Science.gov

Sample records for electrically-conducting forced convection

  1. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  2. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Allen, Philip B.

    1979-01-01

    Examines Drude's classical (1900) theory of electrical conduction, details the objections to and successes of the 1900 theory, and investigates the Quantum (1928) theory of conduction, reviewing its successes and limitations. (BT)

  3. Electrical conductivity in Langmuir-Blodgett films of n-alkyl cyanobiphenyls using current sensing atomic force microscope

    SciTech Connect

    Gayathri, H. N.; Suresh, K. A.

    2015-06-28

    We report our studies on the nanoscale electrical conductivity in monolayers of n-alkyl cyanobiphenyl materials deposited on solid surface. Initially, the 8CB, 9CB, and 10CB monolayer films were prepared by the Langmuir technique at air-water interface and characterized by surface manometry and Brewster angle microscopy. The monolayer films were transferred on to solid substrates by the Langmuir-Blodgett (L-B) technique. The 8CB, 9CB, and 10CB monolayer L-B films were deposited on freshly cleaved mica and studied by atomic force microscope (AFM), thereby measuring the film thickness as ∼1.5 nm. The electrical conductivity measurements were carried out on 9CB and 10CB monolayer L-B films deposited onto highly ordered pyrolytic graphite using current sensing AFM. The nanoscale current-voltage (I-V) measurements show a non-linear variation. The nature of the curve indicates electron tunneling to be the mechanism for electrical conduction. Furthermore, analysis of the I-V curve reveals a transition in the electron conduction mechanism from direct tunneling to injection tunneling. From the transition voltage, we have estimated the values of barrier height for 9CB and 10CB to be 0.71 eV and 0.37 eV, respectively. For both 9CB and 10CB, the effective mass of electron was calculated to be 0.021 m{sub e} and 0.065 m{sub e}, respectively. These parameters are important in the design of molecular electronic devices.

  4. Nanoparticle transport effect on magnetohydrodynamic mixed convection of electrically conductive nanofluids in micro-annuli with temperature-dependent thermophysical properties

    NASA Astrophysics Data System (ADS)

    Malvandi, A.; Moshizi, S. A.; Ganji, D. D.

    2017-04-01

    This is a numerical investigation of nanoparticle transport effect on magnetohydrodynamic mixed convective heat transfer of electrically conductive nanofluids in micro-annuli with temperature-dependent thermophysical properties. The modified Buongiorno's non-homogeneous model is applied for the nanoparticle-fluid suspension to simulate the migration of nanoparticles into the base fluid, originating from the thermophoresis (nanoparticle migration because of temperature gradient) and Brownian motion (nanoparticle slip velocity because of concentration gradient). Due to surface roughness at the solid-fluid interface in micro-annuli, the wall surfaces are subjected to a linear slip condition to assess the non-equilibrium region near the interface. The fluid flow has been assumed to be fully developed, and the governing equations including continuity, momentum, energy, and nanoparticle transport equation are reduced to a system of ordinary differential equations, before they have been solved numerically. The results are presented with and without considering the dependency of thermophysical properties upon the temperature. It is indicated that ignoring the temperature dependency of thermophysical properties does not significantly affect the flow fields and heat transfer behavior of nanofluids, but it changes the relative magnitudes. Furthermore, in the presence of magnetic field, smaller nanoparticles are more appropriate than larger ones.

  5. Forced convection around the human head.

    PubMed Central

    Clark, R P; Toy, N

    1975-01-01

    1. The parameters determining the forced convective heat loss from a heated body in an air stream are outlined. 2. Local forced convective heat transfer distributions around the human head and a heated vertical cylinder at various wind speeds in a climatic chamber have been found to be similar and related to the aerodynamic flow patterns. 3. From the local convective coefficient distribution, values for the overall convective coefficient h-c at various wind speeds have been evaluated. These are seen to agree closely with existing whole body coefficients determined by other methods. PMID:1142119

  6. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  7. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  8. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  9. Forced Convection Heat Transfer in Circular Pipes

    ERIC Educational Resources Information Center

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  10. Electrically conductive material

    DOEpatents

    Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  11. Electrically conductive material

    DOEpatents

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  12. Magnetospheric Convection as a Global Force Phenomenon

    NASA Astrophysics Data System (ADS)

    Siscoe, G.

    2007-12-01

    Since 1959 when Thomas Gold showed that motions in the magnetosphere were possible despite plasma being frozen to the magnetic field, magnetospheric convection as a subject of study has gone through several stages (to be reviewed) leading to a recent one that integrates convection into a global system of balance of forces. This area of research has opened by focusing on the region 1 current system as a carrier of force between the solar wind and the ionosphere/thermosphere fluid. An important result to emerge from it is the realization that the force that the solar wind delivers to the magnetosphere in being transferred by the region 1 current system to the ionosphere/thermosphere fluid is amplified by about an order of magnitude. (Vasyliunas refers to this as "leveraging.") The apparent violation of Newton's Third Law results from the main participants in the force balance being not the solar wind force but the JxB force on the ionosphere/thermosphere fluid and the mu-dot-grad-B force on the Earth's dipole. This talk extends the study by considering the global force-balance problem separately for the Pedersen current (a completion of the region 1 problem), the Hall current (thus introducing the region 2 current system), and the Cowling current (bringing in the substorm current wedge). The approach is through representing the ionosphere/thermosphere fluid by the shallow water equations. Novelties that result include force balance by means of tidal bulges and tidal bores.

  13. Enhancement of Forced Convection Heat Transfer

    NASA Astrophysics Data System (ADS)

    Tanasawa, Ichiro

    There has been strong demand for enhancement techniques of single-phase forced convection heat transfer because of its wide area of application on the one side and because of inferior heat-transfer capability, when compared with phase change heat transfer such as boiling and condensation, on the other side. The enhancement techniques are indispensable when gases are used as heat-transfer media. In this article the basic principles of enhancement of single-phase forced convection heat transfer are described in the first place. Three principal techniques currently employed, i.e.,(a) interrupted fins, (b) twisted tapes, and (c) turbulence promoters, are introduced. Mechanisms of heat-tansfer enhancement and the state-of-the art review on the R&D are presented for these techniques. In addition to these, supplementary remarks are given on techniques utilizing multiphase flow and electrostatic field.

  14. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  15. Electrically conductive composite material

    SciTech Connect

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  16. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  17. Electrical Conductivity in Textiles

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Copper is the most widely used electrical conductor. Like most metals, though, it has several drawbacks: it is heavy, expensive, and can break. Fibers that conduct electricity could be the solutions to these problems, and they are of great interest to NASA. Conductive fibers provide lightweight alternatives to heavy copper wiring in a variety of settings, including aerospace, where weight is always a chief concern. This is an area where NASA is always seeking improved materials. The fibers are also more cost-effective than metals. Expenditure is another area where NASA is always looking to make improvements. In the case of electronics that are confined to small spaces and subject to severe stress, copper is prone to breaking and losing connection over time. Flexible conductive fibers eliminate that problem. They are more supple and stronger than brittle copper and, thus, find good use in these and similar situations. While clearly a much-needed material, electrically conductive fibers are not readily available. The cost of new technology development, with all the pitfalls of troubleshooting production and the years of testing, and without the guarantee of an immediate market, is often too much of a financial hazard for companies to risk. NASA, however, saw the need for electrical fibers in its many projects and sought out a high-tech textile company that was already experimenting in this field, Syscom Technology, Inc., of Columbus, Ohio. Syscom was founded in 1993 to provide computer software engineering services and basic materials research in the areas of high-performance polymer fibers and films. In 1999, Syscom decided to focus its business and technical efforts on development of high-strength, high-performance, and electrically conductive polymer fibers. The company developed AmberStrand, an electrically conductive, low-weight, strong-yet-flexible hybrid metal-polymer YARN.

  18. Electrically Conductive Porous Membrane

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan (Inventor)

    2014-01-01

    The present invention relates to an electrically conductive membrane that can be configured to be used in fuel cell systems to act as a hydrophilic water separator internal to the fuel cell, or as a water separator used with water vapor fed electrolysis cells, or as a water separator used with water vapor fed electrolysis cells, or as a capillary structure in a thin head pipe evaporator, or as a hydrophobic gas diffusion layer covering the fuel cell electrode surface in a fuel cell.

  19. Performance of thermal adhesives in forced convection

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1993-01-01

    Cooling is critical for the life and performance of electronic equipment. In most cases cooling may be achieved by natural convection but forced convection may be necessary for high wattage applications. Use of conventional type heat sinks may not be feasible from the viewpoint of specific applications and the costs involved. In a heat sink, fins can be attached to the well by ultrasonic welding, by soldering, or with a number of industrially available thermal adhesives. In this paper, the author investigates the heat transfer characteristics of several adhesives and compares them with ultrasonic welding and theoretically calculated values. This experiment was conducted in an air flow chamber. Heat was generated by using heaters mounted on the well. Thermstrate foil, Uniset A401, and Aremco 571 adhesives were tested along with an ultrasonically welded sample. Ultrasonic welding performed far better than the adhesives and Thermstrate foil. This type of experiment can be adapted for a laboratory exercise in an upper level heat transfer course. It gives students an exposure to industrial applications that help them appreciate the importance of the course material.

  20. Electrical Conductivity in Insulator

    NASA Astrophysics Data System (ADS)

    Sinha, Anil Kumar

    2003-03-01

    ABSTRACT In insulating solid(Plastic Sheet)of 0.73mm thickness, the conduction process was ohmic at low D.C. electric feilds, but the feild strength increased the conductivity became feild dependent at high feilds and it exhibited some conductivity and the variation in conduction current was none-ohmic.The mechanism of electron transfer between two metallic electrodes separated by insulating material has received considerable attention. The electron transfer current was studied on 0.73mm plastic sheet and(I-V),(log I-log V),(log J-E^1/2)and (log o- 1/T) relations have been studied and the value of slope,electronic dielectric constant and activation energy for nature of conduction mechanism and process have been determined.The electrical conductivity measurements were carried out at room temperature (32.5 celcius)under high D.C. electric feilds of the order of 10^6 volt/meter.The sample of insulator(plastic sheet) was sandwiched between the aluminium electrodes of designed experimental cell,The effect of very high varying feilds at 32.5 celcius temperature,the electrical conduction has been proposed on the data obtained.The non-ohmic behavior in the sample seemed to start at an electric feild 3x10^6 volt/meter.In this case on data obtained it was concluded that "SCHOTTKY EMISSION MECHANISM" has been proposed. The activation energy was calculated by plotting(log o-1/T)characterstics at running temperature and it was found 0.325ev which is less than 1.0,It confirms predominance of Electronic Conduction. I=current in ampere V=volt T=temperature O=conductivity

  1. Thermal instability of forced convection boundary layers

    NASA Astrophysics Data System (ADS)

    Chen, K.; Chen, M. M.

    1981-11-01

    The thermal instability of forced convection boundary layers with non-zero streamwise pressure gradient is examined. An analysis is carried out for the family of Falkner-Skan flows, and only the streamwise buoyancy generated instability for fluid layers with shear at low Reynolds number are considered. When the wedge angle is equal to one, the perturbation equations based on the boundary layer equations are identical to the exact perturbation equations for the stagnation flow. Calculated critical Rayleigh numbers and wave numbers are found to be independent of wedge angle in the limiting case of infinite Prandtl number, and results are compared with previous experimental results by Gilpin et al. (1978), showing good agreement.

  2. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  3. Driving forces: Slab subduction and mantle convection

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.

  4. Observation of dendritic growth under the influence of forced convection

    NASA Astrophysics Data System (ADS)

    Roshchupkina, O.; Shevchenko, N.; Eckert, S.

    2015-06-01

    The directional solidification of Ga-25wt%In alloys within a Hele-Shaw cell was visualized by X-ray radioscopy. The investigations are focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected during crystallization. Forced convection was produced by a specific electromagnetic pump. The direction of forced melt flow is almost horizontal at the solidification front. Melt flow induces various effects on grain morphology primarily caused by convective transport of solute, such as a facilitation of the growth of primary trunks or lateral branches, dendrite remelting, fragmentation or freckle formation depending on the dendrite orientation, the flow direction and intensity. Forced flow eliminates solutal plumes and damps local fluctuations of solute. A preferential growth of the secondary arms occurs at the upstream side of the dendrites, whereas high solute concentration at the downstream side inhibits the formation of secondary branches.

  5. Electric conductance of highly selective nanochannels

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2013-05-01

    We consider electric conductance through a narrow nanochannel in the thick-double-layer limit, where the space-charge Debye layers adjacent to the channel walls overlap. At moderate surface-charge densities the electrolyte solution filling the channel comprises mainly of counterions. This allows to derive an analytic closed-form approximation for the channel conductance, independent of the salt concentration in the channel reservoirs. The derived expression consists of two terms. The first, representing electromigratory transport, is independent of the channel depth. The second, representing convective transport, depends upon it weakly.

  6. Atmospheric Forcing of Ocean Convection in the Labrador Sea

    DTIC Science & Technology

    2016-06-07

    affects the ocean. OBJECTIVES The ultimate objective of this study is to understand the relation between atmospheric forcing and deep convection in...during the 1997 and 1998 Labrador Sea Deep Convection Experiments. During the 1997 cruise of the R/V Knorr I performed the radiation and upper-air...the hypothesis. This will be done in collaboration with Harcourt and Garwood of the OPBL group at NPS. WORK COMPLETED I improved a web page

  7. Electrically Conductive Paints for Satellites

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Wolf, R. E.; Ray, C.

    1977-01-01

    A program was conducted to develop and test electrically conductive paint coatings for spacecraft. A wide variety of organic and inorganic coatings were formulated using conductive binders, conductive pigments, and similar approaches. Z-93, IITRI's standard specification inorganic thermal control coating, exhibits good electrical properties and is a very space-stable coating system. Several coatings based on a conductive pigment (antimony-doped tin oxide) in silicone and silicate binders offer considerable promise. Paint systems using commercially available conductive polymers also appear to be of interest, but will require substantial development. Evaluations were made based on electrical conductivity, paint physical properties, and the stability of spectral reflectance in space environment testing.

  8. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  9. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  10. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  11. Electrically Conductive Anodized Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic

  12. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  13. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  14. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  15. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  16. Electrically conductive black optical paint

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.; Metzler, E. C.; Cleland, E. L.

    1983-01-01

    An electrically conductive flat black paint has been developed for use on the Galileo spacecraft which will orbit Jupiter in the late 1980s. The paint, designed for equipment operating in high-energy radiation fields, has multipurpose functions. Its electrical conductivity keeps differential charging of the spacecraft external surfaces and equipment to a minimum, preventing the buildup of electrostatic fields and arcing. Its flat black aspect minimizes the effects of stray light and unwanted reflectances, when used in optical instruments and on sunshades. Its blackness is suitable, also, for thermal control, when the paint is put on spacecraft surfaces. The paint has good adherence properties, as measured by tape tests, when applied properly to a surface. The electrically conductive paint which was developed has the following characteristics: an electrical resistivity of 5 x 10 to the 7th ohms per square; a visual light total reflectance of approximately 5 percent; an infrared reflectance of 0.13 measured over a spectrum from 10 to the (-5.5) power to 0.001 meter; a solar absorptivity, alpha-s, of 0.93, and a thermal emissivity, epsilon, of 0.87, resulting in an alpha-s/epsilon of 1.07. The formula for making the paint and the process for applying it are described.

  17. A study of forced convection boiling under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1992-01-01

    This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?

  18. Manganese olivine I: Electrical conductivity

    NASA Astrophysics Data System (ADS)

    Bai, Quan; Wang, Z.-C.; Kohlstedt, D. L.

    1995-12-01

    To investigate the point defect chemistry and the kinetic properties of manganese olivine Mn2SiO4, electrical conductivity ( ’) of single crystals was measured along either the [100] or the [010] direction. The experiments were carried out at temperatures T=850 1200 °C and oxygen fugacities f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 atm under both Mn oxide ( MO) buffered and MnSiO3 ( MS) buffered conditions. Under the same thermodynamic conditions, charge transport along [100] is 2.5 3.0 times faster than along [010]. At high oxygen fugacities, the electrical conductivity of samples buffered against MS is ˜1.6 times larger than that of samples buffered against MO; while at low oxygen fugacities, the electrical conductivity is nearly identical for the two buffer cases. The dependencies of electrical conductivity on oxygen fugacity and temperature are essentially the same for conduction along the [100] and [010] directions, as well as for samples coexisting with a solid-state buffer of either MO or MS. Hence, it is proposed that the same conduction mechanisms operate for samples of either orientation in contact with either solid-state buffer. The electrical conductivity data lie on concave upward curves on a log-log plot of σ vs f_{{text{O}}_{text{2}} } , giving rise to two f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 regimes with different oxygen fugacity exponents. In the low-f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 regime left( {f_{{text{O}}_{text{2}} } < 10^{ - 7} {text{atm}}} right), the f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 exponent, m, is 0, the MnSiO3-activity exponent, q, is ˜0, and the activation energy, Q, is 45 kJ/mol. In the high f_{{text{O}}_{text{2}} } = 10^{ - 11} - 10^2 regime left( {f_{{text{O}}_{text{2}} } > 10^{ - 7} {text{atm}}} right), m=1/6, q=1/4 1/3, and Q=45 and 200 kJ/mol for T<1100 °C and T>1100 °C, respectively. Based on a comparison of experimental data with results from point defect chemistry calculations, it is

  19. Electrical conductivity of ice VII

    PubMed Central

    Okada, Taku; Iitaka, Toshiaki; Yagi, Takehiko; Aoki, Katsutoshi

    2014-01-01

    It was discovered that a peak appears near a pressure of Pc = 10 GPa in the electrical conductivity of ice VII as measured through impedance spectroscopy in a diamond anvil cell (DAC) during the process of compression from 2 GPa to 40 GPa at room temperature. The activation energy for the conductivity measured in the cooling/heating process between 278 K and 303 K reached a minimum near Pc. Theoretical modelling and molecular dynamics simulations suggest that the origin of this unique peak is the transition of the major charge carriers from the rotational defects to the ionic defects. PMID:25047728

  20. Electrically conductive reticulated carbon composites

    SciTech Connect

    Sylwester, A.P.; Clough, R.L.

    1988-01-01

    This paper reports a new type of electrically conductive composite which offers advantageous properties and controlled processing. These new composites consist of a conductive open-celled, low-density, microcellular, carbonized foam filled with a nonconductive polymer or resin. The open-celled nature of the carbon foam provides a porous three-dimensional reticulated carbon structure. The large continuous-void volume can be readily filled with an insulating polymer or resin resulting in a three-dimensional conductive composite material. 9 refs., 3 figs.

  1. Plates of the dinosaur stegosaurus: forced convection heat loss fins?

    PubMed

    Farlow, J O; Thompson, C V; Rosner, D E

    1976-06-11

    It is suggested that the plates along the arched back and tail of Stegosaurus served an important thermoregulatory function as forced convection "fins." Wind tunnel experiments on finned models, internal heat conduction calculations, and direct observations of the morphology and internal structure of stegosaur plates support this hypothesis, demonstrating the comparative effectiveness of the plates as heat dissipaters, controllable through input blood flow rate, temperature, and body orientation (with respect to wind).

  2. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  3. Electrical conduction through DNA molecule.

    PubMed

    Abdalla, S

    2011-09-01

    Several disorder parameters, inside the DNA molecule, lead to localization of charge carriers inside potential wells in the lowest unoccupied and highest occupied molecular orbits (LUMO and HOMO) which affects drastically the electrical conduction through the molecule, and demonstrates that the band carriers play an essential role in the conduction mechanism. So, a model is presented to shed light on the role of electrons of the LUMO in the electrical conduction through the DNA molecule. DC-, AC-conductivity and dielectric permittivity experimental data are well fitted with the presented model giving evidence that the free carriers in the LUMO and HOMO are responsible to make the DNA molecule conductor, insulator or semiconductor. The obtained results show that the localized charge carriers in the DNA molecule are characterized by four different types of relaxation phenomena which are thermally activated by corresponding four activation energies at 0.56 eV, 0.33 eV, 0.24 eV, and 0.05 eV respectively. Moreover, the calculations after the model, at room temperature, show that the time of the relaxation times of the current carriers are in the order of 5 × 10(-2)s, 1.74 × 10(-4)s, 5 × 10(-7)s, and 1.6 × 10(-10)s, respectively.

  4. Evaluation of T-111 forced-convection loop tested with lithium at 1370 C. [free convection

    NASA Technical Reports Server (NTRS)

    Devan, J. H.; Long, E. L., Jr.

    1975-01-01

    A T-111 alloy (Ta-8% W-2% Hf) forced-convection loop containing molten lithium was operated 3000 hr at a maximum temperature of 1370 C. Flow velocities up to 6.3 m/sec were used, and the results of this forced-convection loop are very similar to those observed in lower velocity thermal-convection loops of T-111 containing lithium. Weight changes were determined at 93 positions around the loop. The maximum dissolution rate occurred at the maximum wall temperature of the loop and was less than 1.3 microns/year. Mass transfer of hafnium, nitrogen, and, to a lesser extent, carbon occurred from the hotter to cooler regions. Exposed surfaces in the highest temperature region were found to be depleted in hafnium to a depth of 60 microns with no detectable change in tungsten content. There was some loss in room-temperature tensile strength for specimens exposed to lithium at 1370 C, attributable to depletion of hafnium and nitrogen and to attendant grain growth.

  5. Combined forced and free convection in a curved duct

    NASA Technical Reports Server (NTRS)

    Yam, Clement G.; Dwyer, Harry A.

    1992-01-01

    The purpose of this study is to investigate the flow and heat transfer characteristics of a combined forced and free convection flow in a curved duct. Solutions are obtained by solving the low Mach number model of the Navier-Stokes equation using a control volume method. The finite-volume method was developed with the use of a predictor-corrector numerical scheme and some new variations of the classical projection method. Solutions indicated that the existence of a buoyancy force has changed the entire flow structure inside a curved duct. Reversed flow at both inner and outer bend is observed. For moderate Reynolds number, the upstream section of the duct was significantly influenced by the free convection processes. In general, heat transfer is strong at the inner bend of the beginning of the heated section and at the outer bend on the last half of the heated section. The maximum velocity location is strongly influenced by the combined effects of buoyancy and centrifugal forces. A strong buoyancy force can reduce the strength of the secondary flow where it plays an important role in mixing.

  6. Mechanistic modeling of CHF in forced-convection subcooled boiling

    SciTech Connect

    Podowski, M.Z.; Alajbegovic, A.; Kurul, N.; Drew, D.A.; Lahey, R.T. Jr.

    1997-05-01

    Because of the complexity of phenomena governing boiling heat transfer, the approach to solve practical problems has traditionally been based on experimental correlations rather than mechanistic models. The recent progress in computational fluid dynamics (CFD), combined with improved experimental techniques in two-phase flow and heat transfer, makes the use of rigorous physically-based models a realistic alternative to the current simplistic phenomenological approach. The objective of this paper is to present a new CFD model for critical heat flux (CHF) in low quality (in particular, in subcooled boiling) forced-convection flows in heated channels.

  7. Single phase channel flow forced convection heat transfer

    SciTech Connect

    Hartnett, J.P.

    1999-04-01

    A review of the current knowledge of single phase forced convection channel flow of liquids (Pr > 5) is presented. Two basic channel geometries are considered, the circular tube and the rectangular duct. Both laminar flow and turbulent flow are covered. The review begins with a brief overview of the heat transfer behavior of Newtonian fluids followed by a more detailed presentation of the behavior of purely viscous and viscoelastic Non-Newtonian fluids. Recent developments dealing with aqueous solutions of high molecular weight polymers and aqueous solutions of surfactants are discussed. The review concludes by citing a number of challenging research opportunities.

  8. Lox droplet vaporization in a supercritical forced convective environment

    NASA Technical Reports Server (NTRS)

    Hsiao, Chia-Chun; Yang, Vigor

    1994-01-01

    A systematic investigation has been conducted to study the effects of ambient flow conditions (i.e. pressure and velocity) on supercritical droplet gasification in a forced-convective environment. The model is based on the time-dependent conservation equations in axisymmetric coordinates, and accommodates thermodynamic nonidealities and transport anomalies. In addition, an efficient scheme for evaluating thermophysical properties over the entire range of fluid thermodynamic states is established. The analysis allows a thorough examination of droplet behavior during its entire lifetime, including transient gasification, dynamic deformation, and shattering. A parametric study of droplet vaporization rate in terms of ambient pressure and Reynolds number is also conducted.

  9. Numerical study of forced convective heat transfer around airships

    NASA Astrophysics Data System (ADS)

    Dai, Qiumin; Fang, Xiande

    2016-02-01

    Forced convective heat transfer is an important factor that affects the thermal characteristics of airships. In this paper, the steady state forced convective heat transfer around an ellipsoid is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic (CFD) software over the extended Re range from 20 to 108 and the aspect ratio from 2 to 4. Based on the regression and optimization with software, a new piecewise correlation of the Nusselt number at constant wall temperature for ellipsoid is proposed, which is suitable for applications to airships and other ellipse shaped bodies such as elliptical balloons. The thermal characteristics of a stratospheric airship in midsummer located in the north hemisphere are numerical studied. The helium temperature predicated using the new correlation is compared to those predicted by correlations applicable for spheres and flat plates. The results show that the helium temperature obtained using the new correlation at noon is about 5.4 K lower than that using the correlation of spheres and about 2.1 K higher than that of flat plates.

  10. Electrically Conductive Metal Nanowire Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoxiong

    This thesis investigates electrically conductive polymer nanocomposites formulated with metal nanowires for electrostatic discharge and electromagnetic interference shielding. Copper nanowires (CuNWs) of an average length of 1.98 mum and diameter of 25 +/- 4 nm were synthesized. The oxidation reaction of the CuNWs in air can be divided into two stages at weight of 111.2% on TGA curves. The isoconversional activation energies determined by Starink method were used to fit the different master plots. Johnson-Mehl-Avrami (JMA) equation gave the best fit. The surface atoms of the CuNWs are the sites for the random nucleation and the crystallite strain in the CuNWs is the driving force for the growth of nuclei mechanism during the oxidation process. To improve the anti-oxidation properties of the CuNWs, silver was coated onto the surface of the CuNWs in Ag-amine solution. The prepared silver coated CuNWs (AgCuNWs) with silver content of 66.52 wt. %, diameter of 28--33 nm exhibited improved anti-oxidation behavior. The electrical resistivity of the AgCuNW/low density polyethylene (LDPE) nanocomposites is lower than that of the CuNW/LDPE nanocomposites with the same volume percentage of fillers. The nanocomposites formulated with CuNWs and polyethylenes (PEs) were compared to study the different interaction between the CuNWs and the different types of PE matrices. The electrical conductivity of the different PE matrices filled with the same concentrations of CuNWs correlated well with the level of the CuNW dispersion. The intermolecular force and entanglement resulting from the different macromolecular structures such as molecular weight and branching played an important role in the dispersion, electrical properties and rheological behaviour of the CuNW/PE nanocomposites. Ferromagnetic polycrystalline nickel nanowires (NiNWs) were synthesized with uniform diameter of ca. 38 nm and an average length of 2.68 mum. The NiNW linear low density polyethylene (LLDPE

  11. Effect of Surface Omniphobicity on Drying by Forced Convection (Briefing Charts)

    DTIC Science & Technology

    2015-08-01

    Charts 3. DATES COVERED (From - To) July 2015-August 2015 4. TITLE AND SUBTITLE Effect of Surface Omniphobicity on Drying by Forced Convection ...Forced Convection Madani Khan The City College of New York STAR Program August, 2015 2DISTRIBUTION A: Approved for public release; distribution...to enhance the drying rate of liquids removed from the surface by forced convection . We control surface roughness by substrate abrasion and by the

  12. ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)

    DOE Data Explorer

    Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan

    2012-10-25

    The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.

  13. LOX droplet vaporization in a supercritical forced convective environment

    NASA Astrophysics Data System (ADS)

    Hsiao, Chia-Chun; Yang, Vigor

    1993-11-01

    Modern liquid rocket engines often use liquid oxygen (LOX) and liquid hydrogen (LH2) as propellants to achieve high performance, with the engine operational conditions in the supercritical regimes of the propellants. Once the propellant exceeds its critical state, it essentially becomes a puff of dense fluid. The entire field becomes a continuous medium, and no distinct interfacial boundary between the liquid and gas exists. Although several studies have been undertaken to investigate the supercritical droplet behavior at quiescent conditions, very little effort has been made to address the fundamental mechanisms associated with LOX droplet vaporization in a supercritical, forced convective environment. The purpose is to establish a theoretical framework within which supercritical droplet dynamics and vaporization can be studied systematically by means of an efficient and robust numerical algorithm.

  14. Ergodicity in randomly forced Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Földes, J.; Glatt-Holtz, N. E.; Richards, G.; Whitehead, J. P.

    2016-11-01

    We consider the Boussinesq approximation for Rayleigh-Bénard convection perturbed by an additive noise and with boundary conditions corresponding to heating from below. In two space dimensions, with sufficient stochastic forcing in the temperature component and large Prandtl number Pr  >  0, we establish the existence of a unique ergodic invariant measure. In three space dimensions, we prove the existence of a statistically invariant state, and establish unique ergodicity for the infinite Prandtl Boussinesq system. Throughout this work we provide streamlined proofs of unique ergodicity which invoke an asymptotic coupling argument, a delicate usage of the maximum principle, and exponential martingale inequalities. Lastly, we show that the background method of Constantin and Doering (1996 Nonlinearity 9 1049-60) can be applied in our stochastic setting, and prove bounds on the Nusselt number relative to the unique invariant measure.

  15. LOX droplet vaporization in a supercritical forced convective environment

    NASA Technical Reports Server (NTRS)

    Hsiao, Chia-Chun; Yang, Vigor

    1993-01-01

    Modern liquid rocket engines often use liquid oxygen (LOX) and liquid hydrogen (LH2) as propellants to achieve high performance, with the engine operational conditions in the supercritical regimes of the propellants. Once the propellant exceeds its critical state, it essentially becomes a puff of dense fluid. The entire field becomes a continuous medium, and no distinct interfacial boundary between the liquid and gas exists. Although several studies have been undertaken to investigate the supercritical droplet behavior at quiescent conditions, very little effort has been made to address the fundamental mechanisms associated with LOX droplet vaporization in a supercritical, forced convective environment. The purpose is to establish a theoretical framework within which supercritical droplet dynamics and vaporization can be studied systematically by means of an efficient and robust numerical algorithm.

  16. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  17. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  18. Preparation of Electrically Conductive Polymeric Membranes

    NASA Astrophysics Data System (ADS)

    Encinas, J. C.; Castillo-Ortega, M. M.; Rodríguez, F.; Castaño, V. M.

    2015-10-01

    Cellulose acetate porous membranes, coated with polyaniline, were chemically modified with polyelectrolytes to produce films of varying and controlled porosity and electrical conductivity. The highest electrical conductivity was obtained in membranes prepared with poly(styrene sulfonate) with large pore sizes. The electrical properties as well as scanning electron microscopy (SEM) images are discussed.

  19. System and method for determining velocity of electrically conductive fluid

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Korman, Valentin (Inventor); Markusic, Thomas E. (Inventor); Stanojev, Boris Johann (Inventor)

    2008-01-01

    A flowing electrically-conductive fluid is controlled between an upstream and downstream location thereof to insure that a convection timescale of the flowing fluid is less than a thermal diffusion timescale of the flowing fluid. First and second nodes of a current-carrying circuit are coupled to the fluid at the upstream location. A current pulse is applied to the current-carrying circuit so that the current pulse travels through the flowing fluid to thereby generate a thermal feature therein at the upstream location. The thermal feature is convected to the downstream location where it is monitored to detect a peak associated with the thermal feature so-convected. The velocity of the fluid flow is determined using a time-of-flight analysis.

  20. Effect of dissolved noncondensables on liquid forced convection in microchannels

    SciTech Connect

    Adams, T.M.; Ghiaasiaan, S.M.; Abdel-Khalik, S.I.

    1999-07-01

    A method of quantifying the effect of noncondensable desorption on the forced flow of liquids in microchannels subject to a uniform heat flux has been developed. The model is based on the solution of the differential forms of the mass, momentum, energy and noncondensable species conservation equations assuming that the liquid is fully saturated with the noncondensable at the channel inlet. Parametric calculations for conditions encountered in typical microchannel experiments were performed and the results presented. The resulting calculations show that significant noncondensable desorption can take place in microchannel flow resulting in increased liquid velocities and enhanced heat transfer. Experiments were also performed with a 0.76 mm diameter microchannel using both fully degassed water and water saturated with air at the channel inlet. The measured heat transfer coefficients for the air-saturated data were significantly higher than for the fully degassed data in regions where the model predicts significant noncondensable desorption. The forced turbulent convective flow of water in microchannels offers a wide variety of applications including micro-electronic cooling, miniature refrigeration, micro heat exchanger systems and the cooling of fission reactor cores.

  1. Forced Convection and Sedimentation Past a Flat Plate

    NASA Technical Reports Server (NTRS)

    Pelekasis, Nikolaos A.; Acrivos, Andreas

    1995-01-01

    The steady laminar flow of a well-mixed suspension of monodisperse solid spheres, convected steadily past a horizontal flat plate and sedimenting under the action of gravity, is examined. It is shown that, in the limit as Re approaches infinity and epsilon approaches 0, where Re is the bulk Reynolds number and epsilon is the ratio of the particle radius a to the characteristic length scale L, the analysis for determining the particle concentration profile has several aspects in common with that of obtaining the temperature profile in forced-convection heat transfer from a wall to a fluid stream moving at high Reynolds and Prandtl numbers. Specifically, it is found that the particle concentration remains uniform throughout the O(Re(exp -1/2)) thick Blasius boundary layer except for two O(epsilon(exp 2/3)) thin regions on either side of the plate, where the concentration profile becomes non-uniform owing to the presence of shear-induced particle diffusion which balances the particle flux due to convection and sedimentation. The system of equations within this concentration boundary layer admits a similarity solution near the leading edge of the plate, according to which the particle concentration along the top surface of the plate increases from its value in the free stream by an amount proportional to X(exp 5/6), with X measuring the distance along the plate, and decreases in a similar fashion along the underside. But, unlike the case of gravity settling on an inclined plate in the absence of a bulk flow at infinity considered earlier, here the concentration profile remains continuous everywhere. For values of X beyond the region near the leading edge, the particle concentration profile is obtained through the numerical solution of the relevant equations. It is found that, as predicted from the similarity solution, there exists a value of X at which the particle concentration along the top side of the plate attains its maximum value phi(sub m) and that, beyond this

  2. Development of a mechanistic model for forced convection subcooled boiling

    NASA Astrophysics Data System (ADS)

    Shaver, Dillon R.

    The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the

  3. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  4. Forced convective melting at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Hirsh, Benjamin; Olson, Peter; Gnanadesikan, Anand

    2015-11-01

    The intrusion of warm Circumpolar Deep Water into the ocean cavity between the base of ice shelves and the sea bed in Antarctica causes melting at the ice shelves' basal surface, producing a turbulent melt plume. We conduct a series of laboratory experiments to investigate how the presence of forced convection (turbulent mixing) changes the delivery of heat to the ice-water interface. We also develop a theoretical model for the heat balance of the system that can be used to predict the change in ice thickness with time. In cases of turbulent mixing, the heat balance includes a term for turbulent heat transfer that depends on the friction velocity and an empirical coefficient. We obtain a new value for this coefficient by comparing the modeled ice thickness against measurements from a set of nine experiments covering one order of magnitude of Reynolds numbers. Our results are consistent with the altimetry-inferred melting rate under Antarctic ice shelves and can be used in climate models to predict their disintegration. This work was supported by NSF grant EAR-110371.

  5. Electrically conductive polyimides containing silver trifluoroacetylacetonate

    NASA Technical Reports Server (NTRS)

    Rancourt, James D. (Inventor); Stoakley, Diane M. (Inventor); Caplan, Maggie L. (Inventor); St. Clair, Anne K. (Inventor); Taylor, Larry T. (Inventor)

    1996-01-01

    Polyimides with enhanced electrical conductivity are produced by adding a silver ion-containing additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. After thermal treatment the resulting polyimides had surface conductivities in the range of 1.7.times.10.sup.-3 4.5 .OMEGA..sup.-1 making them useful in low the electronics industry as flexible, electrically conductive polymeric films and coatings.

  6. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, Thomas R.; Chilko, Robert J.

    1986-01-01

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask.

  7. The effects of natural, forced and thermoelectric magnetohydrodynamic convection during the solidification of thin sample alloys

    NASA Astrophysics Data System (ADS)

    Kao, A.; Shevchenko, N.; Roshchupinka, O.; Eckert, S.; Pericleous, K.

    2015-06-01

    Using a fully coupled transient 3-dimensional numerical model, the effects of convection on the microstructural evolution of a thin sample of Ga-In25%wt. was predicted. The effects of natural convection, forced convection and thermoelectric magnetohydrodynamics were investigated numerically. A comparison of the numerical results is made to experimental results for natural convection and forced convection. In the case of natural convection, density variations within the liquid cause plumes of solute to be ejected into the bulk. When forced convection is applied observed effects include the suppression of solute plumes, preferential secondary arm growth and an increase in primary arm spacing. These effects were observed both numerically and experimentally. By applying an external magnetic field inter-dendritic flow is generated by thermoelectrically induced Lorentz forces, while bulk flow experiences an electromagnetic damping force. The former causes preferential secondary growth, while the latter slows the formation of solute plumes. This work highlights that the application of external forces can be a valuable tool for tailoring the microstructure and ultimately the macroscopic material properties.

  8. Contact-independent electrical conductance measurement

    DOEpatents

    Mentzel, Tamar S.; MacLean, Kenneth; Kastner, Marc A.; Ray, Nirat

    2017-01-24

    Electrical conductance measurement system including a one-dimensional semiconducting channel, with electrical conductance sensitive to electrostatic fluctuations, in a circuit for measuring channel electrical current. An electrically-conductive element is disposed at a location at which the element is capacitively coupled to the channel; a midpoint of the element aligned with about a midpoint of the channel, and connected to first and second electrically-conductive contact pads that are together in a circuit connected to apply a changing voltage across the element. The electrically-conductive contact pads are laterally spaced from the midpoint of the element by a distance of at least about three times a screening length of the element, given in SI units as (K.di-elect cons..sub.0/e.sup.2D(E.sub.F)).sup.1/2, where K is the static dielectric constant, .di-elect cons..sub.0 is the permittivity of free space, e is electron charge, and D(E.sub.F) is the density of states at the Fermi energy for the element.

  9. Electrical Conductivity of Ferritin Proteins by Conductive AFM

    NASA Technical Reports Server (NTRS)

    Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.

    2005-01-01

    Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.

  10. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    DOEpatents

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  11. Electrical conductivity of acidic chloride solutions

    NASA Astrophysics Data System (ADS)

    Majima, Hiroshi; Peters, Ernest; Awakura, Yasuhiro; Park, Sung Kook; Aoki, Masami

    1988-02-01

    The electrical conductivities of aqueous solutions in the system HCl-MCln (where M = K, Na, Mg, Ni, or Cd) were measured at different temperatures. The equivalent electrical conductivity of H+ was calculated on the basis of simple assumptions for these solutions, and show an inverse relationship with water activity in these solutions. The results obtained by varying temperatures, solute ratios, and ionic strength on the electrical conductivity were found to be consistent with a proton jump mechanism for the H+ ion, where the activity of water is the most significant parameter affecting its equivalent conductance, and a viscous (Stokes’ law) drag mechanism (i.e., Walden’s rule is obeyed) for other ions found in acidic solutions.

  12. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  13. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, T.R.; Chilko, R.J.

    1986-09-02

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

  14. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  15. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, Cressie E.; Scott, Donald G.

    1985-01-01

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  16. Diagnosis of the forcing of inertial-gravity waves in a severe convection system

    NASA Astrophysics Data System (ADS)

    Ran, Lingkun; Chen, Changsheng

    2016-11-01

    The non-hydrostatic wave equation set in Cartesian coordinates is rearranged to gain insight into wave generation in a mesoscale severe convection system. The wave equation is characterized by a wave operator on the lhs, and forcing involving three terms—linear and nonlinear terms, and diabatic heating—on the rhs. The equation was applied to a case of severe convection that occurred in East China. The calculation with simulation data showed that the diabatic forcing and linear and nonlinear forcing presented large magnitude at different altitudes in the severe convection region. Further analysis revealed the diabatic forcing due to condensational latent heating had an important influence on the generation of gravity waves in the middle and lower levels. The linear forcing resulting from the Laplacian of potential-temperature linear forcing was dominant in the middle and upper levels. The nonlinear forcing was determined by the Laplacian of potential-temperature nonlinear forcing. Therefore, the forcing of gravity waves was closely associated with the thermodynamic processes in the severe convection case. The reason may be that, besides the vertical component of pressure gradient force, the vertical oscillation of atmospheric particles was dominated by the buoyancy for inertial gravity waves. The latent heating and potential-temperature linear and nonlinear forcing played an important role in the buoyancy tendency. Consequently, these thermodynamic elements influenced the evolution of inertial-gravity waves.

  17. Electrically conducting polymers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  18. Forced convection in the wakes of sliding bubbles

    NASA Astrophysics Data System (ADS)

    Meehan, O'Reilly; Donnelly, B.; Persoons, T.; Nolan, K.; Murray, D. B.

    2016-09-01

    Both vapour and gas bubbles are known to significantly increase heat transfer rates between a heated surface and the surrounding fluid, even with no phase change. However, the complex wake structures means that the surface cooling is not fully understood. The current study uses high speed infra-red thermography to measure the surface temperature and convective heat flux enhancement associated with an air bubble sliding under an inclined surface, with a particular focus on the wake. Enhancement levels of 6 times natural convection levels are observed, along with cooling patterns consistent with a possible hairpin vortex structure interacting with the thermal boundary layer. Local regions of suppressed convective heat transfer highlight the complexity of the bubble wake in two-phase applications.

  19. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1999-01-01

    The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the

  20. Electrical conductivity of hot QCD matter.

    PubMed

    Cassing, W; Linnyk, O; Steinert, T; Ozvenchuk, V

    2013-05-03

    We study the electric conductivity of hot QCD matter at various temperatures T within the off-shell parton-hadron-string dynamics transport approach for interacting partonic, hadronic or mixed systems in a finite box with periodic boundary conditions. The response of the strongly interacting system in equilibrium to an external electric field defines the electric conductivity σ(0). We find a sizable temperature dependence of the ratio σ(0)/T well in line with calculations in a relaxation time approach for T(c)

  1. Electrical Conductivity of Hot QCD Matter

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Linnyk, O.; Steinert, T.; Ozvenchuk, V.

    2013-05-01

    We study the electric conductivity of hot QCD matter at various temperatures T within the off-shell parton-hadron-string dynamics transport approach for interacting partonic, hadronic or mixed systems in a finite box with periodic boundary conditions. The response of the strongly interacting system in equilibrium to an external electric field defines the electric conductivity σ0. We find a sizable temperature dependence of the ratio σ0/T well in line with calculations in a relaxation time approach for Tc

  2. Electrically conductive palladium containing polyimide films

    NASA Technical Reports Server (NTRS)

    Taylor, L. T.; St.clair, A. K.; Carver, V. C.; Furtsch, T. A. (Inventor)

    1982-01-01

    Lightweight, high temperature resistant, electrically conductive, palladium containing polyimide films and methods for their preparation are described. A palladium (II) ion-containing polyamic acid solution is prepared by reacting an aromatic dianhydride with an equimolar quantity of a palladium II ion-containing salt or complex and the reactant product is cast as a thin film onto a surface and cured at approximately 300 C to produce a flexible electrically conductive cyclic palladium containing polyimide. The source of palladium ions is selected from the group of palladium II compounds consisting of LiPdCl4, PdS(CH3)2Cl2Na2PdCl4, and PdCl2. The films have application to aerodynamic and space structures and in particular to the relieving of space charging effects.

  3. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    DTIC Science & Technology

    2016-01-01

    EMAS Electromechanical Actuator System FPGA Field-Programmable Gate Array HTC Heat Transfer Coefficient I/O Input/Output inH2O Inches of Water...power density. This means that thermal management will need to be more efficient in removing large transient heat loads and need to be collocated with...convective heat transfer could be profound. When designing forced convective heat transfer solutions for all varieties of systems engineers use

  4. Electric Conductivity in a Beam, Plasma System.

    DTIC Science & Technology

    1977-09-15

    internal processes such as the temperature gradient and stress tensor in fluids . He also distinguishes between two 6...processes in fluids , a macroscopic process which is represented by hydrodynamic equations and a microscopic process which allows for local...thermodynamic equilibrum . The electric conduction problem studied by Kubo16 is analogous to the macroscopic process in fluids studied by Mori)7 A study of plasma

  5. Electrically conducting polyimide film containing tin complexes

    NASA Technical Reports Server (NTRS)

    St. Clair, Anne K. (Inventor); Ezzell, Stephen A. (Inventor); Taylor, Larry T. (Inventor); Boston, Harold G. (Inventor)

    1996-01-01

    Disclosed is a thermally-stable SnO.sub.2 -surfaced polyimide film wherein the electrical conductivity of the SnO.sub.2 surface is within the range of about 3.0.times.10.sup.-3 to about 1.times.10.sup.-2 ohms.sup.-1,. Also disclosed is a method of preparing this film from a solution containing a polyamic acid and SnCl.sub.4 (DMSO).sub.2.

  6. Electrical conductivity of the continental crust

    SciTech Connect

    Glover, P.W.J.; Vine, F.J. |

    1994-11-01

    Geophysical measurements indicate that the Earth`s continental lower crust has a high electrical conductivity for which no simple cause has been found. Explanation usually relies on either saline fluids saturating the pores, or interconnected highly conducting minerals such as graphite, Fe/Ti oxides and sulfides, providing conducting pathways. Attempts in the laboratory to clarify the problem have, hitherto, been unable to recreate conditions likely to be present at depth by controlling the confining pressure and pore fluid pressure applied to a rock saturated with saline fluids at temperatures between 270 C and 1000 C. Here we report conductivity data obtained using a cell designed to make such measurements on rocks saturated with saline fluids. Our results show that the conductivity of saturated samples of acidic rocks is explicable entirely in terms of conduction through the pore fluid whereas the conductivity of saturated basic rocks requires the presence of an additional conduction mechanism(s). We have used the experimental data to construct electrical conductivity/depth profiles for the continental crust, which, when compared with profiles obtained from magnetotelluric observations, demonstrate that a mid to lower crust composed of amphibolite saturated with 0.5 M NaCl shows electrical conductivities sufficient to explain conductivity/depth profiles for the continental crust inferred from geophysical measurements.

  7. Magnetothermal Convection of Air in a Shallow Vessel under the Application of an Axisymmetric Magnetic Force

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Tanaka, Keito; Morimoto, Shotaro

    2017-02-01

    We examined, by three-dimensional numerical computations, the magnetothermal convection of air (a paramagnetic substance) enclosed in a cylindrical vessel with a Rayleigh-Benard model under the application of an axisymmetric magnetic force at the center of a solenoidal superconducting magnet. Axisymmetric steady convective flows were induced when the magnitude of the radial component of the magnetic force (fmR) was 1.0 and 5.0 times that of the gravitational force at the vessel sidewall; e.g., the hot air was concentrated at the vessel center and the cold air was driven to the vicinity of the vessel sidewall. This flow pattern was similar to the case of water (a diamagnetic substance), although the axisymmetric arrangements of hot and cold water were the reverse of the present convection of air. When fmR was 0.5 times that of the gravitational force, the axisymmetric flows appeared only in the vicinity of the vessel sidewall. Unsteady convective rolls simultaneously occurred in the vessel center, and they repeatedly combined and separated from each other. When fmR was 0.1 times that of the gravitational force, there were barely any axisymmetric flows in the close vicinity of the vessel sidewall, while the initial convective flows remained in most other parts of the vessel. Thus, we varied the magnitude of fmR and clarified the transitional processes of isothermal and velocity distributions of magnetothermal convection. We discuss those convective flows with the magnitude and direction of fmR.

  8. From conduction to convection of thermally relativistic fluids between two parallel walls under gravitational force

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2017-01-01

    The thermal conduction and convection of thermally relativistic fluids between two parallel walls under the gravitational force are discussed both theoretically and numerically. In the theoretical discussion, the Lorentz contraction is assumed to be negligible and spacetime is assumed to be flat. For understanding of the thermal conduction and convection of thermally relativistic fluids between two parallel walls under the gravitational force, the relativistic Boltzmann equation is solved using the direct simulation Monte Carlo method, numerically. Numerical results indicate that strongly nonequilibrium states are formed in vicinities of two walls, which do not allow us to discuss the transition of the thermal conduction to the thermal convection of thermally relativistic fluids under the gravitational force in the framework of the relativistic Navier-Stokes-Fourier equation, when the flow-field is under the transition regime between the rarefied and continuum regimes, whereas such strongly nonequilibrium states are not formed in vicinities of two walls under the nonrelativistic limit.

