoswitchable chiral bisphosphine based on a unidirectional light-driven molecular motor, can be used to invert the stereoselectivity of a palladium-catalysed asymmetric transformation. It is shown that light-induced changes in geometry and helicity of the switchable ligand enable excellent selectivity towards the racemic or individual enantiomers of the product in a Pd-catalysed desymmetrization reaction. PMID:25806856

  6. Superphobicity/philicity Janus Fabrics with Switchable, Spontaneous, Directional Transport Ability to Water and Oil Fluids

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Wang, Hongxia; Niu, Haitao; Lin, Tong

    2013-10-01

    Herein we demonstrate that switchable, spontaneous, directional-transport ability to both water and oil fluids can be created on fabric materials through wet-chemistry coating and successive UV irradiation treatment. When the fabric showed directional transport to a liquid, it prevented liquids of higher surface tension from penetration, but allowed liquids of lower surface tension to permeate, from either side. The directional transport ability can be switched from one fluid to another simply by heating the fabric at an elevated temperature and then re-irradiating the fabric with UV light for required period of time. By attaching liquid drops vertically upwards to a horizontally-laid fabric, we further demonstrated that this novel directional fluid transport was an automatic process driven by surface property alone, irrespective of gravity's effect. This novel fabric may be useful for development of ``smart'' textiles and functional membranes for various applications.

  7. Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self-Assembling Peptide.

    PubMed

    Zhang, Chunqiu; Shafi, Ramim; Lampel, Ayala; MacPherson, Douglas; Pappas, Charalampos G; Narang, Vishal; Wang, Tong; Maldarelli, Charles; Ulijn, Rein V

    2017-11-13

    The reversible regulation of catalytic activity is a feature found in natural enzymes which is not commonly observed in artificial catalytic systems. Here, we fabricate an artificial hydrolase with pH-switchable activity, achieved by introducing a catalytic histidine residue at the terminus of a pH-responsive peptide. The peptide exhibits a conformational transition from random coil to β-sheet by changing the pH from acidic to alkaline. The β-sheet self-assembles to form long fibrils with the hydrophobic edge and histidine residues extending in an ordered array as the catalytic microenvironment, which shows significant esterase activity. Catalytic activity can be reversible switched by pH-induced assembly/disassembly of the fibrils into random coils. At higher concentrations, the peptide forms a hydrogel which is also catalytically active and maintains its reversible (de-)activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Guest-Induced Switchable Breathing Behavior in a Flexible Metal-Organic Framework with Pronounced Negative Gas Pressure.

    PubMed

    Shi, Yi-Xiang; Li, Wu-Xiang; Zhang, Wen-Hua; Lang, Jian-Ping

    2018-06-29

    Flexible metal-organic frameworks (MOFs) have attracted great interest for their dynamically structural transformability in response to external stimuli. Herein, we report a switchable "breathing" or "gate-opening" behavior associated with the phase transformation between a narrow pore (np) and a large pore (lp) in a flexible pillared-layered MOF, denoted as MOF-1 as, which is also confirmed by SCXRD and PXRD. The desolvated phase (MOF-1 des) features a unique stepwise adsorption isotherm for N 2 coupled with a pronounced negative gas adsorption pressure. For comparison, however, no appreciable CO 2 adsorption and gate-opening phenomenon with stepwise sorption can be observed. Furthermore, the polar micropore walls decorated with thiophene groups in MOF-1 des reveals the selective sorption of toluene over benzene and p-xylene associated with self-structural adjustment in spite of the markedly similar physicochemical properties of these vapor molecules.

  9. Wavelength-switchable passively mode-locked fiber laser with mechanically exfoliated molybdenum ditelluride on side-polished fiber

    NASA Astrophysics Data System (ADS)

    Wang, Guomei

    2017-11-01

    We experimentally investigated the nonlinear saturable absorption characteristics of molybdenum ditelluride (MoTe2) and demonstrated a wavelength-switchable mode-locked erbium-doped fiber laser (EDFL) by using MoTe2 thin film on side-polished fiber (SPF) as saturable absorber. Here, the MoTe2 thin film was efficiently fabricated via mechanical exfoliation method and transferred onto the SPF with the assistance of polydimethylsiloxane (PDMS). MoTe2-covered SPF (MSPF) exhibits the nonlinear saturable absorption for pulses with different polarization states. Optical solitons with spectral bandwidth of 1.06 (1.31) nm centered at ∼1559 (∼1528) nm and pulse duration of 2.46 (2.04) ps can be obtained from the EDFL by adjusting the polarization controller (PC) properly. The time-bandwidth product (TBP) of the pulses was calculated as 0.322 (0.344).

  10. Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE)

    PubMed Central

    Grover, Ginni; DeLuca, Keith; Quirin, Sean; DeLuca, Jennifer; Piestun, Rafael

    2012-01-01

    Super-resolution imaging with photo-activatable or photo-switchable probes is a promising tool in biological applications to reveal previously unresolved intra-cellular details with visible light. This field benefits from developments in the areas of molecular probes, optical systems, and computational post-processing of the data. The joint design of optics and reconstruction processes using double-helix point spread functions (DH-PSF) provides high resolution three-dimensional (3D) imaging over a long depth-of-field. We demonstrate for the first time a method integrating a Fisher information efficient DH-PSF design, a surface relief optical phase mask, and an optimal 3D localization estimator. 3D super-resolution imaging using photo-switchable dyes reveals the 3D microtubule network in mammalian cells with localization precision approaching the information theoretical limit over a depth of 1.2 µm. PMID:23187521

  11. Low-cost, light-switched, forward-osmosis desalination system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, John C.

    The looming water crisis is the second largest issue facing humanity after energy. In order to meet the increasing demand for clean water, new efficient and low-cost methods of water purification must be developed. A promising method for dry regions with sea borders is the desalination of seawater. While there remain many disadvantages to current desalination techniques, such as environmental pollution and high cost, there is a strong opportunity for new technology development in this area. In this Phase I program, the development of a light-switchable, low-cost desalination system was explored. The system requires photoselective switching of water solubility. Ninemore » new light-switchable spiropyran-based small molecule and polymeric materials were synthesized, and methods to evaluate their desalination potential were developed and utilized. Severable promising spiropyran analogues proved to be photoswitchable, but so far sufficient photoswitchablity of solubility for a commercial desalination system was not achieved. More development is required.« less

  12. Influence of anisotropic strain on the dielectric and ferroelectric properties of SrTiO3 thin films on DyScO3 substrates

    NASA Astrophysics Data System (ADS)

    Biegalski, M. D.; Vlahos, E.; Sheng, G.; Li, Y. L.; Bernhagen, M.; Reiche, P.; Uecker, R.; Streiffer, S. K.; Chen, L. Q.; Gopalan, V.; Schlom, D. G.; Trolier-McKinstry, S.

    2009-06-01

    The in-plane dielectric and ferroelectric properties of coherent anisotropically strained SrTiO3 thin films grown on orthorhombic (101) DyScO3 substrates were examined as a function of the angle between the applied electric field and the principal directions of the substrate. The dielectric permittivity revealed two distinct maxima as a function of temperature along the [100]p and [010]p SrTiO3 pseudocubic directions. These data, in conjunction with optical second-harmonic generation, show that the switchable ferroelectric polarization develops first predominantly along the in-plane axis with the larger tensile strain before developing a polarization component along the perpendicular direction with smaller strain as well, leading to domain twinning at the lower temperature. Finally, weak signatures in the dielectric and second-harmonic generation response were detected at the SrTiO3 tilt transition close to 165 K. These studies indicate that anisotropic biaxial strain can lead to new ferroelectric domain reorientation transitions that are not observed in isotropically strained films.

  13. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.

    PubMed

    Mao, Dong; He, Zhiwen; Lu, Hua; Li, Mingkun; Zhang, Wending; Cui, Xiaoqi; Jiang, Biqiang; Zhao, Jianlin

    2018-04-01

    We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 μs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.

  14. Optical devices having flakes suspended in a host fluid to provide a flake/fluid system providing flakes with angularly dependent optical properties in response to an alternating current electric field due to the dielectric properties of the system

    DOEpatents

    Kosc, Tanya Z [Rochester, NY; Marshall, Kenneth L [Rochester, NY; Jacobs, Stephen D [Pittsford, NY

    2006-05-09

    Optical devices utilizing flakes (also called platelets) suspended in a host fluid have optical characteristics, such as reflective properties, which are angular dependent in response to an AC field. The reflectivity may be Bragg-like, and the characteristics are obtained through the use of flakes of liquid crystal material, such as polymer liquid crystal (PLC) materials including polymer cholesteric liquid crystal (PCLC) and polymer nematic liquid crystal (PNLC) material or birefringent polymers (BP). The host fluid may be propylene carbonate, poly(ethylene glycol) or other fluids or fluid mixtures having fluid conductivity to support conductivity in the flake/host system. AC field dependent rotation of 90.degree. can be obtained at rates and field intensities dependent upon the frequency and magnitude of the AC field. The devices are useful in providing displays, polarizers, filters, spatial light modulators and wherever switchable polarizing, reflecting, and transmission properties are desired.

  15. Endowing Hydrochromism to Fluorans via Bioinspired Alteration of Molecular Structures and Microenvironments and Expanding Their Potential for Rewritable Paper.

    PubMed

    Xi, Guan; Sheng, Lan; Zhang, Ivan; Du, Jiahui; Zhang, Ting; Chen, Qiaonan; Li, Guiying; Zhang, Ying; Song, Yue; Li, Jianhua; Zhang, Yu-Mo; Zhang, Sean Xiao-An

    2017-11-01

    Interest and effort toward new materials for rewritable paper have increased dramatically because of the exciting advantages for sustainable development and better nature life cycle. Inspired by how nature works within living systems, herein, we have used fluorans, as a concept verification, to endow original acidochromic, basochromic or photochromic molecules with broader properties, such as switchable with solvent, water, heat, electricity, stress, other force, etc., via simplified methods (i.e., via variation of submolecular structure or microenvironments). The hydrochromic visual change and reversible behavior of selected molecules have been explored, and the primary mechanism at the atomic or subatomic level has been hypothesized. In addition, several newly demonstrated hydrochromic fluorans have been utilized for water-jet rewritable paper (WJRP), which exhibit great photostability, high hydrochromic contrast, and fast responsive rate and which can be reused at least 30 times without significant variation. The water-jet prints have good resolution and various colors and can keep legibility after a few months or years. This improved performance is a major step toward practical applications of WJRP.

  16. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites

    PubMed Central

    Kim, Minsung; Im, Jino; Freeman, Arthur J.; Ihm, Jisoon; Jin, Hosub

    2014-01-01

    The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that and Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices. PMID:24785294

  17. Simulations of molecular self-assembled monolayers on surfaces: packing structures, formation processes and functions tuned by intermolecular and interfacial interactions.

    PubMed

    Wen, Jin; Li, Wei; Chen, Shuang; Ma, Jing

    2016-08-17

    Surfaces modified with a functional molecular monolayer are essential for the fabrication of nano-scale electronics or machines with novel physical, chemical, and/or biological properties. Theoretical simulation based on advanced quantum chemical and classical models is at present a necessary tool in the development, design, and understanding of the interfacial nanostructure. The nanoscale surface morphology, growth processes, and functions are controlled by not only the electronic structures (molecular energy levels, dipole moments, polarizabilities, and optical properties) of building units but also the subtle balance between intermolecular and interfacial interactions. The switchable surfaces are also constructed by introducing stimuli-responsive units like azobenzene derivatives. To bridge the gap between experiments and theoretical models, opportunities and challenges for future development of modelling of ferroelectricity, entropy, and chemical reactions of surface-supported monolayers are also addressed. Theoretical simulations will allow us to obtain important and detailed information about the structure and dynamics of monolayer modified interfaces, which will guide the rational design and optimization of dynamic interfaces to meet challenges of controlling optical, electrical, and biological functions.

  18. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    NASA Astrophysics Data System (ADS)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  19. Physics of Hard Sphere Experiment: Scattering, Rheology and Microscopy Study of Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Cheng, Z.-D.; Zhu, J.; Phan, S.-E.; Russel, W. B.; Chaikin, P. M.; Meyer, W. V.

    2002-01-01

    The Physics of Hard Sphere Experiment has two incarnations: the first as a scattering and rheology experiment on STS-83 and STS-94 and the second as a microscopy experiment to be performed in the future on LMM on the space station. Here we describe some of the quantitative and qualitative results from previous flights on the dynamics of crystallization in microgravity and especially the observed interaction of growing crystallites in the coexistance regime. To clarify rheological measurements we also present ground based experiments on the low shear rate viscosity and diffusion coefficient of several hard sphere experiments at high volume fraction. We also show how these experiments will be performed with confocal microscopy and laser tweezers in our lab and as preparation for the phAse II experiments on LMM. One of the main aims of the microscopy study will be the control of colloidal samples using an array of applied fields with an eye toward colloidal architectures. Temperature gradients, electric field gradients, laser tweezers and a variety of switchable imposed surface patterns are used toward this control.

  20. Switchable Underwater Bubble Wettability on Laser-Induced Titanium Multiscale Micro-/Nanostructures by Vertically Crossed Scanning.

    PubMed

    Jiao, Yunlong; Li, Chuanzong; Wu, Sizhu; Hu, Yanlei; Li, Jiawen; Yang, Liang; Wu, Dong; Chu, Jiaru

    2018-05-16

    We present here a kind of novel multiscale TiO 2 square micropillar arrays on titanium sheets through vertically crossed scanning of femtosecond laser. This multiscale micro-/nanostructure is ascribed to the combination of laser ablation/shock compression/debris self-deposition, which shows superaerophobicity in water with a very small sliding angle. The laser-induced sample displays switchable bubble wettability in water via heating in a dark environment and ultraviolet (UV) irradiation in alcohol. After heating in a dark environment (0.5 h), the ablated titanium surface shows superaerophilicity in water with a bubble contact angle (BCA) of ∼4°, which has a great ability of capturing bubbles in water. After UV irradiation in alcohol (1 h), the sample recovered its superaerophobicity in water and the BCA turns into 156°. The mechanism of reversible switching is believed as the chemical conversion between Ti-OH and Ti-O. It is worth noting that our proposed switching strategy is time-saving and the switch wetting cycle costs only 1.5 h. Then we repeat five switching cycles on the reversibility and the method shows excellent reproducibility and stability. Moreover, laser-induced samples with different scanning spacing (50-120 μm) are fabricated and all of them show switchable underwater bubble wettability via the above tunable methods. Finally, we fabricate hybrid-patterned microstructures to show different patterned bubbles in water on the heated samples. We believe the original works will provide some new insights to researchers in bubble manipulation and gas collection fields.

  1. Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs.

    PubMed

    Hu, Lianzhe; Liu, Xiaoqing; Cecconello, Alessandro; Willner, Itamar

    2014-10-08

    The hemin/G-quadruplex-catalyzed generation of chemiluminescence through the oxidation of luminol by H2O2 stimulates the chemiluminescence resonance energy transfer (CRET) to CdSe/ZnS quantum dots (QDs), resulting in the luminescence of the QDs. By the cyclic K(+)-ion-induced formation of the hemin/G-quadruplex linked to the QDs, and the separation of the G-quadruplex in the presence of 18-crown-6-ether, the ON-OFF switchable CRET-induced luminescence of the QDs is demonstrated. QDs were modified with nucleic acids consisting of the G-quadruplex subunits sequences and of programmed domains that can be cross-linked through hybridization, using an auxiliary scaffold. In the presence of K(+)-ions, the QDs aggregate through the cooperative stabilization of K(+)-ion-stabilized G-quadruplex bridges and duplex domains between the auxiliary scaffold and the nucleic acids associated with the QDs. In the presence of 18-crown-6-ether, the K(+)-ions are eliminated from the G-quadruplex units, leading to the separation of the aggregated QDs. By the cyclic treatment of the QDs with K(+)-ions/18-crown-6-ether, the reversible aggregation/deaggregation of the QDs is demonstrated. The incorporation of hemin into the K(+)-ion-stabilized G-quadruplex leads to the ON-OFF switchable CRET-stimulated luminescence of the QDs. By the mixing of appropriately modified two-sized QDs, emitting at 540 and 610 nm, the dual ON-OFF activation of the luminescence of the QDs is demonstrated.

  2. Temperature-Triggered Switchable Helix-Helix Inversion of Poly(phenylacetylene) Bearing l-Valine Ethyl Ester Pendants and Its Chiral Recognition Ability.

    PubMed

    Zhou, Yanli; Zhang, Chunhong; Qiu, Yuan; Liu, Lijia; Yang, Taotao; Dong, Hongxing; Satoh, Toshifumi; Okamoto, Yoshio

    2016-11-21

    A phenylacetylene containing the l-valine ethyl ester pendant (PAA-Val) was synthesized and polymerized by an organorhodium catalyst (Rh(nbd)BPh₄) to produce the corresponding one-handed helical cis -poly(phenylacetylene) (PPAA-Val). PPAA-Val showed a unique temperature-triggered switchable helix-sense in chloroform, while it was not observed in highly polar solvents, such as N , N '-dimethylformamide (DMF). By heating the solution of PPAA-Val in chloroform, the sign of the CD absorption became reversed, but recovered after cooling the solution to room temperature. Even after six cycles of the heating-cooling treatment, the helix sense of the PPAA-Val's backbone was still switchable without loss of the CD intensity. The PPAA-Val was then coated on silica gel particles to produce novel chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). These novel PPAA-Val based CSPs showed a high chiral recognition ability for racemic mandelonitrile ( α = 2.18) and racemic trans - N , N '-diphenylcyclohexane-1,2-dicarboxamide ( α = 2.60). Additionally, the one-handed helical cis -polyene backbone of PPAA-Val was irreversibly destroyed to afford PPAA-Val-H by heating in dimethyl sulfoxide (DMSO) accompanied by the complete disappearance of the Cotton effect. Although PPAA-Val-H had the same l-valine ethyl ester pendants as its cis -isomer PPAA-Val, it showed no chiral recognition. It was concluded that the one-handed helical cis -polyene backbone of PPAA-Val plays an important role in the chiral recognition ability.

  3. Square ice in graphene nanocapillaries.

    PubMed

    Algara-Siller, G; Lehtinen, O; Wang, F C; Nair, R R; Kaiser, U; Wu, H A; Geim, A K; Grigorieva, I V

    2015-03-26

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms 'square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  4. Square ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V.

    2015-03-01

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms `square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  5. Artificial multiferroic structures using soft magnetostrictive bilayers on Pb(Mg1/3Nb2/3)-PbTiO3

    NASA Astrophysics Data System (ADS)

    Miskevich, E.; Alshammari, F. K.; Yang, W.-G.; Sharp, J.; Baco, S.; Leong, Z.; Abbas, Q. A.; Morley, N. A.

    2018-02-01

    Artificial multiferroic structures are of great interest as they combine two or more functionalities together. One example of these structures is magnetostrictive films grown on top of piezoelectric substrates; allowing the magnetisation hysteresis loop of the magnetostrictive film to be manipulated using an electric field across the structure rather than a magnetic field. In this paper, we have studied the multiferroic structure NiFe/FeCo/Ti/Pb(Mg1/3Nb2/3)-PbTiO3 (PMN-PT) as a function of the electric and magnetic field. Soft magnetostrictive bilayer films (NiFe/FeCo) are studied, as often applications require soft magnetic properties (small coercive and anisotropy fields) combined with larger magnetostrictive constants. Unfortunately, FeCo films can have coercive fields that are too large, while NiFe films’ magnetostriction constants are almost zero; thus, combining the two together should produce the ‘ideal’ soft magnetostrictive film. It was found that the addition of a thin NiFe film onto the FeCo film reduced the coercive field and remnant magnetisation on the application of an applied voltage in comparison to just the FeCo film. It was also determined that for the NiFe/FeCo bilayer the magnetisation switchability was ~100% on the application of 8 kV cm-m, which was higher than the monolayer FeCo films at the same applied field, demonstrating improvement of the multiferroic behaviour by the soft magnetic/magnetostrictive bilayer.

  6. Vacuum compatible, high-speed, 2-D mirror tilt stage

    DOEpatents

    Denham; Paul E.

    2007-09-25

    A compact and vacuum compatible magnetic-coil driven tiltable stage that is equipped with a high efficiency reflective coating can be employed as a scanner in EUV applications. The drive electronics for the scanner is fully in situ programmable and rapidly switchable.

  7. Two-Way Gold Nanoparticle Label-Free Sensing of Specific Sequence and Small Molecule Targets Using Switchable Concatemers.

    PubMed

    Zhu, Longjiao; Shao, Xiangli; Luo, Yunbo; Huang, Kunlung; Xu, Wentao

    2017-05-19

    A two-way colorimetric biosensor based on unmodified gold nanoparticles (GNPs) and a switchable double-stranded DNA (dsDNA) concatemer have been demonstrated. Two hairpin probes (H1 and H2) were first designed that provided the fuels to assemble the dsDNA concatemers via hybridization chain reaction (HCR). A functional hairpin (FH) was rationally designed to recognize the target sequences. All the hairpins contained a single-stranded DNA (ssDNA) loop and sticky end to prevent GNPs from salt-induced aggregation. In the presence of target sequence, the capture probe blocked in the FH recognizes the target to form a duplex DNA, which causes the release of the initiator probe by FH conformational change. This process then starts the alternate-opening of H1 and H2 through HCR, and dsDNA concatemers grow from the target sequence. As a result, unmodified GNPs undergo salt-induced aggregation because the formed dsDNA concatemers are stiffer and provide less stabilization. A light purple-to-blue color variation was observed in the bulk solution, termed the light-off sensing way. Furthermore, H1 ingeniously inserted an aptamer sequence to generate dsDNA concatemers with multiple small molecule binding sites. In the presence of small molecule targets, concatemers can be disassembled into mixtures with ssDNA sticky ends. A blue-to-purple reverse color variation was observed due to the regeneration of the ssDNA, termed the light-on way. The two-way biosensor can detect both nucleic acids and small molecule targets with one sensing device. This switchable sensing element is label-free, enzyme-free, and sophisticated-instrumentation-free. The detection limits of both targets were below nanomolar.

  8. Optoelectronic switch matrix as a look-up table for residue arithmetic.

    PubMed

    Macdonald, R I

    1987-10-01

    The use of optoelectronic matrix switches to perform look-up table functions in residue arithmetic processors is proposed. In this application, switchable detector arrays give the advantage of a greatly reduced requirement for optical sources by comparison with previous optoelectronic residue processors.

  9. Electrochromic devices and related products and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Timothy; McFadden, Judith; Tenent, Robert

    2018-01-30

    An electrochromic device may be switchable between a transparent state and at least one reflective state. A lithium-containing reflective feature may form when the electrochromic device is switched from the transparent state to the reflective state. Various products and methods may involve the electrochromic device.

  10. Generic concept to program the time domain of self-assemblies with a self-regulation mechanism.

    PubMed

    Heuser, Thomas; Steppert, Ann-Kathrin; Lopez, Catalina Molano; Zhu, Baolei; Walther, Andreas

    2015-04-08

    Nature regulates complex structures in space and time via feedback loops, kinetically controlled transformations, and under energy dissipation to allow non-equilibrium processes. Although man-made static self-assemblies realize excellent control over hierarchical structures via molecular programming, managing their temporal destiny by self-regulation is a largely unsolved challenge. Herein, we introduce a generic concept to control the time domain by programming the lifetimes of switchable self-assemblies in closed systems. We conceive dormant deactivators that, in combination with fast promoters, enable a unique kinetic balance to establish an autonomously self-regulating, transient pH-state, whose duration can be programmed over orders of magnitude-from minutes to days. Coupling this non-equilibrium state to pH-switchable self-assemblies allows predicting their assembly/disassembly fate in time, similar to a precise self-destruction mechanism. We demonstrate a platform approach by programming self-assembly lifetimes of block copolymers, nanoparticles, and peptides, enabling dynamic materials with a self-regulation functionality.

  11. Switchable Pickering Emulsions Stabilized by Awakened TiO2 Nanoparticle Emulsifiers Using UV/Dark Actuation.

    PubMed

    Zhang, Qing; Bai, Rui-Xue; Guo, Ting; Meng, Tao

    2015-08-26

    In this work, switchable Pickering emulsions that utilize UV/dark manipulation employ a type of smart TiO2 nanoparticle as emulsifiers. The emulsifiers can be awakened when needed via UV-induced degradation of grafted silanes on TiO2 nanoparticles. By tuning the surface wettability of TiO2 nanoparticles in situ via UV/dark actuation, emulsions stabilized by the nanoparticles can be reversibly switched between the water-in-oil (W/O) type and oil-in-water (O/W) type for several cycles. Due to the convertible wettability, the smart nanoparticle emulsifiers can be settled in either the oil phase or the water phase as desired during phase separation, making it convenient for recycling. The present work provides a facile and noninvasive method to freely manipulate the formation, breakage, and switching of the emulsion; this method has promising potential as a powerful technique for use in energy-efficient and environmentally friendly industries.

  12. Chitosan-Gated Magnetic-Responsive Nanocarrier for Dual-Modal Optical Imaging, Switchable Drug Release, and Synergistic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Mu, Qingxin; Revia, Richard

    In this study, we present a multifunctional yet structurally simple nanocarrier that has a high drug loading capacity, releases drug in response to onset of an AC magnetic field, and can serve as a long-term imaging contrast agent and effectively kills cancer cells by synergistic action. This nanocarrier (HMMC-NC) has a spherical shell structure with a center cavity of 80 nm in diameter. The shell is comprised of two layers: an inner layer of magnetite that exhibits superparamagnetism and an outer layer of mesoporous carbon embedded with carbon dots that exhibit photoluminescence property. Thus in addition to being a drugmore » carrier, HMMC-NC is also a contrast agent for bioimaging. The switchable drug release is enabled by the chitosan molecules attached on the nanocarrier as the switching material which turns on or off the drug release in response to the application or withdrawal of an AC magnetic field.« less

  13. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generatemore » a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.« less

  14. REDOX-SWITCHABLE CALIX[6]ARENE-BASED ISOMERIC ROTAXANES.

    PubMed

    Zanichelli, Valeria; Bazzoni, Margherita; Arduini, Arturo; Franchi, Paola; Lucarini, Marco; Ragazzon, Giulio; Secchi, Andrea; Silvi, Serena

    2018-04-16

    Operating molecular machines are based on switchable systems, whose components can be set in motion in a controllable fashion. The presence of non-symmetric elements is a mandatory requirement to obtain and demonstrate the unidirectionality of motion. Calixarene-based macrocycles have proven very efficient hosts in the design of oriented rotaxanes and of pseudorotaxanes with a strict control on the direction of complexation. We have synthesized and characterized a series of two-station rotaxanes based on bypiridinium-ammonium axles. We have exploited a recently reported supramolecular-assisted strategy for the synthesis of different orientational isomers and we identified the ammonium unit as a proper secondary station for the calixarene. We were able to trigger the displacement of the macrocycle upon electrochemical reduction of the bipyridinium primary station and we demonstrated that the shuttling is influenced both by the length of the chain of the axle component and by the position of the secondary station with respect to the calixarene rims. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Intermolecular Structural Change for Thermoswitchable Polymeric Photosensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Wooram; Park, Sin-Jung; Cho, Soojeong

    2016-08-17

    A switchable photosensitizer (PS), which can be activated at a spe-cific condition beside light, has tremendous advantages for photo-dynamic therapy (PDT). Herein, we developed a thermo-switchable polymeric photosensitizer (T-PPS) by conjugating PS (Pheophor-bide-a, PPb-a) to a temperature-responsive polymer backbone of biocompatible hydroxypropyl cellulose (HPC). Self-quenched PS molecules linked in close proximity by pi-pi stacking in T-PPS were easily transited to an active monomeric state by the tempera-ture induced phase transition of polymer backbones. The tempera-ture responsive inter-molecular interaction changes of PS molecules in T-PPS were demonstrated in synchrotron small-angle X-ray scattering (SAXS) and UV-Vis spectrophotometer analysis. The T-PPS allowed switchablemore » activation and synergistically enhanced cancer cell killing effect at the hyperthermia temperature (45 °C). Our developed T-PPS has the considerable potential not only as a new class of photomedicine in clinics but also as a biosensor based on temperature responsiveness.« less

  16. Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal.

    PubMed

    Huang, Kuan-Chung; Hsiao, Yu-Cheng; Timofeev, Ivan V; Zyryanov, Victor Ya; Lee, Wei

    2016-10-31

    We report on the spectral properties of an optically switchable tristable chiral-tilted homeotropic nematic liquid crystal (LC) incorporated as a tunable defect layer in one-dimensional photonic crystal. By varying the polarization angle of the incident light and modulating the light intensity ratio between UV and green light, various transmission characteristics of the composite were obtained. The hybrid structure realizes photo-tunability in transmission of defect-mode peaks within the photonic bandgap in addition to optical switchability among three distinct sets of defect modes via photoinduced tristable state transitions. Because the fabrication process is easier and less critical in terms of cell parameters or sample preparation conditions and the LC layer itself possesses an extra stable state compared with the previously reported bistable counterpart operating on the basis of biased-voltage dual-frequency switching, it has much superior potential for photonic applications such as a low-power-consumption multichannel filter and an optically controllable intensity modulator.

  17. Charge-switchable gold nanoparticles for enhanced enzymatic thermostability.

    PubMed

    Shankar, Shiv; Soni, Sarvesh K; Daima, Hemant K; Selvakannan, P R; Khire, Jayant M; Bhargava, Suresh K; Bansal, Vipul

    2015-09-07

    This study illustrates a facile strategy for efficient immobilization of enzymes on a metal nanoparticle surface. The strategy proposed here enables the enzymatic activity to be retained while increasing the enzyme thermostability. It is demonstrated that the use of a zwitterionic amino acid tyrosine as a reducing and capping agent to synthesise gold nanoparticles allows efficient immobilization of phytase enzyme through charge-switchable electrostatic interactions. The detailed kinetic and thermodynamic studies reveal that the proposed enzyme immobilization strategy improves the overall quality of phytase by reducing the activation energy required for substrate hydrolysis and broadening the temperature window in which immobilized enzyme is able to operate. The outcomes of this study indicate that the underlying zwitterionic nature of 20 natural amino acids along with significant variability in their isoelectric points and hydropathy indices as well the ability of some of the amino acids to reduce metal ions is likely to offer significant opportunities for tailoring nano-bio interfaces in a rational manner for a range of biological applications.