  9. Studies of Forced-Convection Heat Transfer Augmentation in Large Containment Enclosures

    SciTech Connect

    Kuhn, S.Z.; Peterson, P.F.

    2001-06-17

    Heat transfer enhancement due to jet mixing inside a cylindrical enclosure is discussed. This work addresses conservative heat transfer assumptions regarding mixing and condensation that have typically been incorporated into passive containment design analyses. This research presents the possibility for increasing decay heat removal of passive containment systems under combined natural and forced convection. Eliminating these conservative assumptions could result in a changed containment design and reduce the construction cost. It is found that the ratio of forced- and free-convection Nusselt numbers can be predicted as a function of the Archimedes number and a correlated factor accounting for jet orientation and enclosure geometry.

  10. Electrical conductivity of ferritin proteins by conductive AFM.

    PubMed

    Xu, Degao; Watt, Gerald D; Harb, John N; Davis, Robert C

    2005-04-01

    Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-15 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 pA and 0.19 pA, respectively.

  11. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    PubMed

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  12. MHD Forced Convective Laminar Boundary Layer Flow from a Convectively Heated Moving Vertical Plate with Radiation and Transpiration Effect

    PubMed Central

    Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295

  13. Thermal and electrical conductivity of iron at Earth's core conditions.

    PubMed

    Pozzo, Monica; Davies, Chris; Gubbins, David; Alfè, Dario

    2012-04-11

    The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core.

  14. Numerical recovery of certain discontinuous electrical conductivities

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt

    1991-01-01

    The inverse problem of recovering an electrical conductivity of the form Gamma(x) = 1 + (k-1)(sub Chi(D)) (Chi(D) is the characteristic function of D) on a region omega is a subset of 2-dimensional Euclid space from boundary data is considered, where D is a subset of omega and k is some positive constant. A linearization of the forward problem is formed and used in a least squares output method for approximately solving the inverse problem. Convergence results are proved and some numerical results presented.

  15. Electrical Conductivity Calculations from the Purgatorio Code

    SciTech Connect

    Hansen, S B; Isaacs, W A; Sterne, P A; Wilson, B G; Sonnad, V; Young, D A

    2006-01-09

    The Purgatorio code [Wilson et al., JQSRT 99, 658-679 (2006)] is a new implementation of the Inferno model describing a spherically symmetric average atom embedded in a uniform plasma. Bound and continuum electrons are treated using a fully relativistic quantum mechanical description, giving the electron-thermal contribution to the equation of state (EOS). The free-electron density of states can also be used to calculate scattering cross sections for electron transport. Using the extended Ziman formulation, electrical conductivities are then obtained by convolving these transport cross sections with externally-imposed ion-ion structure factors.

  16. Universality of DC electrical conductivity from holography

    NASA Astrophysics Data System (ADS)

    Ge, Xian-Hui; Sin, Sang-Jin; Wu, Shao-Feng

    2017-04-01

    We propose a universal formula of dc electrical conductivity in rotational- and translational-symmetries breaking systems via the holographic duality. This formula states that the ratio of the determinant of the dc electrical conductivities along any spatial directions to the black hole area density in zero-charge limit has a universal value. As explicit illustrations, we give several examples elucidating the validation of this formula: We construct an anisotropic black brane solution, which yields linear in temperature for the in-plane resistivity and insulating behavior for the out-of-plane resistivity; We also construct a spatially isotropic black brane solution that both the linear-T and quadratic-T contributions to the resistivity can be realized. 1). For Z (ϕ) = 1 and d ≥ 3, isotropic black branes in the AdS space cannot be utilized to realize linear temperature resistivity in the zero-charges limit. Nevertheless, anisotropic black branes are good candidates in model-building of holographic strange metals. 2). For d + 1-dimensional spatially isotropic Lifshitz black holes with Z (ϕ) = 1 in the absence of hyperscaling violation, this relation indicates that σii|qi=0 =[ 4 π / (d + z - 1) ] d - 3T (d - 3) / z, which is consistent with what obtained in Refs. [23,24] based on a universal scaling relation hypothesis: σ (ω = 0) =T (d - 3) / z Θ (0), where z is a dynamical critical exponent and Θ (ω) is a frequency dependent function. 3). This relation applies to shear viscosity-bound and electrical conductivity-bound violated systems, for example, systems considered in [20,25,26]. In [27], the authors conjectured that for the case d = 3, there exists a lower bound of dc electrical conductivity ∏iσii > 1. But it was soon found that this bound can be violated by a special coupling between the linear axion fields and the U (1) gauge field [25,26]. The structure of this paper is organized as follows. In section 2, we present our main results by writing

  17. Jet Impingement and Forced Convection Cooling Experimental Study in Rotating Turbine Blades

    NASA Astrophysics Data System (ADS)

    Li, Hsin-Lung; Chiang, Hsiao-Wei D.; Hsu, Chih-Neng

    2011-06-01

    Both jet impingement and forced convection are attractive cooling mechanisms widely used in cooling gas turbine blades. Convective heat transfer from impinging jets is known to yield high local and area averaged heat transfer coefficients. Impingement jets are of particular interest in the cooling of gas turbine components where advancement relies on the ability to dissipate extremely large heat loads. Current research is concerned with the measurement and comparison of both jet impingement and forced convection heat transfer in the Reynolds number range of 10,000 to 30,000. This study is aimed at experimentally testing two different setups with forced convection and jet impingement in rotating turbine blades up to 700 RPM. This research also observes Coriolis force and impingement cooling inside the passage during rotating conditions within a cooling passage. Local heat transfer coefficients are obtained for each test section using thermocouple technique with slip rings. The cross section of the passage is 10 mm × 10 mm without ribs and the surface heating condition has enforced uniform heat flux. The forced convection cooling effects were studied using serpentine passages with three corner turns under different rotating speeds and different inlet Reynolds numbers. The impingement cooling study uses a straight passage with a single jet hole under different Reynolds numbers of the impingement flow and the cross flow. In summary, the main purpose is to study the rotation effects on both the jet impingement and the serpentine convection cooling types. Our study shows that rotation effects increase serpentine cooling and reduce jet impingement cooling.

  18. The Role of Ascent-Forced Convection in Orographic Precipitation: Results from the DOMEX Field Campaign

    NASA Astrophysics Data System (ADS)

    Minder, J. R.; Smith, R. B.; Nugent, A. D.; Kirshbaum, D. J.

    2011-12-01

    Shallow convection is a pervasive feature of orographic precipitation, but its detailed role remains poorly understood. The mountainous Caribbean island of Dominica is a natural laboratory for isolating the role of shallow convection in orographic rainfall. It lies in a region of persistent easterly trade wind flow, and receives much of its rainfall from shallow convection that is forced mechanically by ascent of easterly flow over the Dominican terrain. The Dominica Experiment (DOMEX) has focused on convective orographic precipitation over the island from 2007-2011. The first phase of the project developed a climatology of rainfall and theories to explain the observed enhancement over the terrain. The second phase of the project (Apr-May 2011) has provided a detailed view of 20 individual rainfall events with data from: surface gauges, time-lapse photography, operational radar scans, a mountaintop weather station, and both in situ and remote observations from the University of Wyoming King Air research aircraft. Focusing on ascent--forced convection during DOMEX has revealed a number of the key processes that control the rainfall. Upwind of the island, clouds and water vapor anomalies exist that appear to play a crucial role in seeding the convection over the terrain and determining its vigor. Over the windward slopes the air is readily lifted with little flow deflection. Strong convective cells rapidly develop to produce large rainfall rates. Over the lee slopes of the terrain there is an abrupt transition to a deep and turbulent plunging flow that quickly eliminates convective clouds, but allows for the spillover of rainfall. The air that passes over the island is transformed such that low-levels are dried, warmed and decelerated, and the downwind wake becomes less hospitable to trade wind cumuli.

  19. Electrical-conductivity testing of latex gloves

    SciTech Connect

    Stampfer, J.F.; Salazar, J.A.; Trujillo, A.G.; Harris, T.; Berardinelli, S.P.

    1994-11-01

    There is an increasing awareness in the healthcare field that gloves worn for protection from hazards associated with body fluids do not always afford the protection desired. Gloves may have defects, such as holes, as they come from the manufacturer or distributor, or they may become defective during storage or use. While the numbers vary widely, failure rates for new gloves, defined as detectable holes in gloves prior to use, for unused examination gloves are reported as high as 58%. Rates as high as 7% have been reported for sterile latex gloves. Incidences of breaching the latex barrier during use vary with procedure but have been reported as high as 50%. In recent years, a number of devices have been developed to detect holes in latex gloves as they are being worn. Detection of increased electrical conductivity that takes place through the holes in the gloves is used to activate an audible alarm. The primary purpose of this research was to investigate the validity of this method for hole detection. This evaluation was accomplished with both basic laboratory equipment and commercially available instruments. We did not evaluate or critically compare the individual devices. We also investigated the use of electrical conductivity as a quality assurance (QA) procedure, and the degradation of latex gloves due to storage and exposure to laboratory atmospheres and disinfectants.

  20. Forced-to-natural convection transition tests in parallel simulated liquid metal reactor fuel assemblies

    SciTech Connect

    Levin, A.E. ); Montgomery, B.H. )

    1990-01-01

    The Thermal-Hydraulic Out of Reactor Safety (THORS) Program at Oak Ridge National Laboratory (ORNL) had as its objective the testing of simulated, electrically heated liquid metal reactor (LMR) fuel assemblies in an engineering-scale, sodium loop. Between 1971 and 1985, the THORS Program operated 11 simulated fuel bundles in conditions covering a wide range of normal and off-normal conditions. The last test series in the Program, THORS-SHRS Assembly 1, employed two parallel, 19-pin, full-length, simulated fuel assemblies of a design consistent with the large LMR (Large Scale Prototype Breeder -- LSPB) under development at that time. These bundles were installed in the THORS Facility, allowing single- and parallel-bundle testing in thermal-hydraulic conditions up to and including sodium boiling and dryout. As the name SHRS (Shutdown Heat Removal System) implies, a major objective of the program was testing under conditions expected during low-power reactor operation, including low-flow forced convection, natural convection, and forced-to-natural convection transition at various powers. The THORS-SHRS Assembly 1 experimental program was divided up into four phases. Phase 1 included preliminary and shakedown tests, including the collection of baseline steady-state thermal-hydraulic data. Phase 2 comprised natural convection testing. Forced convection testing was conducted in Phase 3. The final phase of testing included forced-to-natural convection transition tests. Phases 1, 2, and 3 have been discussed in previous papers. The fourth phase is described in this paper. 3 refs., 2 figs.

  1. Interaction of free and forced convection in horizontal tubes in the transition regime.

    NASA Technical Reports Server (NTRS)

    Nagendra, H. R.

    1973-01-01

    Experimental investigation of some new aspects of the combined free and forced convection interacting in the transition regime of a horizontal tube under uniform heat flux conditions. The results obtained include indications that thermally induced secondary flows attenuate the fluctuations in low inlet turbulence flows, while they restabilize the flow as the inlet turbulence is increased.

  2. Experimental investigation of forced-convection heat-transfer characteristics of lead-bismuth eutectic

    NASA Technical Reports Server (NTRS)

    Lubarsky, Bernard

    1951-01-01

    The forced-convection heat-transfer characteristics of lead-bismuth eutectic were experimentally investigated. Experimental values of Nusselt number for lead-bismuth fell considerably below predicted values. The addition of a wetting agent did not change the heat transfer characteristics.

  3. Electrical conductivity of water-bearing magmas

    NASA Astrophysics Data System (ADS)

    Gaillard, F.

    2003-04-01

    Phase diagrams and chemical analyzes of crystals and glass inclusions of erupted lavas tell us that most explosive volcanic eruptions were caused by extremely water-rich pre-eruptive conditions. Volcanologists estimate volcanic hazards by the pre-eruptive water content of lavas erupted in the past and they hypothesize that future eruptions should show similar features. Alternatively, the development of methods allowing direct estimation of water content of magmas stored in the Earth’s interior would have the advantage of providing direct constraints about upcoming rather than past eruptions. Geoelectrical sounding, being the most sensitive probe to the chemical state of the Earth’s interior, seems a promising tool providing that its interpretation is based on relevant laboratory constraints. However, the current database of electrical conductivity of silicate melt merely constrains anhydrous composition. We have therefore undertaken an experimental program aiming at elucidating the effect of water on the electrical conductivity of natural magmas. Measurements (impedance spectroscopy) are performed using a two electrodes set-up in an internally heated pressure vessel. The explored temperature and pressure range is 25-1350°C and 0.1-400MPa. The material used is a natural rhyolitic obsidian. Hydration of this rhyolite is first performed in Pt capsules with 0.5, 1, 2 and 6wt% of water. In a second step, the conductivity measurements are performed at pressure and temperature in a modified Pt capsule. One end of the capsule is arc-welded whereas the other end is closed with the help of a BN cone and cement through which an inner electrode is introduced in the form a Pt wire. The capsule is used as outer electrode. The electrical cell has therefore a radial geometry. The rhyolite is introduced in the cell in the form of a cylinder drilled in the previously hydrated glass. At dwell condition, the melt is sandwiched between two slices of quartz avoiding any deformation

  4. Determination of forced convective heat transfer coefficients for subsonic flows over heated asymmetric NANA 4412 airfoil

    NASA Astrophysics Data System (ADS)

    Dag, Yusuf

    Forced convection over traditional surfaces such as flat plate, cylinder and sphere have been well researched and documented. Data on forced convection over airfoil surfaces, however, remain very scanty in literature. High altitude vehicles that employ airfoils as lifting surfaces often suffer leading edge ice accretions which have tremendous negative consequences on the lifting capabilities and stability of the vehicle. One of the ways of mitigating the effect of ice accretion involves judicious leading edge convective cooling technique which in turn depends on the accuracy of convective heat transfer coefficient used in the analysis. In this study empirical investigation of convective heat transfer measurements on asymmetric airfoil is presented at different angle of attacks ranging from 0° to 20° under subsonic flow regime. The top and bottom surface temperatures are measured at given points using Senflex hot film sensors (Tao System Inc.) and used to determine heat transfer characteristics of the airfoils. The model surfaces are subjected to constant heat fluxes using KP Kapton flexible heating pads. The monitored temperature data are then utilized to determine the heat convection coefficients modelled empirically as the Nusselt Number on the surface of the airfoil. The experimental work is conducted in an open circuit-Eiffel type wind tunnel, powered by a 37 kW electrical motor that is able to generate subsonic air velocities up to around 41 m/s in the 24 square-inch test section. The heat transfer experiments have been carried out under constant heat flux supply to the asymmetric airfoil. The convective heat transfer coefficients are determined from measured surface temperature and free stream temperature and investigated in the form of Nusselt number. The variation of Nusselt number is shown with Reynolds number at various angles of attacks. It is concluded that Nusselt number increases with increasing Reynolds number and increase in angle of attack from 0

  5. Experimental Study of Combined Forced and Free Laminar Convection in a Vertical Tube

    NASA Technical Reports Server (NTRS)

    Hallman, Theodore M.

    1961-01-01

    An apparatus was built to verify an analysis of combined forced and free convection in a vertical tube with uniform wall heat flux and to determine the limits of the analysis. The test section was electrically heated by resistance heating of the tube wall and was instrumented with thermocouples in such a way that detailed thermal entrance heat-transfer coefficients could be obtained for both upflow and downflow and any asymmetry in wall temperature could be detected. The experiments showed that fully developed heat-transfer results, predicted by a previous analysis, were confirmed over the range of Rayleigh numbers investigated. The concept of "locally fully developed" heat transfer was established. This concept involves the assumption that the fully developed heat-transfer analysis can be applied locally even though the Rayleigh number is varying along the tube because of physical-property variations with temperature. Thermal entrance region data were obtained for pure forced convection and for combined forced and free convection. The analysis of laminar pure forced convection in the thermal entrance region conducted by Siegel, Sparrow, and Hallman was experimentally confirmed. A transition to an eddy motion, indicated by a fluctuation in wall temperature was found in many of the upflow runs. A stability correlation was found. The fully developed Nusselt numbers in downflow were below those for pure forced convection but fell about 10 percent above the analytical curve. Quite large circumferential variations in wall temperature were observed in downflow as compaired with those encountered in upflow, and the fully developed Nussalt numbers reported are based on average wall temperatures determined by averaging the readings of two diametrically opposite wall thermocouples at each axial position. With larger heating rates in downflow the wall temperature distributions strongly suggested a cell flow near the bottom. At still larger heating rates the wall temperatures

  6. Electrical conduction of a XLPE nanocomposite

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  7. Pressure dependence of electrical conductivity in forsterite

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Zhang, Baohua; Rhymer, Brandon; Zhao, Chengcheng; Fei, Hongzhan

    2017-01-01

    Electrical conductivity of dry forsterite has been measured in muli-anvil apparatus to investigate the pressure dependence of ionic conduction in forsterite. The starting materials for the conductivity experiments were a synthetic forsterite single crystal and a sintered forsterite aggregate synthesized from oxide mixture. Electrical conductivities were measured at 3.5, 6.7, 9.6, 12.1, and 14.9 GPa between 1300 and 2100 K. In the measured temperature range, the conductivity of single crystal forsterite decreases in the order of [001], [010], and [100]. In all cases, the conductivity decreases with increasing pressure and then becomes nearly constant for [100] and [001] and slightly increases above 7 GPa for [010] orientations and a polycrystalline forsterite sample. Pressure dependence of forsterite conductivity was considered as a change of the dominant conduction mechanism composed of migration of both magnesium and oxygen vacancies in forsterite. The activation energy (ΔE) and activation volume (ΔV) for ionic conduction due to migration of Mg vacancy were 1.8-2.7 eV and 5-19 cm3/mol, respectively, and for that due to O vacancy were 2.2-3.1 eV and -1.1 to 0.3 cm3/mol, respectively. The olivine conductivity model combined with small polaron conduction suggests that the most part of the upper mantle is controlled by ionic conduction rather than small polaron conduction. The previously observed negative pressure dependence of the conductivity of olivine with low iron content (Fo90) can be explained by ionic conduction due to migration of Mg vacancies, which has a large positive activation volume.

  8. Making Complex Electrically Conductive Patterns on Cloth

    NASA Technical Reports Server (NTRS)

    Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert

    2008-01-01

    A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.

  9. The electrical conductivity of sodium polysulfide melts

    SciTech Connect

    Meihui Wang

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  10. Photovoltaic device having light transmitting electrically conductive stacked films

    DOEpatents

    Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.

    1990-07-10

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  11. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1996-01-01

    Boiling is a rather imprecise term applied to the process of evaporation in which the rate of liquid-vapor phase change is large. In seeking to determine the role and significance of body forces on the process, of which buoyancy or gravity is just one agent, it becomes necessary to define the term more precisely. It is generally characterized by the formation and growth of individual vapor bubbles arising from heat transfer to the liquid, either at a solid/liquid or liquid/liquid interface, or volumetrically. The terms 'bubble' boiling and 'nucleate' boiling are frequently used, in recognition of the interactions of surface tension and other forces in producing discrete bubbles at distinctive locations (although not always). Primary considerations are that evaporation can occur only at existing liquid-vapor interfaces, so that attention must be given to the formation of an interface (the nucleation process), and that the latent heat for this evaporation can come only from the superheated liquid, so that attention must also be given to the temperature distributions in the liquid.

  12. Heat-flux scaling for weakly forced turbulent convection in the atmosphere

    NASA Astrophysics Data System (ADS)

    Rao, Kusuma G.; Narasimha, R.

    Observational data in the atmosphere indicate that conventionally defined drag and heat transfer coefficients increase rapidly as wind speed falls. It is shown here that, at sufficiently low wind speeds, the observed heat flux is nearly independent of wind speed but the drag increases linearly with it. These findings are not consistent with the free-convection limit of the Businger relations for Monin Obukhov theory, and lend support to the ideas of Ingersoll (1966) and Grachev (1990), till now checked only against laboratory experiments. We propose here that it is useful to define, within the regime of mixed convection, a sub-regime of ‘weakly forced convection’ in which, to a first approximation, the heat flux is determined by temperature differentials as in free convection and the momentum flux by a perturbation, linear in wind, on free convection. It is further proposed that this regime is governed by velocity scales determined by the heat flux (rather than by the friction velocity as in classical turbulent boundary layer theory). Three candidates for the heat-flux velocity scale are considered; novel definitions of the drag and heat exchange coefficients, based on the preferred scale, are found to show very weak dependence on wind speed up to values of about 5 10 m s^{-1}; but there is some evidence that the usefulness of heat-flux scaling may extend beyond the velocity limits where pure free-convection scaling for heat flux is valid.

  13. New method for electrical conductivity temperature compensation.

    PubMed

    McCleskey, R Blaine

    2013-09-03

    Electrical conductivity (κ) measurements of natural waters are typically referenced to 25 °C (κ25) using standard temperature compensation factors (α). For acidic waters (pH < 4), this can result in a large κ25 error (δκ25). The more the sample temperature departs from 25 °C, the larger the potential δκ25. For pH < 4, the hydrogen ion transport number becomes substantial and its mode of transport is different from most other ions resulting in a different α. A new method for determining α as a function of pH and temperature is presented. Samples with varying amounts of H2SO4 and NaCl were used to develop the new α, which was then applied to 65 natural water samples including acid mine waters, geothermal waters, seawater, and stream waters. For each sample, the κ and pH were measured at several temperatures from 5 to 90 °C and κ25 was calculated. The δκ25 ranged from -11 to 9% for the new method as compared to -42 to 25% and -53 to 27% for the constant α (0.019) and ISO-7888 methods, respectively. The new method for determining α is a substantial improvement for acidic waters and performs as well as or better than the standard methods for circumneutral waters.

  14. Magnetic flowmeter for electrically conductive liquid

    DOEpatents

    Skladzien, Stanley B.; Raue, Donald J.

    1982-01-01

    A magnetic flowmeter includes first and second tube sections each having ls of non-magnetic material. The first tube is suitably connected to a process for passing a flow of an electrically conductive fluid to be measured. The second tube is established as a reference containing a still medium and is maintained at the same temperature as the first tube. A rotatable magnet assembly is disposed between the two tubes with at least two magnets attached to radially extending arms from a central shaft. Each magnet includes an air gap suitably sized to pass astraddle the diameter along a portion of the length of each of the two tubes. The magnets are provided in matched pairs spaced 180.degree. apart such that signals will be simultaneously generated in signal leads attached to each of the two tubes. By comparing the signals from the two tubes and varying the rotating speed of the magnet assembly until the signals are equal, or attain a maximum, the flow velocity of the fluid within the first tube can be determined. Through temperature monitoring and appropriate heaters, the two tubes are maintained at the same temperature.

  15. Magnetic flowmeter for electrically conductive liquid

    DOEpatents

    Skladzien, S.B.; Raue, D.J.

    1980-08-18

    A magnetic flowmeter includes first and second tube sections each having walls of non-magnetic material. The first tube is suitably connected to a process for passing a flow of an electrically conductive fluid to be measured. The second tube is established as a reference containing a still medium and is maintained at the same temperature as the first tube. A rotatable magnet assembly is disposed between the two tubes with at least two magnets attached to radially extending arms from a central shaft. Each magnet includes an air gap suitably sized to pass astraddle the diameter along a portion of the length of each of the two tubes. Two magnets are provided in matched pairs spaced 180/sup 0/ apart such that signals will be simultaneously generated in signal leads attached to each of the two tubes. By comparing the signals from the two tubes and varying the rotating speed of the magnet assembly until the signals are equal, or attain a maximum, the flow velocity of the fluid within the first tube can be determined. Through temperature monitoring and appropriate heaters, the two tubes are maintained at the same temperature.

  16. Anisotropy of electrical conductivity in dry olivine

    SciTech Connect

    Du Frane, W L; Roberts, J J; Toffelmier, D A; Tyburczy, J A

    2005-04-13

    [1] The electrical conductivity ({sigma}) was measured for a single crystal of San Carlos olivine (Fo{sub 89.1}) for all three principal orientations over oxygen fugacities 10{sup -7} < fO{sub 2} < 10{sup 1} Pa at 1100, 1200, and 1300 C. Fe-doped Pt electrodes were used in conjunction with a conservative range of fO{sub 2}, T, and time to reduce Fe loss resulting in data that is {approx}0.15 log units higher in conductivity than previous studies. At 1200 C and fO{sub 2} = 10{sup -1} Pa, {sigma}{sub [100]} = 10{sup -2.27} S/m, {sigma}{sub [010]} = 10{sup -2.49} S/m, {sigma}{sub [001]} = 10{sup -2.40} S/m. The dependences of {sigma} on T and fO{sub 2} have been simultaneously modeled with undifferentiated mixed conduction of small polarons and Mg vacancies to obtain steady-state fO{sub 2}-independent activation energies: Ea{sub [100]} = 0.32 eV, Ea{sub [010]} = 0.56 eV, Ea{sub [001]} = 0.71 eV. A single crystal of dry olivine would provide a maximum of {approx}10{sup 0.4} S/m azimuthal {sigma} contrast for T < 1500 C. The anisotropic results are combined to create an isotropic model with Ea = 0.53 eV.

  17. Effects of vertically ribbed surface roughness on the forced convective heat losses in central receiver systems

    NASA Astrophysics Data System (ADS)

    Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas

    2016-05-01

    External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.

  18. Temporal stability of electrical conductivity in a sandy soil

    NASA Astrophysics Data System (ADS)

    Pedrera-Parrilla, Aura; Brevik, Eric C.; Giráldez, Juan V.; Vanderlinden, Karl

    2016-07-01

    Understanding of soil spatial variability is needed to delimit areas for precision agriculture. Electromagnetic induction sensors which measure the soil apparent electrical conductivity reflect soil spatial variability. The objectives of this work were to see if a temporally stable component could be found in electrical conductivity, and to see if temporal stability information acquired from several electrical conductivity surveys could be used to better interpret the results of concurrent surveys of electrical conductivity and soil water content. The experimental work was performed in a commercial rainfed olive grove of 6.7 ha in the `La Manga' catchment in SW Spain. Several soil surveys provided gravimetric soil water content and electrical conductivity data. Soil electrical conductivity values were used to spatially delimit three areas in the grove, based on the first principal component, which represented the time-stable dominant spatial electrical conductivity pattern and explained 86% of the total electrical conductivity variance. Significant differences in clay, stone and soil water contents were detected between the three areas. Relationships between electrical conductivity and soil water content were modelled with an exponential model. Parameters from the model showed a strong effect of the first principal component on the relationship between soil water content and electrical conductivity. Overall temporal stability of electrical conductivity reflects soil properties and manifests itself in spatial patterns of soil water content.

  19. Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.

    2007-01-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and

  20. Numerical simulation on forced convection heat transfer in porous media using Gibson-Ashby constitutive model

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Jia, P. Y.; Wang, Y. S.; Jiang, L.

    2010-03-01

    In this article, using Gibson-Ashby constitutive model, we suggest a new method for numerical investigation of forced convection heat transfer in porous foam metal, and try to consolidate the study for mechanical property and that for thermal characteristic. By available experimental data, we simulated to two cases, namely as the transfer in porous media for diameter is 0.6 mm and porosity is 0.402, and for diameter is 1.6 mm and porosity is 0.462. The result, from our constitutive model for single forced convection heat transfer, corresponds well with the experimental data. As for pressure drop prediction in porous is in good agreement with experiment, and the error is only 5% to 10%, but for transfer is less accurate, the error is about 20%, which is acceptable in practice. So it is done that constitutive model is used to simulate the transfer property.

  1. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  2. NOVEL GRAPHITE SALTS AND THEIR ELECTRICAL CONDUCTIVITIES

    SciTech Connect

    Bartlett, N.; McCarron, E.M.; McQuillan, B.W.; Thompson, T.E.

    1980-02-01

    A set of novel first stage graphite salts of general formula C{sub 8}{sup +}MF{sub 6}{sup -} has been prepared (M = Os, Ir, As). Single crystal X-ray diffraction studies indicate that these salts are hexagonal with a {approx} 4.9 and c {approx} 8.1 {angstrom}. The unit cell volume indicates that the anions are closely packed in the galleries. Platinum hexafluoride, which is the most powerful oxidizer of the third transition series, forms a first stage compound, which analytical, structural, and magnetic studies establish as C{sub 12}{sup 2+}PtF{sub 6}{sup 2-}. In this salt the anions are not close packed, but the electron withdrawal from the graphite planes is greater than for the C{sub 8}{sup +}MF{sub 6}{sup -} series. The variation in the electrical conductivity (in the a-b plane), as a function of composition, has been investigated with the OsF{sub 6}, IrF{sub 6}, PtF{sub 6} and AsF{sub 5} intercalates. For OsF{sub 6} and IrF{sub 6}, the conductance per plane of graphite is found to be a maximum at approximately C{sub 24}MF{sub 6} (second stage); the conductivity being an order of magnitude greater than that of the parent material. Intercalation beyond C{sub 24}MF{sub 6} leads to a marked decrease in conductivity. C{sub 8}MF{sub 6} is comparable in conductivity with the parent graphite. This behavior contrasts with the graphite/AsF{sub 5} system in which a steady increase in conductance per graphite plane with increasing AsF{sub 5} content is observed. For the PtF{sub 6} system, the second as well as the first stage materials are poorly conducting.

  3. Sintering Behavior and Effect of Silver Nanowires on the Electrical Conductivity of Electrically Conductive Adhesives.

    PubMed

    Xie, H; Xiong, N N; Wang, Y H; Zhao, Y Z; Li, J Z

    2016-01-01

    In this paper, two kinds of silver nanowires with a 160 nm average diameter ranging from 30 to 90 µm length and a 450 nm average diameter up to 100 µm length were successfully synthesized by a polyol process with FeCl3 and Na₂S as reaction inhibitor, respectively. The experimental results indicate that the morphologies and sintering behaviors of both of silver nanowires are impacted by glutaric acid and sintering temperature. The isotropically conductive adhesives (ICAs) filled with micro-sized silver flakes and silver nanowires as hybrid fillers were fabricated and the electrical properties were investigated based on the fraction of the silver nanowires of the total of silver fillers and the curing temperature, etc. The in situ monitoring the variation in electrical resistance of the ICAs explores that silver nanowires have influence on the curing behavior of the ICAs. Silver nanowires synthesized with Na2S as reaction inhibitor and treated with glutaric acid can significantly improve the electrical conductivity of the ICAs in the case of the low loading of silver fillers in the appropriate proportion range of the weight ratio of micro-sized silver flakes and silver nanowires, primarily as a result of connecting effect. When the loading of silver fillers in the ICAs is high, the electrical conductivity is also enhanced slightly in the case of the proper fraction of silver nanowires of the total of silver fillers. The effect of the curing temperature on the electrical conductivity relates to the fraction of silver nanowires and the total loading of silver fillers. The electrical conductivity of the ICAs filled with micro-sized silver flakes and silver nanowires synthesized with FeCl₃ as reaction inhibitor is greatly damaged, indicating that the size of silver nanowires also is one of main factor to impact the electrical conductivity of the ICAs doped with silver nanowires. The electrical property of the ICAs filled with micro-sized silver flakes and silver

  4. Response of High Latitude Birkeland Currents and Ionospheric Convection to Transitions in Solar Wind Forcing

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Korth, H.; Merkin, V. G.; Barnes, R. J.; Ruohoniemi, J. M.

    2014-12-01

    Recent results from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) indicate that at least some transitions from northward to southward IMF produce a specific sequence in the development of large-scale Birkeland currents. First, a set of Region 1 and Region 2 currents forms on the dayside restricted to within a few hours of noon. After about 40 minutes, currents strongly intensify on the nightside, first near midnight local time associated with substorm onset, and then progressively further toward the dayside via dawn and dusk. Only after an hour or more after the transition to stronger solar wind forcing, is the complete Region 1, Region 2 current system developed. The results imply that the initial response to a transition from weak to strong forcing is convection into the polar cap and lobes without strong return convection to the dayside from the nightside magnetosphere. Return convection from the nightside begins with substorm onset and progresses to the dayside. This analysis is extended by examining a large number of transitions from prolonged auroral quiescence, associated with northward IMF, to southward IMF and the development of large-scale Region 1/Region 2 Birkeland currents, to assess whether the above progression holds in general. In addition, transition events to particularly intense driving, for example, associated with shocks are examined to assess how this ordering of events may be changed for onsets of particularly intense solar wind forcing.

  5. Numerical Simulations of Ice Giant Interiors with Radially Varying Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Soderlund, Krista M.; Featherstone, Nicholas; Heimpel, Moritz; Aurnou, Jonathan

    2016-10-01

    The internal dynamics of giant planets are controlled primarily by the interaction of convection, stratification, rotation, and magnetic fields. Within Uranus and Neptune, the ice giants, convection in the ionic ocean generates the planets' magnetic fields through dynamo action, while convection in the molecular envelope may generate the planets' zonal winds. Previous work has hypothesized the influence of rotation on convection to be relatively weak compared to that of buoyancy, leading to fluctuating fluid motions that are characterized by three-dimensional turbulence instead of columns aligned with the rotation axis (Aurnou et al., Icarus 190, 110-126, 2007; Soderlund et al., Icarus 224, 97-113, 2013). In this regime, convection generates a multipolar dynamo and zonal flows with a retrograde equatorial jet and a prograde high latitude jet in each hemisphere that look similar to those observed on the ice giants. However, the magnetic field strength and zonal wind speeds are overestimated in our models with constant electrical conductivity. Towards resolving this discrepancy, we hypothesize that incorporation of an electrically insulating outer molecular envelope will bring the magnetic field and zonal flows into quantitative agreement. We will present new simulations that include radial variations in electrical conductivity based on internal structure models in combination with material property estimates and will discuss the potential for coupling between dynamo action in the ionic ocean and zonal flow generation in the molecular envelope. In addition, we will highlight how these simulations will both contribute to and benefit from the next mission to an ice giant planet.

  6. The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys

    NASA Astrophysics Data System (ADS)

    Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S.

    2015-05-01

    The directional solidification of Ga-25 wt%In alloys within a Hele-Shaw cell was visualized by means of X-ray radioscopy. The experimental investigations are especially focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected at the solid-liquid interface leading to an unstable density stratification. Forced convection was produced by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarization. The direction of forced melt flow is almost horizontal at the solidification front whereas local flow velocities in the range between 0.1 and 1.0 mm/s were achieved by controlling the rotation speed of the magnetic wheel. Melt flow induces various effects on the grain morphology primarily caused by the convective transport of solute. Our observations show a facilitation of the growth of primary trunks or lateral branches, suppression of side branching, dendrite remelting and fragmentation. The manifestation of all phenomena depends on the dendrite orientation, local direction and intensity of the flow. The forced flow eliminates the solutal plumes and damps the local fluctuations of solute concentration. It provokes a preferential growth of the secondary arms at the upstream side of the primary dendrite arms, whereas the high solute concentration at the downstream side of the dendrites can inhibit the formation of secondary branches completely. Moreover, the flow changes the inclination angle of the dendrites and the angle between primary trunks and secondary arms.

  7. Effect of forced convection on the collision and interaction between nanoparticles and ultramicroelectrode.

    PubMed

    Jiang, Jing; Huang, Xinjian; Wang, Lishi

    2016-04-01

    Detection of nanoparticle (NP) collision events at ultramicroelectrode (UME) has emerged as a new methodology for the investigation of single NP in recent years. Although the method was widely employed, some fundamental knowledge such as how the NP moves to and interacts with the UME remain less understood. It was generally recognized that the recorded rate of collision was determined by diffusion that should follow Fick's first law. However, significant lower collision frequency compared with that of predicted by theory were frequently reported. Experiments carried out by us suggest that the collision frequency will increase dramatically if forced convection (stir or flow injection) is applied during detection. Furthermore, the collision frequency gradually increases to a maximum and then decreases, along with the increase of the convection intensity. This phenomenon is interpreted as follows: (a) there are two steps for a freely moving NP to generate a detectable collision signal. The first step is the move of NP from bulk solution to the surface of the UME which is mass transfer limited; the second step is the landing of NP on the surface of UME which is affected by many factors and is the critical step; (b) there is a barrier that must be overcame before the contact between freely moving NP and UME. Forced convection with moderate intensity can not only increase the mass transfer rate but also help to overcome this barrier and thus enhance the collision frequency; (c) the landing of NP on the surface of UME can be suppressed by stronger convections, because NP will be swept away by hydrodynamic force.

  8. The electrical conductivity of polycrystalline metallic films

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Arenas, Claudio; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2016-10-01

    We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes (MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering properties of grain boundaries are taken into account by means of another specularity parameter and a probability of coherent passage. The difference between the sum of these and one is the probability of diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin films on the probability of coherent passage and grain diameters is examined. In accordance with MS we find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked grains. However, when compared with recent resitivity-thickness data, it is shown that all three formalisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data of gold films measured by

  9. Solar drying of whole mint plant under natural and forced convection.

    PubMed

    Sallam, Y I; Aly, M H; Nassar, A F; Mohamed, E A

    2015-03-01

    Two identical prototype solar dryers (direct and indirect) having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2 m s(-1). The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day). The values of the effective diffusivity coefficient for the mint drying ranged between 1.2 × 10(-11) and 1.33 × 10(-11) m(2) s(-1).

  10. Method of forming an electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  11. Local electrical conduction in polycrystalline La-doped BiFeO₃ thin films.

    PubMed

    Zhou, Ming-Xiu; Chen, Bo; Sun, Hai-Bin; Wan, Jian-Guo; Li, Zi-Wei; Liu, Jun-Ming; Song, Feng-Qi; Wang, Guang-Hou

    2013-06-07

    Local electrical conduction behaviors of polycrystalline La-doped BiFeO3 thin films have been investigated by combining conductive atomic force microscopy and piezoelectric force microscopy. Nanoscale current measurements were performed as a function of bias voltage for different crystal grains. Completely distinct conducting processes and resistive switching effects were observed in the grain boundary and grain interior. We have revealed that local electric conduction in a grain is dominated by both the grain boundary and ferroelectric domain, and is closely related to the applied electric field and the as-grown state of the grain. At lower voltages the electrical conduction is dominated by the grain boundary and is associated with the redistribution of oxygen vacancies in the grain boundary under external electric fields. At higher voltages both the grain boundary and ferroelectric domain are responsible for the electrical conduction of grains, and the electrical conduction gradually extends from the grain boundary into the grain interior due to the extension of the ferroelectric domain towards the grain interior. We have also demonstrated that the conduction dominated by the grain boundary exhibits a much small switching voltage, while the conduction of the ferroelectric domain causes a much high switching voltage in the grain interior.

  12. Details of Exact Low Prandtl Number Boundary-Layer Solutions for Forced and For Free Convection

    NASA Technical Reports Server (NTRS)

    Sparrow, E. M.; Gregg, J. L.

    1959-01-01

    A detailed report is given of exact (numerical) solutions of the laminar-boundary-layer equations for the Prandtl number range appropriate to liquid metals (0.003 to 0.03). Consideration is given to the following situations: (1) forced convection over a flat plate for the conditions of uniform wall temperature and uniform wall heat flux, and (2) free convection over an isothermal vertical plate. Tabulations of the new solutions are given in detail. Results are presented for the heat-transfer and shear-stress characteristics; temperature and velocity distributions are also shown. The heat-transfer results are correlated in terms of dimensionless parameters that vary only slightly over the entire liquid-metal range. Previous analytical and experimental work on low Prandtl number boundary layers is surveyed and compared with the new exact solutions.

  13. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    PubMed

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  14. Radiation Fluence dependent variation in Electrical conductivity of Cu nanowires

    SciTech Connect

    Gehlawat, Devender; Chauhan, R. P.; Sonkawade, R. G.

    2011-07-15

    Electrical conductivity of Cu nanowires varies with diameter of nanowires. However, keeping the diameter of nanowires constant, a variation in their electrical conductivity is observed after they irradiated with gamma rays and neutrons. On the basis of I-V characteristics drawn at room temperature, decrease in the conductivity of Cu nanowires is observed, as compared to that of pristine nanowires.

  15. Electrical conductivity measurements of nanofluids and development of new correlations.

    PubMed

    Konakanchi, Hanumantharao; Vajjha, Ravikanth; Misra, Debasmita; Das, Debendra

    2011-08-01

    In this study the electrical conductivity of aluminum oxide (Al2O3), silicon dioxide (SiO2) and zinc oxide (ZnO) nanoparticles dispersed in propylene glycol and water mixture were measured in the temperature range of 0 degrees C to 90 degrees C. The volumetric concentration of nanoparticles in these fluids ranged from 0 to 10% for different nanofluids. The particle sizes considered were from 20 nm to 70 nm. The electrical conductivity measuring apparatus and the measurement procedure were validated by measuring the electrical conductivity of a calibration fluid, whose properties are known accurately. The measured electrical conductivity values agreed within +/- 1% with the published data reported by the manufacturer. Following the validation, the electrical conductivities of different nanofluids were measured. The measurements showed that electrical conductivity of nanofluids increased with an increase in temperature and also with an increase in particle volumetric concentration. For the same nanofluid at a fixed volumetric concentration, the electrical conductivity was found to be higher for smaller particle sizes. From the experimental data, empirical models were developed for three nanofluids to express the electrical conductivity as functions of temperature, volumetric concentration and the size of the nanoparticles.

  16. Numerical and experimental study of flows in a rotating annulus with local convective forcing.

    NASA Astrophysics Data System (ADS)

    Scolan, Hélène; Su, Sylvie; Wright, Susie; Young, Roland M. B.; Read, Peter

    2016-04-01

    We present a numerical and experimental study of flows in a rotating annulus convectively forced by local thermal forcing via a heated annular ring at the bottom near the external wall and a cooled circular disk near the centre at the top surface of the annulus. This new configuration is a variant of the classical thermally-driven annulus analogue of the atmosphere circulation, where thermal forcing was previously applied uniformly on the sidewalls. Two vertically and horizontally displaced heat sources/sinks are arranged so that, in the absence of background rotation, statically unstable Rayleigh-Bénard convection would be induced above the source and beneath the sink, thereby relaxing strong constraints placed on background temperature gradients in previous experimental configurations to better mimic in fine local vigorous convection events in tropics and polar regions whilst also facilitating baroclinic motion in midlatitude regions in the Earth's atmosphere. By using the Met Office/ Oxford Rotating Annulus Laboratory (MORALS) code, we have investigated a series of equilibrated, 2D axisymmetric flows for a large range of dimensionless parameters and characterized them in terms of velocity and temperature fields. Several distinct and different flow regimes were identified, depending upon the rotation rate and strength of differential heating. These regimes will be presented with reference to variations of horizontal Ekman layer thickness versus the thermal boundary layer thickness and corresponding scalings for various quantities such as the azimuthal velocity or the heat transport. Experimental investigation of the same setup is carried out with a 1m diameter cylindrical container on a rotating platform: local heating is produced with an electrically heated annular ring at the bottom of the tank and cooling is imposed through a circular disk near the centre of the tank at the upper surface, cooled with circulating water. Different unstable circulation regimes

  17. Heat and momentum transfer model studies applicable to once-through, forced convection potassium boiling

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.

    1971-01-01

    A number of heat transfer and fluid flow mechanisms that control once-through, forced convection potassium boiling are studied analytically. The topics discussed are: (1) flow through tubes containing helical wire inserts, (2) motion of droplets entrained in vapor flow, (3) liquid phase distribution in boilers, (4) temperature distributions in boiler tube walls, (5) mechanisms of heat transfer regime change, and (6) heat transfer in boiler tubes. Whenever possible, comparisons of predicted and actual performances are made. The model work presented aids in the prediction of operating characteristics of actual boilers.

  18. Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate

    SciTech Connect

    Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.

    2015-08-10

    We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 < Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.

  19. A theoretical study of the spheroidal droplet evaporation in forced convection

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhang, Jian

    2014-11-01

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time.

  20. Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate

    DOE PAGES

    Harris, Jeff R.; Lance, Blake W.; Smith, Barton L.

    2015-08-10

    We present computational fluid dynamics (CFD) validation dataset for turbulent forced convection on a vertical plate. The design of the apparatus is based on recent validation literature and provides a means to simultaneously measure boundary conditions (BCs) and system response quantities (SRQs). Important inflow quantities for Reynolds-Averaged Navier-Stokes (RANS). CFD are also measured. Data are acquired at two heating conditions and cover the range 40,000 < Rex < 300,000, 357 < Reδ2 < 813, and 0.02 < Gr/Re2 < 0.232.

  1. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Red, X. B., Jr.

    1995-01-01

    An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  2. Radiative-convective model with an explicit hydrologic cycle. 2: Sensitivity to large changes in solar forcing

    NASA Technical Reports Server (NTRS)

    Renno, Nilton O.; Stone, Peter H.; Emanuel, Kerry A.

    1994-01-01

    The one-dimensional radiative-convective equilibrium model with an explicit hydrologic cycle introduced in part 1 is used to study the sensitivity of the model's atmosphere to large changes in the solar forcing, when various cumulus convection parameterizations are used. When the concentration of the absorbing as in the atmosphere is temperature dependent, equilibrium is impossible for values of the solar forcing larger than a critical value. This result is referred to as a runaway greenhouse. The cumulus convection parameterization schemes currently in use in global climate models (GCMs) employ different assumptions about moistening. This causes the critical solar forcing above which a runaway greenhouse occurs to be very sensitive to the cumulus convection scheme employed. Furthermore, we show that the sensitivity of the equilibrium temperature to changes in the solar forcing depends crucially on the microphysics of cumulus convection. For fixed cloud conditions, the critical forcing for a runaway greenhouse to occur is between approximately 1.22 and 1.49 times the global mean value for the Earth, and for clear sky conditions, it is a few percent lower. The runaway greenhouse in the experiments with the mass flux schemes generally occurs more rapidly than in the experiments with the adjustment schemes. In addition, the inability of the hard convective adjustment scheme to produce an efficient vertical transport of moisture, together with the saturation requirement for convection to occur, leads to the breakdown of the radiative-convective equilibria when other processes are not available to provide the necessary vertical transport of water vapor.

  3. Combined free and forced convection laminar film condensation on an inclined circular tube with isothermal surface

    SciTech Connect

    Mosaad, M.

    1999-07-01

    Laminar film condensation on an inclined circular tube, under the condition of combined free and forced convection, is analyzed. The assumptions are as in the analysis of Shekriladze and Gomelauri (1966) for the horizontal tube case. In addition, some approximations are introduced for the determination of the interfacial shear stress. The resultant governing equation, in special cases, yields the known analytical solutions of horizontal and vertical tubes, which were obtained in previous studies. A numerically-obtained solution reveals the effects of vapor velocity and gravity force on local and mean Nusselt numbers. For the case of an infinitely-long tube, an explicit simple expression has been obtained, based on numerical results, to calculate the mean Nusselt number for the whole tube surface.

  4. Fundamental Study of Local Heat Transfer in Forced Convective Boiling of Ammonia on Vertical Flat Plate

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hun; Arima, Hirofumi; Ikegami, Yasuyuki

    In the present study, the fundamental experiments that investigate characteristics of local heat transfer in forced convective boiling on vertical flat plate with 2-mm channel height are taken to realize plate type compact evaporator for OTEC or STEC. The experiments are performed with ammonia as the working fluid. The experiments are also carried out with the following test conditions; saturated pressure = 0.7, 0.8, 0.9 MPa, mass flux = 7.5, 10, 15 kg/(m2•s), heat flux = 15, 20, 25 kW/m2 and inlet quality = 0.1 ~ 0.4 [-]. The result shows that the wall superheated temperature of forced convective boiling is lower than that of pool boiling. And the heat transfer coefficient increases with an increase in quality and the decrease in the local heat flux and saturated pressure for prescribed experimental conditions. However, local heat transfer coefficients are not affected by mass fluxes in the prescribed experimental conditions. An empirical correlation that can predict the local heat transfer coefficient on vertical flat plate within experimental conditions is also proposed.

  5. Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling

    NASA Astrophysics Data System (ADS)

    Sundarraj, Pradeepkumar; Taylor, Robert A.; Banerjee, Debosmita; Maity, Dipak; Sinha Roy, Susanta

    2017-01-01

    Hybrid solar thermoelectric generators (HSTEGs) have garnered significant research attention recently due to their potential ability to cogenerate heat and electricity. In this paper, theoretical and experimental investigations of the electrical and thermal performance of a HSTEG system are reported. In order to validate the theoretical model, a laboratory scale HSTEG system (based on forced convection cooling) is developed. The HSTEG consists of six thermoelectric generator modules, an electrical heater, and a stainless steel cooling block. Our experimental analysis shows that the HSTEG is capable of producing a maximum electrical power output of 4.7 W, an electrical efficiency of 1.2% and thermal efficiency of 61% for an average temperature difference of 92 °C across the TEG modules with a heater power input of 382 W. These experimental results of the HSTEG system are found to be in good agreement with the theoretical prediction. This experimental/theoretical analysis can also serve as a guide for evaluating the performance of the HSTEG system with forced convection cooling.