  18. Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar[6]arene and ferrocene.

    PubMed

    Wang, Sai; Xu, Zuqiang; Wang, Tingting; Xiao, Tangxin; Hu, Xiao-Yu; Shen, Ying-Zhong; Wang, Leyong

    2018-04-30

    Functional materials play a vital role in the fabrication of smart windows, which can provide a more comfortable indoor environment for humans to enjoy a better lifestyle. Traditional materials for smart windows tend to possess only a single functionality with the purpose of regulating the input of solar energy. However, different color tones also have great influences on human emotions. Herein, a strategy for orthogonal integration of different properties is proposed, namely the thermo-responsiveness of ethylene glycol-modified pillar[6]arene (EGP6) and the redox-induced reversible color switching of ferrocene/ferrocenium groups are orthogonally integrated into one system. This gives rise to a material with cooperative and non-interfering dual functions, featuring both thermochromism and warm/cool tone-switchability. Consequently, the obtained bifunctional material for fabricating smart windows can not only regulate the input of solar energy but also can provide a more comfortable color tone to improve the feelings and emotions of people in indoor environments.

  19. Novel Driving Method for Two-Dimensional and Three-Dimensional Switchable Active Matrix Organic Light-Emitting Diode Displays for Emission and Programming Time Extension

    NASA Astrophysics Data System (ADS)

    In, Hai-Jung; Kwon, Oh-Kyong

    2012-03-01

    A novel driving method for two-dimensional (2D) and three-dimensional (3D) switchable active matrix organic light-emitting diode (AMOLED) displays is proposed to extend emission time and data programming time during 3D display operation. The proposed pixel consists of six thin-film transistors (TFTs) and two capacitors, and the aperture ratio of the pixel is 45.8% under 40-in. full-high-definition television condition. By increasing emission time and programming time, the flicker problem can be reduced and the lifetime of AMOLED displays can be extended owing to the decrease in emission current density. Simulation results show that the emission current error range from -0.4 to 1.6% is achieved when the threshold voltage variation of driving TFTs is in the range from -1.0 to 1.0 V, and the emission current error is 1.0% when the power line IR-drop is 2.0 V.

  20. Generation of switchable domain wall and Cubic-Quintic nonlinear Schrödinger equation dark pulse

    NASA Astrophysics Data System (ADS)

    Tiu, Z. C.; Suthaskumar, M.; Zarei, A.; Tan, S. J.; Ahmad, H.; Harun, S. W.

    2015-10-01

    A switchable domain-wall (DW) and Cubic-Quintic nonlinear Schrödinger equation (CQNLSE) dark soliton pulse generation are demonstrated in Erbium-doped fiber laser (EDFL) for the first time. The DW pulse train operates at 1575 nm with a fundamental repetition rate of 1.52 MHz and pulse width of 203 ns as the pump power is increased above the threshold pump power of 80 mW. The highest pulse energy of 2.24 nJ is obtained at the maximum pump power of 140 mW. CQNLSE pulse can also be realized from the same cavity by adjusting the polarization state but at a higher threshold pump power of 104 mW. The repetition rate and pulse width of the CQNLSE dark pulses are obtained at 1.52 MHz and 219 ns, respectively. The highest energy of 0.58 nJ is obtained for the CQNLSE pulse at pump power of 140 mW.

  1. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

  2. Spectral study on conformation switchable cationic calix[4]carbazole serving as curcumin container, stabilizer and sustained-delivery carrier

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Kang, Le; Chen, Yan; Li, Gang; Wang, Lan; Hu, Chun; Yang, Peng

    2018-03-01

    A fluorescent 2,7-dimethoxy-substituted calix[4]carbazole (1) is facilely synthesized. The spectral behaviors of both the guest-induced switchable conformation of 1 and its abilities serving as the stabilizer and molecular carrier of curcumin are investigated. UV-vis, fluorescence and NMR spectral results show that upon binding to curcumin, the 1,3-alternate conformation of 1 is converted to be the cone one. The relative high association constant (6.4 × 106 M- 1) of 1 binding to curcumin enables it to stabilize the curcumin, to suppress its degradation, and to sustainably deliver it into the EYPC vesicles within 20 h. Moreover, the cytotoxicity assay shows that 1 does not interfere the antiproliferative activities of curcumin. All these properties endow 1 the potential capability of serving as the molecular drug carrier. Our current result may pave the way looking for more efficient fluorescent calixcarbazoles and thereof spectral utilities.

  3. Semiconductor activated terahertz metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hou-Tong

    Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less

  4. Semiconductor activated terahertz metamaterials

    DOE PAGES

    Chen, Hou-Tong

    2014-08-01

    Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less

  5. Time-Dependent Liquid Transport on a Biomimetic Topological Surface.

    PubMed

    Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei

    2018-05-02

    Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.

  6. New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging

    PubMed Central

    Yu, Shuai; Cheng, Bingbing; Yao, Tingfeng; Xu, Cancan; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    Recently, we developed a new technology, ultrasound-switchable fluorescence (USF), for high-resolution imaging in centimeter-deep tissues via fluorescence contrast. The success of USF imaging highly relies on excellent contrast agents. ICG-encapsulated poly(N-isopropylacrylamide) nanoparticles (ICG-NPs) are one of the families of the most successful near-infrared (NIR) USF contrast agents. However, the first-generation ICG-NPs have a short shelf life (<1 month). This work significantly increases the shelf life of the new-generation ICG-NPs (>6 months). In addition, we have conjugated hydroxyl or carboxyl function groups on the ICG-NPs for future molecular targeting. Finally, we have demonstrated the effect of temperature-switching threshold (Tth) and the background temperature (TBG) on the quality of USF images. We estimated that the Tth of the ICG-NPs should be controlled at ~38–40 °C (slightly above the body temperature of 37 °C) for future in vivo USF imaging. Addressing these challenges further reduces the application barriers of USF imaging. PMID:27775014

  7. Photo-switchable bistable twisted nematic liquid crystal optical switch.

    PubMed

    Wang, Chun-Ta; Wu, Yueh-Chi; Lin, Tsung-Hsien

    2013-02-25

    This work demonstrates a photo-switchable bistable optical switch that is based on an azo-chiral doped liquid crystal (ACDLC). The photo-induced isomerization of the azo-chiral dopant can change the chirality of twisted nematic liquid crystal and the gap/pitch ratio of an ACDLC device, enabling switching between 0° and 180° twist states in a homogeneous aligned cell. The bistable 180° and 0° twist states of the azo-chiral doped liquid crystal between crossed polarizers correspond to the ON and OFF states of a light shutter, respectively, and they can be maintained stably for tens of hours. Rapid switching between 180° and 0° twist states can be carried out using 408 and 532 nm addressing light. Such a photo-controllable optical switch requires no specific asymmetric alignment layer or precise control of the cell gap/pitch ratio, so it is easily fabricated and has the potential for use in optical systems.

  8. Smart windows with functions of reflective display and indoor temperature-control

    NASA Astrophysics Data System (ADS)

    Lee, I.-Hui; Chao, Yu-Ching; Hsu, Chih-Cheng; Chang, Liang-Chao; Chiu, Tien-Lung; Lee, Jiunn-Yih; Kao, Fu-Jen; Lee, Chih-Kung; Lee, Jiun-Haw

    2010-02-01

    In this paper, a switchable window based on cholestreric liquid crystal (CLC) was demonstrated. Under different applied voltages, incoming light at visible and infrared wavelengths was modulated, respectively. A mixture of CLC with a nematic liquid crystal and a chiral dopant selectively reflected infrared light without bias, which effectively reduced the indoor temperature under sunlight illumination. At this time, transmission at visible range was kept at high and the windows looked transparent. With increasing the voltage to 15V, CLC changed to focal conic state and can be used as a reflective display, a privacy window, or a screen for projector. Under a high voltage (30V), homeotropic state was achieved. At this time, both infrared and visible light can transmit which acted as a normal window, which permitted infrared spectrum of winter sunlight to enter the room so as to reduce the heating requirement. Such a device can be used as a switchable window in smart buildings, green houses and windshields.

  9. Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber

    NASA Astrophysics Data System (ADS)

    Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.

    2011-03-01

    Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.

  10. Optical sensor platform based on cellulose nanocrystals (CNC) - 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films.

    PubMed

    Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L

    2017-07-15

    The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.

  11. Controlling enhanced absorption in graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Zhou, Qihui; Liu, Peiguo; Bian, Li-an; Liu, Hanqing; Liu, Chenxi; Chen, Genghui

    2018-04-01

    In this paper, a controllable terahertz (THz) metamaterial absorber (MA) is designed with the circuit analog method. Taking advantage of the patterned graphene on SiO2/doped Si/polyimide substrates with a gold reflector, the controllable MA achieves perfect absorption at 0.75 THz. The chemical potential of graphene is regulated by controlling the voltage between graphene and doped Si layers. As the chemical potential varies from 0 eV to 0.5 eV, the MA is changed from reflection (<0.37) to absorption (>0.99). The distributions of surface current and electric field are illustrated to analyze the resonant characteristic of patterned graphene. According to the resonant characteristic, we introduce patterned graphene elements with different dimension in a unit cell, which effectively extends the effective absorption bandwidth (absorption > 0 . 9) from 0.67-0.93 THz to 0.52-0.95 THz. Moreover, replacing part of the graphene structure with gold, the switchable MA is turned into a frequency tunable MA. The absorption peak moves from 0.62 THz to 0.92 THz as the chemical potential increases from 0.1 eV to 0.5 eV. These designs overcome limitation of traditional absorbers and exhibit great potentials in many practical applications.

  12. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    NASA Technical Reports Server (NTRS)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  13. Understanding and Controlling Living/Inorganic Interfaces to Enable Reconfigurable Switchable Materials

    DTIC Science & Technology

    2018-03-01

    of environmental conditions and surface treatment on binding affinity. 15. SUBJECT TERMS bacterial adhesion, genetically engineered proteins for...mannose binding both experimentally and in molecular dynamics simulation ............................................................ 6 Fig. 3 COMSOL...Research Laboratory (ARL) strengths (e.g., molecular biology/synthetic biology, biomolecular recognition, materials characterization and polymer science

  14. A facile route to steady redox-modulated nitroxide spin-labeled surfaces based on diazonium chemistry.

    PubMed

    Cougnon, Charles; Boisard, Séverine; Cador, Olivier; Dias, Marylène; Levillain, Eric; Breton, Tony

    2013-05-18

    A TEMPO derivative was covalently grafted onto carbon and gold surfaces via the diazonium chemistry. The acid-dependent redox properties of the nitroxyl group were exploited to elaborate electro-switchable magnetic surfaces. ESR characterization demonstrated the reversible and permanent magnetic character of the material.

  15. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity

    NASA Astrophysics Data System (ADS)

    Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.

    2015-10-01

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems. Electronic supplementary information (ESI) available: Experimental procedures, synthesis, and characterization of molecules 1, 2 and 3. Explanation of the electrochemical method for approximating nanopore diameter. Additional XPS spectra. See DOI: 10.1039/C5NR02939B

  16. New concept to remove heavy metals from liquid waste based on electrochemical pH-switchable immobilized ligands

    NASA Astrophysics Data System (ADS)

    Pascal, Viel; Laetitia, Dubois; Joël, Lyskawa; Marc, Sallé; Serge, Palacin

    2007-01-01

    Absorption on resins is often used as secondary step in the treatment of water-based effluents, in order to reach very low concentrations. The separation of the trapped effluents from the resins and the regeneration of the resins for further use create wide volumes of secondary effluents coming from the washings of the resins with chemical reagents. We propose an alternative solution based on a "surface strategy" through adsorption phenomena and electrical control of the expulsion stage. The final goal is to limit or ideally to avoid the use of chemical reagents at the expulsion (or regeneration) stage of the depolluting process. Heavy metal ions were captured on active filters composed by a conducting surface covered by poly-4-vinylpyridine (P 4VP). Due to pyridine groups those polymer films have chelating properties for copper ions. Our strategy for electrical triggering of the copper expulsion in aqueous medium is based on pH sensitive chelating groups. Applying moderate electro-oxidizing conditions generates acidic conditions in the vicinity of the electrode, i.e. "inside" the polymer film. This allows a "switch-off" of the complexing properties of the film from the basic form of pyridine to pyridinium. Interestingly, no buffer washing is necessary to restore (or "switch-on") the complexing properties of the polymer film because the pH of the external medium is left unchanged by the electrochemical effect that affects only the vicinity of the electrode. Switch-on/switch-off cycles are followed and attested by IR spectroscopy and EQCM method.

  17. Low-Molecular-Weight Plasma Proteome Analysis Using Top-Down Mass Spectrometry.

    PubMed

    Cheon, Dong Huey; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2017-01-01

    While human plasma has a wealth of diagnostic information regarding the state of the human body in heath and disease, low molecular weight (LMW) proteome (<30 kDa) has been shown to contain a rich source of diagnostic biomarkers. Here we describe a protocol for top-down proteomic analysis to identify and characterize the LMW proteoforms present in four types of human plasma samples without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. Each type of plasma sample was first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC software. As a result, a total of 442 LMW proteins and cleaved products, including those with posttranslational modifications (PTMs) and single amino acid variations (SAAVs), were identified with a threshold E-value of 1 × 10 -4 from the four types of plasma samples.

  18. Digital PCR to determine the number of transcripts from single neurons after patch-clamp recording.

    PubMed

    Faragó, Nóra; Kocsis, Ágnes K; Lovas, Sándor; Molnár, Gábor; Boldog, Eszter; Rózsa, Márton; Szemenyei, Viktor; Vámos, Enikő; Nagy, Lajos I; Tamás, Gábor; Puskás, László G

    2013-06-01

    Whole-cell patch-clamp recording enables detection of electrophysiological signals from single neurons as well as harvesting of perisomatic RNA through the patch pipette for subsequent gene expression analysis. Amplification and profiling of RNA with traditional quantitative real-time PCR (qRT-PCR) do not provide exact quantitation due to experimental variation caused by the limited amount of nucleic acid in a single cell. Here we describe a protocol for quantifying mRNA or miRNA expression in individual neurons after patch-clamp recording using high-density nanocapillary digital PCR (dPCR). Expression of a known cell-type dependent marker gene (gabrd), as well as oxidative-stress related induction of hspb1 and hmox1 expression, was quantified in individual neurogliaform and pyramidal cells, respectively. The miRNA mir-132, which plays a role in neurodevelopment, was found to be equally expressed in three different types of neurons. The accuracy and sensitivity of this method were further validated using synthetic spike-in templates and by detecting genes with very low levels of expression.

  19. Transmission properties of C60 ions through micro- and nano-capillaries

    NASA Astrophysics Data System (ADS)

    Tsuchida, Hidetsugu; Majima, Takuya; Tomita, Shigeo; Sasa, Kimikazu; Narumi, Kazumasa; Saitoh, Yuichi; Chiba, Atsuya; Yamada, Keisuke; Hirata, Koichi; Shibata, Hiromi; Itoh, Akio

    2013-11-01

    We apply the capillary beam-focusing method for the C60 fullerene projectiles in the velocity range between 0.14 and 0.2 a.u. We study the C60 transmission properties through two different types of capillaries: (1) borosilicate glass microcapillary with an outlet diameter of 5.5 μm, and (2) Al2O3 multi-capillary foil with a pore size of about 70 nm and a high aspect ratio of about 750. We measured the transmitted particle composition by using the electrostatic deflection method combined with the microchannel plate imaging technique. For the experiments with the single microcapillary, the main transmission component is found to be primary C60 beams that are focused in the area equal to the capillary outlet diameter. Minor components are charge-exchanged C60 ions and charged or neutral fragments (fullerene-like C60-2m and small Cn particles), and their fractions decrease with decreasing the projectile velocity. It is concluded that the C60 transmission fraction is considerably high for both types of the capillaries in the present velocity range.