  6. Effect of the centrifugal force on domain chaos in Rayleigh-Bénard convection.

    PubMed

    Becker, Nathan; Scheel, J D; Cross, M C; Ahlers, Guenter

    2006-06-01

    Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects the domain-chaos state observed in rotating Rayleigh-Bénard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly stationary nearly radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency f approximately epsilon(mu) with mu approximately equal to 1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, mu and the domain size were consistent with experiment.

  7. Electrically conductive gold- and copper-metallized DNA origami nanostructures.

    PubMed

    Geng, Yanli; Pearson, Anthony C; Gates, Elisabeth P; Uprety, Bibek; Davis, Robert C; Harb, John N; Woolley, Adam T

    2013-03-12

    This work demonstrates the use of a circuit-like DNA origami structure as a template to fabricate conductive gold and copper nanostructures on Si surfaces. We improved over previous results by using multiple Pd seeding steps to increase seed uniformity and density. Our process has also been characterized through atomic force microscopy, particle size distribution analysis, and scanning electron microscopy. We found that four successive Pd seeding steps yielded the best results for electroless metal plating on DNA origami. Electrical resistance measurements were done on both Au- and Cu-metallized nanostructures, with each showing ohmic behavior. Gold-plated DNA origami structures made under optimal conditions had an average resistivity of 7.0 × 10(-5) Ω·m, whereas copper-metallized structures had a resistivity as low as 3.6 × 10(-4) Ω·m. Importantly, this is the first demonstration of electrically conductive Cu nanostructures fabricated on either DNA or DNA origami templates. Although resistivities for both gold and copper samples were larger than those of the bulk metal, these metal nanostructures have the potential for use in electrically connecting small structures. In addition, these metallized objects might find use in surface-enhanced Raman scattering experiments.

  8. Turbulent heat transfer with combined forced and natural convection along a vertical flat plate. Effect of Prandtl number

    SciTech Connect

    Inagaki, T. ); Kitamura, K. )

    1990-01-01

    The turbulent heat transfer of combined forced and natural convection along a vertical flat plate was investigated experimentally both with aiding and opposing flows of air. Local heat-transfer coefficients were measured in the vertical direction. The results show that the local Nusselt numbers for aiding flow become smaller than those for the forced and the natural convection, while the Nusselt numbers for the opposing flow are increased significantly. These results are compared with the previous results for water. It has been found that the nondimensional parameter Z(= Gr{sub x}*/Nu{sub x}Re{sub x}){sup 2.7}Pr{sup 0.6} can predict the behavior of heat transfer both for air and water. Furthermore, the natural, forced, and combined convection regions can be classified in terms of the above parameter.

  9. Electrical conductivity of rocks at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Parkhomenko, E. I.; Bondarenko, A. T.

    1986-01-01

    The results of studies of the electrical conductivity in the most widely distributed types of igneous rocks, at temperatures of up to 1200 C, at atmospheric pressure, and also at temperatures of up to 700 C and at pressures of up to 20,000 kg/sq cm are described. The figures of electrical conductivity, of activaation energy and of the preexponential coefficient are presented and the dependence of these parameters on the petrochemical parameters of the rocks are reviewed. The possible electrical conductivities for the depository, granite and basalt layers of the Earth's crust and of the upper mantle are presented, as well as the electrical conductivity distribution to the depth of 200 to 240 km for different geological structures.

  10. Temperature-dependent electrical conductivity of soda-lime glass

    NASA Technical Reports Server (NTRS)

    Bunnell, L. Roy; Vertrees, T. H.

    1993-01-01

    The objective of this educational exercise was to demonstrate the difference between the electrical conductivity of metals and ceramics. A list of the equipment and supplies and the procedure for the experiment are presented.

  11. Measurement of Electrical Conductivity for a Biomass Fire

    PubMed Central

    Mphale, Kgakgamatso; Heron, Mal

    2008-01-01

    A controlled fire burner was constructed where various natural vegetation species could be used as fuel. The burner was equipped with thermocouples to measure fuel surface temperature and used as a cavity for microwaves with a laboratory quality 2-port vector network analyzer to determine electrical conductivity from S-parameters. Electrical conductivity for vegetation material flames is important for numerical prediction of flashover in high voltage power transmission faults research. Vegetation fires that burn under high voltage transmission lines reduce flashover voltage by increasing air electrical conductivity and temperature. Analyzer determined electrical conductivity ranged from 0.0058 - 0.0079 mho/m for a fire with a maximum temperature of 1240 K. PMID:19325812

  12. Non-Contact Electrical Conductivity Measurement Technique for Molten Metals

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    A non-contact technique of measuring the electrical conductivity (or resistivity) of conducting liquids while they are levitated by the high temperature electrostatic levitator in a high vacuum is reported.

  13. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  14. Chapter A6. Section 6.3. Specific Electrical Conductance

    USGS Publications Warehouse

    Radtke, Dean B.; Davis, Jerri V.; Wilde, Franceska D.

    2005-01-01

    Electrical conductance is a measure of the capacity of a substance to conduct an electrical current. The specific electrical conductance (conductivity) of water is a function of the types and quantities of dissolved substances it contains, normalized to a unit length and unit cross section at a specified temperature. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of conductivity in ground and surface waters.

  15. Analytical study on two-phase MHD flow of electrically conducting magnetic fluid

    SciTech Connect

    Okubo, Masaaki; Ishimoto, Jun; Nishiyama, Hideya; Kamiyama, Shinichi

    1994-01-01

    An energy conversion system using magnetic fluids proposed by Resler and Rosensweig was based on the principle that the magnetization of magnetic fluids changes with temperature. However, significant results have not been obtained up to the present. To overcome this limit and to increase the acceleration of fluid flow the authors have contributed a new energy conversion system using two-phase flow produced by heat addition. This idea came from the two-phase liquid-metal MHD power generation system proposed by Petrick and Branover. If temperature sensitive magnetic fluids are used, such a system can produce a larger force than conventional systems because the properties of apparent magnetization change not only by temperature rise but also by gas inclusion. In the present paper, an analytical study is extended to the case of electrically conducting magnetic fluid as a basic study for demonstrating the possibility of application of electrically conducting magnetic fluid to working fluid in a liquid-metal MHD power generation system. Electrically conducting magnetic fluid is usually prepared by dispersing fine iron particles into a liquid metal such as mercury. To prevent a solidification of particles and keep a homogeneous dispersion, a thin film of tin is attached to the particle`s surface. Thus the electrically conducting liquid behaves as fluid itself having magnetization. The equations governing a one-dimensional boiling two-phase duct flow of such an electrically conducting magnetic fluid in a traverse magnetic field are numerically solved. The analytical results of the two-phase flow characteristics of the magnetic fluid are compared with ones of an electrically conducting nonmagnetic fluid.

  16. Electrically conductive, black thermal control coatings for space craft application. II - Silicone matrix formulation

    NASA Technical Reports Server (NTRS)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1986-01-01

    Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.

  17. Electrical Conductivity of the Lower-Mantle Ferropericlase

    SciTech Connect

    Lin, J F; Weir, S T; Jackson, D D; Evans, W J; Vohra, Y K; Qiu, W; Yoo, C S

    2007-04-19

    Electrical conductivity of the lower-mantle ferropericlase-(Mg{sub 0.75},Fe{sub 0.25})O has been studied using designer diamond anvils to pressures over one megabar and temperatures up to 500 K. The electrical conductivity of (Mg{sub 0.75},Fe{sub 0.25})O gradually rises by an order of magnitude up to 50 GPa but decreases by a factor of approximately three between 50 to 70 GPa. This decrease in the electrical conductivity is attributed to the electronic high-spin to low-spin transition of iron in ferropericlase. That is, the electronic spin transition of iron results in a decrease in the mobility and/or density of the charge transfer carriers in the low-spin ferropericlase. The activation energy of the low-spin ferropericlase is 0.27 eV at 101 GPa, similar to that of the high-spin ferropericlase at relatively low temperatures. Our results indicate that low-spin ferropericlase exhibits lower electrical conductivity than high-spin ferropericlase, which needs to be considered in future geomagnetic models for the lower mantle. The extrapolated electrical conductivity of the low-spin ferropericlase, together with that of silicate perovskite, at the lower mantle pressure-temperature conditions is consistent with the model electrical conductivity profile of the lower mantle.

  18. Effect of Ligament Morphology on Electrical Conductivity of Porous Silver

    NASA Astrophysics Data System (ADS)

    Zuruzi, Abu Samah; Mazulianawati, Majid Siti

    2016-12-01

    We investigate the effect of ligament morphology on electrical conductivity of open cell porous silver (Ag). Porous Ag was formed when silver nanoparticles in an organic phase were annealed at 150°C for durations ranging from 1 to 5 min. Electrical conductivity of porous Ag was about 20% of bulk value after 5 min annealing. Porous Ag was modeled as a collection of Kelvin cell (truncated octahedrons) structures comprised of conjoined conical ligaments and spherical vertices. An analytical expression for electrical conductivity was obtained. Electrical conductivity normal to hexagonal faces of the unit cell was computed. Our model indicates contribution of grain boundary to electrical resistance increases significantly after the first minute of annealing and plateaus thereafter. Using experimental electrical conductivity data as an input, the model suggests that the ratio, n, of surfaces of one half of a conjoined cone ligament is between 0.7 and 1.0. Average deviation from experimentally determined relative electrical conductivity, Δ σ r, was minimal when n = 0.9.

  19. Selection criterion for the growing dendritic tip in a non-isothermal binary system under forced convective flow

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Galenko, P. K.; Herlach, D. M.

    2010-07-01

    A free dendrite growth during solidification into external forced flow is analyzed using a sharp interface model. A criterion for selection of the stable growth mode is derived for the axisymmetric dendrite growing into non-isothermal binary system under convective flow. The criterion obtained rallies analytic results for dendrite growth under forced convection in a pure system [Ph. Bouissou, P. Pelce, Phys. Rev. A 40 (1989) 6673] and dendrite growth in a stagnant binary system [M. Ben Amar, P. Pelce, Phys. Rev. A 39 (1989) 4263].

  20. General expression for laminar forced and natural convection heat transfer from isothermal flat plates for all Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Yovanovich, M. M.

    1993-07-01

    It is presently shown that the correlation equations for forced and natural convection-involving bloundary-layer flows, over isothermal flat plates, collapse into a simple expression directly relating the dimensionless wall-temperature excess to a novel Prandtl number function. This function is demonstrated to be applicable for the full, zero-to-infinity Prandtl number range. This formulation allows forced and natural convection heat-transfer results to appear on the same graph, as dimensionless temperature excess vs Prandtl number functions.

  1. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Reed, X. B., Jr.

    1995-01-01

    An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  2. Numerical investigation on forced convection in rectangular cross section micro-channels with nanofluids

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Cirillo, L.; Manca, O.; Nardini, S.; Tamburrino, S.

    2017-01-01

    In this paper a numerical investigation on laminar forced convection flow of a water-Al2O3 nanofluid in a rectangular microchannel is accomplished. A constant and uniform heat flux on the external surfaces has been applied and a single-phase model approach has been employed. The analysis has been performed in steady state regime for particle size in nanofluids equal to 38 nm. The CFD commercial code Fluent has been employed in order to solve the 3-D numerical model. The geometrical configuration under consideration consists in a duct with a rectangular shaped crossing area. A steady laminar flow and different nanoparticle volume fractions have been considered. The base fluid is water and nanoparticles are made up of alumina (Al2O3). The length the edge and height of the duct are 0.030 m, 1.7 x10-7 and 1.1 x10-7 m, respectively. Results are presented in terms of temperature and velocity distributions, surface shear stress and heat transfer convective coefficient, Nusselt number and required pumping power profiles. Comparison with results related to the fluid dynamic and thermal behaviors are carried out in order to evaluate the enhancement due to the presence of nanoparticles in terms of volumetric concentration.

  3. Heat tranfer 1982; Proceedings of the Seventh International Conference, Technische Universitaet Muenchen, Munich, West Germany, September 6-10, 1982. Volume 3 - General papers: Forced convection, mixed convection

    NASA Astrophysics Data System (ADS)

    Grigull, U.; Straub, J.; Hahne, E.; Stephan, K.

    The present conference on forced convection and mixed convection heat transfer covers heat transfer for a developing laminar pulsed flow of air in a tube, a finite analytic numerical solution for heat transfer and flow past a square channel cavity, heat transfer to laminar flow in non-Newtonian pseudoplastic fluids in tubes, heat transfer in a vertical rotating annulus, heat transfer at the tip of an unshrouded turbine blade, convective heat transfer in MHD channels, the turbulent diffusion of heat in recirculating liquid metal and water flows, the effects of molecular vibrational relaxation on stagnation heat transfer, and local heat transfer rates from two adjacent spheres in turbulent axisymmetric flows. Also considered are heat transfer from vibrating tubes in turbulent flow, modeling assumptions for turbulent heat transfer, calculation of heat transfer in turbulent, transpired boundary layers, heat transfer enhancement using vortex generators, modeling of mass transport in turbulent shear flows, cooling of a rotating disk by an impinging jet, profile analysis of heat/mass transfer across the plane wall jet, heat transfer coefficients of water jets impinging on a hot surface, the effect of suction on impingement heat transfer, acoustic enhancement of heat transfer in plane channels, wake interference for a heated oscillating cylinder, and mixed convection heat transfer to supercritical pressure water. (For individual items see A83-42701 to A83-42756)

  4. The effects of outward forced convective flow on inward diffusion in human dentine in vitro.

    PubMed

    Pashley, D H; Matthews, W G

    1993-07-01

    In vitro experiments were conducted to evaluate the influence of outward forced convective flow on the inward diffusion of radioactive iodide. When the smear layer was present, application of 15 cmH2O (1.47 kPa) outward-directed filtration pressure reduced the inward flux of iodide by about 10-20% depending upon the hydraulic conductance of each specimen. When the smear layer was removed by acid etching, the same 1.47 kPa pressure lowered the inward iodide flux by as much as 60%, depending on the hydraulic conductance. The results demonstrate the importance of the balance between inward diffusion and outward bulk-fluid movement on the rate of permeation of exogenous solutes.

  5. Effects of corrugation angle on developing laminar forced convection and entropy generation in a wavy channel

    NASA Astrophysics Data System (ADS)

    Ko, Tzu-Hsiang

    2007-12-01

    This paper investigates the effects of corrugation angle ( β) on the developing laminar forced convection and entropy generation in a wavy channel with numerical methods. The studied cases cover β = 10-, 15-, 20-, 25-, 30- and 35°, whilst Reynolds number ( Re) is varied as 100, 200 and 400. The analyzed flow characteristics include recirculating flows, secondary vortices, temperature distributions, and friction factor as well as Nusselt number. In particular, the effects of corrugation angle on the distributions and magnitudes of local entropy generation resulted from frictional irreversibility ( S {/P '''}) and heat transfer irreversibility ( S {/T '''}) are separately discussed in detail in the present paper. Based on the minimal entropy generation principle, the optimal corrugation angle and favorable Re are reported.

  6. Critical heat flux in forced convective boiling with a plane jet (Revised correlation for saturated condition)

    NASA Astrophysics Data System (ADS)

    Monde, M.; Wang, X.

    Critical heat flux (CHF) has been measured in saturated forced convective boiling with a wall jet on a rectangular heated surface of 40 and 80mm in length and 20mm in width. The jet velocity is varied from 3 to 15 m/s, and the system pressure is 0.1, 0.2, and 0.4MPa for R113. It is found that the existing correlation for saturation condition can be applied to the CHF at high and low ρl/ρg values (e.g. water and R22), but hardly to the CHF at medium ρl/ρg values (e.g. R113 at 0.2 and 0.4MPa). A revised correlation is proposed to predict most of the CHF data within an accuracy of +/-25%.

  7. Application of a finite volume based method of lines to turbulent forced convection in circular tubes

    SciTech Connect

    Campo, A.; Tebeest, K.; Lacoa, U.; Morales, J.C.

    1996-10-01

    A semianalytic analysis of in-tube turbulent forced convection is performed whose special computational feature is the combination of the method of lines, the finite volume technique, and a radial coordinate transformation. First, a numerical solution of the momentum equation was obtained by a simple Runge-Kutta integration scheme. Second, the energy equation was reformulated into a system of ordinary differential equations of first order. Each equation in the system controls the temperature along a line in a mesh consisting of concentric lines. Reliable analytic solutions for the temperature distribution of fluids in the region of thermal development can be determined for combinations of Reynolds and Prandtl numbers. Predicted results for the distributions of mean bulk temperature and local Nusselt numbers for air, water, and oils compare satisfactorily with the available experimental data.

  8. A steady-state model for the forced convection solar cabinet dryer

    SciTech Connect

    Chirarattananon, S.; Chirarattananon, R. , Bangkok ); Chinporncharoenpong, C. )

    1988-01-01

    The insufficient knowledge base for the design and optimization of solar dryer could be the obstacle to the unrealized promise of solar drying. By applying the lumped-parameter approach in the analysis of the transfer processes and utilizing known results from drying theory, this article demonstrates a methodology for the construction of a reduced mathematical model of the forced convection solar cabinet dryer. The model comprises only the variables directly involved in the energy and mass balance relationships for the drying process. The values of the variables determine the state of the processes in the dryer, and the model is a set of relationships that determine such a state. Specializing into thin product bed with sponge pieces constituting the product, this article describes an experiment carried out to verify the model. It also presents an assessment of the model parameter value from the experimental result and a simulation procedure with a result, which positively validates the model.

  9. Laminar forced convection from a rotating horizontal cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.

    2017-04-01

    The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.

  10. Effect of finite length on forced convection heat transfer from cylinders

    NASA Astrophysics Data System (ADS)

    Quarmby, A.; Al-Fakhri, A. A. M.

    1980-04-01

    Forced convection heat transfer from single cylinders of finite length is investigated experimentally with particular reference to the effect of aspect (length/diameter) ratio of the cylinder. It is found that for aspect ratios greater than 4 there is little further effect as aspect ratio increases to infinity. The disagreement between the correlations proposed by Zukauskas (1972) and Morgan (1975) is considered and resolved in favor of the Zukauskas correlation. A correlation is proposed for heat transfer from cylinders of low aspect ratio which in the limit agrees with the correlation for large aspect ratios and with the generally accepted correlation for turbulent heat transfer from isothermal flat plates for small aspect ratios.

  11. MHD forced convection flow adjacent to a non-isothermal wedge

    SciTech Connect

    Yih, K.A.

    1999-08-01

    The problem of magnetohydrodynamic (MHD) incompressible viscous flow has many important engineering applications in devices such as MHD power generator and the cooling of reactors. In this analysis, the effects of viscous dissipation and stress work on the MHD forced convection adjacent to a non-isothermal wedge is numerically analyzed. These partial differential equations are transformed into the nonsimilar boundary layer equations and solved by the Keller box method. Numerical results for the local friction coefficient and the local Nusselt number are presented for the pressure gradient parameter m, the magnetic parameter {xi}, the Prandtl number Pr, and the Eckert number Ec. In general, increasing the pressure gradient parameter m or the magnetic parameter {xi} or the Prandtl number Pr or decreasing the Eckert number EC increases the local Nusselt number.

  12. Numerical study of thermal performance of perforated circular pin fin heat sinks in forced convection

    NASA Astrophysics Data System (ADS)

    Wen, Mao-Yu; Yeh, Cheng-Hsiung

    2016-12-01

    This paper presents a numerical simulation of the heat transfer performance under forced convection for two different types of circular pin fin heat sinks with (Type A) and without (Type B) a hollow in the heated base. COMSOL Multiphysics, which is used for the thermal hydraulic analyses, has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. The standard κ- ɛ two-equations turbulence model is employed to describe the turbulent structure and behavior. The numerical results are validated with the experimental results, and are shown to be in good agreement. The effects of the Reynolds number, height of the fin, finning factor and the perforated base plate on the heat-transfer coefficient are investigated and evaluated. The present study strongly recommends the use of a small hollow ( (Dh /Db ) < 0.15 ) constructed in the base plate of the pin fin heat sink.

  13. Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Khan, Waqar Azeem

    2015-10-01

    This article reports the two-dimensional forced convective flow of a generalized Burgers fluid over a linearly stretched sheet under the impacts of nano-sized material particles. Utilizing appropriate similarity transformations the coupled nonlinear partial differential equations are converted into a set of coupled nonlinear ordinary differential equations. The analytic results are carried out through the homotopy analysis method (HAM) to investigate the impact of various pertinent parameters for the velocity, temperature and concentration fields. The obtained results are presented in tabular form as well as graphically and discussed in detail. The presented results show that the rate of heat transfer at the wall and rate of nanoparticle volume fraction diminish with each increment of the thermophoresis parameter. While incremented values of the Brownian motion parameter lead to a quite opposite effect on the rates of heat transfer and nanoparticle volume fraction at the wall.

  14. Enhancing filling of interconnect deep trenches using forced convection magneto-electroplating

    NASA Astrophysics Data System (ADS)

    Said, R. A.

    2006-01-01

    Filling deep trenches and cavities is currently accomplished by copper electro-less plating technology utilizing super-conformal deposition methods. Unlike typical electrolyses processes, where an electric potential is applied between the anodes to activate the plating reaction, electro-less plating relies on chemical agents to activate deposition. To achieve super-conformal deposition, special electrolytic paths must be used. This poses a challenge to the fabrication of narrower trenches, and thus requires the development of other deposition schemes. This work proposes an alternative solution to the filling of deep trenches that avoids the difficulties outlined above, using a forced convection magneto-electroplating method. The technique operates as in typical electrolysis processes, however, with forcing the flow of the plating electrolyte, by hydro-dynamic means, in the presence of an externally applied magnetic field. This arrangement introduces a Lorentz type of force that enhances the transport of deposit species toward desired locations, such as deep regions in interconnect trenches. The proposed method is demonstrated by filling interconnect trenches with aspect ratio as high as 3:1. Quality of samples filled using the proposed magneto-electroplating method is compared with the quality of samples filled by typical electroplating method.

  15. Energetic dynamics of a rotating horizontal convection model of an ocean basin with wind forcing

    NASA Astrophysics Data System (ADS)

    Zemskova, Varvara; White, Brian; Scotti, Alberto

    2016-11-01

    We analyze the energetic dynamics in a rotating horizontal convection model, where flow is driven by a differential buoyancy forcing along a horizontal surface. This model is used to quantify the influence of surface heating and cooling and surface wind stress on the Meridional Overturning Circulation. We study a model of the Southern Ocean in a rectangular basin with surface cooling on one end (the South pole) and surface warming on the other end (mid-latitudes). Free-slip boundary conditions are imposed in the closed box, while zonally periodic boundary conditions are enforced in the reentrant channel. Wind stress and differential buoyancy forcing are applied at the top boundary. The problem is solved numerically using a 3D DNS model based on a finite-volume AMR solver for the Boussinesq Navier-Stokes equations with rotation. The overall dynamics, including large-scale overturning, baroclinic eddying, turbulent mixing, and resulting energy cascades are investigated using the local Available Potential Energy framework introduced in. We study the relative contributions of surface buoyancy and wind forcing along with the effects of bottom topography to the energetic balance of this dynamic model. This research is part of the Blue Waters sustained-petascale computing project, supported by the NSF (awards OCI-0725070, ACI-1238993 and ACI-14-44747) and the state of Illinois.

  16. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    SciTech Connect

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-23

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  17. Calibration-free electrical conductivity measurements for highly conductive slags

    SciTech Connect

    MACDONALD,CHRISTOPHER J.; GAO,HUANG; PAL,UDAY B.; VAN DEN AVYLE,JAMES A.; MELGAARD,DAVID K.

    2000-05-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF{sub 2} - 20 wt.% CaO - 20 wt.% Al{sub 2}O{sub 3}) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments.

  18. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, Jr., Thomas M.; Wells, Barbara J.

    1987-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  19. Sintering, Microstructure, and Electrical Conductivity of Zirconia-Molybdenum Cermet

    NASA Astrophysics Data System (ADS)

    Guo, Yanling; Tang, Lei; Zhang, Jieyu

    2015-08-01

    Monolithic zirconia-molybdenum ( m-ZrO2/Mo) cermets of different compositions (5-40 vol.% Mo) and different initial Mo particles sizes (0.08-13 μm) were prepared by traditional powder metallurgy process. The influences of metal content and initial particle sizes on the densification behavior, microstructure, and electrical conductivity of the cermets were studied. A percolation threshold value was obtained about 17.1 vol.% molybdenum fraction, above which a sharp increase in the electrical conductivity was observed. The temperature dependence of the electrical conductivity of cermets was studied. The cermet containing 5 vol.% Mo showed the ionic nature of the conductivity, while the metallic nature was observed in the samples of Mo fraction up to 16 vol.%. The activation of conductivity for ionic type of conductivity and the temperature coefficient of resistivity as well as the effect of porosity on electronic type conductivity are discussed.

  20. Electrically conductive resinous bond and method of manufacture

    DOEpatents

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  1. Energetic dynamics of a rotating horizontal convection model with wind forcing

    NASA Astrophysics Data System (ADS)

    Zemskova, Varvara; White, Brian; Scotti, Alberto

    2015-11-01

    We present a new test case for rotating horizontal convection, where the flow is driven by differential buoyancy forcing along a horizontal surface. This simple model is used to understand and quantify the influence of surface heating and cooling and wind stress on the Meridional Overturning Circulation. The domain is a rectangular basin with surface cooling at both ends (the poles) and surface warming in the middle (equatorial) region. To model the effect of the Antarctic Circumpolar Current, reentrant channel is placed near the Southern pole. Free-slip boundary conditions are imposed in the closed box, while zonally periodic boundary conditions are enforced in the channel. The problem is solved numerically using a 3D DNS model based on a finite-volume AMR solver for the Boussinesq Navier-Stokes equations with rotation. The relative contributions of surface buoyancy and wind forcing and the energetic balance are analyzed at a Rayleigh number of 108 and a relatively high aspect ratio of [5, 10, 1] in zonal, meridional and vertical directions, respectively. The overall dynamics, including large-scale overturning, baroclinic eddying, and turbulent mixing are investigated using the local Available Potential Energy framework introduced in [Scotti and White, J. Fluid Mech., 2014]. This research is part of the Blue Waters sustained-petascale computing project, supported by the NSF (awards OCI-0725070, ACI-1238993 and ACI-14-44747) and the state of Illinois.

  2. Forcings and feedbacks on convection in the 2010 Pakistan flood: Modeling extreme precipitation with interactive large-scale ascent

    NASA Astrophysics Data System (ADS)

    Nie, Ji; Shaevitz, Daniel A.; Sobel, Adam H.

    2016-09-01

    Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. The causal relationships between these factors are often not obvious, however, the roles of different physical processes in producing the extreme precipitation event can be difficult to disentangle. Here we examine the large-scale forcings and convective heating feedback in the precipitation events, which caused the 2010 Pakistan flood within the Column Quasi-Geostrophic framework. A cloud-revolving model (CRM) is forced with large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation using input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. Numerical results show that the positive feedback of convective heating to large-scale dynamics is essential in amplifying the precipitation intensity to the observed values. Orographic lifting is the most important dynamic forcing in both events, while differential potential vorticity advection also contributes to the triggering of the first event. Horizontal moisture advection modulates the extreme events mainly by setting the environmental humidity, which modulates the amplitude of the convection's response to the dynamic forcings. When the CRM is replaced by either a single-column model (SCM) with parameterized convection or a dry model with a reduced effective static stability, the model results show substantial discrepancies compared with reanalysis data. The reasons for these discrepancies are examined, and the implications for global models and theoretical models are discussed.

  3. Electrically conducting porphyrin and porphyrin-fullerene electropolymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony; Gervaldo, Miguel Andres; Bridgewater, James Ward; Brennan, Bradley James; Moore, Thomas Andrew; Moore, Ana Lorenzelli

    2014-03-11

    Compounds with aryl ring(s) at porphyrin meso position(s) bearing an amino group in position 4 relative to the porphyrin macrocycle, and at least one unsubstituted 5 (hydrogen-bearing) meso position with the 10-, 15-, and/or 20-relationship to the aryl ring bearing the amino group, and metal complexes thereof, feature broad spectral absorption throughout the visible region. These compounds are electropolymerized to form electrically conducting porphyrin and porphyrin-fullerene polymers that are useful in photovoltaic applications. The structure of one such electrically conducting porphyrin polymer is shown below. ##STR00001##

  4. Measuring the local electrical conductivity of human brain tissue

    NASA Astrophysics Data System (ADS)

    Akhtari, M.; Emin, D.; Ellingson, B. M.; Woodworth, D.; Frew, A.; Mathern, G. W.

    2016-02-01

    The electrical conductivities of freshly excised brain tissues from 24 patients were measured. The diffusion-MRI of the hydrogen nuclei of water molecules from regions that were subsequently excised was also measured. Analysis of these measurements indicates that differences between samples' conductivities are primarily due to differences of their densities of solvated sodium cations. Concomitantly, the sample-to-sample variations of their diffusion constants are relatively small. This finding suggests that non-invasive in-vivo measurements of brain tissues' local sodium-cation density can be utilized to estimate its local electrical conductivity.

  5. Effect of Crystallinity on Electrical Conduction in Polypropylene

    NASA Astrophysics Data System (ADS)

    Ikezaki, Kazuo; Kaneko, Takanobu; Sakakibara, Toshio

    1981-03-01

    The electrical conduction of 20 μm thick polypropylene films with different crystallinities has been studied at 72°C below 400 kV/cm. The field dependence of the current shows that the conduction mechanism in this polymer is ion hopping. The estimated ionic jump distance strongly depends on the polymer crystallinity, and it decreases from 100 Å to 45 Å as the crystallinity increases from 50.5% to 78%. Preheating of samples seriously affects the electrical conduction in polypropylene, so differences in conductivity, activation energy and jump distance obtained by different authors can be explained partly by differences in the thermal history of the samples used.

  6. Contamination from electrically conductive silicone tubing during aerosol chemical analysis

    SciTech Connect

    Yu, Yong; Alexander, M. L.; Perraud, Veronique; Bruns, Emily; Johnson, Stan; Ezell, Michael J.; Finlayson-Pitts, Barbara J.

    2009-06-01

    Electrically conductive silicone tubing is used to minimize losses in sampling lines during the analysis of airborne particle size distributions and number concentrations. We report contamination from this tubing using gas chromatography-mass spectrometry (GC-MS) of filter-collected samples as well as by particle mass spectrometry. Comparison of electrically conductive silicone and stainless steel tubing showed elevated siloxanes only for the silicone tubing. The extent of contamination increased with length of tubing to which the sample was exposed, and decreased with increasing relative humidity.

  7. Corrosion-protective coatings from electrically conducting polymers

    NASA Technical Reports Server (NTRS)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  8. Corrosion-protective coatings from electrically conducting polymers

    SciTech Connect

    Thompson, K.G.; Bryan, C.J.; Benicewicz, B.C.; Wrobleski, D.A.

    1991-12-31

    In a joint research effort involving the Kennedy Space Center and the Los Alamos National Laboratory, electrically conductive polymer coatings have been developed as corrosion-protective coatings for metal surfaces. At the Kennedy Space Center, the launch environment consists of marine, severe solar, and intermittent high acid/elevated temperature conditions. Electrically conductive polymer coatings have been developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  9. Electrically conductive doped block copolymer of polyacetylene and polyisoprene

    DOEpatents

    Aldissi, Mahmoud

    1985-01-01

    An electrically conductive block copolymer of polyisoprene and polyacetyl and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I.sub.2 to give it an electrical conductivity in the metallic regime.

  10. Application of Theory to Observed Cases of Orographically Forced Convective Rainfall

    NASA Astrophysics Data System (ADS)

    Rotunno, R.; Miglietta, M.

    2011-12-01

    In a series of papers, Miglietta and Rotunno reported on numerical simulations of conditionally unstable flows past an idealized mesoscale mountain ridge. These idealized simulations, which were performed with a three- dimensional, explicitly cloud-resolving model, allowed the investigation of simulated-precipitation characteristics as a function of the prescribed environment. The numerical solutions were carried out for a uniform wind flowing past a bell-shaped ridge and using an idealized unstable sounding with prescribed values of the relevant parameters. Dimensional analysis of the numerical solutions revealed that the simulated maximum nondimensional rainfall rate depends on five nondimensional parameters. In this talk I will report on recent work by Migletta and Rotunno in which these theoretical results are applied to observed cases of orographically forced convective rainfall including the Big Thompson Flood (1976, Colorado), the Oahu Flood (1974, Hawaii), and the Gard Flood (2002, France). Specifically, numerical simulations were carried out using observed and idealized soundings relevant to these cases but with idealized topography. It is found that using the observed soundings, but with idealized constant wind profiles, the simulated rain rates fit reasonably well within the previous theoretically derived parameter space for intense orographic convective rainfall. However, in order to reproduce larger rainfall amounts, in closer agreement with observations, in the first two cases it was necessary to initialize the sounding with a wind profile characterized by low-level flow towards the mountain with weak flow aloft (as observed). However for the Gard case, the situation was more complex and it was found to be unlikely that the situation can be reduced to a simple two-dimensional problem.

  11. The diurnal interaction between convection and peninsular-scale forcing over South Florida

    NASA Technical Reports Server (NTRS)

    Cooper, H. J.; Simpson, J.; Garstang, M.

    1982-01-01

    One of the outstanding problems in modern meterology is that of describing in detail the manner in which larger scales of motion interact with, influence and are influenced by successively smaller scales of motion. The present investigation is concerned with a study of the diurnal evolution of convection, the interaction between the peninsular-scale convergence and convection, and the role of the feedback produced by the cloud-scale downdrafts in the maintenance of the convection. Attention is given to the analysis, the diurnal cycle of the network area-averaged divergence, convective-scale divergence, convective mass transports, and the peninsular scale divergence. The links established in the investigation between the large scale (peninsular), the mesoscale (network), and the convective scale (cloud) are found to be of fundamental importance to the understanding of the initiation, maintenance, and decay of deep precipitating convection and to its theoretical parameterization.

  12. Investigation of combined free and forced convection in a 2 x 6 rod bundle during controlled flow transients

    SciTech Connect

    Bates, J.M.; Khan, E.U.

    1980-10-01

    An experimental study was performed to obtain local fluid velocity and temperature measurements in the mixed (combined free and forced) convection regime for specific flow coastdown transients. A brief investigation of steady-state flows for the purely free-convection regime was also completed. The study was performed using an electrically heated 2 x 6 rod bundle contained in a flow housing. In addition a transient data base was obtained for evaluating the COBRA-WC thermal-hydraulic computer program (a modified version of the COBRA-IV code).

  13. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  14. Detection of internally infested popcorn using electrically conductive roller mills

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To detect popcorn kernels infested by the internal feeding stored-product insect pest Sitophilus zeamais, maize weevil, a laboratory roller mill was modified so that the electrical conductivity of the grain is measured while the kernels are milled between the rolls. When a kernel with a S. zeamais l...

  15. Soil water sensor response to bulk electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  16. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOEpatents

    Swain, Greg M.; Wang, Jian

    2005-04-26

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  17. Electrical conductance between multi-walled carbon nanotube and Cu

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Qu, Jianmin; Yao, Matthew

    2011-04-01

    Vertical MWCNT interconnects have already been investigated for vias, or even for through-wafer 3D interconnects. Several studies have been done to understand the electrical conductance of MWCNT itself. The electrical conductance at a junction between MWCNT and metals has not been studied yet. Here we reported the intershell interaction effect on the electrical conductance at the Cu/MWCNT/Cu junctions by quantum mechanics calculations. Both end- and side-contacts between MWCNT and Cu electrodes were studied. In the end-contact junction, each individual CNT in the MWCNT acts as if it is a single wave CNT. The total conductance is almost the sum of the contributions from each individual nanotube. However, in the side-contact junction, the conductance between the outermost CNT and Cu electrode is dominant, whereas the intershell interaction leads to a reduction of the total electrical conductance. This is attributed to the enhanced localization of density of states in the vicinity of Fermi level by inner tube. The authors acknowledge the financial support from Rockwell Collins Inc.

  18. Validation of a new whole-body cryotherapy chamber based on forced convection.

    PubMed

    Bouzigon, Romain; Arfaoui, Ahlem; Grappe, Frédéric; Ravier, Gilles; Jarlot, Benoit; Dugue, Benoit

    2017-04-01

    Whole-body cryotherapy (WBC) and partial-body cryotherapy (PBC) are two methods of cold exposure (from -110 to -195°C according to the manufacturers). However, temperature measurement in the cold chamber during a PBC exposure revealed temperatures ranging from -25 to -50°C next to the skin of the subjects (using isolating layer placed between the sensor and the skin). This discrepancy is due to the human body heat transfer. Moreover, on the surface of the body, an air layer called the boundary layer is created during the exposure and limits heat transfer from the body to the cabin air. Incorporating forced convection in a chamber with a participant inside could reduce this boundary layer. The aim of this study was to explore the use of a new WBC technology based on forced convection (frontal unilateral wind) through the measurement of skin temperature. Fifteen individuals performed a 3-min WBC exposure at -40°C with an average wind speed of 2.3ms(-1). The subjects wore a headband, a surgical mask, underwear, gloves and slippers. The skin temperature of the participants was measured with a thermal camera just before exposure, just after exposure and at 1, 3, 5, 10, 15 and 20min after exposure. Mean skin temperature significantly dropped by 11°C just after exposure (p<0.001) and then significantly increased during the 20-min post exposure period (p<0.001). No critically low skin temperature was observed at the end of the cold exposure. This decrease was greater than the mean decreases in all the cryosauna devices with reported exposures between -140°C and -160°C and those in two other WBC devices with reported exposures between -60°C and -110°C. The use of this new technology provides the ability to reach decreases in skin temperature similar to other technologies. The new chamber is suitable and relevant for use as a WBC device.

  19. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    SciTech Connect

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  20. Electrical Conductivity Measurements in Strongly Coupled Metal Plasmas

    NASA Astrophysics Data System (ADS)

    Desilva, Alan

    1998-11-01

    The coupling parameter Γ=e^2/akT, where a is the mean ion-ion separation, expresses the ratio of the mean potential energy of ions in a plasma to their mean kinetic energy. Plasma is said to be strongly coupled when Γ is greater than unity. Transport properties of strongly coupled plasmas are of interest in the study of the structure of dense astrophysical objects and gaseous planetary interiors, as well as in arcs and laser-produced plasmas. We are attempting to measure the electrical conductivity of strongly coupled metal plasmas (copper, tungsten and aluminum) in the temperature range 8-30 kK, in a density range from about 1/2 solid density down to about 10-3 times solid density. They may have coupling parameters Γ ranging from as high as 100 down to unity Plasmas are created by rapid vaporization of metal wire in a glass capillary or in a water bath which act as a tamper, slowing the expansion rate. The effect of the tamper is to force the interior pressure of the plasma to be fairly uniform. Streak photography serves to determine the growth of the plasma radius in time, allowing determination of mean density. Temperature is deduced from the measured energy input in conjunction with an equation of state from the LANL sesame database(SESAME: The Los Alamos National Laboratory Equation of State Database, Report No. LA-UR-92-3407, Ed. S. P. Lyon and J. D. Johnson, Group T-1 (unpublished)), and a brightness temperature may be obtained from radiation measurements. The column resistance is simply determined from time-resolved voltage and current measurements. For temperatures less than about 14,000K, as density decreases from the highest values measured, the conductivity falls roughly as the cube of density, reaches a minimum, and subsequently rises to approach the Spitzer prediction at low density. The rate of change of conductivity with density becomes less rapid as temperature increases, and the minimum becomes less pronounced, disappearing altogether above

  1. Heat Transfer Enhancement in Forced Convective Boiling in Microchannels by Periodic Electrospun Nanofiber Coatings

    NASA Astrophysics Data System (ADS)

    Yarin, Alexander; Freystein, Martin; Kolberg, Felix; Sinha-Ray, Sumit; Sahu, Rakesh; Spiegel, Lucas; Gambaryan-Roisman, Tatiana; Stephan, Peter

    2015-03-01

    To enhance heat transfer in forced convective boiling the microchannel bottom was amended by a nano-texture - periodic rectangular mats of electrospun polymer nanofibers. The fibers were ~ 300-500 nm in diameter and the mat thicknesses were about 6-15 μm. The test fluid was FC-72 and the flow in microchannels contained trains of Taylor bubbles. The role of the nanofibers was to retain the warm microchannel bottom wet, to prevent dry-out and thus to enhance the heat removal rate. In the present experiments the time-average heat flux and heat transfer coefficient at the nanofiber-coated domains were found to be 1.5-2 times higher than those at the uncoated ones. Accordingly, a significant decrease (by 5-8 K) in the superheat was observed at the same Re of 387 and power supply of 36.1 kW/m2. At a higher Re of 432 and lower power supply of 28.1 kW/m2 similar trends in the heat removal rate and surface superheat were found. The significant enhancement of the heat transfer results from the fact that nanofiber mats facilitate wetting of surface under passing Taylor bubbles, thus delaying formation of vapor flow at the channel bottom. The interstices of the nanofiber mat act as the nucleation sites facilitating formation of tiny bubbles, which eventually results in a higher heat removal rate from the surface at a reduced superheat.

  2. Effects of streamwise convergence in radius on the laminar forced convection in axisymmetric ducts

    SciTech Connect

    Lee, S.H.K.; Jaluria, Y.

    1995-07-01

    A systematic study has been carried out on the effects of streamwise convergence in radius on the laminar forced convection in an axisymmetric duct. This transport circumstance is relevant to many practical processes such as injection molding, glass molding, fiber drawing, and extrusion, where large variations in the radius may occur downstream and where the flow rates are generally small enough to yield a laminar flow. A fairly uncommon transformation technique was used to transform the pseudo-transient conservation equations for the stream function, vorticity, and energy, and several new numerical techniques were developed. These include a nonuniform grid scheme, a second-order-accurate vorticity condition for an arbitrary surface, and a nominally second-order-accurate vorticity condition for an arbitrary surface, and a nominally second-order-accurate approximation for the derivatives on a nonuniform grid. The three geometries studied were those of the straight, periodic, and converging ducts, where the results for the first two were obtained mainly for validation purposes. However, new results were also obtained for the periodic duct, showing the attainment of a sinusoidal steady state with the local Nusselt number varying from 1.0 to 6.0. For the converging duct, the local Nusselt number was found, for the first time, to increase with increasing convergence of the duct wall.

  3. Computation of the Nusselt number asymptotes for laminar forced convection flows in internally finned tubes

    SciTech Connect

    Ledezma, G.A.; Campo, A.

    1999-04-01

    The utilization of internal longitudinal finned tubes has received unparallel attention in the heat transfer literature over the years as a result of its imminent application in high performance compact heat exchangers to enhance the heat transfer between laminar streams of viscous fluids and tube walls. Here, the central goal of this paper is to report a simple approximate way for the prediction of the two asymptotes for the local Nusselt number in laminar forced convection flows inside internal longitudinal finned tubes. The computational attributes of the Method Of Lines (MOL) are propitious for the determination of asymptotic temperature solutions and corresponding heat transfer rates (one for Z {r_arrow} 0 and the other for z {r_arrow} {infinity}). The two local Nusselt number sub-distributions, namely Nu{sub z{r_arrow}0} and Nu{sub z{r_arrow}{infinity}}, blend themselves into an approximate Nusselt number distribution that covers the entire z-domain in a natural way.

  4. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.

    PubMed

    Polidori, G; Taïar, R; Fohanno, S; Mai, T H; Lodini, A

    2006-01-01

    This study deals with skin-friction drag analysis in underwater swimming. Although lower than profile drag, skin-friction drag remains significant and is the second and only other contribution to total drag in the case of underwater swimming. The question arises whether varying the thermal gradient between the underwater swimmer and the pool water may modify the surface shear stress distribution and the resulting skin-friction drag acting on a swimmer's body. As far as the authors are aware, such a question has not previously been addressed. Therefore, the purpose of this study was to quantify the effect of this thermal gradient by using the integral formalism applied to the forced convection theory. From a simplified model in a range of pool temperatures (20-30 degrees C) it was demonstrated that, whatever the swimming speeds, a 5.3% reduction in the skin-friction drag would occur with increasing average boundary-layer temperature provided that the flow remained laminar. However, as the majority of the flow is actually turbulent, a turbulent flow analysis leads to the major conclusion that friction drag is a function of underwater speed, leading to a possible 1.5% reduction for fast swimming speeds above 1m/s. Furthermore, simple correlations between the surface shear stress and resulting skin-friction drag are derived in terms of the boundary-layer temperature, which may be readily used in underwater swimming situations.

  5. Kinetics modeling of the drying of sunflower stem (Helianthus annuus L.) in a forced convection tunnel

    NASA Astrophysics Data System (ADS)

    López, R.; Vaca, M.; Terres, H.; Lizardi, A.; Morales, J.; Flores, J.; Chávez, S.

    2015-01-01

    The sunflower is an annual plant native to the Americas. It possesses a large inflorescence (flowering head), and its name is derived from the flower's shape and image, which is often used to capture the sun. The plant has a rough, broad, hairy stem, coarsely toothed, with rough leaves, and circular flower heads. The sunflower seeds are appreciated for their oil, which has become a widespread cooking ingredient. Leaves of the sunflower can be used as cattle feed, while the stems contain a fiber that may be used in paper production. Recently this flower has been used in phytoremediation of soils, contaminated with heavy metals. Sunflower has been probed as an efficient phytoextractor of chromium, lead, aluminum, zinc, cadmium from soil. In this work we present the experimental results of the drying of the sunflower stem, cut in 100 mm longitudinal sections, with diameters in the range of 11-18 mm. The aim was to obtain a dry and easy-to-handle final product, since these plants were originally cultivated in order to extract heavy metals from a polluted soil. The dried stems could then be easily confined or sent to recycle premises to concentrate the metals. The drying process was done in forced convection within a hot air tunnel. The used temperature was 60 °C, the velocity of air was 3 m/s and the required times were 8 hours. The initial average wet mass was 28 g and the final value was 5 g, resulting in the aimed product.

  6. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    PubMed

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  7. Numerical Study on Frost Profile over the Cooling Plate under Forced Convection

    NASA Astrophysics Data System (ADS)

    Kondou, Chieko; Senshu, Takao; Koyama, Shigeru; Kuwahara, Ken; Oguni, Kensaku

    This paper deals the numerical analysis on mass transfer under forced convection cooling. The transients of frost profiles on a cooling plat in a narrow channel were calculated by use of the packaged software with built in some original subroutines. In this paper, the architecture of these subroutines and this benchmark tests were showed. The calculation results exhibit local mass transfer rates and clarified following things. On the leading edge of the cooling plate, the frost accumulation accelerates locally. For the prediction on the cooling plate temperature distribution, to take into account latent heat of sublimation is necessary. In addition, the comparison between calculation and experimental results shows below issues. Both frost distribution profiles overlap in upstream; on the contrary, they do not overlap in the downstream. This comparison result indicates that the super saturation or mist flow is not negligible in the downstream. In terms of total frost weight, both results are roughly agreed and this weight increases proportionally with a run time despite increasing of the heat resistance caused by frost layer.

  8. Computational study of forced air-convection in open-cathode polymer electrolyte fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Sasmito, A. P.; Lum, K. W.; Birgersson, E.; Mujumdar, A. S.

    A mathematical model for a polymer electrolyte fuel cell (PEFC) stack with an open-cathode manifold, where a fan provides the oxidant as well as cooling, is derived and studied. In short, the model considers two-phase flow and conservation of mass, momentum, species and energy in the ambient and PEFC stack, as well as conservation of charge and a phenomenological membrane and agglomerate model for the PEFC stack. The fan is resolved as an interfacial condition with a polynomial expression for the static pressure increase over the fan as a function of the fan velocity. The results suggest that there is strong correlation between fan power rating, the height of cathode flow-field and stack performance. Further, the placement of the fan - either in blowing or suction mode - does not give rise to a discernable difference in stack performance for the flow-field considered (metal mesh). Finally, it is noted that the model can be extended to incorporate other types of flow-fields and, most importantly, be employed for design and optimization of forced air-convection open-cathode PEFC stacks and adjacent fans.