  20. Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials.

    PubMed

    Prakash, Amit; Maikap, Siddheswar; Banerjee, Writam; Jana, Debanjan; Lai, Chao-Sung

    2013-09-06

    Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled 'SET/RESET' current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Juan; Zhou, Yufan; Sui, Xiao

    The identification of a number of mass peaks in the switchable ionic liquid (SWIL) observed in ToF-SIMS is updated based on the most likely chemical formation pathways. The revised identification better reflects the chemical interactions in the SWIL consisting of DBU, 1-hexanol and CO2. A companion paper illustrates the formation mechanism of these updated species is currently under review.

  2. Threshold-Switchable Particles (TSPs) to Control Internal Hemorrhage

    DTIC Science & Technology

    2015-12-01

    Many nudix-type phosphatases are clinically important enzymes and their overexpression can be markers of disease. Nudt2 (Apah1), for example, is an Ap4A ...hydrolase that, when overexpressed in breast cancer, correlates with poor prognosis.26 In addition to processing Ap4A , Nudt2 can hydrolyze long-chain

  3. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton

    NASA Astrophysics Data System (ADS)

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-10-01

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.

  4. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton

    PubMed Central

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-01-01

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems. PMID:27708427

  5. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton.

    PubMed

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-10-06

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.

  6. Polymeric microcapsules with switchable mechanical properties for self-healing concrete: synthesis, characterisation and proof of concept

    NASA Astrophysics Data System (ADS)

    Kanellopoulos, A.; Giannaros, P.; Palmer, D.; Kerr, A.; Al-Tabbaa, A.

    2017-04-01

    Microcapsules, with sodium silicate solution as core, were produced using complex coacervation in a double, oil-in-water-in oil, emulsion system. The shell material was a gelatin-acacia gum crosslinked coacervate and the produced microcapsules had diameters ranging from 300 to 700 μm. The shell material designed with switchable mechanical properties. When it is hydrated exhibits soft and ‘rubbery’ behaviour and, when dried, transitions to a stiff and ‘glassy’ material. The microcapsules survived drying and rehydrating cycles and preserved their structural integrity when exposed to highly alkaline solutions that mimic the pH environment of concrete. Microscopy revealed that the shell thickness of the microcapsules varies across their perimeter from 5 to 20 μm. Thermal analysis showed that the produced microcapsules were very stable up to 190 °C. Proof of concept investigation has demonstrated that the microcapsules successfully survive and function when exposed to a cement-based matrix. Observations showed that the microcapsules survive mixing with cement and rupture successfully upon crack formation releasing the encapsulated sodium silicate solution.

  7. Photo-switchable microbial fuel-cells.

    PubMed

    Schlesinger, Orr; Dandela, Rambabu; Bhagat, Ashok; Adepu, Raju; Meijler, Michael M; Xia, Lin; Alfonta, Lital

    2018-05-01

    Regulation of Bio-systems in a clean, simple, and efficient way is important for the design of smart bio-interfaces and bioelectronic devices. Light as a non-invasive mean to control the activity of a protein enables spatial and temporal control far superior to other chemical and physical methods. The ability to regulate the activity of a catalytic enzyme in a biofuel-cell reduces the waste of resources and energy and turns the fuel-cell into a smart and more efficient device for power generation. Here we present a microbial-fuel-cell based on a surface displayed, photo-switchable alcohol dehydrogenase. The enzyme was modified near the active site using non-canonical amino acids and a small photo-reactive molecule, which enables reversible control of enzymatic activity. Depending on the modification site, the enzyme exhibits reversible behavior upon irradiation with UV and visible light, in both biochemical, and electrochemical assays. The change observed in power output of a microbial fuel cell utilizing the modified enzyme was almost five-fold, between inactive and active states. © 2018 Wiley Periodicals, Inc.

  8. Self-assembly of block copolymers into sieve-like particles with arrayed switchable channels and as scaffolds to guide the arrangement of gold nanoparticles.

    PubMed

    He, Yun; Zhang, Yan; Yan, Nan; Zhu, Yutian; Jiang, Wei; Shi, Dean

    2017-10-12

    Well-defined polymeric particles with not only a controllable shape and internal nanostructures but also stimuli-responsive functions have attracted intensive attention because of their great potential in various fields. Herein, we created unique sieve-like particles with lattice arrayed switchable channels via the confined self-assembly of poly(4-vinylpyridine)-b-polystyrene-b-poly(4-vinylpyridine) (P4VP-b-PS-b-P4VP) triblock copolymers within the emulsion droplets and the subsequent swelling treatment in ethanol. It is worth noting that the hexagonally packed P4VP channels in the sieve-like particles are switched on and off by changing the solvent type, i.e., P4VP channels are switched on in ethanol and switched off in water, which can operate as a solvent-controlled chemical gate. Moreover, the well-defined sieve-like particles can be further used as scaffolds to guide the spatial arrangement of gold nanoparticles, which generates hybrid nanomaterials with controllable morphology and ordered spatial arrangement of AuNPs.

  9. Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaron D. Wilson; Christopher J. Orme

    2014-12-01

    Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonicmore » acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.« less

  10. A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium.

    PubMed

    Bastings, Maartje M C; Koudstaal, Stefan; Kieltyka, Roxanne E; Nakano, Yoko; Pape, A C H; Feyen, Dries A M; van Slochteren, Frebus J; Doevendans, Pieter A; Sluijter, Joost P G; Meijer, E W; Chamuleau, Steven A J; Dankers, Patricia Y W

    2014-01-01

    Minimally invasive intervention strategies after myocardial infarction use state-of-the-art catheter systems that are able to combine mapping of the infarcted area with precise, local injection of drugs. To this end, catheter delivery of drugs that are not immediately pumped out of the heart is still challenging, and requires a carrier matrix that in the solution state can be injected through a long catheter, and instantaneously gelates at the site of injection. To address this unmet need, a pH-switchable supramolecular hydrogel is developed. The supramolecular hydrogel is switched into a liquid at pH > 8.5, with a viscosity low enough to enable passage through a 1-m long catheter while rapidly forming a hydrogel in contact with tissue. The hydrogel has self-healing properties taking care of adjustment to the injection site. Growth factors are delivered from the hydrogel thereby clearly showing a reduction of infarct scar in a pig myocardial infarction model. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Programmable bioelectronics in a stimuli-encoded 3D graphene interface

    NASA Astrophysics Data System (ADS)

    Parlak, Onur; Beyazit, Selim; Tse-Sum-Bui, Bernadette; Haupt, Karsten; Turner, Anthony P. F.; Tiwari, Ashutosh

    2016-05-01

    The ability to program and mimic the dynamic microenvironment of living organisms is a crucial step towards the engineering of advanced bioelectronics. Here, we report for the first time a design for programmable bioelectronics, with `built-in' switchable and tunable bio-catalytic performance that responds simultaneously to appropriate stimuli. The designed bio-electrodes comprise light and temperature responsive compartments, which allow the building of Boolean logic gates (i.e. ``OR'' and ``AND'') based on enzymatic communications to deliver logic operations.The ability to program and mimic the dynamic microenvironment of living organisms is a crucial step towards the engineering of advanced bioelectronics. Here, we report for the first time a design for programmable bioelectronics, with `built-in' switchable and tunable bio-catalytic performance that responds simultaneously to appropriate stimuli. The designed bio-electrodes comprise light and temperature responsive compartments, which allow the building of Boolean logic gates (i.e. ``OR'' and ``AND'') based on enzymatic communications to deliver logic operations. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02355j

  12. Vortex-assisted switchable liquid-liquid microextraction for the preconcentration of cadmium in environmental samples prior to its determination with flame atomic absorption spectrometry.

    PubMed

    Fırat, Merve; Bodur, Süleyman; Tışlı, Büşra; Özlü, Cansu; Chormey, Dotse Selali; Turak, Fatma; Bakırdere, Sezgin

    2018-06-12

    In this study, a switchable solvent was used to preconcentrate trace amounts of Cd from aqueous solution for its determination by flame atomic absorption spectrometry (FAAS). Protonation of N,N-dimethylbenzylamine by dry ice (solid CO 2 ) made it water soluble, and addition of sodium hydroxide converted it back to its original nonionic state for phase separation and subsequent extraction of Cd. A slotted quartz tube (SQT) was attached to the flame burner head to increase the residence time of Cd atoms in the light path. Under the optimum conditions, limits of detection and quantification were determined as 0.7 and 2.6 μg L -1 , respectively. Low relative standard deviations calculated from seven replicate measurements of the lowest concentration indicated high precision. Accuracy of the developed method was checked by using a standard reference material (SRM 1633c). Spiked recovery tests were also performed on lake water and wastewater samples at different concentrations to check the applicability of the developed method, and the results obtained (90-103%) established high recovery.

  13. Switchable transport strategy to deposit active Fe/Fe3C cores into hollow microporous carbons for efficient chromium removal.

    PubMed

    Liu, Dong-Hai; Guo, Yue; Zhang, Lu-Hua; Li, Wen-Cui; Sun, Tao; Lu, An-Hui

    2013-11-25

    Magnetic hollow structures with microporous shell and highly dispersed active cores (Fe/Fe3 C nanoparticles) are rationally designed and fabricated by solution-phase switchable transport of active iron species combined with a solid-state thermolysis technique, thus allowing selective encapsulation of functional Fe/Fe3 C nanoparticles in the interior cavity. These engineered functional materials show high loading (≈54 wt%) of Fe, excellent chromium removal capability (100 mg g(-1)), fast adsorption rate (8766 mL mg(-1) h(-1)), and easy magnetic separation property (63.25 emu g(-1)). During the adsorption process, the internal highly dispersed Fe/Fe3 C nanoparticles supply a driving force for facilitating Cr(VI) diffusion inward, thus improving the adsorption rate and the adsorption capacity. At the same time, the external microporous carbon shell can also efficiently trap guest Cr(VI) ions and protect Fe/Fe3 C nanoparticles from corrosion and subsequent leaching problems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photoaligning and photopatterning technology: applications in displays and photonics

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir

    2016-03-01

    The advantages of LC photoalignment technology in comparison with common "rubbing" alignment methods tend to the continuation of the research in this field. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. Nowadays azo-dye alignment materials can be already used in LCD manufacturing, e.g. for the alignment of monomers in LCP films for new generations of photonics and optics devices. Recently the new application of photoaligned technology for the tunable LC lenses with a variable focal distance was proposed. New optically rewritable (ORW) liquid crystal display and photonics devices with a light controllable structure may include LC E-paper screens, LC lenses with a variable focal distance etc. Fast ferroelectric liquid crystal devices (FLCD) are achieved through the application of nano-scale photo aligning (PA) layers in FLC cells. The novel photoaligned FLC devices may include field sequential color (FSC) FLC with a high resolution, high brightness, low power consumption and extended color gamut to be used for PCs, PDAs, switchable goggles, and new generation of switchable 2D/3D LCD TVs, as well as photonics elements.

  15. Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel

    PubMed Central

    Habermacher, Chloé; Martz, Adeline; Calimet, Nicolas; Lemoine, Damien; Peverini, Laurie; Specht, Alexandre; Cecchini, Marco; Grutter, Thomas

    2016-01-01

    P2X receptors function by opening a transmembrane pore in response to extracellular ATP. Recent crystal structures solved in apo and ATP-bound states revealed molecular motions of the extracellular domain following agonist binding. However, the mechanism of pore opening still remains controversial. Here we use photo-switchable cross-linkers as ‘molecular tweezers’ to monitor a series of inter-residue distances in the transmembrane domain of the P2X2 receptor during activation. These experimentally based structural constraints combined with computational studies provide high-resolution models of the channel in the open and closed states. We show that the extent of the outer pore expansion is significantly reduced compared to the ATP-bound structure. Our data further reveal that the inner and outer ends of adjacent pore-lining helices come closer during opening, likely through a hinge-bending motion. These results provide new insight into the gating mechanism of P2X receptors and establish a versatile strategy applicable to other membrane proteins. DOI: http://dx.doi.org/10.7554/eLife.11050.001 PMID:26808983

  16. Ferroelectric based catalysis: Switchable surface chemistry

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2015-03-01

    We describe a new class of catalysts that uses an epitaxial monolayer of a transition metal oxide on a ferroelectric substrate. The ferroelectric polarization switches the surface chemistry between strongly adsorptive and strongly desorptive regimes, circumventing difficulties encountered on non-switchable catalytic surfaces where the Sabatier principle dictates a moderate surface-molecule interaction strength. This method is general and can, in principle, be applied to many reactions, and for each case the choice of the transition oxide monolayer can be optimized. Here, as a specific example, we show how simultaneous NOx direct decomposition (into N2 and O2) and CO oxidation can be achieved efficiently on CrO2 terminated PbTiO3, while circumventing oxygen (and sulfur) poisoning issues. One should note that NOx direct decomposition has been an open challenge in automotive emission control industry. Our method can expand the range of catalytically active elements to those which are not conventionally considered for catalysis and which are more economical, e.g., Cr (for NOx direct decomposition and CO oxidation) instead of canonical precious metal catalysts. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  17. Proof-of-concept switchable hydrophobic/hydrophilic patterned surfaces from thermo-mechanically tailored acrylate systems

    NASA Astrophysics Data System (ADS)

    Laursen, Christopher M.

    A novel, proof-of-concept, switchable hydrophobic/hydrophilic structured surface targeted to assist in antifouling of materials in aqueous environments was created through the development of a multi-tiered platform. The understructure consists of a thermo-mechanically tailored acrylate based polymer patterned in a pillared array, which was then overlaid with spatially tailored hydrophobic/hydrophilic surface chemistry treatments. Development focused on the synthesis of a ternary acrylate system displaying proper thermo-mechanical behavior in submerged conditions for the understructure, creation of a sufficient soft molding technique, and methods to chemically alter water-surface wetting interactions. The final acrylate based polymer constituents were chosen based on expected low-toxicity and the ability to be photopolymerized, while the final system displayed appropriate mechanical toughness, water absorption, and material stiffness over a select temperature window. This was important as alteration in wettability characteristics relied upon a stark transition in the polymeric materials stiffness within a narrow temperature range. The material qualitatively displayed a more hydrophobic state with the pillared surface structures erect, and a more hydrophilic state with the pillars bent over.