  9. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  10. Void fraction measurement in subcooled forced convective boiling with refrigerant 12

    SciTech Connect

    Stangl, G.; Mayinger, F. )

    1990-01-01

    This article presents investigations and results of void fraction and pressure drop of dichlordifluomethane (CCl{sub 2}F{sub 2}) in forced convective, subcooled boiling. The data were taken at different heat fluxes in a 12- to 25-bar pressure range, the mass fluxes have been varied from 500 to 3000 kg/m{sup 2}s with an inlet subcooling in the range from 10 to 50 K. The experiments have been conducted in an annular test channel with a 0.016-m inner diameter and a 0.03-m outer diameter. The inner tube of the annulus was heated by direct current. The void fraction data were gauged with a {gamma}-densitometer and a specially designed impedance void meter. The experimental results reveal that the void fraction is nearly constant from the onset of nucleation boiling to subcooling of about {Delta}T = 10 K. A method for predicting the void fraction based on the drift flux model is presented.

  11. Control of dynamical self-assembly of strongly Brownian nanoparticles through convective forces induced by ultrafast laser

    NASA Astrophysics Data System (ADS)

    Ilday, Serim; Akguc, Gursoy B.; Tokel, Onur; Makey, Ghaith; Yavuz, Ozgun; Yavuz, Koray; Pavlov, Ihor; Ilday, F. Omer; Gulseren, Oguz

    We report a new dynamical self-assembly mechanism, where judicious use of convective and strong Brownian forces enables effective patterning of colloidal nanoparticles that are almost two orders of magnitude smaller than the laser beam. Optical trapping or tweezing effects are not involved, but the laser is used to create steep thermal gradients through multi-photon absorption, and thereby guide the colloids through convective forces. Convective forces can be thought as a positive feedback mechanism that helps to form and reinforce pattern, while Brownian motion act as a competing negative feedback mechanism to limit the growth of the pattern, as well as to increase the possibilities of bifurcation into different patterns, analogous to the competition observed in reaction-diffusion systems. By steering stochastic processes through these forces, we are able to gain control over the emergent pattern such as to form-deform-reform of a pattern, to change its shape and transport it spatially within seconds. This enables us to dynamically initiate and control large patterns comprised of hundreds of colloids. Further, by not relying on any specific chemical, optical or magnetic interaction, this new method is, in principle, completely independent of the material type being assembled.

  12. Magnetothermal Convection of Water with the Presence or Absence of a Magnetic Force Acting on the Susceptibility Gradient

    PubMed Central

    Maki, Syou

    2016-01-01

    Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc. PMID:27606823

  13. Estimating Upper Mantle Hydration from In Situ Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Behrens, J.; Constable, S.; Heinson, G.; Everett, M.; Weiss, C.; Key, K.

    2004-12-01

    The electrical conductivity of 35-40 Ma Pacific plate has been measured in situ; one robust result is the presence of bulk anisotropy in the lithospheric upper mantle. We interpret this anisotropy to be a result of hydrothermal circulation into the upper mantle along spreading-ridge-parallel normal faults: the associated zones of serpentinized peridotite provide the pathways of enhanced electrical conductivity required by the data. Our modeling bounds the range of possible anisotropic ratios, which are then used to estimate the amount of water required to serpentinize the requisite amounts of peridotite. These data sets, however, do not indicate anisotropy in the bulk conductivity of the crust, nor in the asthenospheric mantle. This second point is significant, as recent measurements of sub-continental asthenospheric conductivity have been interpreted to indicate anisotropy aligned with present plate motion, with the diffusion of hydrogen through olivine advanced as an explanation.

  14. A Structural Electrical Conductivity Model for Oxide Melts

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Jung, In-Ho

    2016-02-01

    A structural electrical conductivity model for oxide melts was developed based on the Nernst-Einstein relationship of ionic conductivity. In the description of ionic conductivity, the effective diffusivities of cations in oxide slags were described as a function of the polymerization of the melt. The polymerization of oxide melts was calculated from the Modified Quasichemical Model, taking into account the short-range ordering in slags. The parameters of this conductivity model were fixed to reproduce the electrical conductivity data in unary and binary melts, and the model can well predict the conductivity data in ternary and higher order system without any additional model parameters. The model is successfully applied to the CaO-MgO-MnO-PbO-Al2O3-SiO2 system.

  15. Contactless electrical conductivity measurement of electromagnetically levitated metallic melts

    SciTech Connect

    Richardsen, T.; Lohoefer, G.

    1999-07-01

    The electrical conductivity {sigma} of metallic liquids is of obvious importance to many liquid metal processing operations, because it controls the melt flow under the influence of electromagnetic fields, e.g. during casting processes, or in crystal growth furnaces. A facility for noninvasive measurements of the electrical conductivity of liquid metals above and below the melting temperature is presented. It combines the containerless positioning method of electromagnetic levitation with the contactless technique of inductive conductivity measurement. Contrary to the conventional measurement method, the sample is freely suspended within the measuring field and, thus, has no exactly predefined shape. This made a new theoretical basis necessary with implications on the measurement and levitation fields. Furthermore, the problem of the mutual inductive interactions between the levitation and the measuring coils had to be solved.

  16. Carbonatite melts and electrical conductivity in the asthenosphere.

    PubMed

    Gaillard, Fabrice; Malki, Mohammed; Iacono-Marziano, Giada; Pichavant, Michel; Scaillet, Bruno

    2008-11-28

    Electrically conductive regions in Earth's mantle have been interpreted to reflect the presence of either silicate melt or water dissolved in olivine. On the basis of laboratory measurements, we show that molten carbonates have electrical conductivities that are three orders of magnitude higher than those of molten silicate and five orders of magnitude higher than those of hydrated olivine. High conductivities in the asthenosphere probably indicate the presence of small amounts of carbonate melt in peridotite and can therefore be interpreted in terms of carbon concentration in the upper mantle. We show that the conductivity of the oceanic asthenosphere can be explained by 0.1 volume percent of carbonatite melts on average, which agrees with the carbon dioxide content of mid-ocean ridge basalts.

  17. Self-healable electrically conducting wires for wearable microelectronics.

    PubMed

    Sun, Hao; You, Xiao; Jiang, Yishu; Guan, Guozhen; Fang, Xin; Deng, Jue; Chen, Peining; Luo, Yongfeng; Peng, Huisheng

    2014-09-01

    Electrically conducting wires play a critical role in the advancement of modern electronics and in particular are an important key to the development of next-generation wearable microelectronics. However, the thin conducting wires can easily break during use, and the whole device fails to function as a result. Herein, a new family of high-performance conducting wires that can self-heal after breaking has been developed by wrapping sheets of aligned carbon nanotubes around polymer fibers. The aligned carbon nanotubes offer an effective strategy for the self-healing of the electric conductivity, whereas the polymer fiber recovers its mechanical strength. A self-healable wire-shaped supercapacitor fabricated from a wire electrode of this type maintained a high capacitance after breaking and self-healing.

  18. Electrical Conductivity of HgTe at High Temperatures

    NASA Technical Reports Server (NTRS)

    Li, C.; Lehoczky, S. L.; Su, C.-H.; Scripa, R. N.

    2004-01-01

    The electrical conductivity of HgTe was measured using a rotating magnetic field method from 300 K to the melting point (943 K). A microscopic theory for electrical conduction was used to calculate the expected temperature dependence of the HgTe conductivity. A comparison between the measured and calculated conductivities was used to obtain the estimates of the temperature dependence of Gamma(sub 6)-Gamma(sub 8) energy gap from 300 K to 943 K. The estimated temperature coefficient for the energy gap was comparable to the previous results at lower temperatures (less than or equal to 300 K). A rapid increase in the conductivity just above 300 K and a subsequent decrease at 500 K is attributed to band crossover effects. This paper describes the experimental approach and some of the theoretical calculation details.

  19. Graphene oxide with improved electrical conductivity for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Li, Z. J.; Yang, B. C.; Zhang, S. R.; Zhao, C. M.

    2012-02-01

    Predominant few-layer graphene (FLG) sheets of high electrical conductivity have been synthesized by a multi-step intercalation and reduction method. The electrical conductivity of the as-synthesized FLG is measured to be ∼3.2 × 104 S m-1, comparable to that of pristine graphite. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman analysis reveal that the as-synthesized FLG sheets have large areas with single and double layers. The specific capacitance of 180 F g-1 is obtained for the FLG in a 1 M Na2SO4 aqueous electrolyte by integrating the cyclic voltammogram. The good capacitive behavior of the FLG is very promising for the application for next-generation high-performance electrochemical supercapacitors.

  20. A PCM/forced convection conjugate transient analysis of energy storage systems with annular and countercurrent flows

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.; Juhasz, A.

    1991-01-01

    Latent heat energy storage systems with both annular and countercurrent flows are modeled numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. It is found that the energy storage system with the countercurrent flow is an efficient way to absorb heat energy in a short period for pulsed power load space applications.

  1. A Random Network Model of Electrical Conduction in Hydrous Rock

    NASA Astrophysics Data System (ADS)

    Fujita, K.; Seki, M.; Katsura, T.; Ichiki, M.

    2011-12-01

    To evaluate the variation in conductivity of hydrous rock during the dehydration, it is essential to comprehend the mechanism of electrical conduction network in rock. In the recent past, several attempts have been made to demonstrate the mechanism of electrical conduction network in hydrous rock. However, realistic conduction mechanism within the crustal rock and mineral is unknown and relevant theories have not been successful. The aim of our study is to quantify the electrical conduction network in the rock and/or mineral. We developed a cell-type lattice network model to evaluate the electrical conduction mechanism of fluid-mineral interaction. Using cell-type lattice model, we simulated the various electrical paths and connectivity in the rock and/or mineral sample. First, we assumed a network model consists of 100 by 100 elementary cells as matrix configuration. We also settled the current input and output layers at the edge of the lattice model. Second, we randomly generated and put the conductive and resistive cells using the scheme of Mersenne Twister. Third, we applied the current for this model and performed a great number of realization on each mineral distribution patterns explaining realistic conduction network model. Considering fractal dimensions, our model has been compared with images from Electron Probe Micro Analysis. To evaluate the distribution pattern of conductive and resistive cells quantitatively, we have determined fractal dimensions by box-counting method. Assessing the bulk conductivity change as a function of conductor ratio in the hydrous rock, the model has been examined successfully both against simulated data and experimental data.

  2. Manipulating connectivity and electrical conductivity in metallic nanowire networks.

    PubMed

    Nirmalraj, Peter N; Bellew, Allen T; Bell, Alan P; Fairfield, Jessamyn A; McCarthy, Eoin K; O'Kelly, Curtis; Pereira, Luiz F C; Sorel, Sophie; Morosan, Diana; Coleman, Jonathan N; Ferreira, Mauro S; Boland, John J

    2012-11-14

    Connectivity in metallic nanowire networks with resistive junctions is manipulated by applying an electric field to create materials with tunable electrical conductivity. In situ electron microscope and electrical measurements visualize the activation and evolution of connectivity within these networks. Modeling nanowire networks, having a distribution of junction breakdown voltages, reveals universal scaling behavior applicable to all network materials. We demonstrate how local connectivity within these networks can be programmed and discuss material and device applications.

  3. Low-density lipoprotein density determination by electric conductivity.

    PubMed

    Fernández-Higuero, José A; Salvador, Ana M; Arrondo, José L R; Milicua, José Carlos G

    2011-10-15

    The predominance of small dense low-density lipoprotein (LDL) particles is associated with an increased risk of coronary heart disease. A simple but precise method has been developed, based on electrical conductivity of an isopycnic gradient of KBr, to obtain density values of human LDL fraction. The results obtained can distinguish LDL density populations and their subfractions from different patients. These data were corroborated by Fourier transform infrared spectroscopy (FTIR) (structure) and light-scattering analyses (size).

  4. Computer simulation of electrical conductivity of colloidal dispersions during aggregation.

    PubMed

    Lebovka, N I; Tarafdar, S; Vygornitskii, N V

    2006-03-01

    The computation approach to the simulation of electrical conductivity of colloidal dispersions during aggregation is considered. We use the two-dimensional diffusion-limited aggregation model with multiple-seed growth. The particles execute a random walk, but lose their mobility after contact with the growing clusters or seeds. The two parameters that control the aggregation are the initial concentration of free particles in the system p and the concentration of seeds psi. The case of psi=1, when all the particles are the immobile seeds, corresponds with the usual random percolation problem. The other limiting case of psi=0, when all the particles walk randomly, corresponds to the dynamical percolation problem. The calculation of electrical conductivity and cluster analysis were done with the help of the algorithms of Frank-Lobb and Hoshen-Kopelman. It is shown that the percolation concentration phi c decreases from 0.5927 at psi=1 to 0 at psi --> 0. Scaling analysis was applied to study exponents of correlation length v and of conductivity t. For all psi>0 this model shows universal behavior of classical 2d random percolation with v approximately t approximately 4/3. The electrical conductivity sigma of the system increases during aggregation reaching up to a maximum at the final stage. The concentration dependence of conductivity sigma(phi) obeys the general effective medium equation with apparent exponent ta(psi) that exceeds t. The kinetics of electrical conductivity changes during the aggregation is discussed. In the range of concentration Pc(phi)

  5. Tuning Electrical Conductivity of Inorganic Minerals with Carbon Nanomaterials.

    PubMed

    Kovalchuk, Anton A; Tour, James M

    2015-12-02

    Conductive powders based on Barite or calcium carbonate with chemically converted graphene (CCG) were successfully synthesized by adsorption of graphene oxide (GO) or graphene oxide nanoribbons (GONRs) onto the mineral surfaces and subsequent chemical reduction with hydrazine. The efficient adsorption of GO or GONRs on the surface of Barite and calcium carbonate-based mineral particles results in graphene-wrapped hybrid materials that demonstrate a concentration dependent electrical conductivity that increases with the GO or GONR loading.

  6. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.

    PubMed

    Randeniya, Lakshman K; Bendavid, Avi; Martin, Philip J; Tran, Canh-Dung

    2010-08-16

    Unique macrostructures known as spun carbon-nanotube fibers (CNT yarns) can be manufactured from vertically aligned forests of multiwalled carbon nanotubes (MWCNTs). These yarns behave as semiconductors with room-temperature conductivities of about 5 x 10(2) S cm(-1). Their potential use as, for example, microelectrodes in medical implants, wires in microelectronics, or lightweight conductors in the aviation industry has hitherto been hampered by their insufficient electrical conductivity. In this Full Paper, the synthesis of metal-CNT composite yarns, which combine the unique properties of CNT yarns and nanocrystalline metals to obtain a new class of materials with enhanced electrical conductivity, is presented. The synthesis is achieved using a new technique, self-fuelled electrodeposition (SFED), which combines a metal reducing agent and an external circuit for transfer of electrons to the CNT surface, where the deposition of metal nanoparticles takes place. In particular, the Cu-CNT and Au-CNT composite yarns prepared by this method have metal-like electrical conductivities (2-3 x 10(5) S cm(-1)) and are mechanically robust against stringent tape tests. However, the tensile strengths of the composite yarns are 30-50% smaller than that of the unmodified CNT yarn. The SFED technique described here can also be used as a convenient means for the deposition of metal nanoparticles on solid electrode supports, such as conducting glass or carbon black, for catalytic applications.

  7. On the electrical conductivity of Ti-implanted alumina

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Cattani, M.; Nikolaev, A.; Savkin, K. P.; Oks, E. M.; Park, H.-K.; Phillips, L.; Yu, K. M.; Brown, I. G.

    2012-03-15

    Ion implantation of metal species into insulators provides a tool for the formation of thin, electrically conducting, surface layers with experimenter-controlled resistivity. High energy implantation of Pt and Ti into alumina accelerator components has been successfully employed to control high voltage surface breakdown in a number of cases. In the work described here we have carried out some basic investigations related to the origin of this phenomenon. By comparison of the results of alumina implanted with Ti at 75 keV with the results of prior investigations of polymers implanted with Pt at 49 eV and Au at 67 eV, we describe a physical model of the effect based on percolation theory and estimate the percolation parameters for the Ti-alumina composite. We estimate that the percolation dose threshold is about 4 x 10{sup 16} cm{sup -2} and the maximum dose for which the system remains an insulator-conductor composite is about 10 x 10{sup 16} cm{sup -2}. The saturation electrical conductivity is estimated to be about 50 S/m. We conclude that the observed electrical conductivity properties of Ti-implanted alumina can be satisfactorily described by percolation theory.

  8. Time resolved strain dependent morphological study of electrically conducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Mitchell, Geoffrey; Mateus, Artur; Kamma-Lorger, Christina S.

    2015-10-01

    An efficient and reliable method is introduced to understand the network behaviour of nano-fillers in a polymeric matrix under uniaxial strain coupled with small angle x-ray scattering measurements. The nanoparticles (carbon nanotubes) are conductive and the particles form a percolating network that becomes apparent source of electrical conduction and consequently the samples behave as a bulk conductor. Polyurethane based nanocomposites containing 2% w/w multiwall carbon nanotubes are studied. The electrical conductivity of the nanocomposite was (3.28×10-5s/m).The sample was able to be extended to an extension ratio of 1.7 before fracture. A slight variation in the electrical conductivity is observed under uniaxial strain which we attribute to the disturbance of conductive pathways. Further, this work is coupled with in- situ time resolved small angle x-ray scattering measurements using a synchrotron beam line to enable its measurements to be made during the deformation cycle. We use a multiscale structure to model the small angle x-ray data. The results of the analysis are interpreted as the presence of aggregates which would also go some way towards understanding why there is no alignment of the carbon nanotubes.

  9. Local electric conductive property of Si nanowire models

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuji; Senami, Masato; Tachibana, Akitomo

    2012-12-01

    Local electric conductive properties of Si nanowire models are investigated by using two local electric conductivity tensors, {{σ }limits^{leftrArr }}_{ext}(r) and {{σ }limits^{leftrArr }}_{int}(r), defined in Rigged QED. It is emphasized that {{σ }limits^{leftrArr }}_{int}(r) is defined as the response of electric current to the actual electric field at a specific point and does not have corresponding macroscopic physical quantity. For the Si nanowire models, there are regions which show complicated response of electric current density to electric field, in particular, opposite and rotational ones. Local conductivities are considered to be available for the study of a negative differential resistance (NDR), which may be related to this opposite response. It is found that {{σ }limits^{leftrArr }}_{int}(r) shows quite different pattern from {{σ }limits^{leftrArr }}_{ext}(r), local electric conductivity defined for the external electric field. The effects of impurities are also studied by using the model including a Ge atom, in terms of the local response to electric field. It is found that the difference from the pristine model is found mainly around the Ge atom.

  10. Laboratory-based electrical conductivity at Martian mantle conditions

    NASA Astrophysics Data System (ADS)

    Verhoeven, Olivier; Vacher, Pierre

    2016-12-01

    Information on temperature and composition of planetary mantles can be obtained from electrical conductivity profiles derived from induced magnetic field analysis. This requires a modeling of the conductivity for each mineral phase at conditions relevant to planetary interiors. Interpretation of iron-rich Martian mantle conductivity profile therefore requires a careful modeling of the conductivity of iron-bearing minerals. In this paper, we show that conduction mechanism called small polaron is the dominant conduction mechanism at temperature, water and iron content conditions relevant to Mars mantle. We then review the different measurements performed on mineral phases with various iron content. We show that, for all measurements of mineral conductivity reported so far, the effect of iron content on the activation energy governing the exponential decrease in the Arrhenius law can be modeled as the cubic square root of the iron content. We recast all laboratory results on a common generalized Arrhenius law for iron-bearing minerals, anchored on Earth's mantle values. We then use this modeling to compute a new synthetic profile of Martian mantle electrical conductivity. This new profile matches perfectly, in the depth range [100,1000] km, the electrical conductivity profile recently derived from the study of Mars Global Surveyor magnetic field measurements.

  11. The initial transient of natural convection during copper electrolysis in the presence of an opposing Lorentz force: Current dependence

    NASA Astrophysics Data System (ADS)

    Yang, Xuegeng; Mühlenhoff, Sascha; Nikrityuk, Petr A.; Eckert, Kerstin

    2013-03-01

    Magnetic fields are well-established in electrochemistry as an attractive tool to improve both the quality of the deposit as well as the deposition rate. The key mechanism is a mass transfer enhancement by Lorentz-force-driven convection. However, during electrolysis this convection interacts with buoyancy-driven convection, which arises from concentration differences, in a sometimes intriguing way. In the case of a Lorentz force opposing buoyancy, this is due to the growth of a bubble-like zone of less-concentrated cupric ion solution at the lower part of the vertical cathode when copper electrolysis is performed. If buoyancy is strong enough to compete with the Lorentz force, this zone rises along the cathode and causes surprisingly unsteady initial transient behaviour. We explore this initial transient under galvanostatic conditions by analyzing the development of the concentration and velocity boundary layers obtained by Mach-Zehnder interferometry and particle image velocimetry. Particular attention is also paid to higher current densities above the limiting current, obtained from potentiodynamic measurements, at which a chaotic advection takes place. The results are compared by scaling analysis.

  12. The effect of rowing headgear on forced convective heat loss and radiant heat gain on a thermal manikin headform.

    PubMed

    Bogerd, Cornelis P; Brühwiler, Paul A; Heus, Ronald

    2008-05-01

    Both radiant and forced convective heat flow were measured for a prototype rowing headgear and white and black cotton caps. The measurements were performed on a thermal manikin headform at a wind speed of 4.0 m . s(-1) (s = 0.1) in a climate chamber at 22.0 degrees C (s = 0.05), with and without radiant heat flow from a heat lamp, coming from either directly above (90 degrees ) or from above at an angle of 55 degrees . The effects of hair were studied by repeating selected measurements with a wig. All headgear reduced the radiant heat gain compared with the nude headform: about 80% for the caps and 95% for the prototype rowing headgear (P < 0.01). Forced convective heat loss was reduced more by the caps (36%) than by the prototype rowing headgear (9%) (P < 0.01). The radiant heat gain contributed maximally 13% to the net heat transfer, with or without headgear, showing that forced convective heat loss is the dominant heat transfer parameter under the chosen conditions. The results of the headgear - wig combinations were qualitatively similar, with lower absolute heat transfer.

  13. Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthuchamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Suresh, Santhanakrishnan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2016-12-01

    Electrical conductivity of zinc oxide nanoparticles (ZnO NPs)-decorated bacterial nanowires is investigated in the present work. The ZnO NPs are prepared through a simple precipitation method and characterized by UV-vis spectrophotometer, Fourier transform infrared spectroscopy, x-ray diffraction, atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The SEM analysis discloses that the prepared ZnO NPs are spherical in shape with an average particle size of 3.5 nm. The ZnO NPs are decorated on the surface of bacterial nanowires and the same are characterized by AFM and HRTEM. The electrochemical performance of the bare bacterial nanowires and ZnO NPs-decorated bacterial nanowires is analyzed by cyclic voltammetry and linear sweep voltammetry, whereas their electrical conductivity is measured by electrochemical impedance spectroscopy. The results of the electrochemical investigations indicate that the ZnO NPs coating on the surface of bacterial nanowires improve the electrical conductivity of the bacterial nanowires.

  14. Development of a Forced-Convection Liquid-Fluoride-Salt Test Loop

    SciTech Connect

    Yoder Jr, Graydon L; Wilson, Dane F; Peretz, Fred J; Wilgen, John B; Romanoski, Glenn R; Kisner, Roger A; Holcomb, David Eugene; Heatherly, Dennis Wayne; Aaron, Adam M

    2010-01-01

    A small forced-convection molten-fluoride-salt loop is being constructed at Oak Ridge National Laboratory to examine the heat transfer behavior of FLiNaK salt in a heated pebble bed. Objectives of the experiment include reestablishing infrastructure needed for fluoride-salt loop testing, developing a unique inductive heating technique for performing heat transfer (or other) experiments, measuring heat transfer characteristics in a liquid-fluoride-salt-cooled pebble bed, and demonstrating the use of silicon carbide (SiC) as a structural component for salt systems. The salt loop will consist of an Inconel 600 piping system, a sump-type pump, a SiC test section, and an air-cooled heat exchanger, as well as auxiliary systems needed to pre-heat the loop, transport salt into and out of the loop, and maintain an inert cover gas over the salt. A 30,000 Hz inductive heating system will be used to provide up to 250 kW of power to a 15 cm diameter SiC test section containing a packed bed of 3 cm graphite spheres. A SiC-to-Inconel 600 joint will use a conventional nickel/grafoil spiral wound gasket sandwiched between SiC and Inconel flanges. The loop system can provide up to 4.5 kg/s of salt flow at a head of 0.125 MPa and operate at a pressure just above atmospheric. Pebble Reynolds numbers of up to 2600 are possible with this configuration. A sump system is provided to drain and store the salt when not in use. Instrumentation on the loop will include pressure, temperature, and flow measurements, while the test section will be instrumented to provide pebble and FLiNaK temperatures.

  15. Similarity Solution for Combined Free-Forced Convection Past a Vertical Porous Plate in a Porous Medium with a Convective Surface Boundary Condition

    NASA Astrophysics Data System (ADS)

    Garg, P.; Purohit, G. N.; Chaudhary, R. C.

    2016-12-01

    This paper studies the mathematical implications of the two dimensional viscous steady laminar combined free-forced convective flow of an incompressible fluid over a semi infinite fixed vertical porous plate embedded in a porous medium. It is assumed that the left surface of the plate is heated by convection from a hot fluid which is at a temperature higher than the temperature of the fluid on the right surface of the vertical plate. To achieve numerical consistency for the problem under consideration, the governing non linear partial differential equations are first transformed into a system of ordinary differential equations using a similarity variable and then solved numerically under conditions admitting similarity solutions. The effects of the physical parameters of both the incompressible fluid and the vertical plate on the dimensionless velocity and temperature profiles are studied and analysed and the results are depicted both graphically and in a tabular form. Finally, algebraic expressions and the numerical values are obtained for the local skin-friction coefficient and the local Nusselt number.

  16. Gravity Wave Forcing of the Mesosphere and Lower Thermosphere: Mountain and Convective Waves Ascending Vertically (MaCWAVE)

    NASA Technical Reports Server (NTRS)

    Fritts, David C.

    2004-01-01

    The specific objectives of this research effort included the following: 1) Quantification of gravity wave propagation throughout the lower and middle atmosphere in order to define the roles of topographic and convective sources and filtering by mean and low-frequency winds in defining the wave field and wave fluxes at greater altitudes; 2) The influences of wave instability processes in constraining wave amplitudes and fluxes and generating turbulence and transport; 3) Gravity wave forcing of the mean circulation and thermal structure in the presence of variable motion fields and wave-wave interactions, since the mean forcing may be a small residual when wave interactions, anisotropy, and momentum and heat fluxes are large; 4) The statistical forcing and variability imposed on the thermosphere at greater altitudes by the strong wave forcing and interactions occurring in the MLTI.

  17. Determination of blade-to-coolant heat-transfer coefficients on a forced-convection, water-cooled, single-stage turbine

    NASA Technical Reports Server (NTRS)

    Freche, John C; Schum, Eugene F

    1951-01-01

    Blade-to-coolant convective heat-transfer coefficients were obtained on a forced-convection water-cooled single-stage turbine over a large laminar flow range and over a portion of the transition range between laminar and turbulent flow. The convective coefficients were correlated by the general relation for forced-convection heat transfer with laminar flow. Natural-convection heat transfer was negligible for this turbine over the Grashof number range investigated. Comparison of turbine data with stationary tube data for the laminar flow of heated liquids showed good agreement. Calculated average midspan blade temperatures using theoretical gas-to-blade coefficients and blade-to-coolant coefficients from stationary-tube data resulted in close agreement with experimental data.

  18. Pore connectivity, electrical conductivity, and partial water saturation: Network simulations

    NASA Astrophysics Data System (ADS)

    Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Bai, X. Y.; Zhang, L. H.

    2015-06-01

    The electrical conductivity of brine-saturated rock is predominantly dependent on the geometry and topology of the pore space. When a resistive second phase (e.g., air in the vadose zone and oil/gas in hydrocarbon reservoirs) displaces the brine, the geometry and topology of the pore space occupied by the electrically conductive phase are changed. We investigated the effect of these changes on the electrical conductivity of rock partially saturated with brine. We simulated drainage and imbibition as invasion and bond percolation processes, respectively, in pipe networks assumed to be perfectly water-wet. The simulations included the formation of a water film in the pipes invaded by the nonwetting fluid. During simulated drainage/imbibition, we measured the changes in resistivity index as well as a number of relevant microstructural parameters describing the portion of the pore space saturated with water. Except Euler topological number, all quantities considered here showed a significant level of "universality," i.e., insensitivity to the type of lattice used (simple cubic, body-centered cubic, or face-centered cubic). Hence, the coordination number of the pore network appears to be a more effective measure of connectivity than Euler number. In general, the simulated resistivity index did not obey Archie's simple power law. In log-log scale, the resistivity index curves displayed a substantial downward or upward curvature depending on the presence or absence of a water film. Our network simulations compared relatively well with experimental data sets, which were obtained using experimental conditions and procedures consistent with the simulations. Finally, we verified that the connectivity/heterogeneity model proposed by Bernabé et al. (2011) could be extended to the partial brine saturation case when water films were not present.

  19. Analyzing bank filtration by deconvoluting time series of electric conductivity.

    PubMed

    Cirpka, Olaf A; Fienen, Michael N; Hofer, Markus; Hoehn, Eduard; Tessarini, Aronne; Kipfer, Rolf; Kitanidis, Peter K

    2007-01-01

    Knowing the travel-time distributions from infiltrating rivers to pumping wells is important in the management of alluvial aquifers. Commonly, travel-time distributions are determined by releasing a tracer pulse into the river and measuring the breakthrough curve in the wells. As an alternative, one may measure signals of a time-varying natural tracer in the river and in adjacent wells and infer the travel-time distributions by deconvolution. Traditionally this is done by fitting a parametric function such as the solution of the one-dimensional advection-dispersion equation to the data. By choosing a certain parameterization, it is impossible to determine features of the travel-time distribution that do not follow the general shape of the parameterization, i.e., multiple peaks. We present a method to determine travel-time distributions by nonparametric deconvolution of electric-conductivity time series. Smoothness of the inferred transfer function is achieved by a geostatistical approach, in which the transfer function is assumed as a second-order intrinsic random time variable. Nonnegativity is enforced by the method of Lagrange multipliers. We present an approach to directly compute the best nonnegative estimate and to generate sets of plausible solutions. We show how the smoothness of the transfer function can be estimated from the data. The approach is applied to electric-conductivity measurements taken at River Thur, Switzerland, and five wells in the adjacent aquifer, but the method can also be applied to other time-varying natural tracers such as temperature. At our field site, electric-conductivity fluctuations appear to be an excellent natural tracer.

  20. Electrical conductivity in shaly sands with geophysical applications

    NASA Astrophysics Data System (ADS)

    Revil, A.; Cathles, L. M., III; Losh, S.; Nunn, J. A.

    1998-10-01

    We develop a new electrical conductivity equation based on Bussian's model and accounting for the different behavior of ions in the pore space. The tortuosity of the transport of anions is independent of the salinity and corresponds to the bulk tortuosity of the pore space which is given by the product of the electrical formation factor F and the porosity ϕ. For the cations, the situation is different. At high salinities, the dominant paths for the electromigration of the cations are located in the interconnected pore space, and the tortuosity for the transport of cations is therefore the bulk tortuosity. As the salinity decreases, the dominant paths for transport of the cations shift from the pore space to the mineral water interface and consequently are subject to different tortuosities. This shift occurs at salinities corresponding to ξ/t(+)f ˜ 1, where ξ is the ratio between the surface conductivity of the grains and the electrolyte conductivity, and t(+)f is the Hittorf transport number for cations in the electrolyte. The electrical conductivity of granular porous media is determined as a function of pore fluid salinity, temperature, water and gas saturations, shale content, and porosity. The model provides a very good explanation for the variation of electrical conductivity with these parameters. Surface conduction at the mineral water interface is described with the Stern theory of the electrical double layer and is shown to be independent of the salinity in shaly sands above 10-3 mol L-1. The model is applied to in situ salinity determination in the Gulf Coast, and it provides realistic salinity profiles in agreement with sampled pore water. The results clearly demonstrate the applicability of the equations to well log interpretation of shaly sands.

  1. Alternative methods for determining the electrical conductivity of core samples.

    PubMed

    Lytle, R J; Duba, A G; Willows, J L

    1979-05-01

    Electrode configurations are described that can be used in measuring the electrical conductivity of a core sample and that do not require access to the core end faces. The use of these configurations eliminates the need for machining the core ends for placement of end electrodes. This is because the conductivity in the cases described is relatively insensitive to the length of the sample. We validated the measurement technique by comparing mathematical models with actual measurements that were made perpendicular and paralled to the core axis of granite samples.

  2. Electrical conductivity of a bulk metallic glass composite

    NASA Astrophysics Data System (ADS)

    Wang, K.; Fujita, T.; Chen, M. W.; Nieh, T. G.; Okada, H.; Koyama, K.; Zhang, W.; Inoue, A.

    2007-10-01

    The authors report the electrical conductivity of a bulk metallic glass (BMG) based composite fabricated by warm extrusion of a mixture of gas-atomized glassy powders and ductile α-brass powders. The conductivity of the BMG composite can be well modeled by the percolation theory and the critical percolation threshold volume of the high-conductive brass phase was estimated to be about 10%. It was found that the short irregular brass fibers can dramatically reduce the resistivity of the BMG, leading to an improved material with both high strength and good conductivity for functional applications.

  3. Assembly for electrical conductivity measurements in the piston cylinder device

    DOEpatents

    Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  4. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    SciTech Connect

    Bogdanov, G.; Ludwig, R.; Wiggins, J.; Bertagnolli, K.

    2014-02-18

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  5. Electrical conductivity in the precambrian lithosphere of western canada

    PubMed

    Boerner; Kurtz; Craven; Ross; Jones; Davis

    1999-01-29

    The subcrustal lithosphere underlying the southern Archean Churchill Province (ACP) in western Canada is at least one order of magnitude more electrically conductive than the lithosphere beneath adjacent Paleoproterozoic crust. The measured electrical properties of the lithosphere underlying most of the Paleoproterozoic crust can be explained by the conductivity of olivine. Mantle xenolith and geological mapping evidence indicate that the lithosphere beneath the southern ACP was substantially modified as a result of being trapped between two nearly synchronous Paleoproterozoic subduction zones. Tectonically induced metasomatism thus may have enhanced the subcrustal lithosphere conductivity of the southern ACP.

  6. The electrical conductivity and longitudinal magnetoresistance of metallic nanotubes

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2017-03-01

    Proceeding from exact solutions of the Boltzmann transport equation in the relaxation time approximation, we present formulas for the electrical conductivity and longitudinal magnetoresistance of single-crystalline cylindrical nanotubes. The effects of surface scattering are taken into account by introducing different specularity parameters at the inner and outer surfaces. For small values of the inner diameter, these formulas reduce to the respective expressions for cylindrical nanowires. It is found that the existing measurements of the resistivity of nanotubes (Venkata Kamalakar and Raychaudhuri, New J. Phys. 14, 043032 (2012)) can be accurately described by this formalism.

  7. Numerical study of forced convection in a turbulent heat sink made of several rows of blocks of square form

    NASA Astrophysics Data System (ADS)

    Bouchenafa, Rachid; Saim, Rachid; Abboudi, Said

    2015-09-01

    Forced convection is a phenomenon associated with the heat transfer fluid flows. The presence of convection affects simultaneously the thermal and hydrodynamic fields, the problem is thus coupled. This form of heat transfer inside ducts occurs in many practical applications such as solar collectors, heat exchangers, cooling of electronic components as well as chemical and nuclear. In this work, we are interested primarily for a numerical study of thermo-hydraulic performances of an incompressible turbulent flow of air through a heat sink composed of several rows of bars of square section. Profiles and the axial velocity fields, as well as profiles and the distribution of the Nusselt number are plotted for all the geometry considered and chosen for different sections. The effects of geometrical parameters of the model and the operating parameters on the dynamic and thermal behavior of the air are analyzed.

  8. Magnetoacoustic Tomography with Magnetic Induction for Electrical Conductivity based Tissue imaging

    NASA Astrophysics Data System (ADS)

    Mariappan, Leo

    Electrical conductivity imaging of biological tissue has attracted considerable interest in recent years owing to research indicating that electrical properties, especially electrical conductivity and permittivity, are indicators of underlying physiological and pathological conditions in biological tissue. Also, the knowledge of electrical conductivity of biological tissue is of interest to researchers conducting electromagnetic source imaging and in design of devices that apply electromagnetic energy to the body such as MRI. So, the need for a non-invasive, high resolution impedance imaging method is highly desired. To address this need we have studied the magnetoacoustic tomography with magnetic induction (MAT-MI) method. In MAT-MI, the object is placed in a static and a dynamic magnetic field giving rise to ultrasound waves. The dynamic field induces eddy currents in the object, and the static field leads to generation of acoustic vibrations from Lorentz force on the induced currents. The acoustic vibrations are at the same frequency as the dynamic magnetic field, which is chosen to match the ultrasound frequency range. These ultrasound signals can be measured by ultrasound probes and are used to reconstruct MAT-MI acoustic source images using possible ultrasound imaging approaches .The reconstructed high spatial resolution image is indicative of the object's electrical conductivity contrast. We have investigated ultrasound imaging methods to reliably reconstruct the MAT-MI image under the practical conditions of limited bandwidth and transducer geometry. The corresponding imaging algorithm, computer simulation and experiments are developed to test the feasibility of these different methods. Also, in experiments, we have developed a system with the strong static field of an MRI magnet and a strong pulsed magnetic field to evaluate MAT-MI in biological tissue imaging. It can be seen from these simulations and experiments that conductivity boundary images with

  9. Magnetoresistance, electrical conductivity, and Hall effect of glassy carbon

    SciTech Connect

    Baker, D.F.

    1983-02-01

    These properties of glassy carbon heat treated for three hours between 1200 and 2700/sup 0/C were measured from 3 to 300/sup 0/K in magnetic fields up to 5 tesla. The magnetoresistance was generally negative and saturated with reciprocal temperature, but still increased as a function of magnetic field. The maximum negative magnetoresistance measured was 2.2% for 2700/sup 0/C material. Several models based on the negative magnetoresistance being proportional to the square of the magnetic moment were attempted; the best fit was obtained for the simplest model combining Curie and Pauli paramagnetism for heat treatments above 1600/sup 0/C. Positive magnetoresistance was found only in less than 1600/sup 0/C treated glassy carbon. The electrical conductivity, of the order of 200 (ohm-cm)/sup -1/ at room temperature, can be empirically written as sigma = A + Bexp(-CT/sup -1/4) - DT/sup -1/2. The Hall coefficient was independent of magnetic field, insensitive to temperature, but was a strong function of heat treatment temperature, crossing over from negative to positive at about 1700/sup 0/C and ranging from -0.048 to 0.126 cm/sup 3//coul. The idea of one-dimensional filaments in glassy carbon suggested by the electrical conductivity is compatible with the present consensus view of the microstructure.

  10. The electrical conductivity of silicate liquids at extreme conditions

    NASA Astrophysics Data System (ADS)

    Scipioni, R.; Stixrude, L. P.

    2015-12-01

    Could the Earth have had a silicate dynamo early in its history? One requirement is that the electrical conductivity of silicate liquids be sufficiently high. However, very little is known about this property at the extreme conditions of pressure and temperature that prevailed in the magma ocean. We have computed from first principles molecular dynamics simulations the dc conductivity of liquid Silica SiO2 at pressure and temperature conditions spanning those of the magma ocean and super-Earth interiors. We find semi-metallic values of the conductivity at conditions typical of the putative basal magma ocean in the Early Earth. The variation of the conductivity with pressure and temperature displays interesting behavior that we rationalize on the basis of the closing the pseudo-gap at the Fermi level. For temperatures lower than T < 20,000 K electrical conductivity exhibits a maximum at intermediate compressions. We further explain this behavior in terms of stuctural changes that occur in silica liquid at high pressure; we find that the structure approaches that of the iso-electronic rare earth element Ne. We compare with Hugoniot data, including the equation of state, heat capacity, and reflectivity. The behavior of the heat capacity is different to that inferred from multiple Hugoniot experiments. These differences and the effect of including exact exchange on the calculations are discussed. Our results have important consequences for magnetic field generation in the early Earth and super-Earths.

  11. Electrically Conductive Thick Film Made from Silver Alkylcarbamates

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan

    2010-10-01

    A homogeneous electrically conductive silver paste without solid or particle phase was developed using silver alkylcarbamates [(C n H2 n-1NHCOO)2Ag, n ≤ 4] as the precursor of the functional phase. The silver alkylcarbamates were light insensitive and had a low decomposition temperature (below 200°C). The paste was a non-Newtonian fluid with viscosity significantly depending on the content of the thickening agent ethyl cellulose. Array patterns with a resolution of 20 μm were obtained using this paste by a micropen direct-writing method. After the paste with about 48 wt.% silver methylcarbamate [(CH3NHCOO)2Ag] precursor was sintered at 180°C for 15 min, an electrically conductive network consisting of more than 95 wt.% silver was formed, and was found to have a volume electrical resistivity on the order of 10-5 Ω cm and a sheet electrical resistivity on the order of 10-2-10-3 Ω/□. The cohesion strength within the sintered paste and the adhesion strength between the sintered paste layer and the alumina ceramic substrate were tested according to test method B of the American Society for Testing and Materials standard D3359-08. None of the sintered paste layer was detached under the test conditions, and the cohesion and adhesion strengths met the highest grade according to the standard.

  12. DNA sequencing using electrical conductance measurements of a DNA polymerase

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Shiun; Lee, Chia-Hui; Hung, Meng-Yen; Pan, Hsu-An; Chiou, Jin-Chern; Huang, G. Steven

    2013-06-01

    The development of personalized medicine--in which medical treatment is customized to an individual on the basis of genetic information--requires techniques that can sequence DNA quickly and cheaply. Single-molecule sequencing technologies, such as nanopores, can potentially be used to sequence long strands of DNA without labels or amplification, but a viable technique has yet to be established. Here, we show that single DNA molecules can be sequenced by monitoring the electrical conductance of a phi29 DNA polymerase as it incorporates unlabelled nucleotides into a template strand of DNA. The conductance of the polymerase is measured by attaching it to a protein transistor that consists of an antibody molecule (immunoglobulin G) bound to two gold nanoparticles, which are in turn connected to source and drain electrodes. The electrical conductance of the DNA polymerase exhibits well-separated plateaux that are ~3 pA in height. Each plateau corresponds to an individual base and is formed at a rate of ~22 nucleotides per second. Additional spikes appear on top of the plateaux and can be used to discriminate between the four different nucleotides. We also show that the sequencing platform works with a variety of DNA polymerases and can sequence difficult templates such as homopolymers.

  13. Lunar electrical conductivity, permeability and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. The measured lunar remanent fields range from 3 gammas minimum at the Apollo 15 site to 327 gammas maximum at the Apollo 16 site. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Remanent fields at Apollo 12 and Apollo 16 are increased 16 gammas and 32 gammas, respectively, by a solar plasma bulk pressure increase of 1.5 X 10 to the -7th power dynes/sq cm. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate an electrical conductivity profile for the moon. From nightside magnetometer data in the solar wind it was found that deeper than 170 km into the moon the conductivity rises from .0003 mhos/m to .10 mhos/m at 100 km depth. Recent analysis of data obtained in the geomagnetic tail, in regions free of complicating plasma effects, yields results consistent with nightside values.

  14. Miniatuization of the flowing fluid electric conductivity loggingtec hnique

    SciTech Connect

    Su, Grace W.; Quinn, Nigel W.T.; Cook, Paul J.; Shipp, William

    2005-10-19

    An understanding of both the hydraulic properties of the aquifer and the depth distribution of salts is critical for evaluating the potential of groundwater for conjunctive water use and for maintaining suitable groundwater quality in agricultural regions where groundwater is used extensively for irrigation and drinking water. The electrical conductivity profiles recorded in a well using the flowing fluid electric conductivity logging (FEC logging) method can be analyzed to estimate interval specific hydraulic conductivity and estimates of the salinity concentration with depth. However, irrigation wells that are common in agricultural regions have limited access into them because these wells are still in operation, and the traditional equipment used for FEC logging cannot fit through the small access pipe intersecting the well. A modified, miniaturized FEC logging technique was developed such that this logging method could be used in wells with limited access. In addition, a new method for injecting water over the entire screened interval of the well was developed to reduce the time required to perform FEC logging. Results of FEC logging using the new methodology and miniaturized system in two irrigation wells are also summarized.

  15. Electrically conductive nano graphite-filled bacterial cellulose composites.

    PubMed

    Erbas Kiziltas, Esra; Kiziltas, Alper; Rhodes, Kevin; Emanetoglu, Nuri W; Blumentritt, Melanie; Gardner, Douglas J

    2016-01-20

    A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP.

  16. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  17. Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity

    NASA Technical Reports Server (NTRS)

    Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.

  18. Electrical Conductivity and Dielectrical Properties of Bulk Methylene Green

    NASA Astrophysics Data System (ADS)

    El-Menyawy, E. M.; Zedan, I. T.; Mansour, A. M.

    2017-03-01

    Thermal stability, direct current electrical conductivity (σ DC), alternating current electrical conductivity (σ AC) and dielectric properties of bulk methylene green (MG) have been investigated. The thermal stability of MG was studied by differential scanning calorimetry and thermogravimetry techniques. Temperature dependence of σ DC showed that the MG has semiconductor behavior with two activation energies determined as 0.12 eV and 0.31 eV in the temperature range 303-343 K and 363-463 K, respectively. The σ AC of bulk MG was performed in the frequency range 150 Hz-5 MHz and temperature range 303-463 K. The dependence of AC conductivity on frequency for MG is found to satisfy Jonscher's universal power law, especially at high frequencies. The correlated barrier hopping model is found to be applicable in which the density of localized states is determined. The σ AC is thermally activated and the activation energy decreases with the increases in frequency. The variation of the real and imaginary parts of the dielectric constant with the frequency and temperature is explained.

  19. Testing and Optimization of Electrically Conductive Spacecraft Coatings

    NASA Technical Reports Server (NTRS)

    Mell, R. J.; Wertz, G. E.; Edwards, D. L. (Technical Monitor)

    2001-01-01

    This is the final report discussing the work done for the Space Environments and Effects (SEE) Program. It discusses test chamber design, coating research, and test results on electrically thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude higher electrical conductivity than most available thermal control coatings. Most current coatings tend to have a range in surface resistivity from 1,011 to 1,013 ohms/sq. Historically, spacecraft have had thermal control surfaces composed of dielectric materials of either polymers (paints and metalized films) or glasses (ceramic paints and optical solar reflectors). Very seldom has the thermal control surface of a spacecraft been a metal where the surface would be intrinsically electrically conductive. The poor thermal optical properties of most metals have, in most cases, stopped them from being used as a thermal control surface. Metals low infrared emittance (generally considered poor for thermal control surfaces) and/or solar absorptance, have resulted in the use of various dielectric coatings or films being applied over the substrate materials in order to obtain the required optical properties.

  20. Evaluation of electric belt grill, forced-air convection oven, and electric broiler cookery methods for beef tenderness research.

    PubMed

    Lawrence, T E; King, D A; Obuz, E; Yancey, E J; Dikeman, M E

    2001-07-01

    Five muscles from USDA Select beef carcasses were cooked on an electric belt grill at three temperatures (93, 117, and 163°C), in a forced-air convection oven, and on an electric broiler to determine effects of cooking treatment and muscle on Warner-Bratzler shear force values, cooking traits (cooking loss, cooking time, and endpoint temperature), and repeatability of duplicate measurements. All cooking treatments allowed shear force differences to be detected (P<0.05) among the five muscles, although the differences were inconsistent. Neither longissimus lumborum nor semitendinosus shear values differed among the five cooking treatments; however, shear values for biceps femoris, deep pectoralis, and gluteus medius differed (P<0.05) among cooking treatments. Belt grill cooking resulted in the highest shear force repeatability (R=0.70 to 0.89) for the longissimus lumborum. All cooking methods provided acceptable repeatability (R⩾0.60) of shear values for the biceps femoris and semitendinosus. The electric broiler was the only cooking treatment that resulted in acceptable repeatability of shear force measurements for all five muscles. It is not recommended to use the gluteus medius to test treatment effects on shear force values. Belt grill or electric broiler cooking are recommended for shear force evaluations.

  1. Beyond KTB - electrical conductivity of the deep continental crust

    NASA Astrophysics Data System (ADS)

    Glover, Paul W. J.; Vine, F. J.