  18. A Dual-Modality System for Both Multi-Color Ultrasound-Switchable Fluorescence and Ultrasound Imaging

    PubMed Central

    Kandukuri, Jayanth; Yu, Shuai; Cheng, Bingbing; Bandi, Venugopal; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2017-01-01

    Simultaneous imaging of multiple targets (SIMT) in opaque biological tissues is an important goal for molecular imaging in the future. Multi-color fluorescence imaging in deep tissues is a promising technology to reach this goal. In this work, we developed a dual-modality imaging system by combining our recently developed ultrasound-switchable fluorescence (USF) imaging technology with the conventional ultrasound (US) B-mode imaging. This dual-modality system can simultaneously image tissue acoustic structure information and multi-color fluorophores in centimeter-deep tissue with comparable spatial resolutions. To conduct USF imaging on the same plane (i.e., x-z plane) as US imaging, we adopted two 90°-crossed ultrasound transducers with an overlapped focal region, while the US transducer (the third one) was positioned at the center of these two USF transducers. Thus, the axial resolution of USF is close to the lateral resolution, which allows a point-by-point USF scanning on the same plane as the US imaging. Both multi-color USF and ultrasound imaging of a tissue phantom were demonstrated. PMID:28165390

  19. Switchable regioselectivity in amine-catalysed asymmetric cycloadditions

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Wang, Zhou-Xiang; Zhou, Yuan-Chun; Xiao, Wei; Ouyang, Qin; Du, Wei; Chen, Ying-Chun

    2017-06-01

    Building small-molecule libraries with structural and stereogenic diversity plays an important role in drug discovery. The development of switchable intermolecular cycloaddition reactions from identical substrates in different regioselective fashions would provide an attractive protocol. However, this also represents a challenge in organic chemistry, because it is difficult to control regioselectivity to afford the products exclusively and at the same time achieve high levels of stereoselectivity. Here, we report the diversified cycloadditions of α‧-alkylidene-2-cyclopentenones catalysed by cinchona-derived primary amines. An asymmetric γ,β‧-regioselective intermolecular [6+2] cycloaddition reaction with 3-olefinic (7-aza)oxindoles is realized through the in situ generation of formal 4-aminofulvenes, while a different β,γ-regioselective [2+2] cycloaddition reaction with maleimides to access fused cyclobutanes is disclosed. In contrast, an intriguing α,γ-regioselective [4+2] cycloaddition reaction is uncovered with the same set of substrates, by employing an unprecedented dual small-molecule catalysis of amines and thiols. All of the cycloaddition reactions exhibit excellent regio- and stereoselectivity, producing a broad spectrum of chiral architectures with high structural diversity and molecular complexity.

  20. Autonomous omnidirectional spacecraft antenna system

    NASA Technical Reports Server (NTRS)

    Taylor, T. H.

    1983-01-01

    The development of a low gain Electronically Switchable Spherical Array Antenna is discussed. This antenna provides roughly 7 dBic gain for receive/transmit operation between user satellites and the Tracking and Data Relay Satellite System. When used as a pair, the antenna provides spherical coverage. The antenna was tested in its primary operating modes: directed beam, retrodirective, and Omnidirectional.

  1. Threshold Switchable Particles (TSP) to Control Internal Hemorrhage

    DTIC Science & Technology

    2014-12-01

    be markers of disease. Nudt2 (Apah1), for example, is an Ap4A hydrolase that, when overexpressed in breast cancer, correlates with poor prognosis.26...In addition to processing Ap4A , Nudt2 can hydrolyze long-chain NpnNs such as Ap6A. We hypothesized that this nudix enzyme, though previously not

  2. Switching wormlike micelles of selenium-containing surfactant using redox reaction.

    PubMed

    Zhang, Yongmin; Kong, Weiwei; Wang, Cheng; An, Pengyun; Fang, Yun; Feng, Yujun; Qin, Zhirong; Liu, Xuefeng

    2015-10-14

    A novel redox-switchable wormlike micellar system was developed based on a mixture of selenium-containing zwitterionic surfactant and commercially available anionic surfactant sodium dodecyl sulfate, which reversibly and quickly responds to H2O2 and vitamin C, and shows circulatory gel/sol transition, reflecting changes in aggregate morphology from entangled worms to vesicles.

  3. Tetragonal CH3NH3PbI3 is ferroelectric

    PubMed Central

    Bar-Elli, Omri; Meirzadeh, Elena; Kaslasi, Hadar; Peleg, Yagel; Hodes, Gary; Lubomirsky, Igor; Oron, Dan; Ehre, David; Cahen, David

    2017-01-01

    Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI3). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI3 is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI3 (unlike MAPbBr3) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material’s relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity’s hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI3, we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material’s noncentrosymmetry. We note that the material’s ferroelectric nature, can, but need not be important in a PV cell at room temperature. PMID:28588141

  4. Dramatic nano-fluidic properties of carbon nanotube membranes as a platform for protein channel mimetics

    NASA Astrophysics Data System (ADS)

    Hinds, Bruce

    2013-03-01

    Carbon nanotubes have three key attributes that make them of great interest for novel membrane applications: 1) atomically flat graphite surface allows for ideal fluid slip boundary conditions and extremely fast flow rates 2) the cutting process to open CNTs inherently places functional chemistry at CNT core entrance for chemical selectivity and 3) CNT are electrically conductive allowing for electrochemical reactions and application of electric fields gradients at CNT tips. Pressure driven flux of a variety of solvents (H2O, hexane, decane ethanol, methanol) are 4-5 orders of magnitude higher than conventional Newtonian flow [Nature 2005, 438, 44] due to atomically flat graphite planes inducing nearly ideal slip conditions. However this is eliminated with selective chemical functionalization [ACS Nano 2011 5(5) 3867-3877] needed to give chemical selectivity. These unique properties allow us to explore the hypothesis of producing ``Gatekeeper'' membranes that mimic natural protein channels to actively pump through rapid nm-scale channels. With anionic tip functionality strong electroosmotic flow is induced by unimpeded cation flow with similar 10,000 fold enhancements [Nature Nano 2012 7(2) 133-39]. With enhanced power efficiency, carbon nanotube membranes were employed as the active element of a switchable transdermal drug delivery device that can facilitate more effective treatments of drug abuse and addiction. Recently methods to deposit Pt monolayers on CNT surface have been developed making for highly efficient catalytic platforms. Discussed are other applications of CNT protein channel mimetics, for large area robust engineering platforms, including water purification, flow battery energy storage, and biochemical/biomass separations. DOE EPSCoR (DE-FG02-07ER46375) and DARPA, W911NF-09-1-0267

  5. Electrical potential induced switchable wettability of super-aligned carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Zhang, Guang; Duan, Zheng; Wang, Qinggong; Li, Long; Yao, Wei; Liu, Changhong

    2018-01-01

    Controlling of the wettability of micro-nano scale surfaces not only plays important roles in basic science but also presents some significant applications in interference shielding materials, microfluidics and phase-change heat transfer enhancement, etc. Here, the superhydrophobic super-aligned carbon nanotube (SACNT) films are firstly obtained by the chemical vapor deposition method and the annealing process. Then their wettabilities are in-situ switched by the electrowetting strategy. Specifically, the fascinating transformation of superhydrophobicity to the superhydrophilicity is achieved by exerting external DC voltages across the CNT-liquid interfaces, and the transitions of Cassie-to-Wenzel states are observed on the multilayer SACNT films. In addition, the electrowetting induced salt absorption of the porous SACNT is also reported here. Finally, the threshold voltages of the electrowetting behaviors for different liquids on the SACNT films and unit capacitances across the CNT-liquid interfaces are obtained, which reveal that the SACNT films have much more outstanding electrowetting properties than the previously reported works. Our approach reported here demonstrates that the wettability of SACNT films could be simply, effectively and in-situ controlled by the electrowetting method, which will have many profound implications in numerous applications such as phase-change heat transfer enhancement, optical lens with variable focal length and microfluidics, etc.

  6. Ferroelectric Diodes with Charge Injection and Trapping

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Fan, Hua; Lu, Zengxing; Li, Peilian; Huang, Zhifeng; Tian, Guo; Yang, Lin; Yao, Junxiang; Chen, Chao; Chen, Deyang; Yan, Zhibo; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming

    2017-01-01

    Ferroelectric diodes with polarization-modulated Schottky barriers are promising for applications in resistive switching (RS) memories. However, they have not achieved satisfactory performance reliability as originally hoped. The physical origins underlying this issue have not been well studied, although they deserve much attention. Here, by means of scanning Kelvin probe microscopy we show that the electrical poling of ferroelectric diodes can cause significant charge injection and trapping besides polarization switching. We further show that the reproducibility and stability of switchable diode-type RS behavior are significantly affected by the interfacial traps. A theoretical model is then proposed to quantitatively describe the modifications of Schottky barriers by charge injection and trapping. This model is able to reproduce various types of hysteretic current-voltage characteristics as experimentally observed. It is further revealed that the charge injection and trapping can significantly modify the electroresistance ratio, RS polarity, and high- or low-resistance states initially defined by the polarization direction. Several approaches are suggested to suppress the effect of charge injection and trapping so as to realize high-performance polarization-reversal-induced RS. This study, therefore, reveals the microscopic mechanisms for the RS behavior comodulated by polarization reversal and charge trapping in ferroelectric diodes, and also provides useful suggestions for developing reliable ferroelectric RS memories.

  7. A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Onozato, Takaki; Hirono, Misako; Mizuno, Taku; Ohta, Hiromichi

    2016-05-01

    Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.

  8. Some Improvements in H-PDLCs

    NASA Technical Reports Server (NTRS)

    Crawford, Gregory P.; Li, Liuliu

    2005-01-01

    Some improvements have been made in the formulation of holographically formed polymer-dispersed liquid crystals (H-PDLCs) and in the fabrication of devices made from these materials, with resulting improvements in performance. H-PDLCs are essentially volume Bragg gratings. Devices made from H-PDLCs function as electrically switchable reflective filters. Heretofore, it has been necessary to apply undesirably high drive voltages in order to switch H-PDLC devices. Many scientific papers on H-PDLCs and on the potential utility of H-PDLC devices for display and telecommunication applications have been published. However, until now, little has been published about improving quality control in synthesis of H-PDLCs and fabrication of H-PDLC devices to minimize (1) spatial nonuniformities within individual devices, (2) nonuniformities among nominally identical devices, and (3) variations in performance among nominally identical devices. The improvements reported here are results of a research effort directed partly toward solving these quality-control problems and partly toward reducing switching voltages. The quality-control improvements include incorporation of a number of process controls to create a relatively robust process, such that the H-PDLC devices fabricated in this process are more nearly uniform than were those fabricated in a prior laboratory-type process. The improved process includes ultrasonic mixing, ultrasonic cleaning, the use of a micro dispensing technique, and the use of a bubble press.

  9. In situ measurements of the optical absorption of dioxythiophene-based conjugated polymers

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Schwendeman, I.; Ihas, B. C.; Clark, R. J.; Cornick, M.; Nikolou, M.; Argun, A.; Reynolds, J. R.; Tanner, D. B.

    2011-05-01

    Conjugated polymers can be reversibly doped by electrochemical means. This doping introduces new subband-gap optical absorption bands in the polymer while decreasing the band-gap absorption. To study this behavior, we have prepared an electrochemical cell allowing in situ measurements of the optical properties of the polymer. The cell consists of a thin polymer film deposited on gold-coated Mylar behind which is another polymer that serves as a counterelectrode. An infrared transparent window protects the upper polymer from ambient air. By adding a gel electrolyte and making electrical connections to the polymer-on-gold films, one may study electrochromism in a wide spectral range. As the cell voltage (the potential difference between the two electrodes) changes, the doping level of the conjugated polymer films is changed reversibly. Our experiments address electrochromism in poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-dimethylpropylenedioxythiophene) (PProDOT-Me2). This closed electrochemical cell allows the study of the doping induced subband-gap features (polaronic and bipolaronic modes) in these easily oxidized and highly redox switchable polymers. We also study the changes in cell spectra as a function of polymer thickness and investigate strategies to obtain cleaner spectra, minimizing the contributions of water and gel electrolyte features.

  10. Evaluation of switchable organic devices for nonvolatile memory applications

    NASA Astrophysics Data System (ADS)

    Campbell Scott, J.

    2007-03-01

    Many organic electronic devices exhibit switching behavior and have therefore been proposed as the basis for a nonvolatile memory technology. In particular, bistable resistive elements, in which a high or low current state is selected by application of a specific voltage, may be used as the elements of a crosspoint memory array. This architecture places very stringent requirements on the electrical response of the individual devices, in terms of on-state current density, switching and retention times, cycling endurance, rectification and size-scaling. In this talk, I will describe the progress that we and others have made towards satisfying these requirements. In many cases, the mechanisms responsible for conduction and switching are not fully understood. In some devices, it has been shown that current flows in a few highly localized regions. These so-called ``filaments'' are not necessarily metallic bridges between the electrodes, but may be associated with chains of nanoparticles introduced into the organic matrix either deliberately or accidentally. Coulomb blockade effects can then explain the switching behavior observed in some devices. This work was done in collaboration with L. D. Bozano, M. Beinhoff, K. R. Carter, V. R. Deline, B. W. Kean, G. M. McClelland, D. C. Miller, P. M. Rice, J. R. Salem, and S. A. Swanson.

  11. Hidden Gratings in Holographic Liquid Crystal Polymer-Dispersed Liquid Crystal Films.

    PubMed

    De Sio, Luciano; Lloyd, Pamela F; Tabiryan, Nelson V; Bunning, Timothy J

    2018-04-18

    Dynamic diffraction gratings that are hidden in the field-off state are fabricated utilizing a room-temperature photocurable liquid crystal (LC) monomer and nematic LC (NLC) using holographic photopolymerization techniques. These holographic LC polymer-dispersed LCs (HLCPDLCs) are hidden because of the refractive index matching between the LC polymer and the NLC regions in the as-formed state (no E-field applied). Application of a moderate E-field (5 V/μm) generates a refractive index mismatch because of the NLC reorientation (along the E-field) generating high-diffraction efficiency transmission gratings. These dynamic gratings are characterized by morphological, optical, and electrooptical techniques. They exhibit a morphology made of oriented LC polymer regions (containing residual NLC) alternating with a two-phase region of an NLC and LC polymer. Unlike classic holographic polymer-dispersed LC gratings formed with a nonmesogenic monomer, there is index matching between the as-formed alternating regions of the grating. These HLCPDLCs exhibit broad band and high diffraction efficiency (≈90%) at the Bragg angle, are transparent to white light across the visible range because of the refractive index matching, and exhibit fast response times (1 ms). The ability of HLCPDLCs not to consume electrical power in the off state opens new possibilities for the realization of energy-efficient switchable photonic devices.

  12. Increased operational temperature of Cr2O3-based spintronic devices

    NASA Astrophysics Data System (ADS)

    Street, Michael; Echtenkamp, Will; Komesu, Takashi; Cao, Shi; Wang, Jian; Dowben, Peter; Binek, Christian

    Spintronic devices have been considered a promising path to revolutionizing the current data storage and memory technologies. This work is an effort to utilize voltage-controlled boundary magnetization of the magnetoelectric chromia (Cr2O3) to be implemented into a spintronic device. The electric switchable boundary magnetization of chromia can be used to voltage-control the magnetic states of an adjacent ferromagnetic layer. For this technique to be utilized in a spintronic device, the antiferromagnetic ordering temperature of chromia must be enhanced above the bulk value of TN = 307K. Previously, based on first principle calculations, boron doped chromia thin films were fabricated via pulsed laser deposition showing boundary magnetization at elevated temperatures. Measurements of the boundary magnetization were also corroborated by spin polarized inverse photoemission spectroscopy. Exchange bias of B-doped chromia was also investigated using magneto-optical Kerr effect, showing an increased blocking temperature from 307K. Further boundary magnetization measurements and spin polarized inverse photoemission measurements indicate the surface magnetization to an in-plane orientation from the standard perpendicular orientation. This project was supported by the SRC through CNFD, an SRC-NRI Center under Task ID (2398.001) and by C-SPIN, part of STARnet, sponsored by MARCO and DARPA (No. SRC 2381.001).