    1995-01-01

    Great strides have been made in understanding the upper part of the crust by in-situ logging in, and laboratory experiments on core recovered from super-deep bore-holes such as the KTB. These boreholes do not extend into the lower crust, and can contribute little to the elucidation of mechanisms that produce the high electrical conductivities that are commonly observed therein by magneto-telluric (MT) methods. Laboratory studies at simulated lower crustal conditions of temperature, pressure and saturation, on electrolyte saturated rocks thought to have been derived from the lower crust, have not been possible up until now due to their experimental difficulty. It is necessary to subject electrolyte-saturated rock samples to independently controlled confining and pore-fluid pressure, which implies that the rock be sleeved in some impermeable but deformable material, that can withstand the very high temperatures required. Metals are the only materials capable of being used, but these cause great difficulties for cell sealing and conductivity measurement. In this paper we describe recent breakthroughs in experimental work, specifically the development of two new types of sophisticated metal/ceramic seal, and a conductivity measurement technique that enables the measurement of saturated rock conductivity in the presence of a highly conducting metallic sleeve. The advances in experimental technique have enabled us to obtain data on the electrical conductivity of brine saturated basic, acidic and graphite-bearing rocks at lower crustal temperatures and raised pressures. These data have facilitated the comparison of MT derived crustal electrical conductivity profiles with profiles obtained from laboratory experiments for the first time. Initial modelling shows a good agreement between laboratory derived and MT derived profiles only if the mid-crust is composed of amphibolite pervaded by aqueous fluids, and the lower crust is composed of granulite that is saturated with

  2. Imaging in electrically conductive porous media without frequency encoding

    NASA Astrophysics Data System (ADS)

    Lehmann-Horn, J. A.; Walbrecker, J. O.

    2012-07-01

    Understanding multi-phase fluid flow and transport processes under various pressure, temperature, and salinity conditions is a key feature in many remote monitoring applications, such as long-term storage of carbon dioxide (CO2) or nuclear waste in geological formations. We propose a low-field NMR tomographic method to non-invasively image the water-content distribution in electrically conductive formations in relatively large-scale experiments (˜1 m3 sample volumes). Operating in the weak magnetic field of Earth entails low Larmor frequencies at which electromagnetic fields can penetrate electrically conductive material. The low signal strengths associated with NMR in Earth's field are enhanced by pre-polarization before signal recording. To localize the origin of the NMR signal in the sample region we do not employ magnetic field gradients, as is done in conventional NMR imaging, because they can be difficult to control in the large sample volumes that we are concerned with, and may be biased by magnetic materials in the sample. Instead, we utilize the spatially dependent inhomogeneity of fields generated by surface coils that are installed around the sample volume. This relatively simple setup makes the instrument inexpensive and mobile (it can be potentially installed in remote locations outside of a laboratory), while allowing spatial resolution of the order of 10 cm. We demonstrate the general feasibility of our approach in a simulated CO2 injection experiment, where we locate and quantify the drop in water content following gas injection into a water-saturated cylindrical sample of 0.45 m radius and 0.9 m height. Our setup comprises four surface coils and an array consisting of three volume coils surrounding the sample. The proposed tomographic NMR methodology provides a more direct estimate of fluid content and properties than can be achieved with acoustic or electromagnetic methods alone. Therefore, we expect that our proposed method is relevant for

  3. Consequences of electrical conductivity in an orb spider's capture web

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Edmonds, Donald

    2013-12-01

    The glue-coated and wet capture spiral of the orb web of the garden cross spider Araneus diadematus is suspended between the dry silk radial and web frame threads. Here, we experimentally demonstrate that the capture spiral is electrically conductive because of necks of liquid connecting the droplets even if the thread is stretched. We examine how this conductivity of the capture spiral may lead to entrapment of charged airborne particles such as pollen, spray droplets and even insects. We further describe and model how the conducting spiral will also locally distort the Earth's ambient electric field. Finally, we examine the hypothesis that such distortion could be used by potential prey to detect the presence of a web but conclude that any effect would probably be too small to allow an insect to take evasive action.

  4. Electrically conductive and optically active porous silicon nanowires.

    PubMed

    Qu, Yongquan; Liao, Lei; Li, Yujing; Zhang, Hua; Huang, Yu; Duan, Xiangfeng

    2009-12-01

    We report the synthesis of vertical silicon nanowire array through a two-step metal-assisted chemical etching of highly doped n-type silicon (100) wafers in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of the as-grown silicon nanowires is tunable from solid nonporous nanowires, nonporous/nanoporous core/shell nanowires, to entirely nanoporous nanowires by controlling the hydrogen peroxide concentration in the etching solution. The porous silicon nanowires retain the single crystalline structure and crystallographic orientation of the starting silicon wafer and are electrically conductive and optically active with visible photoluminescence. The combination of electronic and optical properties in the porous silicon nanowires may provide a platform for novel optoelectronic devices for energy harvesting, conversion, and biosensing.

  5. DC electrical conductivity study of cerium doped conducting glass systems

    NASA Astrophysics Data System (ADS)

    Barde, R. V.; Waghuley, S. A.

    2013-06-01

    The glass samples of composition 60V2O5-5P2O5-(35-x)B2O3-xCeO2, (1 ≤ x ≤ 5) were prepared by the conventional melt quench method. The samples were characterized by X-ray diffraction and thermo gravimetric-differential thermal analysis. The glass transition temperature and crystallization temperature determined from TG-DTA analysis. The DC electrical conductivity has been carried out in the temperature range 303-473 K. The maximum conductivity and minimum activation energy were found to be 0.039 Scm-1 and 0.15 eV at 473 K for x=1, respectively.

  6. Electrical conductivity of condensed molecular hydrogen in the giant planets

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1972-01-01

    Theoretical interpretation of several phenomena concerning Jupiter and Saturn depends upon the electrical conductivity of molecular hydrogen which, according to present models, forms the outermost layer of both planets. The layer starts at the transition pressure between the metallic and the molecular form of hydrogen, that is around 1 Mbar, and extends to the outside limits of the atmosphere. Whether at the highest pressures (and temperatures) this layer is a solid or a dense fluid is not certain. In any case, the fluid is in supercritical condition so that there is only a gradual transition from dense liquid to a gaseous form. The two theories which require specific values of the conductivity of the condensed molecular hydrogen are those pertaining to the generation of a magnetic field in the liquid hydrogen rather than in the deep metallic interior (HIDE, 1967), and those concerned with the electromagnetic coupling and exchange of angular momentum between the liquid core and the solid molecular hydrogen mantle.

  7. High temperature electrically conducting ceramic heating element and control system

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  8. Electrical conductivity of polyazomethine/fullerene C60 nanocomposites

    NASA Astrophysics Data System (ADS)

    Bronnikov, Sergei; Podshivalov, Aleksandr; Kostromin, Sergei; Asandulesa, Mihai; Cozan, Vasile

    2017-02-01

    We prepared the polyazomethine/fullerene C60 nanocomposites varying in C60 loading. With a broadband dielectric relaxation spectrometer, we measured their electrical conductivity σm being a sum of dc conductivity σdc and ac conductivity σac. A small C60 content (0.25 and 0.5 wt.%) was shown to decrease σdc, whereas a larger amount of C60 (2.5 wt.%) was found to increase σdc of the nanocomposite. The temperature dependences of σac were described with the Arrhenius equation, while the frequency dependences of σac were characterized with a power function. The correlated barrier hopping was accepted as the most suitable mechanism to explain the σac behavior of the nanocomposites.

  9. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, R.; Nath, P.

    1982-06-22

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation is disclosed. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment. 1 fig.

  10. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1998-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has already added to the existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The object of this program was to develop two types of passive electrically conductive TCMS.

  11. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films

    PubMed Central

    Worfolk, Brian J.; Andrews, Sean C.; Park, Steve; Reinspach, Julia; Liu, Nan; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-01-01

    With consumer electronics transitioning toward flexible products, there is a growing need for high-performance, mechanically robust, and inexpensive transparent conductors (TCs) for optoelectronic device integration. Herein, we report the scalable fabrication of highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films via solution shearing. Specific control over deposition conditions allows for tunable phase separation and preferential PEDOT backbone alignment, resulting in record-high electrical conductivities of 4,600 ± 100 S/cm while maintaining high optical transparency. High-performance solution-sheared TC PEDOT:PSS films were used as patterned electrodes in capacitive touch sensors and organic photovoltaics to demonstrate practical viability in optoelectronic applications. PMID:26515096

  12. Theoretic analysis on electric conductance of nano-wire transistors

    NASA Astrophysics Data System (ADS)

    Tsai, N.-C.; Chiang, Y.-R.; Hsu, S.-L.

    2010-01-01

    By employing the commercial software nanoMos and Vienna ab Initio Simulation Package ( VASP), the performance of nano-wire field-effect transistors is investigated. In this paper, the Density-Gradient Model (DG Model) is used to describe the carrier transport behavior of the nano-wire transistor under quantum effects. The analysis of the drain current with respect to channel length, body dielectric constant and gate contact work function is presented. In addition, Fermi energy and DOS (Density of State) are introduced to explore the relative stability of carrier transport and electrical conductance for the silicon crystal with dopants. Finally, how the roughness of the surface of the silicon-based crystal is affected by dopants and their allocation can be illuminated by a few broken bonds between atoms near the skin of the crystal.

  13. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, Rointan; Nath, Prem

    1982-01-01

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.

  14. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  15. Facile synthesis of boron nitride nanotubes and improved electrical conductivity.

    PubMed

    Chen, Yongjun; Luo, Lijie; Zhou, Longchang; Mo, Libin; Tong, Zhangfa

    2010-02-01

    A layer of catalyst film on substrate is usually required during the vapor-liquid-solid (VLS) growth of one-dimensional (1D) nanomaterials. In this work, however, a novel approach for synthesizing high-purity bamboo-like boron nitride (BN) nanotubes directly on commercial stainless steel foils was demonstrated. Synthesis was realized by heating boron and zinc oxide (ZnO) powders at 1200 degrees C under a mixture gas flow of nitrogen and hydrogen. The stainless steel foils played an additional role of catalyst besides the substrate during the VLS growth of the nanotubes. In addition, the electrical conductivity of the BN nanotubes was efficiently improved in a simple way by coating with Au and Pd nanoparticles. The decorated BN nanotubes may find potential applications in catalysts, sensors and nanoelectronics.

  16. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  17. Electrical Conductivity and Dielectric Studies of Hydraulic Cements

    NASA Astrophysics Data System (ADS)

    Pena, Marianela Perez

    Electrical properties of portland cements and other non-portland cementitious materials have been studied at two different stages of hydration. The following relationships have been observed:. Higher water/cement (w/c) ratio (0.5 compared to 0.4) resulted in an increase of the relative permittivity and electrical conductivity of early stage hydrating materials. The relative permittivity values were close to 10('7). The phenomena giving rise to changes in electrical conductivity have been related to the heat of hydration. Higher alkali ion concentration resulted in higher electrical conductivity and relative permittivity values in cement pastes. Cations of inorganic admixtures were found to increase maximum peak of electrical conductivity and relative permittivity in the order: Ca('++) > Mg('++) > Sr('++) and K('+) (TURNEQ) Na('+) > Li('+). Dielectric properties of pressed hardened materials cured over water for 1 day with w/c = 0.20 and heat treated to 500(DEGREES)C prepared with type I, type III, and a microfine calcium silicate (MC500) cement have been compared as a function of temperature and frequency. The relative permittivity for type I hardened materials at 30(DEGREES)C was found to range from 12.5 to 9.4 at frequencies from 1 KHz to 2 MHz. The dissipation factor was found to range from 0.122 to 0.014. The relative permittivity and dissipation factors for type III hardened materials were found to range from 17.8 to 13.0 and from 0.035 to 0.071, respectively, and for MC500 hardened materials were determined to range from 7.6 to 6.9 and from 0.033 to 0.002, respectively. The activation energies determined from Arrhenius plots for the relaxation mechanism operating in these materials correspond to 0.33, 0.30, and 0.46 eV for type I, type III, and MC500 densified hardened materials, respectively. Cement/polymer composites have been prepared using 1.76 wt.% methyl cellulose polymer and a w/c ratio of 0.17. The relative permittivity and loss factor the samples

  18. Electrical conductivity of rigid polyurethane foam at high temperature

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  19. Durable Microstructured Surfaces: Combining Electrical Conductivity with Superoleophobicity.

    PubMed

    Pan, Zihe; Wang, Tianchang; Sun, Shaofan; Zhao, Boxin

    2016-01-27

    In this study, electrically conductive and superoleophobic polydimethylsiloxane (PDMS) has been fabricated through embedding Ag flakes (SFs) and Ag nanowires (SNWs) into microstructures of the trichloroperfluorooctylsilane (FDTS)-blended PDMS elastomer. Microstructured PDMS surfaces became conductive at the percolation surface coverage of 3.0 × 10(-2) mg/mm(2) for SFs; the highest conductivity was 1.12 × 10(5) S/m at the SFs surface coverage of 6.0 × 10(-2) mg/mm(2). A significant improvement of the conductivity (increased 3 times at the SNWs fraction of 11%) was achieved by using SNWs to replace some SFs because of the conductive pathways from the formed SNWs networks and its connections with SFs. These conductive fillers bonded strongly with microstructured FDTS-blended PDMS and retained surface properties under the sliding preload of 8.0 N. Stretching tests indicated that the resistance increased with the increasing strains and returned to its original state when the strain was released, showing highly stretchable and reversible electrical properties. Compared with SFs embedded surfaces, the resistances of SFs/SNWs embedded surfaces were less dependent on the strain because of bridging effect of SNWs. The superoleophobicity was achieved by the synergetic effect of surface modification through blending FDTS and the microstructures transferred from sand papers. The research findings demonstrate a simple approach to make the insulating elastomer to have the desired surface oleophobicity and electrical conductivity and help meet the needs for the development of conductive devices with microstructures and multifunctional properties.

  20. Gas-Tolerant Device Senses Electrical Conductivity of Liquid

    NASA Technical Reports Server (NTRS)

    O'Connor, Edward W.

    2005-01-01

    The figure depicts a device for measuring the electrical conductivity of a flowing liquid. Unlike prior such devices, this one does not trap gas bubbles entrained in the liquid. Usually, the electrical conductivity of a liquid is measured by use of two electrodes immersed in the liquid. A typical prior device based on this concept contains large cavities that can trap gas. Any gas present between or near the electrodes causes a significant offset in the conductivity reading and, if the gas becomes trapped, then the offset persists. Extensive tests on two-phase (liquid/ gas) flow have shown that in the case of liquid flowing along a section of tubing, gas entrained in the liquid is not trapped in the section as long as the inner wall of the section is smooth and continuous, and the section is the narrowest tubing section along the flow path. The design of the device is based on the foregoing observation: The electrodes and the insulators separating the electrodes constitute adjacent parts of the walls of a tube. The bore of the tube is machined to make the wall smooth and to provide a straight flow path from the inlet to the outlet. The diameter of the electrode/insulator tube assembly is less than the diameter of the inlet or outlet tubing. An outer shell contains the electrodes and insulators and constitutes a leak and pressure barrier. Any gas bubble flowing through this device causes only a momentary conductivity offset that is filtered out by software used to process the conductivity readings.

  1. Observations and parameterization of the stratospheric electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hu, Hua; Holzworth, Robert H.

    1996-12-01

    Simultaneous in situ measurements of the stratospheric electrical conductivity, made from multiple balloon platforms during the 1992-1993 Extended Life Balloon-Borne Observatories (ELBBO) experiment, have yielded the most comprehensive data set on the stratospheric electrical conductivity. The ELBBO project involved launches of five superpressure balloons into the stratosphere from Dunedin, New Zealand, beginning November 10, 1992, and lasting through March 18, 1993. Most of the balloons floated at a constant altitude of 26 km for over 3 months, covered a wide range of latitudes from the South Pole to 28°S, and circled around the southern hemisphere several times. On average, the positive polar conductivity (conductivity of positive ions alone) was about 15% higher than that of the negative conductivity, suggesting that differences may exist between the mobilities of positive and negative ions. Data from each polarity of polar conductivity also indicate persistent, apparently organized, short-term and localized variations, with amplitude within 30% of the mean value. In corrected geomagnetic (CGM) coordinates the conductivity variations were found to be a function of latitude but not of longitude. The total conductivity can increase 150% from low latitude to high latitude, and does remain nearly constant at latitudes above 55° (namely, the cosmic ray knee latitude). Calculations based on ionization theory demonstrate that the latitudinal variations in the conductivity measurements were mainly due to the latitudinal variations in incident galactic cosmic ray intensity, with only little effect from the air temperature variations. The calculations shown here also suggest that small ions (as opposed to large ions) provide the main contribution to the stratospheric conductivity. The comparisons between conductivity measurements and models show that commonly used models can underestimate the latitudinal variation by a factor of 2. In this paper the stratospheric

  2. Free and Forced Convection in High Permeability Porous Media: Impact on Gas Flux at the Earth-atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Levintal, E.; Dragila, M. I.; Kamai, T.

    2015-12-01

    Gas movement within the earth's subsurface and its exchange with the atmosphere is one of the principal elements contributing to soil and atmospheric function. As the soil permeability increases, gas circulation by convective mechanisms becomes significantly greater than the diffusion. Two of the convective mechanisms, which can be of great importance, are being explored in this research. The first one is thermal convection venting (TCV), which develops when there are unstable density gradients. The second mechanism is wind induced convection (WIC), which develops due to surface winds that drive air movement. Here, we report the results of a study on the relationships between the porous media permeability and particle size, and the development and magnitude of TCV and WIC with the development of thermal differences and surface winds. The research included large high-permeability column experiments carried out under highly controlled laboratory conditions, using well-defined single-sized spherical particles while surface winds and thermal differences were forced and monitored. CO2 enriched air, functioned as a tracer, was used to quantify the impact of TCV and WIC on gas migration in the porous media. Results show that in homogenous porous media a permeability range of 10-7 to 10-6 m2 is the threshold value for TCV onset under standard atmospheric conditions. Adding surface wind with an average velocity of 1.5 m s-1 resulted in WIC effect to a depth of -0.3 m in most experimental settings; however, it did not caused additional air circulation at the reference depth of -0.9 m. Furthermore, given the appropriate conditions, a combined effect of TCV and WIC did significantly increase the overall media ventilation. Simulations of temperature profiles in soil under that permeability, showed that as the thermal gradient changes with depth and is a continuous function, TCV cells can be developed in local sections of the profile, not necessarily reaching the atmosphere.

  3. Properties of forced convection experimental with silicon carbide based nano-fluids

    NASA Astrophysics Data System (ADS)

    Soanker, Abhinay

    -fluids. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.

  4. Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State

    NASA Astrophysics Data System (ADS)

    Balouch, Masih N.

    Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the

  5. Vibration damping of elastic waves in electrically conducting media subjected to high magnetic fields

    NASA Technical Reports Server (NTRS)

    Horwath, T. G.

    1992-01-01

    The propagation of vibrational energy in bulk, torsional, and flexural modes, in electrically conducting media can undergo strong attenuation if subjected to high magnetic fields in certain spatial arrangements. The reasons for this are induced Eddy currents which are generated by the volume elements in the media moving transversally to the magnetic field at acoustic velocities. In magnetic fields achievable with superconductors, the non-conservative (dissipative) forces are compared to the elastic and inertial forces for most metals. Strong dissipation of vibrational energy in the form of heat takes place as a result. A simplified theory is presented based on engineering representations of electrodynamics, attenuation values for representative metals are calculated, and problems encountered in formulating a generalized theory based on electrodynamics of moving media are discussed. General applications as well as applications specific to maglev are discussed.

  6. Conduction block in novel cardiomyocyte electrical conduction line by photosensitization reaction.

    PubMed

    Kurotsu, Mariko; Ogawa, Emiyu; Arai, Tsunenori

    2014-01-01

    We developed a novel cardiomyocyte electrical conduction line. We studied electrical conduction block by extra-cellular photosensitization reaction with this conduction line to study electrical blockade by the photosensitization reaction in vitro.

  7. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  8. Combined Effect of Buoyancy Force and Navier Slip on MHD Flow of a Nanofluid over a Convectively Heated Vertical Porous Plate

    PubMed Central

    2013-01-01

    We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ), magnetic field parameter (Ha), buoyancy effect (Gr), Eckert number (Ec), suction/injection parameter (fw), Biot number (Bi), and slip parameter (β), on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate. PMID:24222749

  9. Combined effect of buoyancy force and Navier slip on MHD flow of a nanofluid over a convectively heated vertical porous plate.

    PubMed

    Mutuku-Njane, Winifred Nduku; Makinde, Oluwole Daniel

    2013-01-01

    We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ), magnetic field parameter (Ha), buoyancy effect (Gr), Eckert number (Ec), suction/injection parameter (f w ), Biot number (Bi), and slip parameter ( β ), on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate.

  10. Forced organization of flute-type turbulence by convective cell injection

    SciTech Connect

    Iizuka, S.; Huld, T.; Pecseli, H.L.; Rasmussen, J.J.

    1988-03-14

    Nonlinear interactions between flute-type turbulence and an externally excited convective cell in a strongly magnetized plasma are investigated. During the interaction the azimuthal-mode-number spectrum of the turbulence is deformed and a broad spectrum evolves, indicating an inverse cascade. As a result of a modification in phase and amplitude of the fluctuations, an organized structure is created in turbulence. The macroscopic behavior is well explained by a Van der Pol--type equation.

  11. Electrically-conductive proppant and methods for making and using same

    DOEpatents

    Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.

    2016-09-06

    Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.

  12. Tuning the electrical conductance of metalloporphyrin supramolecular wires

    NASA Astrophysics Data System (ADS)

    Noori, Mohammed; Aragonès, Albert C.; di Palma, Giuseppe; Darwish, Nadim; Bailey, Steven W. D.; Al-Galiby, Qusiy; Grace, Iain; Amabilino, David B.; González-Campo, Arántzazu; Díez-Pérez, Ismael; Lambert, Colin J.

    2016-11-01

    In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductances than their current-in-plane (CIP) counterparts, ranging from 2.10‑2 G0 for Ni-DPP up to 8.10‑2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high-conductance CPP single-molecule devices.

  13. Tuning the electrical conductance of metalloporphyrin supramolecular wires

    PubMed Central

    Noori, Mohammed; Aragonès, Albert C.; Di Palma, Giuseppe; Darwish, Nadim; Bailey, Steven W. D.; Al-Galiby, Qusiy; Grace, Iain; Amabilino, David B.; González-Campo, Arántzazu; Díez-Pérez, Ismael; Lambert, Colin J.

    2016-01-01

    In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductances than their current-in-plane (CIP) counterparts, ranging from 2.10−2 G0 for Ni-DPP up to 8.10−2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high-conductance CPP single-molecule devices. PMID:27869128

  14. Synthesis and electrical conductivity of nanocrystalline tetragonal FeS

    NASA Astrophysics Data System (ADS)

    Zeng, Shu-Lin; Wang, Hui-Xian; Dong, Cheng

    2014-08-01

    A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c = 0.5037 nm, as revealed by X-ray diffraction. The sample consists of flat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature.

  15. Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.

    PubMed

    Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P

    2015-08-19

    Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant.

  16. Electrical Conductivity Measurements in Strongly Coupled Metal Plasmas

    NASA Astrophysics Data System (ADS)

    Desilva, Alan; Katsouros, Joseph

    1999-11-01

    We measure the electrical conductivity of strongly coupled plasmas of various metals, including aluminum, iron, copper, and tungsten, in the temperature range 6-30 kK, in a density range from about 1/2 solid density down to about 10-3 times solid density. These plasmas may have coupling parameters (ratio of mean interparticle Coulomb energy to mean kinetic energy) ranging from as high as 50 down to unity. Plasmas are created by rapid vaporization of metal wire in a water bath which act as a tamper. Streak photography serves to determine the growth of the plasma radius in time, allowing determination of mean density. Temperature is deduced from the measured energy input in conjunction with an equation of state from the LANL SESAME database [1], and a brightness temperature may be obtained from radiation measurements. The column resistance is determined from time-resolved voltage and current measurements. Results of conductivity measurements will be shown and compared with the predictions of conductivity theories. 1.SESAME: The Los Alamos National Laboratory Equation of State Database, Report LA-UR-92-3407, ed. S. P. Lyon and J. D. Johnson, Group T-1.

  17. Fluctuations electrical conductivity in a granular s-wave superconductor

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Yousefvand, A.; Zargar Shoushtari, M.

    2017-01-01

    The present study tries to evaluate the fluctuation electrical conductivity in a granular s-wave superconductor at the temperature near to the critical temperature. The evaluation is conducted under the condition of limited tunneling conductance between the grains and small impurity concentration. All the first order fluctuation corrections, involving the nonlocal scattered electron in a granular s-wave superconductor, are calculated in three dimensions and in the limit of clean. Using Green's function theory initially, the Cooperon (impurity vertex), λ (q , ε1 , ε2) , and the fluctuation propagator, Lk (q , Ωk) , are calculated in the presence of impurities. Then, the three distinct contributions of Aslamazov-Larkin, Maki-Thompson, and Density of states are calculated by means of the Kubo formula. Analysis shows that the terms of Aslamazov-Larkin and anomalous Maki-Thompson have positive contributions to the conductivity in the clean limit, whereas the terms of Density of state and the regular Maki-Thompson have negative signs, leading to the reduction of total fluctuation conductivity.

  18. KTB and the electrical conductivity of the crust

    NASA Astrophysics Data System (ADS)

    Haak, V.; Simpson, F.; Bahr, Karsten; Bigalke, J.; Eisel, M.; Harms, U.; Hirschmann, G.; Huenges, E.; Jödicke, H.; Kontny, A.; Kück, J.; Nover, G.; Rauen, A.; Stoll, J.; Walther, J.; Winter, H.; Zulauf, G.; Wolfgang, J.

    1997-08-01

    The German Continental Deep Drilling Program (KTB) drilled two holes through crystalline rocks which are rich in both high-salinity fluids and graphite accumulated along shear zones. Analyses of a large number of borehole measurements yield models for the electrical resistivity of the upper and middle crust in the vicinity of the KTB holes. High observed resistivity, of more than 105Ωm in the lowermost part of the 9000 m deep main hole, in a rather ``wet'' crust, indicates that effective mechanisms exist to cut down connections between fluid accumulations and therefore that fluids are not the likely cause of high-conductivity anomalies. On the other hand, graphite accumulations appear to be connected along shear lineaments over hundreds of meters or more. Structural, mineralogical, and geochemical studies suggest a tectonic model which explains the deposition of graphite as the relic and witness of a shearing process that occurred during the late Variscan (Upper Carboniferous) thrusting. This process took place while this part of the crust resided at temperatures between 240° and 380°C. Subsequent independent reverse faulting lifted this part to the Earth's surface. Our conclusion is that the KTB case indicates how high electrical conductivities in the upper crust, which originated from the middle to lower crust, are caused by graphite accumulations, rather than by fluids, and that these anomalies are related to shearing processes. Such graphite accumulations may exist elsewhere and may be of relevance in the context of present-day midcrustal conductors.

  19. A model of electrical conduction in cardiac tissue including fibroblasts.

    PubMed

    Sachse, Frank B; Moreno, A P; Seemann, G; Abildskov, J A

    2009-05-01

    Fibroblasts are abundant in cardiac tissue. Experimental studies suggested that fibroblasts are electrically coupled to myocytes and this coupling can impact cardiac electrophysiology. In this work, we present a novel approach for mathematical modeling of electrical conduction in cardiac tissue composed of myocytes, fibroblasts, and the extracellular space. The model is an extension of established cardiac bidomain models, which include a description of intra-myocyte and extracellular conductivities, currents and potentials in addition to transmembrane voltages of myocytes. Our extension added a description of fibroblasts, which are electrically coupled with each other and with myocytes. We applied the extended model in exemplary computational simulations of plane waves and conduction in a thin tissue slice assuming an isotropic conductivity of the intra-fibroblast domain. In simulations of plane waves, increased myocyte-fibroblast coupling and fibroblast-myocyte ratio reduced peak voltage and maximal upstroke velocity of myocytes as well as amplitudes and maximal downstroke velocity of extracellular potentials. Simulations with the thin tissue slice showed that inter-fibroblast coupling affected rather transversal than longitudinal conduction velocity. Our results suggest that fibroblast coupling becomes relevant for small intra-myocyte and/or large intra-fibroblast conductivity. In summary, the study demonstrated the feasibility of the extended bidomain model and supports the hypothesis that fibroblasts contribute to cardiac electrophysiology in various manners.

  20. Electrical Conductivity Mechanism in Unconventional Lead Vanadate Glasses

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, F.; Merazga, A.; Montaser, A. A.

    2017-03-01

    Lead vanadate glasses of the system (V2O5)_{1-x}(PbO)x with x = 0.4, 0.45, 0.5, 0.55, 0.6 have been prepared by the press-quenching technique. The dc (σ (0)) and ac (σ (ω )) electrical conductivities were measured in the temperature range from 150 to 420 K and the frequency range from 102 to 106 Hz. The electrical properties are shown to be sensitive to composition. The experimental results have been analyzed within the framework of different models. The dc conductivity is found to be proportional to Tp with the exponent p ranging from 8.2 to 9.8, suggesting that the transport is determined by a multi-phonon process of weak electron-lattice coupling. The ac conductivity is explained by the percolation path approximation (PPA). In this model, σ (ω ) is closely related to the σ (0) and fitting the experimental data produces a dielectric relaxation time τ in good agreement with the expected value in both magnitude and temperature dependence.

  1. Convection in a differentially heated rotating spherical shell of Boussinesq fluid with radiative forcing

    NASA Astrophysics Data System (ADS)

    Babalola, David

    In this study we investigate the flow of a Boussinesq fluid contained in a rotating, differentially heated spherical shell. Previous work, on the spherical shell of Boussinesq fluid, differentially heated the shell by prescribing temperature on the inner boundary of the shell, setting the temperature deviation from the reference temperature to vary proportionally with -cos 2θ, from the equator to the pole. We change the model to include an energy balance equation at the earth's surface, which incorporates latitudinal solar radiation distribution and ice-albedo feedback mechanism with moving ice boundary. For the fluid velocity, on the inner boundary, two conditions are considered: stress-free and no-slip. However, the model under consideration contains only simple representations of a small number of climate variables and thus is not a climate model per se but rather a tool to aid in understanding how changes in these variables may affect our planet's climate. The solution of the model is followed as the differential heating is changed, using the pseudo arc-length continuation method, which is a reliable method that can successfully follow a solution curve even at a turning point. Our main result is in regards to hysteresis phenomenon that is associated with transition from one to multiple convective cells, in a differentially heated, co-rotating spherical shell. In particular, we find that hysteresis can be observed without transition from one to multiple convective cells. Another important observation is that the transition to multiple convective cells is significantly suppressed altogether, in the case of stress-free boundary conditions on the fluid velocity. Also, the results of this study will be related to our present-day climate.

  2. Simulation of forced convection in a channel with nanofluid by the lattice Boltzmann method

    PubMed Central

    2013-01-01

    This paper presents a numerical study of the thermal performance of fins mounted on the bottom wall of a horizontal channel and cooled with either pure water or an Al2O3-water nanofluid. The bottom wall of the channel is heated at a constant temperature and cooled by mixed convection of laminar flow at a relatively low temperature. The results of the numerical simulation indicate that the heat transfer rate of fins is significantly affected by the Reynolds number (Re) and the thermal conductivity of the fins. The influence of the solid volume fraction on the increase of heat transfer is more noticeable at higher values of the Re. PMID:23594696

  3. Numerical Investigation of Nanofluid Laminar Forced Convective Heat Transfer inside an Equilateral Triangular Tube

    NASA Astrophysics Data System (ADS)

    Etminan, Amin; Harun, Zambri; Sharifian, Ahmad

    2017-01-01

    In this article distilled water and CuO particles with volume fraction of 1%, 2% and 4% are studied numerically. The steady state flow regime is considered laminar with Reynolds number of 100 and nanoparticles diameters (dp) are set in the range of 20 nm and 80 nm. The hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm respectively. The problem is solved using finite volume method with constant heat flux for two sides and constant temperature for one side. Convective heat transfer coefficient, Nusselt number and convective heat transfer coefficient distribution on walls are investigated in details. The fluid flow is supposed to be one phase flow. It can be observed that nanofluid leads to a remarkable enhancement on heat transfer coefficient pressure loss through the channel. The computations reveal that the size of nanoparticles has no significant influence on heat transfer properties. Besides, the study shows a good agreement between current results and experimental data in the literatures.

  4. Improving Microstructure and Mechanical Properties for Large-Diameter 7075 Aluminum Alloy Ingots by a Forced Convection Stirring Casting Process

    NASA Astrophysics Data System (ADS)

    Qi, Mingfan; Kang, Yonglin; Zhu, Guoming; Li, Yangde; Li, Weirong

    2017-04-01

    A simple process so-called forced convection stirring casting (FCSC) was proposed to prepare large-diameter 7075 Al alloy ingots. The flow behavior, temperature, and composition fields of the melt in the FCSC process were simulated. The macromorphology, macrosegregation, microstructure, and mechanical properties of the ingots prepared by the FCSC were studied and compared with those prepared by normal casting (NC). The results showed that in the FCS device, the strong convection caused by the axial flow and circular flow rapidly promoted the uniformity of the temperature and composition fields of the melt. Microstructures of the FCSC ingots from the edge to the center were all nearly spherical grains, which were much finer and more uniform than that of the NC ingots. The rotation speed played an important role in the microstructure of the FCSC ingots, and the grains became finer and rounder as the speed increasing. The FCSC process effectively eliminated cracks, improved macrosegregation, and decreased the eutectic phase area fraction and the average grain boundary thickness of ingots. Mechanical properties of the ingots prepared by the FCSC are far better than that of the NC ingots.

  5. Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube

    NASA Astrophysics Data System (ADS)

    Kahani, M.; Zeinali Heris, S.; Mousavi, S. M.

    2014-05-01

    Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25-2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500-4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.

  6. Improving Microstructure and Mechanical Properties for Large-Diameter 7075 Aluminum Alloy Ingots by a Forced Convection Stirring Casting Process

    NASA Astrophysics Data System (ADS)

    Qi, Mingfan; Kang, Yonglin; Zhu, Guoming; Li, Yangde; Li, Weirong

    2017-01-01

    A simple process so-called forced convection stirring casting (FCSC) was proposed to prepare large-diameter 7075 Al alloy ingots. The flow behavior, temperature, and composition fields of the melt in the FCSC process were simulated. The macromorphology, macrosegregation, microstructure, and mechanical properties of the ingots prepared by the FCSC were studied and compared with those prepared by normal casting (NC). The results showed that in the FCS device, the strong convection caused by the axial flow and circular flow rapidly promoted the uniformity of the temperature and composition fields of the melt. Microstructures of the FCSC ingots from the edge to the center were all nearly spherical grains, which were much finer and more uniform than that of the NC ingots. The rotation speed played an important role in the microstructure of the FCSC ingots, and the grains became finer and rounder as the speed increasing. The FCSC process effectively eliminated cracks, improved macrosegregation, and decreased the eutectic phase area fraction and the average grain boundary thickness of ingots. Mechanical properties of the ingots prepared by the FCSC are far better than that of the NC ingots.

  7. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content.

    PubMed

    Qi, Xian-Yong; Yan, Dong; Jiang, Zhiguo; Cao, Ya-Kun; Yu, Zhong-Zhen; Yavari, Fazel; Koratkar, Nikhil

    2011-08-01

    We compared the electrical conductivity of multiwalled-carbon-nanotube/polystyrene and graphene/polystyrene composites. The conductivity of polystyrene increases from ∼6.7 × 10(-14) to ∼3.49 S/m, with an increase in graphene content from ∼0.11 to ∼1.1 vol %. This is ∼2-4 orders of magnitude higher than for multiwalled-carbon-nanotube/polystyrene composites. Furthermore, we show that the conductivity of the graphene/polystyrene system can be significantly enhanced by incorporation of polylactic acid. The volume-exclusion principle forces graphene into the polystyrene-rich regions (selective localization) and generates ∼4.5-fold decrease in its percolation threshold from ∼0.33 to ∼0.075 vol %.

  8. Measurement of Electrical Conductivity into Tomato Cultivation Beds using Small Insertion Type Electrical Conductivity Sensor Designed for Agriculture

    NASA Astrophysics Data System (ADS)

    Kawashima, Kazuko; Futagawa, Masato; Ban, Yoshihiro; Asano, Yoshiyuki; Sawada, Kazuaki

    Our group has studied on-site monitoring sensor for agricultural field. An electrical conductivity (EC) sensor had been fabricated using Si integrated circuit technology. EC information of solutions shows ion concentrations dissolving in water, and can be used as the index of nutrient concentration for plants. So, it is important to measure EC in real time and on site. Because our EC sensor (5mm×5mm in size) is smaller than other commercial ones (several centimeters), it is easy to insert and achieve measurement in rock wool. In this study, our sensor measured long term EC values in tomato cultivation soil and rock wool medium. At first, we calibrated a relationship between output voltages and EC values on the sensor. The sensor was confirmed about enough EC measurement range from 8 to 969mS/m. In long period measurement, the sensor was confirmed about continuous operation for over five months, and intermittent measurement for over a year. In measurement in the cultivation soil, the sensor indicated that water was kept and diffused in the soil. In contrast, it was found that water diffused without keeping in it in rock wool medium. We confirmed our small EC sensor is useful for on-site monitoring and analysis of solution concentration distribution in several kinds of cultivation bed in real time.

  9. Stimulation of Neurite Outgrowth Using an Electrically Conducting Polymer

    NASA Astrophysics Data System (ADS)

    Schmidt, Christine E.; Shastri, Venkatram R.; Vacanti, Joseph P.; Langer, Robert

    1997-08-01

    Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer--oxidized polypyrrole (PP)--has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(L-lactic acid) (PLA), and poly(lactic acid-coglycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μ m (n = 5643) compared with 9.5 μ m (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-coglycolic acid).

  10. Microstructural Inhomogeneity of Electrical Conductivity in Subcutaneous Fat Tissue

    PubMed Central

    Kruglikov, Ilja L.

    2015-01-01

    Microscopic peculiarities stemming from a temperature increase in subcutaneous adipose tissue (sWAT) after applying a radio-frequency (RF) current, must be strongly dependent on the type of sWAT. This effect is connected with different electrical conductivities of pathways inside (triglycerides in adipocytes) and outside (extra-cellular matrix) the cells and to the different weighting of these pathways in hypertrophic and hyperplastic types of sWAT. The application of the RF current to hypertrophic sWAT, which normally has a strongly developed extracellular matrix with high concentrations of hyaluronan and collagen in a peri-cellular space of adipocytes, can produce, micro-structurally, a highly inhomogeneous temperature distribution, characterized by strong temperature gradients between the peri-cellular sheath of the extra-cellular matrix around the hypertrophic adipocytes and their volumes. In addition to normal temperature effects, which are generally considered in body contouring, these temperature gradients can produce thermo-mechanical stresses on the cells’ surfaces. Whereas these stresses are relatively small under normal conditions and cannot cause any direct fracturing or damage of the cell structure, these stresses can, under some supportive conditions, be theoretically increased by several orders of magnitude, causing the thermo-mechanical cell damage. This effect cannot be realized in sWAT of normal or hyperplastic types where the peri-cellular structures are under-developed. It is concluded that the results of RF application in body contouring procedures must be strongly dependent on the morphological structure of sWAT. PMID:25734656

  11. Nonlinear optical and electrical conductivity properties of Carbon Nanotubes (CNT) doped in Sol-Gel matrices

    NASA Astrophysics Data System (ADS)

    Pokrass, Mariana; Burshtein, Zeev; Bar, Galit; Gvishi, Raz

    2014-09-01

    Carbon-nanotubes (CNT) are fascinating compounds, exhibiting exceptional electrical, thermal conductivity, mechanical strength, and nonlinear optical (NLO) properties. Their unique structures involve large π-π* electronic clouds. The energy level schemes thus created allow many electronic transitions between the ground and the excited states. The present work involves CNT-doped hybrid organic-inorganic glass composites prepared by a Fast-sol-gel method. Such composite glasses solidify without shrinkage or crack formation, and exhibit promising properties as optical devices. In this work we have studied nonlinear optical and electrical conductivity properties. The CNT composite glasses exhibited enhanced absorption at 532 nm, and saturable absorption at 1064 nm. The enhanced absorption at 532 was attributed to 2-photon absorption; saturable absorption was attributed to depletion of the absorbing ground-state, and was analyzed using the modified Frantz-Nodvik equation. Absorption cross-sections were extracted for the saturable absorption phenomenon. Such CNT composites glasses may be used as "optical limiting" filters in lasers near 532 nm, or as saturable absorbing filters for passive laser Q-switching near 1064 nm. The CNT composites electrical conductivity was studied as a function of the CNT concentration and modeled by a percolation theory. The maximal measured conductivity was σ ≍10-3 (Ωcm)-1 for the CNT composites, representing a conductivity increase of at least 12 orders of magnitude compared to that of pure silica. A quite low percolation threshold was obtained, φc = 0.22 wt.% CNT. Electrostatic Force Microscopy (EFM) and Conductive mode Atomic Force Microscopy (C-AFM) studies revealed that the conductivity occurs at the micro-level among the CNTs dispersed in the matrix.

  12. Determination of body composition in growing rats by total body electrical conductivity.

    PubMed

    Morbach, C A; Brans, Y W

    1992-04-01

    Total body electrical conductivity (TOBEC), measured with an Em-Scan SA-1 analyzer, was evaluated as a means of estimating fat-free mass and total body water content noninvasively in small laboratory animals. Ninety-four rats whose weight ranged from 5.53 to 170.84 g at 0-50 days of age were studied. The animals were killed by intraperitoneal injection of a pentobarbital overdose. After weight, crown-rump length (CRL) and TOBEC were measured, and the animals were minced with scissors and desiccated to constant weight in a convection oven. Fat was extracted by multiple bathings in petroleum ether followed by Soxhlet extraction. Fifty-four rats were used to determine the relation between fat-free mass (FFM), total body water (TBW), and TOBEC# (E) by regression analysis. The best correlations were observed between FFM and (E x CRL)1/2 (r = 0.995, p less than 0.0001). Forty rats were used to determine the predictive value of TOBEC estimates. With this instrument, TOBEC tended to underestimate FFM by an average of 3.9% and TBW by 5.3%. Accuracy was questionable for animals smaller than 13 g and TOBEC did not provide useful estimates of total body fat. Subject to these limitations, TOBEC instruments should prove to be useful for sequential in vivo estimations of body composition during growth and development of small animals.

  13. Forced convection heat transfer from a wire inserted into a vertically-mounted pipe to liquid hydrogen flowing upward

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-12-01

    Forced convection heat transfer from a PtCo wire with a length of 120 mm and a diameter of 1.2 mm that was inserted into a vertically-mounted pipe with a diameter of 8.0 mm to liquid hydrogen flowing upward was measured with a quasi-steady increase of a heat generation rate for wide ranges of flow rate under saturated conditions. The pressures were varied from 0.4 MPa to 1.1 MPa. The non-boiling heat transfer characteristic agrees with that predicted by Dittus-Boelter correlation. The critical heat fluxes are higher for higher flow rates and lower pressures. Effect of Weber number on the CHF was clarified and a CHF correlation that can describe the experimental data is derived based on our correlation for a pipe.

  14. Liquid crystal visualization and computer modeling of enhanced heat transfer on a flat plate in forced convection

    SciTech Connect

    Voegler, G.R.; Anderson, A.M.

    1996-12-31

    This paper presents the results of an experimental and computational study of heat transfer enhancement found in the vicinity of a three dimensional block placed on a constant heat flux plate in turbulent forced convection. The experiments used thermochromic liquid crystals to visualize temperature on the surface. Photographs were taken to establish temperature contour lines at a range of velocities and a variety of block sizes and configurations. The results show heat transfer enhancement exists upstream and downstream of the blocks. The enhancement is caused by a horse shoe vortex which stagnates on the front surface of the block and then wraps around the sides. Thin blocks (narrow in the flow direction) show the best enhancement. The computer simulations used the {kappa}-epsilon turbulence model and had reasonable qualitative agreement with the experiments.

  15. An experimental investigation of pressure drop in forced-convection condensation and evaporation of oil-refrigerant mixtures

    SciTech Connect

    Tichy, J.A.; Duque-Rivera, J.; Macken, N.A.; Duval, W.M.B.

    1986-01-01

    Experimental measurements of pressure drop have been made for forced-convection evaporation and condensation of oil-refrigerant (R-12) mixtures inside a horizontal tube. Data were compared to a wide range of frictional pressure drop and void fraction relationships. The best representations for the oil-free data were then modified to better correlate both oil-free and oil-refrigerant results. For condensation, a modification of the prediction given by the Lockhart-Martinelli relation for frictional pressure drop and the homogeneous void fraction model is presented. For evaporation, the prediction given by the Dukler II frictional pressure-drop correlation and the homogeneous void fraction is modified. These relationships predict the pressure drop for 85% of the data to within +- 35%. The added oil increased the pressure drop 2% to 6% for condensation and 63% to 86% for evaporation.

  16. The influence of tip clearance and Prandtl number on turbulent forced convection heat transfer of rectangular fins

    NASA Astrophysics Data System (ADS)

    Park, Hae-Kyun; Chung, Bum-Jin

    2016-12-01

    The turbulent forced convection heat transfer of rectangular fins in a duct was investigated by varying the tip clearance and Pr. Mass transfer experiments using a H2SO4-CuSO4 electroplating system were performed based on the analogy between heat and mass transfers. FLUENT 6.3 was used for calculations. Turbulent models were tested and the Reynolds Stress Model was chosen, which showed a 1.15 % discrepancy with the existing correlation for a simple tube flow when Pr = 2, but 13 % when Pr = 2014. For a more complex fin channel, the discrepancy increased up to 30 %. The optimal tip clearances, corresponding to maximum heat transfer rates, did not vary with Pr, which is explained using the temperature contours. The results were also compared with the laminar case where Pr influenced the optimal tip clearance.

  17. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Sterl, Sebastian; Li, Hui-Min; Zhong, Jin-Qiang

    2016-12-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ ˙(t ) and thermal amplitude δ (t ) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of θ ˙(t ) . We also focus on the influence of modulated rotation rates on the frequency of occurrence η of stochastic cessation or reorientation events, and on the interplay between such events and the periodically modulated response of θ ˙(t ) . Here we identify a mechanism by which η can be amplified by the modulated response, and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and we extend this approach to make predictions for the occurrence of cessation events and the probability distributions of θ ˙(t ) and δ (t ) during different phases of a modulation cycle, based on an adiabatic approach that treats each phase separately. Last, we show that such periodic forcing has consequences beyond influencing LSC dynamics, by investigating how it can modify the heat transport even under conditions where the Ekman pumping effect is predominant and strong enhancement of heat transport occurs. We identify phase and amplitude responses of the heat transport, and we show how increased modulations influence the average Nusselt number.

  18. Variability of radiatively forced diurnal cycle of intense convection in the tropical west pacific

    SciTech Connect

    Gray, W.M.; Sheaffer, J.D.; Thorson, W.B.

    1996-04-01

    Strong differences occur in daytime versus nighttime (DVN) net radiative cooling in clear versus cloudy areas of the tropical atmosphere. Daytime average cooling is approximately -0.7{degrees}C/day, whereas nighttime net tropospheric cooling rates are about -1.5{degrees}C/day, an approximately two-to-one difference. The comparatively strong nocturnal cooling in clear areas gives rise to a diurnally varying vertical circulation and horizontal convergence cycle. Various manifestations of this cyclic process include the observed early morning heavy rainfall maxima over the tropical oceans. The radiatively driven DVN circulation appears to strongly modulate the resulting diurnal cycle of intense convection which creates the highest, coldest cloudiness over maritime tropical areas and is likely a fundamental mechanism governing both small and large scale dynamics over much of the tropical environment.

  19. Similarity solutions for magneto-forced-unsteady free convective laminar boundary-layer flow

    NASA Astrophysics Data System (ADS)

    Abd-El-Malek, Mina B.; Helal, Medhat M.

    2008-09-01

    The group theoretic method is applied for solving problem of a unsteady free-convective laminar boundary-layer flow on a non-isothermal vertical plate under the effect of an external velocity and a magnetic field normal to the plate. The application of two-parameter transformation group reduces the number of independent variables, by two, and consequently the system of governing partial differential equations with the boundary and initial conditions reduces to a system of ordinary differential equations with appropriate corresponding conditions. The Runge-Kutta shooting method used to find the numerical solution of the velocity field, shear stress, heat transfer and heat flux has been obtained. The effect of the magnetic field on the velocity field and the Prandtl number on the heat transfer and heat flux has been discussed.

  20. Effect of the magnetic field direction on forced convection heat transfer enhancements in ferrofluids

    NASA Astrophysics Data System (ADS)

    Cherief, Wahid; Avenas, Yvan; Ferrouillat, Sébastien; Kedous-Lebouc, Afef; Jossic, Laurent; Berard, Jean; Petit, Mickael

    2015-07-01

    Applying a magnetic field on a ferrofluid flow induces a large increase of the convective heat transfer coefficient. In this paper, the thermal-hydraulic behaviors of two commercial ferrofluids are compared. The variations of both the pressure drop and the heat transfer coefficient due to the magnetic field are measured in the following conditions: square duct, laminar flow and uniform wall heat flux. The square section with two insulated walls allows for the characterization of the effect of the magnetic field direction. The experimental results show that the heat transfer is better enhanced when the magnetic field is perpendicular to the heat flux. In the best case, the local heat transfer coefficient increase is about 75%. On the contrary, another experimental setup shows no enhancement of thermal conductivity when the magnetic field is perpendicular to the heat flux. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014) - Elected submissions", edited by Adel Razek

  1. A methodology to determine boundary conditions from forced convection experiments using liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Jakkareddy, Pradeep S.; Balaji, C.

    2017-02-01

    This paper reports the results of an experimental study to estimate the heat flux and convective heat transfer coefficient using liquid crystal thermography and Bayesian inference in a heat generating sphere, enclosed in a cubical Teflon block. The geometry considered for the experiments comprises a heater inserted in a hollow hemispherical aluminium ball, resulting in a volumetric heat generation source that is placed at the center of the Teflon block. Calibrated thermochromic liquid crystal sheets are used to capture the temperature distribution at the front face of the Teflon block. The forward model is the three dimensional conduction equation which is solved within the Teflon block to obtain steady state temperatures, using COMSOL. Match up experiments are carried out for various velocities by minimizing the residual between TLC and simulated temperatures for every assumed loss coefficient, to obtain a correlation of average Nusselt number against Reynolds number. This is used for prescribing the boundary condition for the solution to the forward model. A surrogate model obtained by artificial neural network built upon the data from COMSOL simulations is used to drive a Markov Chain Monte Carlo based Metropolis Hastings algorithm to generate the samples. Bayesian inference is adopted to solve the inverse problem for determination of heat flux and heat transfer coefficient from the measured temperature field. Point estimates of the posterior like the mean, maximum a posteriori and standard deviation of the retrieved heat flux and convective heat transfer coefficient are reported. Additionally the effect of number of samples on the performance of the estimation process has been investigated.

  2. A methodology to determine boundary conditions from forced convection experiments using liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Jakkareddy, Pradeep S.; Balaji, C.

    2016-05-01

    This paper reports the results of an experimental study to estimate the heat flux and convective heat transfer coefficient using liquid crystal thermography and Bayesian inference in a heat generating sphere, enclosed in a cubical Teflon block. The geometry considered for the experiments comprises a heater inserted in a hollow hemispherical aluminium ball, resulting in a volumetric heat generation source that is placed at the center of the Teflon block. Calibrated thermochromic liquid crystal sheets are used to capture the temperature distribution at the front face of the Teflon block. The forward model is the three dimensional conduction equation which is solved within the Teflon block to obtain steady state temperatures, using COMSOL. Match up experiments are carried out for various velocities by minimizing the residual between TLC and simulated temperatures for every assumed loss coefficient, to obtain a correlation of average Nusselt number against Reynolds number. This is used for prescribing the boundary condition for the solution to the forward model. A surrogate model obtained by artificial neural network built upon the data from COMSOL simulations is used to drive a Markov Chain Monte Carlo based Metropolis Hastings algorithm to generate the samples. Bayesian inference is adopted to solve the inverse problem for determination of heat flux and heat transfer coefficient from the measured temperature field. Point estimates of the posterior like the mean, maximum a posteriori and standard deviation of the retrieved heat flux and convective heat transfer coefficient are reported. Additionally the effect of number of samples on the performance of the estimation process has been investigated.

  3. Magnetoacoustic tomography with magnetic induction (MAT-MI) for imaging electrical conductivity of biological tissue: a tutorial review

    NASA Astrophysics Data System (ADS)

    Li, Xu; Yu, Kai; He, Bin

    2016-09-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging method developed to map electrical conductivity of biological tissue with millimeter level spatial resolution. In MAT-MI, a time-varying magnetic stimulation is applied to induce eddy current inside the conductive tissue sample. In the presence of a static magnetic field, the Lorentz force acting on the induced eddy current drives mechanical vibrations producing detectable ultrasound signals. These ultrasound signals can then be acquired to reconstruct a map related to the sample’s electrical conductivity contrast. This work reviews fundamental ideas of MAT-MI and major techniques developed in recent years. First, the physical mechanisms underlying MAT-MI imaging are described, including the magnetic induction and Lorentz force induced acoustic wave propagation. Second, experimental setups and various imaging strategies for MAT-MI are reviewed and compared, together with the corresponding experimental results. In addition, as a recently developed reverse mode of MAT-MI, magneto-acousto-electrical tomography with magnetic induction is briefly reviewed in terms of its theory and experimental studies. Finally, we give our opinions on existing challenges and future directions for MAT-MI research. With all the reported and future technical advancement, MAT-MI has the potential to become an important noninvasive modality for electrical conductivity imaging of biological tissue.

  4. Ink for Ink-Jet Printing of Electrically Conductive Structures on Flexible Substrates with Low Thermal Resistance

    NASA Astrophysics Data System (ADS)

    Mościcki, A.; Smolarek-Nowak, A.; Felba, J.; Kinart, A.

    2017-02-01

    The development of new technologies in electronics related to flexible polymeric substrates forces the industry to introduce suitable tools (special type of dispensers) and modern conductive materials for printing electronic circuits. Moreover, due to the wide use of inexpensive polymeric foils (polyethene, PE, or poly(ethylene terephthalate), PET), there is a need to develop materials with the lowest possible processing temperatures. The present paper presents the selection criteria of suitable components and their preparation for obtaining electrically conductive ink with a special nanosilver base. In the case of the discussed solution, all components allow to make circuits in relatively low sintering temperature (even below 130°C). Additionally, the authors show the most significant ink parameters that should be taken into consideration during Research and Development (R&D) works with electrically conductive inks. Moreover, ink stability parameters are discussed and some examples of printed circuits are presented.

  5. Reduction Kinetics and Electrical Conductivity in Lead Disilicate Glasses.

    NASA Astrophysics Data System (ADS)

    Kumar, Sajal

    Reduced lead silicate based glasses constitute the active element in night vision devices. The thermochemical reduction of these glasses is necessary to render them electronically conducting. In this thesis some of the more important reduction parameters and their influence on the post-reduction have been identified. The aim of this work was to establish the conduction mechanism(s) responsible in these glasses. The samples were reduced in hydrogen of varying moisture content, in the temperature range of 330-500 ^circC for various times. X-ray diffraction and thermogravimetric measurements clearly established that the reduction resulted in the formation of metallic lead islands with a diameter of ~4 nm, with an inter-island spacing of ~ 3.4 nm. In contrast to the electrical conductivity, the microstructure was found to be a weak function of reduction parameters. No coarsening of the microstructure was observed even after extended anneals at high temperatures, strongly suggesting that the final lead-island size was dictated by the size of the holes either present in the parent glass or formed as a result of reduction, in an otherwise rigid glass network. The electronic conductivity was found to go through a minimum with reduction temperature. Increasing the moisture content of the reducing gas resulted in an increase in the post-reduction resistance and in the sharpness of the minimum. The post-reduction activation energies were measured to be ~0.09 eV and found to be independent of all reduction variables, indicating that a single conduction mechanism was operative in all cases. The variation in conductivity was ascribed to variation in the number of mobile carriers. The mechanism of conduction was proposed to be that of a bipolaron hopping between Pb^{4+} and Pb ^{2+} ions, the former forming as a result of a disproportionation reaction that takes place during reduction and/or cooling of the samples from the reduction temperature. The electron transport is believed

  6. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1997-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and have been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties as well as mechanical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has added to already existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The objective of this program was to develop two types of passive electrically conductive TCMS. The first was a highly absorbing/emitting black surface and the second was a low (alpha(sub s)/epsilon(sub N)) type white surface. The surface resistance goals for the black absorber was 10(exp 4) to 10(exp 9) Omega/square, and for the white surfaces it was 10(exp 6) to 10(exp 10) Omega/square. Several material system concepts were suggested and evaluated for space environment stability and electrical performance characterization. Our efforts in designing and evaluating these material systems have resulted in several developments. New concepts, pigments and binders have been developed to provide new engineering quality TCMS. Some of these have already found application on space hardware, some are waiting to be recognized by thermal designers, and some require further detailed studies to become state-of-the-art for future space hardware and space structures. Our studies on baseline state-of-the-art materials and

  7. Illuminating the electrical conductivity of the lowermost mantle from below

    NASA Astrophysics Data System (ADS)

    Jault, Dominique

    2015-07-01

    The magnetic field that originates in the earth's core is transformed across the electrically conducting mantle before being observed, at the earth's surface or above. Assuming that the conductivity depends only on radius, it has been customary to treat the mantle as a linear time-invariant filter for the core magnetic field, with properties (as a function of the frequency ω) specified by the transfer function Γ(ω). An high-frequency approximation to Γ(ω), which is derived from a three terms WKBJ expansion with ω-1/2 as small parameter, is found here to reproduce adequately, for low harmonic degrees and/or thin conducting layers, the exact solution, which is evaluated numerically. It is contrasted with the low-frequency estimation of Γ, which consists in a perturbation procedure and in writing Γ(ω) as a series in powers of ω (ω → 0). The low-frequency theory is applied to the magnetic variations produced by the geostrophic core flows with about 6 yr period as the phase of these flows is independently determined from their effect on the length of the day. Apart from that, the low-frequency approximation overestimates the screening by the mantle of high-frequency signals, especially the low harmonic degree ones. In practice, the attenuating factor defined from the O(ω2) term in the expansion of Γ as ω → 0 cannot be retrieved from analyses of geomagnetic time-series. Application of the mantle filter theory hinges on our knowledge about the time spectrum of the magnetic field at the core surface. The low-frequency theory had been previously applied to observatory series on the assumption that geomagnetic jerks occurring in the core are rare and isolated events. Rather than following up these earlier studies, I note that the spectral density function for the second time derivative of the main magnetic field coefficients is approximately independent of ω in a frequency range for which the mantle has undoubtedly negligible influence. In the absence of

  8. Synthesis and applications of electrically conducting polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ku, Bon-Cheol

    This research focuses on the synthesis and applications of electrically conducting polymer nanocomposites through molecular self-assembly. Two different classes of polymers, polyaniline (PANI) and polyacetylenes have been synthesized by biomimetic catalysis and spontaneous polymerization method. For gas barrier materials, commercially available polymers, poly(allylamine hydrochloride) (PAH) and poly (acrylic acid) (PAA), have also been used and thermally cross-linked. The morphological, optical and electrical properties of amphiphilic polyacetylenes have been studied. Furthermore, barrier properties, permselectivity, pervaporation properties of polyacetylenes/aluminosilicate nanocomposites have been investigated. For processability and electrical properties of carbon nanotube and conducting polymers, substituted ionic polyacetylenes (SIPA) have been covalently incorporated onto single-walled carbon nanotubes (SWNT) using the "grafting-from" technique. In the first study, a nanocomposite film catalyst has been prepared by electrostatic layer-by-layer (ELBL) self-assembly of a polyelectrolyte and a biomimetic catalyst for synthesis of polyaniline. Poly(dimethyl diallylammonium chloride) (PDAC) and hematin have been used as polycation and counter anions, respectively. The absorption spectra by UV-vis-NIR spectroscopy showed that conductive form polyaniline was formed not only as a coating on the surface of the ELBL composites but was also formed in solution. Furthermore, it was found that the reaction rate was affected by pH and concentration of hematin in the multilayers. The feasibility of controlled desorption of hematin molecules from the LBL assembly was explored and demonstrated by changing the pH and hematin concentration. The polymerization rate of aniline in solution was enhanced with decreasing pH of the solutions due to increased desorption of hematin nanoparticles from the multilayers. These ELBL hematin assemblies demonstrated both a way to functionalize

  9. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  10. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem

    2016-09-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  11. Numerical simulation of laminar forced convection of water-CuO nanofluid inside a triangular duct

    NASA Astrophysics Data System (ADS)

    Aghanajafi, Amir; Toghraie, Davood; Mehmandoust, Babak

    2017-01-01

    In this article, distilled water and CuO particles with volume fraction of 1%, 2% and 4% are numerically studied. The steady state flow regime is considered laminar with Reynolds number of 100, and nano-particles diameters are assumed 20 nm and 80 nm. The hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm, respectively. The problem is solved for two different boundary conditions; firstly, constant heat flux for all sides as a validation approach; and secondly, constant heat flux for two sides and constant temperature for one side (hot plate). Convective heat transfer coefficient, Nusselt number, pressure loss through the channel, velocity distribution in cross section and temperature distribution on walls are investigated in detail. The fluid flow is supposed to be one-phase flow. It can be observed that nano-fluid leads to a remarkable enhancement on heat transfer coefficient. Furthermore, CuO particles increase pressure loss through the channel and velocity distribution in fully developed cross section of channel, as well. The computations reveal that the size of nano-particles has no significant influence on heat transfer properties. Besides, the study shows a good agreement between provided outcomes and experimental data available in the literature.

  12. A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, James R.

    1997-01-01

    A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.

  13. The Wilkes subglacial basin eastern margin electrical conductivity anomaly

    NASA Astrophysics Data System (ADS)

    Rizzello, Daniele; Armadillo, Egidio; Ferraccioli, Fausto; Caneva, Giorgio

    2014-05-01

    allowed for a new processing of a wide dataset acquired during three different international Antarctic campaigns supported by the Italian Antarctic Project: the BACKTAM, WIBEM and WISE expeditions. The qualitative analysis of the induction arrows, in the period range 20-170 s, reveals an approximately 2D regional electrical conductivity pattern with a clear differentiation between the three Terrains crossed by the GDS transect we have re-analized: the Robertson Bay, the Bowers and the Wilson Terrain. Bi-dimensional conductivity models, jointly with magnetic and gravimetric profiles, suggest a differentiation of the investigated area in three crustal sectors separated by the Daniels Range and the Bowers Mts., in close relation with main known structural lineaments; to the West, a deep conductivity anomaly is associated with the transition to the Wilkes Subglagial Basin. We deem that such anomaly, together with the magnetic and gravimetric signatures, is compatible with an extensional regime in the eastern margin of the WSB. References Rizzello, D., Armadillo, E., Manzella, A."Statistical analysis of the polar electrojet influence on geomagnetic transfer functions estimates, over wide time and space scales". EGU 2013 General Assembly, Wien - poster presentation.

  14. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    PubMed

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-06

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  15. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    SciTech Connect

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in two different diameter channels (0.083 and 0.370Ã). In the 0

  16. The Effect of a Heterogeneous Thin Electrically Conducting Lower Mantle Layer on Secular Variation in the Geodynamo

    NASA Astrophysics Data System (ADS)

    Vilim, R.; Dumberry, M.; Stanley, S.

    2013-12-01

    Recent studies have shown that the rate of secular variation is not constant over the Earth. Particularly, the Pacific Ocean is remarkably devoid of any quickly time varying magnetic field components. While this could be due to factors intrinsic to the dynamo, the Earth's lowest mantle displays a remarkable heterogeneity that could also help explain the pattern of secular variation if this deep mantle heterogeneity can couple to the dynamo. There have been several recent studies that discuss the possibility of an electrically conducting lower mantle, either because of the metallization of FeO, or from the deep penetration of iron into the mantle due to morphological instabilities. If a thin lower mantle layer is heterogeneous in electrical conductivity it could couple to the flow via the Lorenz force and brake the eddies which contribute to secular variation, lowering both the field amplitude and the rate of secular variation. A conducting mantle layer will also preferentially damp the quickly time varying components of the magnetic field via the electromagnetic screening effect, reducing the secular variation we observe at the surface of the Earth. While other studies have investigated the thermal effects of a heterogeneous lower mantle on the dynamo, we investigate the effects of a thin electrically conducting lower mantle layer. We use a numerical geodynamo model to determine whether this layer can cause the spatial pattern of secular variation rates observed for the Earth.

  17. Surface Electrical Conductivity of Single Crystal Spinel in Cesium Vapour.

    DTIC Science & Technology

    2007-11-02

    Agnew TOPAZ international Program 901 University Blvd. Albuquerque, NM 87106 USA. 1-9990219 0 4 5 DISTRIBUTION STATEMENT A: Approved for Public...Office of Aerospace Research and Development of the U.S. Air Force under contract number F61708-95-C0002. 2nd April 1995 P. Agnew TOPAZ International...and between the electrodes and the TFE body. A program of research was established as part of the TOPAZ International Program (TIP) with the purpose

  18. EFFECTS OF TRITIUM GAS EXPOSURE ON ELECTRICALLY CONDUCTING POLYMERS

    SciTech Connect

    Kane, M.; Clark, E.; Lascola, R.

    2009-12-16

    Effects of beta (tritium) and gamma irradiation on the surface electrical conductivity of two types of conducting polymer films are documented to determine their potential use as a sensing and surveillance device for the tritium facility. It was shown that surface conductivity was significantly reduced by irradiation with both gamma and tritium gas. In order to compare the results from the two radiation sources, an approximate dose equivalence was calculated. The materials were also sensitive to small radiation doses (<10{sup 5} rad), showing that there is a measurable response to relatively small total doses of tritium gas. Spectroscopy was also used to confirm the mechanism by which this sensing device would operate in order to calibrate this sensor for potential use. It was determined that one material (polyaniline) was very sensitive to oxidation while the other material (PEDOT-PSS) was not. However, polyaniline provided the best response as a sensing material, and it is suggested that an oxygen-impermeable, radiation-transparent coating be applied to this material for future device prototype fabrication. A great deal of interest has developed in recent years in the area of conducting polymers due to the high levels of conductivity that can be achieved, some comparable to that of metals [Gerard 2002]. Additionally, the desirable physical and chemical properties of a polymer are retained and can be exploited for various applications, including light emitting diodes (LED), anti-static packaging, electronic coatings, and sensors. The electron transfer mechanism is generally accepted as one of electron 'hopping' through delocalized electrons in the conjugated backbone, although other mechanisms have been proposed based on the type of polymer and dopant [Inzelt 2000, Gerard 2002]. The conducting polymer polyaniline (PANi) is of particular interest because there are extensive studies on the modulation of the conductivity by changing either the oxidation state of the

  19. Development of electrically conductive-superoleophobic micropillars for reducing surface adhesion of oil at low temperatures

    NASA Astrophysics Data System (ADS)

    Pan, Zihe; Wang, Tianchang; Zhou, Yikang; Zhao, Boxin

    2016-12-01

    Electrically conductive and superoleophobic micropillars have been developed through the construction of biomimetic micropillars using Ag-filled epoxy composites and the incorporation of FDTS on the micropillar surface. These micropillars are found to be superoleophobic with an oil contact angle of 140°, demonstrating excellent self-cleaning properties. The conductivity of micropillars allows for the Joule-heating effect to actively reduce the adhesion and even unfreeze the frozen oil droplets by passing electrical current. Electrical resistance of the composite micropillars was modulated by two orders of magnitudes by varying the contents of Ag flakes from 45 wt% to 65 wt%. The effectiveness of conductive micropillars for surface un-freezing was investigated by applying DC current to decrease the adhesion strength of frozen oil droplets on surfaces. The results showed a pronounced reduction of frozen oil adhesion force by 60% when the resistance increased from 7.5 Ω to 877 Ω after applying DC current for 2 min. By continuously applying DC current for 3 min, the frozen oil adhesion decreased to 0.05 N, reaching zero when the surface was heated up to -10 °C after applying DC current for 5 min. In contrast, when the droplet was heated up to -5 °C by hot air, there is still a substantial force of adhesion. The research findings demonstrate the use of constructing conductive-superoleophobic composite micropillars at surface for eliminating the frozen oil from surfaces at low temperatures.

  20. Tuning Thermal and Electrical Conductivities in Structure-engineered Nanowires for High-efficiency Thermoelectric Devices

    DTIC Science & Technology

    2011-09-30

    materials, which determines the efficiency of thermoelectric devices, because the three parameters such as Seebeck coefficient (S), electrical conductivity...predicted to be enhanced by size effects and quantum confinement effects providing the opportunities to control S, σ and κ independently. In...efficiency of thermoelectric devices, because the three parameters such as Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ

  1. Soil permittivity response to bulk electrical conductivity for selected soil water sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...

  2. Sensing the water content of honey from temperature-dependent electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to predict water content in honey, electrical conductivity was measured on blossom honey types of milk-vetch, jujube and yellow-locust with water content of 18%-37% between 5-40ºC. Regression models of electrical conductivity were developed as functions of water content and temperature. The...

  3. Forced convection and transport effects during hyperbaric laser chemical vapor deposition

    SciTech Connect

    Maxwell, James L; Chavez, Craig A; Espinoza, Miguel; Black, Marcie; Maskaly, Karlene; Boman, Mats

    2009-01-01

    This work explores mass transport processes during HP-LCYD, including the transverse forced-flow of precursor gases through a nozzle to enhance fiber growth rates. The use of laser trapping and suspension of nano-scale particles in the precursor flow is also described, providing insights into the nature of the gas flow, including jetting from the fiber tip and thermodiffusion processes near the reaction zone. The effects of differing molecular-weight buffer gases is also explored in conjunction with the Soret effect, and it is found that nucleation at the deposit surface (and homogeneous nucleation in the gas phase) can be enhanced/ retarded, depending on the buffer gas molecular weight. To demonstrate that extensive microstructures can be grown simultaneously, three-dimensional fiber arrays are also grown in-parallel using diffractive optics--without delatory effects from neighboring reaction sites.

  4. Electrical conductivity and physical properties of surimi-potato starch under ohmic heating.

    PubMed

    Pongviratchai, P; Park, J W

    2007-11-01

    Electrical conductivities of Alaska pollock surimi mixed with native and pregelled potato starch at different concentrations (0%, 3%, and 9%) were measured at different moisture contents (75% and 81%) using a multifrequency ohmic heating system. Surimi-starch paste was tested up to 80 degrees C at frequencies from 55 Hz to 20 KHz and at alternating currents of 4.3 and 15.5 V/cm voltage gradient. Electrical conductivity increased when moisture content, applied frequency, and applied voltage increased, but decreased when starch concentration increased. Electrical conductivity was correlated linearly with temperature (R(2) approximately 0.99). Electrical conductivity pattern (magnitude) changed when temperature increased, which was clearly seen after 55 degrees C in the native potato starch system, especially at high concentration. This confirms that starch gelatinization that occurred during heating affects the electrical conductivity. Whiteness and texture properties decreased with an increase of starch concentration and a decrease of moisture content.

  5. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder

    NASA Astrophysics Data System (ADS)

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-12-01

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

  6. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder.

    PubMed

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-12-22

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.

  7. Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder

    PubMed Central

    Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong

    2016-01-01

    The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service. PMID:28004839

  8. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

    NASA Astrophysics Data System (ADS)

    E, Lotfi; H, Rezania; B, Arghavaninia; M, Yarmohammadi

    2016-07-01

    We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.

  9. High performance heat curing copper-silver powders filled electrically conductive adhesives

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi

    2015-03-01

    In this study, high performance electrically conductive adhesives were fabricated from a vinyl ester resin, a thermal initiator, silver coated copper powders, and pure silver powders, without using any other coupling agent, dispersing agent, and reducing agent. The heat cured copper-silver powders filled electrically conductive adhesives presented low bulk resistivity (e.g., 4.53 × 10-5 Ω·cm) due to the silver powders that had given high electrical conductivity to the adhesives, and high shear strength (e.g., 16.22 MPa) provided by the crosslinked structures of vinyl ester resin. These high performance copper-silver powders filled electrically conductive adhesives have lower cost than those filled by pure silver powders, which can be well used in the electronic packaging and can enlarge the application prospects of electrically conductive adhesives. [Figure not available: see fulltext.

  10. Constitutive correlations for wire-wrapped subchannel analysis under forced and mixed convection conditions. Part 1. [LMFBR

    SciTech Connect

    Cheng, S.K.; Todreas, N.E.

    1984-08-01

    A simple subchannel analysis method based on the ENERGY series of codes, ENERGY-IV, has been established for predicting the temperature field in a single isolated wire-wrapped Liquid Metal Fast Breeder Reactor (LMFBR) subassembly under steady state forced and mixed convection conditions. The ENERGY-IV is a totally empirical code employed for fast running purposes and requires well calibrated lead length averaged input parameters to achieve satisfactory predictions. These input parameters were identified to be the inlet flow split parameters, the subchannel friction factors, the interchannel mixing parameters, the conduction shape factor, and the transverse velocity at the edge gap. Experiments were performed in a 37-pin wire-wrapped rod bundle with a geometry between that of a typical LMFBR fuel subassembly and blanket subassembly for filling the gap in the available data base for the input parameters. The isokinetic extraction method for measuring subchannel velocity, the pitot-static probe for measuring pressure drop, and the salt tracer injection method for estimating the interchannel mixing, were used in these experiments.

  11. Correlation of Normal Gravity Mixed Convection Blowoff Limits with Microgravity Forced Flow Blowoff Limits

    NASA Technical Reports Server (NTRS)

    Marcum, Jeremy W.; Olson, Sandra L.; Ferkul, Paul V.

    2016-01-01

    The axisymmetric rod geometry in upward axial stagnation flow provides a simple way to measure normal gravity blowoff limits to compare with microgravity Burning and Suppression of Solids - II (BASS-II) results recently obtained aboard the International Space Station. This testing utilized the same BASS-II concurrent rod geometry, but with the addition of normal gravity buoyant flow. Cast polymethylmethacrylate (PMMA) rods of diameters ranging from 0.635 cm to 3.81 cm were burned at oxygen concentrations ranging from 14 to 18% by volume. The forced flow velocity where blowoff occurred was determined for each rod size and oxygen concentration. These blowoff limits compare favorably with the BASS-II results when the buoyant stretch is included and the flow is corrected by considering the blockage factor of the fuel. From these results, the normal gravity blowoff boundary for this axisymmetric rod geometry is determined to be linear, with oxygen concentration directly proportional to flow speed. We describe a new normal gravity 'upward flame spread test' method which extrapolates the linear blowoff boundary to the zero stretch limit in order to resolve microgravity flammability limits-something current methods cannot do. This new test method can improve spacecraft fire safety for future exploration missions by providing a tractable way to obtain good estimates of material flammability in low gravity.

  12. Analytical and numerical studies on a single-droplet evaporation and combustion under forced convection

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.; Li, K.

    2015-08-01

    Existing droplet evaporation/combustion models in computational fluid dynamics (CFD) simulation of spray combustion are based on simplified 1-D models. Both these models and recently developed 3-D models of single-droplet combustion do not give the conditions for the different existing droplet combustion modes. In this paper, droplet evaporation and combustion are studied both analytically and numerically. In the analytical solution, a 2-D axisymmetric flow surrounding an evaporating and combusting droplet was considered. The governing equations were solved using an integral method, similar to the Karman-Pohlhausen method for solving boundary-layer flows with pressure gradient. The results give a local evaporation rate and flame radius in agreement with experimental results. In numerical simulation, 3-D combusting gas flows surrounding an ethanol droplet were studied. The prediction results show three modes of droplet combustion under different relative velocities, explaining the change in the evaporation constant with an increase in relative velocity observed in experiments. This implies that different droplet combustion models should be developed in simulating spray combustion. The predicted local evaporation rate and flame radius by numerical simulation are in agreement with the analytical solution in the range of azimuthal angles . The numerical results indicate that the drag force of an evaporating and combusting droplet is much smaller than that of a cold solid particle, and thus the currently used drag models should be modified.

  13. Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particle, covering the surface to mainstream temperature ratio of 0.25 T sub W/T sub e 4. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, or K2SO4 vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 1 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the constant-property results.

  14. Condensational Droplet Growth in Rarefied Quiescent Vapor and Forced Convective Conditions

    NASA Astrophysics Data System (ADS)

    Anand, Sushant

    Multiphase Heat transfer is ubiquitous in diverse fields of application such as cooling systems, micro and mini power systems and many chemical processes. By now, single phase dynamics are mostly understood in their applications in vast fields, however multiphase systems especially involving phase changes are still a challenge. Present study aims to enhance understanding in this domain especially in the field of condensation heat transfer. Of special relevance to present studies is study of condensation phenomenon for detection of airborne nanoparticles using heterogeneous nucleation. Detection of particulate matter in the environment via heterogeneous condensation is based on the droplet growth phenomenon where seeding particles in presence of supersaturated vapor undergo condensation on their surface and amplify in size to micrometric ranges, thereby making them optically visible. Previous investigations show that condensation is a molecular exchange process affected by mean free path of vapor molecules (lambda) in conjunction with size of condensing droplet (d), which is measured in terms of Knudsen number (Kn=lambda/ d). In an event involving heterogeneous nucleation with favorable thermodynamic conditions for condensation to take place, the droplet growth process begins with accretion of vapor molecules on a surface through random molecular collision (Kn>1) until diffusive forces start dominating the mass transport process (Kn<<1). Knowledge of droplet growth thus requires understanding of mass transport in both of these regimes. Present study aims to understand the dynamics of the Microthermofluidic sensor which has been developed, based on above mentioned fundamentals. Using continuum approach, numerical modeling was carried to understand the effect of various system parameters for improving the device performance to produce conditions which can lead to conditions abetting condensational growth. The study reveals that the minimum size of nanoparticle which

  15. Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Wang, Duojun; Li, Heping; Yi, Li; Matsuzaki, Takuya; Yoshino, Takashi

    2010-09-01

    AC measurements of the electrical conductivity of synthetic quartz along various orientations were made between 0.1 and 1 MHz, at ˜855˜1601 K and at 1.0 GPa. In addition, the electrical conductivity of quartz along the c axis has been studied at 1.0-3.0 GPa. The impedance arcs representing bulk conductivity occur in the frequency range of 103-106 Hz, and the electrical responses of the interface between the sample and the electrode occur in the 0.1˜103 Hz range. The pressure has a weak effect on the electrical conductivity. The electrical conductivity experiences no abrupt change near the α - β phase transition point. The electrical conductivity of quartz is highly anisotropic; the electrical conductivity along the c axis is strongest and several orders of magnitude larger than in other directions. The activation enthalpies along various orientations are determined to be 0.6 and 1.2 eV orders of magnitude, respectively. The interpretation of the former is based on the contribution of alkali ions, while the latter effect is attributed to additional unassociated aluminum ions. Comparison of determined anisotropic conductivity of quartz determined with those from field geophysical models shows that the quartz may potentially provide explanations for the behavior of electrical conductivity of anisotropy in the crust that are inferred from the transverse magnetic mode.

  16. Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids

    PubMed Central

    2011-01-01

    Electrical conductivity is an important property for technological applications of nanofluids that has not been widely studied. Conventional descriptions such as the Maxwell model do not account for surface charge effects that play an important role in electrical conductivity, particularly at higher nanoparticle volume fractions. Here, we perform electrical characterizations of propylene glycol-based ZnO nanofluids with volume fractions as high as 7%, measuring up to a 100-fold increase in electrical conductivity over the base fluid. We observe a large increase in electrical conductivity with increasing volume fraction and decreasing particle size as well as a leveling off of the increase at high volume fractions. These experimental trends are shown to be consistent with an electrical conductivity model previously developed for colloidal suspensions in salt-free media. In particular, the leveling off of electrical conductivity at high volume fractions, which we attribute to counter-ion condensation, represents a significant departure from the "linear fit" models previously used to describe the electrical conductivity of nanofluids. PMID:21711869

  17. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  18. Specific behaviour of thermosolutal convection induced in a vertical porous medium in the case of a separation coefficient identical to the ratio of buoyancy forces

    NASA Astrophysics Data System (ADS)

    Er-Raki, Mohammed; Hasnaoui, Mohammed; Amahmid, Abdelkhalk; El Ganaoui, Mohammed

    2008-03-01

    Thermosolutal natural convection induced in a vertical porous layer heated and salted with uniform fluxes is studied analytically and numerically. The study is focused on a specific case where the separation coefficient is identical to the ratio of buoyancy forces. Analytical results, describing both pseudo-conductive and boundary layer regimes, are discussed. Specific behaviour, corresponding to this particular situation, is presented. To cite this article: M. Er-Raki et al., C. R. Mecanique 336 (2008).

  19. Tunable electrical conductivity in metal-organic framework thin film devices

    SciTech Connect

    Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois

    2016-05-24

    A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.

  20. Fluctuations of Electrical Conductivity: A New Source for Astrophysical Magnetic Fields.

    PubMed

    Pétrélis, F; Alexakis, A; Gissinger, C

    2016-04-22

    We consider the generation of a magnetic field by the flow of a fluid for which the electrical conductivity is nonuniform. A new amplification mechanism is found which leads to dynamo action for flows much simpler than those considered so far. In particular, the fluctuations of the electrical conductivity provide a way to bypass antidynamo theorems. For astrophysical objects, we show through three-dimensional global numerical simulations that the temperature-driven fluctuations of the electrical conductivity can amplify an otherwise decaying large scale equatorial dipolar field. This effect could play a role for the generation of the unusually tilted magnetic field of the iced giants Neptune and Uranus.

  1. Fluctuations of Electrical Conductivity: A New Source for Astrophysical Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Pétrélis, F.; Alexakis, A.; Gissinger, C.

    2016-04-01

    We consider the generation of a magnetic field by the flow of a fluid for which the electrical conductivity is nonuniform. A new amplification mechanism is found which leads to dynamo action for flows much simpler than those considered so far. In particular, the fluctuations of the electrical conductivity provide a way to bypass antidynamo theorems. For astrophysical objects, we show through three-dimensional global numerical simulations that the temperature-driven fluctuations of the electrical conductivity can amplify an otherwise decaying large scale equatorial dipolar field. This effect could play a role for the generation of the unusually tilted magnetic field of the iced giants Neptune and Uranus.

  2. Effect of gamma irradiation on DC electrical conductivity of ZnO nanoparticles

    SciTech Connect

    Swaroop, K.; Somashekarappa, H. M.; Naveen, C. S.; Jayanna, H. S.

    2015-06-24

    The temperature dependent dc electrical conductivity of gamma irradiated Zinc oxide (ZnO) nanoparticles is presented in this paper. The X-ray diffraction (XRD) pattern shows hexagonal wurtzite structure of ZnO. Fourier Transform Infrared Spectroscopy (FTIR) confirms Zn-O stretching vibrations. UV-Visible spectroscopy studies show that the energy band gap (E{sub g}) of the prepared ZnO nanoparticles increases with respect to gamma irradiation dose, which can be related to room temperature dc electrical conductivity. The result shows significant variation in the high temperature dc electrical conductivity of ZnO nanoparticles due to gamma irradiation.

  3. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  4. Tunable electrical conductivity in metal-organic framework thin film devices

    SciTech Connect

    Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois

    2016-08-30

    A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.

  5. Fluence dependent electrical conductivity in aluminium thin films grown by infrared pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Rebollar, Esther; Martínez-Tong, Daniel E.; Sanz, Mikel; Oujja, Mohamed; Marco, José F.; Ezquerra, Tiberio A.; Castillejo, Marta

    2016-11-01

    We studied the effect of laser fluence on the morphology, composition, structure and electric conductivity of deposits generated by pulsed laser ablation of a metallic aluminium target in vacuum using a Q-switched Nd:YAG laser (1064 nm, 15 ns). Upon irradiation for one hour at a repetition rate of 10 Hz, a smooth layer of several tens of nanometres, as revealed by atomic force microscopy (AFM) was deposited on glass. Surface chemical composition was determined by X-ray photoelectron spectroscopy, and to study the conductivity of deposits both I-V curves and conductive-AFM measurements were performed. Irradiation at fluences around 2.7 J/cm2 resulted in deposition of amorphous aluminium oxide films. Differently, at higher fluences above 7 J/cm2, the films are constituted by metallic aluminium. Optical emission spectroscopy revealed that highly ionized species are more abundant in the ablation plumes generated at higher fluences. The results demonstrate the possibility to control by PLD the metal or dielectric character of the films.

  6. Enhancing the electrical conductivity of a hybrid POSS-PCL/graphene nanocomposite polymer.

    PubMed

    Nezakati, Toktam; Tan, Aaron; Seifalian, Alexander M

    2014-12-01

    An electrically conductive polymer using polyhedral oligomeric silsesquioxane (POSS) nanocage incorporated into a modified poly [caprolactone based urea-urethane] (PCL)/graphene hybrid nanocomposite is described. Multilayer graphene flakes (8nm) were homogeneously dispersed into POSS-PCL at 0.1, 2, 5, and 10wt.% concentrations. This dispersion process of the graphene flakes was achieved by the use of stable dimethylacetamide (DMAc), via solution intercalation with POSS-PCL nanocomposites. The impedance spectroscopy of 5.0wt.% and higher concentration of graphene in POSS-PCL represented major improvement in conductivity over pristine POSS-PCL. The percolation threshold occurred at 5.0wt.% graphene concentration, converting the insulator POSS-PCL into a conductive POSS-PCL/graphene hybrid nanocomposite. The structures of the obtained hybrid materials were characterized with atomic force microscopy (AFM), Fourier transform infra-red (FT-IR), and Raman spectroscopy. The conductivity of the resultant nanocomposite polymer was investigated with electrochemical impedance spectroscopy (EIS). Herein, for the first time, we demonstrate a facile method of synthesizing, and describe the electrical properties of a conductive POSS-PCL/graphene nanocomposite polymer.

  7. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    DOEpatents

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.

  8. Benchmarking of thermal hydraulic loop models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES), phase-I: Isothermal steady state forced convection

    NASA Astrophysics Data System (ADS)

    Cho, Jae Hyun; Batta, A.; Casamassima, V.; Cheng, X.; Choi, Yong Joon; Hwang, Il Soon; Lim, Jun; Meloni, P.; Nitti, F. S.; Dedul, V.; Kuznetsov, V.; Komlev, O.; Jaeger, W.; Sedov, A.; Kim, Ji Hak; Puspitarini, D.

    2011-08-01

    As highly promising coolant for new generation nuclear reactors, liquid Lead-Bismuth Eutectic has been extensively worldwide investigated. With high expectation about this advanced coolant, a multi-national systematic study on LBE was proposed in 2007, which covers benchmarking of thermal hydraulic prediction models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES). This international collaboration has been organized by OECD/NEA, and nine organizations - ENEA, ERSE, GIDROPRESS, IAEA, IPPE, KIT/IKET, KIT/INR, NUTRECK, and RRC KI - contribute their efforts to LACANES benchmarking. To produce experimental data for LACANES benchmarking, thermal-hydraulic tests were conducted by using a 12-m tall LBE integral test facility, named as Heavy Eutectic liquid metal loop for integral test of Operability and Safety of PEACER (HELIOS) which has been constructed in 2005 at the Seoul National University in the Republic of Korea. LACANES benchmark campaigns consist of a forced convection (phase-I) and a natural circulation (phase-II). In the forced convection case, the predictions of pressure losses based on handbook correlations and that obtained by Computational Fluid Dynamics code simulation were compared with the measured data for various components of the HELIOS test facility. Based on comparative analyses of the predictions and the measured data, recommendations for the prediction methods of a pressure loss in LACANES were obtained. In this paper, results for the forced convection case (phase-I) of LACANES benchmarking are described.

  9. Using C-Band Dual-Polarization Radar Signatures to Improve Convective Wind Forecasting at Cape Canaveral Air Force Station and NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Amiot, Corey G.; Carey, Lawrence D.; Roeder, William P.; McNamara, Todd M.; Blakeslee, Richard J.

    2017-01-01

    The United States Air Force's 45th Weather Squadron (45WS) is the organization responsible for monitoring atmospheric conditions at Cape Canaveral Air Force Station and NASA Kennedy Space Center (CCAFS/KSC) and issuing warnings for hazardous weather conditions when the need arises. One such warning is issued for convective wind events, for which lead times of 30 and 60 minutes are desired for events with peak wind gusts of 35 knots or greater (i.e., Threshold-1) and 50 knots or greater (i.e., Threshold-2), respectively (Roeder et al. 2014).

  10. Numerical investigation of forced convection of nano fluid flow in horizontal U-longitudinal finned tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.

    2015-11-01

    A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.

  11. The Impact of Model Configuration and Large-Scale, Upper-Level Forcing on CRM-Simulated Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Zeng, X.; Shie, C.-L.; Starr, D.; Simpson, J.

    2004-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 km domain (with 2-kilometer resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (ie., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.

  12. The Impact of Model Configuration and Large-Scale, Upper-Level Forcing on CRM- Simulated Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Zeng, X.; Shie, C.-L.; Starr, D.; Simpson, J.

    2004-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 by 512 km domain (with 2-km resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM Southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (i.e., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.

  13. Dielectric constants and electrical conductivities of sodium dodecyl sulfate in aqueous solutions

    SciTech Connect

    Abe, M.; Ogino, K.

    1981-03-01

    Dielectric properties of sodium dodecyl sulfate in aqueous solution have been studied. The dielectric constant and ac electrical conductivity were measured in the frequency range 30 Hz to 6 MHz. At lower frequencies, with increasing concentrations of sodium dodecyl sulfate, dielectric properties were greatly affected by polarization on the surfaces of the electrode, the so-called space charge polarization. ac electrical conductivities were dependent on the concentration of sodium dodecyl sulfate at all frequencies. The activation energies of dc electrical conduction were much larger in the molecular state than in the aggregation state. The radius of a spherical particle with an electric double layer could be calculated through the measurement of dielectric constant and dc electrical conductivity. 18 references.

  14. In situ electrical conductivity measurements of H2O under static pressure up to 28 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Bao; Gao, Yang; Han, Yonghao; Ma, Yanzhang; Gao, Chunxiao

    2016-08-01

    The in situ electrical conductivity measurements on water in both solid state and liquid state were performed under pressure up to 28 GPa and temperature from 77 K to 300 K using a microcircuit fabricated on a diamond anvil cell (DAC). Water chemically ionization mainly contributes to electrical conduction in liquid state, which is in accord with the results obtained under dynamic pressure. Energy band theory of liquid water was used to understand effect of static pressure on electrical conduction of water. The electric conductivity of H2O decreased discontinuously by four orders of magnitude at 0.7-0.96 GPa, indicating water frozen at this P-T condition. Correspondingly, the conduction of H2O in solid state is determined by arrangement and bending of H-bond in ice VI and ice VII. Based on Jaccard theory, we have concluded that the charge carriers of ice are already existing ions and Bjerrum defects.

  15. A promising structure for fabricating high strength and high electrical conductivity copper alloys

    PubMed Central

    Li, Rengeng; Kang, Huijun; Chen, Zongning; Fan, Guohua; Zou, Cunlei; Wang, Wei; Zhang, Shaojian; Lu, Yiping; Jie, Jinchuan; Cao, Zhiqiang; Li, Tingju; Wang, Tongmin

    2016-01-01

    To address the trade-off between strength and electrical conductivity, we propose a strategy: introducing precipitated particles into a structure composed of deformation twins. A Cu-0.3%Zr alloy was designed to verify our strategy. Zirconium was dissolved into a copper matrix by solution treatment prior to cryorolling and precipitated in the form of Cu5Zr from copper matrix via a subsequent aging treatment. The microstructure evolutions of the processed samples were investigated by transmission electron microscopy and X-ray diffraction analysis, and the mechanical and physical behaviours were evaluated through tensile and electrical conductivity tests. The results demonstrated that superior tensile strength (602.04 MPa) and electrical conductivity (81.4% IACS) was achieved. This strategy provides a new route for balancing the strength and electrical conductivity of copper alloys, which can be developed for large-scale industrial application. PMID:26856764

  16. A promising structure for fabricating high strength and high electrical conductivity copper alloys.

    PubMed

    Li, Rengeng; Kang, Huijun; Chen, Zongning; Fan, Guohua; Zou, Cunlei; Wang, Wei; Zhang, Shaojian; Lu, Yiping; Jie, Jinchuan; Cao, Zhiqiang; Li, Tingju; Wang, Tongmin

    2016-02-09

    To address the trade-off between strength and electrical conductivity, we propose a strategy: introducing precipitated particles into a structure composed of deformation twins. A Cu-0.3%Zr alloy was designed to verify our strategy. Zirconium was dissolved into a copper matrix by solution treatment prior to cryorolling and precipitated in the form of Cu5Zr from copper matrix via a subsequent aging treatment. The microstructure evolutions of the processed samples were investigated by transmission electron microscopy and X-ray diffraction analysis, and the mechanical and physical behaviours were evaluated through tensile and electrical conductivity tests. The results demonstrated that superior tensile strength (602.04 MPa) and electrical conductivity (81.4% IACS) was achieved. This strategy provides a new route for balancing the strength and electrical conductivity of copper alloys, which can be developed for large-scale industrial application.

  17. EVIDENCE FOR MICROBIAL ENHANCED ELECTRICAL CONDUCTIVITY IN HYDROCARBON-CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Electrical conductivity of sediments during microbial mineralization of diesel was investigated in a mesoscale column experiment consisting of biotic contaminated and uncontaminated columns. Microbial population numbers increased with a clear pattern of depth zonation within the ...

  18. Highly electrically conductive nanocomposites based on polymer-infused graphene sponges.

    PubMed

    Li, Yuanqing; Samad, Yarjan Abdul; Polychronopoulou, Kyriaki; Alhassan, Saeed M; Liao, Kin

    2014-04-11

    Conductive polymer composites require a three-dimensional 3D network to impart electrical conductivity. A general method that is applicable to most polymers for achieving a desirable graphene 3D network is still a challenge. We have developed a facile technique to fabricate highly electrical conductive composite using vacuum-assisted infusion of epoxy into graphene sponge GS scaffold. Macroscopic GSs were synthesized from graphene oxide solution by a hydrothermal method combined with freeze drying. The GS/epoxy composites prepared display consistent isotropic electrical conductivity around 1 S/m, and it is found to be close to that of the pristine GS. Compared with neat epoxy, GS/epoxy has a 12-orders-of-magnitude increase in electrical conductivity, attributed to the compactly interconnected graphene network constructed in the polymer matrix. This method can be extended to other materials to fabricate highly conductive composites for practical applications such as electronic devices, sensors, actuators, and electromagnetic shielding.

  19. Magnetic field dependent electric conductivity of the magnetorheological fluids: the influence of oscillatory shear

    NASA Astrophysics Data System (ADS)

    Ruan, Xiaohui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong

    2017-03-01

    In this work, the influence of oscillatory shear on the magnetic field dependent electric conductivity of the magnetorheological fluid (MRF) was reported. Upon applying a 0.96 T magnetic field, the electric conductivity could increase about 1500 times larger than the one without magnetic field. By increasing the volume fraction of carbonyl iron particles in the MRF from 5% to 30%, the electric conductivity increased about 565 times. Under applying an oscillatory shear, the resistance of the MRF decreased and it oscillated synchronously with the oscillatory shear. Interestingly, the larger shear strain led to larger oscillatory amplitude of the resistance. A particle–particle resistance model and a semi-empirical formula were proposed to investigate the influence of the oscillatory shear on the electric conductivity. The fitting results matched the experimental results very well. At last, a possible mechanism was proposed to explain the changes of resistance.

  20. Experimental validation benchmark data for CFD of transient convection from forced to natural with flow reversal on a vertical flat plate

    SciTech Connect

    Lance, Blake W.; Smith, Barton L.

    2016-06-23

    Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified. Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.

  1. Experimental validation benchmark data for CFD of transient convection from forced to natural with flow reversal on a vertical flat plate

    DOE PAGES

    Lance, Blake W.; Smith, Barton L.

    2016-06-23

    Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified.more » Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.« less

  2. Numerical Simulation of Natural Convection of a Nanofluid in an Inclined Heated Enclosure Using Two-Phase Lattice Boltzmann Method: Accurate Effects of Thermophoresis and Brownian Forces.

    PubMed

    Ahmed, Mahmoud; Eslamian, Morteza

    2015-12-01

    Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.

  3. Numerical Simulation of Natural Convection of a Nanofluid in an Inclined Heated Enclosure Using Two-Phase Lattice Boltzmann Method: Accurate Effects of Thermophoresis and Brownian Forces

    NASA Astrophysics Data System (ADS)

    Ahmed, Mahmoud; Eslamian, Morteza

    2015-07-01

    Laminar natural convection in differentially heated ( β = 0°, where β is the inclination angle), inclined ( β = 30° and 60°), and bottom-heated ( β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.

  4. Velocity, temperature, and electrical conductivity profiles in hydrogen-oxygen MHD duct flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.; Pian, C. C. P.

    1978-01-01

    Two-dimensional duct flow computations for radial distributions of velocity, temperature, and electrical conductivity are reported. Calculations were carried out for the flow conditions representative of a hydrogen-oxygen combustion driven MHD duct. Results are presented for: profiles of developing flow in a smooth duct, and for profiles of fully developed pipe flow with a specified streamwise shear stress distribution. The predicted temperature and electrical conductivity profiles for the developing flows compare well with available experimental data.