  13. Light scattering properties of new materials for glazing applications

    NASA Astrophysics Data System (ADS)

    Bergkvist, Mikael; Roos, Arne

    1991-12-01

    Several new materials are available for glazing applications, many of which require careful optical characterization, especially with regards to light scattering. Measuring scattering requires special equipment and is inherently difficult. An integrating sphere can be used for the total and diffuse components but great care must be taken in interpreting the instrument readings. Angular resolved scattering measurements are necessary for a complete characterization, and this is difficult for low levels of scattering. In this paper, measurements on electrically switchable NCAP materials and thick panes of aerogel are reported. The NCAP films switch reversibly from a translucent, scattering state to a transparent, clear state with the application of an ac-voltage. Airglass has a porous SiO2 structure with a refractive index n equals 1.04 and a very low heat transfer coefficient. Integrated scattering measurements were performed in the wavelength range 300 to 2500 nm on a Beckman 5240 spectrophotometer equipped with a 198851 integrating sphere. In this instrument we can measure the total and diffuse components of the reflectance or transmittance separately. The angular distribution of the scattered light was measured in a scatterometer, which can perform scattering measurements in the wavelength range 400-1100 nm in both transmittance and reflectance mode with variable angle of incidence.

  14. Topological mosaics in moiré superlattices of van der Waals heterobilayers

    NASA Astrophysics Data System (ADS)

    Tong, Qingjun; Yu, Hongyi; Zhu, Qizhong; Wang, Yong; Xu, Xiaodong; Yao, Wang

    2017-04-01

    Van der Waals (vdW) heterostructures formed by two-dimensional atomic crystals provide a powerful approach towards designer condensed matter systems. Incommensurate heterobilayers with small twisting and/or lattice mismatch lead to the interesting concept of moiré superlattices, where the atomic registry is locally indistinguishable from commensurate bilayers but has local-to-local variation over long range. Here we show that such moiré superlattices can lead to periodic modulation of local topological order in vdW heterobilayers formed by two massive Dirac materials. By tuning the vdW heterojunction from normal to the inverted type-II regime via an interlayer bias, the commensurate heterobilayer can become a topological insulator (TI), depending on the interlayer hybridization controlled by the atomic registry between the vdW layers. This results in a mosaic pattern of TI regions and normal insulator (NI) regions in moiré superlattices, where topologically protected helical modes exist at the TI/NI phase boundaries. By using symmetry-based k .p and tight-binding models, we predict that this topological phenomenon can be present in inverted transition metal dichalcogenides heterobilayers. Our work points to a new means of realizing programmable and electrically switchable topological superstructures from two-dimensional arrays of TI nano-dots to one-dimensional arrays of TI nano-stripes.

  15. Field-induced refractive index variation in the dark conglomerate phase for polarization-independent switchable liquid crystal lenses.

    PubMed

    Milton, H E; Nagaraj, M; Kaur, S; Jones, J C; Morgan, P B; Gleeson, H F

    2014-11-01

    Liquid crystal lenses are an emerging technology that can provide variable focal power in response to applied voltage. Many designs for liquid-crystal-based lenses are polarization dependent, so that 50% of light is not focused as required, making polarization-independent technologies very attractive. Recently, the dark conglomerate (DC) phase, which is an optically isotropic liquid crystalline state, has been shown to exhibit a large change in refractive index in response to an applied electric field (Δn=0.04). This paper describes computational modeling of the electrostatic solutions for two different types of 100 μm diameter liquid crystal lenses, which include the DC phase, demonstrating that it shows great potential for efficient isotropic optical switching in lenses. A feature of the field dependence of the refractive index change in the DC phase is that it is approximately linear in a certain range, leading to the prediction of excellent optical quality for driving fields in this regime. Interestingly, a simulated microlens is shown to exhibit two modes of operation: a positive lens based upon a uniform bulk change in refractive index at high voltages, and a negative lens resulting from the induction of a gradient index effect at intermediate voltages.

  16. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    DOE PAGES

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; ...

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA +) in methyl ammonium lead tri-iodide (MAPbI 3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA + leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI 3 perovskite devices.

  17. Biomimetic Bidirectional Switchable Adhesive Inspired by the Gecko

    DTIC Science & Technology

    2014-01-01

    structures, [ 24 ] and the resulting gecko-like surface was reminiscent of the tribological properties of gecko pads. With our current design, the...rely on intensive nanofabrication in order to recover the anisotropic tribological property of gecko adhesive pads, albeit with lower adhesive forces...Naval Research Laboratory Washington , D.C. 20375 , USA Dr. Y. Tian State Key Laboratory of Tribology Tsinghua University Beijing

  18. Method to create gradient index in a polymer

    DOEpatents

    Dirk, Shawn M; Johnson, Ross Stefan; Boye, Robert; Descour, Michael R; Sweatt, William C; Wheeler, David R; Kaehr, Bryan James

    2014-10-14

    Novel photo-writable and thermally switchable polymeric materials exhibit a refractive index change of .DELTA.n.gtoreq.1.0 when exposed to UV light or heat. For example, lithography can be used to convert a non-conjugated precursor polymer to a conjugated polymer having a higher index-of-refraction. Further, two-photon lithography can be used to pattern high-spatial frequency structures.

  19. Scalable imprinting of shape-specific polymeric nanocarriers using a release layer of switchable water solubility.

    PubMed

    Agarwal, Rachit; Singh, Vikramjit; Jurney, Patrick; Shi, Li; Sreenivasan, S V; Roy, Krishnendu

    2012-03-27

    There is increasing interest in fabricating shape-specific polymeric nano- and microparticles for efficient delivery of drugs and imaging agents. The size and shape of these particles could significantly influence their transport properties and play an important role in in vivo biodistribution, targeting, and cellular uptake. Nanoimprint lithography methods, such as jet-and-flash imprint lithography (J-FIL), provide versatile top-down processes to fabricate shape-specific, biocompatible nanoscale hydrogels that can deliver therapeutic and diagnostic molecules in response to disease-specific cues. However, the key challenges in top-down fabrication of such nanocarriers are scalable imprinting with biological and biocompatible materials, ease of particle-surface modification using both aqueous and organic chemistry as well as simple yet biocompatible harvesting. Here we report that a biopolymer-based sacrificial release layer in combination with improved nanocarrier-material formulation can address these challenges. The sacrificial layer improves scalability and ease of imprint-surface modification due to its switchable solubility through simple ion exchange between monovalent and divalent cations. This process enables large-scale bionanoimprinting and efficient, one-step harvesting of hydrogel nanoparticles in both water- and organic-based imprint solutions. © 2012 American Chemical Society

  20. Tunable Mechanics in Electrospun Composites via Hierarchical Organization.

    PubMed

    Wanasekara, Nandula D; Matolyak, Lindsay E; Korley, LaShanda T J

    2015-10-21

    Design strategies from nature provide vital clues for the development of synthetic materials with tunable mechanical properties. Employing the concept of hierarchy and controlled percolation, a new class of polymer nanocomposites containing a montmorillonite (MMT)-reinforced electrospun poly(vinyl alcohol) (PVA) filler embedded within a polymeric matrix of either poly(vinyl acetate) (PVAc) or ethylene oxide-epichlorohydrin copolymer (EO-EPI) were developed to achieve a tunable mechanical response upon exposure to specific stimuli. Mechanical response and switching times upon hydration were shown to be dependent on the weight-fraction of MMT in the PVA electrospun fibers and type of composite matrix. PVA/MMT.PVAc composite films retained excellent two-way switchability for all MMT fractions; however, the switching time upon hydration was decreased dramatically as the MMT content was increased due to the highly hydrophilic nature of MMT. Additionally, for the first time, significant two-way switchability of PVA/MMT.EO-EPI composites was achieved for higher weight fractions (12 wt %) of MMT. An extensive investigation into the effects of fiber diameter, crystallinity, and MMT content revealed that inherent rigidity of MMT platelets plays an important role in controlling the mechanical response of these hierarchical electrospun composites.

  1. Micro-electro-mechanically switchable near infrared complementary metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitchappa, Prakash; Pei Ho, Chong; Institute of Microelectronics

    2014-05-19

    We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μmmore » in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.« less

  2. Autostereoscopic display technology for mobile 3DTV applications

    NASA Astrophysics Data System (ADS)

    Harrold, Jonathan; Woodgate, Graham J.

    2007-02-01

    Mobile TV is now a commercial reality, and an opportunity exists for the first mass market 3DTV products based on cell phone platforms with switchable 2D/3D autostereoscopic displays. Compared to conventional cell phones, TV phones need to operate for extended periods of time with the display running at full brightness, so the efficiency of the 3D optical system is key. The desire for increased viewing freedom to provide greater viewing comfort can be met by increasing the number of views presented. A four view lenticular display will have a brightness five times greater than the equivalent parallax barrier display. Therefore, lenticular displays are very strong candidates for cell phone 3DTV. Selection of Polarisation Activated Microlens TM architectures for LCD, OLED and reflective display applications is described. The technology delivers significant advantages especially for high pixel density panels and optimises device ruggedness while maintaining display brightness. A significant manufacturing breakthrough is described, enabling switchable microlenses to be fabricated using a simple coating process, which is also readily scalable to large TV panels. The 3D image performance of candidate 3DTV panels will also be compared using autostereoscopic display optical output simulations.

  3. DNA-assisted upconversion nanoplatform for imaging-guided synergistic therapy and laser-switchable drug detoxification.

    PubMed

    Li, Luoyuan; Hao, Panlong; Wei, Peng; Fu, Limin; Ai, Xicheng; Zhang, Jianping; Zhou, Jing

    2017-08-01

    The side effects of chemotherapy bring significant physical and psychological suffering to patients. To solve this urgent medical problem, Yb 3+ and Er 3+ co-doped NaLuF 4 upconversion nanoparticles (UCNPs) were constructed for upconversion luminescence (UCL)-labeled diagnosis under 980 nm laser irradiation. The UCNPs were then modified layer by layer with polypyrrole and a special programming DNA segment as photothermal conversion agents and controllable drug carriers, respectively. The nanoplatform was successfully used for imaging-guided synergistic therapy (photothermal therapy and chemotherapy) at a safe power density (300 mW cm -2 ), and DNA-assisted detoxification at lower temperature in cancer cells when the laser off. The synergistic therapy of the nanoplatform achieved a higher therapeutic index (∼85%) than chemotherapy only (∼44%) and photothermal therapy only (∼25%) in vitro. In vivo experiments also suggested that the nanoplatform had a higher therapeutic effect and lower side effects. The toxicity study was also evaluated, indicating the nanoplatform is low toxic to living system. This multifunctional upconversion nanoplatform provided an innovative method for imaging-guided photothermal-chemotherapy and laser-switchable drug detoxification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. General chemoselective and redox-responsive ligation and release strategy.

    PubMed

    Park, Sungjin; Westcott, Nathan P; Luo, Wei; Dutta, Debjit; Yousaf, Muhammad N

    2014-03-19

    We report a switchable redox click and cleave reaction strategy for conjugating and releasing a range of molecules on demand. This chemoselective redox-responsive ligation (CRRL) and release strategy is based on a redox switchable oxime linkage that is controlled by mild chemical or electrochemical redox signals and can be performed at physiological conditions without the use of a catalyst. Both conjugation and release reactions are kinetically well behaved and quantitative. The CRRL strategy is synthetically modular and easily monitored and characterized by routine analytical techniques. We demonstrate how the CRRL strategy can be used for the dynamic generation of cyclic peptides and the ligation of two different peptides that are stable but can be selectively cleaved upon changes in the redox environment. We also demonstrate a new redox based delivery of cargoes to live cells strategy via the CRRL methodology by synthesizing a FRET redox-responsive probe that is selectively activated within a cellular environment. We believe the ease of the CRRL strategy should find wide use in a range of applications in biology, tissue engineering, nanoscience, synthetic chemistry, and material science and will expand the suite of current conjugation and release strategies.

  5. Internal stresses and formation of switchable nanowires at thin silica film edges

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2011-02-01

    At vertical edges, thin films of silicon oxide (SiO2-x) can contain defect-free semiconductive c-Si layered nanocrystals (Si NC) embedded in and supported by an insulating g-SiO2 matrix. Yaoet al. [Appl. Phys. A (in press)] have shown that a trenched thin film geometry enables the NC to form switchable nanowires (SNW) when trained by an applied field. The field required to form SNW decreases rapidly within a few cycles, or by annealing at 600 °C in even fewer cycles, and is stable to 700 °C. Here we describe the intrinsic evolution of Si NC and SNW in terms of the competition between internal stresses and electro-osmosis. The analysis relies heavily on experimental data from a wide range of thin film studies, and it explains why a vertical edge across the planar polySi-SiO2-x interface is necessary to form SNW. The discussion also shows that the formation mechanisms of Si NC and polySi/SiO2-x SNW are intrinsic and result from optimization of nanowire connectivity in the presence of residual host misfit stresses.

  6. Enhanced Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite Thin Films via Strain Engineering.

    PubMed

    Han, Hyeon; Kim, Donghoon; Chu, Kanghyun; Park, Jucheol; Nam, Sang Yeol; Heo, Seungyang; Yang, Chan-Ho; Jang, Hyun Myung

    2018-01-17

    Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼10 4 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E g ). Here, we present a promising FPV based on hexagonal YbFeO 3 (h-YbFO) thin-film heterostructure by exploiting its narrow E g . More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al 2 O 3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces E g substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.

  7. A large, switchable optical clearing skull window for cerebrovascular imaging

    PubMed Central

    Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan

    2018-01-01

    Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069

  8. Carbon nanotube-based mode-locked wavelength-switchable fiber laser via net gain cross section alteration

    NASA Astrophysics Data System (ADS)

    Latif, A. A.; Mohamad, H.; Abu Bakar, M. H.; Muhammad, F. D.; Mahdi, M. A.

    2016-02-01

    We have proposed and demonstrated a carbon nanotube-based mode-locked erbium-doped fiber laser with switchable wavelength in the C-band wavelength region by varying the net gain cross section of erbium. The carbon nanotube is coated on a tapered fiber to form the saturable absorber for the purpose of mode-locking by exploiting the concept of evanescent field interaction on the tapered fiber with the carbon nanotube in a ring cavity configuration. The propagation loss is adjusted by inducing macrobend losses of the optical fiber in the cavity through a fiber spooling technique. Since the spooling radius can be gradually adjusted to achieve continuous tuning of attenuation, this passive tuning approach can be an alternative to optical tunable attenuator, with freedom of external device integration into the laser cavity. Based on this alteration, the net gain cross section of the laser system can be tailored to three different lasing wavelength ranges; 1533, 1560 nm and both (1533 and 1560 nm) with the minimum pulse duration of 734 fs. The proposed design is simple and stable with high beam quality and good reliability for multiple applications.

  9. Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO 3-buffered ferroelectric BaTiO 3 film on GaAs

    DOE PAGES

    Qiao, Q.; Zhang, Y.; Contreras-Guerrero, Rocio; ...