  5. The thermal conductivity of electrically-conducting liquids at high pressures

    NASA Astrophysics Data System (ADS)

    Wakeham, W. A.; Zalaf, M.

    1986-05-01

    The paper describes a new instrument for the measurement of the thermal conductivity of electrically-conducting liquids at pressures up to 700 MPa with an accuracy of ±0.3%. The instrument is based upon the transient hot-wire principle and the novel features that make it applicable to electrically-conducting fluids are described. In particular a new automatic bridge for the direct measurement of the temperature rise of the hot-wires is discussed.

  6. Electrical Conductivity of Molten CdCl2 at Temperatures as High as 1474 K

    NASA Astrophysics Data System (ADS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2016-07-01

    The electrical conductivity of molten CdCl2 was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241° above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273° lower than in the present work. The activation energy of electrical conductivity was calculated.

  7. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOEpatents

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  8. Experimental Study on the Electrical Conductivity of Pyroxene Andesite at High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Hui, KeShi; Dai, LiDong; Li, HePing; Hu, HaiYing; Jiang, JianJun; Sun, WenQing; Zhang, Hui

    2016-09-01

    The electrical conductivity of pyroxene andesite was in situ measured under conditions of 1.0-2.0 GPa and 673-1073 K using a YJ-3000t multi-anvil press and Solartron-1260 Impedance/Gain-phase analyzer. Experimental results indicate that the electrical conductivities of pyroxene andesite increase with increasing temperature, and the electrical conductivities decrease with the rise of pressure, and the relationship between electrical conductivity (σ) and temperature (T) conforms to an Arrhenius relation within a given pressure and temperature range. When temperature rises up to 873-923 K, the electrical conductivities of pyroxene andesite abruptly increase, and the activation enthalpy increases at this range, which demonstrates that pyroxene andesite starts to dehydrate. By the virtue of the activation enthalpy (0.35-0.42 eV) and the activation volume (-6.75 ± 1.67 cm3/mole) which characterizes the electrical properties of sample after dehydration, we consider that the conduction mechanism is the small polaron conduction before and after dehydration, and that the rise of carrier concentration is the most important reason of increased electrical conductivity.

  9. Electrical conductivity of electrolytes applicable to natural waters from 0 to 100 degrees C

    USGS Publications Warehouse

    McCleskey, R. Blaine

    2011-01-01

    The electrical conductivities of 34 electrolyte solutions found in natural waters ranging from (10-4 to 1) mol•kg-1 in concentration and from (5 to 90) °C have been determined. High-quality electrical conductivity data for numerous electrolytes exist in the scientific literature, but the data do not span the concentration or temperature ranges of many electrolytes in natural waters. Methods for calculating the electrical conductivities of natural waters have incorporated these data from the literature, and as a result these methods cannot be used to reliably calculate the electrical conductivity over a large enough range of temperature and concentration. For the single-electrolyte solutions, empirical equations were developed that relate electrical conductivity to temperature and molality. For the 942 molar conductivity determinations for single electrolytes from this study, the mean relative difference between the calculated and measured values was 0.1 %. The calculated molar conductivity was compared to literature data, and the mean relative difference for 1978 measurements was 0.2 %. These data provide an improved basis for calculating electrical conductivity for most natural waters.

  10. Experimental Study on the Electrical Conductivity of Pyroxene Andesite at High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Hui, KeShi; Dai, LiDong; Li, HePing; Hu, HaiYing; Jiang, JianJun; Sun, WenQing; Zhang, Hui

    2017-03-01

    The electrical conductivity of pyroxene andesite was in situ measured under conditions of 1.0-2.0 GPa and 673-1073 K using a YJ-3000t multi-anvil press and Solartron-1260 Impedance/Gain-phase analyzer. Experimental results indicate that the electrical conductivities of pyroxene andesite increase with increasing temperature, and the electrical conductivities decrease with the rise of pressure, and the relationship between electrical conductivity ( σ) and temperature ( T) conforms to an Arrhenius relation within a given pressure and temperature range. When temperature rises up to 873-923 K, the electrical conductivities of pyroxene andesite abruptly increase, and the activation enthalpy increases at this range, which demonstrates that pyroxene andesite starts to dehydrate. By the virtue of the activation enthalpy (0.35-0.42 eV) and the activation volume (-6.75 ± 1.67 cm3/mole) which characterizes the electrical properties of sample after dehydration, we consider that the conduction mechanism is the small polaron conduction before and after dehydration, and that the rise of carrier concentration is the most important reason of increased electrical conductivity.

  11. Sensing the water content of honey from temperature-dependent electrical conductivity

    NASA Astrophysics Data System (ADS)

    Guo, Wenchuan; Liu, Yi; Zhu, Xinhua; Zhuang, Hong

    2011-08-01

    In order to predict the water content in honey, electrical conductivity was measured on blossom honey types milk-vetch, jujube and yellow-locust with the water content of 18-37% between 5 and 40 °C. The regression models of electrical conductivity were developed as functions of water content and temperature. The results showed that increases in either water content or temperature resulted in an increase in the electrical conductivity of honey with greater changes at higher water content and/or higher temperature. The linear terms of water content and temperature, a quadratic term of water content, and the interaction effect of water content and temperature had significant influence on the electrical conductivity of honey (p < 0.0001). Regardless of blossom honey type, the linear coefficient of the determination of measured and calculated electrical conductivities was 0.998 and the range error ratio was larger than 100. These results suggest that the electrical conductivity of honey might be used to develop a detector for rapidly predicting the water content in blossom honey.

  12. Effect of Melt Convection at Various Gravity Levels and Orientations on the Forces Acting on a Large Spherical Particle in the Vicinity of a Solidification Interface

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.

    2000-01-01

    Numerical modeling was Undertaken to analyze the influence of both radial and axial thermal gradients on convection patterns and velocities claiming solidification of pure Al and an Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a solid/liquid (s/l) interface. These predictions were then be used to define the minimum gravity level (q) required to investigate the fundamental physics of interactions between a particle and a s/l interface. This is an ongoing NASA founded flight experiment entitled "particle engulfment and pushing by solidifying interfaces (PEP)". Steady-state calculations were performed for different gravity levels and orientations with respect to the gravity vector The furnace configuration used in this analysis is the quench module insert (QMI-1) proposed for the Material Science Research Facility (MSRF) on board the International Space Station (ISS). The general model of binary alloy solidification was based on the finite element code FIDAP. At a low g level of 10(exp -4) g(sub o) (g(sub o) = 9.8 m/square s) maximum melt convection was obtained for an orientation of 90 deg. Calculations showed that even for this worst case orientation the dominant forces acting on the particle are the fundamental drag and interfacial forces.

  13. Water in cratonic lithosphere: Calibrating laboratory-determined models of electrical conductivity of mantle minerals using geophysical and petrological observations

    NASA Astrophysics Data System (ADS)

    Jones, Alan G.; Fullea, Javier; Evans, Rob L.; Muller, Mark R.

    2012-06-01

    Measurements of electrical conductivity of "slightly damp" mantle minerals from different laboratories are inconsistent, requiring geophysicists to make choices between them when interpreting their electrical observations. These choices lead to dramatically different conclusions about the amount of water in the mantle, resulting in conflicting conclusions regarding rheological conditions; this impacts on our understanding of mantle convection, among other processes. To attempt to reconcile these differences, we test the laboratory-derived proton conduction models by choosing the simplest petrological scenario possible - cratonic lithosphere - from two locations in southern Africa where we have the most complete knowledge. We compare and contrast the models with field observations of electrical conductivity and of the amount of water in olivine and show that none of the models for proton conduction in olivine proposed by three laboratories are consistent with the field observations. We derive statistically model parameters of the general proton conduction equation that satisfy the observations. The pre-exponent dry proton conduction term (σ0) and the activation enthalpy (ΔHwet) are derived with tight bounds, and are both within the broader 2σ errors of the different laboratory measurements. The two other terms used by the experimentalists, one to describe proton hopping (exponent ron pre-exponent water contentCw) and the other to describe H2O concentration-dependent activation enthalpy (termαCw1/3 added to the activation energy), are less well defined and further field geophysical and petrological observations are required, especially in regions of higher temperature and higher water content.

  14. Electronmagnetic induction probe calibration for electrical conductivity measurements and moisture content determination of Hanford high level waste

    SciTech Connect

    Wittekind, W.D., Westinghouse Hanford

    1996-05-23

    Logic of converting EMI measured electrical conductivity to moisture with expected uncertainty. Estimates from present knowledge, assumptions, and measured data. Archie`s Law has been used since the 1940`s to relate electrical conductivity in porous media to liquid volume fraction. Measured electrical conductivity to moisture content uses: Porosity, Interstitial liquid electrical conductivity, Solid particle density,Interstitial liquid density, and interstitial liquid water content. The uncertainty of assumed values is calculated to determine the final moisture wt.% result uncertainty.

  15. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  16. Hydrothermal Fabrication of Silver Nanowires-Silver Nanoparticles-Graphene Nanosheets Composites in Enhancing Electrical Conductive Performance of Electrically Conductive Adhesives

    PubMed Central

    Ma, Hongru; Zeng, Jinfeng; Harrington, Steven; Ma, Lei; Ma, Mingze; Guo, Xuhong; Ma, Yanqing

    2016-01-01

    Silver nanowires-silver nanoparticles-graphene nanosheets (AgNWs-AgNPs-GN) hybrid nanomaterials were fabricated through a hydrothermal method by using glucose as a green reducing agent. The charge carriers of AgNWs-AgNPs-GN passed through defect regions in the GNs rapidly with the aid of the AgNW and AgNP building blocks, leading to high electrical conductivity of electrically conductive adhesives (ECA) filled with AgNWs-AgNPs-GN. The morphologies of synthesized AgNWs-AgNPs-GN hybrid nanomaterials were characterized by field emission scanning electron microscope (FESEM), and high resolution transmission electron microscopy (HRTEM). X-ray diffraction (XRD) and laser confocal micro-Raman spectroscopy were used to investigate the structure of AgNWs-AgNPs-GN. The resistance of cured ECAs was investigated by the four-probe method. The results indicated AgNWs-AgNPs-GN hybrid nanomaterials exhibited excellent electrical properties for decreasing the resistivity of electrically conductive adhesives (ECA). The resistivity of ECA was 3.01 × 10−4 Ω·cm when the content of the AgNWs-AgNPs-GN hybrid nanomaterial was 0.8 wt %. PMID:28335247

  17. Effects of high magnetic fields on thermal convection of conductive aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Hirota, Noriyuki; Okada, Hidehiko; Sakka, Yoshio

    2015-07-01

    Effects of magnetic fields on the thermal convection in conductive aqueous solutions at ambient temperatures have been studied through heat transport measurements combined with shadowgraph technique-based visualization. The suppression of thermal convection by magnetic field was in fact observed in conductive diamagnetic aqueous solutions of ammonium sulfate. The magnitude of the suppression was found to depend on the applied magnetic field and the electrical conductivity of the sample fluid. These effects are qualitatively understood by assuming that Lorentz force acting on the fluid is a main player. Based on these results, a control method of heat transfer process using high magnetic fields has been demonstrated. It seems feasible to understand the behaviors of liquid metals by using electrolytes aqueous solution combined with a superconducting magnet, since flow conditions thereby are regarded as similar to those for liquid metals in industrial electromagnets.

  18. Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane

    NASA Technical Reports Server (NTRS)

    Mittelsteadt, Cortney K. (Inventor); Laicer, Castro S. T. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)

    2017-01-01

    An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.

  19. Effective electrical conductivity of carbon nanotube-polymer composites: a simplified model and its validation

    NASA Astrophysics Data System (ADS)

    Jang, Sung-Hwan; Yin, Huiming

    2015-04-01

    A simplified model is presented to predict the effective electrical conductivity of carbon nanotube(CNT)-polymer composite with different material proportions, which is validated by the experiments of multi-walled CNT/polydimethylsiloxane (PDMS) composites. CNTs are well dispersed in a PDMS matrix, and the mixture is then cured and cast into thin films for electrical characterization. The CNTs are assumed to be statistically uniformly distributed in the PDMS matrix with the three-dimensional (3D) waviness. As the proportion of CNTs increases to a certain level, namely the percolation threshold, the discrete CNTs start to connect with each other, forming a 3D network which exhibits a significant increase of effective electrical conductivity. The eight-chain model has been used to predict the effective electrical conductivity of the composite, in which the contact resistance between CNTs has been considered through the Simmons’ equation. The eight-chain network features can be significantly changed with the modification to mixing process, CNT length and diameter, and CNT clustering and curling. A Gaussian statistics-based formulation is used to calculate the effective length of a single CNT well dispersed in the matrix. The modeling results of effective electrical conductivity agree with the experiments very well, which are highly dependent on a contact resistance between CNTs and the waviness of the CNTs. The effect of inner-nanotube distance and diameter of CNTs on the effective electrical conductivity of the CNT/PDMS composite is also discussed.

  20. Natural convection: Fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Kakac, S.; Aung, W.; Viskanta, R.

    Among the topics discussed are: stability solutions for laminar external boundary region flows; natural convection in plane layers and cavities with volumetric energy sources; and turbulence modelling equations. Consideration is also given to: natural convection in enclosures containing tube bundles; natural limiting behaviors in porous media cavity flows; numerical solutions in laminar and turbulent natural convection; and heat transfer in the critical region of binary mixtures. Additional topics discussed include: natural convective cooling of electronic equipment; natural convection suppression in solar collectors; and laser induced buoyancy and forced convection in vertical tubes.

  1. Application of the Legendre wavelets method to the parallel plate flow of a third grade fluid and forced convection in a porous duct

    NASA Astrophysics Data System (ADS)

    Ali, N.; Ullah, Mati; Sajid, M.; Khan, S. U.

    2017-03-01

    A method based on Legendre wavelets is presented in this paper to discuss the flow of a third grade fluid between parallel plates and the forced convection in a porous duct. The flow problems are modeled in terms of integral equations which are then solved by the Legendre wavelets method. The comparison between present results and the existing solutions shows that the Legendre wavelets method is a powerful tool for solving nonlinear boundary value problems. We hope this method can be used for solving many interesting problems arising in non-Newtonian fluids.

  2. Quantum transport in strongly disordered crystals: Electrical conductivity with large negative vertex corrections

    NASA Astrophysics Data System (ADS)

    Janiš, Václav; Pokorný, Vladislav

    2012-12-01

    We propose a renormalization scheme of the Kubo formula for the electrical conductivity with multiple backscatterings contributing to the electron-hole irreducible vertex derived from the asymptotic limit to high spatial dimensions. We use this vertex to represent the two-particle Green function via a symmetrized Bethe-Salpeter equation in momentum space. We further utilize the dominance of a pole in the irreducible vertex to an approximate diagonalization of the Bethe-Salpeter equation and a non-perturbative representation of the electron-hole correlation function. The latter function is then used to derive a compact representation for the electrical conductivity at zero temperature without the necessity to evaluate separately the Drude term and vertex corrections. The electrical conductivity calculated in this way remains nonnegative also in the strongly disordered regime where the localization effects become significant and the negative vertex corrections in the standard Kubo formula overweight the Drude term.

  3. Effect of dehydration on the electrical conductivity of phyllite at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Dai, Lidong; Li, Heping; Hu, Haiying; Jiang, Jianjun; Hui, Keshi

    2017-02-01

    The electrical conductivity of phyllite (measured in situ at 0.5-2.5 GPa and 773-1173 K) increases with increasing temperature, satisfying an Arrhenius relation. Dehydration of phyllite at 973-1173 K enormously enhances its electrical conductivity, and the activation enthalpy (0.64-0.81 eV) remains almost constant before and after dehydration. The inflection point of the relationship between electrical conductivity and temperature is used to determine the dehydration temperature (T d ) at each considered pressure (P), leading to the following relationship: T d = 1181 - 100P. The derived relation implies that the dehydration depths of hot and cold subduction zones are 70 and 129 km respectively, which are both close to the depths of arc magma source regions, thereby indicating that the dehydration of pelite significantly influences the generation of melt in subduction zones.

  4. Fluctuations of electrical conductivity: a new source for astrophysical magnetic fields

    NASA Astrophysics Data System (ADS)

    Gissinger, Christophe; Petrelis, Francois; Alexakis, Alexandros

    2016-04-01

    We consider the generation of magnetic field by the flow of a fluid for which the electrical conductivity is nonuniform. We calculate the properties of this effect both analytically and numerically, and find a new amplification mechanism leading to dynamo action for flows much simpler than those considered so far. In particular, the fluctuations of the electrical conductivity provide a way to bypass anti-dynamo theorems. For astrophysical objects, we show through three-dimensional global numerical simulations that the temperature-driven fluctuations of the electrical conductivity can amplify an otherwise decaying large scale equatorial dipolar field. This effect could play a role for the generation of the unusually tilted magnetic field of the iced giants Neptune and Uranus.

  5. Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr, Joe H.

    2016-07-05

    A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.

  6. Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels

    DOEpatents

    Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-04-01

    A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.

  7. Composition and Manufacturing Effects on Electrical Conductivity of Li/FeS 2 Thermal Battery Cathodes

    DOE PAGES

    Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; ...

    2016-06-11

    The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less

  8. Seebeck effect influence on joule heat evolution in electrically conductive silicate materials

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Medved, Igor; Maděra, Jiří; Černý, Robert

    2016-07-01

    In general, silicate building materials are non-conductive matters that are not able to evolve heat when they are subjected to an external voltage. However, the electrical conductivity can be increased by addition of electrically conductive admixtures in appropriate amount which leads to generation of conductive paths in materials matrix. Such enhanced materials can evolve Joule heat and are utilizable as a core of self-heating or snow-melting systems. In this paper, Joule heat evolution together with Seebeck effect in electrically conductive silicate materials was taken into consideration and the model based on heat equation with included influence of DC electric field was proposed. Besides, a modeling example of heating element was carried out on FEM basis and time development of temperature in chosen surface points was expressed in order to declare ability of such system to be applicable.

  9. Facile Synthesis and Electrical Conductivity of Carbon Nanotube Reinforced Nanosilver Composite

    NASA Astrophysics Data System (ADS)

    Pal, Hemant; Sharma, Vimal; Kumar, Rajesh; Thakur, Nagesh

    2012-12-01

    Metal matrix nanocomposites reinforced with carbon nanotubes (CNTs) have become popular in industrial applications. Due to their excellent thermophysical and mechanical properties, CNTs are considered as attractive filler for the improvement in properties of metals. In the present work, we have synthesized noncovalently functionalized CNT reinforced nanosilver composites by using a modified molecular level mixing method. The structure and morphology of nanocomposites are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The electrical conductivity of silver-CNT nanocomposites measured by the four-point probe method is found to be more than that of the pure nanosilver. The significant improvement in electrical conductivity of Ag=CNT nanocomposites stems from homogenous and embedded distribution of CNTs in a silver matrix with intact structure resulting from noncovalent functionalization. The low temperature sintering also enhances the electrical conductivity of Ag=CNT nanocomposites.

  10. Understanding Electrical Conduction States in WO3 Thin Films Applied for Resistive Random-Access Memory

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kieu Hanh; Pham, Kim Ngoc; Dao, Thi Bang Tam; Tran, Dai Lam; Phan, Bach Thang

    2016-05-01

    The electrical conduction and associated resistance switching mechanism of top electrode/WO3/bottom electrode devices [top electrode (TE): Ag, Ti; bottom electrode (BE): Pt, fluorine-doped tin oxide] have been investigated. The direction of switching and switching ability depended on both the top and bottom electrode material. Multiple electrical conduction mechanisms control the leakage current of such switching devices, including trap-controlled space-charge, ballistic, Ohmic, and Fowler-Nordheim tunneling effects. The transition between electrical conduction states is also linked to the switching (SET-RESET) process. This is the first report of ballistic conduction in research into resistive random-access memory. The associated resistive switching mechanisms are also discussed.

  11. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    NASA Technical Reports Server (NTRS)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  12. Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Gaillard, F.; Pichavant, M.; Scaillet, B.

    2008-05-01

    Quantitative interpretation of MT anomalies in volcanic regions requires laboratory measurements of electrical conductivities of natural magma compositions. The electrical conductivities of three lava compositions from Mount Vesuvius (Italy) have been measured using an impedance spectrometer. Experiments were conducted on both glasses and melts between 400 and 1300°C, at both ambient pressure in air and high pressures (up to 400 MPa). Both dry and hydrous (up to 5.6 wt % H2O) melt compositions were investigated. A change of the conduction mechanism corresponding to the glass transition was systematically observed. The conductivity data were fitted by sample-specific Arrhenius laws on either side of Tg. The electrical conductivity increases with temperature and is higher in the order tephrite, phonotephrite to phonolite. For the three investigated compositions, increasing pressure decreases the conductivity, although the effect of pressure is relatively small. The three investigated compositions have similar activation volumes (ΔV = 16-24 cm3 mol-1). Increasing the water content of the melt increases the conductivity. Comparison of activation energies (Ea) from conductivity and sodium diffusion and use of the Nernst-Einstein relation allow sodium to be identified as the main charge carrier in our melts and presumably also in the corresponding glasses. Our data and those of previous studies highlight the correlation between the Arrhenius parameters Ea and σ0. A semiempirical method allowing the determination of the electrical conductivity of natural magmatic liquids is proposed, in which the activation energy is modeled on the basis of the Anderson-Stuart model, σ0 being obtained from the compensation law and ΔV being fitted from our experimental data. The model enables the electrical conductivity to be calculated for the entire range of melt compositions at Mount Vesuvius and also satisfactorily predicts the electrical response of other melt compositions

  13. Electrical conductivity of a silicone network upon electron irradiation: influence of formulation

    NASA Astrophysics Data System (ADS)

    Roggero, A.; Dantras, E.; Paulmier, T.; Tonon, C.; Lewandowski, S.; Dagras, S.; Payan, D.

    2016-12-01

    In this study, the electrical conductivity of a silicone elastomer filled with inorganic fillers was investigated upon electron irradiation. Neat samples consisting of the isolated polysiloxane matrix (with no fillers) were studied in parallel to identify the filler contribution to this evolution. It was shown that exposure to 400 keV electron doses induced a decrease in electrical conductivity for both the filled and neat materials. This decrease was much more pronounced with the filled samples than with the neat ones. Moreover, the activation energy of electrical conductivity (Arrhenius behaviour) doubled in the filled case, while it varied only weakly for the neat case. In light of these results, structure-property relationships were proposed on the basis of the radiation-induced crosslink processes to which this material is subject. In the framework of electronic percolation theory, it is suggested that the radiation-induced formation of SiO3 crosslinks in the polysiloxane network and SiO4 crosslinks at filler-matrix interfaces affects the percolation path of the material, which can be simply modelled by a network of resistors in series. On one hand, their densification increases the overall resistance of the percolation path, which results in the observed decrease of effective electrical conductivity. On the other hand, the steep increase in activation energy in the filled material attributes to the SiO4 crosslinks becoming the most restrictive barrier along the percolation path. In spite of the misleading likeness of electrical conductivities in the pristine state, this study presented evidence that silicone formulation can affect the evolution of electrical properties in radiative environments. To illustrate this conclusion, the use of this material in space applications, especially when directly exposed to the radiative space environment, was discussed. The decrease in electrical conductivity was associated with a progressively increasing risk for the

  14. Influence of the growth and annealing atmosphere on the electrical conductivity of LTG crystals

    NASA Astrophysics Data System (ADS)

    Alani, M.; Batis, N.; Laroche, T.; Nehari, A.; Cabane, H.; Lebbou, K.; Boy, J. J.

    2017-03-01

    We present the electrical conductivity measurements of La3Ga5.5Ta0.5O14 (LGT) crystals grown by Czochralski (Cz) technique in Ir crucibles and N2 atmosphere containing few percent of O2. In addition, we have studied the effect of thermal annealing on the stability and the thermal conductivity. The electrical conductivity depends on the stoichiometry, the inhomogeneous impurities levels, the growth atmosphere and the post-growth annealing conditions. Furthermore, we recorded the UV-Vis transmission spectra of the LGT samples and we note that the less resistive LGT samples have an edge of the intrinsic absorption at the highest wavelengths.

  15. Electrical Conductivity of SiC/Si Composites Obtained from Wood Preforms

    NASA Astrophysics Data System (ADS)

    Béjar, Marco Antonio; Mena, Rodrigo; Toro, Juan Esteban

    2011-02-01

    Biomorphic SiC/Si composites were produced from pine and beech wood, and the corresponding electrical conductivity was determined as a function of the temperature. Firstly, wood preforms were pyrolized at 1050 °C in nitrogen. Then, the pyrolized preforms were impregnated with liquid silicon and kept at 1600 °C for 2 h in vacuum. The SiC/Si composites were obtained due to the produced carbothermal reaction. As expected, the resulting electrical conductivity of these composites increased with the temperature and with the silicon content.

  16. Lustrous copper nanoparticle film: Photodeposition with high quantum yield and electric conductivity

    NASA Astrophysics Data System (ADS)

    Miyagawa, Masaya; Yonemura, Mari; Tanaka, Hideki

    2016-11-01

    Cu nanoparticle (NP) film has attracted much attention due to its high electric conductivity. In the present study, we prepared a Cu NP film on a TiO2-coated substrate by photoreduction of copper acetate solution. The obtained film showed high electric conductivity and metallic luster by the successive deposition of Cu NP. Moreover, the film was decomposed on exposure to fresh air, and its decomposition reaction mechanisms were proposed. Hence, we concluded that the obtained lustrous film was composed of Cu NP, even though its physical properties was similar to bulk copper.

  17. Vapor sensing mechanism of acid on copper phthalocyanine thin films studied by electrical conductivity

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder; Saini, G. S. S.; Tripathi, S. K.

    2013-06-01

    The electrical conductivity of thin films of iron phthalocyanine on glass substrates by thermal evaporation technique have been investigated. The electrical conductivity of thin films of these complexes changes when exposed to oxidizing and reducing gases such as halogens, ammonia, water and NOX. Thermal activation energy in the intrinsic region and impurity scattering region can be calculated by using Arrhenius plot. The dark conductivity and photoconductivity have been taken at different temperatures in the range 312-389 K. These films have been studied as chemical sensors for dilute sulphuric acid.

  18. Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Grimes, C. A.; Dickey, E. C.; Mungle, C.; Ong, K. G.; Qian, D.

    2001-10-01

    In this work we report on the complex permittivity spectra and electrical conductivity of both as-fabricated and graphitized multiwall carbon nanotubes (MWNTs). The high-temperature annealing removes the Fe3C catalyst particles present in the as-fabricated material, enabling the intrinsic MWNT properties to be measured. The permittivity spectra of 1 wt % MWNT-polystyrene composite films are measured from 75 to 1875 MHz. Comparison of measurements with an appropriate effective medium model shows that the residual catalyst inclusions in the core of the nanotube increase the average electrical conductivity by approximately a factor of 3.5.

  19. Electrically conductive doped block copolymer of polyacetylene and polyisoprene. [Soluble in organic solvents

    DOEpatents

    Aldissi, M.

    1984-06-27

    An electrically conductive block copolymer of polyisoprene and polyacetylene and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I/sub 2/ to give it an electrical conductivity in the metallic regime.

  20. Ion Pair in Extreme Aqueous Environments, Molecular-Based and Electric Conductance Approaches

    SciTech Connect

    Chialvo, Ariel A; Gruszkiewicz, Miroslaw {Mirek} S; Simonson, J Michael {Mike}; Palmer, Donald; Cole, David R

    2009-01-01

    We determine by molecular-based simulation the density profiles of the Na+!Cl! ion-pair association constant in steam environments along three supercritical isotherms to interrogate the behavior of ion speciation in dilute aqueous solutions at extreme conditions. Moreover, we describe a new ultra-sensitive flow-through electric conductance apparatus designed to bridge the gap between the currently lowest steam-density conditions at which we are experimentally able to attain electric conductance measurements and the theoretically-reachable zero-density limit. Finally, we highlight important modeling challenges encountered near the zero-density limit and discuss ways to overcome them.

  1. Proton-irradiation-induced anomaly in the electrical conductivity of a hydrogen-bonded ferroelastic system

    SciTech Connect

    Kim, Se-Hun; Lee, Kyu Won; Lee, Cheol Eui; Lee, Kwang-Sei

    2009-11-01

    An anomalous abrupt drop in the electrical conductivity has been observed at the ferroelastic phase transition of a proton-irradiated system of hydrogen-bonded TlH{sub 2}PO{sub 4}. As a result of the high-resolution {sup 31}P NMR chemical-shift measurements, distinct changes in the atomic displacements due to the irradiation were identified in the ferroelastic and paraelastic phases. Besides, {sup 1}H NMR spin-spin relaxation measurements revealed a change due to the irradiation in the proton dynamics at the ferroelastic phase transition, apparently accounting for the much-reduced electrical conductivity in the paraelastic phase of the irradiated system.

  2. Electrical conductivity channels in the atmosphere produced by relativistic-electron microbursts from the magnetosphere

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.

    2017-03-01

    The properties of a cylindrical-shaped magnetic-field-aligned channel of electrical conductivity produced by the precipitation of relativistic-electrons into the atmosphere during a spatially localized magnetospheric microburst are estimated. The conducting channel connects the middle atmosphere ( 50 km) to the ionosphere. A channel diameter of 8 km with an electric conductivity of 1.2×10-9 Ω-1m-1 near the bottom and 1.8×10-7 Ω-1m-1 higher up is found. In the fair-weather electric field, the higher-conductivity portions of the channel can carry substantial electrical currents.

  3. Raman Shifting a Tunable ArF Excimer Laser to Wavelengths of 190 to 240 nm With a Forced Convection Raman Cell

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Tunable radiation, at ultraviolet wavelengths, is produced by Raman shifting a modified 285-mJ ArF excimer laser. Multiple Stokes outputs are observed in H2, CH4, D2, N2, SF6, and CF4 (20, 22, 53, 21, 2.1, and 0.35 percent, respectively). Numbers in parentheses are the first Stokes energy conversion efficiencies. We can access 70 percent of the frequency range 42000-52000 cm (exp -1) (190-240 nm) with Stokes energies that vary from 0.2 microJoule to 58 mJ inside the Raman cell. By using 110 mJ of pump energy and D 2 , the tunable first Stokes energy varies over the 29-58 mJ range as the wavelength is tuned over the 204-206 nm range. Dependence on input energy, gas pressure, He mixture fraction, and circulation of the gas in the forced convection Raman cell is discussed; Stokes conversion is also discussed for laser repetition rates from 1 to 100 Hz. An empirical equation is given to determine whether forced convection can improve outputs for a given repetition rate.

  4. A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Khurana, Deepak; Choudhary, Rajesh; Subudhi, Sudhakar

    2017-01-01

    Nanofluid is the colloidal suspension of nanosized solid particles like metals or metal oxides in some conventional fluids like water and ethylene glycol. Due to its unique characteristics of enhanced heat transfer compared to conventional fluid, it has attracted the attention of research community. The forced convection heat transfer of nanofluid is investigated by numerous researchers. This paper critically reviews the papers published on experimental studies of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO based nanofluids dispersed in water, ethylene glycol and water-ethylene glycol mixture. Most of the researchers have shown a little rise in pressure drop with the use of nanofluids in plain tube. Literature has reported that the pumping power is appreciably high, only at very high particle concentration i.e. more than 5 %. As nanofluids are able to enhance the heat transfer at low particle concentrations so most of the researchers have used less than 3 % volume concentration in their studies. Almost no disagreement is observed on pressure drop results of different researchers. But there is not a common agreement in magnitude and mechanism of heat transfer enhancement. Few studies have shown an anomalous enhancement in heat transfer even at low particle concentration. On the contrary, some researchers have shown little heat transfer enhancement at the same particle concentration. A large variation (2-3 times) in Nusselt number was observed for few studies under similar conditions.

  5. Empirical Equation for Turbulent Forced-Convection Heat Transfer for Prandtl Numbers from 0.001 to 1000

    NASA Technical Reports Server (NTRS)

    vonGlahn, Uwe H.

    1960-01-01

    A review is made of some of the experimental data and analyses applicable to convective heat transfer in fully turbulent flow in smooth tubes with liquid metals and viscous Newtonian fluids. An empirical equation is evolved that closely approximates heat-transfer values obtained from selected analyses and experimental data for Prandtl numbers from 0.001 to 1000. The terms included in the equation are Reynolds number, Prandtl number, and an empirical diffusivity ratio between heat and momentum.

  6. Inversion of soil electrical conductivity data to estimate layered soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CBulk apparent soil electrical conductivity (ECa) sensors respond to multiple soil properties, including clay content, water content, and salt content (i.e., salinity). They provide a single sensor value for an entire soil profile down to a sensor-dependent measurement depth, weighted by a nonlinear...

  7. Estimation of soil physical properties from sensor-based soil strength and apparent electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of soil physical properties has traditionally been through soil sampling and laboratory analyses, which is time-, cost-, and labor-consuming, making it difficult to obtain the spatially-dense data required for precision agriculture. Soil strength and apparent electrical conductivity (...

  8. Column displacement experiments to evaluate electrical conductivity effects on electromagnetic soil water sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk electrical conductivity (EC) in superactive soils has been shown to strongly influence electromagnetic sensing of permittivity. However, these effects are dependent on soil water content and temperature as well as the pore water conductivity. We carried out isothermal column displacement experi...

  9. Estimating topsoil water content of clay soils with data from time-lapse electrical conductivity surveys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial estimation of soil water content (') at the field, hillslope, or catchment scale is required in numerous applications. Time-lapse electrical resistivity and electrical conductivity surveys were recognized as the useful source of information about both spatial variations in soil water conten...

  10. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere

    PubMed Central

    Dai, Lidong; Karato, Shun-ichiro

    2009-01-01

    Electrical conductivity of minerals is sensitive to water content and hence can be used to infer the water content in the mantle. However, previous studies to infer the water content in the upper mantle were based on pure olivine model of the upper mantle. Influence of other minerals particularly that of orthopyroxene needs to be included to obtain a better estimate of water content in view of the high water solubility in this mineral. Here we report new results of electrical conductivity measurements on orthopyroxene, and apply these results to estimate the water content of the upper mantle of Earth. We found that the electrical conductivity of orthopyroxene is enhanced by the addition of water in a similar way as other minerals such as olivine and pyrope garnet. Using these new results, we calculate the electrical conductivity of pyrolite mantle as a function of water content and temperature incorporating the temperature and water fugacity-dependent hydrogen partitioning. Reported values of asthenosphere conductivity of 4 × 10−2−10−1 S/m corresponds to the water content of 0.01–0.04 wt%, a result in good agreement with the petrological model of the upper mantle. PMID:20009379

  11. Relationship between cotton yield and soil electrical conductivity, topography, and landsat imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding spatial and temporal variability in crop yield is a prerequisite to implementing site-specific management of crop inputs. Apparent soil electrical conductivity (ECa), soil brightness, and topography are easily obtained data that can explain yield variability. The objectives of this stu...

  12. Standardization of soil apparent electrical conductivity using multi-temporal surveys across multiple production fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apparent soil electrical conductivity (ECa) is an efficient technique for understanding within-field variability of physical and chemical soil characteristics. Commercial devices are readily available for collecting ECa on whole fields and used broadly for crop management in precision agriculture; h...

  13. New down-hole TDR method for deep profile soil water content and bulk electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comprehensive irrigation and salinity management both require accurate knowledge of field soil water content and bulk electrical conductivity to depths greater than the root zone depth in agricultural fields. Scientists at the USDA-ARS Conservation & Production Research Laboratory, Bushland, Texas, ...

  14. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    DOEpatents

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  15. Interpretation of magnetic resonance soundings in rocks with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Legchenko, A.; Ezersky, M.; Girard, J.-F.; Baltassat, J.-M.; Boucher, M.; Camerlynck, C.; Al-Zoubi, A.

    2008-12-01

    Magnetic resonance sounding (MRS) is an electromagnetic method designed for groundwater investigations. MRS can be applied not only for studying fresh-water aquifers, but also in areas where intrusion of saline water is rendering the subsurface electrically conductive. In the presence of rocks with a high electrical-conductivity attenuation and a phase shift of the MRS signal may influence the efficiency of the MRS method. We investigated the performance of MRS for allowing us to propose a procedure for interpreting MRS data under these conditions. For numerical modeling, we considered a subsurface with a resistivity between 0.5 and 10 Ω m. The results show that the depth of investigation with MRS depends upon the electrical conductivity of groundwater and surrounding rocks, on the depth of the saline water layer, and on the amount of fresh water above the saline water. For interpreting MRS measurements, the electrical conductivity of the subsurface is routinely measured with an electrical or electromagnetic method. However, due to the equivalence problem, the result obtained with these methods may be not unique. Hence, we investigated the influence of the uncertainty in conductivity distribution provided by transient electromagnetic measurements (TEM) on MRS results. It was found that the uncertainty in TEM results has an insignificant effect on MRS.

  16. Use of fathometers and electrical-conductivity probes to monitor riverbed scour at bridge piers

    USGS Publications Warehouse

    Hayes, D.C.; Drummond, F.E.

    1995-01-01

    Two methods, a fathometer system and an electrical- conductivity probe system, were developed to monitor scour at bridge piers. The scour-monitoring systems consisted of a sensor (fathometer or electrical- conductivity probe), power supply, data logger, relay, and system program. The fathometer system was installed and tested at a bridge over the Leipsic River at Leipsic, Delaware, and at a bridge over Sinepuxent Bay near Ocean City. Maryland. Field data collected indicate that fathometers can be used to identify and monitor the riverbed elevation if post processing of the data and trends in the data are used to determine the riverbed location in relation to the transducer. The accuracy of the system is approximately the same as the resolution of the fathometer. Signal scatter can be a major source of error in the data. The electrical- conductivity probe system was installed and tested at a bridge over the Pamunkey River near Hanover, Virginia. The approximate elevation of the riverbed is determined by comparing conductivities of the surface-water flow with conductivities of submerged bed material from sensors located in each. Field data collected indicate that an electrical- conductivity probe, as tested, has limited usefulness in identifying and monitoring the riverbed elevation during high flows. As the discharge increases, the concentration of sediment in the surface-water flow increases, especially near the riverbed. Conductivities, measured at the sensors in the surface-water flow could not be distinguished from conductivities measured at the shallowest sensor in the submerged bed material.

  17. Density, Electrical Conductivity and Viscosity of Hg(0.8)Cd(0.2)Te Melt

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The density, viscosity, and electrical conductivity of Hg(0.8)Cd(0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(0.8)Cd(0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(0.8)Cd(0.2)Te melt as the temperature was decreased to below 1090 K

  18. Laboratory studies of the electrical conductivity of silicate perovskites at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivities of two silicate perovskites and a perovskite-magnesiowuestite assemblage, all having an atomic ratio of Mg to Fe equal to 0.88/0.12, have been measured with alternating current and direct current (dc) techniques at simultaneously high pressures and temperatures. Measurements up to pressures of 80 GPa and temperatures of 3500 K, using a laser-heated diamond anvil cell, demonstrate that the electrical conductivity of these materials remains below 10-3 S/m at lower mantle conditions. The activation energies for electrical conduction are between 0.1 and 0.4 eV from the data, and the conduction in these perovskites is ascribed to an extrinsic electronic process. The new measurements are in agreement with a bound that was previously obtained from dc measurements for the high-PT conductivity of perovskite-dominated assemblages. The results show that the electrical conductivity of (Mg/0.88/Fe/0.12)SiO3 perovskite differs significantly from that of the earth's deep mantle, as inferred from geophysical observations.

  19. Electric Conduction in Semiconductors: A Pedagogical Model Based on the Monte Carlo Method

    ERIC Educational Resources Information Center

    Capizzo, M. C.; Sperandeo-Mineo, R. M.; Zarcone, M.

    2008-01-01

    We present a pedagogic approach aimed at modelling electric conduction in semiconductors in order to describe and explain some macroscopic properties, such as the characteristic behaviour of resistance as a function of temperature. A simple model of the band structure is adopted for the generation of electron-hole pairs as well as for the carrier…

  20. Application of skin electrical conductance of acupuncture meridians for ureteral calculus: a case report.

    PubMed

    Lin, Wu-Chou; Chen, Yung-Hsiang; Xu, Jian-Ming; Chen, Der-Cherng; Chen, Wen-Chi; Lee, Chao-Te

    2011-01-01

    Renal colic is a common condition seen in the emergency department (ED). Our recent study showed that measures of electrical conductance may be used as supplementary diagnostic methods for patients with acute renal colic. Here, we describe the case of a 30-year-old male subject with a left ureteral calculus who presented with frequency and normal-looking urine. He had already visited the outpatient department, but in vain. Normal urinalysis and nonobstructive urogram were reported at that time. Two days later, he was admitted to the ED because of abdominal pain in the left lower quadrant. The urinalysis did not detect red blood cells. Ultrasonography did not indicate hydronephrosis. The meridian electrical conductance and index of sympathovagal balance were found to be abnormal. High level of electrical conductance on the left bladder meridian was found. An unenhanced helical computed tomography was scheduled to reveal a left ureterovesical stone. Ureteroscopic intervention was later uneventfully performed, and the patient's pain was relieved. The follow-up measurements showed that the meridian parameters had returned to normal one month after treatment. This case suggests that bladder meridian electrical conductance might be used as a supplemental method for ureteral calculus diagnosis.

  1. Effect of Soil Water on Apparent Soil Electrical Conductivity and Texture Relationships in a Dryland Field.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision farming (PF) research has shown that when high salinity levels are not present, apparent soil electrical conductivity (ECa) is usually strongly correlated with soil texture. Mapping ECa has been promoted as a means for identifying management zones that are needed for variable application ...

  2. Inductive Measurement of Plasma Jet Electrical Conductivity (MSFC Center Director's discretionary Fund). Part 2

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2001-01-01

    Measurement of plasma jet electrical conductivity has utility in the development of explosively driven magnetohydrodynamic (MHD) energy converters as well as magnetic flux compression reaction chambers for nuclear/chemical pulse propulsion and power. Within these types of reactors, the physical parameter of critical importance to underlying MHD processes is the magnetic Reynolds number, the value of which depends upon the product of plasma electrical conductivity and velocity. Therefore, a thorough understanding of MHD phenomena at high magnetic Reynolds number is essential, and methods are needed for the accurate and reliable measurement of electrical conductivity in high-speed plasma jets. It is well known that direct measurements using electrodes suffer from large surface resistance, and an electrodeless technique is desired. To address this need, an inductive probing scheme, originally developed for shock tube studies, has been adapted. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-in.-diameter probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-g shaped charges. Measured conductivities were in the range of 4 kS/m for unseeded octol charges and 26 kS/m for seeded octol charges containing 2-percent potassium carbonate by mass.

  3. Numerical analysis of the laminar forced convective heat transfer in coiled tubes with periodic ring-type corrugation

    NASA Astrophysics Data System (ADS)

    Vocale, Pamela; Mocerino, Andrea; Bozzoli, Fabio; Rainieri, Sara

    2016-09-01

    Wall curvature and wall corrugation represent two of the most used passive techniques to enhance convective heat transfer. The effectiveness of wall curvature is due to the fact that it gives origin to a secondary fluid motion orthogonal to the main flow, while wall corrugation is used to disrupt the development of the boundary layers, by enhancing the convective heat transfer mechanism. The compound use of the two techniques has been investigated in literature, mainly experimentally, but further investigation is still needed. In particular, it has been experimentally observed that this compound enhancement technique brings an additional heat transfer augmentation in the majority of applications whereas in the very low Reynolds number range the surface average performances of corrugated coils are lower than the one shown by smooth wall coils. This paper deepened the knowledge on this phenomenon presenting a numerical investigation of the effect induced by a periodic ring-type corrugation on the laminar convective heat transfer in coiled tubes. The study considered the laminar flow in the Reynolds and Dean number range 25-100 and 6-24 respectively. The investigation was particularly focused on the Dean's vortices destruction mechanism, induced by the wall corrugation and on the consequent breakdown of the average Nusselt number.

  4. The electrical conductivity during incipient melting in the oceanic low velocity zone

    PubMed Central

    Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice

    2014-01-01

    A low viscosity layer in the upper mantle, the Asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the Asthenosphere are attributed either to sub-solidus water-related defects in olivine minerals2-4 or to a few volume percents of partial melt5-8 but these two interpretations have shortcomings: (1) The amount of H2O stored in olivine is not expected to be higher than 50 ppm due to partitioning with other mantle phases9, including pargasite amphibole at moderate temperatures10, and partial melting at high temperatures9; (2) elevated melt volume fractions are impeded by the too cold temperatures prevailing in the Asthenosphere and by the high melt mobility that can lead to gravitational segregation11,12. Here we determined the electrical conductivity of CO2-H2O-rich melts, typically produced at the onset of mantle melting. Electrical conductivity modestly increases with moderate amounts of H2O and CO2 but it dramatically increases as CO2 content exceeds 6 wt% in the melt. Incipient melts, long-expected to prevail in the asthenosphere10,13-15, can therefore trigger its high electrical conductivities. Considering depleted and enriched mantle abundances in H2O and CO2 and their effect on the petrology of incipient melting, we calculated conductivity profiles across the Asthenosphere for various plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (>5Ma), incipient melts most likely trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas for young plates4, where seamount volcanism occurs6, higher degree of melting is expected. PMID:24784219

  5. Computational analysis of electrical conduction in hybrid nanomaterials with embedded non-penetrating conductive particles

    NASA Astrophysics Data System (ADS)

    Cai, Jizhe; Naraghi, Mohammad

    2016-08-01

    In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.

  6. Electrical conductivity during incipient melting in the oceanic low-velocity zone.

    PubMed

    Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm; Hashim, Leila; Hier-Majumder, Saswata; Gaillard, Fabrice

    2014-05-01

    The low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals or to a few volume per cent of partial melt, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases (including pargasite amphibole at moderate temperatures) and partial melting at high temperatures. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates, where seamount volcanism occurs, a higher degree of melting is expected.

  7. Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.

    2016-07-01

    The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.

  8. Rational engineering correlations of diffusional and inertial particle deposition behavior in non-isothermal forced convection environments

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Gokoglu, S. A.; Israel, R.

    1982-01-01

    A multiparameter correlation approach to the study of particle deposition rates in engineering applications is discussed with reference to two specific examples, one dealing with thermophoretically augmented small particle convective diffusion and the other involving larger particle inertial impaction. The validity of the correlations proposed here is demonstrated through rigorous computations including all relevant phenomena and interactions. Such representations are shown to minimize apparent differences between various geometric, flow, and physicochemical parameters, allowing many apparently different physicochemical situations to be described in a unified way.

  9. Electrical conductivity of Icelandic deep geothermal reservoirs: insight from HT-HP laboratory experiments

    NASA Astrophysics Data System (ADS)

    Nono, Franck; Gibert, Benoit; Loggia, Didier; Parat, Fleurice; Azais, Pierre; Cichy, Sarah

    2016-04-01

    Although the Icelandic geothermal system has been intensively investigated over the years, targeting increasingly deeper reservoirs (i.e. under supercritical conditions) requires a good knowledge of the behaviour of physical properties of the host rock in order to better interpret large scale geophysical observations. In particular, the interpretation of deep electrical soundings remains controversial as only few studies have investigated the influence of altered minerals and pore fluid properties on electrical properties of rocks at high temperature and pressure. In this study, we investigate the electrical conductivity of drilled samples from different Icelandic geothermal fields at elevated temperature, confining pressure and pore pressure conditions (100°C < T < 600°C, confining pressure up to 100 MPa and pore pressure up to 35 MPa). The investigated rocks are composed of hyaloclastites, dolerites and basalts taken from depths of about 800 m for the hyaloclastites, to almost 2500 m for the dolerites. They display different porosity structures, from vuggy and intra-granular to micro-cracked porosities, and have been hydrothermally alterated in the chlorite to amphibolite facies. Electrical conductivity measurements are first determined at ambient conditions as a function of pore fluid conductivity in order to establish their relationships with lithology and pore space topology, prior to the high pressure and temperature measurements. Cementation factor varies from 1.5 for the dolerites to 2.83 for the basalt, reflecting changes in the shape of the conductive channels. The surface conductivities, measured at very low fluid conductivity, increases with the porosity and is correlated with the cation exchange capacity. At high pressure and temperature, we used the two guard-ring electrodes system. Measurements have been performed in dry and saturated conditions as a function of temperature and pore pressure. The supercritical conditions have been investigated and

  10. Intraseasonal Forcing of Lightning and Convective Activity in the Southern Amazon as a Function of Cross Equatorial Flow

    NASA Astrophysics Data System (ADS)

    Petersen, W. A.; Fu, R.; Blakeslee, R.; Chen, M.

    2003-12-01

    Recently, Wang and Fu (2002) developed a monsoon-index (V-index; VI), based on changes in cross-equatorial 925 hPa meridional wind flow in the northwest Amazon. This index appears to be a robust metric of seasonal and intraseasonal changes in precipitation regime (e.g., wet vs. dry) across the Amazon and other parts of South America. While the VI identifies continental-scale variability of the monsoon, it yields no information on structural changes in the convective regime. For example, how does the overall three-dimensional structure of convection change as a function of VI-regime? Similarly, how are transitions in VI-regime manifested in lightning trends? In an effort to answer these questions we have examined four wet seasons (Dec.-Mar., 1998-2001) of TRMM satellite Lightning Imaging Sensor (LIS) and Precipitation Radar (PR) data in addition to two wet seasons (2000-2001) of ground-based Brazilian Lightning Detection Network (BLDN) data over South America. Composited LIS data indicate that the most statistically significant wide-spread response to VI-regime changes occurs over the south-central Amazon (SCAMZ), with other noticeable variations observed over portions of the subtropical Altiplano and Parana River basin. Most notably, over the SCAMZ both LIS and BLDN lightning data suggest for the southerly (northerly) VI-regime: 1) a pronounced widespread increase (decrease) in lightning activity; 2) a marked increase (decrease) in the amplitude of the diurnal cycle of lightning; (3) in association with (1) and (2), a factor of two relative increase (decrease) in the probability of any radar reflectivity pixel exceeding 30 dBZ above the freezing level; (4) an associated 20% increase (decrease) in pixel-mean ice water contents between the 7 and 11 km levels; and (5) an increase (decrease) in the relative frequency of occurrence of large rain rates. Interestingly, while our results suggest the presence of more vertically developed convection, lightning, attendant ice

  11. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection.

    PubMed

    Susarla, Ramana; Sievens-Figueroa, Lucas; Bhakay, Anagha; Shen, Yueyang; Jerez-Rozo, Jackeline I; Engen, William; Khusid, Boris; Bilgili, Ecevit; Romañach, Rodolfo J; Morris, Kenneth R; Michniak-Kohn, Bozena; Davé, Rajesh N

    2013-10-15

    Fast drying of nano-drug particle laden strip-films formed using water-soluble biocompatible polymers via forced convection is investigated in order to form films having uniform drug distribution and fast dissolution. Films were produced by casting and drying a mixture of poorly water soluble griseofulvin (GF) nanosuspensions produced via media milling with aqueous hydroxypropyl methylcellulose (HPMC E15LV) solutions containing glycerin as a plasticizer. The effects of convective drying parameters, temperature and air velocity, and film-precursor viscosity on film properties were investigated. Two major drying regimes, a constant rate period as a function of the drying conditions, followed by a single slower falling rate period, were observed. Films dried in an hour or less without any irreversible aggregation of GF nanoparticles with low residual water content. Near-infrared chemical imaging (NIR-CI) and the content uniformity analysis indicated a better drug particle distribution when higher viscosity film-precursors were used. Powder X-ray diffraction showed that the GF in the films retained crystallinity and the polymorphic form. USP IV dissolution tests showed immediate release (~20 min) of GF. Overall, the films fabricated from polymer-based suspensions at higher viscosity dried at different conditions exhibited similar mechanical properties, improved drug content uniformity, and achieved fast drug dissolution.

  12. Dielectric properties and electrical conductivity of flat micronic graphite/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Plyushch, Artyom; Macutkevic, Jan; Kuzhir, Polina P.; Banys, Juras; Fierro, Vanessa; Celzard, Alain

    2016-03-01

    Results of broadband dielectric spectroscopy of flat micronic graphite (FMG)/polyurethane (PU) resin composites are presented in a wide temperature range (25-450 K). The electrical percolation threshold was found to lie between 1 and 2 vol. % of FMG. Above the percolation threshold, the composites demonstrated a huge hysteresis of properties on heating and cooling from room temperature up to 450 K, along with extremely high values of dielectric permittivity and electrical conductivity. Annealing proved to be a very simple but powerful tool for significantly improving the electrical properties of FMG-based composites. In order to explain this effect, the distributions of relaxation times were calculated by the complex impedance formalism. Below room temperature, both dielectric permittivity and electrical conductivity exhibited a very low temperature dependence, mainly caused by the different thermal properties of FMG and pure PU matrix.

  13. Enhancement of local electrical conductivities in SiC by femtosecond laser modification

    NASA Astrophysics Data System (ADS)

    Deki, Manato; Ito, Takuto; Yamamoto, Minoru; Tomita, Takuro; Matsuo, Shigeki; Hashimoto, Shuichi; Kitada, Takahiro; Isu, Toshiro; Onoda, Shinobu; Ohshima, Takeshi

    2011-03-01

    Enhancement of local electric conductivities induced by femtosecond laser modification in silicon carbide was studied. Current-voltage (I-V) characteristics of the laser-modified regions were measured between the ion-implanted metal contacts. Interestingly, the resistance sharply decreased in the fluence range from 5.0 to 6.7 J/cm2. The resistance at the irradiation fluence of 53 J/cm2 decreased by more than six orders of magnitude compared with the nonirradiated one. From the I-V characteristics and the scanning electron microscope observations, we conclude that the phase separation associate with the formation of classical laser induced periodic structure causes the drastic increase in electric conductivity.

  14. Effect of Thermal Annealing on the Electrical Conductivity of Copper-Tin Polymer Composites.

    PubMed

    Yang, Qing; Beers, Megan Hoarfrost; Mehta, Vishrut; Gao, Ting; Parkinson, Dilworth

    2017-01-11

    Polyvinylidene fluoride (PVDF) copolymer conductive composites containing 40 vol % copper (Cu) and tin (Sn) fillers are prepared by injection molding. Postmolding thermal annealing is found to increase the electrical conductivity of the composites by an order of magnitude. The volume ratio between Cu and Sn is found to have a significant effect on filler distribution but a weaker effect on electrical conductivity compared to the annealing conditions. Synchrotron X-ray tomography is used to visualize and quantitatively analyze the morphology and distribution of the filler particles, indicating that higher conductivity can be attributed to better dispersion of the low-melting-point Sn filler, which provides better interparticle contact in the Cu network.

  15. Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing.

    PubMed

    Campbell, Michael G; Sheberla, Dennis; Liu, Sophie F; Swager, Timothy M; Dincă, Mircea

    2015-03-27

    The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm(-1) (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.

  16. Electrical conductivity of MgO crystals implanted with lithium ions

    NASA Astrophysics Data System (ADS)

    Tardío, M.; Ramírez, R.; González, R.; Chen, Y.; Alves, E.

    2002-05-01

    MgO single crystals were implanted with a fluence of 1×10 17 Li +/cm 2 with 175 keV. Using ac and dc techniques, the electrical conductivity of these crystals was investigated in the temperature range 296-440 K. The electrical conductivity of the implanted region was 14 orders of magnitude higher than the unimplanted area. Measurements at different temperatures suggest a thermally activated process with an activation energy of about 0.33 eV. In the implanted area, electrical contacts are found to be ohmic whereas contacts are blocking in unimplanted crystals. Removal of thin layers of the implanted region by immersing the crystal in hot phosphoric acid suggests that the enhancement in conductivity in the implanted region is associated with the intrinsic defects created by the implantation, rather than with the Li ions.

  17. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  18. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.

    PubMed

    Gorby, Yuri A; Yanina, Svetlana; McLean, Jeffrey S; Rosso, Kevin M; Moyles, Dianne; Dohnalkova, Alice; Beveridge, Terry J; Chang, In Seop; Kim, Byung Hong; Kim, Kyung Shik; Culley, David E; Reed, Samantha B; Romine, Margaret F; Saffarini, Daad A; Hill, Eric A; Shi, Liang; Elias, Dwayne A; Kennedy, David W; Pinchuk, Grigoriy; Watanabe, Kazuya; Ishii, Shun'ichi; Logan, Bruce; Nealson, Kenneth H; Fredrickson, Jim K

    2006-07-25

    Shewanella oneidensis MR-1 produced electrically conductive pilus-like appendages called bacterial nanowires in direct response to electron-acceptor limitation. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA, and those that lacked a functional Type II secretion pathway displayed nanowires that were poorly conductive. These mutants were also deficient in their ability to reduce hydrous ferric oxide and in their ability to generate current in a microbial fuel cell. Nanowires produced by the oxygenic phototrophic cyanobacterium Synechocystis PCC6803 and the thermophilic, fermentative bacterium Pelotomaculum thermopropionicum reveal that electrically conductive appendages are not exclusive to dissimilatory metal-reducing bacteria and may, in fact, represent a common bacterial strategy for efficient electron transfer and energy distribution.

  19. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms

    PubMed Central

    Gorby, Yuri A.; Yanina, Svetlana; McLean, Jeffrey S.; Rosso, Kevin M.; Moyles, Dianne; Dohnalkova, Alice; Beveridge, Terry J.; Chang, In Seop; Kim, Byung Hong; Kim, Kyung Shik; Culley, David E.; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad A.; Hill, Eric A.; Shi, Liang; Elias, Dwayne A.; Kennedy, David W.; Pinchuk, Grigoriy; Watanabe, Kazuya; Ishii, Shun’ichi; Logan, Bruce; Nealson, Kenneth H.; Fredrickson, Jim K.

    2006-01-01

    Shewanella oneidensis MR-1 produced electrically conductive pilus-like appendages called bacterial nanowires in direct response to electron-acceptor limitation. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA, and those that lacked a functional Type II secretion pathway displayed nanowires that were poorly conductive. These mutants were also deficient in their ability to reduce hydrous ferric oxide and in their ability to generate current in a microbial fuel cell. Nanowires produced by the oxygenic phototrophic cyanobacterium Synechocystis PCC6803 and the thermophilic, fermentative bacterium Pelotomaculum thermopropionicum reveal that electrically conductive appendages are not exclusive to dissimilatory metal-reducing bacteria and may, in fact, represent a common bacterial strategy for efficient electron transfer and energy distribution. PMID:16849424

  20. Electric conductivity and aggregation of anthracite and graphite particles in concretes

    SciTech Connect

    E.A. Fanina; A.N. Lopanov

    2009-02-15

    A statistical model of the electric conductivity of a heterogeneous system based on coal and a binding agent is presented. In this system, a conductive phase appears because of particle aggregation. The model was tested in the systems of anthracite and graphite in cement stone. The consistency between the experimental and calculated electric conductivities with a correlation coefficient higher than 0.9 was found on a linear interpolation of model parameters. It was found that the presence of a surfactant (cetylpyridinium chloride) and a high-molecular-weight compound (polyvinyl acetate) changed the number of particles in anthracite and graphite aggregates to affect the specific conductivity of the heterogeneous system. 9 refs., 5 figs., 1 tab.

  1. New contactless eddy current non-destructive methodology for electric conductivity measurement

    NASA Astrophysics Data System (ADS)

    Bouchala, T.; Abdelhadi, B.; Benoudjit, A.

    2015-01-01

    In this paper, a new method of contactless electric conductivity measurement is developed. This method is essentially based on the association of the coupled electric field forward model, which we have recently developed, with a simple and efficient research algorithm. The proposed method is very fast because 1.3 s are sufficient to calculate electric conductivity, in a CPU of 2 GHz and RAM of 3 GB, for a starting research interval of 1.72-17.2 %IACS and tolerance of 1.72 × 10- 5 %IACS. The study of the calculation time according to mesh density and starting interval width has showed that an optimal choice has to be made in order to improve the rapidity while preserving its precision. Considering its rapidity and its simplicity of implementation, this method is more adapted, in comparison to direct current techniques using Van der Pauw geometry, for automated applications.

  2. Electrical conductivity of a methane–air burning plasma under the action of weak electric fields

    NASA Astrophysics Data System (ADS)

    Colonna, G.; Pietanza, L. D.; D’Angola, A.; Laricchiuta, A.; Di Vita, A.

    2017-02-01

    This paper focuses on the calculation of the electrical conductivity of a methane–air flame in the presence of weak electric fields, solving the Boltzmann equation for free electrons self-consistently coupled with chemical kinetics. The chemical model GRI-Mech 3.0 has been completed with chemi-ionization reactions to model ionization in the absence of fields, and a database of cross sections for electron-impact-induced processes to account for reactions and transitions activated in the flame during discharge. The dependence of plasma properties on the frequency of an oscillating field has been studied under different pressure and gas temperature conditions. Fitting expressions of the electrical conductivity as a function of gas temperature and methane consumption are provided for different operational conditions in the Ansaldo Energia burner.

  3. Enhancement of local electrical conductivities in SiC by femtosecond laser modification

    SciTech Connect

    Deki, Manato; Ito, Takuto; Yamamoto, Minoru; Tomita, Takuro; Matsuo, Shigeki; Hashimoto, Shuichi; Kitada, Takahiro; Isu, Toshiro; Onoda, Shinobu; Ohshima, Takeshi

    2011-03-28

    Enhancement of local electric conductivities induced by femtosecond laser modification in silicon carbide was studied. Current-voltage (I-V) characteristics of the laser-modified regions were measured between the ion-implanted metal contacts. Interestingly, the resistance sharply decreased in the fluence range from 5.0 to 6.7 J/cm{sup 2}. The resistance at the irradiation fluence of 53 J/cm{sup 2} decreased by more than six orders of magnitude compared with the nonirradiated one. From the I-V characteristics and the scanning electron microscope observations, we conclude that the phase separation associate with the formation of classical laser induced periodic structure causes the drastic increase in electric conductivity.

  4. Electrical conductivity measurements of aqueous electrolyte solutions at high temperatures and high pressures

    SciTech Connect

    Ho, P.C.; Palmer, D.A.

    1995-02-01

    In aqueous solutions all electrolytes tend to associate at high temperatures (low dielectric constants). Ion association results in the formation of uncharged substrates, which are substantially more volatile than their precursor ions. Thus knowledge of the association constants is important in interpreting the thermodynamics of the partitioning of electrolytes to the vapor phase in a fully speciated approach. Electrical conductance measurements provide a unique window into ionic interactions of solutions at high temperatures and pressures. In this study, the electrical conductivities of dilute (<0.1 molal) aqueous solutions of NaCl (100-600{degrees}C to 300 MPa) and sodium and potassium hydroxides (0-600 and 100-600{degrees}C, respectively, and to 300 MPa) were measured. The results show that the extent of association of Na{sup +} and Cl{sup -} is similar to those for Na{sup +} and K{sup +} with OH{sup -} in solution from subcritical to supercritical conditions.

  5. Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure

    NASA Astrophysics Data System (ADS)

    Hong, Fang; Yue, Binbin; Hirao, Naohisa; Liu, Zhenxian; Chen, Bin

    2017-03-01

    Highly efficient energy storage is in high demand for next-generation clean energy applications. As a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity measurement revealed that resistivity decreased with pressure and dramatically dropped near the phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample showed metal-like behavior. More importantly, resistivity remained much lower than its original value, even when the pressure was fully released. This work provides a new method to enhance the electronic properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields.

  6. Reversible switching of electrical conductivity in an AOT-isooctane-water microemulsion via photoisomerization of azobenzene.

    PubMed

    Bufe, Markus; Wolff, Thomas

    2009-07-21

    The electrical conductivity of microemulsions composed of aerosol OT (AOT), isooctane, and water as a function of temperature was studied in the absence and presence of azobenzene, and consequences of an in situ trans-cis photoisomerization of azobenzene were investigated. A conductivity onset upon raising the temperature of a water-in-oil microemulsion indicates percolation. Small amounts (0.1-5% w/w) of solubilized azobenzene induce higher percolation temperatures T(p) (by up to 19 K), and photoisomerization of azobenzene shifts T(p) back to values that may be below T(p) in the absence of azobenzene. Consequently, the microemulsion can be switched from nonconducting to conducting by exposing samples to UV-light at lambda > 310 nm, without varying temperature or composition. The effect reverts within several minutes after turning off the irradiation lamp through thermal reisomerization. By that, reversible switching of electrical conductivity is brought about.

  7. Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure

    PubMed Central

    Hong, Fang; Yue, Binbin; Hirao, Naohisa; Liu, Zhenxian; Chen, Bin

    2017-01-01

    Highly efficient energy storage is in high demand for next-generation clean energy applications. As a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity measurement revealed that resistivity decreased with pressure and dramatically dropped near the phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample showed metal-like behavior. More importantly, resistivity remained much lower than its original value, even when the pressure was fully released. This work provides a new method to enhance the electronic properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields. PMID:28276479

  8. Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure.

    PubMed

    Hong, Fang; Yue, Binbin; Hirao, Naohisa; Liu, Zhenxian; Chen, Bin

    2017-03-09

    Highly efficient energy storage is in high demand for next-generation clean energy applications. As a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity measurement revealed that resistivity decreased with pressure and dramatically dropped near the phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample showed metal-like behavior. More importantly, resistivity remained much lower than its original value, even when the pressure was fully released. This work provides a new method to enhance the electronic properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields.

  9. A Novel Method for Measuring Electrical Conductivity of High Insulating Oil Using Charge Decay

    NASA Astrophysics Data System (ADS)

    Wang, Z. Q.; Qi, P.; Wang, D. S.; Wang, Y. D.; Zhou, W.

    2016-05-01

    For the high insulating oil, it is difficult to measure the conductivity precisely using voltammetry method. A high-precision measurementis proposed for measuring bulk electrical conductivity of high insulating oils (about 10-9--10-15S/m) using charge decay. The oil is insulated and charged firstly, and then grounded fully. During the experimental procedure, charge decay is observed to show an exponential law according to "Ohm" theory. The data of time dependence of charge density is automatically recorded using an ADAS and a computer. Relaxation time constant is fitted from the data using Gnuplot software. The electrical conductivity is calculated using relaxation time constant and dielectric permittivity. Charge density is substituted by electric potential, considering charge density is difficult to measure. The conductivity of five kinds of oils is measured. Using this method, the conductivity of diesel oil is easily measured to beas low as 0.961 pS/m, as shown in Fig. 5.

  10. Electrically conductive, black thermal control coatings for spacecraft application. I - Silicate matrix formulation

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.; Odonnell, T. P.; Hribar, V. F.

    1986-01-01

    The formulation of the graphite silicate paints MH-11 and MH-11Z, which will serve as electrically conductive, heat-resistant thermal control coatings for the Galileo spacecraft's 400 Newton engine plume shield, 10 Newton thruster plume shields, and external shunt radiators, is described, and performance results for these paints are reported. The MH-11 is produced by combining a certain grade of graphite powder with a silicate base to produce a black, inorganic, electrically conductive, room temperature cure thermal control paint having high temperature capability. Zinc oxide is added to the MH-11 formulation to produce the blister resistant painta MH-11Z. The mechanical, chemical, thermal, optical, and radiation characteristics of the coatings are reported. The formulation, mixing, application, and surface preparation of the substrates are described, and a method of determining the electrical resistance of the coatings is demonstrated.

  11. Electrically conductive polyaniline-coated electrospun poly(vinylidene fluoride) mats

    NASA Astrophysics Data System (ADS)

    Merlini, Claudia; Barra, Guilherme; Ramoa, Sílvia; Contri, Giseli; Almeida, Rosemeire; D´Ávila, Marcos; Soares, Bluma

    2015-02-01

    Electrically conductive polyaniline (PANI)-coated electrospun poly(vinylidene fluoride) (PVDF) mats were fabricated through aniline (ANI) oxidative polymerization on electrospun PVDF mats. The effect of polymerization condition on structure and property of PVDF/PANI mats was investigated. The electrical conductivity and PANI content enhanced significantly with increasing ANI concentration due to the formation of a conducting polymer layer that completely coated the PVDF fibers surface. The PANI deposition on the PVDF fibers surface increased the Young Modulus and the elongation at break reduced significantly. Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) revealed that the electrospun PVDF and PVDF/PANI mats display a polymorph crystalline structure, with absorption bands associated to the β, α and γ phases.

  12. Technique for Determining the Viscosity and Electrical Conductivity of Semiconducting Liquids

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C. H.; Lehoczky, S. L.; Feth, S.; Zhu, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A novel apparatus for determining the viscosity and electrical conductivity of semiconducting liquids has been developed at NASA/MSFC. The apparatus is based on the transient torque technique and utilizes a 125 micrometer diameter quartz fiber as a torsion wire and a sensitive angular detector to measure the deflection angle of the crucible containing the liquid. A rotating flow is induced in the semiconducting melt by the application of a rotating magnetic field and measurement of the magnitude and transient behavior of the induced deflection angle allows the simultaneous determination of the viscosity and electrical conductivity of the melt. Measurements at room temperature and up to 900 C were made on high purity melts.

  13. Surface electrical conductivity of single crystal spinel in cesium vapor. Final report

    SciTech Connect

    Agnew, P.; Ing, J.L.

    1995-04-02

    The operation of a thermionic fuel element (TFE) requires the maintenance of good electrical resistance between the anode and cathode, and between the electrodes and the TFE body. A program of research was established as part of the TOPAZ International Program (TIP) with the purpose of investigating the degradation of TFE electrical insulators. The major emphasis of this research has been on the interactions of oxide ceramics with cesium (Cs) vapor, and the resurfacing decrease of surface resistivity. Previous work has studied the surface electrical conductivity of sapphire exposed to Cs. In this report the authors describe the results of an experimental investigation of the surface electrical conductivity of single crystal magnesium aluminate spinel at temperatures ranging from 573K to 923K, in the presence of cesium vapor at pressures up to 1 Torr. The interest in spinel has arisen in view of its apparent resistance to radiation damage.

  14. Measurement of electrical conduction properties of intact embryonic murine hearts by extracellular microelectrode arrays.

    PubMed

    Taylor, David G; Natarajan, Anupama

    2012-01-01

    The study of the embryonic development of the cardiac conduction system and its congenital and toxicological defects requires protocols to measure electrical conduction through the myocardium. However, available methods either lack spatial information, necessitate the hearts to be sliced and mounted, or require specialized equipment. Microelectrode arrays (MEAs) are plates with embedded surface electrodes to measure localized extracellular ionic currents (field potentials) created by the depolarization and repolarization of cultured cells and tissue slices. Here we describe a protocol using MEAs to examine electrical conduction through intact and beating cultured hearts isolated from mouse embryos at 10.5 days postcoitus. This method allows measurements of conduction time, estimates of conduction velocity, atrioventricular conduction delay and block, and heart rate and rhythmicity.

  15. Tunable electrical conductivity in metal-organic framework thin-film devices.

    PubMed

    Talin, A Alec; Centrone, Andrea; Ford, Alexandra C; Foster, Michael E; Stavila, Vitalie; Haney, Paul; Kinney, R Adam; Szalai, Veronika; El Gabaly, Farid; Yoon, Heayoung P; Léonard, François; Allendorf, Mark D

    2014-01-03

    We report a strategy for realizing tunable electrical conductivity in metal-organic frameworks (MOFs) in which the nanopores are infiltrated with redox-active, conjugated guest molecules. This approach is demonstrated using thin-film devices of the MOF Cu3(BTC)2 (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) infiltrated with the molecule 7,7,8,8-tetracyanoquinododimethane (TCNQ). Tunable, air-stable electrical conductivity over six orders of magnitude is achieved, with values as high as 7 siemens per meter. Spectroscopic data and first-principles modeling suggest that the conductivity arises from TCNQ guest molecules bridging the binuclear copper paddlewheels in the framework, leading to strong electronic coupling between the dimeric Cu subunits. These ohmically conducting porous MOFs could have applications in conformal electronic devices, reconfigurable electronics, and sensors.

  16. Electrically conductive polyimide film containing gold (III) ions, composition, and process of making

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L. (Inventor); Stoakley, Diane M. (Inventor); St. Clair, Anne K. (Inventor)

    1996-01-01

    An electrically conductive, thermooxidatively stable poltimide, especially a film thereof, is prepared from an intimate admixture of a particular polyimide and gold (III) ions, in an amount sufficient to provide between 17 and 21 percent by weight of gold (III) ions, based on the weight of electrically conductive, thermooxidatively stable polyimide. The particular polyimide is prepared from a polyamic acid which has been synthesized from a dianhydride/diamine combination selected from the group consisting of 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis[4-(4 -aminophenoxy)phenyl]hexafluoropropane; 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 4,4'-oxydianiline; 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and 4,4'-oxydianiline; and 3,3'4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane.

  17. Turbulent generation and mechanism analysis of forced-convective heat transfer enhancement by applying electric fields in the restricted region near the wall

    SciTech Connect

    Hasegawa, Masato; Yabe, Akira; Nariai, Hideki

    1999-07-01

    The heat transfer enhancement method of applying electric fields only near a heat transfer wall was numerically investigated. Generation of additional turbulence in the near-wall region occurs by the interaction between migrating electric charges and the turbulent flow of weakly electrically conductive fluids such as refrigerants, oils, and chlorofluorocarbon (CFC) alternatives. Based on electrostatic probe experiments, the authors assumed that the current was mainly transferred by the negative charges. They solved the Navier-Stokes equation with a Coulomb force term, the conservation equation of electric current, the Poisson equation of electric potential, and the energy equation. They used the Large Eddy Simulation (LES) method to represent the turbulence. The numerical analysis showed a heat transfer enhancement of 2.8 times for turbulent flow (Re = 1.8 x 10{sup 4}) when applying 5 kV to the near-wall region, 5 mm from the wall. The simulations for different distances between the coupled electrodes showed that an optimum location of the electrodes exists for achieving the lowest electric power input for a given electric field strength. They also evaluated the heat efficiency in a simple heat exchanger system using this heat transfer enhancement method. For the 5 kV/5 mm condition, where 19% of the total input power was consumed by the electric field, they achieved a heat transfer enhancement of 27 times compared to the case when an equivalent, additional amount of input power would be consumed by the pump to increase the flow rate of the heat-transfer fluid.

  18. The effect of water and iron content on electrical conductivity of upper mantle rocks.

    NASA Astrophysics Data System (ADS)

    Wang, D.; Yi, L.

    2008-12-01

    Geophysical observations (MT and GDS) show the conductivity anomaly which may be related to the presence of water and melting. Recently, several researchers have estimated the water content in the transition zone (Huang et al. 2005; Yoshino et al. 2008) and the upper mantle (Wang et al.2006; Yoshino et al. 2006) by electrical conductivity methods. They may underestimate the water content, especially, Yoshino et al did too much underestimate. However, other coexisting phases such as pyroxene and its high-pressure polymorphs may also contribute to the bulk conductivity of the mantle. To test this hypothesis, we measured the electrical conductivity of upper mantle rocks- dunite, pyroxenite and lherzolite at ~ 2-3 GPa and ~1273-1573 K using impedance spectra within a frequency range of 0.1~1000000 Hz. The oxygen fugacity was controlled by a Mo-MoO2 solid buffer. The results show that the electrical conductivity of lherzolite and pyroxenite are ~ half and one order of magnitude higher than that of dunite. These differences were interpreted through a preliminary model involving water and iron content effects on the electrical conductivity. We extrapolated our results and compared the results with some of geophysical observations of the upper mantle. Our results indicate the maximum water content in oceanic upper mantle is as high as ~ 0.09wt % and suggest that pyroxenes dominate the bulk conductivity of upper mantle in hydrous conditions. These results indicated that our model with various water contents could explain the conductivity anomaly in the oceanic upper mantle without involving the presence of partial melt at these depths. This work was supported by national natural science foundation of china (40774036); the special grant from the president of Chinese Academy of Sciences and Graduate University of Chinese Academy Sciences.

  19. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  20. Effect of porosity on electrical conduction of simulated nanostructures by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Dariani, R. S.; Abbas Hadi, N.

    2016-09-01

    Electrical conduction of deposited nanostructures is studied by oblique angle deposition. At first, a medium is simulated as nanocolumns by Monte Carlo method, then the effects of porosity on electron transport in 1D and 2D are investigated. The results show that more electrons transfer in media with low porosity, but with increasing porosity, the distance between nanocolumns expands and less electrons transfer. Therefore, the transport current reduces at the surface.

  1. Electrical conductivity as a test for the integrity of latex gloves

    SciTech Connect

    Stampfer, J.F.; Kissane, R.J.; Schauer, S.M.

    1993-02-01

    Surgical latex gloves have been used to protect patients against bacterial infections introduced by health-care workers. As a result of the Acquired Immune Deficiency Syndrome (AIDS) epidemic, the concern has shifted, with more emphasis on the protection of the health-care worker from the patient. These gloves often have defects, holes, which allow bacteria to penetrate. There are a number of methods to test the integrity of these gloves before they are donned. The present standard test is to fill the glove with 1000 ml of water and visually inspect the exterior for water leaks. Another method allows the gloves to be tested while being worn. This is done by measuring the electrical conductivity through the latex, from the hand to an external conductive solution. We have investigated the use of electrical conductivity to test sterile latex gloves, both with and without holes. We have studied various phenomena associated with this testing and conducted simultaneous electrical and viral penetration tests. Our conclusions are as follows. (1) Electrical conductivity test method for gloves while they are being worn is very dependent on the specific glove being tested, primarily on the conductivity of the intact glove. (2) In the best of cases, reliable results could be expected for only about one hour of wear and for holes larger than 10s of {mu}ms. (3) There are practical problems that may disqualify the electrical conductivity test for routine use. (4) The test may prove to be valuable as a QA test procedure for nonconductive materials and garments made from these materials because it has greater sensitivity than presently used methods. (5) The effective sizes of holes in latex increase much faster when the latex is stretched than would be predicted from the elongation of the latex.

  2. Electrical conductivity as a test for the integrity of latex gloves

    SciTech Connect

    Stampfer, J.F.; Kissane, R.J.; Schauer, S.M.

    1993-02-01

    Surgical latex gloves have been used to protect patients against bacterial infections introduced by health-care workers. As a result of the Acquired Immune Deficiency Syndrome (AIDS) epidemic, the concern has shifted, with more emphasis on the protection of the health-care worker from the patient. These gloves often have defects, holes, which allow bacteria to penetrate. There are a number of methods to test the integrity of these gloves before they are donned. The present standard test is to fill the glove with 1000 ml of water and visually inspect the exterior for water leaks. Another method allows the gloves to be tested while being worn. This is done by measuring the electrical conductivity through the latex, from the hand to an external conductive solution. We have investigated the use of electrical conductivity to test sterile latex gloves, both with and without holes. We have studied various phenomena associated with this testing and conducted simultaneous electrical and viral penetration tests. Our conclusions are as follows. (1) Electrical conductivity test method for gloves while they are being worn is very dependent on the specific glove being tested, primarily on the conductivity of the intact glove. (2) In the best of cases, reliable results could be expected for only about one hour of wear and for holes larger than 10s of [mu]ms. (3) There are practical problems that may disqualify the electrical conductivity test for routine use. (4) The test may prove to be valuable as a QA test procedure for nonconductive materials and garments made from these materials because it has greater sensitivity than presently used methods. (5) The effective sizes of holes in latex increase much faster when the latex is stretched than would be predicted from the elongation of the latex.

  3. Numerical investigation of entropy generation in unsteady MHD generalized Couette flow with variable electrical conductivity.

    PubMed

    Chinyoka, T; Makinde, O D

    2013-01-01

    The thermodynamic second law analysis is utilized to investigate the inherent irreversibility in an unsteady hydromagnetic generalized Couette flow with variable electrical conductivity in the presence of induced electric field. Based on some simplified assumption, the model nonlinear governing equations are obtained and solved numerically using semidiscretization finite difference techniques. Effects of various thermophysical parameters on the fluid velocity, temperature, current density, skin friction, the Nusselt number, entropy generation number, and the Bejan number are presented graphically and discussed quantitatively.

  4. Wireless Sensing System Using Open-circuit, Electrically-conductive Spiral-trace Sensor

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2013-01-01

    A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.

  5. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    DOEpatents

    Carter, J. David; Mawdsley, Jennifer R.; Niyogi, Suhas; Wang, Xiaoping; Cruse, Terry; Santos, Lilia

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  6. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    PubMed

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-07

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  7. Electrical Conductance Map for the Kachchh Rift Basin: Constraint on Tectonic Evolution and Seismotectonic Implications

    NASA Astrophysics Data System (ADS)

    Subba Rao, P. B. V.; Arora, B. R.; Singh, A. K.

    2014-09-01

    Geomagnetic field variations recorded by an array of magnetometers spread across the Kachchh Rift basin are reduced to a set of induction arrows as a diagnostic of lateral electrical conductivity variations. A non-uniform thin-sheet electrical conductance model is developed to account for the salient induction patterns. It indicates that the imaged conductivity anomalies can be related to the sediment-filled structural lows in between the fault bounded uplifts. It is suggested that sagging structural lows preserved the marine sediments deposited during the Mesozoic sea transgression and later developed into first order embayment basins for the deposition of sediments in association with Late Eocene transgression. Depth integrated electrical conductance helped in mapping two depo-centres: along the ENE-WSW trending Banni half-Graben bounded by the Kachchh Main fault on the south and, second, along the Vinjan depression formed in response to the subsidence between the Vigodi fault and westward extension of the Katrol Hill fault together with the westward bending of the Median High. Presence of metamorphosed graphite schist clasts in shale dominated Mesozoic sequence and/or thin films of carbon resulting from the thermal influence of Deccan activity on Carbonate-rich formations can account for the high electrical conductivity anomalies seen in the depo-centres of thick Mesozoic and Tertiary sediments. Additionally two high conductivity zones are imaged encompassing a block defined by the 2001 Bhuj earthquake and its aftershocks. In agreement with gravity, magnetic and seismic velocity signatures, aqueous fluids released by recrystallizing magmatic bodies intruded in association with Deccan trap activity account for mapped high conductivity zones. High fluid pressure in such a fractured domain, surrounding the intruded magmatic plugs, perturb the regional stress concentrations to produce frequent and low magnitude aftershocks in the shallow section of the epicentral

  8. Electrical conductivity and permittivity of water-AOT-n-heptane microemulsions

    SciTech Connect

    Arcoleo, V.; Goffredi, M.; Liveri, V.T.

    1995-11-01

    Measurements of the electrical conductivity and of the complex permittivity of water-sodium bis(2-ethylhexyl) sulfosuccinate (AOT)-n-heptane microemulsions are reported. The experimental results are rationalized in terms of a hopping mechanism of AOT anions within clusters of reversed micelles. The dependence of the hopping rate and of the cluster dimensions upon the ratio [water]/[AOT] and temperature is discussed.

  9. Resolving electrical conductivities from collisionally damped plasmons in isochorically heated warm dense aluminum

    SciTech Connect

    Sperling, P.; Fletcher, L. B.; Chung, H. -K.; Gamboa, E. J.; Lee, H. J.; Omarbakiyeva, Y.; Reinholz, H.; Ropke, G.; Rosmej, S.; Zastrau, U.; Glenzer, S. H.

    2016-03-29

    We measure the highly-resolved inelastic x-ray scattering spectrum of isochorically ultrafast heated aluminum. In the x-ray forward scattering spectra the electron temperature could be measured from the down- and upshifted plasmon, where the electron density of ne = 1:8 1023 cm3 is known a priori. We have studied the plasmon damping by applying electron-particle collision models beyond the Born approximation determining the electrical conductivity of warm dense aluminum.

  10. Water chemistry and electrical conductivity database for rivers in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Clor, Laura E.; McCleskey, R. Blaine; Huebner, Mark A.; Lowenstern, Jacob B.; Heasler, Henry P.; Mahony, Dan L.; Maloney, Tim; Evans, William C.

    2012-01-01

    This study aims to quantify relations between solute concentrations (especially chloride) and electrical conductivity for several rivers in Yellowstone National Park (YNP), by using automated samplers and conductivity meters. Norton and Friedman (1985) found that chloride concentrations and electrical conductivity have a good correlation in the Falls, Snake, Madison, and Yellowstone Rivers. However, their results are based on limited sampling and hydrologic conditions and their relation with other solutes was not determined. Once the correlations are established, conductivity measurements can then be used as a proxy for chloride concentrations, thereby enabling continuous heat-flow estimation on a much finer timescale and at lower cost than is currently possible with direct sampling. This publication serves as a repository for all data collected during the course of the study from May 2010 through July 2011, but it does not include correlations between solutes and conductivity or recommendations for quantification of chloride through continuous electrical conductivity measurements. This will be the object of a future document.

  11. Novel flexible belt-shaped coaxial microcables with tunable multicolor luminescence, electrical conductivity and magnetism.

    PubMed

    Shao, Hong; Ma, Qianli; Dong, Xiangting; Yu, Wensheng; Yang, Ming; Yang, Ying; Wang, Jinxian; Liu, Guixia

    2015-09-14

    A novel type of flexible [Fe3O4/PANI/PMMA]@{[Eu(BA)3phen + Tb(BA)3phen]/PMMA} (PMMA = polymethyl methacrylate, BA = benzoic acid, phen = phenanthroline, PANI = polyaniline) belt-shaped coaxial microcable possessing electrical conductivity, magnetism and color-tunable photoluminescence has been successfully fabricated by electrospinning technology using a specially designed coaxial spinneret. Every strip of belt-shaped coaxial microcable is assembled with a Fe3O4/PANI/PMMA electrically conductive -magnetic bifunctional core and a [Eu(BA)3phen + Tb(BA)3phen]/PMMA insulative and photoluminescence-tunable shell. The conductivity of the core of belt-shaped coaxial microcables reaches up to the order of 10(-2) S cm(-1) and all belt-shaped coaxial microcables are insulated from each other. The tuning of emission color is possible by changing the Eu(3+)/Tb(3+) molar ratio of the belt-shaped coaxial microcables. The electrical conductivity, magnetic and photoluminescence properties of belt-shaped coaxial microcables can be tuned by adjusting the content of PANI, Fe3O4 nanoparticles (NPs) and rare earth complexes. More importantly, the proposed design idea and the construction technique are universal regarding the preparation of other multifunctional one-dimensional micromaterials.

  12. Modeling of heat evolution in silicate building materials with electrically conductive admixtures

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Maděra, Jiří; Vejmelková, Eva; Černý, Robert

    2016-12-01

    Silicate building materials are electrically non-conductive, in general. However, a sufficient amount of electrically conductive admixtures can significantly increase their electrical conductivity. Consequently, new practical applications of such materials are available. Materials with enhanced electrical properties can be used as self-sensing sensors monitoring evolution of cracks, electromagnetic shields or cores of deicing systems. This paper deals with the modeling of heat evolution in silicate building materials by the action of passing electric current. Due to the conducting paths formed in the material's matrix by adding a sufficient amount of electrically conductive admixture and applying electric voltage on the installed electrodes, electric current is passing through the material. Thanks to the electric current, Joule heat is successively evolved. As it is crucial to evaluate theoretically the amount of evolved heat in order to assess the effectiveness of such a system, a model describing the Joule heat evolution is proposed and a modeling example based on finite-element method is introduced.

  13. Electrical conductivity structure of southeastern North America: Implications for lithospheric architecture and Appalachian topographic rejuvenation

    NASA Astrophysics Data System (ADS)

    Murphy, Benjamin S.; Egbert, Gary D.

    2017-03-01

    We present the first three-dimensional view of the lithospheric electrical conductivity structure beneath southeastern North America. By inverting EarthScope long-period magnetotelluric (MT) data, we obtain an electrical conductivity image that provides new insights into both the architecture of the Appalachian Orogen and the cryptic post-rifting geodynamic history of the southeastern United States. Our inverse solutions reveal several elongate electrically conductive features that we interpret as major terrane sutures within the Appalachian Orogen. Most significantly, we resolve a highly electrically resistive layer that extends to mantle depths beneath the modern Piedmont and Coastal Plain physiographic provinces. As high resistivity values in mantle minerals require cold mantle temperatures, the MT data indicate that the sub-Piedmont thermal lithosphere must extend to greater than 200 km depth. This firm bound conflicts with conclusions from seismic results. The boundary between the anomalously thick, resistive sub-Piedmont lithosphere and the relatively thin, moderately conductive sub-Appalachian lithosphere corresponds within resolution to the modern Appalachian topographic escarpment. This newly recognized contrast in lithospheric properties likely has important implications for Appalachian topographic rejuvenation.

  14. Increasing electrical conductivity of upconversion materials by in situ binding with graphene

    NASA Astrophysics Data System (ADS)

    Wu, Suli; Sun, Xiaoqian; Zhu, Jiacheng; Chang, Jie; Zhang, Shufen

    2016-08-01

    Upconversion nanoparticles (UCNPs) hold promise as near-infrared light converters to enhance the efficiency of solar cells. However, the prevalent use of UCNPs in solar cells is restricted by their poor electrical conductivity and low emission efficiency. Here reduced graphene oxide (rGO)-NaYF4:Yb3+/Er3+ composites are proposed to achieve good electrical conductivity due to the high charge carrier mobility of rGO. Composites of rGO and UCNPs combined by a chemical bond are in situ synthesized by the hydrothermal method, followed by a reduction process. The contact of UCNPs with rGO is proved by SEM, and the binding between the rGO-UCNP composites is confirmed by Fourier transform infrared spectroscopy. The composites are doped into the photoanode of a solar cell. As anticipated, electrochemical impedance spectroscopy confirms the good electrical conductivity of the in situ synthesized rGO-UCNPs. Furthermore, the use of rGO-UCNPs in solar cells enables an enhancement in short-circuit current density and overall efficiency by about 10%. These findings reveal that the combination of UCNPs with rGO opens up new opportunities of extending the use of UCNPs in the area of solar energy harvesting.

  15. A practical approach to lake water density from electrical conductivity and temperature

    NASA Astrophysics Data System (ADS)

    Moreira, Santiago; Schultze, Martin; Rahn, Karsten; Boehrer, Bertram

    2016-07-01

    Density calculations are essential to study stratification, circulation patterns, internal wave formation and other aspects of hydrodynamics in lakes and reservoirs. Currently, the most common procedure is the use of CTD (conductivity, temperature and depth) profilers and the conversion of measurements of temperature and electrical conductivity into density. In limnic waters, such approaches are of limited accuracy if they do not consider lake-specific composition of solutes, as we show. A new approach is presented to correlate density and electrical conductivity, using only two specific coefficients based on the composition of solutes. First, it is necessary to evaluate the lake-specific coefficients connecting electrical conductivity with density. Once these coefficients have been obtained, density can easily be calculated based on CTD data. The new method has been tested against measured values and the most common equations used in the calculation of density in limnic and ocean conditions. The results show that our new approach can reproduce the density contribution of solutes with a relative error of less than 10 % in lake waters from very low to very high concentrations as well as in lakes of very particular water chemistry, which is better than all commonly implemented density calculations in lakes. Finally, a web link is provided for downloading the corresponding density calculator.

  16. Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems

    NASA Astrophysics Data System (ADS)

    Ankireddy, Krishnamraju; Menon, Akanksha K.; Iezzi, Brian; Yee, Shannon K.; Losego, Mark D.; Jur, Jesse S.

    2016-11-01

    Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon-nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver-nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (Δ T) of 113°C] due to their low electrical resistance. The voltage generated from the silver-nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization.

  17. A Chemically Polymerized Electrically Conducting Composite of Polypyrrole Nanoparticles and Polyurethane for Tissue Engineering

    PubMed Central

    Broda, Christopher R.; Lee, Jae Y.; Sirivisoot, Sirinrath; Schmidt, Christine E.; Harrison, Benjamin S.

    2011-01-01

    A variety of cell types respond to electrical stimuli, accordingly many conducting polymers (CPs) have been used as tissue engineering (TE) scaffolds, one such CP is polypyrrole (PPy). PPy is a well studied biomaterial with potential TE applications due to its electrical conductivity and many other beneficial properties. Combining its characteristics with an elastomeric material, such as polyurethane (PU), may yield a hybrid scaffold with electrical activity and significant mechanical resilience. Pyrrole was in situ polymerized within a PU emulsion mixture in weight ratios of 1:100, 1:20, 1:10 and 1:5, respectively. Morphology, electrical conductivity, mechanical properties and cytocompatibility with C2C12 myoblast cells were characterized. The polymerization resulted in a composite with a principle base of PU interspersed with an electrically percolating network of PPy nanoparticles. As the mass ratio of PPy to PU increased so did electrical conductivity of the composites. In addition, as the mass ratio of PPy to PU increased, stiffness of the composite increased while maximum elongation length decreased. Ultimate tensile strength was reduced by approximately 47% across all samples with the addition of PPy to the PU base. Cytocompatibility assay data indicated no significant cytotoxic effect from the composites. Static cellular seeding of C2C12 cells and subsequent differentiation showed myotube formation on the composite materials. PMID:21681943

  18. Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films.

    PubMed

    Mattia, D; Rossi, M P; Kim, B M; Korneva, G; Bau, H H; Gogotsi, Y

    2006-05-25

    The use of carbon nanomaterials in various applications requires precise control of their surface and bulk properties. In this paper, we present a strategy for modifying the surface chemistry, wettability, and electrical conductivity of carbon tubes and films through annealing in a vacuum. Experiments were conducted with 60-300 nm nanotubes (nanopipes), produced by noncatalytic chemical vapor deposition (CVD) in a porous alumina template, and with thin films deposited by the same technique on a glassy carbon substrate having the same structure and chemistry of the CNTs. The surface of the as-produced CVD-carbon, treated with sodium hydroxide to remove the alumina template, is hydrophilic, and the bulk electrical conductivity is lower by a factor of 20 than that of fully graphitic multiwalled nanotubes (MWNT) or bulk graphite. The bulk electrical conductivity increases to the conductivity of graphite after annealing at 2000 degrees C in a high vacuum. The analysis of CNTs by transmission electron microscopy (TEM) and Raman spectroscopy shows the ordering of carbon accompanied by an exponential increase of the in-plane crystallite size, L(a), with increasing annealing temperature. Environmental scanning electron microscopy (ESEM) was used to study the interaction of CNT with water, and contact angle measurements performed using the sessile drop method on CVD-carbon films demonstrate that the contact angle increases nearly linearly with increasing annealing temperature.

  19. Controllable magnitude and anisotropy of the electrical conductivity of Hf3C2O2 MXene

    NASA Astrophysics Data System (ADS)

    Zha, Xian-Hu; Zhou, Jie; Luo, Kan; Lang, Jiajian; Huang, Qing; Zhou, Xiaobing; Francisco, Joseph S.; He, Jian; Du, Shiyu

    2017-04-01

    Hf3C2O2, a new MXene member synthesized recently, was predicted to be a semi-metal with high mechanical strength. Based on the unique electronic structure, the energy bands and electrical conductivities of the MXene under various strains are comprehensively investigated in this paper. Biaxial and two orthogonal uniaxial strains in both compressive and tensile manners are studied. Results from this study suggest that Hf3C2O2 shows a transition between semi-metal and semi-conductor under both biaxial and uniaxial strains. A compressive strain generally induces a larger energy overlap between the conduction band minimum and the valance band maximum, while a tensile strain reduces the energy band overlap and even opens a band gap. As a consequence, the magnitude of electrical conductivity decreases drastically from compressive to tensile strains applied. Moreover, the uniaxial strains are determined to be efficient in manipulating the anisotropy of the electrical conductivity. These data imply that the Hf3C2O2 MXene is a promising candidate material for devices such as strain sensors.

  20. The Development of Electrically Conductive Polycaprolactone Fumarate-Polypyrrole Composite Materials for Nerve Regeneration

    PubMed Central

    Runge, M. Brett; Dadsetan, Mahrokh; Baltrusaitis, Jonas; Knight, Andrew M.; Ruesink, Terry; Lazcano, Eric; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.

    2010-01-01

    Electrically conductive polymer composites composed of polycaprolactone fumarate and polypyrrole (PCLF-PPy) have been developed for nerve regeneration applications. Here we report the synthesis and characterization of PCLF-PPy and in vitro studies showing PCLF-PPy materials support both PC12 cell and dorsal root ganglia (DRG) neurite extension. PCLF-PPy composite materials were synthesized by polymerizing pyrrole in pre-formed PCLF scaffolds (Mn 7,000 or 18,000 g mol−1) resulting in interpenetrating networks of PCLF-PPy. Chemical compositions and thermal properties were characterized by ATR-FTIR, XPS, DSC, and TGA. PCLF-PPy materials were synthesized with five different anions (naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), dioctyl sulfosuccinate sodium salt (DOSS), potassium iodide (I), and lysine) to investigate effects on electrical conductivity and to optimize chemical composition for cellular compatibility. PCLF-PPy materials have variable electrical conductivity up to 6 mS cm−1 with bulk compositions ranging from 5 to 13.5 percent polypyrrole. AFM and SEM characterization show microstructures with a root mean squared (RMS) roughness of 1195 nm and nanostructures with RMS roughness of 8 nm. In vitro studies using PC12 cells and DRG show PCLF-PPy materials synthesized with NSA or DBSA support cell attachment, proliferation, neurite extension, and are promising materials for future studies involving electrical stimulation. PMID:20483452