    2015-11-16

    The integration of functional oxide thin-films on compound semiconductors can lead to a class of reconfigurable spin-based optoelectronic devices if defect-free, fully reversible active layers are stabilized. However, previous first-principles calculations predicted that SrTiO 3 thin filmsgrown on Si exhibit pinned ferroelectric behavior that is not switchable, due to the presence of interfacial vacancies. Meanwhile, piezoresponse force microscopy measurements have demonstrated ferroelectricity in BaTiO 3 grown on semiconductor substrates. The presence of interfacial oxygen vacancies in such complex-oxide/semiconductor systems remains unexplored, and their effect on ferroelectricity is controversial. We also use a combination of aberration-corrected scanning transmission electron microscopy andmore » first-principles density functional theory modeling to examine the role of interfacial oxygen vacancies on the ferroelectricpolarization of a BaTiO 3 thin filmgrown on GaAs. Moreover, we demonstrate that interfacial oxygen vacancies enhance the polar discontinuity (and thus the single domain, out-of-plane polarization pinning in BaTiO 3), and propose that the presence of surface charge screening allows the formation of switchable domains.« less

  10. Solution processable and optically switchable 1D photonic structures.

    PubMed

    Paternò, Giuseppe M; Iseppon, Chiara; D'Altri, Alessia; Fasanotti, Carlo; Merati, Giulia; Randi, Mattia; Desii, Andrea; Pogna, Eva A A; Viola, Daniele; Cerullo, Giulio; Scotognella, Francesco; Kriegel, Ilka

    2018-02-23

    We report the first demonstration of a solution processable, optically switchable 1D photonic crystal which incorporates phototunable doped metal oxide nanocrystals. The resulting device structure shows a dual optical response with the photonic bandgap covering the visible spectral range and the plasmon resonance of the doped metal oxide the near infrared. By means of a facile photodoping process, we tuned the plasmonic response and switched effectively the optical properties of the photonic crystal, translating the effect from the near infrared to the visible. The ultrafast bandgap pumping induces a signal change in the region of the photonic stopband, with recovery times of several picoseconds, providing a step toward the ultrafast optical switching. Optical modeling uncovers the importance of a complete modeling of the variations of the dielectric function of the photodoped material, including the high frequency region of the Drude response which is responsible for the strong switching in the visible after photodoping. Our device configuration offers unprecedented tunability due to flexibility in device design, covering a wavelength range from the visible to the near infrared. Our findings indicate a new protocol to modify the optical response of photonic devices by optical triggers only.

  11. Analytical model for describing ion guiding through capillaries in insulating polymers

    NASA Astrophysics Data System (ADS)

    Liu, Shi-Dong; Zhao, Yong-Tao; Wang, Yu-Yu; N, Stolterfoht; Cheng, Rui; Zhou, Xian-Ming; Xu, Hu-Shan; Xiao, Guo-Qing

    2015-08-01

    An analytical description for guiding of ions through nanocapillaries is given on the basis of previous work. The current entering into the capillary is assumed to be divided into a current fraction transmitted through the capillary, a current fraction flowing away via the capillary conductivity and a current fraction remaining within the capillary, which is responsible for its charge-up. The discharging current is assumed to be governed by the Frenkel-Poole process. At higher conductivities the analytical model shows a blocking of the ion transmission, which is in agreement with recent simulations. Also, it is shown that ion blocking observed in experiments is well reproduced by the analytical formula. Furthermore, the asymptotic fraction of transmitted ions is determined. Apart from the key controlling parameter (charge-to-energy ratio), the ratio of the capillary conductivity to the incident current is included in the model. Differences resulting from the nonlinear and linear limits of the Frenkel-Poole discharge are pointed out. Project supported by the Major State Basic Research Development Program of China (Grant No. 2010CB832902) and the National Natural Science Foundation of China (Grant Nos. 11275241, 11275238, 11105192, and 11375034).

  12. Antibody-based detection of protein phosphorylation status to track the efficacy of novel therapies using nanogram protein quantities from stem cells and cell lines.

    PubMed

    Aspinall-O'Dea, Mark; Pierce, Andrew; Pellicano, Francesca; Williamson, Andrew J; Scott, Mary T; Walker, Michael J; Holyoake, Tessa L; Whetton, Anthony D

    2015-01-01

    This protocol describes a highly reproducible antibody-based method that provides protein level and phosphorylation status information from nanogram quantities of protein cell lysate. Nanocapillary isoelectric focusing (cIEF) combines with UV-activated linking chemistry to detect changes in phosphorylation status. As an example application, we describe how to detect changes in response to tyrosine kinase inhibitors (TKIs) in the phosphorylation status of the adaptor protein CrkL, a major substrate of the oncogenic tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), using highly enriched CML stem cells and mature cell populations in vitro. This protocol provides a 2.5 pg/nl limit of protein detection (<0.2% of a stem cell sample containing <10(4) cells). Additional assays are described for phosphorylated tyrosine 207 (pTyr207)-CrkL and the protein tyrosine phosphatase PTPRC/CD45; these assays were developed using this protocol and applied to CML patient samples. This method is of high throughput, and it can act as a screen for in vitro cancer stem cell response to drugs and novel agents.

  13. High hopes: can molecular electronics realise its potential?

    PubMed

    Coskun, Ali; Spruell, Jason M; Barin, Gokhan; Dichtel, William R; Flood, Amar H; Botros, Youssry Y; Stoddart, J Fraser

    2012-07-21

    Manipulating and controlling the self-organisation of small collections of molecules, as an alternative to investigating individual molecules, has motivated researchers bent on processing and storing information in molecular electronic devices (MEDs). Although numerous ingenious examples of single-molecule devices have provided fundamental insights into their molecular electronic properties, MEDs incorporating hundreds to thousands of molecules trapped between wires in two-dimensional arrays within crossbar architectures offer a glimmer of hope for molecular memory applications. In this critical review, we focus attention on the collective behaviour of switchable mechanically interlocked molecules (MIMs)--specifically, bistable rotaxanes and catenanes--which exhibit reset lifetimes between their ON and OFF states ranging from seconds in solution to hours in crossbar devices. When these switchable MIMs are introduced into high viscosity polymer matrices, or self-assembled as monolayers onto metal surfaces, both in the form of nanoparticles and flat electrodes, or organised as tightly packed islands of hundreds and thousands of molecules sandwiched between two electrodes, the thermodynamics which characterise their switching remain approximately constant while the kinetics associated with their reset follow an intuitively predictable trend--that is, fast when they are free in solution and sluggish when they are constrained within closely packed monolayers. The importance of seamless interactions and constant feedback between the makers, the measurers and the modellers in establishing the structure-property relationships in these integrated functioning systems cannot be stressed enough as rationalising the many different factors that impact device performance becomes more and more demanding. The choice of electrodes, as well as the self-organised superstructures of the monolayers of switchable MIMs employed in the molecular switch tunnel junctions (MSTJs) associated with the crossbars of these MEDs, have a profound influence on device operation and performance. It is now clear, after much investigation, that a distinction should be drawn between two types of switching that can be elicited from MSTJs. One affords small ON/OFF ratios and is a direct consequence of the switching in bistable MIMs that leads to a relatively small remnant molecular signature--an activated chemical process. The other leads to a very much larger signature and ON/OFF ratios resulting from physical or chemical changes in the electrodes themselves. Control experiments with various compounds, including degenerate catenanes and free dumbbells, which cannot and do not switch, are crucial in establishing the authenticity of the small ON/OFF ratios and remnant molecular signatures produced by bistable MIMs. Moreover, experiments conducted on monolayers in MSTJs of molecules designed to switch and molecules designed not to switch have been probed directly by spectroscopic and other means in support of MEDs that store information through switching collections of bistable MIMs contained in arrays of MSTJs. In the quest for the next generation of MEDs, it is likely that monolayers of bistable MIMs will be replaced by robust crystalline extended structures wherein the switchable components, derived from bistable MIMs, are organised precisely in a periodic manner.

  14. Threshold Switchable Particles (TSPs) To Control Internal Hemorrhage

    DTIC Science & Technology

    2016-09-01

    hemorrhage at local sites. Four collaborating laboratories worked together under this contract to define threshold levels of activators of blood clotting...such that the candidate clotting activators will circulate in the blood at a concentration below the threshold necessary to trigger clotting, but...accumulation of the activators at sites of internal injury/bleeding will cause the local concentration of clotting activators to exceed the clotting

  15. Smart worm-like micelles responsive to CO2/N2 and light dual stimuli.

    PubMed

    Jiang, Jianzhong; Wang, Guozheng; Ma, Yuxuan; Cui, Zhenggang; Binks, Bernard P

    2017-04-12

    CO 2 /N 2 and light dual stimuli-responsive worm-like micelles (WLMs) were obtained by addition of a relatively small amount of a switchable surfactant, 4-butyl-4'-(4-N,N-dimethylhexyloxy-amine) azobenzene bicarbonate (AZO-B6-CO 2 ), sensitive to the same triggers to a binary aqueous solution of cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal).

  16. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  17. Ultra-wide band signal generation using a coupling-tunable silicon microring resonator.

    PubMed

    Ding, Yunhong; Huang, Bo; Peucheret, Christophe; Xu, Jing; Ou, Haiyan; Zhang, Xinliang; Huang, Dexiu

    2014-03-10

    Ultra-wide band signal generation using a silicon microring resonator tuned to an NRZ-DPSK modulated optical carrier is proposed and demonstrated. The scheme is shown to enable the generation of UWB signals with switchable polarity and tunable bandwidth by simply tuning the coupling regions of the microring resonator. Monocycle pulses with both negative and positive polarities are successfully synthesized experimentally.

  18. Threshold-Switchable Particles (TSP) to Control Internal Hemorrhage

    DTIC Science & Technology

    2012-12-01

    the Liu lab (in collaboration with the Morrissey lab): Citrate gold nanoparticle synthesis (toward Task 3, Milestone 4) Gold nanoparticles with an...dimethylamino) propyl ]carbodiimide). Different pH conditions were used to test the conjugation efficiency between PAAc and cystamine. An excess amount of...Studies from the Stucky lab (in collaboration with the Morrissey lab): Silica Nanoparticle (SNP) synthesis (toward Task 3, Milestone 4) In our

  19. Organic non-volatile resistive photo-switches for flexible image detector arrays.

    PubMed

    Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J W

    2015-02-01

    A unique implementation of an organic image detector using resistive photo-switchable pixels is presented. This resistive photo-switch comprises the vertical integration of an organic photodiode and an organic resistive switching memory element. The photodiodes act as a photosensitive element while the resistive switching elements simultaneously store the detected light information. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A MIMO-Inspired Rapidly Switchable Photonic Interconnect Architecture (Postprint)

    DTIC Science & Technology

    2009-07-01

    capabilities of future systems. Highspeed optical processing has been looked to as a means for eliminating this interconnect bottleneck. Presented...here are the results of a study for a novel optical (integrated photonic) processor which would allow for a high-speed, secure means for arbitrarily...regarded as a Multiple Input Multiple Output (MIMO) architecture. 15. SUBJECT TERMS Free-space optical interconnects, Optical Phased Arrays, High-Speed

  1. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. The PNLC response time is ˜300x faster than that of a pure LC mixture. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.

  2. Development of 3000 m Subsea Blowout Preventer Experimental Prototype

    NASA Astrophysics Data System (ADS)

    Cai, Baoping; Liu, Yonghong; Huang, Zhiqian; Ma, Yunpeng; Zhao, Yubin

    2017-12-01

    A subsea blowout preventer experimental prototype is developed to meet the requirement of training operators, and the prototype consists of hydraulic control system, electronic control system and small-sized blowout preventer stack. Both the hydraulic control system and the electronic system are dual-mode redundant systems. Each system works independently and is switchable when there are any malfunctions. And it significantly improves the operation reliability of the equipment.

  3. Threshold-Switchable Particles (TSP) to Control Internal Hemorrhage

    DTIC Science & Technology

    2013-12-01

    and morphology and divided into three regimes: a 3-D gel, 2-D mat, and a 1-D thin film. They determined that the critical parameters determining...of critical physical parameters / dimensionless groups (through both simulation and experiment) such as pre-shear/mixing rate, the Weber and Ohnesorge...Capillary Pinch-Off Phase Diagram. This plot was constructed to aid in the identification of important physical parameters in blood plasma pinch-off

  4. Electromagnetic Launch Optical Telemetry Feasibility Study

    DTIC Science & Technology

    2007-10-01

    responsivity R(λ) of the ThorLab PDA55-switchable gain, amplified silicon detectors...and collected by a telescope, which amplified both the narrow-band optical signal and the broadband optical noise of the muzzle flash generated by the...used, unfiltered. These detectors have a 3.6 mm × 3.6 mm active area, a 10-MHz bandwidth, a 15-V/mA transimpedance gain, and an optical responsivity of

  5. Phase-Change Memory Materials by Design: A Strain Engineering Approach.

    PubMed

    Zhou, Xilin; Kalikka, Janne; Ji, Xinglong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E

    2016-04-20

    Van der Waals heterostructure superlattices of Sb2 Te1 and GeTe are strain-engineered to promote switchable atomic disordering, which is confined to the GeTe layer. Careful control of the strain in the structures presents a new degree of freedom to design the properties of functional superlattice structures for data storage and photonics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Liquid crystal photonic bandgap fiber components

    NASA Astrophysics Data System (ADS)

    Scolari, L.; Alkeskjold, T. T.; Noordegraaf, D.; Tartarini, G.; Bassi, P.; Bjarklev, A.

    2007-11-01

    Liquid crystal photonic bandgap fibers represent a promising platform for the design of all-in-fiber optical devices, which show a high degree of tunability and exhibit novel optical properties for the manipulation of guided light. In this review paper we present tunable fiber devices for spectral filtering, such as Gaussian filters and notch filters, and devices for polarization control and analysis, such as birefringence control devices and switchable and rotatable polarizers.

  7. The 2D Selfassembly of Benzimidazole and its Co-crystallization

    NASA Astrophysics Data System (ADS)

    Costa, Paulo; Teeter, Jacob; Kunkel, Donna; Sinitskii, Alexander; Enders, Axel

    Benzimidazoles (BI) are organic molecules that form ferroelectric crystals. Key to their ferroelectric behavior are the switchable N . . . HN type bonds and how they couple to the electron system of the molecules. We attempted to crystallize BI on various metal surfaces and studied them using STM. We observed that on Au and Ag, BI joins into zipper chains characteristic of its bulk structure that can pack into a continuous 2D layer. Because the dipole of BI lies in the direction of its switchable hydrogen bond, these zippers should in principle have reversible polarizations that point along the direction they run. BI's crystallization is reminiscent to how croconic acid (CA) crystallizes in 2D using O . . . HO bonding, suggesting that these molecules may be able to co-crystallize through OH . . . N bonds. This would present the opportunity to modify BI's properties, such as the energy needed to switch a hydrogen from a donor to acceptor site. When co-deposited, CA and BI successfully combine into a co-crystal formed by building blocks consisting of 2 CA and 2 BI molecules. These findings demonstrate the usefulness of using STM as a preliminary check to verify if two molecules are compatible with each other without having to attempt crystallization with multiple solvents and mixing methods.

  8. Switchable vanadium dioxide (VO2) metamaterials fabricated from tungsten doped vanadia-based colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Paik, Taejong; Hong, Sung-Hoon; Gordon, Thomas; Gaulding, Ashley; Kagan, Cherie; Murray, Christopher

    2013-03-01

    We report the fabrication of thermochromic VO2-based metamaterials using solution-processable colloidal nanocrystals. Vanadium-based nanoparticles are prepared through a non-hydrolytic reaction, resulting in stable colloidal dispersions in solution. Thermochromic nanocrystalline VO2 thin-films are prepared via rapid thermal annealing of colloidal nanoparticles coated on a variety of substrates. Nanostructured VO2 can be patterned over large areas by nanoimprint lithography. Precise control of tungsten (W) doping concentration in colloidal nanoparticles enables tuning of the phase transition temperature of the nanocrystalline VO2 thin-films. W-doped VO2 films display a sharp temperature dependent phase transition, similar to the undoped VO2 film, but at lower temperatures tunable with the doping level. By sequential coating of doped VO2 with different doping concentrations, we fabricate ?smart? multi-layered VO2 films displaying multiple phase transition temperatures within a single structure, allowing for dynamic modulation of the metal-dielectric layered structure. The optical properties programmed into the layered structure are switchable with temperature, which provides additional degrees of freedom to design tunable optical metamaterials. This work is supported by the US Office of Naval Research Multidisciplinary University Research Initiative (MURI) program grant number ONR-N00014-10-1-0942.

  9. Synthetic, switchable enzymes

    PubMed Central

    Norris, Vic; Krylov, Sergey N.; Agarwal, Pratul K.; White, Glenn J.

    2017-01-01

    The construction of switchable, radiation-controlled, aptameric enzymes alias swenzymes is, in principle, feasible. We propose a strategy to make such catalysts from two (or more) aptamers each selected to bind specifically to one of the substrates in, for example, a two-substrate reaction. Construction of a combinatorial library of candidate swenzymes entails selecting a set of a million aptamers that bind one substrate and a second set of a million aptamers that bind the second substrate; the aptamers in these sets are then linked pairwise by a linker so bringing together the substrates. In the presence of the substrates, some linked aptamer pairs catalyze the reaction when exposed to external energy in the form of a specific frequency of low intensity, non-ionizing electromagnetic or acoustic radiation. Such swenzymes are detected via a separate, product-capturing, aptamer that changes conformation on capturing the product; this altered conformation allows it (1) to bind to every potential swenzyme in its vicinity (thereby giving a higher probability of capture to the swenzymes that generate the product) and (2) to bind to a sequence on a magnetic bead (thereby permitting purification of the swenzyme plus product-capturing aptamer by precipitation). Attempts to implement the swenzyme strategy may help elucidate fundamental problems in enzyme catalysis. PMID:28448969

  10. Synthetic, Switchable Enzymes.

    PubMed

    Norris, Vic; Krylov, Sergey N; Agarwal, Pratul K; White, Glenn J

    2017-01-01

    The construction of switchable, radiation-controlled, aptameric enzymes - "swenzymes" - is, in principle, feasible. We propose a strategy to make such catalysts from 2 (or more) aptamers each selected to bind specifically to one of the substrates in, for example, a 2-substrate reaction. Construction of a combinatorial library of candidate swenzymes entails selecting a set of a million aptamers that bind one substrate and a second set of a million aptamers that bind the second substrate; the aptamers in these sets are then linked pairwise by a linker, thus bringing together the substrates. In the presence of the substrates, some linked aptamer pairs catalyze the reaction when exposed to external energy in the form of a specific frequency of low-intensity, nonionizing electromagnetic or acoustic radiation. Such swenzymes are detected via a separate product-capturing aptamer that changes conformation on capturing the product; this altered conformation allows it (1) to bind to every potential swenzyme in its vicinity (thereby giving a higher probability of capture to the swenzymes that generate the product) and (2) to bind to a sequence on a magnetic bead (thereby permitting purification of the swenzyme plus product-capturing aptamer by precipitation). Attempts to implement the swenzyme strategy may help elucidate fundamental problems in enzyme catalysis. © 2017 S. Karger AG, Basel.

  11. In situ formation of magnetopolymersomes via electroporation for MRI

    NASA Astrophysics Data System (ADS)

    Bain, Jennifer; Ruiz-Pérez, Lorena; Kennerley, Aneurin J.; Muench, Stephen P.; Thompson, Rebecca; Battaglia, Giuseppe; Staniland, Sarah S.

    2015-09-01

    As the development of diagnostic/therapeutic (and combined: theranostic) nanomedicine grows, smart drug-delivery vehicles become ever more critical. Currently therapies consist of drugs tethered to, or encapsulated within nanoparticles or vesicles. There is growing interest in functionalising them with magnetic nanoparticles (MNPs) to target the therapeutics by localising them using magnetic fields. An alternating magnetic field induces remote heating of the particles (hyperthermia) triggering drug release or cell death. Furthermore, MNPs are diagnostic MRI contrast agents. There is considerable interest in MNP embedded vehicles for nanomedicine, but their development is hindered by difficulties producing consistently monodisperse MNPs and their reliable loading into vesicles. Furthermore, it is highly advantageous to "trigger" MNP production and to tune the MNP's size and magnetic response. Here we present the first example of a tuneable, switchable magnetic delivery vehicle for nanomedical application. These are comprised of robust, tailored polymer vesicles (polymersomes) embedded with superparamagnetic magnetite MNPs (magnetopolymersomes) which show good MRI contrast (R2* = 148.8 s-1) and have a vacant core for loading of therapeutics. Critically, the magnetopolymersomes are produced by a pioneering nanoreactor method whereby electroporation triggers the in situ formation of MNPs within the vesicle membrane, offering a switchable, tuneable magnetic responsive theranostic delivery vehicle.

  12. Switchable Wettability of the Honeybee’s Tongue Surface Regulated by Erectable Glossal Hairs

    PubMed Central

    Chen, Ji; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Various nectarivorous animals apply bushy-hair-equipped tongues to lap nectar from nectaries of flowers. A typical example is provided by the Italian honeybee (Apis mellifera ligustica), who protracts and retracts its tongue (glossa) through a temporary tube, and actively controls the erectable glossal hairs to load nectar. We first examined the microstructure of the honeybee’s glossal surface, recorded the kinematics of its glossal hairs during nectar feeding process and observed the rhythmical hair erection pattern clearly. Then we measured the wettability of the glossal surface under different erection angles (EA) in sugar water of the mass concentration from 25 to 45%, mimicked by elongating the glossa specimens. The results show that the EA in retraction approximately remains stable under different nectar concentrations. In a specific concentration (35, 45, or 55%), the contact angle decreases and glossal surface area increases while the EA of glossal hairs rises, the glossa therefore could dynamically alter the glossal surface and wettability in foraging activities, not only reducing the energy consumption for impelling the nectar during tongue protraction, but also improving the nectar-trapping volume for feeding during glossa retraction. The dynamic glossal surface with switchable wettability regulated by erectable hairs may reveal the effective adaptation of the honeybee to nectar intake activities. PMID:26643560

  13. Quantum Information Experiments with Trapped Ions at NIST

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew

    2015-03-01

    We present an overview of recent trapped-ion quantum information experiments at NIST. Advancing beyond few-qubit ``proof-of-principle'' experiments to the many-qubit systems needed for practical quantum simulation and information processing, without compromising on the performance demonstrated with small systems, remains a major challenge. One approach to scalable hardware development is surface-electrode traps. Micro-fabricated planar traps can have a number of useful features, including flexible electrode geometries, integrated microwave delivery, and spatio-temporal tuning of potentials for ion transport and spin-spin interactions. In this talk we report on a number of on-going investigations with surface traps. Experiments feature a multi-zone trap with closely spaced ions in a triangular arrangement (a first step towards 2D arrays of ions with tunable spin-spin interactions), a scheme for smooth transport through a junction in a 2D structure based on switchable RF potentials, and a micro-fabricated photo-detector integrated into a trap. We also give a progress report on our latest efforts to improve the fidelity of both optical and microwave 2-qubit gates. This work was supported by IARPA, ONR and the NIST Quantum Information Program. The 3-ion and switchable-RF-junction traps were developed in collaboration with Sandia National Laboratory.

  14. Durability of switchable QR code carriers under hydrolytic and photolytic conditions

    NASA Astrophysics Data System (ADS)

    Ecker, Melanie; Pretsch, Thorsten

    2013-09-01

    Following a guest diffusion approach, the surface of a shape memory poly(ester urethane) (PEU) was either black or blue colored. Bowtie-shaped quick response (QR) code carriers were then obtained from laser engraving and cutting, before thermo-mechanical functionalization (programming) was applied to stabilize the PEU in a thermo-responsive (switchable) state. The stability of the dye within the polymer surface and long-term functionality of the polymer were investigated against UVA and hydrolytic ageing. Spectrophotometric investigations verified UVA ageing-related color shifts from black to yellow-brownish and blue to petrol-greenish whereas hydrolytically aged samples changed from black to greenish and blue to light blue. In the case of UVA ageing, color changes were accompanied by dye decolorization, whereas hydrolytic ageing led to contrast declines due to dye diffusion. The Michelson contrast could be identified as an effective tool to follow ageing-related contrast changes between surface-dyed and laser-ablated (undyed) polymer regions. As soon as the Michelson contrast fell below a crucial value of 0.1 due to ageing, the QR code was no longer decipherable with a scanning device. Remarkably, the PEU information carrier base material could even then be adequately fixed and recovered. Hence, the surface contrast turned out to be the decisive parameter for QR code carrier applicability.

  15. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.

    PubMed

    Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo

    2017-07-12

    In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.

  16. Bioinspired Layer-by-Layer Microcapsules Based on Cellulose Nanofibers with Switchable Permeability.

    PubMed

    Paulraj, Thomas; Riazanova, Anastasia V; Yao, Kun; Andersson, Richard L; Müllertz, Anette; Svagan, Anna J

    2017-04-10

    Green, all-polysaccharide based microcapsules with mechanically robust capsule walls and fast, stimuli-triggered, and switchable permeability behavior show great promise in applications based on selective and timed permeability. Taking a cue from nature, the build-up and composition of plant primary cell walls inspired the capsule wall assembly, because the primary cell walls in plants exhibit high mechanical properties despite being in a highly hydrated state, primarily owing to cellulose microfibrils. The microcapsules (16 ± 4 μm in diameter) were fabricated using the layer-by-layer technique on sacrificial CaCO 3 templates, using plant polysaccharides (pectin, cellulose nanofibers, and xyloglucan) only. In water, the capsule wall was permeable to labeled dextrans with a hydrodynamic diameter of ∼6.6 nm. Upon exposure to NaCl, the porosity of the capsule wall quickly changed allowing larger molecules (∼12 nm) to permeate. However, the porosity could be restored to its original state by removal of NaCl, by which permeants became trapped inside the capsule's core. The high integrity of cell wall was due to the CNF and the ON/OFF alteration of the permeability properties, and subsequent loading/unloading of molecules, could be repeated several times with the same capsule demonstrating a robust microcontainer with controllable permeability properties.

  17. Surface design with self-heating smart polymers for on-off switchable traps

    NASA Astrophysics Data System (ADS)

    Techawanitchai, Prapatsorn; Yamamoto, Kazuya; Ebara, Mitsuhiro; Aoyagi, Takao

    2011-08-01

    We have developed a novel self-heating, temperature-responsive chromatography system for the effective separation of biomolecules. Temperature-responsive poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide), poly(NIPAAm-co-HMAAm), was covalently grafted onto the surface of magnetite/silica composites as 'on-off' switchable surface traps. The lower critical solution temperature (LCST) of the poly(NIPAAm-co-HMAAm)s was controlled from 35 to 55 °C by varying the HMAAm content. Using the heat generated by magnetic particles in an alternating magnetic field (AMF) we were able to induce the hydrophilic to hydrophobic phase separation of the grafted temperature-responsive polymers. To assess the feasibility of the poly(NIPAAm-co-HMAAm)-grafted magnetite/silica particles as the stationary phase for chromatography, we packed the particles into the glass column of a liquid chromatography system and analyzed the elusion profiles for steroids. The retention time for hydrophobic steroids markedly increased in the AMF, because the hydrophobic interaction was enhanced via self-heating of the grafted magnetite/silica particles, and this effect could be controlled by changing the AMF irradiation time. Turning off the AMF shortened the total analysis time for steroids. The proposed system is useful for separating bioactive compounds because their elution profiles can be easily controlled by an AMF.

  18. Application of nanostructured biochips for efficient cell transfection microarrays

    NASA Astrophysics Data System (ADS)

    Akkamsetty, Yamini; Hook, Andrew L.; Thissen, Helmut; Hayes, Jason P.; Voelcker, Nicolas H.

    2007-01-01

    Microarrays, high-throughput devices for genomic analysis, can be further improved by developing materials that are able to manipulate the interfacial behaviour of biomolecules. This is achieved both spatially and temporally by smart materials possessing both switchable and patterned surface properties. A system had been developed to spatially manipulate both DNA and cell growth based upon the surface modification of highly doped silicon by plasma polymerisation and polyethylene grafting followed by masked laser ablation for formation of a pattered surface with both bioactive and non-fouling regions. This platform has been successfully applied to transfected cell microarray applications with the parallel expression of genes by utilising its ability to direct and limit both DNA and cell attachment to specific sites. One of the greatest advantages of this system is its application to reverse transfection, whereupon by utilising the switchable adsorption and desorption of DNA using a voltage bias, the efficiency of cell transfection can be enhanced. However, it was shown that application of a voltage also reduces the viability of neuroblastoma cells grown on a plasma polymer surface, but not human embryonic kidney cells. This suggests that the application of a voltage may not only result in the desorption of bound DNA but may also affect attached cells. The characterisation of a DNA microarray by contact printing has also been investigated.

  19. Switchable ionic liquids as delignification solvents for lignocellulosic materials.

    PubMed

    Anugwom, Ikenna; Eta, Valerie; Virtanen, Pasi; Mäki-Arvela, Päivi; Hedenström, Mattias; Hummel, Michael; Sixta, Herbert; Mikkola, Jyri-Pekka

    2014-04-01

    The transformation of lignocellulosic materials into potentially valuable resources is compromised by their complicated structure. Consequently, new economical and feasible conversion/fractionation techniques that render value-added products are intensely investigated. Herein an unorthodox and feasible fractionation method of birch chips (B. pendula) using a switchable ionic liquid (SIL) derived from an alkanol amine (monoethanol amine, MEA) and an organic super base (1,8-diazabicyclo-[5.4.0]-undec-7-ene, DBU) with two different trigger acid gases (CO2 and SO2 ) is studied. After SIL treatment, the dissolved fractions were selectively separated by a step-wise method using an antisolvent to induce precipitation. The SIL was recycled after concentration and evaporation of anti-solvent. The composition of undissolved wood after MEA-SO2 -SIL treatment resulted in 80 wt % cellulose, 10 wt % hemicelluloses, and 3 wt % lignin, whereas MEA-CO2 -SIL treatment resulted in 66 wt % cellulose, 12 wt % hemicelluloses and 11 wt % lignin. Thus, the MEA-SO2 -SIL proved more efficient than the MEA-CO2 -SIL, and a better solvent for lignin removal. All fractions were analyzed by gas chromatography (GC), Fourier transform infrared spectroscopy (FT-IR), (13) C nuclear magnetic resonance spectroscopy (NMR) and Gel permeation chromatography (GPC). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

Top